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1. Breath sensors placed in the feed bin of milking robots (i.e. 

sniffers) provide an inexpensive indicator for total methane 
production of individual cows. 
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2. The greatest impact in reducing methane emissions through 

animal breeding will be achieved by sharing data between 
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3. It is a pitfall to assume that automated phenotyping in innovative 
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4. Informed decision-making in society is impossible without 
public understanding of science. 
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devices. 
 

6. Self-reflection is the key to tolerance. 
 

7. AI's growth mirrors our own: rapid, unpredictable, and 
impactful. 
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Abstract 
van Breukelen, A.E. (2024). Breeding climate smart dairy cattle: from phenotyping to genetic selection for low 
methane emitting cattle. PhD thesis, Wageningen University, the Netherlands 

Various strategies have been proposed to reduce enteric methane (CH4) emissions from dairy 
cattle, targeting management, feeding strategies, feed additives, vaccination, and animal 
breeding. Among these, animal breeding currently shows the largest long-term potential, due 
to its low implementation costs, and the permanent and cumulative effects. Nonetheless, 
implementing CH4 mitigation in breeding programmes is still in its infancy, limited by the 
lack of large-scale phenotyping of CH4 emissions of individual cows to estimate sufficiently 
reliable genetic parameters and breeding values required for informed breeding decisions. 
However, recent innovations have accelerated the collection of CH4 phenotypes. In this 
thesis, a novel dataset was collected measuring enteric CH4 emissions of individual cows 
using ‘sniffers’ in the feed bin of milking robots. Finally, the dataset included 74,569 weekly 
mean CH4 concentration (ppm) records on 7,139 cows from 68 commercial dairy farms. The 
research objectives in this thesis were to: 1) define a CH4 trait from the raw concentration 
measurements, and estimate heritabilities and repeatabilities for these traits, 2) investigate 
the genetic relationship between two CH4 recording methods (sniffers and GreenFeed units), 
3) investigate the accuracy of different recording schemes and estimating the genetic 
correlations between lactation periods, and 4) investigate the relationships between CH4 and 
other breeding goal traits. The defined phenotype for weekly mean CH4 concentration 
measured by sniffers had a moderate heritability of 0.17 ± 0.04 and a repeatability of 0.56 ± 
0.03. As the sniffers only measure concentrations, and not the total grams of CH4 emitted by 
breath, genetic correlations were estimated between the weekly mean CH4 concentration 
(ppm) phenotype and a weekly mean CH4 production (g/day) phenotype from GreenFeed 
units. The genetic correlation was 0.76 ± 0.15, indicating that selection for lower CH4 
concentrations will result in a reduction of total CH4 production output in g/day. Furthermore, 
the results confirmed that the genetic variance changed over a lactation and showed that a 
short CH4 recording period during the first or last weeks of the lactation can result in lower 
genetic gains than predicted when assuming unity genetic correlations during lactation in a 
repeatability model. The genetic relationships among CH4 concentration, DMI, body weight, 
and milk yield traits were weak: 0.06 ± 0.10 with dry matter intake, -0.04 ± 0.10 with body 
weight, and -0.04 ± 0.08 with milk yield for first parity cows. Overall, the results of this thesis 
are essential for the application of CH4 emission recorded with sniffers for breeding 
programmes and will be used to develop breeding values estimation procedures and selection 
strategies needed to construct practical breeding strategies for more environmentally 
sustainable dairy farming in the Netherlands. 
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To mitigate global warming, governments, research institutes, and industry worldwide, aim 
to reduce the emissions of methane (CH4) which is a potent greenhouse gas. Ruminants are 
an important emitter of CH4, which is mostly produced during enteric fermentation and 
emitted into the air by breath and belching (Herrero et al., 2016). Enteric fermentation occurs 
in the digestive system of ruminants, where organic material from feed is broken down by 
microorganisms that produce CH4 in the process. 

Dairy cattle are a key group of ruminants where CH4 emissions should be mitigated. Various 
strategies have been put forward to reduce CH4 emissions of dairy cows, which target 
management, feeding strategies, feed additives, vaccination, and animal breeding (Knapp et 
al., 2014). Of these, animal breeding shows large potential as implementation costs are low, 
the results are cumulative, and the effect is permanent. Nonetheless, implementing CH4 
mitigation in breeding programmes is still in its infancy. A limitation to practical application 
has been the lack of information on CH4 emissions of individual cows. Information on many 
individual cows is needed to estimate sufficiently reliable genetic parameters which are 
required for informed breeding decisions (de Haas et al., 2017). However, recent innovations 
in methods to record enteric CH4 emissions have accelerated the collection of CH4 
phenotypes. 

This thesis describes a large-scale phenotyping project, where CH4 concentrations from the 
breath of dairy cows were measured during milking in automated milking systems (AMS). 
From this novel dataset, genetic parameters have been estimated which are essential to form 
a basis for innovations in breeding for lower enteric CH4 emissions. In this introduction, the 
necessity and urgency of innovations in reducing CH4 emissions is described. It then provides 
insights into the methods for measuring enteric CH4 emissions of individual dairy cows. 
Thereafter, the potential of animal breeding to reduce CH4 emissions is highlighted, along 
with a description of innovations and methods that are needed to apply breeding strategies. 
The introduction concludes with the objectives and structure of the further chapters of this 
thesis. 

1.1 Methane 
1.1.1 The impact on climate change 
Climate change, induced by the emission of greenhouse gases, is an urgent environmental 
issue (IPCC, 2013). Without greenhouse gases, all thermal radiation would be reflected, and 
the earth would become too cold to sustain life. However, an overabundance of greenhouse 
gases is causing the earth to warm (Figure 1.1), which in turn can cause a variety of other 
risks for human livelihood, such as occurrences of drought and other natural disasters (Rising 
et al., 2022). In the Paris Agreement, an international pledge has been made to keep global 
temperatures this century well below 2 degrees Celsius above pre-industrial levels, and to 
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pursue efforts to limit the temperature increase to no more than 1.5 degrees Celsius 
(UNFCCC, 2015). In response, many countries have set emissions reduction targets to adhere 
to limiting the global temperature rise to no more than 1.5 degrees Celsius. For the 
Netherlands, this means reducing emissions by 55% by 2030 compared to 1990 levels and 
achieving net zero emissions by 2050 (EZK, 2022). 

One potent greenhouse gas targeted for mitigating the effects of global warming is CH4 
(UNEP and CCAC, 2022). The global warming effect of CH4 is 27.2 times stronger than that 
of carbon dioxide (CO2) over a 100-year period, as reported in the IPCC AR6 report (IPCC, 
2021). On the other hand, CH4 has a half-life of just 8.6 years, meaning that in 8.6 years 50% 
of CH4 is converted into CO2 and water vapour, whereas the majority of CO2 remains in the 
atmosphere for several centuries. Consequently, by reducing CH4 levels in the atmosphere, 
global warming effects can be quickly mitigated or even partly reversed when emissions of 
other greenhouse gases are simultaneously halted (Mitloehner et al., 2020). 

 

 

Figure 1.1. Reflection of thermal radiation by greenhouse gases, such as carbon dioxide (CO2) and methane (CH4), 
in the earth’s atmosphere 

 

Another reason why reducing CH4 emissions is highly urgent is that during the conversion 
of CH4 in the atmosphere the CH4 molecules react with OH-radicals by which ozone (O3) is 
produced (Tie et al., 1992). High concentrations of O3 are detrimental to all forms of life, and 
the concentration of O3 has doubled over the past century, due to the breakdown of CH4. It is 
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estimated that worldwide, between 0.3 and 1.2 million people per year die as an effect of 
high O3 concentrations, which affect the lungs and mucous membranes (van Dingenen et al., 
2018). In addition, a decline of 4 to 12% of crop yield for the most important crops in the 
world has been estimated to be a result of increased O3 concentrations (Mills et al., 2018). 
Thereby, O3 forms a major risk for the world's food supply. 

1.1.2 Methane emissions from livestock 
Methane gas is produced during the decomposition of organic materials in environments with 
little or no oxygen. About half of all CH4 emissions come from natural sources, such as: 
lakes, termites, marshes, wetlands, and the permafrost (Jackson et al., 2020). The other half 
comes from anthropomorphic sources, with the largest contribution coming from fossil fuels 
(± 18%) and livestock (± 17%), and smaller contributions coming from waste/landfills, wet 
rice cultivation, and biomass burning. As a result of human activities, global emissions of 
CH4 and CO2 have increased steeply since the commence of the industrial revolution and 
have increased from about 250 CH4 molecules per billion parts of air to the current level of 
about 1,900 parts per billion (Figure 1.2). 

 

 

Figure 1.2. Atmospheric concentrations of greenhouse gases (carbon dioxide, methane, and nitrous oxide), from the 
year 0 to 2005. Increases since around the year 1750, can be attributed to anthropomorphic emissions. Source: 
https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf 

With a contribution of 17%, our livestock form a major component of global CH4 emissions. 
In livestock, the majority of CH4 emissions are produced by ruminants such as cattle, during 
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anaerobic fermentation by microbiota in the rumen (Herrero et al., 2016). Of the enteric 
emissions, around 97% is emitted through breath and belching (Munoz et al., 2012) and 
enteric CH4 emissions have increased globally with 54.3% over the past 60 years (Patra, 
2014). Furthermore, under current global trends, CH4 emission from ruminants are expected 
to continue increasing, largely because the number of cattle and other ruminants in the world 
is also projected to increase (Robinson et al., 2011).  

Enteric emissions are biogenic and part of short carbon cycles, where CO2 produced is 
absorbed by plants, consumed by animals, and then re-fermented into CH4 and converted 
back into CO2 (Figure 1.3). However, relying on grassland carbon to offset ruminant 
emissions is not feasible, highlighting the urgency of reducing livestock emissions (Wang et 
al., 2023). Consequently, livestock emissions are considered anthropogenic, resulting from 
human activity rather than solely natural processes (IPCC, 2021). Additionally, by reducing 
the atmospheric pressure from livestock CH₄ being converted into CO₂, plants can be 
optimally used as a carbon sink for general anthropogenic emissions. 

 

 

Figure  1.3.  The short carbon cycle of biogenic carbon emissions and the long carbon cycle of fossil carbon 
emissions. When methane is converted in the atmosphere, carbon dioxide (CO2) is formed which adds to the carbon 
cycles 

Previous research has shown that individual dairy cows differ in the amount of enteric CH4 
emissions they emit, and that part of this variation between animals is heritable (Lassen and 

General introduction

13

1



 

Difford, 2020). With the initial estimated genetic parameters, a simulation study by de Haas 
et al. (2021) estimated the potential of using animal breeding to mitigate CH4 emissions of 
dairy cows. The authors estimated that with the current breeding goal, individual animal CH4 
emissions would increase by 13% up to the year 2050. However, because in the current 
breeding goal milk production is projected to increase, CH4 emissions per kg of milk 
produced (i.e., methane intensity) are expected to decrease by 13%. But with additional 
genetic selection on CH4 emissions, the CH4 emissions per kg of milk could reduce by up to 
24% by 2050.  

Application of CH4 mitigation by animal breeding outside of research and in industrial 
breeding programmes is still in its infancy. Over the past years, various countries, including 
the Netherlands, have focussed on collecting enteric CH4 measurements on hundreds to 
thousands of individual cows to be able make informed breeding decisions in the future 
(Manzanilla-Pech et al., 2021). However, the new phenotypes are still to be implemented in 
practical breeding strategies in the Netherlands. To realise practical implementation, 
statistical models must be developed that estimate genetic parameters, and later the breeding 
values for CH4 for all commercial dairy bulls. Thereafter, selection indices can be developed 
that encourage CH4 mitigation while maintaining production, and without negatively 
impacting reproduction, health and welfare, conformation, and feed intake. 

1.2 Recording Methane Emissions of individual cows 
1.2.1 Methods of recording 
To make informed breeding decisions, phenotypes for CH4 need to be available for thousands 
of individual cows. Over the past few decades, several methods have been developed to 
directly measure CH4 emissions from individual cows ���������������������;������������������
����;�������������������. Respiration chambers (RC) are generally considered as the gold 
standard to measure emissions from individual animals (Hammond et al., 2016a). A RC is an 
airtight chamber that is usually designed to house a single animal, where all incoming and 
outgoing gases are continuously measured. By measuring the airflow within the RC, a direct 
measurement of the total CH4 emitted by the animal can be obtained. However, measuring 
individual animals in a RC is time-consuming, labour-intensive, and expensive, making it 
unsuitable for phenotyping large numbers of individual cows. In addition, RC only provide 
short-term measurements while the cow is in the RC, which is generally for an hour to a few 
days, which does not provide information on CH4 emissions during the full production cycle 
of the cow. Furthermore, separating the cow from its day-to-day environment, and housing 
it in a RC, may change feeding behaviour which could potentially influence CH4 emissions 
(Hammond et al., 2016a). To overcome some of the challenges, alternative methods have 
been developed that can be operated long-term and on a larger scale, maximizing the number 
of animals that can be phenotyped. Nonetheless, each of the methods has its advantages and 
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disadvantages for large scale application (Garnsworthy et al., 2019). The methods relevant 
to this thesis will be highlighted in the following paragraphs. 

In this thesis, the main focus lies on phenotyping using infrared spectroscopy sensors named 
‘sniffers’ (Figure 1.4). Sniffers are used to measure CH4 and CO2 concentrations from the 
breath of cattle, and are often placed near an AMS, with a tube leading from the feed bin of 
the AMS to the sniffer that is pumping air from the feed bin ��������������������;��������������
2009). Thereby, the breath concentrations of an individual cow are measured, while the cow 
is eating the pellets provided in the feed bin of the AMS during milking. The devices are 
relatively inexpensive compared to other techniques to measure CH4 and can easily be 
integrated with existing facilities, such as AMS, where a large number of cows can be 
measured during the day (Garnsworthy et al., 2019). A disadvantage of sniffers is that only 
short, so called, “spot-samples” can be recorded during each time that the cow is visiting the 
AMS. However, long term recording of spot-samples is possible, as long as the cow is 
lactating.  

 

 

Figure 1.4. The sniffers as used for phenotyping methane emissions for this thesis. A cow standing in an automated 
milking system (AMS), where breath is sampled from the feed bin, the sniffer is installed near the AMS at the top 
left (left). The sniffer records a value of 215 ppm methane and 2,795 ppm carbon dioxide (right) 

 

Another disadvantage of sniffers is that because of the low airflow of sniffers, not all 
emissions from the cow will be captured, and thus the total CH4 production cannot be 
measured ����������������������;�����������������. However, methods have been developed 
to extrapolate short term CH4 concentration methods to total emissions in g/day. For 
example, total CH4 production can be approximated using recovery rates (Garnsworthy et 
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al., 2012a) or by using predicted CO2 production as a tracer gas (based on e.g. body weight, 
milk production, and feed intake) (Madsen et al., 2010). On the other hand, also without 
knowing the total CH4 production in g/day, the CH4 concentration measurements could 
potentially be used to rank cows from low to high emitters, which would be sufficient for 
breeding purposes (Garnsworthy et al., 2019). Next to the low capture rate, sniffer 
measurements are faced with inaccuracies due to environmental conditions, such as: wind 
and draft going through the AMS, movement of the cows, and the design and volume of the 
feed bin of the AMS. Statistical modelling and taking repeated measurement over a longer 
period of time and averaging these measurements is expected to leverage some of the 
measurement errors (Falconer and Mackay, 1996). Nonetheless, repeated recording and 
modelling cannot resolve all measurement error and some inaccuracy will remain (Wu et 
al., 2018). Due to the lower accuracy, sniffers have potential to serve as an indicator for 
total CH4 production, however, even with suitable modelling and inference of the data, it is 
challenging to form conclusions on the true CH4 production of cows. Therefore, ideally 
newly developed sniffer sensors are always benchmarked to more reliable methods that can 
measure individual cows’ CH4 production. 

A piece of equipment to measure CH4 �������������������������������������������������������;�
C-����� ����� ������������ ������;�Zimmerman (2011)). The GF is a standalone unit, that 
provides a cow concentrate as bait, and measures CH4 and CO2 concentrations while the cow 
is eating the concentrate during spot-sample visits that generally last a few minutes, several 
times a day. The GF registers when the cow has its head in the feed bin, and measurements 
taken while the cows’ head is not in the feed bin are discarded. Furthermore, similar to RC, 
the GF uses an air flux method with a strong pump, to be able to capture all emissions from 
breath and extrapolate the measurements to total emissions in g/day (Huhtanen et al., 2015). 
Compared to sniffer systems, the GF is more accurate but also more costly. The costs limit 
its use for phenotyping full production cycles on thousands of individual cows for breeding 
programmes (Garnsworthy et al., 2019). However, since the GF system has a higher 
throughput than RCs, its measurements are potentially valuable for benchmarking other 
direct or indirect methods of measuring CH4 emissions from individual animals, such as 
sniffers. 

1.2.2 Agreement between methods 
What sniffers and GreenFeed units have in common is that both methods give an estimate 
derived from a spot-sample of CH4 emissions from breath while the cow is eating 
concentrate. The methods are not able to precisely measure the total animal emissions during 
a full day or longer. Therefore, the agreement not only between measurements from the two 
methods, but also between measurements of each method and the true total CH4 production 
in g/day is of interest. The total CH4 production can be measured in RC, where we assume 
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that the CH4 production recorded for an individual cow in a RC reflects the cows' total 
production within the herd on-farm.  

In the literature, several studies have estimated phenotypic correlations between different 
methods to measure CH4 emissions, including RC, sniffers and GF units. For GF units, high 
phenotypic correlations with RC measurements have been reported of 0.85 and 0.96 (0.96 is 
transformed from R squared (R2)) ���������������������;����������������������. For sniffers, 
several studies report correlation estimates with RC measurements, however, most of the 
comparisons are difficult to interpret. Interpretation is made difficult because of differences 
in trait definitions (e.g. derived from peaks in CH4 concentrations, Garnsworthy et al. 
(2012a)), random measurement noise in single samples, or because sniffers are placed 
directly in a RC, and these measurements do not correspond to on-farm conditions as was 
shown by Difford (2018). One study reported correlations between CH4 concentration 
measured by on-farm sniffers and CH4 production measured in RCs and reported a moderate 
phenotypic correlation of 0.34 ± 0.22 and a high individual level correlation of 0.75 ± 0.20 
(Difford et al., 2019). In addition, one study reported a moderate Pearson’s correlation 
between sniffer and GF measurements (0.30, transformed from R2 (Huhtanen et al., 2015)). 
All aspects considered, measurements by the GF system appear to be highly correlated to RC 
measurements, whereas estimates on the relationship between sniffers and RC have been 
associated with a larger uncertainty. For sniffers, the type of sniffer, recording set-up, the 
number of records that are averaged, and trait definition, can have a large influence on the 
agreement between methods. Therefore, the relationship between sniffer phenotypes and CH4 
production (from e.g. RC or GF), and especially the genetic relationship, should ideally be 
re-evaluated. The genetic relationship provides important information about the accuracy 
when using sniffer records to predict GF records, and especially the genetic progress that can 
be expected in mitigating CH4 production when selecting for phenotypes derived from sniffer 
measurements. 

1.3  Implementation  of  Methane  in  Breeding 
Programmes 
1.3.1 Trait definition 
Before a new trait or phenotype can be implemented in a breeding programme, the trait 
should be clearly defined, recordable, affordable, have phenotypic variation, be heritable, and 
the genetic correlations with other selection index traits needs to be known �������������. 
Worldwide, research groups and breeding organisations are working on including methane 
mitigation in breeding programmes. Often, different methods of phenotyping are used, with 
each their own defined traits and units of measurement. For example, for research that has 
investigated the use of sniffer for genetic parameter estimations some studies that measured 
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CH4 with sniffers have analysed average CH4 concentrations ������������� ��� ����� ����;�
Manzanilla-����� ��� ����� �����;� ��������� ��� ����� �����, whereas other studies defined a 
phenotype from peaks in CH4 concentrations ������������������;���������������������������. 
Because of these differences, it is difficult to compare results and to combine data across 
countries and for the highly variable sniffer concentration measures, it will be challenging to 
quantify the realised on-farm or national reduction in emissions.  

Currently there is no consensus on which direct CH4 traits are the most promising for 
breeding programmes that aim to mitigate CH4 emissions. To answer these questions, more 
research will be required that aims to standardise traits, or as highlighted above, additional 
estimates of phenotypic or genetic correlations can provide valuable knowledge into the 
relationships between different CH4 recording methods and different phenotypes defined 
from one recording method. In addition, for the estimation of breeding values the number of 
records and duration of CH4 recording with sniffers is important. Longer recording periods 
give higher accuracies initially, but plateaus at a maximum accuracy, and due to cost a long 
recording period may not always be feasible. Furthermore, the genetic variance has been 
shown to vary during the lactation indicating that the moment of recording is also of 
importance (Manzanilla-����� ��� ����� �����;� ��������� ��� ����� �����. When new traits are 
developed, the optimal phenotyping strategy for that trait should be considered and further 
investigated. Reflecting on different phenotyping strategies gives important insight into the 
expected genetic gain, and it helps to apply phenotyping instruments in a cost-effective and 
time-efficient manner. 

1.3.2 Heritability 
Several studies have estimated heritabilities for different CH4 phenotypes in cattle, where the 
estimates in dairy cattle ranged from 0 to 0.53 ± ����������������������������������������������
the estimates reported in the table is 0.19 and the estimates provide confidence that there is a 
genetic component to enteric CH4 emissions, and thus that genetic selection for CH4 
mitigation is possible. However, the large differences between estimates also stresses that it 
is important to consider the phenotyping method, trait definition, and model choice for 
breeding value estimations. For example, some studies analysed an average of all CH4 
records, whereas other studies used a repeatability model including averages per AMS visit, 
day, or week. Deviations in parameter estimates can results in achieving lower genetic 
progress than what was estimated using a different model or trait. Thus, it is important to re-
estimate genetic parameters when making changes in phenotyping practices, trait definition, 
or when a new and largely unrelated population of animals is recorded, as has been done with 
sniffers in the Netherlands ���������������������������. 
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1.3.3 Genetic correlations with other breeding goal traits 
When selecting for reduced CH4 emissions, it is important to know the genetic relationships 
between CH4 emissions and other breeding goal traits. The current selection index for the 
Dutch national breeding goal for dairy cattle includes 15 traits from the following categories: 
milk production, milk components, feed efficiency, health, reproduction, longevity, and 
conformation (CRV, 2023). Relationships between traits can be estimated as genetic 
correlations, which are essential parameters to ensure that selecting for reduced CH4 
emissions does not negatively impact other traits in the breeding goal. To date, few genetic 
correlations have been estimated between CH4 emissions and current breeding goal traits. 
For the estimates that are published, they are often associated with large standard errors 
probably due to a limited numbers of records (Hossein-Zadeh, 2022). Thus, the effect of 
genetic selection for lower CH4 emissions on other breeding goal traits is still largely 
unknown, whereas they are required to make informed breeding decisions. Additionally, 
genetic correlations could be informative in deciding if other traits can be used as predictor 
traits for cows without CH4 records (Negussie et al., 2017). Using predictor traits is useful 
when the accuracy of the estimated breeding value (EBV) for the predictor trait, multiplied 
by the genetic correlation, is higher than the accuracy for the EBV for the recorded CH4 trait. 
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1.4 Aims and Outline of this Thesis 
The main objective of this thesis was to estimate genetic parameters for CH4 emissions to 
form the basis for implementing CH4 mitigation strategies in the Dutch national breeding 
programme for dairy cows. Data analyses were performed on a previously collected dataset 
with CH4 emissions recorded on 15 commercial dairy farms in the Netherlands and for this 
thesis this dataset was extended with CH4 emissions recorded on an additional 57 commercial 
dairy farms. Together, this formed the largest dataset of long-term recorded enteric emissions 
phenotypes of dairy cows to date.  

To reach the main objective, several research aims were formulated. The first aim of this 
thesis was to estimate the heritability and repeatability of several traits defined from CH4 
concentrations measured by sniffers, and to evaluate the accuracy of breeding values for 
different CH4 traits and recording strategies with varying numbers of records and recorded 
daughters per sire (Chapter 2). Subsequently, an additional dataset with CH4 recorded by 
GF units was used. From the combined GF and sniffer data, the repeatability and heritability 
of CH4 and CO2 production recorded by GF were estimated and the genetic correlation 
between CH4 concentration recorded with sniffers and CH4 production recorded with GF 
units (Chapter 3). Including the newly recorded sniffer CH4 measurements on the additional 
farms, variance components over a lactation were estimated, and used to describe the effect 
of the moment of recording CH4 in a lactation on the accuracy of breeding values (Chapter 
4). Thereafter, genetic correlations were estimated between CH4 concentration and the main 
production traits: milk production, protein yield, protein percentage, fat yield, and fat 
percentage, and body weight and dry matter intake. These traits were chosen, as they were 
expected to have moderate to high genetic correlations with CH4 emissions and are 
economically of importance (Chapter 5).  

In the general discussion (Chapter 6), a synthesis of the results of this thesis is presented 
along with future perspectives for implementing CH4 mitigation in breeding programmes. 
Additionally, the lessons learned in recording CH4 emissions of dairy cows with sniffers are 
reflected upon, providing valuable insights for those interested in recording individual CH4 
emissions of cattle for animal breeding purposes. 
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Abstract 
Animal breeding techniques offer potential to reduce enteric emissions of ruminants to lower 
the environmental impact of dairy farming. The aim of this study was to estimate the 
heritability and repeatability of methane (CH4) concentrations, using the largest dataset from 
long-term repeatedly recorded CH4 on cows to date, and to evaluate (1) the accuracy of 
breeding values for different CH4 traits, including using visits or weekly means, and (2) 
recording strategies (with varying numbers of records and recorded daughters per sire). The 
data comprised of long-term recording of CH4 and carbon dioxide (CO2), from 1,746 Holstein 
Friesian cows, on 14 commercial dairy farms throughout the Netherlands. Emissions were 
recorded in 10- to 35-s intervals, between 64 and 436 d, depending on farms. From each robot 
visit, CH4 and CO2 concentrations were summarised into various traits, averaged per visit 
and per week: mean, median, mean log, and mean CH4/ CO2 ratio. Genetic parameters were 
estimated with animal repeatability models, using a restricted maximum likelihood 
procedure, and a relationship matrix based on genotypes and pedigree. The heritability was 
equal for mean and median CH4 per visit (0.13) but lower for logCH4 and CH4/CO2 (0.07 and 
0.01, respectively). Phenotypic and genetic correlations were high (≥0.78) between the CH4 
traits, apart from the genetic correlations with the CH4/CO2 trait, which were negative. To 
achieve a minimum reliability of 50% for the estimated breeding value of a bull, 25 records 
on mean CH4, measured on 10 different daughters, were sufficient. Although the heritability 
and repeatability were higher for weekly (0.32 and 0.68, respectively) than for visit mean 
CH4 (0.13 and 0.30, respectively), the reliabilities of estimated breeding values from visit or 
�����������������������;������������������������������������������������������������������
for genetic evaluations. 

Key words: methane emissions, genetics, dairy cows 
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2.1 Introduction 
Ruminants produce methane (CH4) by anaerobic fermentation in the rumen, which is emitted 
in the air mostly through breathing and belching (Herrero et al., 2016). Reducing these 
emissions can help to lower the environmental impact of dairy farming. Although enteric 
CH4 emissions have been hypothesised to be carbon neutral (Mitloehner et al., 2020), 
mitigation still contributes to reducing the total emissions of the sector. Animal breeding 
offers an opportunity to achieve a permanent, cost-effective, and cumulative reduction in 
enteric CH4 emissions, which can be implemented in addition to changes in nutrition and 
manure management (Knapp et al., 2014). To apply breeding techniques, large-scale 
recording of individual enteric CH4 emissions is essential (de Haas et al., 2017).  

Large-scale and cost-effective recording of individual cows is possible by using “sniffers” 
������������� ��� ����� ����;� ������� ��� ����� �����. Sniffers use infrared spectroscopy to 
measure gas concentrations from the breath and belching of cows. The devices are installed 
in the feed bin of automated milking stations (AMS), where continuous measurements of the 
CH4 concentration (ppm) in the air are taken. Sniffers do not use an air flux measurement, 
and therefore they cannot measure the CH4 production in grams per cow per day. However, 
studies have shown high correlations (0.75 ± 0.20 and 0.89 ± 0.07) between on-farm sniffer 
measurements in parts per million and respiration chamber measurements, in which the exact 
CH4 emission of an individual cow was measured ���������������������;���������������������
2019). This suggested potential in using sniffers to quantify the variation in enteric CH4 
emissions between cows, and that the measurements could be used to rank cows from low to 
high emitters for animal breeding practices.  

From CH4 concentrations measured by sniffers, genetic parameters for several traits have 
previously been estimated. Many studies have used averages of measured CH4 concentrations 
(ppm), for which the heritability ranged between 0.11 ± 0.02 and 0.26 ± 0.11 (Difford et al., 
2020; Saborío‐Montero et al., 2019; van Engelen et al., 2018). Other studies have predicted 
CH4 production (g/d) from CH4 concentrations (ppm) by using CO2 as tracer gas, combined 
with the CH4/CO2 ratio, as described in Madsen et al. (2010). The heritability for this 
predicted CH4 production ranged between 0.12 ± 0.16 and 0.45 ± 0.11 ���������������������;�
�������������;���������������������������;����������������������;����������������������. Some 
studies have discussed CH4 traits in relation to other relevant breeding goal traits, such as 
milk production (CH4 intensity), DMI (CH4 yield), or residual CH4 (de Haas et al., 2017). Of 
those 3 traits, only CH4 intensity has a published heritability for dairy cows, estimated as 0.21 
± 0.06 (Lassen and Lovendahl, 2016). Trait definition affects estimates of heritabilities and 
genetic correlations, although in the literature differences between estimated genetic 
parameters have also been large when the same trait definition was used. Large differences 
in parameter estimates might also be due to different recording strategies and circumstances 
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between studies. Furthermore, many currently published estimates are associated with large 
uncertainties shown by high standard errors. Most initial studies have either a small number 
of records per cow, a small number of recorded cows, or a small number of recorded farms. 
However, accurate estimates are needed to derive the expected accuracy of breeding values 
for different trait definitions and recording strategies, important aspects of setting up a 
breeding programme (Falconer and Mackay, 1996).  

In the Netherlands, a breeding goal will be developed to reduce enteric CH4 emissions of 
dairy cows, for which phenotypes are being collected in AMS by sniffers. The aim of this 
study was to estimate the heritability and repeatability of CH4 concentrations, using the 
largest dataset from long-term repeatedly recorded cows to date, and to use the data and the 
corresponding estimates to evaluate (1) the accuracy of breeding values for different traits 
(and visits or weekly means) and (2) recording strategies (with varying number of records 
and recorded daughters per sire). The heritability and genetic correlation of alternative CH4 
and CO2 traits were also estimated. Data were available for continuous and repeated 
recording of CH4 and CO2 concentrations by sniffers between 64 and 436 d, on 14 
commercial dairy farms throughout the Netherlands, with a total of 1,746 dairy cows. The 
heritabilities and genetic correlations between different CH4 traits and the described 
recording strategies provide tools to aid discussions that are needed to construct new breeding 
goals aiming to reduce enteric CH4 emissions of dairy cows. 

2.2 Materials and Methods 
2.2.1 Data 
Enteric CH4 emissions were recorded in AMS on 14 commercial dairy farms located 
throughout the Netherlands, between March 2019 and September 2020. On these farms, a 
total of 475,555 AMS visits from 2,414 dairy cows were recorded. Emissions were recorded 
by sniffers (WD-WUR version 1.0, Carltech BV). On each farm, a unique device was 
installed near the AMS, with an air inlet leading from the feed bin of the AMS. Various types 
of AMS systems were used in the study, manufactured by Lely Industries NV, GEA Group, 
DeLaval BV, and Fullwood Packo BV. On each farm, at most 1 AMS was equipped with a 
sniffer, even if multiple AMS were used within a herd. Before installation in the AMS, 
sniffers were calibrated using flacons of CH4, CO2, and nitrogen. The sniffers could measure 
CH4 concentrations in a range of 0 to 2,000 ppm and CO2 concentrations in a range of 0 to 
10,000 ppm.  

On each farm, air was sampled continuously, and every 10 to 35 s (varying between devices) 
a mean was uploaded to the cloud using Arduinos (SODAQ SARA SFF R410M developer 
board). A data check was performed twice a week to ensure that the sniffers had no sudden 
change in the mean or variation in emissions. Genotype data, pedigree data, and other 
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phenotypic data were made available by the cooperative cattle improvement organization 
CRV (Arnhem, the Netherlands). Animals were genotyped with the Eurogenomics 10K chip. 
The genotype data comprised 1,817 animals with 76,438 SNPs (imputation was routinely 
performed by CRV), of which 1,611 cows were phenotyped for CH4 emissions. The 
additional 206 cows that were genotyped but not phenotyped were included to maintain 
linkage between the small number of herds and the large number of bulls with few daughters. 
Phenotypic data provided by CRV included test-day milk yield, breed composition, and 
calving dates. 

2.2.2 Matching Records to Cow Identification Numbers 
Sniffers are not able to record cow identification numbers. Therefore, to match a sniffer 
measurement with an identification number, the CH4 measurements were aligned with 
identification numbers recorded by the AMS. The records could not be merged based merely 
on timestamps, because the times of sniffers were set manually, whereby inaccuracies may 
have occurred, and changes to and from daylight saving time were not registered. Therefore, 
we used an algorithm that matches the sniffer and AMS records, based on the AMS entry 
time and peaks of CH4 emissions in the sniffer data, which were located with the function 
“findpeaks” from the package “pracma” in R version 3.6.1 ���������������;���������. This 
method is similar to that described by Garnsworthy et al. (2012a). A peak was detected based 
on an increase of 500 ppm of CH4, with at least 3 increasing datapoints before the peak, 
followed by 3 decreasing datapoints. A match was defined as a peak that occurred within 30 
s before or after the AMS entry time. A 30-s timeframe around the AMS entry was necessary 
(±time), because the AMS only recorded entry time to the minute, whereas sniffers recorded 
time at the level of seconds. The time difference with the most matches between sniffer CH4 
peaks and AMS entry times was considered to be the true time difference. Time differences 
were confirmed by visual inspection before matching the dataset. When data were not 
matched correctly, many milkings would not result in increases of CH4, whereas for correctly 
matched data it could clearly be observed that CH4 concentrations peaked at the start of 
milkings and would be low and stable when the robot was empty 

2.2.3 Data Editing 

The continuous CH4 measurements within an AMS visit were used to define various CH4 and 
CO2 traits, of which details are described subsequently in the section “Methane Traits.” 
Milking robot visits that did not result in a milking were discarded, as these cows would not 
receive pellets and would therefore not put the nose in the feed bin close to the air inlet for a 
longer period of time. Within AMS visits, records taken during the first minute of milking 
were discarded. This was to ensure that the cow had reached the feed bin and to account for 
a delay in the air sample entering the air inlet and reaching the sensor. The CH4 recording 
period was defined to last at least 2.5 min, to capture not only breathing but also the belching 
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of cows (van Soest, 1994). Last, records after 5 min of milking were discarded, because after 
6 min a decrease in the mean CH4 emission of all visits combined was observed. This is most 
likely because, on average, after the first 6 min of milking, cows have finished eating the 
pellets and would move the nose away from the air inlet, resulting in a decrease of mean 
emissions.  

Background emissions were filtered by subtracting the lowest 1% quantile of records during 
milking on the day of the measurement from all individual CH4 and CO2 measurements of 
that day. Records from cows up to 305 DIM were analysed, to correctly match the CH4 
records to calving dates and the corresponding parity. Cows whose breeds were less than 
75% Holstein were removed from the dataset. The final dataset comprised 308,968 visits 
from 1,746 individual cows, which all had pedigree data, and 1,611 of these cows also had 
genotype information. 

