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Abstract
Tropical peatlands are among the most carbon-dense terrestrial ecosystems yet recorded.
Collectively, they comprise a large but highly uncertain reservoir of the global carbon cycle, with
wide-ranging estimates of their global area (441 025–1700 000 km2) and below-ground carbon
storage (105–288 Pg C). Substantial gaps remain in our understanding of peatland distribution in
some key regions, including most of tropical South America. Here we compile 2413 ground
reference points in and around Amazonian peatlands and use them alongside a stack of remote
sensing products in a random forest model to generate the first field-data-driven model of peatland
distribution across the Amazon basin. Our model predicts a total Amazonian peatland extent of
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251 015 km2 (95th percentile confidence interval: 128 671–373 359), greater than that of the
Congo basin, but around 30% smaller than a recent model-derived estimate of peatland area
across Amazonia. The model performs relatively well against point observations but spatial gaps
in the ground reference dataset mean that model uncertainty remains high, particularly in parts
of Brazil and Bolivia. For example, we predict significant peatland areas in northern Peru with
relatively high confidence, while peatland areas in the Rio Negro basin and adjacent
south-western Orinoco basin which have previously been predicted to hold Campinarana or
white sand forests, are predicted with greater uncertainty. Similarly, we predict large areas of
peatlands in Bolivia, surprisingly given the strong climatic seasonality found over most of the
country. Very little field data exists with which to quantitatively assess the accuracy of our map in
these regions. Data gaps such as these should be a high priority for new field sampling. This new
map can facilitate future research into the vulnerability of peatlands to climate change and
anthropogenic impacts, which is likely to vary spatially across the Amazon basin.

1. Introduction

Tropical peatlands, which include some of the most
carbon dense terrestrial ecosystems known to science
(Dommain et al 2011, Draper et al 2014), are a sub-
stantial but highly uncertain component of the global
carbon cycle. Estimates of their total area range from
441 025 (Page et al 2011) to 1700 000 km2 (Gumbricht
et al 2017), and of their total below-ground carbon
from 105 (70–130) to 215 (152–288) Pg C (Dargie
et al 2017, Ribeiro et al 2021). Tropical peatlands host
invaluable biodiversity (Posa et al 2011, Draper et al
2018) and support the livelihoods of local popula-
tions throughout the tropics (Page and Baird 2016;
Roucoux et al 2017, Girkin et al 2022). However, vari-
ous pressures including climate and land use change
threaten the integrity of tropical peatlands (Roucoux
et al 2017, Baker et al 2019, Dargie et al 2019, Mishra
et al 2021, Lawson et al 2022), with South-East Asia
being a cautionary example. Approximately 80% of
South-East Asian peatlands have been deforested and
drained to make way for plantations and agriculture
(Mishra et al 2021) and peat fires in Indonesia have
caused huge pulses of CO2 emissions to the atmo-
sphere (Page et al 2002, Huijnen et al 2016). These
events have also been linked to tens of thousands of
premature human deaths (Johnston et al 2012), the
loss of invaluable flora and fauna (Posa et al 2011),
as well as huge economic costs (Kiely et al 2021). It is
thus urgent that we develop reliable estimates of trop-
ical peatland distribution and carbon stocks to inform
and prioritise conservation and climate changemitig-
ation actions.

Decades of research have resulted in relatively
high confidence in peatland mapping in Southeast
Asia (Jaenicke et al 2008, Warren et al 2017), yet
substantial gaps remain in our understanding of the
distribution of peatlands and their carbon stores in
other key tropical regions (Xu et al 2018, Ribeiro
et al 2021, Melton et al 2022). There have been recent
intensive field efforts in regions such as the Congo
basin (Crezee et al 2022) and Peruvian Amazonia

(Hastie et al 2022), which have driven the develop-
ment of more accurate regional peatland and below-
ground carbon maps. Despite research on peatlands
in the Tepuis region of Venezuela (Zinck and Huber
2011), recent progress in Peru (Honorio Coronado
et al 2021, Hastie et al 2022), and ongoing efforts in
Colombia (Santofimio-Tamayo and Benavides 2019,
Winton et al 2021), the Amazon basin arguably
remains the greatest remaining knowledge gap in
tropical peatland research. Central, eastern, and
southern Amazonia are particularly understudied. A
2013 study (Lähteenoja et al 2013) confirmed the
presence of peat at a handful of sites within the Rio
Negro River basin, but otherwise the distribution of
peat across Brazil remains poorly understood. Pan-
tropical peat distribution modelling by Gumbricht
et al (2017) estimated that Brazil could hold the single
greatest peatland area in the tropics, more than twice
that of Indonesia.

