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SUMMARY

Soil phosphorus (P) directly impacts major sustainability outcomes, namely crop yields, water quality, and
carbon sequestration. Optimally managing P to improve sustainability outcomes requires a mechanistic un-
derstanding of P availability and transfer, alongside high-resolution spatial data. However, it is unclear if cur-
rent measurement techniques, models, and maps meet the demands for science-informed management.
Here, we review recent advances in measuring P fluxes, quantifying P availability, and mapping soil P re-
sources and discuss implications for sustainability outcomes. We find that the understanding of soil P avail-
ability has significantly improved but that agronomical applications and climate models are still largely based
on outdated concepts. Also, we find that spatial data on soil P resources are highly uncertain, limiting the use-
fulness of current P maps. We highlight steps to improve existing tools and emphasize that these improve-
ments need to go hand in hand with policy and technological development to successfully address P-related
sustainable development goals.
INTRODUCTION

Phosphorus (P) has been recognized as a key strategic resource

for centuries due to its role as a fertilizer for crops.1–4 In the

1850s, there was already fierce competition over control of global

guano (P-rich deposits of seabird excrements, highly prizedas fer-

tilizer) trade, leading the United States to pass the ‘‘Guano Islands

Act’’ in 1856, giving United States citizens the right to claim newly

discovered guano islands and rocks anywhere in the world as ap-

pertaining to the United States.5 With the discovery of rock phos-

phate reserves and the industrialization of rock phosphate mining

in the early 20th century, P use has increased manyfold.6 On a

global level, current P additions in agriculture exceed crop de-

mands by 9–11 TgP year�1 and are projected to increase further

until 2050.7,8 Nevertheless, the strategic importance of P remains

due to unequal access to P fertilizers, imbalance in the distribution

of global P resources, and large uncertainty about the quantity of P

reserves. Inaddition, thewidespreadapplicationofP fertilizershas

massively altered ecosystem functioning and iswidely recognized

as one of the main challenges in preserving Earth’s habitability for

human civilization (Figure 1).9,10 The influx of N and P to water

bodies from agricultural sources leads to eutrophication and has

already resulted in coastal hypoxia in several areas.11 Geological

evidence indicates that prolonged highP inputs could even trigger

oceananoxiaonaglobal level.12Furthermore, addedPstays in the
All rights are reserved, including those
soil for centuries, so past P inputs in agriculture (e.g., from ancient

Roman or Amazonian civilizations) continue to influence species

distribution and ecosystem productivity even centuries after land

abandonment.13,14

The seemingly contradictory challenges of P limitation and

excess affect several sustainable development goals (SDGs,

Figure 2). While in some regions, high P fertilizer use leads to

increased P losses that threaten ‘‘life below water’’ and ‘‘clean

water and sanitation,’’ in other regions, especially in least devel-

oped countries, limited access to P fertilizer constrains agricul-

tural yield and is a barrier to the SDGs ‘‘no hunger’’ and ‘‘no

poverty.’’15–17 The SDG ‘‘responsible consumption and produc-

tion’’ relates to the need to recycle P, as well as to carefully

consider justice in Pmanagement strategies.18 In addition, P lim-

itation is a key uncertainty in determining how terrestrial ecosys-

tems react to a changing climate and how much C they will

sequester from the atmosphere.19,20 Improved quantification of

C-N-P interactions is thus essential for making science-informed

land use decisions that mitigate climate change, relating to the

SDG ‘‘climate action.’’21–24 Finally, distribution of P in soil im-

pacts plant and microbial community distributions and produc-

tivity, as these communities have adapted to specific levels of

P availability,25,26 relating to the SDG ‘‘life on land.’’

To reach P-related SDGs, there is an urgent need for soil P

data among various stakeholders. For instance, individual
One Earth 7, October 18, 2024 ª 2024 Elsevier Inc. 1
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Figure 1. The relevance of P for ecosystem
functioning
Phosphorus (P) is essential for life, and thus, most
ecosystems react sensitively to changes in P
availability.
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farmers need to know P availability in their soils in order to

responsibly and economically apply P fertilizers andmanure. Ac-

curate data at appropriate spatial resolution, coupledwith robust

mechanistic models, are especially relevant to determine P re-

quirements of crops in areas with large yield gaps, such as in

sub-Saharan Africa.15,27,28 At the law and policy level, there

seems to be increased attention on balancing crop production

with P losses to aquatic and marine systems. For example, in

the proposed soil monitoring and resilience directive, the Euro-

pean Commission has recommended monitoring soil-available

P as an indicator for nutrient excess and deficiency. This is

part of the broader initiative to use P as a key measure of soil

health.29 Implementing and evaluating this indicator requires

both accurate spatial data and a sufficient mechanistic under-

standing of P availability and fluxes. These efforts underscore

the need for a combination of detailed geographical information

and reliable modeling to effectively manage soil P levels.