2.2.4 Methane Traits 

For each AMS visit, a mean, a median, a mean of the log of CH4 and CO2 emissions, and a 
mean CH4/CO2 ratio were estimated from the concentrations (ppm) measured every 10 to 35 
s (Table 2.1). Furthermore, a second dataset was created, from which a mean per week trait 
was calculated from all visit traits. The mean per week trait included only weeks with a 
minimum of 7 robot visits per cow recorded. The dataset with weekly means comprised 
17,320 records on 1,579 cows. The traits (mean, median, log, and CH4/CO2 ratio) were 
selected based on what has been used previously in the literature ���������������������;��������
�������������������;��������������������������, which typically include one or two of these 
traits but never all four as a mean per visit and per week. Traits based on predictions of CH4 
production were not included in the analyses. Recently it has been shown that the method 
commonly used to predict CH4 production from CH4 and CO2 concentrations (as described 
by Madsen et al. (2010), is likely to favour inefficient cows over efficient cows in ranking 
them from low to high CH4 emitting (Huhtanen et al., 2020). This is most likely a result of 
biased estimates of CO2 production, due to differences between cows in their efficiency of 
energy utilization for maintenance or milk production. Additionally, CH4 traits defined as a 
ratio to other relevant breeding goal traits, such as milk production (CH4 intensity) and DMI 
(CH4 yield), or as a residual CH4 trait, were not included in the analyses, because information 
on milk yield and DMI were not available. 
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Table 2.1. The mean (± standard deviation (SD)), minimum, and maximum of the traits defined for enteric methane 
(CH4) and carbon dioxide (CO2) emissions as visit means (308,968 records on 1,746 cows) or weekly means (17,320 
records on 1,579 cows)  

 Visit emissions    Weekly emissions 

    

 Mean ± SD  Min  Max   Mean ± SD Min Max 

Mean CH4 (ppm) 328 ± 269 0 1,999  367 ± 216 1 1,587 

Median CH4 (ppm) 315 ± 278 0 2,000  357 ± 221 1 1,856 

Mean log CH4 2.1 ± 0.9 -1.3 3.3  2.2 ± 0.6 -0.3 3.1 

Mean CO2 (ppm) 3,802 ± 1,981 3 9,692  3,820 ± 1,660 143 9,239 

Median CO2 (ppm) 3,853 ± 2,131 2 9,804  3,867 ± 1,762 140 9,505 

Mean log CO2 3.5 ± 0.4 0.3 4.0  3.4 ± 0.3 2.1 4.0 

Mean CH4/CO2 ratio 0.10 ± 0.11 0 1  0.13 ± 0.12 0 1 

 

2.2.5 Genetic Parameter Estimation 

Genetic parameters were estimated with univariate animal models, which included repeated 
records, using the restricted maximum likelihood (REML) procedure in ASReml 4.2 
(Gilmour et al., 2015). From the pedigree and genotype data, a combined genetic relationship 
matrix (H-1 matrix) was constructed following the method of Aguilar et al. (2010) and 
Christensen and Lund (2010), using calc_grm version r1.143. Before constructing the H-1 
matrix, the pedigree was pruned to only include phenotyped animals and their ancestors, 
using the statistical programming software R v3.6.1 and the R-package “optiSel” (Wellmann, 
2020). The pruned pedigree comprised of 34,394 animals, of which 1,746 were phenotyped 
for CH4 emissions. The final H-1 matrix comprised of all 34,394 pedigreed animals. 

The significance of fixed effects on the defined CH4 traits were analysed in ASReml. The 
random effects included were the additive genetic, parity by permanent environmental, and 
residual effect. The following model was defined: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 +  𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑘𝑘 + 𝐷𝐷𝐷𝐷𝐷𝐷 + ∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑙𝑙

3

𝑙𝑙=0
𝛽𝛽𝑙𝑙 +  𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚 + 𝑎𝑎𝑛𝑛

+ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜. 𝑃𝑃𝑃𝑃𝑛𝑛 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Where y is the phenotype for a CH4 �����; 𝜇𝜇 ��� ���� ����;� ���� ��� ���� ������ ������� ���
herd*year*week where the measurement was taken (i �������������;������������������������
interaction between farm (j = 1 to 14) and hour of the day (k = 1 to 24) and was only used on 
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��������������;����������������������������������������������������������������������������������
data (excluded for weekly); DIM is the fixed regression coefficient for days in milk; β� is the 
����������������������������������������������������������;�����������������������������������
(m ����������������������������������������;�a ���������������������������������������������nth 
��������a� ~ N ���Hσ2

a���������H is the combined relationship matrix, and σ2
a is the additive 

����������������;����������������� �������������������������������������������������������o = 
��������������������� ~ N���I σ2

pe���������I is the incidence matrix and σ2
�� �����������������

���������������������������������;�����e �����������������������e������� ~ N ���I. σ2
e), where σ2

e 
���������������������� 

����������������������������������������������������������������������� ������2 ����������
����������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������
����������������������������������������������������������� 

���������������������������������������������������������������������������������� ������2 
��������������������������������������������������������������������� 

ℎ2 = 𝜎𝜎𝑎𝑎
2

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑝𝑝𝑝𝑝2 + 𝜎𝜎𝑒𝑒2
 

��������������������������������� 

𝑡𝑡 =  
𝜎𝜎𝑎𝑎

2 + 𝜎𝜎𝑝𝑝𝑝𝑝
2

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑝𝑝𝑝𝑝2 +  𝜎𝜎𝑒𝑒2  

������σ2
a ����������������������������������σ2

pe ���������������������������������������������
σ2

e ���������������������� 

2.2.6 Reliability of Estimated Breeding Values 

���������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������
����������������������� 

𝑟𝑟2 = 1 − 𝑆𝑆𝑆𝑆2

𝜎𝜎𝑎𝑎2
 

������SE is the ASR��� �������������������������������σ2
a ����������������������������������

��������� 

������ ������ ��������������� �������� ��������� ����� ���� ������ ����� ����� �������� ���� �����
�������������� ����� ������ �������� ���� ��������� ������������� ���������� �������������� ��� �����
������������������������������������������������������������������������������� �����������
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�������������������������������������������;�Mrode, 2005). These reliabilities assume there 
are only records available for an individual cow or records are only available on half sib 
daughters of a bull, and no other relationships exist in the data. The predicted reliabilities for 
phenotyped cows with repeated records were calculated as: 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐
2 =  𝑛𝑛 ℎ2

1 + (𝑛𝑛 − 1) 𝑡𝑡 

Where n is the number of records, h2 is the heritability, and t is the repeatability. 

 

Table 2.2. The number of bulls that has one to 130 daughters in the dataset, in classes of ten 

Number of daughters Number of bulls 

1-10 

11-20 

21-30 

31-40 

41-50 

61-70 

121-130 
 

382 

18 

5 

4 

1 

2 

1 
 

 

The predicted reliabilities for sires of phenotyped cows with a predefined number of 
daughters were then calculated as: 

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2 =  

1
4 𝑑𝑑 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐

2

1 + 1
4 (𝑑𝑑 − 1)𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐2

 

Where d is the number of daughters, and r2
cow is the derived reliability for the breeding value 

of the phenotyped daughters, i.e. equivalent to h2 when only one visit or weekly record is 
available per cow. 
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2.3 Results 
2.3.1 Average Methane Emissions  
The overall mean CH4 emission per visit was 367 ppm, with a standard deviation of 216 ppm 
���������;�������������������������������������������������������������������������
��������������������������������������������������������������������������������������������
����������������������������������������������������4 and CO2 �������������������������
��������������������������������������������������������������������������������������
�����������������������������4 ����������������������������������������������������������������
��������������������������������������������4 ����������������������������������������������
����������������������������������������������������������������������������������������������
�����������������������������������������������4 ������������������������������������������
�����������������������������������������������������������������������������������������������
�����������������������������������������������4 ���������������������������������������
�������� 

 

 

Figure 2.1. The mean methane (CH4��������������������������������������������������� 
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Table 2.3. Descriptive statistics per farm for the number of cows, the total number of days with records (there can 
be gaps in the recording period), the total number of visits recorded, the mean methane (CH4) (ppm) and carbon 
dioxide (CO2) (ppm) emissions (± standard deviation (SD)) 

Farm No. 
cows 

No. days of 
recording No. of visits 

Mean per visit (ppm) 

CH4 ± SD CO2 ± SD 

1 19 339 2,357 133 ± 151 2,480 ± 1,180 

2 118 245 16,978 314 ± 210 3,399 ± 2,198 

3 181 261 31,348 99 ± 140 2,289 ± 1,172 

4 111 225 18,397 562 ± 315 5,186 ± 1,821 

5 193 316 36,598 501 ± 284 4,527 ± 2,255 

6 27 64 756 536 ± 248 1,161 ± 598 

7 93 347 28,916 279 ± 197 4,025 ± 1,196 

8 156 177 21,132 348 ± 295 5,039 ± 2,266 

9 293 436 60,508 421 ± 257 3,355 ± 2,002 

10 188 319 16,234 347 ± 225 4,079 ± 1,320 

11 40 104 6,843 150 ± 156 4,601 ± 1,709 

12 98 276 31,019 139 ± 168 4,117 ± 1,275 

13 145 115 10,885 507 ± 237 5,417 ± 1,878 

14 84 413 26,997 220 ± 103 2,491 ± 1,217 

 

2.3.2 Genetic Parameter Estimation  
The estimated heritability and repeatability from mean visit emissions were 0.13 ± 0.01 and 
0.30 ± 0.01, respectively (Table 2.4). After averaging the records per week, the heritability 
and repeatability for mean CH4 significantly increased for all traits and became moderate 
������������� ����������������� ������������;����������������������� ���� ���������������� ����
week, resulted in a large decrease of the residual variance (Table 2.5). Mean and median CH4 
emissions had the highest heritability and repeatability. The trait log-transformed CH4 
emissions had a lower heritability than the mean CH4 emissions (0.23 ± 0.03 for weekly 
logCH4 emissions). The ratio trait had the lowest heritability and a low repeatability (0.02 ± 
0.01 and 0.15 ± 0.01, respectively, for weekly CH4/CO2 emissions). 
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Table 2.4. The heritability (h2) and repeatability (t) for the mean methane (CH4) emissions, median CH4 
emissions, log CH4 emissions, mean carbon dioxide (CO2) emissions, median CO2 emissions, log CO2 emissions, 
and CH4/CO2 ratio averaged per visit and week (± SE) 

 
Visit Week 

 
h2 t h2 t 

mean CH4 (ppm) 0.13 ± 0.01 0.30 ± 0.01 0.32 ± 0.03 0.68 ± 0.01 

median CH4 (ppm) 0.13 ± 0.01 0.29 ± 0.01 0.32 ± 0.03 0.68 ± 0.01 

logCH4 0.09 ± 0.01 0.18 ± 0.01 0.23 ± 0.03 0.65 ± 0.01 

mean CO2 (ppm) 0.16 ± 0.02 0.36 ± 0.01 0.33 ± 0.03 0.71 ± 0.01 

median CO2 (ppm) 0.16 ± 0.01 0.35 ± 0.01 0.34 ± 0.03 0.71 ± 0.01 

logCO2 0.07 ± 0.01 0.20 ± 0.01 0.20 ± 0.03 0.57 ± 0.01 

CH4/CO2 0.01 ± <0.01 0.08 ± <0.01 0.02 ± 0.01 0.15 ± 0.01 

 

2.3.3 Genetic Correlations Between Methane Traits  
Phenotypic and genetic correlations were estimated between the weekly emission traits. The 
estimated genetic correlations between the mean, median, and logCH4 traits were high (0.78–
����;� ������ ������ ��� ���� ���������� ���� ����������� ���� �������� ������������� �������� ����
CH4/CO2 ratio trait and all other traits were negative (−0.08 to −0.45 and −0.27 to −0.99, 
respectively), and the genetic correlations had high standard errors (0.16–0.29). Furthermore, 
the phenotypic correlations between CH4 and CO2 emission traits were high (0.70–0.85). 

 

Table 2.5. The genetic (σ2
a), permanent environmental (σ2

pe), error (σ2
e), and phenotypic variance (σ2

p) of mean 
methane (CH4) and carbon dioxide (CO2) emissions per robot visit and per week (± SE) 

 σ2
a σ2

pe σ2
e σ2

p 

Visit CH4 5,308 ± 543 6,429 ± 335 28,024 ± 72 39,760 ± 457 

Weekly CH4 5,371 ± 610 6,115 ± 388 5,381 ± 62 16,867 ± 493 

Visit CO2 411,526 ± 42,557 505,494 ± 25,976 1,607,350 ± 4,111 2,524,400 ± 35,279 

Weekly CO2 416,517 ± 47,117 471,873 ± 29,585 357,251 ± 4,149 1,245,600 ± 37,896 
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2.3.4 Reliability of Estimated Breeding Values  
Predicted reliabilities for EBV were estimated based on the heritability and repeatability 
estimates for mean visit and weekly emissions. The predicted reliability for EBV of 
phenotyped cows with repeated records increased steeply for the first 10 weekly records of 
mean CH4 emissions, after which the gain per additional recording per cow became smaller 
(Figure 2.2). For visits, the increase in reliability was slightly less steep, and the gain per 
additional recording became smaller after around 25 recorded visits. For phenotyped cows, 
one weekly mean gave a higher reliability than one visit, which is a result of the higher 
heritability for weekly means (Figure 2.2 and Table 2.7). However, when considering an 
average of 7 visits per week, the two reliabilities were approximately equal (7 visits per week 
versus 1 weekly). This was calculated from the parameter estimates and applying a sensitivity 
analysis based on their standard errors. The predicted reliability of EBV for sires increased 
when a larger number of daughters were recorded per sire, and the level of reliability 
depended on the number of records for mean CH4 emission per daughter (Figure 2.3). With 
a larger number of records per daughter, the reliability of sires was higher, although after 10 
recorded weeks or 25 recorded visits, the gain in adding extra records became negligible. For 
sires with a large number of recorded daughters that all have a large number of records, the 
difference between the reliability for visit emissions and weekly emissions decreased (Table 
2.7). For cows with own performance information, including repeated records, the realised 
reliability for mean CH4 emission was higher than that expected based on the predicted 
reliability (Figure 2.4 A). For sires, the realised reliability, which included all records, 
followed the expected pattern from predicted reliabilities (Figure 2.4 B). Figure 2.4 A 
confirms that the largest increase in reliability came from the inclusion of approximately the 
first 25 repeated records. By including more repeated records, the reliability for cows only 
marginally increased. 
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Figure 2.2. The predicted reliability for the mean CH4 emission for cows with own performance information, 
based on the number of phenotypic records per cow. Calculated for the number of recorded visits (Solid), and the 
number of recorded weeks (Dashed). The lines were derived from the corresponding estimates of heritability and 
repeatability (resp. 0.13 and 0.30 for visits, and 0.32 and 0.68 for weeks) 

 

 

Figure 2.3. The predicted reliability for sires with phenotyped daughters, based on the number of records on mean 
CH4 emission per daughter and the number of daughters per sire. The reliability was derived for both visit means 
(Light grey) and weekly means (Dark grey) from the corresponding estimates of heritability and repeatability 
(resp. 0.13 and 0.30 for visits, and 0.32 and 0.68 for weeks)
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Table 2.7. The predicted reliabilities for cows with own performance information and sires with phenotyped 
daughters. The reliabilities for cows are derived from the number of visit or weekly records, and the heritability 
and repeatability for visit or weekly means. The reliabilities for sires are derived from the cows’ reliability from n 
records, and the number of daughters 

Number of records per 
cow 

Predicted reliability 
cow Number of daughters per 

sire 

Predicted reliability 
sire 

Visit Weekly Visit Weekly 

1 0.13 0.32 5 0.14 0.30 

   10 0.25 0.47 

   100 0.77 0.90 

5 0.30 0.43 5 0.29 0.38 

   10 0.44 0.55 

   100 0.89 0.92 

10 0.35 0.45 5 0.33 0.39 

   10 0.49 0.56 

   100 0.91 0.93 

25 0.40 0.46 5 0.35 0.39 

   10 0.52 0.57 

   100 0.92 0.93 

50 0.41 0.47 5 0.37 0.40 

   10 0.54 0.57 

   100 0.92 0.93 

100 0.42 0.47 5 0.37 0.40 

   10 0.54 0.57 

   100 0.92 0.93 

 

2.4 Discussion 
The aim of this study was to estimate the heritability and repeatability of CH4 concentrations, 
using the largest dataset from long-term repeatedly recorded cows to date, and to use the data 
and corresponding estimates to evaluate (1) the accuracy of breeding values for different 
traits (visits or weekly means) and (2) recording strategies (with varying numbers of records 
and recorded daughters per sire). Data were available on continuous and repeated recording 
of CH4 and CO2 emissions, from 1,746 dairy cows, on 14 commercial dairy farms throughout 
the Netherlands. From the data, genetic parameters were estimated with univariate and 
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bivariate animal models, using a restricted maximum likelihood procedure. The results show 
that mean CH4 emissions had moderate heritability and repeatability, but that there was no 
advantage in averaging the mean emissions per week to estimate breeding values for sires. 
From the mean emissions per visit, 25 records measured on 10 different daughters gave 
reliabilities of breeding values above the Dutch publication threshold of 50%. 

 

 

Figure 2.4. The realised reliability of estimated breeding values (EBVs) (dots) and expected predicted reliability 
(line) for cows with own performance information on the mean CH4 emissions per robot visit, by their number of 
recorded visits (A), and for sires of phenotyped cows by their number of daughters, which assumes each cow has 1 
(solid line), 10 (small dashed line), or 100 (large dashed line) repeated records (B) 

 

2.4.1 Phenotypic Analysis  
The mean CH4 emissions recorded in this study was 367 ppm, which is within the low range 
�������������������������������������������������������������������������������������;�����
�������� ��� ����� ����;� ����� ��� ����� ����;� �������� ��� ����� ����;� �����-Paredes et al., 202�;�
Saborío-�������� ��� ����� ����������� �������� ������� �� ������� �������������� ���������������
���������������������������������������������������������������������������������������������
variation (CV) to increase to higher levels than expected and caused differences in the CV 
between farms. By correcting for differences between farms and between measuring weeks 
within farms in the genetic analysis, we assume that these factors have minimal influence on 
the estimates of the genetic parameters. Another concern that is often raised is that CH4 
measurements by sniffers are inaccurate or biased and are influenced by systematic 
environmental effects, random errors, and systematic errors (Huhtanen and Hristov, 2018). 
Systematic environmental effects, such as conditions during the day or farm, are not 
problematic for genetic analysis and can be separated from genetic effects by the separation 
of environmental effects in mixed model analysis. Similarly, random errors, which can be a 
result of movement of the cow’s nose and the position of the nose in the feed bin (Wu et al., 
2018), do not have to be problematic and can be reduced by taking multiple repeated 
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measurements of each cow. Furthermore, the effect of the position of the nose and head lifting 
was expected to be reduced by only considering the first five minutes of milking, where we 
expect most cows were eating concentrates. Systematic errors, such as behaviour during 
milking, are more serious if the errors are also partly genetic in nature. For example, cows 
that are restless in nature might look around in the milking robot more frequently, causing 
the measured concentrations to decline. It should be further studied whether this behaviour 
is repeatable and heritable, as has also been pointed out by Wu et al. (2018). Nonetheless, 
even if sniffer measurements party reflect differences in other traits, CH4 measured by 
sniffers could still serve as in indicator for true CH4 emissions (Bovenhuis et al., 2018). 

The pattern of CH4 emissions over DIM (Figure 2.1) and the diurnal pattern indicate that 
sniffers are able to detect variation in emissions. Diurnal patterns have been reported 
previously �������������������;����������������������;��������������������������, and in these 
studies the CH4 emissions increased during the day and decreased during the night, which is 
similar to patterns observed in this study. A study by Crompton et al. (2011), showed that 
these diurnal patterns in CH4 emissions can be caused by changes in feed intake during the 
day. In our study, the relationship between CH4 emissions and feed intake was not further 
investigated, as data on feed intake was not available. 

For DIM, earlier studies have reported a steep increase of CH4 emissions in the first weeks 
of lactation, with emissions remaining stable or gradually decreasing thereafter. This is in 
agreement with the pattern for DIM observed in this study (Figure 2.1). Also, feed intake 
���������������;���������������������������er in early lactation compared with mid and late 
lactation (Krattenmacher et al., 2019). 

2.4.2 Methane Traits  
In this study we have analysed average CH4 concentrations (ppm) measured in the feed bin 
of milking robots. High individual-������ ������������� ����� ����� ��������� ������ �� ������
between sniffer CH4 breath concentration (ppm) measurements and respiration chamber CH4 
����������� ������ ������������;� ����� ���� ���������� ��� �� ������ ����� ���������� ��������� ���
milking robots for 3 weeks of lactation and subsequently in respiration chambers (Difford et 
al., 2019). Therefore, we assumed that analysing concentrations measured in parts per million 
gives sufficient information about relative differences between cows, which is required to 
select the best-performing animals for breeding practices. Additionally, we analysed 
CH4/CO2 as a ratio trait that is generally used in quantifying CH4 production (Madsen et al., 
2010). Nonetheless, to gain confidence in using CH4 concentration measurements from 
sniffers for genetic evaluations, the relationship with measurements of emissions in grams 
per day, as is done with the GreenFeed (C-����� ����;���mmond et al., 2016), should be 
investigated further. This is needed to confirm that the total emissions in grams per day will 
be reduced by breeding for reduced CH4 concentrations measured in parts per million. 
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In the literature, CH4 measurements in parts per million are often converted to grams per day 
to approximate a cow’s total emission. To predict emissions in grams per day from 
concentration measurements by sniffers, CO2 emissions are used as a tracer gas through a 
formula that assumes a constant efficiency of energy utilization for different metabolic 
functions (Madsen et al., 2010). This assumption is not always met and can result in CH4 
emissions to be overestimated, on average by 17% for efficient compared with inefficient 
cows, favouring the inefficient cows (Huhtanen et al., 2020). Other traits that have received 
interest in the literature are CH4 intensity (g of CH4/kg of milk), CH4 yield (g of CH4/kg of 
DMI), and residual CH4 (observed CH4 minus predicted, from, e.g. milk yield, CH4;���������
et al., 2017). These traits would account for the highly conserved relationships between CH4, 
milk yield, and feed intake, and thus rank cows from low to high emitting, regardless of their 
level of production or feed intake. However, these relationships can also be addressed by 
including correlation structures between CH4, milk yield, and feed intake in the selection 
index. In a simulation study, Zetouni et al. (2017) showed that a multitrait approach resulted 
in higher genetic gain than by selecting for ratio traits. Additionally, responses to selection 
for a multitrait index, compared with including a ratio trait, will be easier to interpret, which 
makes the index more approachable for farmers. Because the interest was in analysing traits 
that would be suitable to add to a breeding goal, we did not include analyses on CH4 as a 
ratio to other breeding goal traits, although more research is needed to verify the effect of 
using a ratio trait for CH4 in breeding goals. 

Many traits had minimum records of 0 ppm CH4 (rounded to zero), which is below what is 
biologically expected (Table 2.1, Appendix Figures A1 and A2). The low records were most 
likely a result of drifting of the sensor calibration that occurred during the study, where the 
sensor calibration drifted toward zero. As a result, the CH4 data were not normally 
distributed, and therefore a log-transformation on the CH4 records was performed. 
Nonetheless, because CH4 emissions are expected to be normally distributed by nature and 
moved toward normality after averaging the records to means per week (Appendix Figure 
A2), we do not recommend using log-transformations of a CH4 trait in the breeding objective. 
Furthermore, log-transformation did not solve non-normality of CH4 in this dataset. 
Therefore, we recommend investigating other options to correct for drift of sensors in future 
�������;������������������������������������������������������������������������������sation 
of the data based on the week of the measurement. 

Other traits derived from sniffer measurements that are often mentioned in the literature are 
CH4 emissions estimated from eructation peak traits. Peak traits were not included in this 
study, because the recording interval of up to 35 s does not provide sufficiently detailed 
information. However, estimations of the CH4 emissions from peaks have been shown to be 
moderately to highly correlated with the average CH4 concentration during milking (0.62 and 
������������������������;�������������������������������, peak traits may still be of interest for 
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breeding when using different recording practices, where concentrations are measured, for 
example, every second. 

2.4.3 Genetic Parameters  
The estimated heritabilities were highest for mean and median CH4 emissions averaged per 
���������������������������;�������������������������������������������������������������������
per week resulted in an increased heritability. Earlier studies reported heritabilities for the 
mean CH4 �������������� ������ ��������� �����4 concentration per week, measured by 
sniffers, ranging from 0.11 ± 0.03 to 0.26 ± 0.11 ���������������������;������-Paredes et al., 
�����, and for mean CH4 production per week of 0.12 ± 0.16 in a repeatability model (Breider 
�������������, and of 0.25 ± 0.07 from one weekly record ����������������������. Thus, the 
heritability estimated for weekly mean emissions in this study is somewhat higher than what 
has been observed in literature. This could have been a result of the large quantity of data 
used and the inclusion of genomic information, as well as of the requirement of a minimum 
number of seven records per weekly mean to come to a more reliable average. The heritability 
for mean CH4 concentration per visit (0.13 ± 0.01 for mean CH4 and 0.09 ± 0.01 for logCH4��
is similar to the heritability reported by ������������������������� for logCH4 concentration 
���������������������Saborío‐Montero et al. (2019) for average CH4 concentration over a 
������������������������������������������������������������������������������������������������
for the heritability of mean CH4 production per visit were somewhat higher, at 0.21 ± 0.06 
and 0.19 ± 0.09 ��������������;����������������������������. Residual variances may differ 
�������������;����������������������������������������������-herd variances. However, we were 
not able to estimate genetic parameters within farms, because most farms had a limited 
number of cows recorded, with only one farm ��������������������������������������;�������
����� 

The repeatabilities estimated in this study for mean and median CH4 emissions were 
moderate and, again, higher for weekly than for visit mean emissions (0.68 ± 0.01 and 0.30 
��������������������;�������������������������������������������4 concentrations recorded by 
sniffers have been published previously. In the literature, repeatabilities of mean CH4 
concentrations per visit were 0.42 and 0.45 ± 0.07 �����������������;�������������������������, 
and 0.27 ± <0.01 and 0.33 for logCH4 ���������������������;��������������������������. Thus, 
the repeatabilities estimated in this study for mean CH4 emissions per visit were lower than 
previously published estimates (0.30 and 0.18 for mean CH4 and logCH4���������������������
CH4 production per visit or per day, repeatability estimates have been reported that ranged 
from 0.36 to 0.66 ± 0.11 �������������������;����������������������;�������������������, which 
is in the same range as, or higher than, the repeatabilities reported for CH4 concentrations. 
Estimates of the repeatability for log CH4 concentrations averaged per week ranged from 
0.47 to 0.84 ���������������������;���������������������;����������������������. The repeatability 
estimated in this study for weekly logCH4 ������������������������������������������������ 
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In this study, the CH4/CO2 ratio trait had a low heritability (0.01 ± <0.01 to 0.02 ± 0.01) and 
a low repeatability (0.08 ± <0.01 to 0.15 ± 0.01). Low estimates have also been reported in 
the study by van Engelen et al. (2018), where the heritability was 0.03 ± 0.01 and the 
repeatability was 0.14 ± <0.01. However, for the CH4/CO2 ratio trait, Lassen and Lovendahl 
(2016) reported a higher estimate of heritability of 0.16 ± 0.04, although in that study 
emissions were measured for seven days and averaged over the full recording period. A low 
heritability indicates that a larger number of records per cow is needed for the CH4/CO2 ratio 
trait to accurately estimate EBV, compared with direct measurements of CH4 concentration, 
which were shown to be moderately heritable in this study. Using CH4 in a ratio trait has 
other disadvantages. First, as has been addressed previously, direct selection on the trait of 
interest is more advantageous, as it realises a higher genetic response than indirect selection 
on a ratio trait (Zetouni et al., 2017). Second, interpretation would be more difficult, as the 
level of feed intake, efficiency of energy utilization, and body energy balance can also 
influence the gas ratio (Huhtanen et al., 2015). Finally, Huhtanen et al. (2015) suggest that 
air-mixing conditions, caused by the geometry of the feed bin, might influence the CH4/ CO2 
ratio.  

Genetic correlations between the mean, median, and logCH4 traits were high (0.78–1.00), 
indicating that these traits can be used interchangeably after standardisation (Table 2.6). In 
contrast, the phenotypic and genetic correlations between the CH4/CO2 ratio trait and all other 
traits were negative. Again, this shows that the CH4/CO2 ratio is most likely less suitable for 
application in selection indices and not a good indicator of a cow’s CH4 emission. However, 
in our study the ratio may have been influenced by the drift of CH4 sensors while the CO2 
sensor remained stable, making the relationship between the ratio and its component traits 
nonlinear, and therefore could be more informative when sensors are calibrated regularly.  

The phenotypic and genetic correlations between CH4 and CO2 concentrations were positive. 
The phenotypic correlations ranged from 0.70 ± 0.01 to 0.85 ± <0.01, and the genetic 
correlations ranged from 0.75 ± 0.02 to 0.90 ± 0.01. This is in agreement with what has been 
reported in an earlier study, where the phenotypic correlations ranged from 0.87 ± 0.01 to 
0.96 ± <0.01, and the genetic correlations ranged from 0.96 ± 0.03 to 0.97 ± 0.03 (Difford et 
al., 2020). Furthermore, a study that used respiration chamber measurements also reported a 
high phenotypic correlation between CH4 and CO2 ����������������;����ry and Yan, 2015). 
The high correlations suggest that a strong relationship exists between the quantity of emitted 
CH4 and CO2. 

2.4.4 Recording Strategies  
For cows with own performance information, the predicted reliability appears higher when 
estimated from the mean CH4 emission per week compared with the reliability estimated 
from visits, for the same number of records per cow (0.46 and 0.40, for 25 recorded weeks 
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or visits respectively). However, in this scenario a weekly mean is expected to be calculated 
from at least seven recorded visits, and, when comparing the reliability from seven visits to 
one week, no gain in reliability is detectable for either scenario. Therefore, to estimate 
reliable EBV, we found no gain in averaging the recorded visits per week. Similarly, for sires 
the reliabilities of EBV were approximately equal for one weekly record versus seven 
recorded visits. This also illustrates that heritability should always be interpreted in context 
of the trait definition. 

The reliability of EBV estimated from own performance information is constrained by the 
large difference between the heritability and the repeatability, which is the permanent 
environmental effect (Falconer and Mackay, 1996). This effect can also be observed in Figure 
2.4 A, where the predicted reliabilities, derived from quantitative genetics theory, are plotted 
based on the number of repeated measurements. By taking measurements further apart in 
time, the permanent environmental variance could possibly be reduced. When the time gap 
between records increases, the environmental correlation between records may decay faster 
than the genetic correlation, which could result in a higher reliability for cows. Although this 
effect was not investigated in this study, it might be useful in optimizing recording strategies 
and for efficient use of recording equipment, but should be investigated further. Given that 
CH4 emissions have been shown to have a different genetic background over DIM (Pszczola 
et al., 2017), it is important to consider lactation stages. Nonetheless, for a large number of 
animals, the realised reliabilities by ASReml were higher expected based on the predicted 
reliabilities (Figure 2.4). The higher reliability can be explained by the inclusion of extra 
information on relatives. The predicted reliabilities assume that only CH4 records on the 
individual animal are available, whereas in the data daughters, half-sibs and full sibs may 
also have phenotypic records, which provide additional information about the individual 
animal.  

From Figure 2.4 B, we can derive the number of daughters that should be phenotyped in 
practice to be able to reliably estimate breeding values for the mean CH4 emissions for bulls. 
The Dutch cattle improvement organization CRV publishes breeding values for milk 
production traits when the reliability is above 50%, and for all other traits when the reliability 
is above 25% (CRV, 2020). Using these numbers, in Figure 2.4 we can observe that around 
10 daughters per sire, with at least 10 visits recorded on mean CH4 emissions per daughter, 
would need to be recorded to reach an accuracy of 50% for sires. However, only a handful 
of daughters, with at least 10 repeated records per daughter, would need to be recorded to 
achieve a reliability of 25%. These numbers of records are determined by the estimated 
heritability and repeatability and assume that these are estimated without error. However, in 
our study the standard errors (SE) were between <0.01 and 0.04, and therefore a sensitivity 
analysis was performed, which assumed that the heritability or the reliability (or both) were 
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± 2 SE. This analysis showed that the required minimum number of records did not change 
within the expected range of error of the heritability and repeatability estimates. 

From the results, we suggest that at least 25 visits should be recorded on cows to accurately 
calculate EBV for mean visit CH4 emissions for the phenotyped cows or their sires in a 
repeatability model (Figures 2.2 and 2.3). A study using the GreenFeed system, showing the 
computation of a cow’s CH4 or CO2 production rate, required a minimum of 30 recorded 
visits, each lasting more than three minutes, to obtain a reliable average of multiple short-
term breath measurements (Arthur et al., 2017). This indicates that, despite the GreenFeed 
system’s more accurate recording, by correcting the measurements for areal conditions and 
movement of the head of the cow (Huhtanen et al., 2015), the minimum recording period of 
the system is similar to the minimum recording period of the sniffer. Additionally, sniffers 
have the advantage of the ability to record a larger number of cows per recording period, 
equal to the capacity of the AMS, which is a prerequisite for genetic evaluations for which 
hundreds to thousands of animals need to be phenotyped. Nonetheless, it is important to 
realise that these recommendations relate to mean CH4 concentrations with heritability and 
repeatability in the magnitude of what has been estimated in this study. When new traits are 
defined, with different parameter estimates, or different models are applied, the recording 
strategies have to be re-evaluated. 

2.4.5 Implications  
This study confirms that there is promise in using CH4 emissions measured by sniffers in 
genetic evaluations. Mean CH4 emissions (ppm) per visit and per week have moderate to high 
heritability and repeatability, are easy to record and easy to interpret as absolute differences 
between cows, and could most likely serve as an indicator for total CH4 emissions (g/d), as 
is suggested by the high correlations between sniffer and respiration chamber measurements 
���������������������;��������������������������. Methane emissions are currently not included 
in dairy selection indices around the world. Large-scale phenotyping is required first, to 
investigate the relationships between CH4 emissions and other selection index traits. 
However, currently not enough measurements were available to derive the relationships 
between CH4 emissions and other breeding goal traits, which are required before inclusion in 
a selection index.  

It has to be further investigated which trait or traits defined from CH4 emissions measured by 
sniffers should be added to a breeding goal that aims to reduce enteric CH4 emissions per 
animal. Previous studies have shown that the heritability of CH4 emissions changes over a 
lactation, and that the genetic correlation between different DIM was on average 0.74 and 
��������������������������������������������������������;����������������������;������������
���������;��������������������������������������that it is important to consider the period in 
which CH4 was recorded, and not simply to assume a genetic correlation of one between 
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different DIM, as was done with the repeatability model in this study. Random regression 
models have the advantage of allowing for heterogeneous genetic and residual variances 
between lactation stages, and can model underlying genetic correlations, similar to models 
that are used for milk yield in the Netherlands (CRV, 2018). Additionally, correction for 
heterogeneity of variances might be required to adjust for different variances across herds. 
Better modelling of the underlying genetic structure will most likely improve the reliability 
of breeding value estimations and reduce the need for recording in different lactation periods. 
Random regression models will be investigated with this dataset when more data has been 
collected. Nonetheless, the current estimates of heritability clearly indicate that, also by using 
a simpler repeatability model, genetic progress can be made.  

2.5 Conclusions  
In this study, genetic parameters were estimated for CH4 concentrations continuously 
measured in the feed bin of milking robots. Moderate heritability and repeatability were 
estimated for mean and median CH4 emissions. Low heritability was estimated for the ratio 
trait of CH4/CO2. Phenotypic and genetic correlations were high between the mean, median, 
and logCH4 traits, excluding the CH4/CO2 ratio trait, which was negative. From the mean 
CH4 emissions per visit, 25 records on mean CH4, measured on 10 different daughters, gave 
reliabilities of breeding values above the Dutch breeding value publication threshold of 50%. 
Although the heritability and repeatability for the mean emissions per week were higher than 
for the mean emissions per robot visit, the reliabilities of estimated breeding values derived 
from the two recording strategies are equal. 
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Appendices 
A1. Histograms for the methane traits per robot visit: mean CH4, log CH4, median CH4, mean CO2, log CO2, 
median CO2 and the CH4/CO2 ratio 

 

A2. Histograms for the methane traits as an average per week: mean CH4, log CH4, median CH4, mean CO2, log 
CO2, median CO2 and the CH4/CO2 ratio 
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Abstract 
To reduce methane (CH4) emissions of dairy cows by animal breeding, CH4 measurements 
have to be recorded on thousands of individual cows. Currently, several techniques are used 
to phenotype cows for CH4, differing in costs and applicability. However, there is uncertainty 
about the agreement between techniques. To judge the similarity and repeatability between 
measurements of different recording techniques, the repeatability, heritability, and genetic 
correlation are useful metrics. Therefore, our objective was to estimate (1) the repeatability 
and heritability for CH4 and carbon dioxide production recorded by GreenFeed (GF) and for 
CH4 and carbon dioxide concentration measured by cost-effective but less accurate sniffers, 
and (2) the genetic correlation between CH4 recorded with these two different on farm and 
high throughput techniques. Data were available from repeated measurements of CH4 
production (grams/day) by GF units and of CH4 concentration (ppm) by sniffers, recorded on 
commercial dairy farms in the Netherlands. The final data comprised 24,284 GF daily means 
from 822 cows, 170,826 sniffer daily means from 1,800 cows, and 1,786 daily means from 
75 cows by both GF and sniffer (in the same period). Additionally, CH4 records were 
averaged per week. For daily and weekly mean GF CH4 the heritabilities were 0.19 ± 0.02 
and 0.33 ± 0.04, and for daily and weekly mean sniffer CH4 the heritabilities were similar 
and were 0.18 ± 0.01 and 0.32 ± 0.02, respectively. Phenotypic correlations between GF CH4 
production and sniffer CH4 concentration were moderate (0.39 ± 0.03 for daily means and 
����������������������������������������������������������������������;�����������������
daily means and 0.76 ± 0.15 for weekly means. The high genetic correlation indicates that 
selection on low CH4 concentrations (ppm) recorded by the cost-effective sniffer method, 
will result in reduced CH4 production (grams/day) as recorded with GF.  

