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ABSTRACT

Fungi are widely distributed on our planet, including in extremely harsh habitats, such as the polar regions. The
extreme conditions of those habitats limit the number of organisms capable of living there, but some fungi are
adapted to the polar conditions and play essential roles in nutrient cycling. However, knowledge about their
diversity, distribution, and functioning is fragmented, and approaches used to study them are diverse, often
yielding difficult-to-compare results. We present maps with locations of mycological studies in the Arctic and
Antarctica, as well as a list of mycelial fungi found on various terrestrial substrates through cultivation on
nutrient media and/or molecular methods. These fungi were identified to the species level based on
morphological-cultural features or gene-sequence analysis. Analysis of the methods applied to study fungi in
different substrates shows that a combination of multiple methods is optimal to study species composition. The
taxonomic affiliation of the identified species to different fungal divisions is largely determined by habitat
conditions and research methods. The largest number of species belongs to the divisions Ascomycota and
Basidiomycota. The predominant ecological groups were saprotrophic and symbiotic fungi. The majority of 1324
discovered fungal species are known as cosmopolitan species. Approximately one-fifth of the fungi were identical
between the Arctic and Antarctica, only a few species are known to be endemic to Antarctica or Arctic, and there
are 1-6 identified bipolar species. Claims of endemism of polar-region fungi are relatively weakly supported.

1. Introduction

Being the polar regions of our planet, the Arctic and Antarctic regions
contain extreme conditions for life (Cox et al., 2016), such as low
average annual temperatures, long periods of darkness and light,
widespread permafrost, high ultraviolet radiation, frequent freeze and
thaw cycles during the vegetation period, and low water and nutrient
availability (Canini et al., 2021; Govani et al., 2022; Hassan et al., 2016).
However, the polar regions also have significant differences in landscape
areas, hydrological features, climatic conditions, types of ice and snow
covering, soils and permafrost (Dobinski, 2011; Dobinski, 2020; Govani
et al., 2022). The Arctic is often defined as a land of tundra with climatic
conditions restricting tree growth (Robinson, 2001; Walker et al., 2005);
however, a big part of the areas above the Arctic Circle also contains
taiga forests (Montesano et al., 2009). Vast peatland coverage storing
huge carbon reserves is a characteristic feature of the arctic region

(Chaudhary et al., 2020; Tarnocai, 2009; Tarnocai and Stolbovoy,
2006). Antarctica is a predominantly rocky continent more than 98%
occupied by ice and characterized by irregularly developed soil or its
absence (Bockheim and Haus, 2014; Pires et al., 2017). Bockheim and
Haus (2014) noted organic, ornithogenic and mineral type of soils
storing organic carbon in ice-free Antarctic areas. Arctic permafrost is an
uneven environment, generally abundantly moistened and containing
mineral and organic soils. In contrast, Antarctic permafrost has large
differences between the deep continental and maritime parts and is
highly influenced by regional climate, proximity to the glaciers, age,
vegetation, snow cover, and surface albedo (Ottoni et al., 2022).
Increasing warming in high-latitude regions affects Arctic permafrost
peatlands, which are sensitive to climatic changes and provokes
permafrost thawing, changing in plant composition and soil microor-
ganism communities (Zhang et al, 2018). In different parts of
Antarctica, the processes of climate change are contradictory. The
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Antarctic continental deserts, specifically McMurdo Dry Valleys, are
considered the coldest and driest on the World (Goordial et al., 2016)
comprising the only permafrost with a dry soil layer over ice-cemented
ground (Canini et al., 2021; Ottoni et al., 2022). Intriguingly, Doran
et al. (2006) registered the large-scale perennial cooling in this area.
However, the increasing warming in the Antarctic Peninsula and some
other parts of Maritime Antarctica is reported at the same time (Doran
etal., 2006; Pires et al., 2017; Royles et al., 2012). All of the processes in
the polar regions generated by climate changing listed above affect the
living-organism communities (Makhalanyane et al., 2016) and global
carbon fluxes (Jenny Angel et al., 2022; Liu et al., 2022).

An exploration of research articles has shown the presence of fungi in
the polar regions on a variety of substrates. Makhalanyane et al. (2016)
notified: “in cold environments, microorganisms (bacteria, archaea and
fungi) are major constituents of the total biomass, and are estimated to
mediate the cycling of key biogeochemical elements such as nitrogen
and carbon, with potentially important implications for the productivity
of these systems* (Makhalanyane et al., 2016). However, we still have a
very limited understanding of fungal diversity and distribution
(Eisenhauer et al., 2017; Tedersoo et al., 2021), especially in such
extreme habitats as polar regions (Bolter et al., 2002; da Silva et al.,
2019; Hassan et al., 2016; Makhalanyane et al., 2016). Additionally, we
have insufficient knowledge on the contribution of fungi to carbon
fluxes (Tveit et al., 2013), as well as on their ecological role and evo-
lution in the polar regions (Botnen et al., 2020; Cox et al., 2016; da Silva
et al., 2019). It is not entirely clear which fraction of the fungi found in
the extreme ecosystems of the Arctic and Antarctic is present in a living
active mycelial state, and which as spores (Bolter et al., 2002; Robinson,
2001; Schmidt and Bolter, 2002). However, there is a significant part of
the work showing that the psychrotolerant’ species of fungi predomi-
nate over 1:osychr01:ohilic2 ones in polar regions (Frisvad, 2008; Hassan
et al., 2016; Ludley and Robinson, 2008; Nikitin and Semenov, 2022;
Robinson, 2001; Zucconi et al., 1996). Furthermore, investigations show
that the community structure within the consortia of bacteria, yeasts and
fungi is also similar to that of temperate soils (Bolter et al., 2002).
Therefore, it is assumed that with warming, the overall activity of mi-
croorganisms, including fungi, in the polar regions will increase
(Ozerskaya et al., 2008), which presumably boosts the intensity of the
nitrogen and carbon cycles (Arenz et al., 2011; Siciliano et al., 2009;
Wild et al., 2014).

We found that most past studies present lists of fungi identified both
to the species level as well as to higher taxonomic level, such as the
genus (Bridge and Spooner, 2012; Penton et al., 2013), family and order
(Stephenson et al., 2007). In this work, only names of fungi identified to
the species level are included, since the species is the relevant level for
our work. Species of a single genus often differ from each other in their
physiological characteristics and ecological confinement, which is
valuable for understanding the ability of these species, rather than entire
genera, to live in such extreme habitats as the polar regions.