The underlying question of this review is how scientific ad-

vances in the last decade, namely a massive increase in data

availability, harnessed by machine learning algorithms, and the

spread of novel measurement and modeling techniques, rede-

fine what we know about P fluxes and the availability of P in

soil. Specifically, we ask if the current level of understanding is

up to meet demands for addressing P-related SDGs, as well

as pinpoint remaining challenges. We begin by synthesizing

recent literature to update conceptual models of the P cycle.

We then examine recent breakthroughs in understanding
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the temporal dynamics of P cycling in

soil, shedding light on the nuances of P

availability. Following this, we critically

examine the current state of mapping

P in soils. We conclude by identifying key

areas where science, law and policy, and

technology must converge to effectively

contribute to achieving P-related SDGs.

QUANTIFICATION OF P FLUXES

Estimates of P fluxes at the global scale

were already available in the early 2010s

and led to the establishment of planetary

boundaries for P.6,9 In the meantime, esti-

mates of P stocks and fluxes have been

revised and updated for natural biomes,30

agriculture,31 fishery,32 and global biogeo-

chemical models. However, improve-

ments toward SDGs require policies

informed by the situation at the corre-

sponding scales, ranging from plot to na-

tional to global scale. Conceptual models

of P cycling are the basis for both lab-

based research33–36 and modeling,37–39
including assessments of implications of P-related policy targets

on crop yields.7,40,41 Despite the relevance of P stocks and fluxes

for calibrating models and guiding lab research, a comprehen-

sive review of such data is currently missing. In this section,

we bridge this gap by synthesizing the relative sizes of P stocks

and fluxes in natural and agricultural terrestrial environments

from existing literature, focusing on the plot scale. Though the

P cycle is context specific, our analysis of roughly 775 empirical

flux measurements from 26 studies supports drawing several

general conclusions (Table S1). The general rules as well as

the values summarized in Table S1 should be used as guardrails

to check the consistency of P model representations.

In both natural and agricultural systems, empirical data

on P stocks tend to follow the pattern soil [ microbial

biomass > plant biomass. Soil P stocks tend to be on an order

of 100–1,000 g Pm�2 in the top 50 cm, with only few soils in high-

ly weathered tropical soils having <100 g P m�2 and few soils

such as on P-rich basaltic parent material or heavily fertilized

soils having stocks >1,000 g P m�2.42,43 P in microbial biomass

ranges from 8 g P m�2 in deserts to 70 g P m�2 in boreal forests

and tundra.44 Croplands have, on average, amicrobial P stock of

12 g P m�2, but large variability exists.44 Plant biomass tends to

be the smallest of the three pools, constituting <10 g P m�2 in

most ecosystems, ranging from 0.2 g P m�2 in semi-desert envi-

ronments to 29 g P m�2 in fertile tropical rainforests.45,46 Even in

agricultural systems, plant biomass tends to contain less P than

soil microbial biomass. For example, modern high-yielding corn



Figure 2. Science-informed management to
reach P-related sustainable development
goals
Improved management of P relates to several
sustainable development goals and requires both a
better understanding of P availability and transfers
and high-resolution spatial data. The numbers
correspond to the Sustainable Development Goals
of the United Nations.
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and soybean contain 2.1 and 4.6 g P m�2 at crop maturity,

respectively.47,48 The large size of the microbial P pools com-

bined with faster turnover rates than for plants underline the rela-

tive importance of microbes for biological P cycling.45,49

In terms of P fluxes, several general conclusions can be drawn.