Maps of peatlands across the Amazon basin have
primarily relied on modelling approaches due to the
limited availability of field data. Gumbricht et al’s
study was driven by a distributed hydrological model,
as well as remote-sensing products, and required
a positive interannual water balance for peatland
presence. This approach is justified in regions
with sparse field data, but the results remain
extremely uncertain: Gumbricht et al (2017) used a
total of only 275 field data points for ground-truthing
(validation) of their maps across the entire tropics
(and no data for model training). Melton et al (2022)
developed a global peat distribution model, driven
by various remote-sensing predictors and trained
and tested using previously derived (i.e. second-
ary) peatland mapping products. The Melton map
therefore inherits the limitations of its input maps
and like the Gumbricht product is only indirectly
guided by field data. Peatland mapping, particu-
larly in the tropics, requires closer integration with
expanded in situ databases to reach higher levels of
accuracy and reliability for regional/national-scale
applications.
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Here we combine new and published field data to
establish a database of 2413 ground reference points
(GRPs) in and around the peatlands of the Amazon
basin, including 548 newGRPs in Brazil. We use these
GRPs along with radar and optical remote sensing
imagery and topographical data, in a random forest
model to produce the first high-resolution (90 m
resolution) field-data-driven map of peatland extent
across the entire basin. We then use this map and an
assessment of its uncertainties to identify and discuss
the remaining gaps in our understanding of peatland
distribution in the Amazon basin.

2. Methods

2.1. GRPs
The dataset used here represents more than a dec-
ade of fieldwork in and around the peatlands of the
Amazon basin by several teams (table S1). The data
include 1702 published (including grey literature-i.e.
theses and governmental reports) GRPs from Peru
(Lähteenoja et al 2009, 2012, Householder et al 2012,
Draper et al 2014, de Jong 2019, Diaz Cardenas
2019, Honorio Coronado et al 2021, Hastie et al
2022, IIAP-PROFONANPE 2023, Lawson et al 2023);
548 unpublished GRPs from Brazil, plus nine pub-
lished by Lähteenoja et al (2013); 147 GRPs from
Colombia (comprising 87 GRPs digitized by Paukku
(2021) fromDuivenvoorden and Lips (1991a, 1991b),
56 unpublished GRPs by Winton et al (2021), and
four GRPs from Santofimio-Tamayo 2019); five GRPs
from Ecuador (Montoya, E., unpublished); and two
from Bolivia (Escobar-Torrez et al 2020, Smith et al
2021) (table S1). At each GRP, substrate type was
recorded, along with an assessment of overlying
vegetation cover (in this study simply forest or non-
forest). Peat thickness (where present) was measured
using a gouge auger or a Russian-type corer, typically
along transects at 100–500 m intervals.

Of the total 2413 GRPs, 1590 were defined as
peat, meaning an organic layer of at least 30 cm, with
the remaining 823 defined as non-peat (figure 1). At
the majority of GRPs, no corresponding soil carbon
concentration or organic matter measurements were
taken. Thus, we could not impose a minimum car-
bon concentration or organic matter threshold for
our definition of peat. However, we visually identi-
fied peat based on composition (e.g. roots, wood) and
physical properties (e.g. structure, colour, texture)
(Troels-Smith 1955, Kershaw 1997). Previous studies
have shown that Amazonian peatlands typically show
a clear transition from an organic layer to underlying
mineral sediment. For example, Hastie et al (2022)
found that material visually defined as peat had a
mean loss on ignition (LOI) of 70%, whilst material
defined asmineral had amean LOI of only 13% (table
S2). We are thus confident that our peat GRPs rep-
resent an LOI of at least 50%, a common definition

of peat (Burton & Hodgson., 1987, Gumbricht et al
2017). Dargie et al (2017) also demonstrated that a
similar visual method was effective at identifying peat
in the Congo basin.