Key words: methane emissions, genetics, dairy cows, GreenFeed, sniffer 
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3.1 Introduction 
Cattle and other ruminants contribute to methane (CH4) that is emitted into the atmosphere, 
which is a significant driver in global warming (Smith et al., 2014). Various strategies have 
been suggested to reduce emissions from cattle, such as through advances in gut 
microbiology, nutrition, improved animal health, and genetic improvement by animal 
breeding (Hill et al., 2016). To breed for cows that emit less CH4, a large number of individual 
cows need to be phenotyped first. Several techniques exist to phenotype cows for enteric CH4 
emissions and each method has its advantages and disadvantages (Hammond et al., 2016a).  

����������������������������������������������������;��-���������;����������������������
“sniffers” ��������������������;�������������������, show promise to be used in large-scale 
recording of dairy cows. Both techniques repeatedly measure CH4 and carbon dioxide (CO2) 
concentrations from the breath of a cow during measurements that generally last a few 
minutes, and additionally GF units measure quantitative airflow, which is used to calculate 
CH4 and CO2 production (grams/ day) based on mass flux calculations (Huhtanen et al., 
2015). However, GF units are currently prohibitive for large-scale recording, due to purchase 
and running costs, and the limitation of the number of cows that can be recorded (15 to 25 
cows per unit as recommended by C-lock). Sniffer systems, however, are cheaper with low 
running costs, are high throughput, and only limited to the number of cows that have access 
to the automated milking systems (AMS) where the sniffer is installed (generally 40 to 70 
����;���������������������������� 

Estimates for the heritability of CH4 production measured by GF units have been reported, 
�����������������������������������������������������������������������������������������������
CH4 production. Estimates for the heritability of CH4 concentration (ppm) measured by 
sniffers were similar, and ranged between 0.11 ± 0.02 and 0.32 ± 0.03 ���������������������;�
Saborío‐Montero et al., 2019; van Breukelen et al., 2022; van Engelen et al., 2018). Some 
studies estimated CH4 production (grams/day or litres/day) from sniffer concentration 
measurements, based on CO2 as a tracer gas in combination with the CH4/CO2 ratio (Madsen 
et al., 2010), or based on an average tidal respiratory volume �����������������������. For 
CH4 production estimated from sniffer measurements, the heritability estimates are again 
similar and range between 0.12 ± 0.04 and 0.45 ± 0.11 ���������������������;��������������;�
��������������������������;������-��������������������;����������������������;������������
����������.  

Not only is the heritability of CH4 sampling techniques important, but also how 
measurements of different techniques correlate. Both GF systems and sniffers are spot-
sampling methods and do not measure the total “true” emissions per day. Nonetheless, both 
CH4 recorded by GF and recorded by sniffers has been shown to be highly correlated with 
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CH4 ������������������������������������;�����–����;���������������������;�����������������
����;�����������������������������������������������������������������������������������������
correlated with a cow’s total emission as are measured in RCs. However, ����������������
������ ��������������������������������������������������4 ��������������������������������
�������������������������������������������������������������������������������������������
���������������������������4 ����������������������������������������������������������������
����������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������� 

������������ �����������������������4 ����������� ���������������������4 concentration 
�����������������������������������������������������������������������4 ���������������������
��������� ��� ���� �������� �������� ����� ������� ��� �������� ��4 ����������� �������������
��������������������������������������������������������������������������������������������������
CH4 and CO� ����������� ��������� ��� ���������� ����� ������ ���� ���� ��4 and CO� 
������������������������������������������������������������������������������4 ������������
������������������������������� 

3.2 Materials and Methods 
3.2.1 Methane Recording 
���������� ������ ���� ��������� ����� ����� ��� �������������� ������� �������� ��4 and CO� 
���������� ����� ���������� ������ ����� ��� ����������� ������ ��� ���� ������������� ��������
���������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������
������������������������������������������������������������������������������� ����������
�������������������������������������4 and CO� production (CH4p and CO������������������
������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������
������������������������������������������������������������� ��������������������������4 
��������������� ��� �������� �� ���� ������ ����� ���� ���� ��� ��������������� �������� �� ����
�����������������������������������������������������������������������������������������������
������������-�������������������������������������������������������������������������
AMS and measured CH4 and CO� concentrations (CH4c and CO�������������������������������
���������� �������� ����� ��� ��� ��� ���� ������ �������������� ����� ���� �������� ������ ����
����������������������������������������������������������������������������������������
����������������������������������4 and CO� �����������������������������������������������
������ �������� ���� ������� ����� ������ ����� ����� ��������� ��� ���������� ���� ����������
�������������������������������������������������������������4 �����������������������������
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2,000 ppm, and for CO2 concentrations between of 0 and 10,000 ppm. A detailed description 
of the data recording by sniffers is given in van Breukelen et al. (2022). 

3.2.2 Data Editing 
Sniffers do not record cow ID, therefore, the sniffer records were first aligned with ID 
recorded by the AMS (for more details see van Breukelen et al. (2022)). Thereafter, the GF 
dataset and sniffer dataset were filtered to only include cows for which pedigree data was 
available, provided by the cooperative cattle improvement organization CRV (Arnhem, the 
Netherlands). Furthermore, the datasets were filtered to only include cows that were 75% 
Holstein or more. Records for cows up to 305 days in milk (DIM) were retained to correctly 
match the recorded AMS visits to calving dates and the corresponding parity. The data were 
not Log transformed, as this did not result in normality of the data. Nonetheless, previous 
analysis on the same data showed that the residuals were normally distributed. A linear model 
was used to correct both the data recorded by GF units and by sniffers for diurnal variation 
with a Fourier series approach ���������������������������;������������������������������ 
using the following model: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝜇𝜇 + Farm𝑖𝑖. ∑(sin 𝑗𝑗𝑗𝑗2𝜋𝜋 +  cos 𝑗𝑗𝑗𝑗2𝜋𝜋) + 𝑒𝑒𝑖𝑖𝑖𝑖

1

𝑗𝑗=1
 

where yik is GF or sniffer-recorded CH4 or CO2 ���������;�Farm is the fixed effect for the ith 
farm and is fitted as an interaction with the 24-hour diurnal cycle, where θ is the time at 
recording as a decimal fraction (i.e., θ = hour at recording / 24), and j is the order of 
����������;�����e is the residual error, eik ~ N(0, Iσ2

e), where σ2
e is the error variance. The 

estimated fixed effects were subtracted from the corresponding records to derive the 
corrected estimates from each visit. 

After correction for diurnal variation, the recorded GF and sniffer visits were combined in 
one dataset with daily means and one dataset with weekly means. In the dataset with weekly 
means, records with less than three records per cow per week were discarded. The number 
of remaining daily and weekly records and cows used for the analyses are summarised in 
Table 3.1. Recording by GF and sniffers was mostly carried out on different farms, because 
��������������������������������������������������������������� other studies. 
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Table  3.1. The number of farms, cows, and daily or weekly methane and carbon dioxide records, recorded by 
GreenFeed (GF), sniffers, or by both methods (in total or with overlapping recording) 

Number 
of 

    Daily    Weekly 

GF Sniffer GF and 
sniffer 

GF and 
sniffer 

overlaps1 
 

GF Sniffer GF and 
sniffer 

GF and 
sniffer 

overlaps1 

Farms 16 15 6 4  16 15 6 4 

Cows 822 1,800 184 75  822 1,800 176 73 

Records 24,284 170,826  1,786  4,358 30,982  334 

1 The number of farms, cows, and daily or weekly records for which GF units and sniffers recorded emissions within 
the same day, note these are a subset of GF and sniffer records 

 

3.2.3 Pedigree and Genomic Data 
Pedigree and genotype data were made provided by CRV. In total 1,817 animals were 
genotyped with the Eurogenomics 10k chip and imputed to 76,439 SNPs by CRV as part of 
a routine process. The pedigree was pruned to include all phenotyped animals and their 
ancestors, using the R-packages “optisel” in R v3.6.1 (Wellmann, 2020). In total, the pruned 
pedigree included 41,290 animals from 29 generations. 

3.2.4 Parameter Estimation 
Pearson’s correlation coefficients were estimated to visually inspect the relationship between 
CH4 emissions of 75 cows measured by GF units and by sniffers, without a correction for 
environmental influences. Fisher’s transformation was used to derive the Confidence 
Intervals (CI) for the transformed Pearson’s correlation estimates (Fisher, 1921). 

Variance components were estimated with pairwise bivariate repeatability animal models, 
using a restricted maximum likelihood procedure in ASReml 4.2 (Gilmour et al., 2015). The 
variance components were used to estimate the heritability, repeatability, and phenotypic, 
genetic, permanent environmental, and residual correlations. As input, a genetic relationship 
matrix was used which combines the pedigree and genotype data (H-1). The H-1 matrix was 
constructed following the method of Aguilar et al. (2010) and Christensen and Lund (2010) 
using calc_grm version r1.143. The H-1 matrix comprised all 41,290 animals that were in the 
pedigree. 

The statistical significance of fixed effects was tested in ASReml before including the fixed 
effects in the final model. The random effects included were the additive genetic, permanent 
environmental, and residual effect. In the bivariate models between a GF and a sniffer trait 
the permanent environmental covariance was fixed to zero. This was done because the 
permanent environmental covariances in the analyses between a GF and sniffer trait were not 
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statistically significant and resulted in spurious estimates, most likely due to the low number 
of cows that had both records by GF units and by sniffers (Table 3.1). For the bivariate models 
with two GF or two sniffer traits, the permanent environmental covariances were 
significantly different from zero and therefore the permanent environmental covariance was 
not fixed to zero. The bivariate model used in the final analysis was defined as: 

[𝐲𝐲1
𝐲𝐲2

] = [𝐗𝐗1 0
0  𝐗𝐗2

] [𝐛𝐛1
𝐛𝐛2

] + [𝐙𝐙𝐙𝐙1 0
0 𝐙𝐙𝐙𝐙2

] [𝐚𝐚1
𝐚𝐚2

] + [𝐙𝐙𝐙𝐙1 0
0 𝐙𝐙𝐙𝐙2

] [𝐩𝐩𝐩𝐩1
𝐩𝐩𝐩𝐩2

] + [𝐙𝐙𝐙𝐙1 0
0 𝐙𝐙𝐙𝐙2

] [𝐞𝐞1
𝐞𝐞2

] 

where yi is a vector with records on trait i (GF CH4p or CO2p and sniffer CH4c or CO2c, as 
������ ��� ������� �����;� bi is a vector containing fixed effects for trait i, which were 
farm*unit*year*week of the measurement, second breed fraction*second breed, DIM which 
was modelled using third-order Legendre polynomials, and parity (from parity 1 to 4, where 
���������������������������;�ai is a vector containing additive genetic effects for trait i;�pei is a 
vector containing permanent environmental effects within parity (from parity 1 to 11) for 
trait i;�ei is a vector with the residuals for trait i;�����Xi, Zai, Zpi, and Zei are identity matrices 
linking the records in yi to the fixed effects, the additive genetic effects, and the permanent 
environmental effects, respectively. The additive genetic, permanent environmental and 
residual effects for all traits were assumed normally distributed with a mean of zero, a 
variance of σ2

ji for random effect j and trait i, and a covariance between two traits of σj1j2:  

[𝑗𝑗1
𝑗𝑗2

]  ~ 𝑁𝑁 [(0
0) , 𝐈𝐈 ⊗ (

𝜎𝜎𝑗𝑗1
2 𝜎𝜎𝑗𝑗1𝑗𝑗2

𝜎𝜎𝑗𝑗1𝑗𝑗2 𝜎𝜎𝑗𝑗2
2 )] 

From the variance estimates, heritabilities and repeatabilities were estimated and reported as 
means of all bivariate runs. The heritability was defined as: 

ℎ2 = 𝜎𝜎𝑎𝑎
2

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑝𝑝𝑝𝑝2 + 𝜎𝜎𝑒𝑒2
 

where σ2
a is the additive genetic variance, σ2

pe is the permanent environmental variance, and 
σ2

e is the residual variance. 

The repeatability was defined as: 

𝑡𝑡 =  
𝜎𝜎𝑎𝑎

2 + 𝜎𝜎𝑝𝑝𝑝𝑝
2

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑝𝑝𝑝𝑝2 +  𝜎𝜎𝑒𝑒2  

3.3 Results 
The daily mean CH4p measured by GF units was 436 g/d (Table 3.2) with a coefficient of 
variation (CV) of 28%. The weekly mean CH4p was 435 g/d and had a lower CV of 23%. 
The daily mean CH4c measured by sniffers was 325 ppm with a high CV of 77%. The weekly 
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mean CH4c was 331 ppm with a CV of 66%. The repeatability of CH4 and CO2 was higher 
in the scenarios with weekly means than with daily means, both when measured as production 
by GF units or as concentrations by sniffers. The repeatability of CH4p measured by GF units 
compared with CH4c measured by sniffers was equal for daily means (0.34), but higher for 
weekly mean CH4p than weekly mean CH4c (0.77 and 0.66, respectively). 

 

Table 3.2. The mean ± standard deviation (SD), minimum, maximum, and repeatability (t) of daily or weekly 
methane (CH4) and carbon dioxide (CO2) emissions, recorded by GreenFeed (GF, g/day) or sniffer (ppm) 

    CH4   CO2  

 Mean ± SD Min Max t1  Mean ± SD Min Max t1 

GF 
(g/day) 

Daily 436 ± 120 38 1,929 0.34  13,159 ± 2,041 2,590 22,399 0.45 

Weekly 435 ± 98 148 834 0.77  13,169 ± 1,760 7,931 19,971 0.81 

Sniffer 
(ppm) 

Daily 325 ± 251 0.3  1,964 0.34  3,725 ± 1,865 3 9,683 0.39 

Weekly 331 ± 218 0.5 1,566 0.66  3,684 ± 1,586 65 9,257 0.69 

1 All repeatabilities had a standard error of 0.01 and were reported as means of all bivariate analyses 

 

Both CH4p measured by GF units and CH4c measured by sniffers decreased during the night 
and were lowest around 06.00h, whereafter the measured CH4p and CH4c increased (Figure 
3.1). Additionally, both showed a dip around 16.00h. This dip was larger for CH4c measured 
by sniffers. Both CH4p and CH4c increased rapidly during the first DIM (Figure 3.2). 
However, after 100 DIM average CH4c measured by sniffers started to decrease, whereas the 
average CH4p measured by GF units was relatively consistent after 100 days.  
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Figure 3.1. The mean CH4 emissions measured as (A) production (g/day) on 16 farms by GreenFeed units and (B) 
concentration (ppm) on 15 farms by sniffers per hour of the day 

 

 

Figure 3.2. The mean CH4 emissions measured as (A) production (g/day) on 16 farms by GreenFeed units and (B) 
concentration (ppm) on 15 farms by sniffers per days in milk 

 

In total 75 dairy cows were measured with both GF units and sniffers within the same days 
(Table 3.1), with on average 24 days with measurements by both techniques. Of these cows, 
73 dairy cows had weekly mean measurements, with at least three visits recorded per week, 
by both techniques within the same week. These 73 cows had on average five weeks of 
measurements by both GF units and sniffers. The Pearson correlations between GF CH4p and 
sniffer CH4c for these cows were low (0.20 (95% CI [0.15, 0.24]) and 0.19 (95% CI [0.08, 
0.29])), for daily and weekly means respectively) (Figure 3.3A). Similarly, the Pearson 
correlations between GF CO2p and sniffer CO2c were low for daily (0.08 (95% CI [0.03, 
0.12])), and for weekly means (−0.01 (95% CI [-0.12, 0.0.10])) (Figure 3.3B). 
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Figure 3.3. The relationship between methane (CH4) production measured by GreenFeed (GF, g/day) units and CH4 
concentrations measured by sniffers (ppm) from repeated measurements on (A) 75 dairy cows as means per day and 
(B) 73 dairy cows as means per week 

 

Variance components were estimated with bivariate repeatability animal models and were 
used to estimate the repeatability, heritability, and phenotypic and genetic correlations. The 
heritability of CH4p measured by GF units was 0.20 for daily means and 0.33 for weekly 
means (Table 3.3). The heritability of CH4����������������������������������;��������������
for daily means and 0.32 for weekly means, albeit the repeatability was slightly lower for the 
weekly sniffer measures compared with the GF. The phenotypic correlation between daily 
mean CH4 measured by GF or sniffer was 0.39 ± 0.03, and 0.37 ± 0.05 between weekly mean 
CH4 measured by GF or sniffer. The genetic correlation between daily mean CH4 measured 
���������������������������������������������������������������������������4 measured by 
���������������������������������������������������������������������������������������������
����������������������������������).  

The heritability of CO2p measured by GF units was 0.24 for daily means and 0.34 for weekly 
means and the heritability of CO2c measured by sniffers was 0.20 for daily means and 0.32 
for weekly means (Table 3.3). The genetic correlations between CO2p and CH4p measured 
by GF were moderate (0.64 and 0.65, for daily and weekly means, respectively), and were 
higher between CO2c and CH4c recorded by sniffers (0.93 for daily and weekly means). 
Furthermore, the genetic correlations between CO2p and CO2c (0.52 and 0.60, for daily and 
weekly means, respectively) were lower than the genetic correlations between CH4p and 
CH4������������������������������������������������������������

A B 
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3.4 Discussion 
The aim of this study was to estimate (1) the repeatability and heritability for CH4 and CO2 
production recorded by GreenFeed (GF) units and for CH4 and CO2 concentration measured 
by sniffers, and (2) the genetic correlation between CH4 recorded by these two different 
techniques. In the results we showed that CH4 and CO2 emissions recorded by either GF units 
or sniffers had a moderate heritability and that the genetic correlation between CH4p 
measured by GF units and CH4c measured by sniffers was high. 

3.4.1 Heritability and Repeatability  
The heritability that we estimated for CH4p recorded by GF units was moderate, and was 
0.19 ± 0.02 for daily means and 0.33 ± 0.04 for weekly means (Table 3.3). The first published 
estimates of the heritability for CH4 production measured by GF units ranged from 0.12 ± 
0.06 to 0.35 ± 0.19 for daily and 0.22 ± 0.11 to 0.43 ± 0.12 for weekly CH4 production. In 
addition, many studies have reported heritability estimates for various traits for CH4 recorded 
by sniffers (Lassen and Difford, 2020). Some studies using sniffers attempted to estimate 
CH4p from sniffer CH4c measurements by using mass flux calculations (Madsen et al., 2010) 
or based on tidal volume (Chagunda et al., 2009). The estimated heritability for GF CH4p 
reported in this study, is within the range of the in the literature reported heritabilities for 
estimated sniffer CH4p, which ranged between 0.12 ± 0.04 and 0.45 ± 0.11 (Breider et al., 
����;���������������������;���������������������������;������-��������������������;���������
�������������.  

The repeatability of similar trait definitions for CH4p measured by GF units and CH4c 
measured by sniffers was comparable (0.34 for daily mean CH4p and CH4c, Table 3.2). For 
both sampling techniques, the repeatability was higher when using multiple measurements 
of weekly mean CH4, and was 0.77 for CH4p measured by GF units and 0.66 for CH4c 
measured by sniffers. The higher repeatability for weekly means is a result of averaging a 
larger number of records, which reduces the temporary environmental variance (Falconer and 
Mackay, 1996). In the literature, many repeatability estimates for CH4 emissions measured 
on dairy cows are reported. The literature estimates reported depend largely on trait 
definition, which is confirmed by the results in this study, where the repeatability estimates 
are higher for the traits based on weekly mean CH4 emissions than for daily mean CH4 
emissions. This highlights the importance of carefully defining the trait when reporting 
parameter estimates.  

The literature also reports several repeatability estimates for CH4p measurements by GF 
units. The estimates from this study, fall within the range of estimates reported in the 
literature. For example, ������������������������ averaged CH4p measurements in 1 to 14 day 
means, and estimated repeatabilities ranging from 0.33 to 0.79. Also Coppa et al. (2021) 
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reported that the repeatability of CH4p increased when averaging records over longer periods 
of time (0.60 to 0.78, for one to eight week means). On the contrary, a study by Denninger et 
al. (2019) analysed 7, 14, and 28 day means (0.64, 0.68, and 0.59, respectively) and showed 
that the repeatability for CH4p was highest for 14 day means. Thus, it is uncertain which 
length of recording period for averaging records yields the highest repeatability. Nonetheless, 
when measurements are used to estimate breeding values from repeated measurements in a 
repeatability model averaging visits over longer periods of time, by using weekly means, may 
increase the heritability and repeatability but will not result in higher reliabilities (van 
Breukelen et al., 2022). 

3.4.2 Genetic and Phenotypic Correlations 
For the second objective, we successfully estimated a genetic correlation between CH4c 
measurements by sniffers and CH4p measurements by GF units. This is the first study to 
estimate a genetic correlation between CH4 recorded by sniffers and any other CH4 recording 
technique in dairy cows. Our results showed that the genetic correlation between CH4p 
measured by GF units and CH4c measured by sniffers was high, and was 0.71 ± 0.13 for daily 
means and 0.76 ± 0.15 for weekly means (Table 3.3). The genetic correlations between 
weekly means of CH4p or CH4c and daily means of the other trait were similar to the estimates 
within daily or weekly means (0.71 ± 0.14 and 0.74 ± 0.15).  

These high genetic correlations indicate that when cows are selected based on low breeding 
values for CH4c measured by sniffers, this would result in reducing the average CH4p in 
grams per day as measured by GF units. However, regardless of the large dataset and that the 
phenotypes are genetically linked, the results of this study were based on a relatively small 
dataset, with 184 cows recorded by both GF units and sniffers and only 75 cows with records 
overlapping in time. The permanent environmental covariance was fixed to zero in the 
bivariate models between a GF and a sniffer trait, because the permanent environmental 
covariances in these analyses were not significantly different from zero, most likely due to 
the low number of cows (n = 184) that had both records by GF units and by sniffers (Table 
1.1). Furthermore, the low number of records did not allow to fit an across lactation 
permanent environmental effect, next to the within lactation permanent environmental effect. 
Therefore, the results should be interpreted with caution and further analyses will be required 
to gain confidence in these estimates. Nonetheless, the correlation estimates remained similar 
when the permanent environmental covariance was not fixed to zero, although these analyses 
did not converge. This does suggest that the reported results are likely to provide a good 
indication of the expected direction of the correlations, and this study sets the basis of future 
research on the genetic correlations between different techniques to measure enteric CH4 
emissions. 
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The phenotypic correlations were moderate between CH4p measured by GF units and CH4c 
measured by sniffers, and were 0.39 ± 0.03 for daily means and 0.37 ± 0.05 for weekly means. 
The moderate phenotypic correlations suggest that environmental effects segregate the 
measurements by the two systems. For example, measurements could be affected by 
differences in the biology and behaviour of the cow (Wu et al., 2018), or are a result of the 
different samplings techniques used. Nonetheless, the high genetic correlations show that 
pedigree and genomic information help to link measurements between related individuals, 
making it possible to disentangle the genetic background of CH4 emissions from 
environmental factors. Whereas genetic correlations are missing in the literature, previous 
studies have investigated phenotypic relationships between CH4 measurements from 
different CH4 recording techniques. As was mentioned in the introduction, it has been shown 
that both CH4p measured by GF units and CH4c measured by sniffers are phenotypically 
correlated with CH4p measured in RCs. Studies using GF reported high correlations of 0.85 
and 0.96 (0.96 is transformed from r2;�Velazco et al. (2016);�Hristov et al. (2018)). A study 
using sniffers reported a moderate phenotypic correlation of 0.34 ± 0.22 and a high individual 
level correlation 0.75 ± 0.20 between CH4c and CH4p measured in RCs (Difford et al., 2019). 
The initial study that investigated the phenotypic relationship between GF and sniffer 
measurements reported a moderate phenotypic correlation of 0.30 (transformed from r2) on 
�� �������� ������� ��� ����� ��� �� ��;� ��������� ��� ����� ������� ���� ����������� ������������
estimated by Huhtanen et al. (2015), is similar to the phenotypic correlation reported in this 
study and the Pearson correlation estimates from the same data (Pearson’s r = 0.20 (95% CI 
[0.15, 0.24]) and 0.19 ± 0.05 (95% CI [0.08, 0.29]) for daily and weekly means, respectively). 
The phenotypic correlations estimated from REML, were higher compared with the 
estimated Pearson correlations, which suggests the measurements are influenced by 
environmental factors. Environmental factors that play a role may be amplified by the fact 
that cows were measured at different times of day with GF and sniffers, and were not 
measured simultaneously. Some environmental factors can be successfully corrected for by 
using fixed effects in mixed models as was done in this study, where fixed effects for hour 
of measurement and week of measurement were included, which resulted in higher 
phenotypic correlations. Other techniques to improve the accuracy of sniffer systems should 
be further investigated, for example, by using video to record cows’ head position. 

3.4.3 Parameters for CO2  
The genetic correlation between CH4p and CO2p was 0.68 ± 0.04 for daily means and 0.65 ± 
0.05 for weekly means, and the phenotypic correlations were higher and were 0.72 ± 0.01 for 
daily means and 0.75 ± 0.01 for weekly means (Table 3.3). The genetic correlations between 
CH4c and CO2c were high (0.93 ± 0.01, for both daily and weekly means), and so were the 
phenotypic correlations (0.78 ± < 0.01 and 0.84 ± < 0.01, for daily and weekly means 
respectively). High phenotypic and genetic correlations between CH4 and CO2 emissions of 
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dairy cows have been reported in the literature previously. A study by Difford et al. (2020) 
reported correlations between log-transformed CH4c and CO2c, and reported phenotypic 
correlations of 0.87 ± <0.01 and 0.96 ± <0.01, and genetic correlations of 0.96 ± 0.03 and 
0.97 ± 0.03. Additionally, a study using RC measurements also reported high phenotypic 
correlations between CH4p and CO2�������;�Aubry and Yan (2015)). This indicates that there 
is a strong relationship between CH4 and CO2 emissions from dairy cows.  

Genetic and phenotypic correlations between CH4p measured by GF units and CO2c 
measured by sniffers were moderate to low. The genetic correlations were 0.39 ± 0.16 for 
daily means and 0.41 ± 0.18 for weekly means, and were thus associated with large SE. The 
phenotypic correlations were 0.20 ± 0.04 for daily means and 0.19 ± 0.06 for weekly means. 
Therefore, although the genetic correlations between CH4p and CH4c, and between CH4c and 
CO2c were high, the genetic correlations between CH4p and CO2c were relatively low. This 
indicates that CH4c measurements from sniffers would be a more suitable indicator for GF 
CH4p, than using CO2c measurements as a predictor. Regardless of the larger stability and 
less drift that we observed for measurements from the sniffer CO2 sensor.  

3.4.4 The Relationship Between CH4 and DIM  
Both the mean CH4p measured by GF units and the CH4c measured by sniffers increased 
steeply in the first weeks of lactation (Figure 3.2). Most likely this effect is caused by a low 
and increasing DMI that occurs in the first days of lactation (Krattenmacher et al., 2019). 
After the initial increase, the CH4p measured by GF units remained stable over the further 
lactation, whereas the CH4c measured by sniffers started to decrease after approximately 100 
DIM. In the parameter estimations a fixed effect for DIM was fitted to correct for differences 
between DIM, similar to what has been used in and was recommended by previous studies 
(van Engelen et al., 2018). Phenotypic lactation patterns of CH4 emissions that have been 
reported in the literature are inconsistent in the later weeks of lactation. The study by Bell et 
al. (2014b), showed that CH4 emissions remained stable in the later weeks of lactation 
whereas other studies reported a decrease of CH4 emissions in later weeks of lactation 
��������������������������;����������������������������. The study by Pszczola et al. (2017) 
split the data between first and later parity cows. The data in the study by Pszczola et al. 
(2017) suggested that the pattern may differ per parity, and that the decrease is only observed 
for first parity cows, however, this could not be confirmed by the data recorded by GF units 
or sniffers from this study (results not shown). The deviation in lactation patterns could have 
resulted from other undefined differences between the for this study recorded farms, as the 
majority of measurements were taken on different farms for GF units and sniffers. 

3.4.5 Implications for Implementing CH4 Emissions in Breeding Goals 
Both GF units and sniffers can be used to record multiple short-term CH4 and CO2 
measurements from the breath of dairy cows. The main difference in functionality is the 
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ability of GF units to record airflow, which is used in mass flux calculations to estimate CH4p 
from concentration measurements (Madsen et al., 2010). Additionally, GF units record head 
position to ensure that the cow’s muzzle is in close proximity to the air inlet. For 
measurements taken by sniffers, the position of the head of the cow in relation to the air inlet 
is unknown. A study by Huhtanen et al. (2015) showed that head movements have a high 
repeatability (0.74 for daily observations), indicating that there is systematic muzzle 
movement behaviour of cows. This systematic head movement could in theory lead to lower 
average concentrations that are measured for cows that frequently move their muzzle away 
from the air inlet. Nonetheless, the study by Huhtanen et al. (2015) found a weak correlation 
between muzzle position and CH4c measured by a sniffer method including 95 cows (r = 
0.26), and no significant relationship including only the 59 cows which had acceptable 
muzzle data. However, as muzzle movements have shown to be highly repeatable, the 
relationship between muzzle movement and CH4c measured by sniffers should be 
investigated further to prevent that breeding for reduced CH4c will result in changes in cow 
behaviour.  

Additionally, GF units and sniffers are spot-sample techniques, and are unable to measure 
the total emissions of cows. At this moment, there is no technique that can measure the “true” 
CH4 emissions of dairy cows. Often RCs are considered to be the gold standard for recording 
CH4 emissions of individual cows, as they are able to accurately record total emissions 
(Hammond et al., 2016a). However, RC measurements may not reflect true CH4 emissions 
(Hill et al., 2016). Cow behaviour, such as feed intake, can change when cows are isolated 
from the herd to be measured in a RC. Therefore, RC measurements may deviate from a 
cows’ emissions in the herd on a commercial dairy farm. Furthermore, cows in RCs are 
usually recorded for a short period of time, lasting a few hours and up to 3 days, whereas 
CH4 emissions do change over time. For example, by diurnal variation in CH4 emissions 
(Figure 3.1), which can be a result of changes in feed intake during the day (Crompton et al., 
2011). Additionally, studies by Pszczola et al. (2017), Breider et al. (2019), and Sypniewski 
et al. (2021) have shown that the heritability of CH4 emission changes over a lactation. A 
technique that measures the true total amount of CH4, can provide longitudinal data, and is 
cost-effective does not exist. The limitations in the different techniques that measure CH4 
have important implications for the application of a metric for CH4 emissions in breeding 
goals that aim to reduce a cows’ total emissions.  

Instead of having available measurements of cows’ true total CH4 emissions, multiple 
measurements by different, genetically correlated, techniques and other predictors can be 
combined in genetic evaluations to realise the highest genetic gain and thus the highest 
reduction in CH4 emissions (de Haas et al., 2017). Possible predictors can be for example 
rumination time (Lopez-Paredes et al., 2020), composition of the rumen microbiome 
(Difford, 2018), feed intake, and digestibility (de Haas et al., 2017). In this study we focused 
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on using sniffer CH4c measurements as a predictor for CH4p as recorded by GF units. The 
results from this study suggest that CH4 measurements on CH4p by GF and on CH4c sniffers 
are highly genetically correlated, and indicate that selection on low CH4c will reduce CH4p. 
Because of the high genetic correlation, measurements from the two techniques could 
therefore be used to strengthen each other in genetic evaluations. In practice, sniffers are able 
to record CH4c cost-effectively on thousands of dairy cows, which could complement the 
more expensive recording by GF units that measure CH4p in grams per day. Furthermore, the 
high genetic correlation indicates that data could be shared between countries which have 
measurements available from either only GF units or sniffers. Sharing CH4 data across 
countries is of interest to build a large genomic reference population. A large reference 
population across countries can increase the power of QTL detection and increase the 
accuracy of genomic prediction, as was shown in a previous project for scarcely recorded 
����������������������������������������������;�������������������;���������������������������
initial study by Manzanilla-����� ��� ���� ������� ���� ������������� ��������� ���������� ��4 
measurements across countries and from different methods of measuring CH4 (i.e., GF, 
sniffer, and SF6��������������������������������� ���������������������� ���������������������
methods in different countries which was in some cases confounded. 

3.5 Conclusions 
To phenotype cows for CH4 emissions, many different methods have been developed and are 
currently used in research practices. To be able to judge the similarity and repeatability 
between CH4 measurements of different recording techniques, the genetic correlation can be 
a useful metric. Combining measurements by highly genetically correlated CH4 recording 
techniques can help to enlarge existing datasets, for example by sharing data across countries, 
which is needed for accurate genetic evaluations. In this study, we have shown that the 
genetic correlation between CH4p measured by GF units and CH4c measured by sniffers was 
����� ������ �� ����� ���� ������������ ���� ����� �� ����� ���� ������� �������� ��� ���������� ����
heritability for CH4p recorded by GF units was moderate and was similar to the heritability 
estimated for CH4�������������������������������������������������������������������������
������ ���������������������������������������� ��������������������������� ���� ����������
respectively. These results indicate that genetic selection on low CH4������������������������
cheaper sniffer method, will result in reduced CH4�������������� 
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Abstract 
Methane emissions will be added to many national ruminant breeding programmes in the 
coming years. Little is known about the covariance structure of CH4 traits over a lactation, 
which is important for optimizing recording strategies and establishing optimal genetic 
evaluation models. Our aim was to study CH4 over a lactation using random regression (RR) 
models, and to compare the accuracy to a fixed regression repeatability model under different 
phenotyping strategies. Data were available from repeated measurements of CH4 
concentrations (ppm) recorded in the feed bins of milking robots on 52 commercial dairy 
farms in the Netherlands. In total, 36,370 averaged weekly records were available from 4,664 
cows. Genetic parameters were estimated using a fixed regression model, and a RR model 
with first- to fifth-order Legendre polynomials for the additive genetic and within-lactation 
permanent environmental effect. The mean heritability was 0.17 ± 0.04 and the mean within-
lactation repeatability was 0.56 ± 0.03. The genetic correlations between DIM were high and 
ranged from 0.34 ± 0.36 to 1.00 ± <0.01. Permanent environmental correlations showed large 
deviations and ranged from −0.73 ± 0.08 to 1.00 ± <0.01. With a large number of full lactation 
daughter CH4 records per bull, the reliability was not sensitive to using the fixed versus the 
RR model. However, when shorter periods were recorded at the start and end of the lactation, 
the fixed regression model resulted in a loss of reliability up to 28% for bulls. Assuming the 
fixed model when the true (co)variance structure is reflected by the RR model, more than 
twice as long of a recording from the start of lactation was required to achieve maximum 
reliability for a bull. Thus, a too simplistic model could result in implementing too little 
recording, and in lower genetic gains than predicted from the reliability. 

Key words: methane, breeding, random regression, dairy cows 
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4.1 Introduction 
Enteric fermentation by ruminants is the source of approximately 6% of all anthropogenic 
greenhouse gas emissions, and ruminant emissions are expected to increase because of the 
increasing global demand for meat and milk leading to more ruminants being kept worldwide 
(Beauchemin et al., 2020). Ruminant greenhouse gas emissions, with CH4 as the main 
contributor, have a significant effect on climate change, as CH4 has a global warming 
potential approximately 27 times greater than CO2 over a 100-yr lifespan (IPCC, 2021). The 
application of selective breeding to lower the environmental impact of enteric CH4 emissions 
from cattle is a topic of worldwide interest because it offers a cost-effective solution, and the 
effect is permanent and cumulative (Lassen and Difford, 2020).  

To apply selective breeding, models that accurately estimate breeding values for individual 
animals and correlations with other important breeding goal traits will be needed. The goal 
of selective breeding is to reduce CH4 emissions along full lactations. However, recording 
CH4 is challenging and requires high levels of labour, knowledge, and expensive specialised 
equipment, and measurements of the total amount of CH4 that is emitted during full lactations 
are not easily available for large number of cows (Garnsworthy et al., 2019). Equipment is 
often routinely exchanged between farms for short periods of time to maximise the number 
of cows that can be recorded. As a result, it is important to determine the optimal moment 
and length of recording to ensure highest accuracy with CH4 emissions for the full lactation. 
In addition, the best model to be used for genetic evaluations is critically dependent on the 
genetic covariance structure of methane records collected during part of the lactation. Most 
initial studies that estimated genetic parameters for CH4 emissions of dairy cattle applied 
repeatability models �������� ���� ����������� ����;� ���� �������� ��� ����� �����, which 
generally assume that the genetic correlation between records taken during different stages 
of a lactation are equal to unity. However, previous studies that used random regression (RR) 
models, which allow for different genetic variances and covariances between time points, 
have shown that the repeatability and heritability of CH4 concentrations measured from 
breath change over a lactation ���������������������;�����������-������������������;����������
��� ����� ����;� ����������� ��� ����� �����. Differences in variances and correlations over the 
lactation may have important implications for the genetic gains that can be predicted for, and 
expected from, future breeding pro- grams that aim to reduce CH4 emissions. For example, 
the genetic correlation between lactation stages is a good indicator for whether CH4 
concentrations should be modelled with RR, as multiple traits, or if using a single trait in a 
repeatability model is sufficient. 