Firstly, recent evidence supports the paradigm that the natural P

cycle is fairly closed (Figure 3A).50 The order of magnitude of P

fluxes in the soil-plant system in natural ecosystems decreases

from fluxes between P pools within soil [ fluxes between

soils-plants > system inputs (weathering, atmospheric deposi-

tion) and losses (erosion, leaching). The P cycle is thus domi-

nated by fluxes within the soil, such as adsorption-desorption

and precipitation dissolution (abiotic) and immobilization and

mineralization (biotic). These processes have P fluxes on the or-

der of 10 to 105 g P m�2 year�1 (Table S1). Fluxes within the soil,

when extrapolated to a yearly basis, are thus much larger than

soil P stocks, implying that some phosphate ions cycle hun-

dreds, thousands, or millions of times between different soil

forms within the course of a year.51 Annual fluxes from soil to

plants, called plant uptake, tend to be in the range 0.08–1.8 g

P m�2 year�1.37,41 A similar range of values has been measured

for P returned to soils via litterfall in various ecosystems.52–54

Natural P inputs and outputs to the soil-plant system tend to

be smaller still. P inputs both from rock weathering and through

atmospheric deposition range from <0.001 to 0.05 g P m�2

year�1 in most contexts, with higher values up to 0.1 g P m�2

year�1 only in montane environments with high weathering rates

or in areas downwind of deserts experiencing extreme atmo-

spheric deposition rates.55–58 Natural losses through leaching

and erosion are on similar orders of magnitude as P in-

puts.55,58,59 Younger soils tend to have higher P inputs and los-
ses relative to older soils55,58,60; however,

even in young soils, the amount of P

added and lost is small when compared

to how much is recycled within the soil

itself.

Secondly, human land use, particularly

agriculture or high-input forestry, trans-

forms the P cycle from a relatively closed

system into one that is substantially

more open. Fertilizer application, typically

ranging from 1 to 5 g P m�2 year�1, signif-

icantly exceeds natural inputs through

weathering or deposition by at least one,

and up to four, orders of magnitude

(Figure 3C). This leads to fundamental

changes in the P cycle, most notably

accumulation of actively cycling P in the

soil, along with increased losses through
erosion and leaching, which are also notably higher than those

in natural systems (Table S1).61–64 Such high-input agricultural

P cycles are characteristic of croplands in many regions,

including most parts of China, India, South America, and large

areas of North America and Europe.17,65 In regions with limited

access to P fertilizers, notably vast areas of sub-Saharan Africa,

agricultural practices deplete soil P reserves (Figure 3B). This is

because crop harvesting results in substantial P removal (up to

several g P per m�2 per year41,47,48,66), and agricultural activities

increase soil erosion, leading to heightened P losses.61 In many

parts of Europe and North America, current P additions are also

lower than P removal rates.65 However, due to the legacy of high

P additions in recent decades, soils in these regions still contain

significant amounts of anthropogenic labile P.65,67 In these con-

texts, high yields can bemaintained by tapping into legacy P, i.e.,

P that has accumulated from high P additions in the past.68 How-

ever, the use of accumulated P in soils may not be straightfor-

ward,69 and these soils may continue to sustain considerable

losses through leaching and erosion.

TOWARD A MECHANISTIC UNDERSTANDING OF P
AVAILABILITY FOR AGRICULTURAL APPLICATIONS

While soils contain large P stocks compared to plant biomass,

only a tiny fraction (usually <1%) of soil P is in the soil solution,

where it can be taken up by plants and microbes. Available P re-

fers to the portion of soil P that can dissolve or be released into

the soil solution as phosphate during a plant’s growth period and

is influenced by the processes of diffusion/desorption, solubili-

zation of P minerals, organic P mineralization, and vertical trans-

port.70 In general, fertilizer recommendations are based on
One Earth 7, October 18, 2024 3



Figure 3. The terrestrial P cycle in fluxes
At the plot scale, three conceptual models of the P cycle can be differentiated. In natural terrestrial systems (A), the P cycle is relatively closed with only small
inputs and outputs. In no- or low-input agricultural systems (B), P removed by crops and lost through erosion is not sufficiently replaced by inputs, leading to
progressive impoverishment of soil P reserves. In high-input agricultural systems (C), P fertilizer inputs lead to a more leaky P cycle with high losses through
leaching, erosion, and crop removal and progressive accumulation of P in the soil. The widths of the arrows are based on empirical measurements and modeled
values of P fluxes from 27 references, which are summarized in Table S1.
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estimating soil P availability using a soil P test and calibrating that

result based on regional field trials that measure yield as a func-

tion of P test value.71 The most common soil tests are Olsen P,

Bray-1 P, Mehlich-3 P, and Colwell P, but there are many

more, and the standard varies from country to country.72–74

The amount of P extracted by these methods is, first of all, a

function of the chemical or mixture of chemicals used. Whereas

these extractants solubilize a fraction of P that can be easily

measurable by commercial soil laboratories, they do not extract

all available P, and they also extract variable proportions of un-

available P, depending on the chemicals used for extraction.