2.2. Model of peatland extent
We used our 2413 GRPs to train a supervised ran-
dom forest algorithm (250 trees, three variables per
split, at 90 m resolution) in Google Earth Engine. We
used aminimum 20m diameter buffer to create poly-
gons around our sample points to sample gridded
predictors. We merged adjacent polygons of the same
class wherever possible; for example, in situations
where they were sufficiently close together (i.e. within
a 90 m grid cell) or where we were confident (based
on field/local knowledge) that the soil did not sub-
stantially change between sites.We supplemented our
GRPs with additional data points within or close to
predicted peatlands, from the RADAMBRASIL soil
profile database (figure S1, Negreiros et al 2009 e.g. in
locations where preliminary maps predicted isolated
peat patches), as well as with points which could
be assumed to lack peat such as urban settlements
and rivers (based on visual examination of satellite
images).

The model was driven using a remote sensing
stack (table 1, 11 bands in total) containing selec-
ted Landsat 7 bands and indices (Hansen et al 2013)
including normalized difference water index (NDWI)
and normalized difference vegetation index (NDVI),
ALOS PALSARHHpolarisation &HH/HV (Shimada
et al 2014), height above nearest drainage (HAND
Donchyts et al 2016), upstream drainage area (UPA,
Yamazaki et al 2019), slope (derived from SRTM30m
DEM, Farr et al 2007), and topographic landforms
(Theobald et al 2015). The Landsat bands and indices
are important for inferring overlying ecosystem type
and vegetation density. HAND, UPA, slope and topo-
graphic landforms provide information on the relat-
ive topographical and hydrological position of each
grid cell, and in turn an approximation of wetness.
Variation in PALSAR L-band backscatter is indicat-
ive of variation in soil/vegetation moisture as well as
forest structure.We started themodel withmore vari-
ables but removed several bands to avoid overfitting.
Namely, we removed Landsat 7 Band 3 (red), Band 7
andALOS PALSAR-HVpolarisation as they exhibited
particularly high collinearity (Pearson correlation of
>0.85, p < 0.001) with other driver variables (table
S3). Their removal only marginally reduced model
performance.

We used the algorithm to map the following five
categories: peat below forest (PF), peat below non-
forest (PN), non-peat below forest (NF), non-peat
below non-forest (NN), and open water (WA). The
forested versus non-forested categories were chosen
largely for remote sensing reasons, i.e. they are easy
for satellite derived data to delineate and because we
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Figure 1. Distribution of (a), the peat ground reference points (GRPs) and (b), non-peat GRPs sampled for peat
presence/absence, peat thickness (where present) and vegetation cover used in this study.

believe that the distribution of forested versus open
peatlands could be of interest to the research com-
munity (figure S2).

We evaluated model accuracy using a spatial leave
one out cross validation (e.g. Meyer et al 2019,
Garcia 2021) tailored to our dataset. Our data was

collected in four main areas which were used to
inform the selection of four clusters for the spatial
cross validation: (1) Northern Peru (centred around
the Pastaza-Marañón foreland basin, PMFB), (2)
Colombian Amazonia, (3) Southern Amazonia, (4)
Brazilian Amazonia (figure S3). These clusters of
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Table 1. Data used as predictors in the peatland classification random forest model.