For the repeatability of daily CH4 concentrations, ��������� ��� ���� ������ reported a steep 
�����������������������������������������������������������������������������������������-
Pech et al. (2022a) reported the highest repeatabilities in mid lactation for weekly CH4 

Using a repeatability vs random regression model

71

4



 
 

concentrations, ranging from 0.63 to 0.86 (median SE = 0.03). For the heritability of CH4 
concentrations, Manzanilla-Pech et al. (2022a) and Pszczola et al. (2017) reported relatively 
stable heritabilities over a lactation, which reached the maximum in mid lactation of 0.10 to 
0.28 (median SE = 0.05) and 0.27 ± 0.12 to 0.30 ± 0.08, respectively. In contradiction, Breider 
et al. (2019) reported that heritabilities for weekly CH4 concentrations were lowest in mid 
lactation and reached the maximum in late lactation (h2 = 0.12 ± 0.16 to 0.45 ± 0.11), and 
Sypniewski et al. (2021) reported a steady increase of heritability of daily CH4 concentrations 
over the lactation (h2 = 0 to 0.14), with the heritability being zero at the start of the lactation. 
Thus, a consensus has not been reached to date on the shape of the curve of the repeatability 
or the heritability estimated over a lactation. Differences in results may have arisen from 
including records on a relatively small number of cows, ranging from 184 to 575, coming 
from at most 2 farms. As a result, when reported, standard errors were high. Furthermore, for 
3 of the 4 studies, the data recording period did not cover a full lactation. As explained above, 
being able to model the covariance structure over the full lactation correctly helps to draw 
inferences from longitudinal data. Therefore, our objective was to study the heritability and 
repeatability of measured CH4 concentrations over a lactation using a RR model, and to 
compare the accuracy of using a fixed regression repeat- ability model or the RR model under 
different phenotyping strategies. For the analyses we used a novel dataset from emissions 
measured on the largest number of cows to date from across the Netherlands, which has 
previously only been analysed using repeatability models (van Breukelen et al., 2022). 

4.2 Materials and Methods 
4.2.1 Methane recording 
Data were collected on 7,097 Holstein cows, from 54 farms (Table 4.1), using non-invasive 
sniffers (WD-WUR v1.0 and v2.0, manufactured by Carltech BV), that sampled CH4 and 
carbon dioxide (CO2) concentrations (ppm) from the feed bin of automated milking systems 
(AMS). Ethical approval was not needed for this study because no animal procedures were 
performed. The number of cows recorded per farm ranged from 43 to 299. Various types of 
AMS systems were present in the study, manufactured by: DeLaval (DeLaval BV), Fullwood 
(Fullwood Packo BV), GEA (GEA Group), Lely (Lely Industries NV), and SAC (SAC BV). 
On each farm, at most one AMS unit was equipped with a sniffer. This strategy was decided 
on, to maximise the numbers of farms with phenotyping, and thereby maximizing the number 
of cows that were phenotyped. The sniffers were calibrated to measure CH4 concentrations 
(CH4c) in a range of 0 to 2,000 ppm. Measured concentrations can be used as a proxy for 
CH4 emissions (g/day), similar to what has been reported in previous studies (Difford et al., 
����;����������������������������. Data were recorded between March 2019 and March 2023. 
Between March 2019 and February 2021, v1.0 sniffers were used of which the data collection 
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process is described in more detail in van Breukelen et al. (2022). Between December 2021 
and March 2023, v2.0 sniffers were used. The two versions of sniffers functioned similarly, 
however, the v2.0 sniffers measured concentrations every five seconds, opposed to the longer 
recording intervals of the v1.0 sniffers (ranging from 10 to 35 seconds). Furthermore, the 
v2.0 sniffers had improvements to the housing and data sharing, which benefitted the ongoing 
data collection in the barn environment but did not change how CH4 was measured. 

 

Table 4.1. The number of farms, number of recorded cows, and total number of records for visit and weekly mean 
methane CH4 concentrations, after each step of data editing 

 N farms N cows N records 

Visit CH4 54 7,097 661,917 
Weekly CH4 53 4,935 38,858 
Excluding > 405 days in milk 53 4,869 38,075 
Excluding < 75% Holstein 52 4,664 36,370 

 

4.2.2 Data editing 
The sniffer records were filtered to exclude data which were biologically improbable, for 
example due to blocking of the sampling tube in the AMS feed bin by dust from pellets. To 
do so, for each hour within a farm, data recorded within that hour would be discarded if: 1) 
the mean was below 30 ppm CH4, 2) the inter quartile range was below 200 ppm CH4, 3) the 
maximum was above 3,500 ppm CH4, or 4) if at least 30% of the data would fall within the 
range of the first and second mode, plus and minus 10 ppm CH4. Furthermore, individual 
outliers were discarded, which were defined as being lower than -200 ppm CH4, or values 
outside of the upper and lower 0.001th quantile. A threshold below zero was used, because 
sensors could measure below zero if the calibration drifted. Nonetheless, calibration lines 
would remain linear and could therefore still provide important information about variation 
in emissions on that farm. After filtering, background concentrations were estimated from 
the 0.001 lowest quantile of each day and subtracted from each measurement. 

The timestamps (on the level date-time, with time as hours, minutes, and seconds) from 
sniffer data and AMS data (also provided by CRV) were used to connect cow ID to each 
individual sniffer record. The AMS and v2.0 sniffers automatically synchronised to real time 
���������������������������������������������������������������������������������������;�
for the data recorded by v1.0 sniffers the alignment process is described in van Breukelen et 
al. (2022). In addition, the alignments were confirmed visually for each farm, by observing 
if CH4 concentration would increase after the start of a milking and remain low when no cow 
was in the AMS. After the alignment, the mean CH4 concentration per AMS visit was 
calculated for each individual visit. In calculating the mean, only measurements recorded 
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from the first and up to the fifth minute of milking were used. The other measurements were 
discarded to account for the delay in the air sample reaching the sniffer, and to exclude 
records when cows are likely to have finished eating the pellets provided in the AMS feed 
bin, which makes it more likely that cows move the head away from the sampling inlet. 
Thereafter, means that were derived from less than two and a half minutes of milking were 
discarded, to ensure that multiple records were collected during the milking visit, and that 
these records included belching events (van Soest, 1994). The aligned data were averaged 
per AMS visit and contained 661,917 records of mean CH4c (Table 4.1). 

A linear model was used to correct each record for diurnal variation in measured CH4 
concentrations within farm, with a Fourier series approach ���������������������������;�
Lovendahl and Bjerring, 2006), using the following model: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝜇𝜇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖. ∑(sin 𝑗𝑗𝑗𝑗2𝜋𝜋 + cos 𝑗𝑗𝑗𝑗2𝜋𝜋) + 𝑒𝑒𝑖𝑖

1

𝑗𝑗=1
 

 

(1) 

where yij is the phenotype for the mean CH4���������������;����������������������������������
ith farm; θ is a decimal fraction of the time of measurement, following a 24-hour diurnal cycle 
(i.e., θ = hour at measurement / 24), where j ��������������������������;�����e is the residual 
error, following ei ~ N(0, Iσ2

e), where I represents the identity matrix and σ2
e the residual 

variance. To derive the corrected estimates for each visit, the estimated fixed effects were 
subtracted from the corresponding measurement.  

The mean CH4c per AMS visit were then summarised as weekly mean concentrations (Table 
4.1). If the weekly mean of a cow consisted of less than seven AMS visits, then the weekly 
record was discarded. Two farms had a sniffer installed for only a short period of time and 
had issues with data collection, and because of the limited number of records per cow weekly 
means were not available, and the two farms were discarded (n=52). On average, a weekly 
mean record consisted of 11 recorded visits (min-max: 7-33). For each weekly measurement, 
the associated days in milk were reported as the first day that was included in the weekly 
measurement. Large differences were observed in the mean and standard deviation of records 
taken with the different versions of sniffers. Therefore, CH4c was scaled to a standard 
deviation of one and centred within version of sniffer, by subtracting the mean of all records, 
measured with the corresponding sniffer version, from each measurement and dividing the 
result by the standard deviation of all measurements with the corresponding sniffer version 
(e.g. a CH4c record taken by a v1.0 sniffer was scaled with the overall v1.0 sniffer mean and 
standard deviation). The data were not log transformed, as this had little impact on normality 
of the data in previous analyses (van Breukelen et al., 2022), and the residuals from the 
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analyses appeared normally distributed. For the genetic analyses, the data set was filtered to 
include only records up to 405 days in milk (DIM) and the animals that were at least 75% 
Holstein (Table 4.1). The number of recorded and cows after each filtering step, and the final 
numbers used for the analyses are reported in Table 4.1. The number of records and average 
CH4c (before standardisation) per DIM are visualised in Figure 4.1. The reduced number of 
records in late lactation appear to be related to fewer visits to the milking robot, which aligns 
with the natural decline in milk yield for cows later in their lactation, possibly in combination 
with other factors. On average, the final data set included 8 weekly mean CH4c records per 
cow, with minimum of 1 record and a maximum of 37 records. Per farm, on average 19 weeks 
were recorded, with a minimum of 1 week and a maximum of 63 weeks. 

 

 

Figure 4.1. The total number of records (left) and phenotypic pattern of weekly mean methane (CH4) concentration 
(right) over a lactation as days in milk (DIM) 

 

4.2.3 Pedigree data 
Pedigree and other cow information were provided by CRV (Arnhem, the Netherlands). The 
pedigree was pruned to include all cows with a CH4 record and their ancestors using the R-
package “pedigreeTools” in R v4.2.0. The pruned pedigree was 25 generations deep and 
contained 48,926 animals. 

4.2.4 Genetic parameter estimation 
To investigate if measurements from the two sniffer versions are interchangeable, fixed 
regression bivariate analyses were performed that applied CH4c from the v1.0 or v2.0 sniffers 
as different traits, to estimate genetic correlations, using the model defined in Equation (2) 
as a bivariate model. The bivariate model excluded the across parity permanent 
environmental effect due to convergence issues. Nonetheless, a univariate model with the 
across parity permanent environmental random effect was also used to estimate the 
heritability for each sniffer version. Since this effect was included in the further analysis. 
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Thereafter, a single-trait RR model was used to estimate variance components, using a 
restricted maximum likelihood method in ASReml 4.2ng (Gilmour et al., 2015). Different 
orders of Legendre polynomials for the random genetic and permanent environmental effect 
were fitted, ranging from the 0th to the 5th order, and compared using the Loglikelihood, 
Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The model 
using Legendre polynomials of the 0th order is equal to using a fixed regression repeatability 
model. The following model was used to estimate genetic parameters: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇 + 𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖

+ 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗. ∑ ∅(𝑡𝑡)𝑙𝑙𝑙𝑙𝛽𝛽𝑘𝑘 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. ∑ ∅(𝑢𝑢)𝛽𝛽
2

𝑘𝑘=0

3

𝑘𝑘=0

+ ∑ ∅(𝑡𝑡)𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙 + ∑ ∅(𝑡𝑡)𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 + 𝑝𝑝𝑝𝑝𝑙𝑙 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛

𝑘𝑘=0

𝑛𝑛

𝑘𝑘=0
  

 

(2) 

 

where yijlk is the scaled and centred phenotype for the mean CH4����������;�µ �����������;�
HYW is the fixed effect for the interaction of herd, year, and week of measurement i;�Par is 
the fixed effect for parity (j = 1 to 4, where 4 includes parity four or higher), and is fitted as 
an interaction with β, which is a fixed regression coefficient with third-order Legendre 
polynomials, measured at t DIM, for the kth regression coefficient of animal l;�Breed is the 
fixed effect for the second breed, and is fitted as an interaction with β, which is a fixed 
regression coefficient with second-order Legendre polynomials measured as a breed fraction 
u �����������������������������������������������������;�alk and peparlk are RR coefficients for 
the genetic effect and the permanent environmental effect within parity, respectively, and ø 
is the term for the nth order Legendre polynomial (ranging from zero to five) at t ���;�pe is 
�����������������������������������������������������������;�����eijl is the random residual. 
The residual error was assumed to have heterogeneous variances and was divided into five 
classes for DIM (0-59, 60-119, 120-239, 240-359, and 360-405). 

Although Legendre polynomials give a rank reduction compared with a full rank matrix 
between all DIM, higher order Legendre polynomials might still give convergence issues in 
ASReml. This is due to the average information algorithm struggling with close to non-
positive definite matrices, and the expectation-maximization algorithm being notoriously 
slow. Therefore, factor analytical modelling, using XFA (extended factor analysis) inflation 
factors, was used in ASReml, to decompose and reduce the rank of the variance-covariance 
matrix of the Legendre polynomials (Thompson et al., 2003). The results reported in the 
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paper applied a number of XFA equal to the order of Legendre polynomials, except when 
fitting polynomials of the fourth and fifth order. Because of convergence issues, here the third 
and fourth XFA were fitted for the models with fourth, and fifth order Legendre polynomials, 
respectively. 

Estimated (co)variance components were used together with the Legendre polynomial 
coefficients at each DIM to estimate the full (co)variances matrices and the genetic 
parameters (heritability, repeatability, and correlations between DIM) and their approximate 
standard errors (SE), as described by Fischer et al. (2004). In short, the genetic, permanent 
environmental, and phenotypic (co)variances were estimated by: 

𝐆𝐆 =  𝚽𝚽𝚽𝚽𝚽𝚽′ and (3) 

𝐏𝐏𝐏𝐏 =  𝚽𝚽𝚽𝚽𝚽𝚽𝚽𝚽𝚽𝚽′and  (4) 

𝐏𝐏 = 𝐆𝐆 + 𝐏𝐏𝐏𝐏 + 𝜎𝜎𝑒𝑒
2  (5) 

where G ����������������������������������;�PE is the permanent environmental (co)variance 
matrix, to which the across parity permanent environmental variance was added to all 
�����������������������������������;�����P is the phenotypic (co)variance matrix per DIM 
(n*n, where n ��������������������������������������������������������������������������;�
Φ is a matrix of order t*n, where t is equal to the number of orthogonal polynomial 
������������;�K and KPE are matrices of order t*t, which contain the estimated covariance 
functions that describe the genetic (co)variance components and permanent environmental 
(co)variance components, respectively, for each RR coefficient; and σ2

e is the residual 
variance that is added to the diagonal of the phenotypic (co)variance matrix, with residual 
(co)variances assumed to be zero. 

The heritability (h2) was defined as: 

ℎ2  =  𝜎𝜎𝑎𝑎
2

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤2 + 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎2 +  𝜎𝜎𝑒𝑒2  

 

(6) 

The within lactation repeatability (r) was defined as: 

𝑟𝑟 =  
𝜎𝜎𝑎𝑎

2  + 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤
2  

𝜎𝜎𝑎𝑎2  + 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤2  +  𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎2  +  𝜎𝜎𝑒𝑒2  

 

(7) 

And the across lactation repeatability (r) was defined as: 
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𝑟𝑟 =  
𝜎𝜎𝑎𝑎

2  +  𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎
2

𝜎𝜎𝑎𝑎2  + 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤2  +  𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎2  +  𝜎𝜎𝑒𝑒2  

 

(8) 

where 𝜎𝜎𝑎𝑎
2 ��� ���� �������������������������;�𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤

2  is the permanent environmental variance 
�����������������;�𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎

2  ���������������������������������������������������������;�����𝜎𝜎𝑒𝑒
2 is 

the residual variance. 

4.2.5 Selection index calculations 
To predict the reliability using genetic evaluation models assuming different orders of 
Legendre polynomials for the random effects, the associated selection index coefficients were 
estimated, following: 

𝐛𝐛 = 𝐏𝐏−1𝐆𝐆𝐆𝐆 

 
(9) 

where b is the selection index coefficient, P-1 is the inverse of the phenotypic (co)variance 
matrix among observations in the selection index (n*n, where n consists of 58 potential 
classes of weeks in milk where recording takes place), G is the n*m matrix of genetic 
(co)variance matrix among the n weeks in P and all m traits in the aggregate genotype (where 
m consists of 58 classes of weeks in milk ), and v is a vector with weights, which were kept 
equal to for al 58 weeks in milk. Because for all orders the smallest eigenvalues of the G 
matrix were slightly negative, the matrix was first made positive semidefinite. This was done 
by changing negative eigenvalues to 0.001. Thereafter, the matrix was again constructed by 
multiplying the eigenvectors with the transformed diagonal of the matrix and the transpose 
of the eigenvectors. Nonetheless, the non-positive definite matrices yielded similar results 
(not shown). 

Thereafter, the accuracies of the indexes (rHI) were estimated using the following formula: 

𝑟𝑟𝐻𝐻𝐻𝐻 =  𝐛𝐛′𝐆𝐆𝐆𝐆
√𝐛𝐛′𝐏𝐏𝐏𝐏 𝐯𝐯′𝐂𝐂𝐂𝐂

 

 

(10) 

Which applied the parameters from the previous formula, and the matrix C which is a m*m 
matrix with genetic (co)variances in the aggregate genotype. From this, reliabilities were 
predicted for the different models as the squared accuracies. These reliabilities reflect the 
model reliabilities that would be published for breeding values given that the assumed model 
was used (regardless of the true genetic parameters). 
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The reliability was also calculated for an additional scenario, i.e. where the repeatability 
model was used, but in fact the estimated parameters from the RR reflect the true parameters 
more closely. In that scenario the b-values reflect a “sub-optimal” index using the fixed 
regression repeatability model, whereas the RR model gives the “optimal” index.  

Optimal indices and models also depend on the recording strategy, and the number of records, 
since P will be affected. Therefore, several scenarios were evaluated. For the first set of 
scenarios, it is assumed that for each recorded week in the lactation one record is available 
per cow (scenarios “Cows”). The P matrices simply reflect the phenotypic (co)variances in 
this case. In the second set of scenarios, the P matrices were replaced with the (co)variances 
of the G matrix, simulating sires with a large number of daughters recorded, (scenario 
“Bulls”). The large number of records provide close to the true genotype for a bull at the 
recorded moments. 

Taking the two models, and the Cow and Bull situation, scenarios were investigated where 
observations were only available for parts of the lactation. This is relevant for example when 
cows are phenotyped for CH4 emissions with expensive equipment, which is routinely 
exchanged between farms for short periods of time. The scenarios were: 1) with records on 
different parts of the lactation, where always eight weeks (56 days) were recorded 
������������;�����������������������������������������������������������������������������������
��������������������������������;������������������������������������������ ������������� ����
lactation, which cumulatively increased by one week of recording until 400 DIM was 
reached, again changing the P and G matrices based on the DIM with records. 

4.3 Results 
4.3.1 Exploratory analyses 
Before standardisation, the mean CH4�������������������������������������������������������
���������� ��� ���� ����� ���� ����� ����� ��������� ���� ����� ���� ���� ����� ����� �� ���������
����������������������������4.�������������������������������������������������������������
CH4����������������������������������������������������������������������������������4c 
����������������������������� ����������������������������������� ������������������ ����
������������������������������������������������������������������������� the data, the mean 
scaled CH4��������������������������������������������������������������������������������
��������������������������������4�����������������������������������������������������������
mean scaled CH4���������������������������������������������������������������������������
������������������������������������������������������������������������������������������
DIM are plotted in Figure 4.1. 
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Table 4.2. The mean, standard deviation (SD), minimum, maximum, and coefficient of variation (CV) of the weekly 
mean methane concentration (CH4c) phenotype in parts per million (ppm), and after standardisation, recorded by 
two different versions of sniffers (v1.0 and v2.0) and as all measurements combined 

  Mean SD Min Max CV 
CH4c (ppm) v1.0 512 172 86 1350 34% 

 
v2.0 719 313 62 2057 44% 

 
Combined 668 299 62 2057 45% 

Standardised CH4c v1.0 3.74 1.01 1.25 8.63 27% 

 
v2.0 2.06 1.00 -0.04 6.34 49% 

 
Combined 2.47 1.24 -0.04 8.63 50% 

 

From the data including only measurements from v1.0 sniffers, the heritability and 
repeatability were 0.27 ± 0.03 and 0.62 ± 0.01, and for v2.0 they were 0.37 ± 0.03 and 0.76 
± 0.01. The genetic corelation between the two sensors was 0.99 ± 0.09. Nonetheless, there 
was a considerable difference in the estimated variance components. For v1.0 and v2.0 data, 
respectively, the phenotypic variances were 15,759 ± 468 and 52,662 ± 1,208, and the genetic 
variances were 4,180 ± 620 and 19,368 ± 1,936. Thus, in general the measurements taken 
with v2.0 sniffers were associated with higher variances compared with v1.0 sniffers, 
justifying the need to standardise the sniffer data to a common phenotypic variance. But 
because of the high genetic correlation and not majorly different heritabilities, it was decided 
to further analyse the data using univariate models, where we assume that after phenotypic 
standardisation the records taken by either version of sniffer is genetically the same trait. 

4.3.2 Order of the random effects 
The random effects of the RR model were modelled with different orders or Legendre 
polynomials (0 to 5th). The fit of the models was investigated based on the Log Likelihood, 
AIC and BIC. The models that applied higher orders of Legendre polynomials had 
consecutively better goodness of fit, indicated by the lower AIC and BIC, and the higher Log 
Likelihood (Table 4.3). 
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Table 4.3. The Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and log likelihood 
(LogL) for the random effects fitted with Legendre polynomials of the 0th (Leg 0), 1st (Leg 1), 2nd (Leg 2), 3rd (Leg 
3), 4th (Leg 4), and 5th (Leg 5) order 

 AIC BIC LogL 
Leg 0 -16986.4 -16918.5 8501.2 

Leg 1 -19714.7 -19604.4 9870.4 

Leg 2 -21060.9 -20933.6 10545.4 

Leg 3 -21810.3 -21632.1 10926.1 

Leg 41 -22402.9 -22123.0 11234.5 

Leg 52 -22762.6 -22431.8 11420.3 
1,2 All models are fitted with the same number of XFA factors as the number of orders, except 1 and 2 which were 
fitted with XFA 3 and XFA 4, respectively 

 

4.3.3 Genetic parameter estimates 
The estimated heritability, using a fixed regression repeatability model was 0.34 ± 0.02, and 
the repeatability was 0.73 ± 0.01. However, when including an across lactation permanent 
environmental effect (as is applied in the further analyses), the heritability and repeatability 
were lower. Here, the heritability was 0.18 ± 0.03, and ranged between 0.17 and 0.18 for the 
different groups of residual variances. The average within lactation repeatability was 0.48 ± 
0.03 and ranged between 0.46 and 0.49 for different groups of residual variances. The average 
across lactation repeatability was 0.41 ± 0.02 and ranged between 0.39 and 0.42 for different 
groups of residual variances. 

The lactation pattern for the heritability of the random effects modelled with different orders 
of Legendre polynomials was similar between orders (Figure 4.2, top). The heritability of the 
fixed regression repeatability model (Leg 0) was higher in the beginning and end of the 
lactation, whereas the models with first or higher order Legendre polynomials had a higher 
heritability throughout mid lactation. For the fourth order RR model, the heritability of 
weekly mean CH4c was on average 0.17 ± 0.04 and increased steeply in the first 130 DIM. 
The maximum heritability was 0.21 ± 0.03 at 134 DIM. Thereafter, the heritability decreased, 
first slowly and then steeply, to a minimum of 0.10 ± 0.04 at 358 DIM. The heritability of 
the model with Legendre polynomials of the fifth order deviated from the other estimates at 
the end of the lactation, where they peaked at a level of 0.33 at 393 DIM. 
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Figure 4.2. ������������������������������������������������������������������������������������;�����������������������
mean CH4 ���������������������������������������������������������������������������������������������������������
����������������������������������th ������;�yellow������ ������;���������nd ������;����������rd ������;�����������th 

������;�red��������th ������;������) order 
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������ ����� ��� ���� ������� ����������� ���� ����� ����������� ����������� ���� ����������� ����
�������������� ��� ���� �������� ������� ������� ���� ������ ������ ������� ����� ������ ��� �����������
���������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������
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The underlying variance estimates, using the second to the fifth order models, are similar 
(Figure 4.3). The additive genetic variance estimates of the third to fifth order models spiked 
at the end of the lactation after approximately 320 to 375 DIM. This spike was the largest for 
the model with fifth order regressions. The within parity permanent environmental variance 
was similar for the first to the fifth order and spiked at the end of the lactation. For the model 
of the fifth order, the permanent environmental variance did not increase greatly at the end 
of the lactation and had a maximum of 0.22. 

 

 

Figure  4.3. The additive genetic (top) and within lactation permanent environmental variance (bottom) over a 
���������� ����;� ����� ��������� ���� �����������4 concentration per week, with standard errors, using a random 
regression model with random effects fitted with Legendre polynomials of the 0th ������;�yellow), 1st ������;�blue), 
2nd ������;�green), 3rd ������;�purple), 4th ������;�red), and 5th ������;�black) order 
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The residual variance, which was modelled in five classes of DIM, consistently decreased for 
higher orders of Legendre polynomials that were fitted (Figure 4.4). Especially the fixed 
regression repeatability model (Leg 0) and the model using a first order RR had somewhat 
higher residual variances. The estimates for second to fifth order RR were similar, especially 
during mid lactation. 

 

 

Figure 4.4. ��������������������������������������������;������������������������������4 ������������������������
with standard errors, using a random regression model with random effects fitted with Legendre polynomials of the 
0th ������;�yellow), 1st ������;�blue), 2nd ������;�green), 3rd ������;�purple), 4th ������;�red), and 5th ������;������) 
order 

 

4.3.4 Genetic correlations between DIM 
����������������������������� �����������4������������������������������������������
approximated one, except for measurements at the start and end of the lactation (Figure 4.5, 
left). The genetic correlation was on average 0.91 ± 0.08. The lowest correlation was 0.34 
between the 302nd and 400th DIM and had a large SE of 0.36. 

����������� ��������������������������������������������������������������4�����������
�������������������������������������������������������������������������������������
Whereas the permanent environmental correlations were low, and in some cases negative, 
����������������������������������������������������-0.73 ± 0.08, between 1 and 393 DIM) 
(Figure 4.5, right). The mean permanent environmental correlation was 0.39 ± 0.06. 
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Figure 4.5. The additive genetic correlation (left) and within lactation permanent environmental correlation (right) 
between different stages of the lactation as days in milk (DIM) for weekly mean CH4c, modelled with a fourth order 
random regression model 

 

4.3.5 Selection index calculations 
Selection index coefficients and the model reliability of the index (i.e. published breeding 
values) were predicted to evaluate the effect of using a fixed or a RR model in the genetic 
evaluations. Firstly, assuming that recording happened during the whole lactation period. The 
reliability of the selection index (r2) in the scenarios for cows (using the phenotypic 
(co)variance matrix as P) was highest at 0.43 for the model using fifth order RR (Table 4.4). 
This was followed by the model with second, third, and fourth order regressions at 0.29. The 
model with the lowest reliability was the fixed regression repeatability model (Leg 0) at 0.24. 
Thus, the published reliability will be lower with the fixed regression model. However, the 
reliability, when using the b values for the fixed regression model (sub-optimal), Leg 0, when 
assuming the (co)variance estimates from the fifth order RR model was still 0.31. Thus, when 
using the fixed regression repeatability model in the genetic evaluation model, only 71% of 
the reliability would be realised when we assume that the fifth order RR model yields true 
(co)variances. However, for the first to fourth order RR model, the difference with the fixed 
regression model were smaller, and ranged from 92% to 98%. 

The reliabilities when we assumed a large number of daughter records are available for each 
individual bull (the bulls scenario) were all one. Similarly, when using the b values of the 
fixed regression repeatability model with the genetic (co)variance matrix instead of the 
phenotypic (co)variance matrix (sub-optimal) the repeatabilities in all scenarios were also 
one, thus there was little loss using the simple repeatability model.  
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The results reported above assume that full lactations are recorded for individual cows. In 
future phenotyping strategies, it is possible that data on weekly CH4c, or other CH4 traits, are 
not available throughout a full lactation, but still the interest is in a breeding value predicting 
the full lactation. Therefore, we predicted the reliability of the breeding values for the full 
lactation, with limited data available during various parts of the lactation (using a fourth order 
RR model, and a fixed regression repeatability model). Overall, reliabilities for the breeding 
values from measurements taken during mid lactation (50 to 302 DIM) were predicted to be 
higher than the reliabilities of measurements taken at the start and end of the lactation (Table 
4.5). When using the fixed regression repeatability model, and assuming the (co)variances 
estimated from the RR model are reality (sub-optimal), when measuring during the first 57 
DIM only 93% of the reliability would be realised. 

 

Table 4.5. The reliability of the selection index (r2) with phenotypes only being available within sequential ranges 
of 56 days in milk (DIM) (eight weeks), when using the phenotypic (co)variance matrix (Cows), and genetic 
(co)variance matrix as phenotypes (Bulls) for the random regression model of the fourth order (optimal (opt)), with 
using the selection index coefficients coming from the fixed regression repeatability model (sub optimal (sub opt)) 
and the (co)variance matrices from the RR model, and the difference between the two as a percentage 

 
Cows  Bulls 

DIM opt sub opt Percentage  opt sub opt Percentage 

1-56 0.17 0.16 93%  0.98 0.92 93% 

56-105 0.22 0.21 96%  0.98 0.97 99% 

105-154 0.25 0.25 100%  1.00 0.99 99% 

154-203 0.25 0.25 99%  1.00 1.00 100% 

203-252 0.23 0.23 100%  0.99 0.97 98% 

252-301 0.23 0.22 99%  0.95 0.93 97% 

301-350 0.18 0.17 95%  0.95 0.92 97% 

350-399 0.13 0.12 94%  0.98 0.91 93% 

 

Using shorter recording periods, of three weeks, also showed the higher value of mid 
lactation records (Table 4.6, see Appendix A1 for the full table). However, the estimated 
reliabilities for bulls decreased notably at the start and end of the lactation. When using the 
fixed regression repeatability model (Leg 0), while assuming the estimated (co)variances 
from the RR are reality, only 73% of the reliability was realised with measurements taken 
in the first three weeks of the lactations. Nonetheless, between 29 and 372 DIM the 
differences were small, and high reliabilities for bulls could be achieved with either model 
(0.97 – 0.98). 
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Table 4.6. The reliability of the selection index (r2) with phenotypes only being available the first and last three 
weeks of lactation as sequential ranges of 21 days in milk (DIM), when using the phenotypic (co)variance matrix 
(Cows), and genetic (co)variance matrix as phenotypes (Bulls) for the random regression model of the fourth order 
(optimal (opt)), with using the selection index coefficients coming from the fixed regression repeatability model 
(sub optimal (sub opt)) and the (co)variance matrices from the RR model, and the difference between the two as a 
percentage (For the full table see Appendix A1) 

 
Cows  Bulls 

DIM opt sub opt Percentage  opt sub opt Percentage 

1-21 0.12 0.11 92%  0.95 0.69 73% 

21-35 0.15 0.14 99%  0.97 0.91 93% 

35-49 0.16 0.16 100%  0.98 0.98 100% 

357-371 0.12 0.12 100%  0.97 0.97 100% 

371-385 0.11 0.11 99%  0.95 0.89 93% 

385-399 0.09 0.08 94%  0.90 0.65 72% 

 

When looking at the cumulative trend of collecting weekly measurements over a lactation on 
the reliability, large differences can be observed in the increase in reliability at the start of 
the lactation (Figure 4.6). When using the Leg 0 model, the reliabilities will be inflated at the 
start of the lactation, both in the Cows and especially the Bulls scenarios (Figure 4.6). 
Predicting a reliability of one after one week of recording many daughters, whereas the true 
reliability is much lower. Also, it takes more weeks to achieve a true reliability of selection, 
when using the suboptimal fixed regression model versus the RR model (approximately 90 
versus 30 weeks). 

4.4 Discussion 
The aim of this research was to study the heritability and repeatability of measured CH4 
concentrations over a lactation using a RR model, and to compare using the fixed regression 
repeatability model and a RR model for genetic evaluations under different phenotyping 
strategies. The data used was a novel data set from emissions measured on 4,664 cows from 
52 farms located across the Netherlands, with up to 37 weeks of the lactation recorded, which 
has previously only been analysed using fixed regression repeatability models. 

4.4.1 Order of polynomials for RR models 
In this study we estimated genetic parameters, using different orders of Legendre 
polynomials in a RR model, ranging from the 1st to the 5th order. In our study, the models 
with higher order polynomials had better goodness of fit (Table 4.3). This is similar to what 
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has been shown in studies on random regressions for milk yield using test-day models (Li et 
����� ����;� ����� ��� ����� ����;� ������������� ��� ����� ���������������� ��� ������ �������� �����
highlight, fitting higher order polynomials comes at a higher computational cost. Since for 
the higher orders fitted the increase in goodness of fit becomes less, the common consensus 
�������������������������������� �������tting at least third order polynomials are considered 
���������������������� �������������� ��������� ����������� ������������� �������� ������� ������
polynomials can induce oscillatory patterns along the lactation, which are unlikely to be 
biological ������ ��� ����� �����. This highlights that more parsimonious models should be 
������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������
genetic and wi����� ���������� ���������� �������������� ��������� ��� ���� ������ ������ ������
�������������������������������������������������������������������������������������4.����������
��������������������������������������������������������������������������������������ich are 
���������������������������������������� 

 

 

Figure 4.6. The reliability of the selection index (r2�������������������������������������������������������������
��� �������������������������� �������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������
��������������������� 
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4.4.2 Heritability and repeatability within lactations 
The heritability for weekly mean CH4c increased steeply in early lactation, peaked at 134 
DIM, whereafter it steadily decreased again (Figure 4.2, top). The average heritability was 
0.17, with a low standard error of 0.04. The standard errors of the estimates are lower than 
of previous studies, giving more confidence in the estimates of this study (Breider et al., 
����;�����������-������������������;�����������������������. The pattern of the heritability 
within a lactation showed similarities to the study by ����������������������, who reported 
that the heritability for CH4p (CH4 production, estimated from sniffer CH4c measurements) 
was highest in mid lactation. Although, the reported heritability estimates were less variable 
and ranged between 0.23 ± 0.12 and 0.3 ± 0.08. A similar pattern was also observed in the 
study by ����������-Pech et al. (2022a), where the heritabilities for CH4c ranged between 
0.10 and 0.28. In a study by Breider et al. (2019), a different pattern was observed for the 
heritability of CH4c over a lactation, compared to the afore mentioned studies. Breider et al. 
(2019) showed that the heritability was the lowest in mid lactation and increased towards the 
end of the lactation. The study by ����������-Pech et al. (2022a) discussed that this was 
possibly an outcome of the inclusion of multiple lactations in the analyses by Breider et al. 
(2019), whereas the former study analysed first and second lactation separately. However, in 
this study multiple lactations were also combined. Another factor that could have influenced 
the heritability estimates was that Breider et al. (2019) applied two bivariate models, with 
CH4c modelled with milk yield and body weight, respectively. Also, the study by Sypniewski 
et al. (2021) reported a different pattern of heritability over the lactation. There, the 
heritability for CH4c increased throughout the full lactation, whereas the pattern for the 
heritability of CH4p was similar to this study. In the study by Sypniewski et al. (2021) the 
residual was modelled with homogeneous variances, which may have resulted in a different 
partitioning of variance between the genetic and permanent environmental variance within 
the lactation compared to this study. 

For all order models fitted, the within lactation repeatability was relatively stable throughout 
the lactation (at approximately 0.58, Figure 4.2, bottom). This indicates that the within animal 
environmental variance is similar for all measures taken throughout the lactation, and that 
there are no parts of the lactation that would benefit form a larger number of measurements 
than other parts. The within lactation repeatability reported in this study was of similar 
pattern, although slightly lower, than what was reported in the study by ����������-Pech et 
al. (2022a) for CH4c, where they ranged between 0.63 and 0.86. However, in the study by 
����������-Pech et al. (2022a) a separate across lactation permanent environment effect was 
not fitted. Including the across lactation permanent environmental effect, as the total 
repeatability, the repeatability would be 0.80 and thereby similar to what was reported 
previously. Other estimates for the repeatability of CH4c within lactations have not been 
previously reported. 
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The increase in heritability at the start of the lactation was a result of lower additive genetic 
variance at the beginning of the lactation, which can be observed in Figure 4.3. However, 
caution should be taken in interpreting the first and last days of the lactation, as models fitted 
with polynomials are known to deviate at the far extremes (Pool et al., 2000). The additive 
genetic and the permanent environmental variance started to deviate before approximately 
50 DIM and after 300 DIM (for the models fitted with second to fifth order Legendre 
polynomials). A similar pattern has been reported in studies on milk yield using RR models 
������ ��� ����� ����;� �������� ��� ����� ����;� ���� ���� ����� ��� ����� �����. Higher permanent 
environmental variances at the beginning and end of the lactation may be attributed to a lower 
number of records that often are available at the start and end of the lactation. It is therefore 
expected that the large increase in permanent environmental variance at the end of the 
lactation in this study was in part an artifact of the data. From Figure 4.�� ������� ��� �������
observed that the number of records at the beginning and at the end of the lactation were low, 
with under 50 weekly mean CH4c records per DIM after 300 DIM and decreasing. The 
deviations influenced the heritability before ten DIM and after 300 DIM, which is underlined 
by the higher associated standard errors at the beginning and towards the end of the lactation. 
The extent of the effect of a lower number of records at the beginning and end of the lactation 
should be further investigated, and could be overcome, for example, by fitting models using 
a smoothing factor such as splines ��������������������.  