This has been shown repeatedly by using isotopic labeling of

soils extracted by these chemicals.75–77

For the purpose of providing local fertilizer recommenda-

tions, the fact that soil P tests are not process based is irrele-

vant as long as there is a strong relationship between the

amount of P extracted and the response of a crop to an appli-

cation of P fertilizer.71 However, problems arise when soil tests

are interpreted as stand-alone P availability tests, for example,

to define global thresholds for P deficiency.78 This is because

crop response to soil test values varies by soil type and envi-

ronmental context79–81 (Figure 4A). Also, the correlation be-

tween yield and soil test value is sometimes weak, especially

for some crops, so fertilizer recommendations based on soil

P tests risk over- or under-fertilizing crops.79 In fact, interna-

tional cross-comparison studies of P fertilizer recommenda-

tions have shown that due to these uncertainties in the method-

ologies, there are more than 3-fold differences in the P fertilizer

recommendations for similar soil-crop situations, depending on

the advisory service.74 Hence, a more mechanistic understand-

ing that goes beyond simplistic P tests is crucial for optimizing

P management.
4 One Earth 7, October 18, 2024
In high P situations, such as most agricultural systems

(Figure 3C), diffusion/desorption is the most important process

determining P availability and is, in most cases, sufficient

to characterize P availability and plant response.82 Several

methods have been developed to measure P flux via diffusion/

desorption, including diffusive gradients in thin films and radio-

isotopic tracing approaches.35 Both of these methods have

shown to be superior at predicting plant response relative to

conventional soil tests.80,83–85 The isotope exchange kinetic

approach uses P radioisotope tracing to quantify P availability

as a function of time, with the advantage that it is non-invasive,

as only carrier-free radioisotopes need to be added to the soil

sample.34,86 Unlike with wet chemistry soil tests, the yield

response to P availability as determined by isotope exchange ki-

netic experiments is consistent across soil types (Figure 4B).

Despite the superior predictive power of isotope exchange ki-

netic and other approaches relative to conventional soil tests,

conventional soil tests are still standard in agronomic applica-

tions. For example, crop models used to make fertilizer recom-

mendations commonly use Olsen P due to higher data availabil-

ity.38,87 Similarly, Olsen P has been used to calibrate precision

farming approaches to predict proximal sensing techniques for

predicting soil P availability.88

Moving forward, P lab research needs to focus on producing

more measurements with process-based methods and making

those data available to users. For example, of the roughly 41

published studies using the isotope exchange kinetic approach,

most measured only a handful of soils.51 Only Achat et al.89 sys-

tematically studied a broad set of 102 soils. Since suchmeasure-

ments are time, know-how, and resource intensive, another way

forward is to make use of the fact that exchange kinetic param-

eters can be predicted from more cheaply measured soil



Figure 4. Plant response to two different
methods for measuring available P,
illustrated with data from fertilizer trial
experiments with corn at four sites in France
According to Olsen P measurement (A), the avail-
able P stock required to reach 95% of plant P
nutritional index (dashed lines) varies from roughly
2.5 to 21 g m�2, depending on the location. How-
ever, using an isotope exchange kinetic measure-
ment of available P (B), P nutritional index follows
the same pattern on all sites. This figure was made
using data from Morel et al.80
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properties, namely amorphous Fe/Al oxide, clay, and soil organic