Dataset
Resolution

(m) Acquisition date
Polarisation/Bands/
Indices Source

PALSAR-2/PALSAR annual
mosaics

25 2014–2023 (period
median)

HH, HH/HV Shimada et al (2014)

Landsat 7 mosaic 30 2021 (growing season
median)

Band 4(NIR), Band 5
(SWIR), NDVI, NDWI

Hansen et al (2013)

Slope (SRTM) 30 2000 NA Farr et al (2007)
Upstream drainage area
(flow accumulation grids,
MERIT)

50 1987–2017 NA Yamazaki et al (2019)

Height above nearest
drainage (HAND)

90 2016 NA Donchyts et al (2016)

Landforms (SRTM) 90 2006–2011 NA Theobald et al (2015)
Landforms (ALOS) 90 2006–2011 NA Theobald et al (2015)

data were collected independently on separate field
campaigns with different team members (albeit with
some crossover between Southern Peru and Brazilian
Amazonia). Moreover, none of these regions share
a substantial contiguous peatland area. Thus, we
consider these clusters as sufficiently independent
and therefore suitable for cross validation purposes.
In turn, we estimated the 95% confidence intervals
of peatland area using the mean confusion matrix
(mean of the four cross validations, tables S4 to S7,
Goldblatt et al 2016), applying the method described
in Olofsson et al (2013) (equations (9)–(13)). See
supplementary materials for further discussion.

Note that for the final classification (figure 2), we
used all polygons to train the model to produce the
best map possible, following Honorio-Coronado et al
(2021). For comparison, results of predicted peat-
land area per country are also given for the model
trained using only 50% (random) of the data (table
S8).While the accuracy assessment (based on the spa-
tial leave one out cross validation, table 2) helped
to inform our final model choice, we also under-
took rigorous local-scale assessment of the map iter-
ations. In line with the recommendations of Meyer
and Pebesma (2022) we compared predicted peatland
distributions to local data-driven products such as
Householder et al (2012) and Hastie et al (2022), as
well as examining areas where the authors have expert
knowledge, e.g. the main stem of the Amazon.

To avoid extrapolating into regions which are cli-
matologically unlikely to support the formation of
peat, wemasked out areas of the Amazon basin where
annual precipitation is estimated at <1390 mm on
average over the last decade in the CHIRPS database
(Funk et al 2015). The cutoff of 1390 mm is based on
the lowest mean annual precipitation at which peat
has been observed in our GRPs (1393 mm in eastern
Bolivia: Smith et al 2021), the next lowest peatland
precipitationmean being 1455mmat aGRP in north-
ern Brazil. We further masked out areas above 500 m
elevation, as our model was trained using only low-
land data.

3. Results

Across the study region (Amazon basin below
500 m and mean annual precipitation >1390 mm)
we estimate a total peatland area of 251 015 km2

(128 671–373 359; 95th percentile confidence inter-
val) (figure 2) at 90 m resolution, with the majority
(66%) being overlain by forest (figure S2). The map
broadly represents conditions over the period 2000–
2021 when GRPs and remote sensing imagery were
collected. Brazil contains the greatest estimated peat-
land area of 132 759 km2 (68 024–197 493) followed
by Peru with 55 890 km2 (28 748–83 032) (table 2).
Overlaying our peatland estimate with the 30 m-
resolution deforestation map of Hansen et al (2013),
we estimate that approximately 8743 km2 or 3.5% of
our predicted peatland area has been deforested from
2000 to 2023, with the greatest deforested areas found
in Brazil and Bolivia.

Our peatland land cover classification algorithm
has an overall accuracy of 89% based on the spatial
leave one out cross validation (table 3). While accur-
acy per class is highly variable the model still per-
forms relatively well with the lowest producer’s and
user’s accuracy being 67% and 75% respectively (for
the PN category). There is little confusion between
the forested and non-forested categories, but greater
confusion between the peat and non-peat forming
classes. This is not surprising given that only the syn-
thetic aperture radar bands (i.e. the L-band PALSAR)
are capable of penetrating the canopy to any substan-
tial degree. NDVI is the most important model vari-
able, corresponding to the greatest mean decrease in
the Gini coefficient, followed closely by NDWI and
then PALSAR HH (figure 3). Please see supplement-
ary materials for further information on model para-
meterization and accuracy assessment.