This review summarizes our knowledge about the diversity of
terrestrial filamentous fungi in Polar regions detected and identified to
species names by culture-based and molecular methods. The overall aim
of this study was to evaluate the claim that the poles have unique fungal
communities with many endemic species. To achieve the aim the
following objectives were formulated.

1) to create a comprehensive list of terrestrial filamentous fungi that
have been reported from Arctic and Antarctic regions;

1 psychrotolerant fungi can grow close to 0 °C, with optimum growth tem-
peratures of >15 °C and maximum growth temperatures of >20 °C (Coleine
et al., 2022).

2 Ppsychrophilic can grow at or below 0 °C, with optimum growth tempera-
tures of <15 °C and maximum growth temperatures of <20 °C (Coleine et al.,
2022).
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2) to analyze methods used for sample storage, detection and identifi-
cation of fungi from these regions and to discuss the influence of the
applied methods on the results obtained;

3) to compare the fungal communities of both polar regions with each
other and with more global fungal communities;

4) to collect information about endemic fungal species in polar regions
to evaluate claims of endemism.

2. Information retrieval and processing

In order to compile information about fungi known from the polar
regions, we reviewed mycological and ecological manuscripts mainly
using Google Scholar searches throughout the research time of fungi in
these regions. Additionally, we used a list of fungi and manuscripts from
the British Antarctic Survey site (https://legacy.bas.ac.uk/bas_research
/data/access/fungi/Speciespublic2.html#Use) in order to find more
studies of Antarctic fungi.

We employed the following criteria to compile this list: (1) The
report had to be verified in a peer-reviewed publication. Unpublished,
mimeographed, and locally distributed reports, herbarium information,
anecdotal references, and checklists were not included; (2) The fungi
had to be filamentous. (3) The fungi had to be detected by cultural and/
or molecular approaches. (4) Fungi had to be identified up to the species
level. (5) Only terrestrial fungi and fungi detected in driftwood were
included. Generally we included fungi detected on or above/under the
boundaries of the Arctic and Antarctic polar circles (66°33'49.3”N and
66°33'49.3”S, respectively), but in several cases we included fungal
species of near subpolar locations as well.

In addition to the geographic locations of the investigations we also
tried to find information about methods of sample storage, detection and
taxonomic identification from the studied manuscripts. Moreover, our
list of fungi was intended to serve as a compilation of those fungi that
have been found growing in the polar regions from different substrates.
We relied mostly on the habitat descriptions of each fungus in the
appropriate publications. However, we realize that these data are likely
incomplete. In some instances, the above information could not be
determined from the available literature; these records are marked as “n.
i.” (no information).

Fungal taxonomies follow the Index Fungorum (http://www.in
dexfungorum.org). When the names of the fungal species in the Index
Fungorum differed from the name of this species in the articles, we cited
both names. If the article indicated the fungal name as the genus sp.,
which has only one species, according to the Index Fungorum and data
from the GenBank (https://www.ncbi.nlm.nih.gov/genbank/), then we
indicated this species instead of the genus sp. in our list of fungi. There is
some of species present in the articles are not in the Index Fungorum or
have archaic status, we marked them by * (Tables A.1).

The data were processed using Excel 14.6.1 and SketchBook 8.7.0
softwares. Maps of fungi investigations and sampling were created in
open-source software QGIS 3.22. Papers we studied contained three
types of georeferencing: geographic coordinates in degree-minutes-
seconds format, text descriptions of the place and maps. Only 46% of
the descriptions we used had coordinates and thus could be accurately
reproduced on the map. Furthermore, 44% of the sources described vast
territories in text only and another 10% were also accompanied by
maps. In such cases we located points in the centers of research areas or
according to the maps.

3. General description of the fungal community obtained by
culture-based and molecular methods in both polar regions

The list of filamentous terrestrial fungal species of the polar regions
presented in this article was obtained from 221 scientific publications. A
greater number of the articles, 145 dealt with the study of fungi in
Antarctica, 71 articles with fungi of Arctica, and five research papers
with fungi from both poles. A complete list of discovered fungal species


https://legacy.bas.ac.uk/bas_research/data/access/fungi/Speciespublic2.html#Use
https://legacy.bas.ac.uk/bas_research/data/access/fungi/Speciespublic2.html#Use
http://www.indexfungorum.org
http://www.indexfungorum.org
https://www.ncbi.nlm.nih.gov/genbank/

0.A. Grum-Grzhimaylo et al.

and locations of the investigations is presented in Tables A.1 and on the
maps of Figs. 1 and 2. Detailed information about these fungi is given in
additional materials, which indicate the places and substrates of
detecting the species, methods for their sampling and identification, as
well as methods for storing samples (Tables A.1).

Of the analyzed investigations, 1324 identified species of terrestrial
filamentous fungi have been reported from Arctic and Antarctic regions
(Tables A.1, Fig. 3). Ascomycota and Basidiomycota species form the
largest component of this assemblage with ~68% and ~28% of species,
respectively; ~4% of species are mucoromycetes, one species is an
entomophthoromycete, one species is a glomeromycete, and one species
is a zoopagomycete. The presence of multiple types of sterile mycelium
detected by cultural methods was pointed out in many studies of both
polar regions (Tables A.1).

We found that the majority of fungal species (853) were recorded in
the polar regions once, and 471 fungal species were noted in two or
more studies (Tables A.1, A.2). Pseudogymnoascus pannorum is the most
common species in both Polar regions, mentioned in 77 analyzed papers
and obtained by all methods described in this article (Tables A.1, A.2).
Other taxa commonly isolated in both polar regions that were noted in
45-53 papers (Cladosporium cladosporioides, C. herbarum, Penicillium
chrysogenum), 23-40 papers (Alternaria alternata, Antarctomyces psy-
chrotrophicus, Aspergillus versicolor, Aureobasidium pullulans, Cadophora
fastigiata, C. luteo-olivacea, C. malorum, Cladosporium sphaerospermum,
Mortierella alpina, Mucor hiemalis, Phoma herbarum, Penicillium aur-
antiogriseum, P. brevicompactum, P. glabrum, Thelebolus microspores) or in
less papers (Tables A.2).