carbon concentrations.89–91 Information on these soil properties

allows developing pedo-transfer functions for predicting isotope

exchange kinetic parameters. While clay and soil organic carbon

are routinely measured, amorphous Fe/Al oxides (e.g., through

oxalate extractions), though also cheap, are less commonly

measured. More measurement of Fe/Al oxides is thus pivotal

for understanding P availability for both agronomic and environ-

mental objectives. In addition, Fe/Al oxides are also key indica-

tors for predicting soil carbon stabilization.92

Similarly, users of available P data should evaluate their

models against process-based methods where possible. For

example, crop models often rely on simple soil P tests to cali-

brate crop P nutrition (WOFOST (world food studies) based on

QUEFTS (quantitative evaluation of the fertility of tropical soils),

which uses Olsen P38; DSSAT (decision support system for

agrotechnology transfer) relies on Bray-1 P combined with

exchangeable K93) and/or to evaluate modeled labile P

pools.87,94 Given the uncertainties involved with simple soil P

tests, we advise future crop models, where possible, to be cali-

brated with and evaluated against more mechanistic soil P mea-

surements, such as soil solution P concentration and isotope ex-

change kinetic data. This is particularly important as cropmodels

are used more and more at larger spatial scales (e.g., global

grided crop model intercomparison95), encompassing a multi-

tude of pedo-climatic conditions, without calibration to each

local site condition. Similarly, future developments in proximal

sensing of soil P status for precision agriculture applications

should be calibrated against process-based representations of

P availability rather than simple soil P tests.88

IMPROVING SOIL P REPRESENTATIONS IN GLOBAL
LAND SURFACE MODELS

Global land surface models have become increasingly influential

tools to predict ecosystem response to global change, such as a

warming climate, higher atmospheric CO2 concentrations, and

changing nutrient availabilities.96 The number of global land sur-

face models that include the P cycle has increased significantly

over the last decade since the first global landmodel of C, N, and

P cycles.97 These models have been useful to better understand

the interactions between the P, C, and N cycles.21,39,98 For

example, it has been predicted that in the Amazon rainforest,

plants allocate 15.3%of their net primary productivity to P acqui-

sition inmore fertile sites and 29% in less fertile sites, with impor-

tant consequences for C sequestration potential.99 However,
parameterization of different processes in those global land

models remains quite subjective and is based on very

limited data.

Since global land surface models aim at representing all pro-

cesses relevant for the biosphere’s greenhouse gas, water, and

energy balance, which operate on a range of timescales (from

hours to centuries), complex model representations are needed

that account for different fluxes influencing short-term P avail-

ability, as well as relatively small inputs and losses such as at-

mospheric dust deposition and leaching, which are relevant for

long-term ecosystem response (Figure 3). To account for the

complexity of different processes, most of these models divide

soil P into different functional pools (dissolved P, microbial P,

adsorbed P, mineral P, organic P).22,37,97 Empirical data for

pool sizes comes from sequential wet chemical extractions,

most notably the Hedley extraction.100,101 Recent research

has improved our understanding of the availability of P in these

pools and should be used to inform model P representations.

For example, using isotopic tracers has revealed that P in the

soil solution has a mean residence time in the time frame of

seconds to minutes, P that is loosely adsorbed (such as

measured with Olsen P and other common soil tests) has a

mean residence time in the range of minutes to days, adsorbed

P has a mean residence time in the range of days to months,

and mineral P has a mean residence time in the range of years

to millennia (Figure 5A). Similarly, evidence suggests that the

bulk organic P pool as determined by sequential extractions

is much more stable than previously thought. Measuring the ex-

change of P of bulk organic P with the soil solution in a variety

of soils over a time frame of months has shown very little ex-

change, suggesting very long mean residence times of P in

this pool.102,103–107 This is consistent with an analysis of soil

organic P in a French cropland, which predicted a mean resi-

dence time of 212 years.108 While some organic P fractions

have a shorter mean residence times, playing an important

role in P availability, those dynamics are masked in studies of

bulk organic P. Such a long and wide range in the mean resi-

dence time of organic P is supported by estimates of organic

C and organic N turnover,109 but the fact that bulk organic P

is mostly composed of P that is not actively cycling, e.g., due

to complexation in organo-mineral complexes,110 is hardly

recognized. For example, analysis of bulk organic P with nu-

clear magnetic resonance111 or oxygen isotopes in phos-

phate112 needs to consider the relatively inert nature of this

pool to avoid drawing false conclusions about P availability

and cycling.
One Earth 7, October 18, 2024 5



Figure 5. Estimated MRT of P in operationally defined inorganic and organic soil pools
(A and B) Mean residence time (MRT) of P pools spans from seconds to > centuries (A). Also, there is considerable variability of MRT between different soils.
(B) summarizes reported dependencies of MRT on environmental contexts. Original analysis is based on data from Oberson and Joner,49 Helfenstein
et al.,51,102,113,114 Raguet et al.,108 Chen et al.,115 Doetterl et al.,116 Spohn and Widdig,117 and Torn et al.118
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Second, values of model parameters in the P cycle of global