4. Discussion

Our map of peat distribution across Amazonia,
the first high-resolution field-data-driven estimate
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Figure 2. Predicted extent of peatlands (organic soil of⩾30 cm thickness) across the study area (Amazon basin below 500 m and
mean annual precipitation>1390 mm) at 90 m resolution. (A), The Pastaza-Marañón foreland basin (PMFB) in Peru. (B), the
Rio Negro basin (Brazil) and south-western Orinoco basin (Venezuela). (C), the Llanos de Moxos region of Bolivia. In this map,
we merged the two peat-forming categories. See figure S2 for a map displaying all five mapped classes (aggregated to 10 km for
ease of interpretation).

Table 2. Predicted area of peat below forest (PF), peat below non-forest (PN) and total peatland area by country within the study region.

Country PF area (km2) PN area (km2)
Total peatland area (95% confidence
intervals) (km2)

Brazil 83 450 49 309 132 759
(68 024–197 493)

Peru 49 649 6241 55 890
(28 748–83 032)

Bolivia 13 403 25 010 38 413
(19 600–57 226)

Colombia 7275 2538 9813
(5037–14 589)

Venezuela 8493 2919 11 412
(5857–16 967)

Ecuador 2237 154 2391 (1231–3551)
Guyana 91 171 262

(134–390)

across the basin, predicts substantial peatland areas
that are currently unconfirmed by field research. To
place these results, their associated uncertainties, and
remaining knowledge gaps into context, we compared
our map to previous model-based estimates and dis-
cuss the field evidence for peat formation across the
region.

Our total estimated peatland area of 251 015 km2

is substantially less than the 359 711 km2 estimated
by Gumbricht et al (2017) over the same study area,
who mapped peatlands at a resolution of 232 m. This

is at least in part because the Gumbricht map pre-
dicts greater peatland areas along rivers, including
the Amazon main stem (figure 4). We are doubtful
that peatlands along the Amazon main stem could
be so extensive given the highly seasonal nature of
the flooding in várzea forests (Junk 1983), and the
associated influx of nutrients and mineral material
(Wittman et al 2004). Indeed, our map has a relat-
ively high degree of uncertainty in this region (figure
S4) andmay therefore also be overpredicting peatland
extent along the main stem.
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Table 3. Random Forest (250 trees) classification accuracy matrix for the peatland map, based on a spatial leave one out cross validation
(mean of four iterations). Units are pixels. Includes producer’s (PA) and user’s accuracy (UA) for five classes: non-peat below forest
(NF), peat below forest (PF), peat below non-forest (i.e. herbaceous vegetation and shrubland, PN), non-peat below non-forest (NN)
and open water (WA).

Class NF PF PN NN WA Total PA (%)

NF 522 39 10 2 0 573 0.91
PF 66 234 23 0 0 323 0.72
PN 7 30 136 29 0 202 0.67
NN 4 2 13 714 5 738 0.97
WA 2 2 0 8 1669 1681 0.99
Total 601 307 182 753 1674 3507
UA (%) 0.87 0.76 0.75 0.95 1.00

Overall accuracy (%): 89.

Figure 3. Relative importance (greatest mean decrease in Gini) of predictor variables in the random forest model.

The Melton et al (2022) global map of percent-
age peat cover (figure 4, multiplying each 10 km grid
cell by surface area per cell) yields an estimated total
peatland area of 183 263 km2. Our distribution of
peat across Peru, Venezuela, Ecuador, and some areas
of Colombia broadly resembles the estimated dis-
tribution in both previous studies (figure 4), while
greater divergence is apparent across some regions
of Brazil and Bolivia, particularly compared to the
Melton map. These different regions are discussed
later in more detail.

4.1. Country level comparisons
Our predicted distribution of peat in Peru closely
aligns with the data-driven distribution predicted
by Hastie et al (2022) (figure 5). The largest area
of peatland is forested and located in the PMFB
(figure 2(a)), a major geological depression with very

flat topography situated in one of the climatically
wettest parts of Amazonia. Smaller areas of peat-
land are concentrated on the floodplains of the Napo,
Putumayo, and upper Amazon rivers in northern
Peru, Ucayali River in central Peru andMadre de Dios
River in southern Peru. However, our total area of
55 890 (28 748–83 032) km2 is somewhat less than
the 62 714 km2 predicted by Hastie et al (2022) des-
pite sharing some GRPs over Peru, for two reasons:
firstly, the present model was run at a lower resolu-
tion (90 m) than Hastie et al (50 m), and thus may
exclude some smaller peatlands; secondly, the Hastie
et al (2022) model had the benefit of additional high-
resolution driver variables which only cover Peru (e.g.
MINAM et al 2019).