In the process of reviewing the literature on fungal diversity in the
polar regions, we identified several difficulties associated with the
analysis of available information: i) while some areas have been
explored more frequently and in more detail, most have not been
explored at all due to inaccessibility; ii) the fungi of the Arctic and
Antarctic have been studied with different intensity; iii) different
methods of sampling and storage of samples, isolation and determina-
tion of fungi were used, which affected the results obtained.

4. Methods used in the investigations

Due to the remoteness of the polar regions, most samples were stored
for several weeks or months before laboratory processing. It is also
worth noting that a variety of substrates were examined in different
studies.

4.1. Substrates from which fungi were obtained

Analysis of the investigations showed that fungi identified in polar
regions through molecular and cultural methods included species asso-
ciated with both living organisms and dead organic matter (Table 1).
The majority of species were isolated from substrates formed by bioinert
matter which represent materials generated as a result of living organ-
isms activity and inert processes of the biosphere (Ostroumov, 2008;
Vernadsky, 1965). Some of the bioinert substrates were dominated by
organic matter and others by inorganic matter. Substrates subjected to
anthropogenic influence and airborne fungi were classified into distinct
categories. Each substrate group added new fungal species to the overall
list that were not detected on other materials. The majority of fungal
species were isolated from Arctic material, with the exception of species
obtained from animal remains and airborne fungi, which predominated
in Antarctica (Table 1). A more detailed table with the studied substrates
is given in the appendices (Tables A.1).

4.2. Storage of samples, detection and identification of fungi
Only in rare cases was laboratory work with the samples done

immediately or in 3-10 days after collection (Baublis et al., 1991;
Dunleavy and Mack, 2021; Gongalves et al, 2012, 2015,
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Grum-Grzhimaylo et al., 2018; O.A. Grum-Grzhimaylo et al., 2016;
Gunde-Cimerman et al., 2003; Kirtsideli et al., 2011; Poosakkannu et al.,
2017). The researchers occasionally did not indicate the duration of
sample storage (e.g., Blanchette et al., 2016; Held and Blanchette, 2017;
Iliushin et al., 2022a,b; Tosi et al., 2005) or information regarding the
storage method (Kirtsideli et al., 2010, 2016; Lapteva et al., 2017;
Mercantini et al., 1989; Perini et al., 2019; Zhang and Yao, 2015). The
studies we found indicated that researchers mainly stored collected
samples until laboratory treatment in one of three ways: freezing,
cooling (several degrees above zero), or drying, and in some cases
samples were processed in 24 h after collection (Fig. A.1.1; Tables A.1).

Most fungal species were obtained only from frozen samples, but this
was also the most common way to store samples, while drying was the
rarest method (Fig. A.1.1, A.1.2; Tables A.1). Furthermore, we observe
that many fungal species were discovered only after samples were stored
by any one method (Fig. A.1.1, A.1).

We examined studies in which fungi were detected and identified
mainly by one of the following methods: direct cultivation of environ-
mental samples on standard and selective media, or metabarcoding after
isolation of eDNA from the samples. After cultivation of the samples
identification of the fungi were provided by morphological features or
ITS or/and LSU regions of the rDNA sequencing. The majority of fungal
species were obtained by cultivation and eDNA sequencing (~45% and
~43%, respectively), and ~10% of the species were found with both
approaches. However, of studies to detect fungi, cultivation was used in
78%, eDNA was used in 14%, and both approaches were applied in 3%
(Fig. A.1.3, A.1.4). Approximately ~59% of the discovered fungi species
were identified by the rDNA sequencing method, while ~24% of species
were identified using morphological features. Both methods were used
to identify ~14% of species (Fig. A.1.5). Approximately equal numbers
of fungal species were identified by molecular and morphological
methods, while only in 5% of the cases both methods were used
(Fig. A.1.5, A.1.6).

4.3. Effect of storage and detection methods on the discovered
composition of fungi

The complex of methodological approaches for storing and analysing
samples undoubtedly affects the result of detecting and identifying fungi
(Bolter et al., 2002; Frisvad, 2008). To reveal the most complete picture
of species diversity, distribution, quantity, and ecological role of fungi,
long-term studies of the most diverse types of substrates (Kochkina et al.,
2012) are needed, in numerous replications and throughout all seasons,
as seasonal conditions and vegetation directly affect the fungal com-
munity (Wallenstein et al., 2007). Despite the wide range of different
sample types studied in polar regions (Tables 1, A1), usually only a small
number of them were analyzed in each individual study, and most
studies were conducted only once. In addition, a significant part of the
polar regions has not been studied at all (Figs. 1 and 2).