4.4.3 Genetic and permanent environmental correlations within lactations 
The genetic correlations between DIM were high, except between some DIM at the far ends 
of the lactation (Figure 4.5, left). High and positive genetic correlations indicate that, even 
for most records taken far apart in time, the direction of selecting for lower CH4c would be 
the same. In addition, the magnitude of the genetic correlations has an influence on the 
reliability of the selection index of measurements taken along the lactation, which will be 
discussed later. The genetic correlations of weekly mean CH4c between DIM were similar to 
what has been reported in previous studies (Manzanilla-������������������;������������������
�����. Nonetheless, there were some differences. The study by Manzanilla-Pech et al. 
(2022a) reported that the genetic correlations were higher and close to one along the full 
lactation in the second lactation, in contrast to the first lactation where the genetic correlations 
reduced for weeks that were the furthest apart in time. This should be investigated further, as 
it may implicate that a different phenotyping strategy should be maintained for first or later 
lactation cows. Nonetheless, the model in this study included a between parity random effect 
and a fixed effect for the lactation curve as an interaction with parity, to correct for differences 
between parities.  

The permanent environmental correlations between weekly mean CH4c measurements 
closely together in time were high, but the correlations reduced and became negative for 
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measurements further apart in time (Figure 4.5, right). This confirms that modelling CH4 
including a permanent environmental effect is the most appropriate, ideally with random 
regressions, as different lactation stages are associated with differences in the permanent 
environmental variance. Permanent environmental correlations have not been previously 
reported in the literature.  

Similar to the heritability and repeatability, the genetic and permanent environmental 
correlations may have been influenced by the lower number of records at the start and towards 
the end of the lactation. Therefore, caution should be taken in interpreting the results before 
10 DIM and after 300 DIM, and the results should be confirmed using a data set that includes 
a similar number of records throughout the lactation or should be modelled using splines. 

4.4.4 Selection index calculations 
The selection index coefficient is directly linked to the maximum expected response in the 
aggregate genotype, and the reliability that would be published next to the breeding values. 
Multiple scenarios were simulated, and each scenario was simulated in twofold: 1) using the 
phenotypic (co)variance matrices (Cows), and 2) replacing the phenotypic relationship 
matrix by the genetic (co)variance matrices (Bulls). The first represented scenarios where 
breeding values would be estimated for a cow with single measurements at each class of 
DIM, whereas the second represented scenarios where breeding values would be estimated 
for a bull with a large or infinite number of daughters with many records. In the second case 
it is expected that the phenotypic (co)variance matrix approximates the genetic (co)variance 
matrix, and thus breeding values would become 100% reliable. This was indeed the case 
when full lactations would be measured, as can be observed in Table 4.4. 

The reliabilities for a cow with measurements of a full lactation were higher for the RR model 
with high orders. Especially, the fifth order RR model resulted in a large increase in the 
estimated reliability and was 0.43. Nonetheless, this high reliability should be interpreted 
with care, and should be confirmed with using a model that applies a smoothing factor such 
as splines, as the results for the fifth order RR model showed deviations from the other 
models. Therefore, in this study we focussed on the RR model using fourth order Legendre 
polynomials.  

When using the sub-optimal selection index coefficients of the fixed regression repeatability 
model, with (co)variance estimates of a fourth order RR repeatability model, an almost 
identical reliability was reached as when using the optimal selection index coefficients of RR 
model (98% for cows and 100% for bulls, Table 4.4). That would suggest that there is not a 
large gain in using a RR model over a fixed regression repeatability model. Nonetheless, for 
the bulls scenario the sub-optimal fixed regression repeatability selection index coefficients 
always realised 100% of the reliability compared to the RR model, suggesting that for bulls 
with a large number of daughters recorded over the full lactation there is never an advantage 
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in using a RR model over a fixed regression repeatability model. Although this might not be 
a practical scenario, it reflects the loss in selection reliability, based on the genetic 
architecture of the trait. That is obviously small when the true breeding value is known at any 
moment in time, because the genetic correlations between the time periods play no role in 
the genetic evaluation. 

 

Table 4.4. The reliability of the selection index (r2) for models using different orders of Legendre polynomials (Leg) 
for random effects (optimal (opt)), when using the phenotypic (co)variance matrix (Cows), or genetic (co)variance 
matrix as phenotypes (Bulls), and the two scenario’s while using the selection index coefficients coming from the 
fixed regression repeatability model (sub optimal (sub opt)), with the difference between the two as a percentage 

 

Cows  Bulls 

opt sub opt Percentage  opt sub opt Percentage 

Leg 0 0.24 0.24 100%  1.00 1.00 100% 

Leg 1 0.27 0.24 92%  1.00 1.00 100% 

Leg 2 0.29 0.28 96%  1.00 1.00 100% 

Leg 3 0.29 0.27 95%  1.00 1.00 100% 

Leg 4 0.29 0.28 98%  1.00 1.00 100% 

Leg 5 0.43 0.31 71%  1.00 1.00 100% 

 

When measurements are available over only a short period of time, the RR repeatability 
model will most likely perform better compared to a fixed regression repeatability model. To 
investigate the effect of shorter recording period, three simulations were performed, with: 1) 
sequential periods of eight weeks of recording, 2) sequential periods of three weeks of 
recording, and 3) starting at one DIM and cumulatively adding one week of recording up to 
274 DIM. This is relevant for phenotyping strategies, with only limited logistic and/ or 
financial resources available, by which they are not able to record full lactations and is 
especially relevant in farming systems with seasonal calving. When recording short periods 
of the lactation, the realised reliability was lower than when a full lactation would be 
recorded, with increasingly lower reliabilities for shorter recording periods. The difference 
in reliabilities was smaller for records taken during mid lactation (Table 4.5 and 4.6). For 
short recording periods, from the data reported in this study it can be concluded that records 
taken between approximately 100 DIM and 200 DIM will most likely yield the highest 
reliability and thereby the highest genetic progress, regardless of the model chosen. Thus, a 
fixed regression repeatability model in this case can perform sufficient and might be the better 
choice when there is limited data available or limited computational power. 
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For short recording periods at the start of the lactation (1 to 100 DIM), the reliabilities of the 
fixed regression repeatability model were higher than the reliabilities of the RR model for 
the cows and bulls scenarios (Figure 4.6). Here, the fixed regression model likely 
overestimates the reliability, as this model assumes equal genetic correlations between DIM, 
whereas the RR model showed that the first DIM had lower genetic correlations with the rest 
of the lactation. This has important implications for practice, and the results suggest that 
when breeding values are estimated from a fixed regression model and are only recorded 
during the first ±50 DIM, the realised genetic gain may become lower than expected. 
Therefore, in these situations using a RR model should be preferred. 

4.5 Conclusions 
Knowledge of the covariance structure of CH4 over lactation is crucial for genetic evaluations 
under many different phenotyping strategies. We found the highest heritability mid-lactation 
(0.17 ± 0.04) and high genetic correlations between lactation stages (0.34 ± 0.36 to 0.91 ± 
0.08). Permanent environmental correlations varied widely (-0.73 ± 0.08 to 1.00 ± <0.01). 
While bull reliability was similar for full lactation records using fixed and RR models, the 
fixed model's reliability dropped to 72% for shorter periods recorded at the start and end of 
the lactation. Additionally, assuming the fixed model whereas the true (co)variance structure 
is reflected by the RR model, more than twice as long recording from the start of lactation 
was required to achieve maximum reliability for a bull. Thus, using a simplistic model could 
result in implementing too little recording, and lower genetic gains than predicted from the 
reliability. 
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Appendix 
A1. The reliability of the selection index (r2) with phenotypes only being available as sequential ranges of 21 days 
in milk (DIM) (three weeks), when using the phenotypic (co)variance matrix (Cows), and genetic (co)variance 
matrix as phenotypes (Bulls) for the random regression model of the fourth order (RR), with using the selection 
index coefficients coming from the repeatability model (b Leg 0) and the (co)variance matrices from the RR model, 
and the difference between the two as a percentage 

 Scenarios cows  Scenarios bulls 

DIM RR b Leg 0 Percentage  RR b Leg 0 Percentage 

1-21 0.12 0.11 92%  0.95 0.69 73% 
21-35 0.15 0.14 99%  0.97 0.91 93% 
35-49 0.16 0.16 100%  0.98 0.98 100% 
49-63 0.17 0.17 100%  0.98 0.98 100% 
63-77 0.19 0.18 100%  0.97 0.97 100% 
77-91 0.20 0.20 100%  0.97 0.97 100% 
91-105 0.21 0.21 100%  0.97 0.97 100% 
105-119 0.23 0.23 100%  0.98 0.97 100% 
119-133 0.24 0.24 100%  0.98 0.98 100% 
133-147 0.24 0.24 100%  0.99 0.99 100% 
147-161 0.24 0.24 100%  1.00 1.00 100% 
161-175 0.24 0.24 100%  1.00 1.00 100% 
175-189 0.23 0.23 100%  1.00 1.00 100% 
189-203 0.23 0.23 100%  0.99 0.99 100% 
203-217 0.22 0.22 100%  0.99 0.98 100% 
217-231 0.22 0.22 100%  0.98 0.97 100% 
231-245 0.22 0.22 100%  0.96 0.96 100% 
245-259 0.22 0.22 100%  0.95 0.95 100% 
259-273 0.21 0.21 100%  0.94 0.93 100% 
273-287 0.21 0.21 100%  0.92 0.92 100% 
287-301 0.19 0.19 100%  0.91 0.91 100% 
301-315 0.18 0.18 100%  0.90 0.90 100% 
315-329 0.16 0.16 100%  0.91 0.91 100% 
329-343 0.14 0.14 100%  0.94 0.93 99% 
343-357 0.13 0.13 100%  0.96 0.96 99% 
357-371 0.12 0.12 100%  0.97 0.97 100% 
371-385 0.11 0.11 99%  0.95 0.89 93% 
385-399 0.09 0.08 94%  0.90 0.65 72% 
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Abstract 
Reducing enteric methane (CH4) emissions from dairy cattle is essential to mitigate the 
environmental footprint of dairy farming. This study aimed to investigate genetic correlations 
between CH4 emissions and key production traits in Dutch dairy cows combing two novel 
datasets. Methane concentrations (CH4c) and CO2 concentrations were measured using 
nondispersive infrared sensors, called sniffers, that sampled from the feed bin of automatic 
milking systems. Data on CH4 were collected on 7,139 cows from 68 commercial farms in 
the Netherlands between 2019 and 2023. On an additional set of experimental farms, 
phenotypic data on milk production traits, body weight, and dry matter intake were recorded 
on 9,550, 7,049, and 7,546 cows, respectively. Genetic parameters were estimated with 
bivariate models for first, second, and third and later parity cows separately using ASReml 
v4.2.1. The heritability for CH4c ranged from 0.21 to 0.27, while the repeatability ranged 
from 0.65 to 0.73 across different parities. Genetic correlations between CH4c and dry matter 
intake were weak and positive, ranging from 0.06 to 0.15 across parities. Similarly, genetic 
correlations between CH4c and milk production traits were weak, ranging from -0.04 to 0.23, 
with the highest correlations being with fat yield and fat percentage, which ranged across 
parities from 0.12 to 0.23 and 0.14 to 0.21, respectively. In addition, genetic correlations 
between CH4c and body weight were weak, ranging from -0.04 to 0.06. Strong genetic 
correlations were observed between CH4c and CO2 concentrations, ranging from 0.81 to 0.97. 
Furthermore, the genetic correlations between CH4c in different parities were high (0.86 to 
0.97). The weak genetic correlations between CH4c and production traits suggest that it is 
feasible to select for lower CH4c, while improving milk production and other economically 
important traits. 

Key words: methane emissions, genetic correlations, dairy cows, sniffer 
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5.1 Introduction 
Animal breeding is increasingly acknowledged as an effective strategy to mitigate the 
environmental footprint of dairy farming. A novel trait of interest to genetic improvement, 
due to the direct impact on carbon footprint, is enteric methane (CH4) emission. Enteric CH4 
is mostly produced by fermentation of feed in the rumen of cattle, which is emitted into the 
air by breath and belching (Jackson et al., 2020). Mitigating CH4 emissions is urgent, as CH4 
is a potent greenhouse gas with a global warming potential that is approximately 27 times 
greater than CO2 over a 100-year lifespan (IPCC, 2021). In addition, CH4 plays a role in the 
formation of ozone in the atmosphere, which can cause health issues in humans and animals 
and can damage crops and ecosystems �������������������;������������������. 

In the last decade, several publications have highlighted that there is promise in using animal 
breeding to mitigate CH4 emissions �������������������������;�����������-Pech et al., 2021). 
Still, questions remain in regard to how to implement the new traits into new or existing 
breeding programmes that aim to mitigate the environmental footprint of dairy farms. 
Essential parameters that are required for informed dairy breeding are the genetic correlations 
between CH4 and other breeding goal traits (de Haas et al., 2017). Genetic correlations are 
used to predict the consequences of selection, to investigate undesired responses in traits, and 
to develop informed breeding goal traits for methane. 

In the literature, reported estimates of genetic correlations between CH4 and other important 
breeding goal traits have a large range and are in some cases contradictory. Genetic 
correlations between dry matter intake (DMI) and CH4 emissions for example ranged from a 
weak negative correlation of -��������������������������������������������������������������
���������������������;�����������-Pech et al., 2021). Similarly, genetic correlations between 
body weight and CH4 emissions ranged from -������������������������������������������������;�
��������������������;���������������������������;�����������-Pech et al., 2021). For milk 
yield, fat yield, and protein yield, estimates of the genetic correlation with CH4 ranged from 
������������������������������������������ ���������������������;������-��������������������;�
Manzanilla-�����������������;����������������������;��������������������������, from -�������
���������������������������������������������������������������������� for protein yield (Lassen 
�������������������;������-��������������������;����������������������;���������������������
�����. Currently, most estimates are associated with large standard errors and the overall 
����������������������������������������������differences in estimates of genetic correlations 
with CH4 traits was recently emphasised in a meta-analysis, which also concluded that current 
estimates of genetic correlations reported in the literature show large heterogeneity making 
inference for breeding difficult (Hossein-Zadeh, 2022)�� ��� ��� ����� ��� ����� ���������
selection decisions in the future, more accurate estimate of genetic correlations are thus 
required. 

Relationships between methane, feed intake, body weight, and milk production

97

5



 
 

Therefore, the aim of this study was to investigate the relationship between CH4 emissions, 
DMI, body weight, and milk production traits of Dutch dairy cows using a novel dataset of 
enteric CH4 concentrations recorded by sniffers in automated milking systems. The dataset 
contains CH4 recorded on a large number of cows, including 2,084 first parity cows, 1,843 
second parity cows, and 3,743 third and later parity cows. In addition, data on DMI, milk 
production traits, and body weight were available on 7,546, 9,550 and 7,049 cows, 
respectively. Using this data, we gave further insight into the genetic relationship between 
CH4, DMI, body weight, and milk production traits, which is required to implement the 
mitigation of CH4 emissions into national breeding goals for dairy cows in the Netherlands. 

5.2 Materials and Methods 
Mean CH4 concentrations (CH4c) were recorded on 68 commercial dairy farms in the 
Netherlands. Data were collected between 2019 and 2023 and previously described in van 
Breukelen et al. (2024). In short, CH4c were measured by nondispersive infrared sensors 
called “sniffers” (WD-WUR v1.0 and v2.0, manufactured by Carltech BV), which were 
installed with a sampling tube leading into the feed bin of automated milking systems (AMS). 
Methane and carbon dioxide (CO2) concentrations were measured every five seconds, filtered 
to exclude biologically improbable records, and then averaged per AMS visit including only 
the records from the first and up to the fifth minute of milking. Thereafter, the records were 
corrected for diurnal variation within farm using a linear mixed model. The farms with CH4 
recording by sniffers were mainly farms without data available on DMI, body weight (BW) 
and milk production traits, with the exception of one farm that also had DMI recording. In 
total, 261 cows had CH4 and DMI measured, of which nine cows were recorded for both 
traits within the same week.  

The CH4 dataset was combined with a dataset with information on DMI, BW and milk 
production traits recorded during DMI experiments, which contributed through the genetic 
relationships to the estimation of the genetic correlations with CH4. The data on DMI, BW, 
milk yield (MY), protein yield (PY), and fat yield (FY) were recorded on several farms in 
the Netherlands between 1990 and 2023 (Table 5.1). For this research paper, no animal 
experiments were carried out and data on DMI were collected for previous research projects. 
The records resulted from several experiments previously described in the literature by 
Beerda et al. (2007), Veerkamp et al. (2000), Zom et al. (2012), and van Knegsel et al. (2014). 
The experiments were performed at several locations in the Netherlands, for example at: Aver 
�����;� ������ Zathe in Ureterp; Cranendonck in Soerendonk; ‘t Gen in Lelystad; 
������������������������������;�����������������������������������������;��������������
����������;������������������;�����������������������������;����������������������������
����������������������In addition, data was available of routine DMI recording by CRV 
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on an additional three farms. All cows were housed indoors, fed mixed diets ad libitum, and 
were milked two to three times a day in a milking parlour or milked by AMS during the 
experiments. Dry matter intake was recorded using individual automated feed bins (RIC bins, 
Insentec B.V.). The interval of recording DMI varied between experiments and ranged from 
one to five times per week. Specific dietary composition and energy of the diets were not 
available and DMI was estimated based on the dry matter composition of the diets. Body 
weight of the cows was measured with weighing platforms three times per week or daily, 
depending on the location of the cows. Milk yield, FY and PY were defined as the total yield 
per day in kg.  

 

Table 5.1. The number of records and number of recorded cows per trait before and after editing 

  
 Trait1 

Number of records 

 

Number of cows 

Original data Weekly 
means 

After 
filtering Original data Weekly 

means 
After 

filtering 

CH4c 882,632 74,569 71,572  9,274 7,139 6,901 

DMI 727,458 210,865 206,491  7,547 7,546 7,399 

MY 1,235,834 544,562 532,905  9,549 9,550 9,366 

PY 454,187 450,822 440,570  9,542 9,542 9,358 

FY 452,151 450,034 439,785  9,544 9,544 9,360 

BW 698,325 195,361 192,440  7,049 7.049 6,885 
1CH4�������������������������;������������������������;����������������;�������������������;���������������;����
= body weight 

 

5.2.1 Data editing 
The data was filtered to exclude outliers using several criteria. Dry matter intake records of 
less than 8 kg per day and more than 55 kg per day and BW records of less than 300 kg and 
more than 1,000 kg were set to missing. Outliers for MY, FY, and PY were set to missing if 
the record was less or more than three standard deviations from the overall mean MY, FY, 
or PY, respectively. After filtering, all records were averaged to weekly records for each trait 
per cow to homogenise the data. Weekly records for CH4c were set to missing if they 
consisted of less than five AMS visits recorded during that week. Cows with missing 
information for any trait remained in the analyses for the other traits. The number of weekly 
records for each trait and the number of cows with weekly records are given in Table 5.1.  
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After averaging the records to weekly means, additional filtering criteria were applied to 
prepare the data for the genetic analyses. All records which were not labelled to have been 
part of a DMI experiment were labelled with the herd, year, and quarter of the year as 
experiment. For DMI, only experimental treatments for DMI were retained with records for 
at least five unique animals. Cows which were less than 50% Holstein were discarded and 
not included in the analyses and records recorded at 406 DIM and later were set to missing. 
In addition, records of first parity cows with an age of calving under 20 months were 
discarded. Thereafter, records of DMI and BW for cows with less than three weekly records 
in a lactation, and of CH4c for cows with less than five weekly records in a lactation or less 
than four records per herd per week were set to missing. In addition, CH4c records within 
groups of year and week of the year, with less than four records within a farm were set to 
missing. Information on the main traits in the final dataset is given in Table 5.1. 

After homogenizing and filtering the data, three additional traits were computed. Fat 
percentage (F%) and protein percentage (P%) were calculated as the FY or PY, respectively, 
divided by the kilograms of milk coming from the corresponding milk record. Thereafter, 
energy corrected milk yield (ECM) was calculated, using the following formula (Sjaunja et 
al., 1991): 

𝐸𝐸𝐸𝐸𝐸𝐸 = 0.25 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑘𝑘𝑘𝑘) + 12.2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑘𝑘𝑘𝑘) + 7.7 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑘𝑘𝑘𝑘) 

Finally, three subsets of the dataset were made including only first, second, or third and later 
parity records for all traits. The dataset was split into three subsets, to allow for more 
parsimonious modelling without the need to include a within and an across lactation 
permanent environmental effect. The number of records, number of cows, and descriptive 
statistics per group of parity are given in Table 5.2. 

5.2.2 Pedigree and genotype data 
Pedigree and genotype information were made available by the cooperative cattle 
improvement organization CRV (Arnhem, the Netherlands). The pedigree was pruned to 
include only phenotyped animals and their ancestors and the final pruned pedigree comprised 
106,641 animals. Some of the phenotyped cows were also genotyped using the Eurogenomics 
10k chip. Imputation was routinely performed by CRV and resulted in a final number of 
55,008 SNPs with information on 8,194 animals, which were used for the analyses. From the 
pedigree and genotype data, a combined genomic relationship matrix (H-1 matrix) was 
constructed following the method of Aguilar et al. (2010) and Christensen and Lund (2010) 
with the software calc_grm version b202212 (Calus and Vandenplas, 2022). The final H-1 
matrix comprised all 106,641 animals that were included the pedigree. 
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5.2.3 Genetic analyses 
Variance components were estimated using restricted maximum likelihood methods in 
ASReml v4.2.1 (Gilmour et al., 2015) with the H-1 relationship matrix using a single step 
procedure. Bivariate models were run between each combination of traits and as pairwise 
analyses between CH4c from first, second, and third and later parity cows. The following 
bivariate model was used: 

[𝐲𝐲1
𝐲𝐲2

] = [𝐗𝐗1 0
0  𝐗𝐗2

] [𝐛𝐛1
𝐛𝐛2

] + [𝐙𝐙𝐙𝐙1 0
0 𝐙𝐙𝐙𝐙2

] [𝐚𝐚1
𝐚𝐚2

] + [𝐙𝐙𝐙𝐙1 0
0 𝐙𝐙𝐙𝐙2

] [𝐩𝐩𝐩𝐩1
𝐩𝐩𝐩𝐩2

] + [𝐙𝐙𝐙𝐙1 0
0 𝐙𝐙𝐙𝐙2

] [𝐞𝐞1
𝐞𝐞2

] 

where yi �����������������������������������������������������;�bi is a vector with fixed effects 
for each trait, which were: an interaction between farm, year and week of measurement for 
the traits CH4c and CO2 concentrations (CO2c) only, an interaction between farm and 
experimental treatment for all traits except CH4c and CO2c, a second order Legendre 
polynomial on age at calving in days, a third order Legendre polynomial on DIM, and an 
interaction between the second breed with a second order Legendre polynomial on the 
����������������������������;�ai is a vector with additive genetic effects of the cows in yi;�pei 
is a vector with permanent environmental effects of the cows in yi;�����ei is a vector with 
residuals (the analyses on the third and later parity subset included an interaction between 
parity and the permanent environmental effect). Xi, Zai, Zpei, and Zei are incidence matrices 
linking the records of yi to the fixed effects, covariates, additive genetic, permanent 
environmental and residual effects, respectively. For the runs between DMI and CH4c or 
CO2c, the residual and permanent environmental covariances were fixed to zero, because of 
a limited number of cows with records on both a greenhouse gas trait and DMI (parity one 
had 15 cows with records on both traits, of which one had records for both traits in the same 
week; parity two had 28 cows with records on both traits of which 2 had records in the same 
week; and parity three and later had 163 cows with records on both traits of which 6 had 
records in the same week). The additive genetic, and permanent environmental effects for all 
traits were assumed normally distributed with a mean of zero, a variance of σ2

ji for random 
effect j and trait i, and for the non-fixed analyses a covariance between two traits of σj1j2:  

[𝑗𝑗1
𝑗𝑗2

]  ~ 𝑁𝑁 [(0
0) , 𝐈𝐈 ⊗ (

𝜎𝜎𝑗𝑗1
2 𝜎𝜎𝑗𝑗1𝑗𝑗2

𝜎𝜎𝑗𝑗1𝑗𝑗2 𝜎𝜎𝑗𝑗2
2 )] 
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The estimated heritability (ℎ2) and repeatability (t) were defined as follows: 

ℎ2 = 𝜎𝜎𝑎𝑎
2

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑝𝑝𝑝𝑝2 + 𝜎𝜎𝑒𝑒2
 

𝑡𝑡 =  
𝜎𝜎𝑎𝑎

2 + 𝜎𝜎𝑝𝑝𝑝𝑝
2

𝜎𝜎𝑎𝑎2 + 𝜎𝜎𝑝𝑝𝑝𝑝2 +  𝜎𝜎𝑒𝑒2  

where σ2
a is the additive genetic variance, σ2

pe is the permanent environmental variance, and 
σ2

e is the residual variance. 

The genetic (rg) and phenotypic (rp) correlations were defined as: 

𝑟𝑟𝑔𝑔 = 𝜎𝜎𝑎𝑎1𝑎𝑎2
𝜎𝜎𝑎𝑎1𝜎𝜎𝑎𝑎2

 

𝑟𝑟𝑝𝑝 =
𝜎𝜎𝑝𝑝1𝑝𝑝2

𝜎𝜎𝑝𝑝1𝜎𝜎𝑝𝑝2
 

where σai is the additive genetic standard deviation of trait one or two and 𝜎𝜎𝑎𝑎1𝑎𝑎2 is the additive 
genetic covariance between trait one and two, and σpi is the phenotypic standard deviation of 
trait one or two and 𝜎𝜎𝑝𝑝1𝑝𝑝2 is the phenotypic covariance between trait one and two. 

5.3 Results 
5.3.1 Descriptive statistics 
The means of CH4c, DMI, MY, and BW for first parity cows were 515 ppm, 19.7 kg/d, 27.4 
kg/d, and 600 kg, respectively (Table 5.2). The coefficients of variation (CV) ranged between 
10% and 51% and were highest for CH4c. 
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Table 5.2. Descriptive statistics for each trait: the number of cows, number of records after editing, trait unit, mean, 
standard deviation (SD), minimum, maximum, and coefficient of variation (CV), per group of parity, including 
parity one, parity two, and parity three and later (3+) 

Trait1 Parity N 
cows N records Unit Mean SD Min Max CV 

(%) 
CH4c 1 2,084 17,936 

ppm 
515 259 12 2,369 50 

 2 1,843 15,265 557 282 7 2,095 51 
 3+ 3,743 38,364 592 305 5 2,087 51 
CO2c 1 385 2,369 

ppm 
4,168 1,685 7 9,483 40 

 2 390 2,090 4,324 1,711 13 9,511 40 
 3+ 758 5,389 4,315 1,730 6 9,837 40 
DMI 1 4,998 87,306 

kg/d 
19.7 3.6 8 51 18 

 2 3,500 54,660 22.1 4.2 8 53 19 
 3+ 2,943 64,525 22.5 4.5 8 50 20 
MY 1 8,891 179,469 

kg/d 
27.4 7.1 1.0 59.1 26 

 2 7,553 139,875 31.6 9.6 1.0 59.4 31 
 3+ 5,776 213,539 32.1 10.3 0.9 59.4 32 
ECM 1 8,889 139,295 

kg/d 
27.5 6.0 3.1 56.4 22 

 2 7,529 112,539 32.4 8.6 3.8 60.3 27 
 3+ 5,760 186,581 33.6 9.5 3.2 59.3 28 
PY 1 8,889 139,317 

kg/d 
0.90 0.2 0.2 1.9 24 

 2 7,539 112,996 1.09 0.3 0.2 1.9 27 
 3+ 5,772 188,235 1.11 0.3 0.2 1.9 28 
FY 1 8,889 139,328 

kg/d 
1.13 0.3 0.1 2.5 22 

 2 7,538 112,990 1.34 0.4 0.1 2.5 27 
 3+ 5,767 187,445 1.40 0.4 0.1 2.5 29 
P% 1 8,889 139,314 

% 
3.56 0.4 1.3 18.7 11 

 2 7,539 112,850 3.61 0.4 0.4 12.4 12 
 3+ 5,768 187,801 3.55 0.4 1.0 14.6 12 
F% 1 8,889 139,326 

% 
4.39 0.8 1.3 22.5 17 

 2 7,536 112,778 4.47 0.8 0.6 14.5 17 
 3+ 5,763 186,934 4.50 0.7 0.5 18.6 17 
BW 1 5,919 119,523 

kg 
600 72 306 988 12 

 2 4,532 91,817 667 75 301 995 11 
 3+ 4,194 164,715 713 71 310 1,000 10 

1CH4c = methane concentration before standardis�����;���2c = carbon dioxide concentration before standardis�����;�
�����������������������;����������������;����������������������������������;�������������������;���������������;�
�����������������������;��������������������;����������������� 

 

5.3.2 Heritability and repeatability 
The estimated heritabilities averaged over the bivariate runs ranged from 0.21 ± 0.04 to 0.27 
± 0.03 for CH4c, and from 0.23 ± 0.15 to 0.44 ± 0.15 for CO2c (Table 5.3). For the other 
traits, the lowest heritability was estimated for DMI in second parity cows (0.21 ± 0.02) and 
the highest heritability was estimated for BW in third and later parity cows (0.79 ± 0.01). The 
repeatability estimates were moderate to high and ranged from 0.46 ± 0.01 for first parity P% 
to 0.93 ± <0.01 for third and later parity BW. 
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Table 5.3. The heritability (h2), repeatability (t), additive genetic variance (σa
2), permanent environmental variance 

(σpe
2), and residual variance (σe

2) for each trait as the mean of all bivariate runs 

Trait1 Parity h2 t σa
2 σpe

2 σe
2 

CH4c 1 0.21 ± 0.04 0.65 ± 0.01 0.10 ± 0.02 0.19 ± 0.01 0.16 ± <0.01 
 2 0.24 ± 0.04 0.70 ± 0.01 0.13 ± 0.03 0.24 ± 0.01 0.16 ± <0.01 
 3+ 0.27 ± 0.03 0.73 ± 0.01 0.17 ± 0.02 0.29 ± 0.01 0.17 ± <0.01 
CO2c 1 0.23 ± 0.15 0.54 ± 0.05 0.13 ± 0.10 0.18 ± 0.05 0.26 ± 0.01 
 2 0.44 ± 0.15 0.71 ± 0.04 0.34 ± 0.16 0.22 ± 0.08 0.23 ± 0.01 
 3+ 0.31 ± 0.07 0.72 ± 0.02 0.25 ± 0.07 0.33 ± 0.03 0.22 ± <0.01 
DMI 1 0.29 ± 0.02 0.69 ± 0.01 3.53 ± 0.29 4.92 ± 0.14 3.79 ± 0.02 
 2 0.21 ± 0.02 0.65 ± 0.01 3.52 ± 0.45 7.52 ± 0.27 5.92 ± 0.04 
 3+ 0.22 ± 0.02 0.67 ± 0.01 4.35 ± 0.44 8.98 ± 0.25 6.51 ± 0.04 
MY 1 0.43 ± 0.01 0.72 ± 0.01 17.23 ± 0.83 11.82 ± 0.27 11.31 ± 0.04 
 2 0.33 ± 0.02 0.70 ± 0.01 19.99 ± 1.26 21.76 ± 0.53 18.03 ± 0.07 
 3+ 0.45 ± 0.01 0.69 ± 0.01 34.04 ± 1.36 17.76 ± 0.31 23.10 ± 0.07 
ECM 1 0.36 ± 0.01 0.67 ± 0.01 12.22 ± 0.65 10.32 ± 0.24 11.20 ± 0.04 
 2 0.30 ± 0.02 0.65 ± 0.01 3.52 ± 0.45 7.52 ± 0.27 5.92 ± 0.04 
 3+ 0.42 ± 0.01 0.68 ± 0.01 26.73 ± 1.13 16.36 ± 0.29 20.52 ± 0.07 
PY 1 0.39 ± 0.01 0.69 ± 0.01 0.02 ± <0.01 0.01 ± <0.01 0.01 ± <0.01 
` 2 0.33 ± 0.02 0.67 ± 0.01 0.02 ± <0.01 0.02 ± <0.01 0.02 ± <0.01 
 3+ 0.48 ± 0.01 0.70 ± 0.01 0.04 ± <0.01 0.02 ± <0.01 0.02 ± <0.01 
FY 1 0.31 ± 0.01 0.58 ± 0.01 0.02 ± <0.01 0.02 ± <0.01 0.02 ± <0.01 
 2 0.28 ± 0.01 0.58 ± 0.01 0.03 ± <0.01 0.03 ± <0.01 0.04 ± <0.01 
 3+ 0.39 ± 0.01 0.62 ± 0.01 0.05 ± <0.01 0.03 ± <0.01 0.05 ± <0.01 
P% 1 0.35 ± 0.01 0.46 ± 0.01 0.05 ± <0.01 0.02 ± <0.01 0.07 ± <0.01 
 2 0.31 ± 0.01 0.47 ± 0.01 0.05 ± <0.01 0.02 ± <0.01 0.08 ± <0.01 
 3+ 0.43 ± 0.01 0.51 ± 0.01 0.08 ± <0.01 0.01 ± <0.01 0.09 ± <0.01 
F% 1 0.44 ± 0.01 0.54 ± 0.01 0.26 ± 0.01 0.05 ± <0.01 0.27± <0.01 
 2 0.45 ± 0.01 0.57 ± 0.01 0.27 ± 0.01 0.07 ± <0.01 0.27 ± <0.01 
 3+ 0.55 ± 0.01 0.60 ± 0.01 0.40 ± 0.01 0.03 ± <0.01 0.29 ± <0.01 
BW 1 0.39 ± 0.02 0.87 ± <0.01 1,477 ± 112 1,788 ± 48 493 ± 2 
 2 0.37 ± 0.02 0.88 ± <0.01 1,775 ± 161 2,481 ± 77 583 ± 3 
 3+ 0.79 ± 0.01 0.93 ± <0.01 6,944 ± 252 1,187 ± 30 610 ± 2 

1CH4�������������������������;���2��������������������������������;������������������������;����������������;�
ECM = energy ��������������� �����;� ��� �� �������� �����;� ��� �� ���� �����;� ��� �� �������� ����������;� ��� �� ��� 
����������;����������������� 

 

5.3.3 Phenotypic and genetic correlations 
�����������������������������������4������������ �������������������� (Table 5.4, 5.5, and 
5.6)�� ������������������� ���������������������������������� ������ �����������������������
�����������������������������������������������-0.04)��������������������������������������
����������������������������4�����������������������������������������������������������4c, 
and FY and F% (0.12 ± 0.08 to 0.23 ± 0.10 and 0.14 ± 0.06 to 0.21 ± 0.08, resp.). The genetic 
�����������������������4��������������������������������� from 0.06 ± 0.10 to 0.15 ± 0.12. 

����������������������������������4c and CO2������������������������������������������������
5.4, 5.5, and 5.6). Similar to the results for CH4��������������������������������������������2c 
���� ���� ��������� ����� ���������������������� �������� ������������ ����������2c and DMI 
�������������������������������������������������������������������������������������������
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parity three plus being the strongest correlation between CO2c and a breeding goal trait. The 
genetic correlations between DMI and the production traits MY, PY, and FY were strong, 
and ranged from 0.62 ± 0.03 to 0.77 ± 0.03 over parities (Table 5.4, 5.5, and 5.6). The genetic 
correlation between DMI and BW was weak to moderate and was weakest at 0.25 ± 0.02 in 
parity one and strongest at 0.48 ± 0.04 in parity three and later. 

Phenotypic correlations between CH4c measured in different parities were weak to moderate 
and were 0.12 ± 0.03, 0.20 ± 0.03, and 0.51 ± 0.04 (Table 5.7). The genetic correlations were 
strong and were: 0.97 ± 0.15 between parity one and two, 0.96 ± 0.14 between parity two and 
three plus, and 0.86 ± 0.20 between the most distant parities. 

5.4 Discussion 
The objective of this study was to investigate the genetic relationships between enteric CH4c 
and key breeding goal traits in Dutch dairy cows, including DMI, BW, and milk production 
traits, to inform breeding programmes aimed at mitigating methane emissions. The findings 
revealed generally weak genetic correlations between CH4c and the studied traits, with some 
positive (although weak) associations, particularly with FY and F%. The weak genetic 
correlations between CH4c and production traits suggest that it is feasible to select for lower 
CH4c, while improving milk production and other economically important traits. 