Our distribution along the Madre de Dios River
is very similar to that mapped by Householder et al
(2012) (figure 5), and our predicted peatland area of

7



Environ. Res. Lett. 19 (2024) 094019 A Hastie et al

Figure 4. Predicted fraction of peatlands per 10 km grid from (a), this study, (b) Gumbricht et al (2017) and (c), Melton et al
(2022), across the study area (Amazon basin below 500 m and mean annual precipitation>1390 mm). Reproduced from
Gumbricht et al (2017). CC BY 4.0. Reproduced fromMelton et al (2022). CC BY 4.0.

408 km2 across this region is also relatively close to
their value of 294 km2. As a comparison, Gumbricht
et al (2017) mapped 908 km2 of peatlands along
the same section of the Madre de Dios, more than
three times the estimate of Householder et al (2012).
Peruvian peatlands are dominated by palm swamps
and to a lesser extent by pole forest and open peat-
lands (Honorio Coronado et al 2021, Hastie et al
2022).

In common with Gumbricht et al (2017), we
predict that Brazil holds the greatest peatland area
in the Amazon, covered mostly by forest (63%,
figure S2), albeit distributed across several differ-
ent regions, unlike the dense concentration of peat-
lands in the PMFB in Peru (Hastie et al 2022,
figure 2(a)). One of the most substantial peatland
areas in Brazil is predicted to occur in the Rio Negro
basin; adjacent to another large peatland predicted
in the south-western Orinoco basin in Venezuela
(figure 2(b)).

There has been very little fieldwork under-
taken in the wetlands of the Rio Negro, but a few
previous studies have confirmed the presence of
peat. Fieldwork has documented several wetland
sites forming peat ∼1 m thick in the lower Rio

Negro (Lähteenoja et al 2013 and unpublished data,
included in our analysis), and the presence of peat
at two sites in the upper Rio Negro (Dubroeucq
and Volkoff 1998), albeit without high-precision
coordinates. The predicted peatlands in this region
are distinctive, apparently overlapping with what
have previously been mapped as ‘white sand’ forests
(Adeney et al 2016), which typically have a thin-
stemmed and/or dwarfed forest structure known as
Campinarana or Campinarana florestada in Brazil
(IBGE 2004, 2009) and as Caatinga Amazonica in
Venezuela (Coomes and Grubb 1996). Previous
field studies have certainly indicated that white sand
forests occur on ‘white sands’—heavily leached pod-
zols or hydromorphic podzols—not only in Brazil,
but also in Peru, Colombia, Venezuela, Guyana
and Suriname (Coomes and Grubb 1996, Quesada
et al 2011, Adeney et al 2016). These forests are
structurally similar to ombrotrophic ‘peatland pole
forest’ (varillal hidromorfico) which are nutrient-
poor habitats occurring on generally thick peats in
Peru (Draper et al 2014, 2018, Honorio Coronado
et al 2021). However, Dubroeucq and Volkoff (1998)
also described ‘histosols [i.e. soils with high organic
material] scattered among giant spodozols [i.e.
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Figure 5. Predicted peat extent (a), across northern Peruvian Amazonia in this study, (b) across northern Peruvian Amazonia in
Hastie et al (2022), (c), across the eastern Madre De Dios basin in this study, (d), across the eastern Madre De Dios basin in
Householder et al (2012). Adapted from Hastie et al (2022), with permission from Springer Nature. Adapted from Householder
et al (2012), with permission from Springer Nature.

podzols]’ at one of their sites in the upper Rio
Negro. Similar intermingling of peats and white
sands has been observed by the authors (S.W., I.L.,
K.R.) in white-sand forests in Colombia and Peru
(García-Villacorta et al 2003). While we were unable
to access any high-resolution peat GRPs located in the

upper Rio Negro, we were able to use four published
GRPs for non-peat-forming podzol sites (Doupoux
et al 2017) in our training/testing data. Furthermore,
comparison of our results with less precisely geo-
located reports of white sand forests (Herrera 1977,
1979, Montes et al 2011, Lucas et al 2012) suggests
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that our model correctly identifies these sites as non-
peat-forming (i.e. while they do not provide precise
enough coordinates to test quantitatively, they lie
outside of our larger peatland areas).