The method and duration of storage of samples affect the detection of
the fungal community (Cui et al., 2014; Delavaux et al., 2020; Frisvad,
2008). Presumably, during freezing and drying, some species and
colony-forming units (CFU) are lost, and during long-term storage of
cooled samples the fungal community changes since growth of some
species continues. Studies showing the effect of sample drying on the
number or detected colonies and fungal species were not found. Nikitin
et al. (2017) conducted a study showing the effect of sample storage
temperature on the length of mycelium visible under a microscope and
the number of fungal spores in soil samples. He recommends dividing
each sample into several parts and storing each part at different tem-
peratures (+5, —18 ... -20, —70 ... -80°C) separately. Each of these
temperature values had a different effect on the preservation of mycelia
length and number of spores (Nikitin et al., 2017). The effect of storing
samples at low temperatures on the overall picture of the fungal com-
munity may seem unlikely to be significant when studying fungi from
the polar regions, since psychrophilic and psychrotolerant species will
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Fig. 1. The map of Arctic with locations of the investigations; 1 — (Bubnova, 2017; Bubnova and Velikanov, 2004; Grum-Grzhimaylo et al., 2016, 2018); 2 —
(Santalahti et al., 2018); 3 — (Korneykova et al., 2022, 2020; Tkachenko, 2013; 4 — (Bubnova and Konovalova, 2018); 5, 6, 7 — (Bubnova, 2017); 8, 9, 10, 11 —
(Kirtsideli et al., 2011, 2016; Nikitin, 2021); 13,14,15 — (Kirtsideli et al., 2011, 2016); 16 — (Lapteva et al., 2017); 17 — (Kirtsideli et al., 2010); 18, 19, 20 — (Kirtsideli
etal., 2011, 2016); 21 — (Kirtsideli et al., 2014); 22 — (Kirtsideli et al., 2011, 2016); 23 — (Kirtsideli, 1999); 24 — (Blanchette et al., 2016); 25 — (Miyamoto et al., 2022);
26 — (Ozerskaya et al., 2008); 27 — (Stakhov et al., 2008); 28 — (Bellemain et al., 2013); 29 — (V. Iliushin et al., 2022); 30 — (Bellemain et al., 2013); 31 — (Lydolph
et al., 2005); 32 - (Geml et al., 2012; Semenova et al., 2015, 2016; Timling et al., 2014); 33 — (Dunleavy and Mack, 2021; Geml et al., 2012; Timling et al., 2014); 34 —
(Timling et al., 2014); 35 — (Geml et al., 2012; Timling et al., 2014); 36 — (Timling et al., 2014); 37 — (Geml et al., 2012; Timling et al., 2014); 38, 39, 40 — (Robicheau
et al., 2019); 41 — (Jurgens et al., 2009); 42 — (Day et al., 2006); 43 — (Osono et al., 2012); 44 — (Jurgens et al., 2009; Blanchette et al., 2021; Smith et al., 2004); 45 —
(Tsuji et al., 2022); 46, 47 — (Robicheau et al., 2019); 48 — (Meyling et al., 2012); 49 — (Meyling et al., 2012; Pedersen et al., 2020); 50 — (Perini et al., 2019, 2021);
51, 52, 53 - (Blanchette et al., 2016); 54, 55 — (Meyling et al., 2012); 56 — (Borchhardt et al., 2019); 57, 58 — (Bjorbakmo et al., 2010); 59 — (Santalahti et al., 2018);
60 — (Poosakkannu et al., 2017), 61 — (Juottonen et al., 2020); 62 - (Borzecka et al., 2022; Botnen et al., 2020); 63 — (Botnen et al., 2020; Iliushin, 2020; V. A. Iliushin
et al., 2022; Kurek et al., 2007; Lorberau et al., 2017); 64 — (Botnen et al., 2020; Edwards et al., 2013; Frossard et al., 2021; Geml et al., 2012; Gunde-Cimerman et al.,
2003; Perini et al., 2021; Singh et al., 2012, 2015; Tsuji et al., 2016; Zalar et al., 2008; Zhang et al., 2015a, 2015b; Zhang and Yao, 2015; Svalbardkatalogen, 1996);
65, 66, 67 — (Botnen et al., 2020); 68 — (Bjorbaekmo et al., 2010); 69 — (Crous et al., 2022); 70 — (Nikitin and Semenov, 2022); 71 - (Bergero et al., 1999; Nikitin and
Semenov, 2022); 72 — (Bergero et al., 1999; Kirtsideli et al., 2011; Nikitin and Semenov, 2022); 73 — (Bergero et al., 1999); 74 — (Conery, 2021); 75 — (Yakushev et al.,
2019); 76 — (Kochkina et al., 2011); 77 — (Knowlton et al., 2013; Ma et al., 1999); 78 — (Korneykova et al., 2020, 2022); 79 — (Tkachenko, 2013); 80 — (Bubnova and
Velikanov, 2004; Grum-Grzhimaylo et al., 2016, 2018); 81 — (Bubnova and Konovalova, 2018); 82, 83, 84, 85 — (Bubnova, 2017); 86 — (Botnen et al., 2020; Edwards
et al., 2013; Frossard et al., 2021; Geml et al., 2012; Gunde-Cimerman et al., 2003; Perini et al., 2021; Singh et al., 2012, 2015; Tsuji et al., 2016; Zalar et al., 2008;
Zhang et al., 2015a, 2015b; Zhang and Yao, 2015; Svalbardkatalogen, 1996); 87, 88, 89 — (Botnen et al., 2020); 90 — (Iliushin, 2020; V. A. Tliushin et al., 2022); 91 —

(Botnen et al., 2020; Lorberau et al., 2017); 92, 93, 94 — (Botnen et al., 2020); 95 — (Kurek et al., 2007); 96 — (Botnen et al., 2020).

be common. However, mesophilic species are active during the growing
season in the polar regions. Therefore, when samples are stored at low
temperatures, they are suppressed by cold-loving ones, which results in
an overall distorted picture. Thus, it is ideal to use all methods of sample
storage or to study the samples quickly after collecting to obtain a
complete picture of fungal species diversity.

Moreover, the methods of fungal detection in substrates strongly
influence the results of fungal species composition (Frisvad, 2008).
When using the culture-based approach, only cultivable fungal species
are isolated. in practice, 1 % is easily cultivable using standard lab
protocols (Frey et al., 2016), although it has been estimated that 2/3 of
all fungi can in principle be cultivated (Arenz and Blanchette, 2011).
Furthermore, species composition and quantity of isolated fungi using
culture-based approaches are affected by the number of samples and
their dilution, the repetition of each sample seeding, the composition of
nutrient media (Arenz et al., 2006), and cultivation conditions
(Kochkina et al., 2012). The temperature of cultivation influences the
detection of psychrophilic or mesophilic fungi (e.g., McRae 1999 and
Seppelt, 1999; Weinstein, 1997), while different pH values can detect
acid-tolerant or acidophilic species (Grum-Grzhimaylo, 2016, 2018).
The application of molecular methods has made it possible to under-
stand the non-cultivable fraction (Frey, 2016). By using metatran-
scriptomic analysis of extremely short-lived mRNA, it is more likely to
detect fungi that were in an active stage during sample collection.
However, in most studies, samples are analyzed through the extraction
of total DNA, which can remain preserved for thousands of years in
permafrost soils (Coolen and Orsi, 2015). Additionally, the results of
fungal detection by DNA depend on many analytical variables, such as
sample volume and amount, DNA extraction methods, primers for PCR
and sequencing technology, fungal life cycle stages, and other factors
(Tedersoo et al., 2021).

Cultivation methods suffer from several disadvantages. On the one
hand, many of the species obtained through cultivation were not in an
active state under natural conditions; however, their isolation from the
substrate enables a deeper examination of the physiology of these fungi
in laboratories (Arai et al., 2022; E. A. Ianutsevich et al., 2023; Elena A.
lanutsevich et al., 2023), as well as sequencing and studying their ge-
nomes (Coleine et al., 2017, 2020), creating databases and culture col-
lections (Kochkina et al., 2021). On the other hand, although collection
of fruiting bodies of basidiomycetes confirms their activity, it does not
give a clear idea of the distribution and biomass, since the fruiting
bodies are formed irregularly and it is not clear how much mycelium is
present in the material. Furthermore, numerous fungi are in symbiosis
with higher plants (Vohnik, 2020; Charya and Garg, 2019) and others
infect plants (Doehlemann et al., 2017) and animals (Gnat et al., 2021)
and these species frequently cannot cultivated on standard nutrient

media, and their detection and identification is feasible either through
direct microscopy or molecular methods, which are constrained by
insufficient genomic data and primarily rely on identification to higher
taxonomic categories than the species level.