land models, such as turnover rates of adsorbed and occluded

P pools, are often globally uniform and/or based on calibration

using indirect constraints (e.g., plant productivity gradients

instead of P measurements).22 These problems are, in partic-

ular, an issue for soil P processes, such as physicochemical

P exchange and phosphatase-mediated mineralization, which

control the plant availability of P. Wang et al.91 deployed a

novel inorganic P model based on measurable P fractions,

which allowed the assimilation of soil P measurement and

demonstrated that values of optimized parameters controlling

exchanges differed with respect to soil physicochemical prop-

erties and organic C concentration among sites. This finding is

in line with evidence from field observations119 and data syn-

thesis,120 which indicate that climate and soil properties influ-

ence soil P exchange. For example, it has been shown that P

in what is commonly termed an adsorbed P pool has a mean

residence time in the range of days to months, depending on

clay content, organic carbon concentration, and land use.113

Similarly, the commonly termed primary or apatite P pool,

which is often considered to be inert, has been shown to be

relatively dynamic in low-pH soils, with a mean residence

time similar to the adsorbed P pool.113 Recently improved

global maps of soil P fractions121 (see Table S2) provide means

for the calibration of global models, while global compilations of

plant and soil responses to fertilizer addition2 provide new op-

portunities for model evaluation. Finally, modeled P cycles

should be critically evaluated with empirical evidence of soil P

responses to elevated CO2 from decade-long field experi-

ments.122 Due to the relatively slow turnover of many soil P

pools, empirical data on dynamics of different P pools at

decadal time scales are particularly relevant for identifying de-

ficiencies in model parametrization. Integrating observation-

constrained models of P dynamics into biosphere or agricul-

tural models is expected to increase their reliability and realism,
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e.g., with respect to P constraints on the biosphere to

increasing CO2 or the implications of reduced fertilizer applica-

tion on crop yields.

ADVANCES AND PITFALLS OF SPATIAL INFORMATION
ON P

In the past decade, spatial data on soil P have increased

rapidly. For example, the number of locations with full charac-

terization of P pools (Hedley sequential extraction) increased

from 170 in 2013 to 1,857 in 2023 globally.43,121 A recent

compilation of soil P tests (Olsen P and others) identified

33,000 measured samples, a bit more than half of which are

from Europe.72 Together with technological advances, such

as machine learning and high-performance computing, and

high-resolution environmental covariates from open-source da-

tabases and remote sensing products, this has led to a vast in-

crease in the potential of producing P maps. There is high de-

mand for these maps to inform P management and improve

food security, reduce P losses, and improve climate and vege-

tation models (Figure 2), but to what degree are the existing

maps up for the task?

We identified 20 soil P maps at the regional to global scale

(Table S2). In general, total P has proven easier to predict than

other P pools, most notably easier than available P (Olsen P

and others). For example, Hengl et al.123,124 mapped total P

and available P in sub-Saharan Africa with R2s of 0.85 and

0.49, respectively. This makes sense given that the total P is

highly dependent on environmental drivers such as parent mate-

rial and climate. However, available P, which is more relevant for

sustainability goals, is oftenmore dependent on humanmanage-

ment than environmental drivers. Also, the predictability of Olsen

P and similar measurements is low because it represents some-

thing whose mechanistic definition varies from soil to soil

(Figure 4).



Figure 6. Challenges for mapping available P, illustrated with the example of Europe
With n = 17,132, more than half of global available P (Olsen P) data come from the LUCAS dataset (A).125 The red points show the sample locations of an in-
dependent dataset (n = 217), which we used for evaluation.131 A considerable challenge for mapping is that, compared to other soil properties such as pH and
organic C, Olsen P has a low spatial autocorrelation after a distance of roughly 10 km (B). In addition, models (here, random forest) do relatively poorly predicting
Olsen P using environmental covariates (C). Independent evaluation of two available Pmaps72,125 (D). Original analyses use data fromMcDowell et al.,72 Panagos
et al.,125 Edlinger et al.,131 Fick and Hijmans,153 Hollister et al.,154 and Orgiazzi et al.155 See the supplemental information for details.

ll
Review

Please cite this article in press as: Helfenstein et al., Understanding soil phosphorus cycling for sustainable development: A review, One Earth (2024),
https://doi.org/10.1016/j.oneear.2024.07.020
We will use the example of Europe to illustrate the opportu-

nities and limitations of current P maps. We focus on Europe

because it has the highest density of available P measurements

globally (Figure 6A), which have been used to both make Euro-

pean maps125 and feed into global maps.72 In addition, Europe

is a hotspot of global P pollution due to high (historical) P in-

puts,126 and the European Commission aims to use available P

maps as an indicator of soil health, proposing that values above

50 mg kg�1 Olsen P constitute unhealthy soils.127 As discussed

in the previous section, 50 mg P kg�1 Olsen P has completely

different meanings in different soils (Figure 4). However, setting

that consideration aside, we next evaluate existing maps for in-

forming policymakers on both what proportion of soils in Europe

exceeds this threshold and where those soils are located.