We also note that our study is not the first to pre-
dict high soil carbon stocks in the Rio Negro/Orinoco
region (Bernoux et al 2002, Gomes et al 2019).
Interestingly, Melton et al (2022) also predicted
peat in the Rio Negro Campinarana ecoregion but
removed it during post-processing on the conser-
vative grounds that the ecoregion was associated
with white sands, not peat. In conclusion, while pre-
vious mapping studies have largely classified these
Rio Negro ecosystems as white sand forests under-
lain by podzols, there are multiple lines of evidence,
including firm field observations, which suggest that
peatlands are present in the Rio Negro basin (and
similar habitats in adjacent countries; ITL & SRW,
pers. comm). Nevertheless, our prediction in this
area is associated with a high degree of uncertainty
(figure S4). The true extent of peat (including in
what are presently mapped as ‘white sand’ forests),
and crucially the variation in peat thickness (exist-
ing evidence suggests that mean thickness may be
lower in Brazil than in Peru), remains to be determ-
ined through targeted fieldwork. Although the largest
areas of predicted peat in our map are remote, fur-
ther fieldwork in the Rio Negro and Orinoco basins
(figure 2(b)) is important to test for the presence of
large soil carbon stocks, and to help to refine our
understanding of the relationship betweenwhite sand
forests and peat.

Peatlands have also been directly sampled in
Venezuela (Rull 1992, Vegas-Vilarrúbia et al 2010,
Montoya and Rull 2011), and French Guiana
(Cubizolle et al 2013), and observed in Guyana
(Guyana Lands & Surveys Commission 2013) and
Suriname (Sevenhuijsen 1977), but the points lie
outside of our study area. While we were only able
to include two unpublished peat GRPs (of five total
GRPs) in Ecuador in our study, all three pan-Amazon
maps (this study, Gumbricht et al 2017 and Melton
et al 2022) predict a substantial concentration of
peat in the same region where our GRPs are located
(within the Yasuni and Cuyabeno National Parks).

Over Bolivia, our map estimates 38 413(19 600–
57 226) km2 of peatland, a substantial area given
the strong climatic seasonality found in the major-
ity of Bolivian Amazonia. Much of this large peat-
forming area is predicted to occur along rivers and
lakes and between the large grasslands of the Llanos
de Moxos (figure 2(c)), where the topography may
promote water retention even during the dry sea-
son. Only two peatlandGRPs were available for inclu-
sion in our study (Escobar-Torrez et al 2020, Smith
et al 2021), but Brugger et al (2016) also described
peatlands north and south of Lake Rogaguado in
the Llanos de Moxos, in agreement with our map

(figure 2(c)). Consistent across the descriptions of the
ecosystems described in the Bolivian studies is the
presence of Mauritia flexuosa and/or Mauritiella sp.
palm communities, which is potentially significant
as they are common in peat-forming swamps else-
where in Amazonia (Householder et al 2012,Honorio
Coronado et al 2021).

Winton et al (2021) andMontoya and Rull (2011)
describe the presence of peat in the climatically sim-
ilar Llanos of Colombia and Venezuela, despite strong
seasonal and El Niño–Southern Oscillation-driven
drought cycles.Melton et al (2022) also predicted peat
deposits in the Llanos de Moxos, but removed these
peatlands from their final model on the assumption
that peats were unlikely to occur under strongly sea-
sonal climates. The combination of consistent model
predictions and field evidence of peat presence in
areas of strongly seasonal climate suggests that this
assumption should be tested. Our map has relatively
low confidence in Bolivian Amazonia (figure S4).
Further fieldwork would help to refine our under-
standing of soil carbon storage in seasonally dry parts
of the Amazon basin.