Many studies we examined used either culture methods or eDNA
isolation from samples. We were able to find single studies in which
several approaches would be applied simultaneously. Arenz et al. (2006)
used culture-based and molecular methods to study anthropogenic
samples of wood, artifacts including straw, paper, floor, rope, burlap
collected butter, biscuits, and soils in Antarctica. They analyzed 164
samples by plating them on three different culture media and 48 of these
samples were analyzed using denaturing gradient gel electrophoresis
(DGGE). In total, 284 fungal ITS sequences were identified; including
184 from culturing and 100 from DGGE. In summary, 25 taxa were
detected by traditional culturing methods and not by DGGE. Conversely,
28 taxa, including the four unknown types, were detected and identified
by DGGE and not by culturing (Arenz et al., 2006). Malosso et al. (2006)
analyzed soils from Antarctica using molecular methods and by culti-
vating the same soil samples on nutrient media. Nucleic acids from both
the community DNA and colony extracts were amplified using PCR with
primers specific to the 18S rRNA gene. Amplicons were separated on
denaturing gradient gels (DGGE) or after restriction digestion with en-
donucleases (ARDRA). The obtained fungal clones, showing unique
ARDRA and DGGE bands, were sequenced. The fungal species compo-
sitions obtained from the same samples varied depending on the fungal
detection method utilized (Malosso et al., 2006). Kochkina et al. (2012)
analyzed 36 samples of ancient deposits from Antartctica using a diverse
range of culture-based techniques, and for nine samples, they employed
both culture-based and molecular approaches. When using
culture-based methods, fungi were not found in about half of the sam-
ples, and total-DNA was only isolated from one third of the analyzed
samples. Both culture-based and molecular methods were able to iden-
tify fungi from only one sample, while no common fungal species were
identified by both methods. These data indicate that different species are
identified using different methods (Kochkina et al., 2012). Pudasaini
et al. (2017) explored the microbial diversity of an ice-free Antarctic
desert using traditional cultivation methods, an approach of the soil
substrate membrane system (SSMS; (Ferrari et al., 2005), and
culture-independent 454-tag pyrosequencing for 18 soils samples. This
study found that fungal OTUs were not shared between
culture-dependent and independent techniques. A total of 663 fungal
OTUs were recovered using three approaches with distinct methods, yet
not a single common OTU was identified across all three methods
(Pudasaini et al., 2017). Selbmann et al. (2021) investigated Antarctic
cryptoendolithic black fungi using cultivation u the high-throughput
sequencing approaches. "Both methods applied showed advantages
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Fig. 2. The map of Antarctica with locations of the investigations; 1 — (Ryan et al., 1989; Steele et al., 1994); 2 — (Kochkina et al., 2012, 2014; Nikitin, 2018; Singh
et al., 2006); 3 — (Hirose et al., 2013, 2016; Tsuji et al., 2013; Tubaki, 1961); 4 — (Kochkina et al., 2019; Nikitin, 2018); 5 — (Hirose et al., 2016); 6 — (Fletcher et al.,
1985; Kerry, 1990; Line, 1988); 7 — (Brunati et al., 2009; De Hoog et al., 2005; Ellis, 1980; Kerry, 1990; Kochkina et al., 2012, 2014, 2019; Line, 1988); 8 — (Kochkina
et al., 2019; Marfenina et al., 2016; Nikitin, 2018); 9 — (Brunati et al., 2009; Kochkina et al., 2012); 10 — (Kochkina et al., 2014); 11 — (Olech and Alstrup, 1996); 13 —
(Azmi and Seppelt, 1998; Chambers et al., 1999; Ellis, 1980; Kerry, 1990; McRae et al., 1999; McRae and Seppelt, 1999; Pudasaini et al., 2017); 14 — (Chambers et al.,
1999; Ellis, 1980; Kerry, 1990; Kerry and Weste, 1985; Roddam and Rath, 1997); 15 - (Ellis, 1980); 16 — (Kochkina et al., 2014); 17, 18 — (Arenz and Blanchette,
2011); 19 - (Broady et al., 1987; Coleine et al., 2018; Del Frate and Caretta, 1990; Fenice et al., 1997; Held et al., 2006; Mercantini et al., 1989, 1993; Montemartini
Corte et al., 2000; Selbmann et al., 2005, 2008, 2021; Tosi et al., 2002, 2004, 2005; Zucconi et al., 1996); 20 — (Arenz et al., 2006, 2011; Baublis et al., 1991; Brunati
et al., 2009; Christner et al., 2003; Coleine et al., 2017, 2018; Connell et al., 2006; De Hoog et al., 2005; Fell et al., 2006; Gilichinsky et al., 2005, 2007; Houbraken
et al., 2012; Kochkina et al., 2012, 2021; Kudalkar, 2016; Onofri, 1999; Selbmann et al., 2005, 2008, 2021; Sugiyama et al., 1967; Sun et al., 1978; Tubaki and Asano,
1965; Visagie et al., 2016; Vishniac, 1996; Onofri et al., 2000); 21 — (Alias et al., 2013; Arenz and Blanchette, 2011; Blanchette et al., 2004, 2010; Broady et al., 1987;
Connell and Staudigel, 2013; Duncan, 2007; Duncan et al., 2006, 2010; Laichmanova, 2020); 22 — (Zucconi et al., 2012); 23 - (Crous et al., 2019; Kochkina et al.,
2012; Marfenina et al., 2016; Nikitin, 2018); 24 — (Knowlton et al., 2013); 25 - (Goncalves et al., 2017); 26 — (Godinho et al., 2015); 27 — (Hughes and Lawley, 2003;
Malosso et al., 2006); 28 — (Arenz and Blanchette, 2011; Bridge et al., 2005, 2008; Christie and Nicolson, 1983; Hughes et al., 2003, 2007; Jumpponen et al., 2003);
29 - (Arenz and Blanchette, 2009, 2011; Christie and Nicolson, 1983); 30 — (Arenz and Blanchette, 2011); 31 — (Christie and Nicolson, 1983; Gray et al., 1982; Gray
and Lewis Smith, 1984); 32 — (Arenz and Blanchette, 2011); 33 — (Arenz and Blanchette, 2011; Coleine et al., 2017; Ogaki et al., 2020a); 34 — (Christie and Nicolson,
1983; de Menezes et al., 2019); 35 — (Abneuf et al., 2016); 36 — (Arenz et al., 2011); 37 — (Christie and Nicolson, 1983); 38 — (Brito Devoto et al., 2022); 39 — (Arenz
and Blanchette, 2011); 40 — (Arenz and Blanchette, 2011; de Menezes et al., 2019); 41 — (Caretta and Piontelli, 1977); 42 — (de Menezes et al., 2019); 43 — (Abneuf
et al., 2016; Alves et al., 2019; Arenz and Blanchette, 2011; da Silva et al., 2022; de Menezes et al., 2019; Gongalves et al., 2012, 2015, Held and Blanchette, 2017;
Lindsay, 1976; Rosa et al., 2020a); 44 — (da Silva et al., 2022); 45 — (Alves et al., 2019; Caretta and Piontelli, 1977; Kostadinova et al., 2009; Litova et al., 2014; Upson
et al., 2007); 46 — (Alves et al., 2019; Houbraken et al., 2012; Lucini et al., 2022), 47 — (Abneuf et al., 2016; Alves et al., 2019; da Silva et al., 2022; de Menezes et al.,
2017, 2019, Gomes et al., 2018); 48 — (Alves et al., 2019; Bridge and Worland, 2004; Caretta and Piontelli, 1977; Crous et al., 2021a, 2021b, Czarnecki and Bia-
lasiewicz, 1987; da Silva et al., 2022; de Carvalho et al., 2020; de Menezes et al., 2019; Ding et al., 2016; Gomes et al., 2018; Goncalves et al., 2012, 2015, Kochkina
et al., 2012, 2019, Krishnan et al., 2016; Lucini et al., 2022; Moller and Dreyfuss, 1996; Nikitin, 2018; Ogaki et al., 2020b; Schubert et al., 2007; Stchigel et al., 2001;
Upson et al., 2007, 2003, Wang et al., 2015; Yu et al., 2014; Bertini et al., 2022); 49 — (Alves et al., 2019; Crous et al., 2013, 2017; Gomes et al., 2018); 50 — (Bailey
and Wynn-Williams, 1982; Bridge and Denton, 2007; Christie and Nicolson, 1983; Duddington et al., 1973; Gaiser et al., 2021; Gray et al., 1982; Gray and Lewis
Smith, 1984; Latter and Heal, 1971; Lindsay, 1976; Upson et al., 2007; Weinstein et al., 1997, 2000); 51 — (Bridge et al., 2008; Christie and Nicolson, 1983; Hurst
et al., 1983; Lindsay, 1976; Smith, 1994; Upson et al., 2007), 52 — (Knowlton et al., 2013).
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Fig. 3. Schematic illustration of the number of fungal species found in the polar regions.