5.4.1 Descriptive statistics 
The average CH4c ranged from 515 to 592 ppm over parities, which is similar to what was 
reported by Sypniewski et al. (2021) (505 and 517 ppm, for two farms), but lower than what 
was reported by Huhtanen et al. (2015), Rey et al. (2019), and Saborío‐Montero et al. (2019) 
(758 and 1,405, 1,268, and 853, respectively). Differences between the level of emissions 
that were recorded between studies can be expected based on the type of sniffer that was 
used, the dimensions of the feed bin the sniffer was installed into, and filtering of data before 
calculating a mean over a day or week. The CH4c and CO2c traits had a high CV, which was 
previously addressed in an earlier paper on part of the data (van Breukelen et al., 2022).  
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The minimum CH4c was 5 ppm and the minimum CO2c was 6 ppm, which is lower than what 
would be expected from the biology of the cow. The low minima can be explained from 
drifting of sensor calibration towards zero. Moments with extreme drift were filtered out of 
the dataset, although this was not sufficient to prevent the occurrence of low records after 
subtracting background concentrations and correcting for diurnal variation. As the CH4 and 
CO2 records around the minima were not detected as outliers in the dataset, these records 
were not filtered out of the data and are not expected to have had an effect on the genetic 
parameter estimates. For first parity cows, the average MY was 27.4 kg/d, the average BW 
was 600 kg, and the average DMI was 19.7 kg/d (Table 5.2), which is similar to previous 
estimates on first parity cows (Manzanilla-Pech et al., 2022a). For all three traits, the averages 
increased for second, third and later parity cows, as would be expected from the biology of 
the cow. The heritability and repeatability estimates for CH4c were similar to what was 
previously estimated and discussed in a study using the same data (van Breukelen et al., 
2024), however were slightly higher for parity two (0.24 ± 0.04 and 0.70 ± 0.01, resp.) and 
third and later parities (0.27 ± 0.03 and 0.73 ± 0.01, resp.). Heritabilities for MY, FY and PY 
were within the ranges of estimates used for genetic evaluations, which includes data from 
the Netherlands (Miglior et al., 2017). 

 

Table 5.7. Phenotypic (above diagonal) and genetic (below diagonal) correlations between methane concentrations 
in parity one (Par1), parity two (Par2), and parity three including later parities (Par3+) 

 Par1 Par2 Par3+ 
Par1  0.51 ± 0.04 0.12 ± 0.03 
Par2 0.97 ± 0.15  0.20 ± 0.03 
Par3+ 0.86 ± 0.20 0.96 ± 0.14  

 

The genetic relationships between milk production traits, BW, and DMI have been 
extensively addressed in the literature �������������������;�������������������������;��������
������������;����������������������������;����������������������;����������������������;�
���������������������������. However, relatively few studies have investigated the genetic 
relationships of these traits with CH4 emissions and estimates are often associated with large 
SE. Therefore, the remainder of the discussion focusses on the relationships of the studied 
breeding goal traits with CH4 emissions in dairy cows. The animals included in the study 
were an accurate representation of the Dutch national dairy herd, therefore, the genetic 
parameters estimated could apply in new national genetic evaluations for CH4c. 
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5.4.2 Genetic correlation with dry matter intake 
The phenotypic and genetic correlations between CH4c and milk production traits, DMI, and 
BW estimated in this study were weak and ranged from -0.25 ± 0.09 to 0.23 ± 0.10 over 
parities (Table 5.4, 5.5, and 5.6). The genetic correlations between CH4c and DMI estimated 
in this study were 0.06 ± 0.10 for first parity cows, 0.15 ± 0.12 for second parity cows, and 
0.09 ± 0.10 for third and later parity cows. A previous study that estimated genetic 
correlations between CH4c and DMI, using datasets in the Netherlands and Denmark, 
reported correlations of -0.09 ± 0.38 and 0.60 ± 0.13, respectively (Difford et al., 2020). The 
genetic correlation of -0.09 ± 0.38 was estimated from a dataset in the Netherlands, using a 
subset of the DMI data that was used for this study and was associated with a high SE. The 
estimates from this study indicate that a weak positive correlation between CH4c and DMI is 
more likely.  

A study by Manzanilla-Pech et al. (2021) estimated a genetic correlation between CH4 
production (estimated from sniffer concentration measurements using the formula as 
described by Madsen et al. (2010), and from here-on referred to as sniffer CH4 production) 
and DMI of 0.42 ± 0.10. Similarly, a study that recorded CH4 emissions using the SF6 tracer 
method reported a moderate genetic correlation with DMI of 0.42 ± 0.30 (Richardson et al., 
2021b). In addition, a study that used GreenFeed units to measure CH4 production, averaged 
over seven days on 451 cows, reported a strong genetic correlation with DMI of 0.83 ± 0.11 
(Lopes et al., 2024). Similar to sniffers, GreenFeed units measure spot samples of methane 
emissions from breath in a feed bin (Zimmerman, 2011). However, GreenFeed units also 
record head positioning and use an air flux method to measure total breath CH4 emissions, 
which can extrapolated to total production in g CH4/day using mass flux calculations 
(Huhtanen et al., 2015). Thereby, measurements by GreenFeed units are expected to provide 
a reliable estimate of true CH4 production ���������������������;����������������������. Thus, 
although the genetic correlations between sniffer CH4c and DMI were weak, the relationship 
between DMI and CH4 production should be further investigated.  

Measurements on CH4c by sniffers can be used as an indicator for CH4 production and the 
genetic correlation between sniffer CH4c and GreenFeed CH4 production has been estimated 
at 0.76 ± 0.15 (van Breukelen et al., 2023). In theory, a strong correlation between CH4c and 
CH4 production makes it unlikely that DMI is genetically correlated with CH4 production but 
not with sniffer CH4 concentrations. Therefore, the eigenvalues derived from the lowest 
estimated genetic correlation for first parity cows between CH4c and DMI reported in this 
study were investigated. Because some eigenvalues were negative, a positive definite matrix 
was constructed for the matrix with the three genetic correlations. The genetic correlations, 
recomputed from the positive definite matrix, show that it is numerically not unlikely to have 
a strong genetic correlation between sniffer CH4c and GreenFeed CH4 production and strong 
genetic correlation between GreenFeed CH4 production and DMI, while having a weak 
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genetic correlation between sniffer CH4c and DMI (Table 5.8). Nonetheless, biologically the 
sniffer and GF phenotypes are expected to have similar genetic correlations with DMI and, 
therefore, the relationship between sniffer CH4c and DMI should be further investigated. 

 

Table 5.8. Approximated expected genetic correlations between sniffer CH4 concentration (CH4c, ppm), GreenFeed 
CH4 production (GF CH4p, g CH4/day), and dry matter intake (DMI) 

 Sniffer CH4c GF CH4p 

GF CH4p 0.71  

DMI 0.08 0.78 

 

5.4.3 Genetic correlations with milk yield 
The genetic correlations between CH4c and milk production traits reported in this study were 
weak. The genetic correlations with MY were -0.04 ± 0.08 for first parity cows, 0.05 ± 0.09 
for second parity cows, and 0.03 ± 0.06 for third and later parity cows. These genetic 
correlations are lower than genetic correlations reported in previous studies which recorded 
CH4 using sniffers. Studies by van Engelen (2018) and Lopez-Paredes et al. (2020) analysed 
CH4c (ppm) and reported correlations with MY of 0.32 ± 0.06 and 0.17 ± 0.39, respectively. 
Other studies estimated sniffer CH4 production and reported genetic correlations with MY 
ranging from 0.16 ± 0.06 to 0.54 ± 0.26 ���������������������;������-��������������������;�
Manzanilla-�����������������;�����������������������. From the genetic correlations reported 
in the literature a positive relationship between MY and CH4c was expected, however, the 
results from this study show that the relationship is likely very weak.  

The estimated genetic correlations between sniffer CH4 production and MY may be stronger 
than expected due to possible bias in the estimates of sniffer CH4 production. Generally, 
sniffer CH4 production is predicted using information on milk production (Madsen et al., 
2010). Thus, moderate genetic correlations between sniffer CH4 production and MY may be 
inflated by the sniffer CH4 production phenotype also reflecting differences in MY. 

5.4.4 Genetic correlations with fat and protein yield 
The in this study estimated genetic correlations between CH4c and FY were 0.12 ± 0.08, 0.23 
± 0.10, and 0.15 ± 0.07 for first, second, and third and later parity cows, respectively. 
Previous studies reported stronger, although still weak, genetic correlations with CH4 
concentrations of 0.37 ± 0.07 (van Engelen et al., 2018) and 0.27 ± 0.28 (Lopez-Paredes et 
al., 2020). For sniffer CH4 production, studies by Pszczola et al. (2019) and Lopez-Paredes 
et al. (2020) reported positive genetic correlations with FY (0.21 ± 0.06 and 0.29 ± 0.28, 
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respectively), whereas a study by Lassen and Lovendahl (2016) reported a negative 
correlation although with a large SE (-0.15 ± 0.48). A study that used GreenFeed units to 
measure CH4 production reported a strong estimate of the genetic correlation with FY of 0.89 
± 0.12 (Lopes et al., 2024). Thus, the genetic relationship between CH4 production and FY 
is most likely positive, indicating that cows with a higher FY generally have a higher CH4 
production. However, the genetic correlation with sniffer measured CH4c is weak and, 
therefore, selecting for lower CH4c is not expected to have a large effect on FY.  

The genetic correlations between CH4c and PY were very weak and ranged from <0.01 ± 
0.08 to 0.08 ± 0.01. Two previous studies reported stronger, although also weak, genetic 
correlations with CH4 concentrations of 0.34 ± 0.06 (van Engelen et al., 2018) and 0.22 ± 
0.41 (Lopez-Paredes et al., 2020). For sniffer CH4 production, the correlation with PY was 
reported to be weak to moderate, ranging from 0.07 ± 0.06 to 0.46 ± 0.32 (Lassen and 
���������������;����������������������;�������������������. In addition, the study that used 
GreenFeed units to measure CH4 production reported a moderate genetic correlation with PY 
of 0.55 ± 0.14 (Lopes et al., 2024). Therefore, from the results of this study an effect of 
selecting for lower CH4c on PY is not expected. However, it is still recommended to monitor 
FY and PY to ensure that undesired responses do not occur, as from the literature the genetic 
correlations with CH4 production recorded by GreenFeed units appear to be stronger. 

5.4.5 Genetic correlations with fat and protein percentage 
Genetic correlations between CH4c and F% were similar to the genetic correlations between 
CH4c and FY and were 0.21 ± 0.08 for first parity cows, 0.20 ± 0.08 for second parity cows, 
and 0.14 ± 0.06 for third and later parity cows. In the literature, negative correlations have 
been reported of -0.05 ± 0.06 and -0.15 ± 0.48 ���������������������������;��������������
2018), as well as positive correlations of 0.02 ± 0.40 and 0.37 ± 0.49 (Lassen and Lovendahl, 
����;������-Paredes et al., 2020). Thus, the in the literature reported estimates have a large 
heterogeneity and are all not significantly different from zero, but the in this study estimated 
genetic correlations of 0.21 ± 0.08, 0.20 ± 0.08, and 0.14 ± 0.06 show that the genetic 
relationship between F% and sniffer recorded CH4c is likely positive albeit weak. Similarly, 
estimates of the genetic correlation between F% and sniffer CH4 production reported in the 
literature were weak and positive and were 0.04 ± 0.06 and 0.27 ± 0.36 (Lopez-Paredes et 
���������;�����������������������. Therefore, a large effect of selecting for lower CH4c on F% 
is not expected. 

The estimates of the genetic correlation between CH4c and P% were, similar to the 
correlations with PY, very weak and ranged from 0.03 ± 0.06 to 0.12 ± 0.09. Similar estimates 
have been reported in the literature of -0.06 ± 0.06 and 0.08 ± 0.32 (Lopez-Paredes et al., 
����;� ���� ��������� �����. For sniffer CH4 production, the in the literature reported 
correlations with P% were all positive. However, these estimates have large differences in 
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magnitude and ranged from 0.07 ± 0.06 to 0.77 ± 0.35 ���������������������������;������-
��������������������;�������������������������������������������������������������������������
sniffer CH4 ������������������������� ��������� ������������������� �������� ��������������
sniffer CH4 �������������������4 ��������������� ��������������������� ��������������������
������������������4 �����������������, ���������������������4 �����������������������������
����������������������� using fat and �������������������������������������������4 �����������
��������������������������������������������������������������������������������������������
����Nonetheless���������������������������������4� ������������������������������ large �������
����������ng ������������4������������������������ 

5.4.6 Genetic correlations with energy corrected milk yield 
�����������������������������������4����������������������������������������������������
������������������� ������������������������������������������������������������������������
������������������������������4����������������������������-�������������������, and a 
�����������������������������������������������-������������������ ��������������������������
����� �� ����� �����������-����� ��� ����� ������ ����� �������� ��4 ������������ �� ������ �����
�����������4 emissions using the SF6 �������������������������������������������������������
���������������-�����������������������������������������������������������������������������
���������������������������������������������������������������������������4 �����������
������������������������������������������� of 0.33 ± 0.12 ���������������������������������
�������� of 0.74 ± 0.13 ������������������������������������������������������������4�������
�������������������������������������� ��� ���������� ������������������ ���������������
��������������������������������������������4 ����������������������������������������������
of CH4�����������������������������������������������������������������������������������
�������������������������������� ��� ������������.  

5.4.7 Genetic correlations using predicted methane 
In the literature, additional estimates of �������� ������������� ����� ����� ��������� ��������
������������4 �����������������������������������������������������������������������������
����� �����������-��������� �������������� �������������������� ������������ �����������������
���������������������������������4 and MY ranged from -����������������������������������
����������������;��������������������;��������������������;�����������������������;��������������
����;�����������������������������������������������������������������������������������������
�����������4 and MY as ���������������������-�����������������������������������������4 
������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������;����������
��� ����� ����;� ���� ��������� ��� ����� ������� ����������� ����������� ������� ������� ������ ���
������������ �������� �������� ������������� ����� ��������� ��4 ����������� ���� �������, 
����������������������������������������������������������������������������������������������
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to understand the genetic relationship between the various CH4 predictor traits and other 
breeding goal traits. Weak genetic correlations between predicted CH4 emissions and true 
CH4 emissions may otherwise result in unexpected correlations with other traits (van 
Engelen, 2018), which, next to the high SE of the estimates, could partly explain the large 
heterogeneity in the estimates of genetic correlations reported in the literature and described 
in the meta-analysis by Hossein-Zadeh (2022). 

5.4.8 Genetic correlation with body weight 
The estimated genetic correlations between CH4c and BW were very weak. The genetic 
correlation was -0.04 ± 0.10 for first parity cows, -0.04 ± 0.11 for second parity cows, and 
0.06 ± 0.06 for third and later parity cows. A previous study, that estimated correlations 
between CH4c and BW using two datasets, reported somewhat higher estimates of 0.16 ± 
0.25 and 0.34 ± 0.16 (Difford et al., 2020). Previous estimates of the correlation between 
sniffer CH4 production and BW showed a large heterogeneity, and the estimates ranged from 
a negative correlation of -0.18 ± 0.08 to a strong and positive correlation of 0.65 ± 0.07 
���������������������;���������������������������;�����������-Pech et al., 2021). Again, the 
genetic correlations between sniffer CH4 production and BW may be inflated when BW is 
included in calculating sniffer CH4 production as is done by the formula by ��������������
(2010). However, also the study that used GreenFeed units to measure CH4 production 
reported a strong genetic correlation with metabolic BW of 0.68 ± 0.10 (calculated as BW0.75, 
�������������������). Thus, from the results of this study it appears that sniffer CH4c are not 
correlated to BW. However, as other studies have reported the stronger correlation estimates 
with CH4 production, the relationship should be monitored to avoid unexpected responses in 
BW when selecting for lower CH4 emissions. 

�����������������������������������������������������������������������������������������
������ ��������� ������������� ����������� ���� body condition score (BCS) and with BW 
corrected for BCS were positive ������� ��� ����� ����;���������� ������������������ �����. 
Body condition score is an important indicator of the cow's predisposition to sustain high 
milk yields while, for example, going through a negative energy balance during early 
lactation. Previous genetic correlations between sniffer CH4 production and BCS were 
estimated at -0.28 ± 0.10 (Zetouni et al., 2018) and 0.11 ± 0.10 �����������-Pech et al., 2021) 
and this indicates that in the case of CH4 production the genetic correlation with BCS is also 
likely to be weak. Nonetheless, estimates between BCS and sniffer CH4c have to date not 
been published and this genetic relationship should be evaluated in future studies. 

5.4.9 Genetic correlation with carbon dioxide 
Next to CH4c, sniffers also record CO2c. Although this greenhouse gas has received less 
attention in the literature to be used in genetic selection, CO2c can potentially be applicable 
as an indicator for other traits in animal breeding practices (Difford et al., 2020). Previous 
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studies have shown that CO2 production recorded using GreenFeed units is phenotypically 
correlated to DMI (0.36), feeding frequency (0.26), and feeding duration (0.18) in Holstein 
bulls (Callegaro et al., 2022). Similarly, a study using respiration chambers on Holstein cows 
reported even stronger phenotypic correlations between CO2 production and DMI (0.93 ± 
<0.01) and CO2 production and ECM (0.82 ± <0.01) (Huhtanen et al., 2021). Furthermore, 
CO2c is a useful parameter that is applied in formulas to estimate CH4 production from sniffer 
measurements ��������������������;��������������������� �������������������������������������
(RFI) (Huhtanen et al., 2021). 

The in this study estimated genetic correlations between CO2���������������������� ��������
����� ���� ��� ����� ������ �� ������ ��� Difford et al. (2020) reported positive genetic 
correlations between sniffer CO2c and BW of 0.19 ± 0.17 and 0.10 ± 0.17. These estimates 
are higher than the estimates reported in this study for first and second parity cows (-0.04 ± 
0.26 and 0.04 ± 0.20, respectively), however, similar to the estimate for third and later parity 
cows (0.21 ± 0.12). This indicates that �������������������������������������������������������
between CO2c and BW. The strongest genetic correlations over parities estimated in this 
study were between CO2c and DMI, which ranged from 0.19 ± 0.23 to 0.29 ± 0.16. Estimates 
of the genetic correlations in the study by Difford et al. (2020) of CO2c with DMI and RFI 
ranged from negative to positive (-0.08 ± 0.37 and 0.42 ± 0.13 for DMI, and -0.62 ± 0.38 to 
0.54 ± 0.19 for various RFI traits). The estimate of -0.08 between CO2c and DMI was 
estimated on a subset of the DMI records used for this study. Thus, from the results of this 
������������������������������������������������������������������2c and DMI is positive, 
������������������������������������������������������������-evaluated on a larger dataset, 
because the number of CO2c records was small, with 2,369 records on 385 first parity cows, 
and SE were large. 

In addition, the phenotypic and genetic correlations between CH4c and CO2c estimated in 
this study were strong (0.81 ± 0.01 and 0.97 ± 0.02, resp.). This is in agreement with a study 
that used respiration chambers and reported phenotypic correlations up to 0.96 between CH4 
production and CO2 production ������� ���� ����� �����. However, a study that used 
GreenFeed units for Holstein bulls reported a lower correlation of 0.62 (Callegaro et al., 
2022). Genetic correlations between GreenFeed recorded CH4 production and CO2 
�����������������������������������������������������������������������������������������
means ����� ���������� ��� ����� �����. Thus, CO2 production measurements may provide 
additional information on CH4c and CH4 production and can for example be useful to enlarge 
CH4 datasets, by including cows that had only CO2 production recorded with CO2 as a 
predictor trait. 
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5.4.10 Genetic correlations for methane concentrations between parities 
Although the estimated phenotypic correlations between parities were weak to moderate, the 
genetic correlations were strong and ranged from 0.86 ± 0.20 to 0.97 ± 0.15. The weak 
phenotypic correlations suggest that environmental effects segregate the measurements 
between parities and thus by measurements taken far apart in time. Nonetheless, the strong 
genetic correlations show that cows with a breeding value for low CH4c in first parity are 
also likely to have a breeding value for low CH4c in later parities. The genetic correlations 
are stronger than what has been reported by Manzanilla-Pech et al. (2021), who reported 
strong genetic correlations between first and second parity, and second and third parity (0.91 
± 0.11 and 0.85 ± 0.22, resp.), but a moderate correlation of 0.48 ± 0.21 between first and 
third parity. Furthermore, the genetic correlations between CH4c and the reported breeding 
goal traits were similar over parities. High genetic correlations between parities suggest that 
a repeatability model, including a within and across parity permanent environmental effect, 
could be sufficient in analysing data across parities, as an alternative to using a multiple-trait 
model (Strabel et al., 2005), allowing for more simplistic models to be used for new breeding 
value estimations. 

5.4.11 Implications 
Genetic correlations are used to predict the consequences of selection, to investigate 
undesired responses in traits, and to develop informed breeding goal traits for methane. 
Thereby, the estimates are essential to be able to make informed selection decisions in the 
future. The results of this study show that the genetic correlations of milk production traits 
(MY, FY, PY, F%, P%, and ECM), DMI, and BW with sniffer recorded CH4c are weak. 
Thus, undesired responses in other traits are expected to be minimal and lowering CH4c while 
improving the other breeding goal traits is possible. For example, a genetic correlation 
between CH4c and F% of 0.21 means that only 4% of the variation in CH4c can be explained 
by differences in F%, whereas for MY with a genetic correlation of -0.04 less than 1% of the 
variation in CH4c can be explained by differences in MY. Thereby, the weak genetic 
correlations also show us that the investigated breeding goal traits are not informative as 
predictors for CH4c and endorse the importance of direct recording of CH4 emissions. 

The weak genetic correlations also have implications for trait definition. One trait that has 
been investigated in the literature is residual CH4 �������������������;���������������������;�
Manzanilla-Pech et al., 2021). Residual CH4 can be phenotypically or genetically adjusted 
for production, BW, and/ or DMI. By doing so, animals that have a lower CH4 emission 
regardless of their level of production, BW, and DMI can be more easily identified. However, 
weak correlations between CH4c and the adjustor traits indicate that little variance is 
explained by the adjustor traits and thus most likely there will be little to no difference in the 
breeding values for sniffer CH4c and residual CH4. Therefore, sniffer CH4c may be preferred 
for breeding programs over residual CH4, because interpretability of sniffer CH4c is easier. 
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5.5 Conclusions 
This study provided insights into the genetic correlations between enteric CH4c and DMI, 
BW, and milk production traits of dairy cows. The results indicate that while the genetic 
correlations between CH4c and these traits are generally weak, there are positive correlations, 
particularly with FY and F%. However, because of the weak relationships, the effect of 
selection for lower CH4c on FY and F% is expected to be small. Strong genetic correlations 
of CH4c between different parities suggest consistency in breeding values for CH4c emissions 
across parities and the genetic correlations with DMI, BW, and milk production traits were 
similar over parities. Overall, the weak genetic correlations between CH4c and production 
traits suggest that it is feasible to select for lower CH4c, while improving milk production 
and other economically important traits. 
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Worldwide, the pressure on reducing agricultural methane (CH4) emissions is increasing. 
Most agricultural CH4 emissions come from enteric emissions of ruminants, which have 
proven to be difficult and costly to mitigate. However, animal breeding offers a promising 
cost-effective solution. A limiting factor in implementing the mitigation of CH4 emissions in 
breeding programmes has been the lack of CH4 phenotypes that are readily available. For this 
thesis, we used sniffers to phenotype dairy cows by measuring CH4 and carbon dioxide (CO2) 
concentrations from breath and belching in the feed bins of automated milking systems 
(AMS). The collected dataset consisted of 74,569 weekly average CH4 measurements from 
7,139 cows on 68 commercial Dutch dairy farms. With the data we have estimated genetic 
parameters for various trait definitions and investigated phenotyping strategies. In addition, 
we estimated genetic correlations with CH4 production records from the more accurate 
GreenFeed (GF) CH4 recording method and with milk production traits, dry matter intake 
(DMI), and body weight (BW). The results from this thesis are currently being used to 
develop breeding value estimations for CH4 in the Netherlands from which a first breeding 
value will be introduced in 2025.  

This general discussion will bring together the results published in the research chapters of 
this thesis and will reflect on how sniffer CH4 phenotypes can be implemented in breeding 
programmes that aim to apply direct selection to reduce enteric CH4 emissions. The general 
discussion starts by reflecting on challenges that are associated with large-scale on-farm 
recording of CH4 from dairy cows with sniffers. Following this, genetic parameter estimates 
for various CH4 phenotypes defined from sniffer measurements are summarised and 
discussed, and recommendations for phenotyping strategies are given. The discussion 
concludes with recommendations to ensure a successful implementation of breeding for low 
CH4 emissions of dairy cows, targeting adoption by commercial farmers, methods to 
accelerate sustainable breeding, and methods to quantify the impact of breeding for low CH4 
emissions. 

6.1 Phenotyping with sniffers  
The research chapters of this thesis are a result of analyses on an extensive dataset of CH4 
concentrations recorded with sniffers that measured CH4 and CO2 concentrations from the 
feed bin of AMS on Dutch dairy farms. Sniffers are used to measure emissions of cattle, 
however, to date sniffers have mostly been used in research projects on both research and 
commercial dairy farms ��������������;����������������������;���������������������������;�
�����-��������������������;��������������������;����������������������;���������������������
2018). Different research groups use various type of sniffers, which are sometimes developed 
by the research group together with companies with expertise on sensors for recording 
emissions in various types of industries in and outside of agriculture (an overview of available 
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sniffer devices is given in Jonker et al. (2020)). As a results, large differences exist in 
hardware, recording set-up, and handling of raw measurements. Understanding these 
differences is essential to draw conclusions from the data, and to correctly apply the 
phenotypes in industry breeding programmes in the near future.  

6.1.1 Practicalities of using sniffers for methane recording individual cows 
The practical use of sniffers is still in its infancy, and the experiment conducted for this thesis 
on 68 dairy farms highlighted several lessons to be learned for on-farm phenotyping practices 
with sniffers. In the following paragraphs, common factors that impact data quality will be 
discussed and recommendations will be given on how to minimise their impact to be able to 
apply sniffers more effectively in ongoing and future research and industry projects. 

6.1.1.1 Challenges of measuring on dairy farms  
During the recording of the data used in this thesis, a common issue was the accumulation of 
dust (e.g., from the pelleted food) and moisture in the sampling tube, which resulted in 
restricted air passage through the tube and thereby disturbed sampling and measurements. 
Restriction of the sampling tube generally occurred from twice a week to only once every 
several weeks depending on the farm. Differences between farms most likely were a result 
of differences in the barn environment, dimensions of the feed bin, location of the inlet of the 
sampling tube, and the type of feed that was provided in the AMS.  

An easy solution to prevent restriction of the sampling tube is to use pressured air to blow 
accumulated dirt back into the feed bin, preferably daily. Cleaning the sampling tube with 
pressured air can be carried out manually, as was done during the data recording for this 
thesis, or automated using the pressured air that is used to open and close the gates of the 
AMS (i.e. sneezing, such as is applied by a research group in Denmark (Manzanilla Pech, 
2023)). An additional way of avoiding sampling problems from dust is to place a filter where 
the gas sample reaches the device. In addition, it is recommended to place an extra filter 
halfway through the sampling tube, that can easily be visually inspected for dirt or moisture 
and replaced when needed (Jonker et al., 2020). Preventing dirt from reaching the CH4 and 
CO2 gas sensors is important to increase the durability of the gas sensors. To further increase 
the durability and stability of the gas sensors, the casing of the sniffers should sufficiently 
protect against moisture and pests such as mice and flies, for example, by adhering to IP65 
standards. In addition, a stable temperature should be maintained within the casing and 
moisture should be actively removed from the sample. A stable temperature should also aim 
to avoid freezing of the moisture from condensation in the sampling tube in cold 
environments, which occurred in the sniffers used for this thesis during winter months until 
a technical modification was made. 
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6.1.1.2 Calibration of gas sensors  
Another common issue with sniffers that can cause inaccuracy is drift of the CH4 and CO2 
sensors, which is the gradual deviation of the sensor’s output from its calibrated state over 
time. Drift is a common issue in using non-dispersive infrared sensors (Dinh et al., 2016), 
and has, next to CH4 sensors, for example been reported in the use of near-infrared (NIR) 
spectroscopy sensors applied on milk samples from AMS (Diaz-Olivares et al., 2020). 
However, standardised methods to correct for drift in the data and online calibration 
maintenance techniques are lacking and should be developed for different applications 
independently.  

The nondispersive infrared (NDIR) sensors used to measure CH4 in this thesis usually started 
to drift after three months or more, going up to a year. When drift is notable, usually as 
skewness of the recorded data over time where the mean moves towards zero or the minimum 
moves away from zero, the gas sensors will have to be recalibrated using flacons of known 
CH4 or CO2 concentrations. For animal breeding purposes, small amounts of drift are not 
problematic as for breeding value estimations drift of the sensor will be identical for all cows 
measured within a farm during the same period of time. Therefore, drift can be corrected for 
in modelling, by fitting effects between farms and over time. In any case, it is recommended 
to calibrate NDIR sensors at least once every half year (depending on the type of sensor and 
manufacturer information), however, from practice this may be required more frequently 
(e.g. monthly) for some devices. To determine when sniffers need to be re-calibrated the data 
should be checked regularly. 

In addition, the CH4 and CO2 sensors in the sniffers used for this thesis did not drift to the 
same degree, which may result in spurious relationships between the CH4/CO2 ratio and its 
component traits. The CH4/CO2 ratio is important as it is often used to estimate CH4 
production from CH4 concentration measurements (Madsen et al., 2010). Thus, when 
performing analyses on the ratio, care must be taken in drawing conclusions in the presence 
of sensor drift. In addition, we observed that a large proportion of CO2 concentrations were 
recorded at the upper detection threshold of 10,000 ppm for the sniffers used for this thesis. 
Thus, most likely, the sensors were not able to record sufficient variation in the high CO2 
emitting cows. For future studies that aim to record CO2 emissions from breath, it is 
recommended to use CO2 sensors with a higher detection threshold, for example, up to at 
least 25,000 ppm and possibly up to 50,000 ppm ��������������������;�����������������������. 

6.1.1.3 Head movements  
During recording, further inaccuracies in sniffer measurements can come from differences in 
head movements of the cow, as in many AMS the cow can fully remove its snout from the 
feed bin to look around while its being milked ����������������������;�����������������. A 
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study by Huhtanen et al. (2015), has shown that head movement behaviour is highly 
repeatable, however, it is unknown if the behaviour is also heritable. If the head movement 
behaviour would be heritable and when there is a moderate to high genetic correlation with 
CH4 concentrations selection for low CH4 emitting cows may result in changes in cow 
behaviour in the AMS. To confirm this, it could be of interest to investigate if a trait for head 
movement is heritable and genetically correlated to CH4 production. For example, a trait 
could be defined using recording by GF units as the time that the cows’ head is not in the GF 
unit during a record as a percentage of the total time of the record. 

To account for head movement of cows in the AMS, recently an algorithm has been 
developed to filter out anomalies due to head movement based on CO2 concentration 
measurements (Bokde et al., 2023). The algorithm was validated against CO2 emissions 
recorded by GF units and successfully detected more than 90% of the irregularities in the 
CO2 data. Therefore, the algorithm appears to be an effective method to correct for head 
movements and could potentially be applied to the data used for this thesis, where CO2 and 
CH4 concentrations were simultaneously measured. However, the algorithm was tested on 
data from sniffers with higher detection thresholds for CO2. Therefore, the effectiveness of 
the algorithm on the data used in this thesis should first be evaluated before application. 

Hypothetically, an alternative method to account for head movements of the cows may be 
through the amount of concentrate that is fed in the AMS. Based on the amount of concentrate 
fed, it could be determined how long a cow needs on average to finish eating concentrate, 
after which the likelihood of the cow lifting its head from the feed bin becomes larger. 
Consequentially, the data after that period of time could be discarded. For the studies reported 
in this thesis, data on concentrate provided by the AMS was not available and thus this theory 
should first be further investigated. Another potential approach could be to apply computer 
vision techniques, using cameras to monitor head movements of the cows in the AMS to 
correct the sniffer measurements for head movement. Although algorithms for detecting head 
movement in AMS from images or video have not yet been developed, computer vision 
techniques show great potential and are increasingly utilised to track cattle for various 
purposes such as lameness detection ��������������������;�������������������. 

6.1.1.4 Feeding behaviour  
Other animal behaviours that may affect the measurements include differences in feeding 
behaviour. Methane emissions are generally highest during the six hours following feed 
consumption when the volume of feed being digested in the rumen is greatest (Hristov and 
Melgar, 2020). However, sniffers take spot measurements and the time since last feeding is 
unknown. Hypothetically, some cows may prefer to rest after consuming feed and visit the 
AMS never directly after a feeding event, whereas other cows may always prefer to visit the 
AMS directly after a feeding event. This would result in the first cow having lower 
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concentrations recorded by the sniffer, even though its total CH4 production over a full day 
might be identical to or higher than that of other cows, which could go undetected by the 
sniffer. In current large-scale phenotyping with sniffers and GF units, it is not possible to 
distinguish such differences unless individual DMI is also recorded. When DMI would be 
recorded, the CH4 data could potentially be corrected for the exact time of feeding, as an 
alternative to the correction for the hour of recording CH4 within farm as was done for all 
research chapters in this thesis. Nonetheless, as DMI is an expensive trait to record, it is 
unfeasible to record DMI on all farms where CH4c is recorded by sniffers.  

Hypothetically, an alternative method could be based on the number of eructations in breath, 
as it has been observed that the number of eructations in breath increased during feeding 
(Garnsworthy et al., 2012a). Based on peaks in CH4 emissions, the number of eructations per, 
for example, five minutes could be determined. This parameter could potentially be of 
interest to investigate if the last feeding time can be predicted based on the number of peaks 
in CH4 emissions per five minutes from a number of repeated breath measurements for each 
individual cow. However, to the author's knowledge, this approach has not been investigated 
to date. 

As an alternative, future studies could also first attempt to define a trait based on the average 
time between feeding and CH4 recording, using data from farms that record both DMI and 
CH4, for which genetic correlations with CH4 emissions could be estimated. If the time 
between feeding and CH4 recording would turn out to be heritable and repeatable, negative 
genetic correlations would indicate that high CH4 emitting cows generally have less time 
between feeding and CH4 recording. This would indicate that the time between feeding and 
CH4 recording should be accounted for to avoid changes in animal behaviour when breeding 
for lower CH4 as recorded by sniffers. As an alternative, in future studies genetic correlations 
with emissions recorded by for example respiration chambers (RC) can aid to observe if there 
is re-ranking in cows, where low correlations could indicate that there is an impact of 
differences between feeding times and AMS or GF visits. If there is re-ranking of cows, it is 
important to further develop methods that can correct for differences in the time since last 
feeding, as otherwise genetic selection may be less effective than expected by not being able 
to correctly pinpoint low CH4 emitting cows. 

6.1.1.5 Agreement between sniffers and GreenFeed 
To determine if sniffer CH4 phenotypes, despite their inaccuracies, are suitable indicators of 
total CH4 production, we estimated the genetic correlation between sniffer-recorded CH4 
concentrations (ppm) and GF-recorded CH4 production (g/day) in Chapter 3. Both methods 
record spot-samples of CH4 emissions, however some differences between the methods exist 
that impact their accuracy. Sniffers generally use a low-capacity pump of 0.6 to 4 L/min to 
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transport breath samples of the cow to the sensors through the sampling tube that is placed 
in the feed bin of the AMS. Because of the pump’s low capacity, the total breath of the cow 
is not captured and measured. On the other hand, GF units use a flux method and sample all 
concentrations from breath around the full head of the cow at 1,560 to 2,250 L/min (Huhtanen 
et al., 2015). Furthermore, the GF units use an additional sensor that can detect the moments 
when the cows’ head is inside the unit. Therefore, phenotypes by GF units are expected to 
provide a more reliable spot-sample estimate of the cows’ total CH4 production. 

In Chapter 3, we estimated a genetic correlation between sniffer-recorded CH4 concentration 
(ppm) and GF-recorded CH4 production (g/day) of 0.76. In addition, the heritabilities for 
sniffer and GF phenotypes were similar. These results indicated that the sniffer concentration 
measurements provide a good indicator to reduce CH4 production in breeding programmes, 
assuming that the GF phenotype is equal to true total emissions. The strong genetic 
correlation indicates that selection on low CH4 concentrations recorded by sniffers will result 
in a reduced CH4 production as recorded with GF units. Furthermore, because Greenfeed 
units record head movements of the cow and thus the GF measurements are less influenced 
by head movements, it suggests that with sufficient records by sniffers there may be little 
difference when adjusting or not for head movement.  

Overall, due to their low specificity, sniffer sensors currently show the most promise for use 
in phenotyping for genetic improvement programmes. The inaccuracies in the measurements 
prevent drawing conclusions from smaller datasets, which are typically collected for 
experimental nutritional or behavioural studies. Repeated and long-term data collection on 
individual animals, combined with modelling to correct for environmental effects, is essential 
to draw meaningful conclusions from the collected data �����������������������;������������
2018). Furthermore, by comparing the sniffer phenotypes with measurements from GF units, 
we assumed that GF units measure total CH4 production. However, this is a strong 
assumption, as GF units also provide multiple short-term measurements throughout the day 
and do not capture total emissions (Huhtanen et al., 2015). Previous studies have published 
estimates of strong phenotypic correlations between measurements by GF and RC (Hristov 
������������;����������������������. Nonetheless, to gain more confidence in the relationship 
between GF phenotypes and total CH4 production, it would be of interest to also estimate 
genetic correlations between GF and RC phenotypes, or directly between sniffer and RC 
phenotypes. 