5. Conclusion

As the first high-resolution field-data-driven map of
peatland extent across the Amazon basin, our map
represents a significant step forward in our under-
standing of the distribution of tropical peatlands and
can inform future research priorities. Our analysis
confirms the presence of peat underlying a diverse set
of Amazonian ecosystems including the typical palm
swamps in extensive depressions and along rivers
and streams, as well as the less-known peat-forming
‘white sand’ forests. Nonetheless, comparisons of our
map to a regional field-data-driven study (Hastie et al
2022), along with a relatively conservative precipita-
tionmask, indicate that our mapmay be underestim-
ating total peatland area in some regions.

Most sites which have so far been sampled in these
regions are restricted to peatland edges, the sampling
of more remote areas being limited by cost, time
and logistical considerations. Substantial uncertain-
ties thus remain. Most notably, the central Amazon
basin urgently requires further investigation, particu-
larly theUpper RioNegro, the adjacent south-western
Orinoco basin, and Bolivian Amazonia (figure S4).
Data needs include not only sampling of peat
depth and carbon density, but data on substrate,
nutrient status, hydrological regime, and floristic
diversity/composition, all of which would help us to
better understand the mechanistic drivers explaining
peat distribution and help to inform the choice of
data products for future mapping studies. The extent
and carbon storage of peat soils associated with ‘white
sand’ forests, a relatively understudied topic, could
be a key focus. Even in relatively densely sampled
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regions such as northern Peru, research is still in
an exploratory phase and is regularly uncovering
new insights into Amazonian peatlands. Recent field-
work (IIAP-PROFONANPE 2023) discovered peats
up to 8 m thick (included in this study) in the
Datem del Marañón region, some of the deepest
Amazonian peats ever recorded. Much more field-
work will be needed before we can claim to have a
solid understanding of the distribution of peat carbon
in Amazonia.

We also know little about the palaeoecological his-
tory of Amazonian peatlands and their vulnerabil-
ity to land-use and climate change (Cole et al 2022,
Girkin et al 2022). Their past response to climate
and land-use change, particularly in terms of carbon
accumulation, requires investigation given that the
central and eastern Amazon is projected to undergo
more significant climatic change than the western
basin (Duffy et al 2015). Even in the NW of the basin
where climate change is likely to be less pronounced,
there has been an intensification of the hydrological
cycle (Barichivich et al 2018, Gloor et al 2013) which
could have a significant impact on the floristic com-
position and formation of fluvial peatlands (Flores
Llampazo et al 2022). Moreover, recent research in
the middle Rio Negro suggests that repeated fires
can induce ecosystem shifts from floodplain forest to
white sand savannah over relatively short timescales,
namely within 40 years (Flores and Holmgren 2021).
With these points in mind, it is crucial to understand
the climatological, ecological, and hydrological tip-
ping points at which peat carbon storage will cease
and even reverse, and whether these tipping points
vary across the basin. TheHansen forest-changemaps
(2013) suggest that deforestation on the forested peat-
lands has been modest thus far but threats to peat-
lands, as well as carbon losses associated with degrad-
ation, may be increasing (Hastie et al 2022, Lawson
et al 2022, Hergoualc’h et al 2023).

Many of these predicted peatlands are found on
indigenous land (Adeney et al 2016) and appear to be
used sustainably (Hidalgo Pizango et al 2022), so it
is vital that indigenous and local communities’ per-
spectives are included in future research efforts. These
research priorities must be urgently pursued before
further land-use-change threatens the integrity of the
peatlands of the Amazon basin.

Data availability statement

The data that support the findings of this study are
available upon request from the authors. A sub-
set of data from Peru is available to freely down-
load at the following link- https://catalogue.ceh.ac.
uk/documents/ab13a06f-392f-4bc6-b1bf-06dd8b0
20307.

The map of predicted peat distribution (90 m)
can be dowloaded here- https://zenodo.org/records/
13142590.

The map of predicted landcover/ecosystem dis-
tribution (90 m) can be dowloaded here- https://
zenodo.org/uploads/13142855.
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