Table 1
Substrates of fungal isolation.

Substrate Arctic  Antarctica  Both Only from this
poles substrate (from
either of the
poles)

Dead material
Plants (wood material, 193 37 37 86
fallen leave and litter,
fossil plants, peat)
Animals (corpses, skeleton 13 28 6 8
remains, faeces, feathers)

Living material
Plants (algae, mosses, 309 179 27 253
wood, leaves, herbaceous
plants, roots, lichens)

Animals (seals) 1 16 0 5
Substraites dominated by organic substances:
soil, birds spots and nests, 454 282 170 449
lake sediments, microbial
mats
Substraites dominated by inorganic substances:
rocks, ice and snow, 117 38 11 22

cryoconites, water
Substraites wil anthropogenic influence:
settlements and different 112 16 25 35
materials from its, soil
with kerosene and oil,
food, coal mine spoils
Airborne fungi 17 28 10 8

and disadvantages; for instance, the use of amplicon sequencing
captured the diversity of environmental microbiota in deeper detail, but
several black fungi that were successfully isolated were not detected by
this approach” (Selbmann et al., 2021). Nikitin and Semenov (2022)
explored the fungal diversity of the Franz Josef Land archipelago using
the classical plating techniques and real-time PCR methods for samples
from five islands of the archipelago. They estimated the abundance of
fungal rRNA gene ITSs, the CFU numbers, and the taxonomic diversity of
culturable micromycetes in cryosols of the islands. The number of copies
of the fungal rRNA gene ITS significantly exceeded CFU/g of soil in the
same samples (Nikitin and Semenov, 2022). Edwards et al. (2013)
investigated the fungal community in Svalbard cryoconite holes with
both traditional cultivation methods and multivariate analysis of
terminal-restriction fragment length polymorphism (T-RFLP) profiles of
rRNA ITS amplicons and showed differences in the results obtained by
these different approaches (Edwards et al., 2013). All the authors of the
aforementioned studies acknowledge the significance of employing
diverse methodologies to attain the most comprehensive identification
of the species diversity of fungi. Furthermore, these examples demon-
strate that researchers, using different methods can achieve different

and almost incomparable results.

About a half of fungal cultures isolated from the material of the polar
regions are sterile mycelium (e.g., Bolter et al., 2002; Kochkina et al.,
2012), which limits the drawing of a taxonomic picture. Moreover,
many species of fungi are characterized by significant variability in
taxonomic characters, and hence their identification by morphology can
be difficult (O.A. Grum-Grzhimaylo et al., 2016; Kaitera et al., 2019).
These cases require isolation of DNA from the mycelium, followed by
sequencing of the internal transcribed spacer (ITS) region, which has
been used in the most studies on the diversity of fungi in the polar re-
gions (Fig. A.1.6). However, other difficulties arise when using molec-
ular identification methods. In some cases, the ITS region is not
sufficient for identifying species, and other DNA regions require addi-
tional sequencing (Bolter et al., 2002). Furthermore, there is not enough
information in the databases to identify all detected species with DNA
data (Hyde et al., 2010). For these reasons, it is frequently feasible to
identify samples based on DNA sequences up to higher taxonomic cat-
egories than the species (Tedersoo et al., 2020). It has been noted that it
is useful to combine molecular techniques and morphological observa-
tions to identify many fungal species (Baturo-Ciesniewska et al., 2020).
The limitation of combining these two identification methods is that it is
only possible for fungi obtained through cultivation. Even when fungi
were detected through cultivation in a very small number of polar
studies, they were identified both by morphological features and by
sequencing DNA regions (e.g., Grum-Grzhimaylo et al., 2018; O.A.
Grum-Grzhimaylo et al., 2016; Kaitera et al., 2019; Kochkina et al.,
2019).