The underlying assumptions behind digital soil mapping ap-

proaches are that one can predict the property of interest
(here, available P) based on the degree of autocorrelation

(closer samples are more related than farther away samples)

and significant statistical relationships between the property

of interest and environmental covariates.128 Exploring these

two assumptions for Europe reveals the inherent challenges

of mapping P. First of all, the correlation of individual measure-

ments over distance (autocorrelation) plateaus within several

km, much faster than for other soil variables such as pH or

soil organic carbon (Figure 6B). This implies that considerable

higher sampling density (currently it is around 1 measurement

per 220 km2) and statistical sampling techniques adapted to-

ward the intended use of P mapping would be needed to cap-

ture the high local variability of available P.129,130 In addition,

available P has a poor correlation with environmental covari-

ates and is thus harder to predict than most other soil proper-

ties. The R2 for predicting Olsen P in the European dataset with
One Earth 7, October 18, 2024 7



ll
Review

Please cite this article in press as: Helfenstein et al., Understanding soil phosphorus cycling for sustainable development: A review, One Earth (2024),
https://doi.org/10.1016/j.oneear.2024.07.020
a random forest model using relevant environmental and

anthropogenic covariates (see the supplemental information

for details) was 0.35, much lower than for pH or soil organic

carbon (Figure 6C). This is supported by soil mapping in sub-

Saharan Africa, where available P was the second most difficult

to predict of the 19 soil properties analyzed.123 Evaluating

the European available P map125 against an independent

dataset131 suggests that the bias is small (mean error =

�2.3 mg kg�1), and thus, the map likely gives an accurate

approximation of the share of European soils that are above

a given threshold (Figure 6D). However, the global available P

map72 has a significant bias, overestimating available P by,

on average, 50 mg P kg�1, making it not useful for predicting

the proportion of soils above a given threshold. An overestima-

tion bias of the global map was also observed in other world

regions (Figure S1). Concerning the second objective, knowing

where thresholds are overstepped, neither map is useful due to

a lack of precision. The high root-mean-square error and the

low R2 of both maps show that the map cannot precisely pre-

dict where low and high values are found. The poor perfor-

mance of model predictions is often the case when broad-scale

maps are evaluated against independent data.132 However, er-

rors in predicting available P are particularly high due to the

high local scale variability and poor predictability of available

P (Figures 6B and 6C) and, ultimately, can be explained by

the fact that anthropogenic P input is the key driver of available

P65 and varies from field to field.

Several points would help improve the usefulness of P

maps. Firstly, most studies have fallen short of transparently

communicating the uncertainty entailed in their maps

(Table S2). As a minimum, all P mapping studies should report

mean error as a measure of accuracy/bias, root-mean-square

error as a measure of precision, and uncertainty maps to show

spatial pattern of error.133 However, of the 20 P mapping

studies reviewed (Table S2), only 1 met these criteria.134 For

process-based models, error evaluation is less straightforward

because the definition of P pools in the model might differ

from commonly available measurement data. Such models

should be evaluated against process-based measurements

rather than chemical extraction data.98 Moving forward,

maps that show regional probabilities of a soil P threshold be-

ing surpassed, rather than point predictions of mean soil P

concentrations, would be a more transparent way of dealing

with the inherent uncertainties. From a scientific perspective,

providing transparency on map uncertainty is important, as it

provides indicators where maps need to be improved, either

with new sample campaigns or improved mapping methodol-

ogies. Providing transparency on map uncertainty is even

more crucial for decision-makers, including policymakers

and farmers. If map products do not meet quality standards

that are needed to fulfill a required purpose, then the conse-

quences can be severe, especially if monetary payment

schemes would be coupled to the maps or fertilizer recom-

mendations lead to either reduced yields (too little P) or pollu-

tion of surface waters (too much P).

Second, maps need to be more goal oriented, with separate

maps for different sustainability objectives. Rather than using

one covariate stack to predict all properties of interest, meaning-

ful covariates should be selected for each property of interest
8 One Earth 7, October 18, 2024
depending on scale and context and relying on expert knowl-