6.1.2 Processing of raw measurements 
In our experiment, where we measured CH4 emissions with sniffers on approximately 70 
dairy farms, CH4 was recorded every five seconds, resulting in more than a million records 
collected each day. All records were pushed real-time to a cloud database using the mobile 
network, making the data directly accessible without needing to visit the farm where the 
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sniffer was installed. However, with long-term recording, the data would also include periods 
where functionality was hindered due to factors such as dirt in the sampling tube, freezing of 
the system from moisture accumulation in winter, the sampling tube being pulled out of place 
by cows, or the need for gas sensor recalibration. When multiple sniffers record long-term 
on several farms, it becomes unfeasible to monitor, select, and filter data manually. 

 

 

 

Figure 6.1. Methane concentrations (ppm) measured by sniffers in two milking robots, during two separate 
periods of one day. On the top, peaks in methane are continuously being measured, whereas in the bottom figure 
recorded concentrations are low and often nearing zero, which can occur due to blockages in the sampling tube or 
drift of the methane sensor 

 

During the data recording for this thesis, hindered functionality would result in a decrease of 
measured concentrations (Figure 6.1), and in the most extreme cases zero concentrations 
would be measured continuously. As a method of quality control, automatic data filtering 
steps were applied to discard data during moments where data recording was most likely 
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hindered (Chapter 4). While downloading the data from the cloud database, it was grouped 
by farm and hour, and discarded if: 1) the mean was below 30 ppm CH4, 2) the inter quartile 
range was below 200 ppm CH4, 3) the maximum was above 3,500 ppm CH4, or 4) if at least 
30% of the data would fall within the range of the first and second mode, plus and minus 10 
ppm CH4. In addition, individual outliers were discarded that fell outside of the upper and 
lower 0.001st quantile. Together, the criteria ensured that measured CH4 concentrations 
would fall within the expected range of cows’ CH4 breath concentrations (Jonker et al., 2020), 
while maintaining sufficient variation in measurements as would be expected from cows that 
are visiting the AMS throughout the day. The filtering steps applied in this thesis resulted in 
the data moving closer to normality, and more of the variance going into the genetic variance, 
as opposed to the residual variance or permanent environmental variance, in the genetic 
analyses.  

Alternative methods to account for anomalies in sniffer data, due to for example tube 
blockages or sensor drift, are absent in the literature. Initial research projects using sniffers 
typically involved short recording periods (one to two weeks) with regular sensor calibration, 
and therefore accumulation of dust and drift of sensors were less problematic. As discussed 
before, an algorithm has been described in the literature to filter out anomalies due to cows’ 
head movements (Bokde et al., 2023). However, it is unknown whether this algorithm is 
robust enough to filter out anomalies caused by blocked sampling tubes, sensor drift, and 
other interferences. Thus, there is a need for further development and comparison of methods 
and algorithms to filter and standardise sniffer concentration measurements used for genetic 
evaluations. These methods should be robust across various types of sniffers, different farms, 
and different brands and types of AMS. Developing versatile algorithms for data filtering of 
long-term CH4 recording in AMS will improve data quality and reduce labour required to 
check and filter data.  

Nonetheless, ideally each issue should be tackled at its source to increase the accuracy of 
sniffer measurements. For example, blocking of sampling tubes can be overcome by cleaning 
the tube automatically by using pressured air from the AMS gate to blow through the 
sampling tube when the gate closes after each milking (Manzanilla Pech, 2023). For drift, 
real-time automatic alerts can be set up to detect differences in the mean and variance of 
measured concentrations over time (e.g. between days). When an alert is triggered, the sniffer 
should be recalibrated. Addressing these issues directly would reduce the number of data 
gaps due to later data filtering. The data filtering steps used in this thesis often resulted in 
gaps ranging from an hour to several days or even weeks, until technicians could address the 
issues on-farm. Such gaps are undesirable because they create inconsistencies in lactation 
records for some cows, which can affect the reliability of future breeding values for bulls by 
reducing the number of records for some daughters. However, since not all cows are in the 
same lactation stage within a farm, the effect on the estimated reliability is expected to be 
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minimal if the recording period is sufficiently long to capture an adequate number of repeated 
records per daughter, as recommended in Chapter 2. For example, for bulls with 10 recorded 
daughters, having five weekly records per daughter would be sufficient. 

6.1.3 Linking methane measurements to individual cows 
Next to the filtering of raw data, processing steps are required to determine the individual 
cow that a CH4 record belongs to. Generally, sniffers do not record cow identification 
numbers and cows are identified based on the corresponding AMS record that was taken at 
the same moment in time. For the studies reported in this thesis, an automated method similar 
to the method reported by van Engelen et al. (2018) was applied (for more details see 
Chapter 2). In this method, the AMS visits are aligned to the CH4 data in such a way that 
recorded concentrations were the highest during AMS visits and lowest in between AMS 
visits. However, evaluation of intermediate results by the human eye was required to decide 
on the most likely alignment, which becomes infeasible for increasingly large datasets.  

In the literature, several other methods have been described that are used to combine the two 
separate data sources. For example, a study by Difford et al. (2016) described an algorithm 
that can account for fixed or variable time shifts between timestamps from the clock of the 
sniffer and the clock of the AMS. The algorithm detects sudden and large changes in the 
recorded gas concentrations to determine cow entry times and aligns this with moments that 
the AMS was occupied by a cow. Variable time shifts, next to clock shifts, are useful to 
account for lags in concentrations being picked up by the gas sensors. In the experiment 
reported in this thesis, we observed lags of up to one minute, which could become longer or 
shorter depending on the length of the sampling tube. To account for lag, the first minute of 
milking was always discarded in this thesis to avoid measuring merely background 
concentrations. However, correcting for variable time shifts for each sniffer could provide a 
useful alternative and would prevent the unnecessary discarding of data when lags are shorter 
than one minute.  

A limitation of the algorithm by Difford et al. (2016) is that the algorithm was not tested in 
applications with long-term recording, where tube blockages and drift of sensors may occur. 
Furthermore, the algorithm is not well-suited for large-scale continuous recording, because 
also this algorithm requires evaluation of intermediate results by the human eye to make 
subjective clock-alignment decisions. More recently, a study by Milkevych et al. (2022) 
described a more robust and fully automated algorithm applied to data from multiple 
commercial dairy farms in Denmark, using a matched filter approach. The described 
algorithm also accounts for noise, such as head movements during milking. The method 
shows great potential to be tested and applied on the dataset described in this thesis and could 
assist researchers and industry working with similar datasets. Furthermore, by standardising 
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raw sniffer data processing methods over different datasets, in addition to standardising 
phenotypes, inference of the results across different experiments would become easier. 

In this thesis, we relied on information from the AMS to acquire cow ID. However, cow 
identification through the AMS may not always be readily available. Determining cow ID 
without AMS information can be addressed using a standalone RFID reader. However, this 
is often discouraged as it may interfere with the AMS RFID reader. As an alternative, 
computer vision techniques could be applied to read the ID of individual animals from their 
ear tags during milking in the AMS (Bastiaansen et al., 2022). The advantage of using 
cameras is that the recordings could potentially be used simultaneously to detect head 
movements, as discussed above. Nonetheless, computer vision techniques should be used 
with caution, as the currently developed algorithms are more likely to result in false 
identification compared to the AMS RFID reader. For example, in the study by Bastiaansen 
et al. (2022), the precision was 65% and the sensitivity was 41%, but when ear tag numbers 
were reported, they were correct 93% of the time. Further development of these algorithms 
is required to improve their accuracy and sensitivity, but the method shows potential to 
enlarge CH4 datasets in practices where cow ID cannot be recorded by the AMS or an RFID 
reader.  

6.1.4 Extending the use of sniffers to record cows 
Most commonly, sniffers are used to measure CH4 and CO2 concentrations in the feed bin of 
AMS. However, sniffers have previously also been implemented in automated concentrate 
feeders (Negussie et al., 2017) or head boxes in milking parlours (Calderon-Chagoya et al., 
2019) to be able to measure emissions on farms without AMS. In principle, the devices could 
be used in many applications, however, to phenotype individual animals accurately it is 
important that the animal remains in a position with its muzzle close to the air inlet of the 
sampling tube for several minutes to obtain a sufficiently reliable phenotype. In addition, 
since sniffers have a passive pump, care should be taken to minimise environmental 
disturbances such as air velocity. To do so, the area around the cow's muzzle can be protected 
with materials that break the wind and air drafts. 

Sniffers and other breath sensors could potentially measure additional gases, which can be 
easily integrated into currently developed sniffer devices. Expanding the applications of 
sniffers could help to distribute the costs of the sensors across different targets, making CH4 
recording by sniffers more accessible. Furthermore, a broader applicability could enhance 
collaborations between genetic research and other projects. For example, studies by Elliot-
Martin et al. (1997) and van Erp-van der Kooij et al. (2023) described using breath 
measurements as a potential health indicator for detecting ketosis in dairy cows. In addition, 
breath measurements have been recognized as a method to detect paratuberculosis in cattle 
�������������������;��������������������. Other gases that could be recorded are for example 
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oxygen (O2) and hydrogen (H2). Oxygen is applicable in estimating the heat production of 
cows (Brouwer, 1965). Heat production reflects a loss of energy, which could otherwise go 
to milk production, reproduction, or maintenance, and is thus a trait of economic importance. 
Hydrogen and CO2 are the principal substrates of CH4 production in the rumen (Janssen, 
2010). Higher H2 concentrations for low CH4 emitting cows are usually not found (whilst not 
feeding CH4 inhibitors), as other bacteria-archaea networks appear to become active which 
utilise alternative H2 pathways (Stepanchenko et al., 2023). In addition, H2 is more 
challenging to measure than CH4, and is heavily affected by sampling scheme, especially 
under restricted feeding (van Lingen et al., 2023). Thus, H2 emissions are not directly suitable 
as an indicator for genetic selection for low CH4 emissions. However, the H2 measurements 
together with measurements on volatile fatty acids can be used to investigate rumen 
fermentation dynamics and the metabolic physiology of rumen microbes �������������������;�
���������������������;�������������������������. This is also of great interest for investigating 
and monitoring changes in rumen dynamics as a consequence of genetic selection for low 
CH4 emissions. 

Finally, moderate to high phenotypic and genetic correlations are often found between CH4 
and CO2 measured by sniffers (as reported in Chapter 3 and Chapter 5). As a result, when 
only breath measurements on CO2 are available, they could potentially be used as an indicator 
for CH4 emissions to enlarge datasets. In addition, CO2 has been suggested as an indicator 
for DMI or residual feed intake (RFI), as CO2 measurements are cheaper than direct DMI 
measurements ���������������������;�����������������������. However, the genetic correlations 
between sniffer CO2 and DMI reported in Chapter 5 were low (0.19 ± 0.23 to 0.29 ± 0.16, 
over parities, and therefore applying sniffer CO2 concentration measurements as an indicator 
for DMI for breeding is likely not effective. Nonetheless, genetic correlations may be higher 
using more accurate phenotyping methods, such as GF units, and should therefore be re-
evaluated for phenotypes from other CO2 recording methods. 

6.1.5 Conclusions 
This chapter evaluated the practical use of sniffers for recording CH4 emissions from dairy 
cows, highlighting challenges and solutions for on-farm phenotyping. Sniffers face issues 
such as dust and moisture accumulation and sensor drift, necessitating periodic maintenance 
and data control to ensure data reliability. Head movements and feeding behaviours of cows 
can further affect measurements, suggesting the need for algorithms to filter anomalies and 
potentially using alternative data to investigate their effect on the recorded CH4 
concentrations. Despite the possible inaccuracies, the genetic correlation between CH4 
concentrations measured by sniffers and CH4 production measured by GF units was strong, 
indicating the suitability of sniffers for phenotyping for genetic selection. Nonetheless, 
effective data processing and automatic filtering is essential for managing the large volumes 
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of records that are collected whilst ensuring data quality. Additionally, expanding sniffer 
capabilities to measure other gases has the potential to provide further insights into cow 
health and efficiency. Overall, for successful implementation in breeding programmes, 
optimising sensor maintenance and data processing are crucial to improve the accuracy of 
measurements. 

6.2 Using Sniffer Phenotypes in Breeding Programmes 
In Chapter 2 of this thesis, we have defined various traits derived from data recorded by 
sniffers. These traits included mean emissions, median emissions, log transformed mean 
emissions, and the CH4/CO2 ratio. Additionally, research projects and industry have 
considered other traits such as peak traits, CH4 efficiency, and residual CH4. Determining 
which CH4 trait or combination of traits is most suitable for implementation in breeding 
programmes remains to be answered. 

6.2.1. Trait definitions and heritability 
The heritability of a trait is an important parameter to judge the effectiveness of genetic 
selection and higher heritabilities will result in reaching higher reliabilities of breeding values 
from recorded phenotypes on the same number of animals. Estimates for the heritability of 
CH4 related traits published in the research chapters of this thesis and in the literature show 
large heterogeneity and ranged from 0 to 0.45 (Table 1.1). To be able to compare estimates, 
it is essential to consider differences between phenotyping methods and trait definitions. 
Generally, one or more of these factors will differ between studies, resulting in differences 
in parameter estimates.  

For example, in the chapters of this thesis we have described estimates on averages per AMS 
visit (Chapter 2), per day (Chapter 3), and per week (Chapter 2, 3, 4, and 5). In general, 
averages over longer recording periods yield a higher heritability and repeatability, as can be 
observed in Chapter 2 where the heritability for visit mean CH4c was 0.13 ± 0.01, and for 
weekly mean CH4c on the same dataset was 0.32 ± 0.01. However, while longer averages 
yield higher heritabilities, the reliability of breeding values remains similar whether the 
records are averaged or analysed as repeated measurements, as was demonstrated in Chapter 
2. In addition, in Chapter 3 we reported a genetic correlation of 1.00 ± <0.01 between mean 
CH4 per day and per week (coming from the same data). Thus, albeit the heritabilities are 
lower for daily averages, the cows are expected to be ranked similar for visit mean CH4c and 
weekly mean CH4c when modelled using repeatability models.  

Other differences in genetic parameter estimates can result from model differences, such as 
whether records within and across lactations are used. When including several lactations in 
the genetic analyses, ideally the repeatability model should include a within lactation 
permanent environmental effect and an across lactation permanent environmental effect. In 
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our analysis, we observed that including only a within-lactation permanent environmental 
effect inflated the heritability estimates (0.34 ± 0.02 versus 0.18 ± 0.03, Chapter 3). If the 
dataset is not large enough to separate within-lactation and between-lactation permanent 
environmental effects, the heritability can be estimated by splitting the data by lactations, 
using a multi-trait model that separates first, second, and remaining lactations.  

Overall, using only the magnitude of the heritability to judge trait applicability for breeding 
programmes is not appropriate. Each trait definition and model should be compared carefully, 
to judge the expected progress from estimating breeding values or from including that trait 
into a breeding programme. Several other aspects unrelated to the magnitude of the 
heritability are of importance, which are: the ease of measurement, the ease of interpretation 
for industry and farmers, and genetic correlations with other important breeding goal traits. 
The following paragraphs will discuss advantages and disadvantages for each trait. 

6.2.1.1 Mean emissions 
The most reported traits for CH4 emissions measured by sniffers are mean CH4 concentration 
and mean CH4 production. Several previous studies have estimated the heritability for mean 
CH4 emissions, where heritability estimates for CH4c ranged from 0.11 ± 0.02 to 0.26 ± 0.11, 
and heritability estimates for CH4 production ranged from 0.12 ± 0.03 to 0.24 ± 0.15 (Table 
1.1). Also for mean CH4 emissions, differences in trait definitions reported in the literature 
are common, for example: 1) the study by van Engelen et al. (2018) analysed average CH4c 
per AMS visit, 2) the studies by Pszczola et al. (2017) and Sypniewski et al. (2021) averaged 
emissions per day, 3) the studies by Breider et al. (2019), Difford et al. (2020), Lassen and 
Lovendahl (2016), Manzanilla-Pech et al. (2022b), and Zetouni et al. (2018) analysed 
averages per week, and 4) the study by Lassen et al. (2016) analysed a single weekly average.  

Overall, heritability estimates for sniffer mean CH4c and sniffer mean CH4 production are 
moderate, and while both traits are easy to record, CH4c is easier to explain to industry and 
farmers. Sniffers are not able to directly measure CH4 production and therefore it is generally 
approximated using CO2 concentrations as a tracer gas through a formula that assumes a 
constant efficiency of energy utilization for different metabolic functions (Madsen et al., 
2010). However, this assumption is not always met and can result in CH4 production to be 
overestimated, on average by 17% for efficient compared with inefficient cows, favouring 
the inefficient cows (Huhtanen et al., 2020). The formula also incorporates information on 
BW and energy corrected milk yield (ECM). Thereby, the sniffer CH4 production phenotype 
is also likely to reflect differences in BW and ECM, possibly resulting in stronger genetic 
correlations with the associated traits that are not a result of differences in true CH4 
production. The relationships with associated traits should most likely be corrected for before 
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including the trait in breeding programmes, further complicating the interpretability of the 
trait. 

6.2.1.2 The ratio of methane to carbon dioxide 
One of the underlying traits in estimating sniffer CH4 production is the ratio between CH4 
and CO2 (Madsen et al., 2010). The ratio is of interest because energetically it would be 
optimal to metabolise all feed carbon to the production of milk, body weight gain, pregnancy, 
and CO2 and the carbon extracted as CH4 reflects the energy that is lost. Therefore, the 
CH4/CO2 ratio describes the proportion of excreted carbon that is not metabolised as CO2 and 
a lower ratio reflects a more efficient cow. However, phenotypic and genetic correlations 
published in Chapter 2 between mean CH4c and the CH4/CO2 ratio were negative (-0.09 ± 
0.01 and -0.56 ± 0.22, respectively). Additionally, the heritability and repeatability for 
weekly mean CH4/CO2 were low (0.02 ± 0.01 and 0.15 ± 0.01, respectively). These findings 
suggest that the CH4/CO2 trait is not a suitable trait to use for CH4 mitigation through animal 
breeding. However, the experimental set-up used for data collection for this thesis may have 
been unsuitable to reliably estimate the CH4/CO2 ratio (see the discussion of Chapter 2). For 
example, a study by Lassen and Lovendahl (2016) published a higher estimate of the 
heritability for CH4/CO2 of 0.16 ± 0.04 and a genetic correlation with sniffer CH4 production 
of 0.83 ± 0.14. This implies that with an improved experimental setup the CH4/CO2 ratio 
might provide an accurate indication of energy losses in dairy cows in other experiments. 
Due to the limitations in the data used, the ratio trait was not considered as a phenotype and 
not used to estimate CH4 production by the equation of Madsen et al. (2010) for this thesis. 

6.2.1.3 Peaks in methane emissions 
Other traits of interest for breeding, commonly reported in the literature, are traits based on 
peaks in CH4 emissions. Cows are known to belch or eruct gases from the rumen at intervals 
of around one minute (Garnsworthy et al., 2012a). Only considering peaks in CH4, as opposed 
to an average of the full AMS visit, ensures that cows’ belches are analysed with possibly 
less disturbances from background CH4 concentrations in between belches. However, 
questions remain about how peaks from belches reflect total CH4 production. Only analysing 
the peaks in CH4 emissions might miss the emissions that are present in breath. The 
relationship between mean CH4 emissions and CH4 peaks has not been extensively analysed 
and remains unclear. 

Peak traits were initially not analysed on the data used for this thesis, because of the recording 
interval up to 35 seconds for the sniffers used for Chapter 1 and Chapter 2, which makes it 
likely that the maxima of peaks are missed when measuring the emissions. Nonetheless, as 
an exercise in understanding the data and the relationship between peaks and mean CH4c 
better, some peak traits were later defined and analysed (Meijer et al., 2021). The analysed 
peak traits were: 1) the maximum CH4 concentration recorded during milking (max CH4), 2) 
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the mean of all records that were within the 25% of highest concentrations recorded (25% 
highest CH4), and 3) the mean of peaks in CH4 concentrations, where peaks were defined as 
two increasing measurements followed by two decreasing measurements using the findpeaks 
function from the package pracma (Borchers, 2019) in R 4.0.2 (CH4 peaks). All traits were 
calculated from AMS visits and thereafter averaged per week, including only weeks with a 
minimum of five records per trait. The traits were analysed using bivariate models (identical 
to the model used in Chapter  2), including 13,099 records (on each trait) from 1,424 
individual cows. 

From these analyses, we observed slightly higher heritabilities for the maximum and peak 
traits, compared to the mean CH4 trait, although within the range of the SE (Table 6.1, Meijer 
et al. (2021)). The repeatability of mean CH4c was 0.57 ± 0.01 and the trait 25% highest had 
the highest repeatability of 0.61 ± 0.01. Max CH4 and CH4 peaks had lower repeatabilities of 
0.55 ± 0.01 and 0.54 ± 0.01, respectively. A lower repeatability for the max CH4 was 
expected, because this trait included only one record per visit, whereas the other traits were 
based on an average of multiple records during a visit. Therefore, the max CH4 trait is 
expected to be more heavily affected by environmental noise in the data. Nonetheless, this 
did not result in a lower heritability.  

 

Table 6.1. Parameter estimates for six different methane (CH4) traits1 based on weekly means. Including heritability 
(h2) with standard errors (se) on the diagonal, phenotypic correlations above the diagonal and genetic correlations 
below the diagonal (adapted from Meijer et al. (2021)) 

 Mean CH4c Max CH4 25% highest CH4 peaks 
Mean CH4c 0.33 ± 0.02 0.88 0.96 0.91 
Max CH4 0.96 0.37 ± 0.02 0.97 0.89 
25% highest 0.99 0.99 0.36 ± 0.03 0.93 
CH4 peaks 0.97 1.00 1.00 0.33 ± 0.02 

1Mean CH4c: mean CH4 ��������������;�������4: mean of maximum CH4 ������������������������;��������������
mean CH4 ���������������������������������������������;���4 peaks: mean of CH4 peaks 

 

In addition, phenotypic and genetic correlations between the peak traits and mean CH4c were 
high (≥ 0.88 for phenotypic and ≥ 0.96 for genetic correlations, Meijer et al. (2021)). Thus, 
although the 35 second recording interval of the sniffers used for Chapter 2 of the thesis 
may introduce noise in the peak traits, the results suggest that the mean trait and the peak 
traits can be used interchangeably in breeding programmes as animal will be ranked similarly 
and the traits have similar heritabilities. Furthermore, based on the high phenotypic and 
genetic correlations with mean CH4 emissions (Table 6.1), it appears that cows that produce 
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the highest peaks in concentrations also on average have the highest total concentrations 
measured. 

Traits based on peaks in emissions are also common in the literature. However, the definition 
of a peak can differ between studies. For example, peak traits can be calculated from: 1) the 
area under the curve, 2) a maximum value, or 3) an average of multiple peaks. Therefore, 
with new definitions of peak traits it is always important to first investigate the relationship 
with total CH4 production, to ensure that genetic selection has the desired outcomes. The 
heritability for peak traits has been estimated in the literature at 0.11 ± 0.03 when derived 
from CH4c and at 0.12 ± 0.04 when derived from CH4 production (Lopez-Paredes et al., 2020) 
and at 0.12 ± 0.01 when derived from CH4c (Saborío‐Montero et al., 2019). This is lower 
than the heritability estimates for peak traits reported in Table 6.1. A possible explanation 
could be that the study of Saborío‐Montero et al. (2019) used a single average of CH4 and 
the study by Lopez-Paredes et al. (2020) used weekly averages in a repeatability model, but 
from short recording periods of 14 to 21 days per farm. Thus, also here the phenotyping 
strategy, trait definition, and choice of model may have resulted in heterogeneity in 
heritability estimates, making the heritability by itself an unsuitable parameter to support 
decision making in which trait to include in breeding programmes. All in all, both mean CH4c 
and peak traits are easy to interpret, their heritability and repeatability estimates were similar, 
and the genetic correlations between the traits were high, indicating that both would be 
suitable to apply in breeding programmes and could possibly be used interchangeably after 
standardisation. 

6.2.1.4 Methane efficiency and residual methane 
Other traits that have been mentioned in the literature are CH4 efficiency traits. Efficiency 
traits are usually defined as CH4 as a ratio to production or intake, making them independent 
of the denominator trait. Well known efficiency traits for dairy cows are CH4 intensity (g 
CH4/ kg milk) and CH4 yield (g CH4/ kg DMI), as reviewed by de Haas et al. (2017). 
However, for breeding programmes, using ratio traits is generally discouraged as a multi-trait 
approach is likely to result in higher genetic gain than by selecting for ratio traits and 
responses in ratio trait can be hard to interpret as it is not immediately apparent if the response 
is due to a change in the nominator or denominator trait ���������������;������������������
����;����������������������. 

An alternative to using ratio traits is using a residual CH4 trait �������������������;������������
���������;�����������-Pech et al., 2021). Residual CH4 can be phenotypically or genetically 
adjusted for production, BW, and/ or DMI. By doing so, animals that have a lower CH4 
emission regardless of their level of production, BW, and DMI can be more easily identified. 
Similar approaches are often applied on DMI data, to adjust DMI for production and other 
energy sinks, resulting in RFI ������������������;�������������������;�����������������������. 
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In these approaches, phenotypic RFI is generally modelled as DMI minus predicted DMI 
based on, for example, milk production and growth �����������������������;��������������
Emmans, 1995). Genetic RFI is generally modelled by performing a genotypic regression of 
DMI on milk production and other energy sinks (Kennedy et al., 1993). Similar methods have 
also been used to make live weight independent of body condition score ��������������
Brotherstone, 1997) and to adjust longevity for milk production (van der Linde et al., 2007).  

A study by Manzanilla-Pech et al. (2021), showed that genetic correlations between residual 
CH4 (adjusted for metabolic BW and ECM) were not only zero with BW and ECM, but also 
with DMI. Thus, selecting for residual CH4 adjusted for metabolic BW and ECM would also 
not have an impact on DMI. Furthermore, in the study by Manzanilla-Pech et al. (2021) 
residual CH4 was positively correlated with RFI, indicating that lower CH4 emitting animals 
were more efficient at converting feed. Heritability estimates of residual CH4 were similar to 
estimates of mean CH4 concentrations and production and were 0.11 ± 0.03 and 0.23 ± 0.06 
for residual CH4 concentrations and 0.21 ± 0.03 and 0.16 ± 0.04 for residual CH4 production 
(Manzanilla-����� ��� ����� �����;�����������-Pech et al., 2022c), and the phenotypes had 
moderate to high genetic correlations with CH4c and CH4 production (0.69 ± 0.12 to 0.82 ± 
0.07, Manzanilla-Pech et al. (2022c)). Thereby, residual CH4 showed potential for inclusion 
in breeding programmes. 

To investigate the applicability of residual CH4 concentrations (RMC) using the data 
described in this thesis, I performed genetic regressions on CH4c. Following the method of 
Kennedy et al. (1993) and ��������� ���� ������������� ������ the genetic regression 
coefficients of ECM, BW, and DMI (bECM, bBW, bDMI) were calculated using the (co)variances 
estimated with bivariate models in Chapter  5 for first parity cows. Thereafter, genetic 
covariances and genetic correlations were estimated between RMC and the ten breeding goal 
traits reported in Chapter 5. 

By applying genetic regressions on CH4c, the heritability of RMC was estimated at 0.21, 
which is similar to the heritability for CH4c estimated in this thesis (0.18, Chapter 3) and to 
heritabilities from the literature reported above. The estimated genetic correlations between 
RMC and the ten breeding goal traits were similar for RMC adjusted for DMI, ECM, and 
BW, for ECM and BW, or only for ECM (Table 6.2). As expected, after adjusting for ECM, 
BW, and DMI the RMC trait had no genetic correlations with its regressors. Nonetheless, 
there was still an undesirable correlation with milk fat percentage of 0.22 and with milk 
protein percentage of 0.10. Thus, although fat and protein yield are accounted for in the 
calculation of ECM, it appears that this is not sufficient to avoid a weak selection response 
in fat or protein percentage when selecting for RMC. In addition, although RMC was 
corrected for ECM, the RMC trait did not become independent of the underlying traits of 
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ECM, namely milk yield (MY), protein yield (PY), and fat yield (FY) and genetic 
correlations with MY, PY, and FY were slightly stronger with RMC than CH4c (although all 
correlations were weak).  

Therefore, CH4c is likely a more suitable trait for implementation in breeding programmes 
than RMC because interpretability is easier, as it is hard to explain that selection responses 
in MY, PY, and FY may still occur when selecting for improved RMC adjusted for ECM. 
Furthermore, by reporting a trait that reflects reductions in total CH4 production, genetic 
progress for the breeding goal trait can be more easily aligned with government targets that 
aim to reduce the total CH4 production from agriculture. By expressing traits only as a 
residual or as an efficiency trait, there is a risk that total enteric CH4 emissions continue to 
increase when the number of cows does not decrease in response to individual cows 
becoming more efficient. 

 

Table 6.2. Genetic correlations between CH4 concentration (from Chapter 5) or residual CH4 concentration (RMC), 
and other breeding goal traits on first parity cows1. RMC was genetically standardised for DMI, ECM, and BW, 
ECM and BW, or only ECM 

 CH4c RMC (ECM/ BW/ DMI) RMC (ECM/ BW)  RMC (ECM) 
CH4c 1 1.00 1.00 1.00 

CO2c 0.81 0.72 0.73 0.73 

DMI 0.06 0 0.04 0.04 

MY -0.04 -0.08 -0.08 -0.08 

ECM 0.04 0 0 0 

PY <0.01 -0.04 -0.04 -0.04 

FY 0.12 0.08 0.08 0.08 

P% 0.10 0.10 0.11 0.11 

F% 0.21 0.22 0.22 0.22 

BW -0.04 0 0 -0.04 
1CH4c = methane �������������;���2��������������������������������;������������������������;����������������;�
���� �� ������� ��������������� �����;� ��� �� �������� �����;� ��� �� ���� �����;� ��� �� �������� ����������;� ��� �� ����
����������;�����������������;������������������������������������� 

 

In addition, the genetic correlations between RMC and CH4c were 1.00 after rounding to two 
decimal places. This indicates that no variance in CH4 was explained by ECM, BW and DMI, 
which can be expected from the very weak estimated genetic correlations between CH4c and 
ECM, BW, and DMI. Therefore, there will likely be little difference in the breeding values 
for CH4c and RMC and for genetic progress there will be no difference in picking one or the 
other breeding value for implementation. Residual traits are of more interest for traits with 
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moderate to strong genetic correlations with the traits by which they are adjusted. Therefore, 
for CH4 traits from other CH4 recording methods, the applicability of RMC should be re-
evaluated. For the sniffer CH4c trait used in this thesis, there appears to be no added value in 
using a RMC trait. 

6.2.2 The effect of different phenotyping strategies on genetic progress 
Another important aspect that has an impact on the genetic progress is determined by the 
moment in a cows’ lactation when CH4 is recorded and for how many days or weeks. To get 
a better understanding of when to record CH4 emissions, phenotypic and genetic lactation 
curves can be informative. In Chapter 2, 3, and 4 phenotypic lactation curves were plotted 
for CH4 emissions recorded by sniffers and by GF units, where we observed a steep increase 
in emissions during the first days in milk (DIM), whereafter the emissions stabilised or slowly 
decreased. Thus, absolute values in CH4 emissions change during the lactations, but also the 
underlying relationships between genetic and phenotypic variances, which is reflected in the 
heritability, have been shown to vary during the lactation (Manzanilla-������������������;�
���������������������;�������������������������. 

 

 

Figure 6.2. The genetic correlations between CH4 concentration recorded on 15, 78, 155, 225, or 302 days in milk 
(DIM) and recorded on all other DIM 

 

In Chapter 4 of this thesis, we modelled genetic lactation curves and investigated the effect 
on different recording and modelling strategies. In that chapter, we showed that all genetic 
correlations between DIM were positive and most genetic correlations were high, except for 
some correlations at the beginning and end of the lactation. This can also be observed in 
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Figure 6.2, which was created using the genetic correlations that were estimated in Chapter 
4. In this figure, it can be observed that mid lactation records (between 15 and 302 DIM) are 
highly correlated with all other DIM. Only records taken before 15 DIM and after 350 DIM, 
may have lower correlations with other lactation stages. Thus, very early and very late 
lactation CH4c might not reflect mid lactation CH4c and ideally emissions should be recorded 
during mid-lactation, or modelled with random regression models if some cows only have 
emissions recorded in early or late lactation. However, the extremes in the beginning and end 
of the lactation may partly result from an artefact in using Legendre polynomials in a random 
regression model and should be further investigated as has been extensively discussed in 
Chapter  4. In addition, the genetic correlations for CH4c are the highest between 
measurements taken closely together in time (Figure 6.3). On average, the genetic 
correlations are above 0.95 for measurements taken less than 125 days apart in a lactation. 
For longer periods of time between measurement days, the genetic correlations will continue 
to decrease steadily. Thus, estimated breeding values (EBV) will be the most accurate around 
the period of time for which CH4c records are available.  

 

 

Figure 6.3. Average genetic correlation of CH4 concentrations when the recordings are 1, 8, 15, …, 400 days in 
milk (DIM) apart in time 

 

The decay in genetic correlations can influence the reliability of breeding values estimated 
from different models (Chapter 4). To be specific, the reliability is likely to be overestimated 
by fixed repeatability models when cows would be recorded only in early lactation (up to ± 
50 DIM). This is because the fixed repeatability model assumes genetic correlations of one 
between all DIM. Therefore, when some cows are recorded during early lactations and others 
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during other stages of lactation, a random regression model should be preferred to avoid 
lower than expected genetic gains and an overestimation of the reliability of the breeding 
values for some cows. In addition, when it is practically possible to apply short recording 
periods for all cows in a similar lactation stage, for example in seasonal calving systems, it 
is preferred to record mid-lactation as this would yield the highest reliabilities. 

 

Table  6.3. The predicted reliabilities for cows with own performance information and sires with phenotyped 
daughters. The reliabilities for cows are derived from the number of weekly records, and the heritability and 
repeatability for weekly means. The reliabilities for sires are derived from the cows’ reliability from n records, and 
the number of daughters 

Number of 
records per cow Predicted reliability cow Number of 

daughters per sire 

 

Predicted reliability sire 

1 0.18 5  0.19 
  10  0.32 
  15  0.41 
  100  0.82 
5 0.31 5  0.29 
  10  0.46 
  15  0.56 
  100  0.89 
10 0.34 5  0.32 
  10  0.48 
  15  0.58 
  100  0.90 
25 0.36 5  0.33 
  10  0.50 
  15  0.60 
  100  0.91 
50 0.37 5  0.34 
  10  0.50 
  15  0.60 
  100  0.91 

 

To determine the minimum duration of recording, in Chapter 2 we estimated that to reach 
the Dutch breeding value publication threshold of 50% for sires at least 25 visits or five weeks 
from ten daughters per sire should be recorded. However, here we used the model including 
only a within parity permanent environmental effect, whereas in Chapter 4 we showed that 
the heritability estimated using a within and a between parity permanent environmental effect 
was lower. To observe the effect of the difference in parameter estimates on breeding values, 
in Table 6.3, I provide the calculated reliabilities from the updated heritability and 
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repeatability estimates (0.18 and 0.48, resp.). In this table, it can be observed that by 
recording five weeks from ten daughters a reliability of 0.46 will be achieved. To reach a 
50% reliability, 12 daughters per sire would have to be recorded with each five weeks of 
recording. Thus, although the heritability is lower, the impact on the number of recorded 
daughters required to reach a sufficiently high reliability for a sire is small and the estimates 
are similar. 

6.2.3 Genetic correlations with other breeding goal traits 
Genetic correlations are important to understand how selecting for lower CH4 emissions 
might affect other breeding goal traits and are thereby essential to make informed breeding 
decisions. In Chapter 5 we estimated genetic correlations between CH4 and important milk 
production traits, DMI, and BW. Next to the traits published in Chapter 5, there are several 
other important traits in the breeding goal that are related to health, fertility, conformation, 
production, and feed efficiency. In the Netherlands, these traits are combined in the Dutch 
national index NVI (CRV (2023).  