It is therefore difficult to obtain an understanding of the biogeog-
raphy and functioning of fungi living in the Arctic and Antarctic from the
available data, obtained by various methods. Therefore, at present we
still need to employ multiple methods to get a good picture. More
research is needed to understand the relationship between different
sampling methods, and particularly to distinguish active mycelia from
spores.

Table 2
Abundance of fungal divisions in the polar regions.

Division No of species Common for both poles  Total
Arctic Antarctica
Ascomycota 388 279 229 896
Basidiomycota 326 34 12 372
Mucoromycota 20 14 19 53
Glomeromycota 0 1 0 1
Entomophthoromycota 0 1 0 1
Zoopagomycota 0 1 0 1

Total 734 330 260 1324
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5. Taxonomy and ecology of fungi in the polar regions

More fungal species have been detected in the Arctic region than in
Antarctica (717 and 326 unique species, respectively) and the number of
species common to both polar regions was 250 species (Fig. 3), corre-
sponding to approximately 19%. Such differences can be attributed to
both the geographical distance between polar regions and the unique
ecological characteristics specific to these regions. In this section, we
provide a brief comparative overview of the taxonomy of fungal com-
munities in the Arctic and Antarctic, as well as their ecological associ-
ations. Additional information about the ecological significance of fungi
from our list was taken from 358 articles and 16 Internet resources

(Tables A.1).

Table 3

The list of reviews characterizing different groups of fungi and their ecology in

polar regions and permafrost.

Titles

References

Microbial Life in Permafrost
Microbial Life in Supraglacial Environments

Heterotrophic Microbes, Microbial and Enzymatic
Activity in Antarctic Soils

Arctic soil microbial diversity in a changing world

Permafrost active layer

Fungi in cold ecosystems

Mycorrhizal diversity in arctic and alpine tundra: an open
question

Psychrophilic and psychrotrophic fungi: a comprehensive
review

How will thawing permafrost affect the microbial
abundant and diversity in the Arctic?

Decomposer’ Basidiomycota in Arctic and Antarctic
ecosystems

Microbialdiversity and functional capacity in polar soils

Microbial diversity and biogeography in Arctic soils

Root-associated fungi and carbon storage in Arctic
ecosystems

Cold adaptation in Arctic and Antarctic fungi

Snow moulds in polar environments

Adapting the changing environment: microbial way of life

Trends in yeast diversity discovery

Introduced and indigenous fungi of the Ross Island
historic hutsand pristine areas of Antarctica

No need for speed: slow development of fungi inextreme
environments

Structure and function of alpine and arctic soil microbial
communities

Mycorrhizas and dark septate root endophytes inpolar
regions

Antarctic microfungi

The Role of Ectomycorrhiza in Boreal Forest Ecosystem

Biodiversity in the dark: root-associated fungi in the Arctic

Fungi in Antarctica

Fungi of Antarctica: Diversity, Ecology and
Biotechnological Applications

Resurrection of inactive microbes and resistome present in
the naturalfrozen world: Reality or myth?

Seasonal dynamics of previously unknown fungal lineages
in tundra soils

Antarctic permafrost: An unexplored fungal microhabitat
at the edge of life

Fungi in hot and cold deserts with particular referenceto
microcolonial fungi

Global diversity and geography of soil fungi

Peeking through a frosty window: molecular insights into
theecology of Arctic soil fungi

Natural products from polar organisms: Structural
diversity, bioactivitiesand potential pharmaceutical
applications

Microbial Communities and Processes in Arctic
Permafrost Environment

Altshuler et al. (2017)
Edwards and Cameron
(2017)

Bolter et al. (2002)

Blaud et al. (2015)
Dobinski (2020)
Frisvad (2008)
Gardes and Dahlberg
(1996)

Hassan et al. (2016)

Maria and Langvad
(2020)

Ludley and Robinson
(2008)

Makhalanyane et al.
(2016)

Malard and Pearce
(2018)

Robinson et al. (2020)

Robinson (2001)

Tojo and Newsham
(2012)

Aley et al. (2022)
Boekhout et al. (2021)
Farrell et al. (2011)

Gostincar et al. (2022)
Nemergut et al. (2005)
Newsham et al. (2009)
Onofri (1999)

Qu et al. (2010)
Botnen (2020)

Ruisi et al. (2007)
Rosa et al. (2019)
Sajjad et al. (2020)
Schadt et al. (2003)

da Silva et al. (2019)
(Sterflinger et al.,
2012)

Tedersoo et al. (2014)
Timling and Taylor

(2012)
Tripathi et al. (2018)

Wagner (2008)
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5.1. Taxonomic description and abundance of fungi in the polar regions

There is a large difference between the Arctic region and Antarctica
in the distribution of different fungal divisions (Table 2). The highest
number of species common to the two poles belongs to the divisions
Mucoromycota and Ascomycota (~37% and ~25%, respectively), while
shared Basidiomycota species account for only ~3%. According to our
data only a few species are known to be endemic to Antarctica or Arctic,
and there are 1-6 identified bipolar species, i.e. species occurring at both
poles, but not at intermediate latitudes (Fig. 3). General information on
the taxonomic composition of fungi found in the polar regions is given in
Tables A.3. Ascomycota species represent the largest group of fungi re-
ported from both polar regions. The discovered species belong to 12
classes, and 31 species have an unclear taxonomic position (incertae
sedis; Tables A.3). Basidiomycota species are the second-largest taxo-
nomic group of fungi in the polar regions mostly recorded in Arctica and
mainly represented by species belonging to the class Agaricomycetes
(Tables A.3). The most species-rich were genera Cortinarius (Pers.) Gray
(65 species), Inocybe (Fr.) Fr. (33 species), Russula Pers. (28 species),
Lactarius Pers. (15 species) and Mycena (Pers.) Roussel (12 species;
Tables A.1, A.3). The biggest part of Mucoromycetes belongs to Mor-
tierella Coem. and Mucor P. Micheli genera, species of which were found
in both polar regions, predominantly in Arctica (Tables A.3).