edge of P dynamics.130 As a result, for available P, generic

maps for agricultural and non-agricultural soils seem of little

use, given the different processes at play (Figure 3). This has

already been recognized by some authors publishing separate

maps for natural42,43,121 and agricultural soils.126,135,136 For

mapping P in natural systems, digital soil mapping, relying on

environmental covariates, seems appropriate42,121,137 and can

be further improved through additional measurement campaigns

and adopting recent technical advances in digital soil map-

ping.130 For sustainability goals related to improving P manage-

ment in agriculture (Figure 2), P maps based on process-based

models, which predict soil P pools bymodeling P inputs and out-

puts over space and time, are likely more informative. Process-

based P models have recently been developed for agricultural

soils in Europe,40 China,41 and globally.126,138 However, here

also, efforts are severely hampered by the lack of spatially

explicit P input and output data, among others. Such data are

usually at the political levels of countries or provinces,66,125,139

which might detect broad differences between regions but

cannot capture field-to-field differences or inform local manage-

ment per se. More efforts should be made to disaggregate

anthropogenic P input and output data, given that data on

crop distributions and P management vary significantly among

crops.40,140

PRIORITIES FOR TRANSLATING SCIENCE INTO
PRACTICE

The previous sections have summarized the current state of sci-

entific knowledge on P in terrestrial systems from different disci-

plines, as well as suggested future research directions. In this

final section, we discuss how scientific advancement is interde-

pendent on technology and policy development to improve P

management at different scales (Figure 7).

At the local scale, reducing P input while maintaining (and in

some places increasing) agricultural yields requires improved

understanding of P availability so that limited P resources can

be applied more efficiently.15,141 This requires close collabora-

tion between industry and science to develop cheaper and

more accurate measurements of P pools and fluxes than the

currently used soil P tests. These developments lay the knowl-

edge foundation for improved P management, which needs to

be followed up with technological development and effective

policy incentives. For example, improved P fertilization technol-

ogies, such as fertilizer formulation and placement, slow release

fertilizers, and variable rate fertilizer application, are needed.

There is also considerable potential for reducing P inputs by

breeding for crops with higher P use efficiency,142 which could

also benefit micronutrient availability for combating malnutri-

tion.143 Policy and law should incentivize and/or prescribe adop-

tion of good agricultural practice following research recommen-

dations.17,88,144 Furthermore, science should work together with

industry and policy to develop P footprints for food and con-

sumer products to provide market incentives for higher P use ef-

ficiency.

In addition to reducing P inputs, the remaining P has to be re-

cycled better. Whereas agriculture is the largest source of P loss

to water in rural areas, in areas with high population density,



Figure 7. Solutions and ways forward for science, policy, and technology
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urban waste is the largest P source.139 Here, increasing effi-

ciency and reducing economic and environmental costs of P re-

covery from wastewater is a priority. At the policy level, a para-

digm shift from P removal to P recovery and recycling is

needed.145,146 At the same time, science and industry need to

collaborate to develop cheaper and cleaner chemical and bio-

logical processes to regain P from waste.145,147 However,

improved technology alone, even if fully adopted, is unlikely to

be enough.148

Ultimately, solving the P problem requires cooperative and

equitable action at the global scale. Attempts to anchor P

management in international governance regimes remain at

the level of agenda setting and knowledge exchange, for

instance, at the biennial global Sustainable Phosphorus Sum-

mit and conferences of the European Sustainable Phospho-

rous Platform. In the absence of global governance regimes,

the management of P supplies essentially falls to unbalanced

power dynamics of market mechanisms. This not only

threatens the attainment of SDGs but also has severe injustice

implications. International law and policy efforts need to

improve justice in terms of access to P resources between

states and individuals as a means to promote intragenera-

tional justice.8 This would also severely increase global P

use efficiency since low fertilizer application rates to

P-deficient soils result in stronger absolute yield benefits

than high rates applied to soils with already higher P status.144

In terms of intergenerational justice, the more P we waste

today, the more we endanger future food security, both by

polluting fisheries and increasing the scarcity of P fertilizer.

However, the share of total imported food and feed P that is

recycled has decreased from 30% in 1992 to 25% in

2019.149 This can be explained by the growing disconnection

between crop and livestock production and the rise of land-

less industrial livestock farms.150 In the future, agricultural

policy should promote improved spatial planning of crop-live-

stock systems at various spatial scales149 while acknowl-

edging cultural and economic hurdles.151 However, reaching

planetary boundaries for P input also requires significant die-

tary change to more plant-based foods.152 Reducing global

P within the confines of safe planetary boundaries thus re-

quires transformational change in various domains. This task
presents significant challenges due to the entrenched eco-

nomic and sociocultural dynamics that underpin current mar-

ket structures and consumption behavior.151 Nonetheless, a

positive aspect emerges: there is substantial convergence in

strategies aimed at meeting other planetary boundaries along-

side more sustainable P management.
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dans, J., Peñuelas, J., and Obersteiner, M. (2018). Global and regional
phosphorus budgets in agricultural systems and their implications for
phosphorus-use efficiency. Earth Syst. Sci. Data 10, 1–18. https://doi.
org/10.5194/essd-10-1-2018.

32. Huang, Y., Ciais, P., Goll, D.S., Sardans, J., Peñuelas, J., Cresto-Aleina,
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