To investigate the relationships between CH4c and all breeding goal traits included in the 
NVI, additional genetic correlations were estimated using the multiple trait across country 
evaluation (MACE) procedure. The MACE procedure is used to evaluate bulls for one trait 
across countries by Interbull (Interbull Centre, 2017), but can also be used to estimate genetic 
correlations between deregressed sire EBV of different traits ���������������������������;�
Schaeffer, 1994). Genetic correlations estimated by the MACE procedure were used, because 
they allow for estimating correlations based on the EBV without the need for the data and 
models for all traits in the NVI. For the NVI traits, deregressed sire EBV from CRV were 
used as input and for the CH4 traits EBV were estimated based on a univariate analysis similar 
to what has been described in Chapter 2. The MACE correlations were estimated using a 
pedigree relationship matrix for all sires that had at least one daughter with a CH4 recording. 
However, as the analyses included many sires with few daughters, the estimates are likely 
associated with a large uncertainty and should be interpreted with caution (SE were not 
provided, as they are not estimated by MACE). For all reported traits based on the EBV 
including CH4, a higher value is desirable. This is contrary to the estimates for CH4c 
published in Chapter 5, where a lower value for CH4 was desirable. 
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Table 6.4. Genetic correlations based on the multiple trait across country evaluation (MACE) procedure, between 
Dutch national index (NVI) traits and weekly mean methane concentrations combining information from all parities 
using a weighted index for CH4 concentrations (CH4c). A higher value is desirable for each trait, and thus for methane 
a higher value reflects lower emissions 

 CH4c 

NVI 0.08 

Milk yield (kg) -0.11 

Fat yield (kg) -0.08 

Protein yield (kg) -0.04 

Lactose yield (kg) -0.18 

INET* -0.07 

Longevity (days) -0.01 

Functional longevity (days) -0.01 

Udder (pnt) -0.09 

Feet & legs (pnt) -0.06 

Direct calving ease (pnt) 0.19 

Maternal calving ease (pnt) 0.07 

Interval calving-first insemination (pnt) 0.23 

Interval first-last insemination (pnt) 0.21 

Conception rate (pnt) 0.14 

Conception rate heifers (pnt) 0.30 

Direct vitality (pnt) 0.23 

Maternal vitality (pnt) 0.06 

Udder health (pnt) 0.06 

Claw health (pnt) 0.23 

Survival (pnt) -0.22 

Saved feed cost for maintenance (euro) 0.21 
* Dutch production index 

 

Similar to the genetic correlations with milk production traits estimated in Chapter 5, the 
MACE correlations between CH4 and MY, FY, PY, and the Dutch production index (INET) 
were weak (Table 6.4). The correlation with FY showed an undesired negative trend in the 
MACE correlations. This is similar to the positive correlations reported in Chapter 5 (0.12 
± 0.08 to 0.23 ± 0.10), because for the CH4 EBV used in the MACE procedure a higher EBV 
reflected lower CH4c. Interestingly, the MACE correlations for lactose yield were higher than 
for FY and PY and, therefore, it might be of interest to estimate correlations between CH4 
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and lactose on real data to derive more accurate estimates. In the literature, one estimate of a 
genetic correlation between sniffer CH4c and lactose yield has previously been reported of 
0.32 ± 0.06 (van Engelen, 2018), indicating that indeed an undesirable genetic correlation 
between CH4c and lactose yield may exist. Nonetheless, in the same study the genetic 
correlation with lactose percentage was weak (0.06 ± 0.06) and the MACE correlations with 
lactose yield estimated here were also weak. Thus, the relationship with lactose is expected 
to be weak and selecting for lower CH4c is not expected to have a significant impact on 
lactose yield. 

Similar to the MACE correlations between CH4 and milk production traits, the MACE 
correlations between CH4 and all other NVI traits were weak and ranged from -0.22 for 
survival to 0.30 for conception rate heifers. Estimates of genetic correlations in the literature 
between CH4 emissions recorded by sniffers and health, conformation, and fertility traits are 
scarce. A genetic correlation between sniffer-recorded CH4 and survival (i.e. calf vitality) has 
to date not been published and should be further investigated using real data as the direction 
of the MACE correlation was undesired and indicated lower survival when breeding for 
reduced CH4 emissions. Nonetheless, the relationship between the two traits was weak, and 
at most 12% of differences in CH4c may be attributed to differences in survival. The other 
fertility and health traits provided desired, although weak, MACE correlations with CH4, and 
thus appeared to not form a bottleneck when selecting for CH4 mitigation.  

The MACE correlation between sniffer-recorded CH4 and saved feed cost for maintenance 
was positive, indicating that cows with lower CH4 concentration are more feed efficient. 
Previous studies have also shown favourable correlations between CH4 production and RFI, 
ranging from 0.26 ± 0.08 to 0.76 ± 0.09. However, a study by Difford et al. (2020) reported 
positive genetic correlations between CH4c and RFI in Danish herds (0.42 ± 0.23 to 0.69 ± 
0.15), whereas the genetic correlations were negative for phenotypic and genetic RFI (-0.69 
± 0.38 and -0.55 ± 0.41, resp.) but not for single step RFI in Dutch herds (0.46 ± 0.36). The 
analyses by Difford et al. (2020) on the Dutch cows comprised a subset of DMI recorded 
cows that were included in these analyses, thus the relationships with RFI should be further 
investigated to confirm the relationship between RFI and CH4 emissions of Dutch dairy cows.  

Even though the MACE correlations were weak, the correlations do pinpoint some 
relationships that should be further investigated using real data, to come to estimates with 
smaller uncertainty. Especially the relationship between CH4 and survival is of interest, as 
this relationship is undesired, whereas relationships with the other health traits and fertility 
traits were all desired. All in all, selecting for lower CH4 emissions is not expected to have a 
large effect on other NVI traits, and thus at the same time genetic improvement in all NVI 
traits remains possible while simultaneously selecting for lower CH4 emissions. 
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6.2.5 Conclusions 
Various phenotypes have been defined from raw sniffer data, including mean CH4 emissions, 
the CH4/CO2 ratio, peak traits, CH4 efficiency, and residual CH4. Heritability estimates of 
these traits reported in the literature vary significantly, however, this is most likely largely a 
result of differences in phenotyping strategy, resulting trait definitions, and modelling. 
Analysing the traits on an equal number of records using the same raw data resulted in similar 
heritability estimates and high genetic correlations between all traits, except the CH4/CO2 
ratio. This suggests that after standardisation most traits can be used interchangeably in 
breeding programmes. Overall, most traits show potential for implementation in breeding 
programmes, however some considerations should be made relating to the interpretability of 
the trait. For example, CH4 production derived from sniffer CH4c measurements may be 
biased by BW and ECM, which should be corrected for. In addition, residual CH4 adjusted 
for ECM still revealed undesired correlations with fat and protein percentages, complicating 
its use. Therefore, these traits require further validation before implementation, and careful 
consideration should be made of their possible indirect effects on other breeding goal traits. 
Directly using the mean CH4c as a phenotype guarantees easy interpretability. Genetic 
correlations between mean CH4c and other breeding goal traits, estimated using the data and 
the MACE procedure, were weak. The weak correlations suggested that selecting for mean 
CH4c recorded by sniffers can be implemented in national breeding programmes to reduce 
CH4 emissions while maintaining overall breeding goals.  

6.3 Implementation of Breeding for Low Methane 
In the previous chapter, we have seen how the genetic parameters estimated in this thesis can 
be helpful in setting up breeding strategies to mitigate CH4 emissions using sniffer 
phenotypes. However, several questions remain that are essential to ensure that estimated 
breeding values will be adopted in practice to mitigate CH4 emissions. 

6.3.1 Incentives for methane reduction 
Usually, traits that are included in breeding goals have an economic value, as maximizing 
farm profit is defined as the key breeding goal (Cole et al., 2021). The economic value, 
thereby, helps to determine the relative importance of each trait which is applied as a 
weighting factor in selection indices. It is likely that carbon taxes will become enforced for 
all industries, including agriculture, which could make CH4 mitigation economically 
beneficial. Although carbon taxes are common throughout Europe (Figure 6.4), they have 
not yet been implemented for the agricultural sector. However, this is likely to change in the 
near future, with Denmark being the first European country to announce the introduction of 
a carbon tax for agriculture from 2030 (Olsen, 2024). In the meantime, societal and 
governmental pressure to reduce greenhouse gas emissions in agricultural practices, may 
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nudge the agricultural community towards a decision to include CH4 emissions in a breeding 
goal with non-market value through desired gains before carbon taxes become enforced 
����������������������������;����������������.  

Other incentives to mitigate enteric CH4 emissions can come from the industry. For �������� 
�������������������������������������������������������������������������������������������
which includes a farms’ herd having a lower-than-average CH4 emission. This strategy is 
������� ��� ��� ������������ ��� ���� ������������� ������ �������� ���� �� ����� ������� ����
‘Kringloopwijzer’ to keep track of on-farm emissions (including CH4, CO2, nitrogen, and 
���������� and farms with low emissions are rewarded th����������������s (de Haan and 
��������� �����. Currently, in the ���������������� ������ ���� ���������� ��� ��������� ��4 
emissions of a farm based on the number of cows, and management information (e.g. 
information on feed �������. However, by including breeding values in the ���������������, 
differences between herds based on information about individual animals could be included. 
Similarly ���������������������������������������������� that collects milk from Denmark, 
Sweden, the United Kingdom, and Germany introduced a 0.04 ��������� ����� ��������
increase related to greenhouse gas emissions in 2023 ������������. If this would be linked to 
breeding values, it can be a strong incentive for farmers to select for low CH4 emitting cows. 

 

 

Figure 6.4. �������������������������������������������������������������
��������������������������������������������� 

 

6.3.2 Accelerating sustainable breeding 
��� ���� �������� �������� ��� �������� ������� ���� �������� ��������, there is a great urgency in 
reducing carbon emissions �����������further worsening ������������. Genetic selection has 
the advantage ����� ����������� �����������������������������������������������������������
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through genetic selection can be a slow process, with noticeable improvements becoming 
visible only over several generations. Nonetheless, several opportunities exist to increase and 
accelerate genetic progress. 

6.3.2.1 Indirect selection for a lower carbon footprint of dairy 
Once the economic value or desired gain of CH4 has been determined, CH4 can be 
implemented in new or existing indexes. For example, a new index can be developed that 
targets environmental sustainability. In such an index, next to reducing direct CH4 emissions, 
other NVI traits can be optimised so that the carbon footprint is minimised. For instance, the 
Irish Beef Cattle Federation (IBCF) created an Economic Breeding Index (EBI) using current 
breeding goal traits, which indirectly reduces greenhouse gas emissions without using direct 
CH4 measurements. This index achieved an economic gain of 20 euros net profit per cow per 
year while leading to a 2% reduction in carbon footprint (ICBF, 2018). Similarly, in the 
Netherlands, it was shown that breeding for increased production in livestock has indirectly 
reduced the environmental impact by 1% a year per kg of product produced (Mollenhorst and 
De Haas, 2019). This was also observed in studies in the United Kingdom, Ireland and 
Canada, that showed that the emission intensity will be reduced by 1% per year through their 
national breeding programmes ������ ��� ����� ����;� ����� ��� ����� �����;� ����������� ��� �����
2021a). A study in New Zealand on eight breeding goal traits indicated that increased 
production efficiency through selecting for farm profitability indirectly helps to mitigate CH4 
emissions by -0.04 kg CO2-equivalents/ kg milk protein equivalent/cow/year (Zhang et al., 
2019). Thus, developing an environmental sustainability index shows potential to support 
continued genetic progress in production, fertility, conformation, and health traits, while also 
indirectly targeting a reduction in CH4 emissions.  

Nonetheless, by passive genetic gains for CH4 based on current breeding strategies, as 
described by the studies above, mitigations targets as set by the Dutch government will not 
be met. However, combining indirect selection for a lower carbon footprint with direct 
selection on enteric CH4 emission traits can provide a powerful tool to accelerate progress in 
reducing greenhouse gas emissions. When estimating the carbon footprint of other breeding 
goal traits, it is important to also consider greenhouse gas emissions from other processes, 
such as feed production and manure management, through a life cycle assessment. Not 
accounting for these emissions may otherwise lead to bias in the estimated emissions (van 
Middelaar et al., 2014). To address trade-offs, breeding indices aimed at optimizing the 
reduction of greenhouse gas emissions from economically important traits should combine 
bio-economic models with life cycle assessments, as demonstrated by Shi et al. (2024).  
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6.3.2.2 Applications in other countries and possibilities for collaboration 
High concentrations of CH4 in the atmosphere are a global issue and do not only impact the 
area where the CH4 was produced. As animal production in Europe, North America, and 
Oceania intensified significantly over the 19th and 20th century, countries on these continents 
should make substantial efforts to reduce their emissions to reach the climate goals set by the 
Paris Agreement ������� ��� ����� ����;� ������ ���� ��������� �����. Additionally, due to 
���������������������������������������������������������������������������� it is expected 
that the number of cattle in these regions will continue to rise in the coming decades and that 
production will be intensified �����������������������. Therefore, new initiatives to reduce 
emissions should be implemented globally and should also include animal production 
systems in the global south. Currently such initiatives are being developed by, for example, 
the ������������������������������������������, where CH4 phenotypes and genotypes that 
are collected world-wide will be gathered in a shared database to use for genetic evaluations 
within and across countries ������ �����. Shared databases with many records across 
countries can help countries with scarce recording of CH4 to setup breeding for low CH4 and 
can also help countries with CH4 recording to accelerate breeding for CH4 mitigation by 
improving the accuracy of estimated breeding values. 

However, applying genetic selection to reduce CH4 emissions across countries world-wide 
comes with unique challenges (Manzanilla-�����������������;�������������������������. Dairy 
production systems are generally very diverse over different climates and many different 
dairy breeds are kept next to the widespread Holsteins. To overcome these challenges, a joint 
dataset with data from various countries is likely required to be much larger than within 
country datasets to be able to obtain sufficiently high reliabilities of breeding values across 
countries ������������ ���������;��������������� ����������. Due to the urgency in reducing 
enteric CH4 emissions, phenotyping projects are commencing world-wide and collating this 
data is expected to result in a sufficiently large dataset with CH4 records on ten thousands of 
cows. �����������, combining data across countries has previously been done successfully for 
other traits, for example to increase the reliability of dry matter intake in countries with scare 
or no recording �������������������;����������������������.  

��������������������������������������������������������������������������������������������
recorded by different systems and reported in different units. Most commonly, multi-trait 
models are applied, where the phenotypes are analysed as separate traits in an international 
evaluation as is also done by the MACE procedure. Multi-trait models can simultaneously 
deal with genotype by environment interaction, which may be induced by large variation in 
management systems, feed, climates, and/or recording techniques between countries. 
Regardless to the use of these models, it is essential to have a number of phenotypes recorded 
in each country, breed and production system that breeding values are estimated for. 
Alternatively, similar CH4 traits can be standardised per country to analyse the data as a single 
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trait. A study by Manzanilla-Pech et al. (2021) has shown that CH4 production was highly 
correlated to genetically standardised CH4, which was standardised using within and across 
country genetic standard deviation. However, the dataset was not sufficiently large enough 
to estimate genetic correlations between CH4 production across countries and within country. 
These genetic correlations should first be estimated to judge if there are genotype by 
environment interactions between countries or if implementing a single across country CH4 
trait in international genetic evaluations is possible in specific cases. 

6.3.2.3 Using genomic selection 
Ideally, genetic progress within and across countries is accelerated by applying genomic 
prediction (Manzanilla-Pech et al., 2021). Genomic prediction has been developed in the last 
two decades and adds information on the genomics of individual animals to common mixed 
models, usually derived from single nucleotide polymorphisms (SNP). In genomic 
prediction, a reference population is used consisting of cows which have phenotypes and are 
genotyped, which is applied as a training dataset. From the training dataset, SNP effects are 
estimated, which are consequentially used in a prediction equation for cows or bulls without 
phenotypes but with genotype information (the selection candidates). Thereby, also for bulls 
without phenotyped daughters breeding values can be estimated as long as they are 
genotyped. Nowadays, genomic selection is widely applied in dairy cattle breeding, including 
in genetic evaluations across countries ������������������� ����;��������� ��� ����� �����. The 
accuracy of genomic predictions can be improved by increasing the number of recorded 
animals in the reference population, by recording animals within families that are relevant 
for selection (e.g. from sires with many daughters), by increasing marker density, and by 
increasing the heritability by reducing environmental effects (de Haas et al., 2012). Likewise, 
it has been shown that sharing data on CH4 phenotypes and genotypes across countries can 
be a powerful method to increase the reliability of genomic prediction within and across 
participating countries ���������������������;�������������������. Thereby, genomic prediction 
can also help to accelerate the genetic progress for CH4 mitigation in the Netherlands, through 
increasing the reliability of breeding values for bulls without or with a low number of 
daughters with CH4 phenotypes. Routine genotyping of all CH4 recorded cows on farm will 
be essential to be able to implement genomic prediction for CH4. 

6.3.3 Quantifying the expected effect of genetic selection to mitigate methane 
For this thesis, we phenotyped individual dairy cows using sniffers. Sniffers measure CH4 
and CO2 concentrations in the air in ppm and are not able to directly provide an estimate in 
g/day. Knowing the actual reduction that is achieved by breeding (in total g/day) is important, 
for example, when farmers need to quantify their emission reductions for the industry or 
governments. Quantifying emissions will also help to set guidelines in the desired reductions 
and is needed to form incentives to reduce emissions. 
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6.3.3.1 Formulas to convert ppm to g/day 
Models have been developed that enable the conversion from concentration measurements 
by sniffers in ppm to an estimation of the emissions in g/day. For example, Chagunda et al. 
(2009) have described a formula based on an average tidal respiratory volume, whereas 
Madsen et al. (2010), Suzuki et al. (2021), and Kjeldsen et al. (2024) have described formulas 
based on CO2 as a tracer gas in combination with the CH4/CO2 ratio. Which formula is 
applicable depends on the method of recording and other data that is available and should be 
assessed for each individual application. Nonetheless, using formulas to estimate emissions 
in g/day from sniffer measurements in ppm may have some disadvantages. For example, 
Huhtanen et al. (2020) showed that the formula by Madsen et al. (2010) is likely to favour 
inefficient cows over efficient cows in ranking them from low to high emitting. Most likely, 
this is a result of biased estimates of CO2 production from concentration measurements due 
to differences between cows in their efficiency of energy utilization for maintenance and milk 
production. 

6.3.3.2 Using genetic correlations between predictors and the breeding goal trait 
Other strategies that could be investigated to convert the sniffer phenotype to CH4 emissions 
in g/day is by looking at relative differences in the breeding value estimates for two different 
traits. For example, when cows have been recorded by sniffers and GF units, these can be 
used as a benchmark for estimating the true emissions (assuming emissions measured by GF 
units are the true emissions). This way the relative scales of the breeding values can be 
translated into expected responses in g/day for both traits, using the genetic correlation 
between sniffer-recorded CH4 concentrations and GF-recorded CH4 production that was 
estimated in Chapter 3.  

Because the number of cows with CH4 phenotypes are generally low, it may be advantageous 
to use several CH4 traits as indicator traits for a general CH4 breeding goal trait to maximise 
the reliability of future estimated breeding values. For example, if a few hundred cows are 
recorded with the more accurate GF units, then the GF CH4 production (g/day) phenotype 
can serve as the breeding goal trait. Phenotypes from a large number of cows from other CH4 
traits could then be included as predictor traits for the breeding goal trait using information 
on the phenotypic and genetic correlations between the breeding goal trait and the predictor 
traits. In this way, not only sniffer CH4c phenotypes are valuable as a predictor trait, but also 
other potential phenotypes based on, for example, MIR �����������������������;�������������
���������;������������������������, rumen microbial composition (González-������������������;�
�������� ��� ����� ����;� ������ ��� ����� �����, rumination time, feed intake time (Ramirez-
Agudelo et al., 2022), or direct measurements from other sensors (e.g. SF6, portable 
accumulation chambers, etc.).  
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Combining information from multiple sources is recommended, as it not only increases the 
accuracy of the EBV, but it also results in a better estimation of the true CH4 emissions when 
you get closer to the true breeding value (Negussie et al., 2017). Thus, using this method will 
likely result in a better ranking of cows for their true CH4 emissions and this is advantageous 
to quantify emissions for farm and national emission inventories. Further research is 
necessary to establish the most effective method for converting breeding values, derived from 
sniffer CH4 concentration measurements and additional predictors, into actual reductions in 
total emissions (measured in grams per day) through genetic selection. 

6.3.3.3 Estimating the expected impact of breeding for lower methane 
An estimation of the expected genetic progress that can be achieved by selecting for lower 
CH4 emissions, using CH4 recording by sniffers, was published in a paper by de Haas et al. 
(2021). Strong assumptions were made in the selection index calculations about the genetic 
correlations between sniffer-recorded CH4 and other breeding goal traits, as at that time the 
genetic correlations had not yet been estimated due to a lack of data. Therefore, I performed 
selection index calculations using the spreadsheet with desired gains of van der Werf (2020) 
used by de Haas et al. (2021) with updated genetic correlations for CH4c, using the genetic 
correlations for MY, FY, and PY published in Chapter 5 and genetic correlations estimated 
by the MACE procedure for the remaining breeding goal traits. All other parameters were 
kept equal to the parameters used in the selection index calculations by de Haas et al. (2021). 
The focus was on scenario 6d published in the study by de Haas et al. (2021), where they 
modelled selection on maximal CH4 reduction using information on 100 daughters. The 
heritability and phenotypic standard deviation (SD) were kept constant, as they were similar 
to the estimate published for first parity cows in Chapter 5.  

Through the selection index calculations, the impact of genetic selection for CH4 intensity 
(CH4/ kg milk) was estimated to be larger at a 42% reduction by 2050 compared to 2018 
levels, as opposed to the previously published 29% (de Haas et al., 2021). Thus, larger 
reductions in CH4 intensity can be achieved while continuously improving other breeding 
goal traits, because the newly estimated genetic correlations with the other breeding goal 
traits were weaker than what was previously assumed. However, the trait we want to improve 
in practice is CH4 production, for which measurements on sniffer CH4c can be used as an 
indicator through the genetic correlation between the two traits of 0.76 (Chapter  3). 
Therefore, an additional scenario was modelled including a trait for GF-recorded CH4 
production. When including a trait for CH4 production based on sniffer CH4c measurements 
as an indicator, the impact of genetic selection was estimated to be slightly lower at a 
reduction of 38% in CH4 intensity in 2050.  
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To model the scenario with GF-recorded CH4 production, desired gains were used for the GF 
trait and not for the sniffer trait, whereas all recording was on the sniffer trait without any 
recording for the GF trait. The genetic correlations between the GF trait and the breeding 
goal traits were assumed to be the same as the sniffer trait and the heritability and phenotypic 
SD were kept equal for the two traits, as the estimates for the sniffer and GF published in 
Chapter 3 were similar. Sensitivity analyses showed that the estimates were not sensitive to 
lower and higher phenotypic SD (30 to 125) or moderate differences in correlations between 
the GF trait and other breeding goal traits. In addition, CH4 is a scarcely recorded trait and 
recording on 100 daughters per sire will initially not be realistic. Using desired gains for CH4 
production in combination with genomic prediction can be a practical alternative. The study 
by de Haas et al. (2021) showed that when using genomic prediction, the genetic 
improvement in CH4 intensity was only slightly lower (21% for genomic prediction vs 24% 
for 100 recorded daughters per bull). 

The scenarios above describe the genetic progress in CH4 intensity (CH4/ kg milk). In all 
scenarios, as a constant, the pre-determined desired gain of the maximum possible gain was 
used for the CH4 trait and the index weights were included for the current breeding goal traits. 
As a result, the realised reduction in sniffer CH4c or GF CH4 production was equal in all 
scenarios at 29%. Larger reductions in CH4 emissions are possible when more selective 
weight is put on CH4, such as when assigning economic values of zero to all other breeding 
goal traits and putting all weight on CH4 (Figure 6.5). Although putting all weight on CH4 
resulted in a larger reduction in CH4, it also resulted in a reduced milk production of 4% 
between 2018 and 2050. Thus, selection merely for lower CH4 comes at a cost in genetic 
improvement in the other breeding goal traits, as was also pointed out in the paper by de Haas 
et al. (2021) and in a study by Gonzalez-Recio et al. (2020). Nonetheless, as the genetic 
correlations between CH4c and other breeding goal traits are very weak and lower than what 
was previously assumed, it is likely that a larger desired gain on lower CH4 can be used than 
what was used in the initial scenario’s by de Haas et al. (2021).The optimal balance between 
traits should be determined before implementing the sniffer CH4 trait in practical breeding 
programmes. 
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Figure  6.5. The simulated genetic trend in methane (CH4) production (g/day) for three scenarios: the current 
breeding goal without active selection for CH4, using a desired gain of -12.75 for CH4 (dashed), all selection index 
weight on CH4 (solid) 

 

6.3.3.4 The expected impact of breeding on national emission reduction targets 
Using the expected responses to selecting for lower CH4c, a rough estimation can be made 
of the impact of breeding for lower CH4 emissions in the Netherlands. From the selection 
index calculations above, it can be expected that using the scenario above selecting for lower 
CH4 emissions would realise a reduction in CH4 production of 1,239 g/year per cow. An 
average dairy farm in the Netherlands has 114 cows (CBS, 2024a), which means the 
reduction for an average herd would be 141 kg/year per herd. On a national level, if genetic 
selection would be applied for all 1,57 million dairy cows in the Netherlands (excluding 
youngstock) CH4 emissions could reduce by a total of 1.95 million kg/year. This is equal to 
53 million kg CO2-equivalents/year, assuming a global warming potential of 27.2 for CH4 
(IPCC, 2021). 

The climate goals set by the Dutch government aim to reduce CH4 emissions by 55% by 
2030, as compared to 1990 levels (EZK, 2022). Recently, agricultural emissions were 
estimated at 24,5 Mton (CBS, 2024b). To reach the 2030 climate goals, agricultural emissions 
need to be reduced to a level of 17.9 Mton CO2-equivalents in 2030. This requires a reduction 
of 1.32 Mton CO2-equivalents/year over the next five years. If genetic selection would be 
applied to all dairy cows in the Netherlands, using the scenario described above, a yearly 
reduction in CH4 emissions of 53 million kg CO2-equivalents/year can be achieved, which is 
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equal to 0.05 Mton CO2-equivalents/year. Thereby, animal breeding is expected to be able to 
contribute 4% to the total required reductions for the total agricultural sector to reach the 
climate targets in the next five years. However, the results depend strongly on the level of 
implementation by the industry and Dutch dairy farmers and could therefore easily be much 
lower in practice. This highlights that to reach short-term climate targets set by the 
government, other strategies should also be explored to reduce enteric CH4 emissions, for 
example, targeting CH4 inhibiting feed additives. Looking at longer periods of time, however, 
animal breeding is a strong method to permanently reduce enteric CH4 emissions as the 
reduction is permanent and cumulative. To be able to reach the long-term targets it is essential 
that we implement breeding strategies as soon as possible. Furthermore, to increase the 
impact of genetic selection, additional selection index calculations should be performed to 
determine optimal selection indices that would lead to a maximum in CH4 reduction, while 
still improving other breeding goal traits. Ideally combined with life cycle assessments and 
bio-economic models to optimise the full index based on the carbon footprint of all traits. 

6.3.4 Conclusions 
For successful implementation of breeding for low CH4 emissions of dairy cows, commercial 
farmers must adopt breeding values, which can be incentivised through economic measures 
like industry-driven rewards. For instance, milk processing companies can offer higher prices 
for lower carbon footprint milk to motivate farmers. Furthermore, methods should be 
investigated that aim to accelerating sustainable breeding. For example, by incorporating 
selection on direct CH4 emissions and indirect selection through minimising the carbon 
footprint of all breeding goal traits. In addition, sharing data across countries has the potential 
to enhance the reliability of breeding values within and across countries and should be 
implemented in combination with genomic selection to improve prediction accuracy, thereby 
accelerating genetic progress. To quantify the impact of breeding for low CH4 emissions, 
converting sniffer concentration measurements to emissions in grams per day is crucial. This 
can be achieved using existing formulas or by using genetic correlations between different 
measurement methods. Overall, animal breeding can help to significantly reduce enteric CH4 
emissions of dairy cows, contributing to long-term climate goals. However, immediate 
implementation of these breeding strategies is essential to contribute to both short-term and 
long-term emission reduction targets. 
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Various strategies have been proposed to reduce enteric methane (CH4) emissions from 
ruminants, focusing on areas such as management, feeding strategies, feed additives, 
vaccination, and animal breeding. Among these, animal breeding currently demonstrates the 
greatest long-term potential, attributed to its minimal costs of implementation, along with its 
lasting and cumulative impact. However, incorporating CH4 into breeding programmes is 
still at an early stage. An important limitation to practical application has been the lack of 
phenotyping of CH4 emissions on enough individual cows to be able to estimate sufficiently 
reliable genetic parameters, which are required for informed breeding decisions. However, 
recent innovations have accelerated the collection of CH4 phenotypes.  

For this thesis, enteric CH4 emissions were measured by ‘sniffers’ that sample air from the 
feed bin of milking robots. The latest dataset included 74,569 weekly mean CH4 
concentration (ppm) records on 7,139 cows from 68 commercial dairy farms. As the sniffers 
only measure concentrations and not the total grams of CH4 emitted by breath, an additional 
dataset was analysed that included measurements from GreenFeed (GF) units on CH4 
production (g/day) on 797 cows from 16 farms (four overlapping with sniffers). The general 
objectives of this thesis were to: 1) define a CH4 trait from raw sniffer CH4 concentration 
measurements, and estimate heritabilities and repeatabilities, 2) investigate the relationship 
between two CH4 recording methods (sniffers and GF units), 3) investigate the effect of 
different recording schemes on the reliability of breeding value estimations, and 4) 
investigate the relationships between CH4 and other breeding goal traits. 

In Chapter 2, genetic parameters were estimated for various traits defined from the sniffer 
concentration measurements and the number of measurements that would be required to get 
a sufficiently high reliability of breeding values was estimated. High genetic correlations 
were estimated between several traits defined from sniffer CH4 measurements (≥0.78), apart 
from the genetic correlations with the CH4/CO2 trait, which were negative. For weekly mean 
CH4 concentrations (CH4c), we estimated that five records on CH4c, measured on ten 
different daughters would be sufficient to achieve a minimum reliability of 50% for the 
estimated breeding value of a bull. 

In Chapter 3, genetic correlations between CH4c recorded by sniffers and CH4 production 
recorded by the more accurate but more expensive GF units were estimated. The final data 
comprised 24,284 GF daily means from 822 cows, 170,826 sniffer daily means from 1,800 
cows, and 1,786 daily means from 75 cows by both GF and sniffer (in the same period). 
Heritability estimates for GF and sniffer were similar, and the genetic correlation between 
CH4 recorded by the two recording methods was high and was 0.71 ± 0.13 for daily means 
and 0.76 ± 0.15 for weekly means. The results indicate that selection based on sniffer data 
could effectively reduce CH4 emissions in g/day as quantified by GF. This supports the 
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potential of using cost-effective sniffer phenotypes in breeding programmes aimed at 
lowering CH4 emissions from dairy cattle. 

In Chapter 4, a comparison was made between genetic parameter estimates for CH4 emission 
from a fixed regression repeatability model and a random regression (RR) model. The RR 
model allowed for varying genetic variances and covariances over a lactation. The results 
showed that the heritability was highest mid lactation (on average 0.17 ± 0.04), and genetic 
correlations between lactation stages were high (0.34 ± 0.36 to 0.91 ± 0.08). Permanent 
environmental correlations deviated greatly over a lactation and ranged between -0.73 ± 0.08 
and 1.00 ± <0.01, which highlights that it is most appropriate to model CH4c with a RR model 
including a random permanent environmental effect. With many full-lactation daughter CH4 
records for each bull, the reliability was similar for the fixed regression and RR models. 
However, when data were only available for shorter recording periods at the beginning and 
end of lactation, using the fixed regression model led to up to a 28% reduction in reliability 
for bulls. Assuming the fixed regression model when the true (co)variance structure is 
reflected by the RR model, more than twice as long recording from the start of lactation was 
required to achieve maximum reliability for a bull. Therefore, applying an overly simplistic 
model could lead to insufficient recording and lower than predicted genetic gains based on 
the estimated reliability. 

In Chapter 5, genetic correlations between enteric CH4c and dry matter intake, body weight, 
and milk production traits were estimated. The results indicated that while the genetic 
correlations between CH4c and the other traits were generally weak, there were some positive 
correlations, particularly with fat production traits (fat yield and fat percentage). However, 
because of the weak relationships, the effects of selecting for lower CH4c on fat yield and fat 
percentage are expected to be small. In addition, strong genetic correlations of CH4c between 
different parities suggested consistency in breeding values for CH4c across parities, and the 
genetic correlations of CH4c with dry matter intake, body weight, and milk production traits 
were similar over parities. Overall, the weak genetic correlations between CH4c and 
production traits suggest that it is feasible to select for lower CH4c, while improving milk 
production and other economically important traits. 

In Chapter 6, the general discussion, the results of this thesis are put into a broader context, 
starting at evaluating the practical use of sniffers for recording CH4 emissions and ending 
with a reflection on how breeding for low CH4 emissions of dairy cows can be implemented 
in practical breeding programmes. The first part of the discussion highlights several 
challenges in on-farm recording with sniffers, for which suggestions for periodic 
maintenance and data processing are given to ensure data reliability and to improve the 
accuracy of measurements. The second part of the discussion describes various phenotypes 
from raw sniffer data, including: mean CH4 emissions, the CH4/CO2 ratio, peak traits, CH4 
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efficiency, and residual CH4. Here, I discuss that most traits show potential for 
implementation in breeding programmes, however some considerations should be made 
relating to the interpretability of each trait and some traits require further validation before 
implementation. In addition, I describe genetic correlations between mean CH4c and all 
breeding goal traits in the Dutch national index. The last part of the discussion focuses on 
strategies to ensure successful implementation of breeding for low CH4 emissions of dairy 
cows. I discuss methods to ensure that commercial farmers adopt breeding values and 
methods that aim to accelerate sustainable breeding. In addition, I discuss methods to 
quantify the impact of breeding for low CH4 emissions, converting sniffer concentration 
measurements to emissions in grams per day. Overall, animal breeding can help to 
significantly reduce enteric CH4 emissions of dairy cows, contributing to long-term climate 
goals. However, immediate implementation and optimalisation of breeding strategies is 
essential to be able to contribute to both short-term and long-term emission reduction targets. 
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Training and Supervision Plan 

 

 

Education and Training  Year  ECTs* 
A. The Basic Package   2.9 
WIAS Introduction Day 2020 0.3 
WGS Scientific Integrity course 2021 0.6 
WGS Ethics and Animal Sciences course 2021 0.8 
WIAS Introduction course on Personal Effectiveness for your 
PhD 

2021 1.2 

   
B. Disciplinary Competences   14.1 
Writing the research proposal  2020 6.0 
Quantitative Genetics Discussion Group  2020-2023 2.0 
Genomic Prediction in Plants and Animals (Aarhus, Denmark) 2022 3.0 
Genomic Prediction in Animal & Plant Breeding 
(Wageningen, the Netherlands) 

2022 1.5 

Cloud Workshop organised by Dirk Jan Schokker (online) 2021 0.1 
Genomic Prediction Considering Admixed Populations and 
GxE (Wageningen, the Netherlands) 

2022 0.9 

Review two WIAS PhD proposals 2022-2023 2.0 
WIAS Course Simulation of Breeding Programs with Modular 
Breeding Program Simulator (MoBPS) (Wageningen, the 
Netherlands) 

2023 0.6 

   
C. Professional Competences   8.2 
Research Data Management 2021 0.5 
Member WIAS Associated PhD Students Council and 
Wageningen PhD Council 

2021-2022 3.0 

Scientific Writing 2021 1.8 
Workshop Pitch to Bewitch by Mariska Wessel (online) 2021 0.1 
Workshop on Supervising MSc Students by Marieke van 
Schaik (online) 

2021 0.1 

WIAS The Final Touch: Writing the General Introduction and 
Discussion 

2023 0.6 
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D. Societal Relevance   3.5 
WIAS course Societal Impact of your Research 2021 1.5 
News article "Minder methaan produceren kan ook via 
fokkerij" 

2021 1.0 

Organising and participating in yearly meetings on methane 
with farmers 

2021-2023 1.0 

   
E. Presentation Skills   4.0 
EAAP, online (Oral) 2020 1.0 
WIAS Annual Conference, online (Oral) 2021  
ICAR, online (Oral) 2021  
Dairy Science and Technology Symposium, online (Oral) 2021  
EAAP, Davos, Switzerland (Oral) 2021  
WIAS Annual Conference, Lunteren, the Netherlands (Poster) 2022  
GGAA, Orlando, Florida, the United States (Oral) 2022 1.0 
WCGALP, Rotterdam, the Netherlands (Oral) 2022 1.0 
ASGGN meeting, Rotterdam, the Netherlands (Oral) 2022  
EAAP, Lyon, France (Oral) 2023  
WAAP, Lyon, France (Oral) 2023 1.0 
WHFF, Puy Du Fou, France (Oral) 2023  
ICAR, Bled, Slovenia (Oral) 2024  
EAAP, Florence, Italy 2024  
   
F. Teaching Competences   6.0 
Supervising 3 MSc Major thesis students 2021-2023 4.0 
Assisting course Genetic Improvement of Livestock 2021 2.0 
Assisting course Animal Breeding and Genomics 2021  
Assisting course Biology of Domesticated Animals 2023  
Assisting course Introduction to Animal Sciences 2023  
   

Total   38.7 
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