5.2. A brief sketch of the ecology of fungi in the polar regions

A significant cause of the difference between fungal communities in
the Arctic and Antarctic regions, as described in section 5.1, may be the
various ecological factors specific to these regions. Interesting reviews
characterizing different groups of fungi and their ecology in polar re-
gions and permafrost already exist in scientific literature (Table 3). We
did not intend to provide a complete picture of the ecology of fungal
communities in polar regions, partly due to the fact that certain
ecologically important groups of fungi in polar regions, such as yeasts
(Buzzini et al., 2017), snow mold (Hoshino et al., 2019; Tkachenko,
2013), lichenicolous fungi (Brackel, 2010; Brinker, 2020; Santiago et al.,
2015), certain species associated with animals (Bridge and Worland,
2004), and many macrofungi (Denchev et al., 2020), were not consid-
ered because they were detected using methods that we did not take into
account. Another complicating factor in data analysis was that many
fungal species can perform multiple roles in ecosystems simultaneously
(Tables A.1). To investigate certain patterns of fungal distribution in
polar regions based on their ecological associations according to our
data, we only included species whose role in ecosystems has been
studied the most.

Approximately half of the polar fungal species are saprotrophs
(Fig. A.1.7). It is among these species that the greatest number of species
shared between both polar regions has been found. The second largest
group in the Arctic consists of symbionts, dominated by mycorrhizal
species associated with a much larger number of Arctic plant species
than Antarctic ones. Pathogenic species for plants and animals follow
(Fig A.1.7). The ecological role of about 8.2% of the identified fungal
species remains unknown. Interestingly, approximately 3.5% (47 spe-
cies) of the identified fungi are known to be pathogenic, as well as
potentially or conditionally pathogenic for humans and warm-blooded
animals (Fig A.1.7; da Silva et al., 2022). The list of these species,
their frequency of occurrence in studies, and the substrate of detection
are provided in Table A.4. It is impossible to determine with certainty
how these species reached the polar regions, but it can be assumed that
they were introduced by humans, animals, or migratory birds
(Table A.4). It is also unknown whether pathogenic fungi are active in
polar regions or remain in the form of spores. The presence of thermo-
philic species, such as Acaulium caviariforme, Collariella gracilis, Myco-
thermus thermophilus, Thermomyces lanuginosus, and Thermothelomyces
thermophiles (Tables A.1), is intriguing. It can be confidently assumed
that with global warming, the activity of both pathogenic species and
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thermophilic and thermotolerant species will increase.

It is interesting to compare the fungal complexes of two polar regions
isolated from similar substrates, such as drifting wooden material in the
Arctic (Blanchette et al., 2016) and wooden structures in Antarctica
(Arenz et al., 2006; Blanchette et al., 2004; Duncan et al., 2006; Gaiser
et al., 2021), bird feathers from high Canada (Robicheau et al., 2019)
and Svalbard (Singh et al., 2015) and Antarctica (Brito Devoto et al.,
2022; Del Frate and Caretta, 1990), mosses, vascular plants, and lichens
(e.g. (de Carvalho et al., 2020; Jumpponen et al., 2003; Kerry, 1990a;
McRae and Seppelt, 1999; Moller and Dreyfuss, 1996; Osono et al.,
2012; Park et al., 2015; Rosa et al., 2020b; Tosi et al., 2002; Zhang et al.,
2015b), peat (Lapteva et al., 2017; Olga A. Grum-Grzhimaylo et al.,
2016; Semenova et al., 2015; Yakushev et al., 2019), ice, snow, and
cryoconites (Borzecka et al., 2022; Christner et al., 2003; Edwards et al.,
2013; Gilichinsky et al., 2005; Graciéle C.A. de Menezes et al., 2019;
Gunde-Cimerman et al., 2003; Knowlton et al., 2013; Ozerskaya et al.,
2008; Perini et al., 2019, 2021; Tsuji et al., 2022), aerial dispersal of
fungi (Czarnecki and Bialasiewicz, 1987; Duncan, 2007; Duncan et al.,
2010; Kirtsideli et al., 2011; Sun et al., 1978). Interesting comparative
descriptions of fungi on plants and mosses in the Arctic and Antarctica
are presented in the book by Tsuji and Hoshino (2019) and in the
publication by de Carvalho et al. (2020), but they cover a limited
number of studies. Separate interest is raised by studies of mycorrhizal
fungi and their movement together with symbiotic plants, mainly
characteristic of the Arctic (Bjorbakmo et al., 2010; Botnen et al., 2020;
Chlebicki et al., 2005; Dunleavy and Mack, 2021; Geml et al., 2012;
Kaitera et al., 2019; Lorberau et al., 2017; Miyamoto et al., 2022) and to
a lesser extent for Antarctica, as there are only two species of vascular
plants (Colobanthus quitensis (Kunth) Bartl. and Deschampsia Antarctica
Desv.), but they also form mycorrhizae (Barbosa et al., 2017; Christie
and Nicolson, 1983; Lucini et al., 2022; Upson et al., 2008). The results
of studies on the biogeography of fungi along transects from temperate
to cold latitudes (Timling et al., 2014), the adaptive features of fungi in
polar regions, such as optimal temperature for growth (Alias et al., 2013;
da Silva et al., 2022; Gaiser et al., 2021; Kerry, 1990b; Kostadinova
et al., 2009; Krishnan et al., 2016; Latter and Heal, 1971; Litova et al.,
2014; Lucini et al., 2022; Singh et al., 2006; Stakhov et al., 2008; Tosi
et al., 2002; Wang et al., 2015; Weinstein et al., 1997, 2000, Zucconi
et al., 1996, 2012), their enzymatic and antimicrobial activity (Abneuf
et al.,, 2016; Ding et al., 2016; Duncan, 2007; Duncan et al., 2006;
Krishnan et al., 2016; Lindsay, 1976; Mercantini et al., 1993; Mon-
temartini Corte et al., 2000; Singh et al., 2012), resistance to extreme
factors such as high UV radiation and radiation, freezing, dryness,
oligotrophic conditions (Bergero et al., 1999; Fell et al., 2006; Gunde--
Cimerman et al., 2003; Hughes et al., 2003; Sazanova et al., 2019;
Selbmann et al., 2008, 2015; Singh et al., 2006; Tosi et al., 2005; Tsuji
et al., 2013), their associations with vertebrates and invertebrates
(Bridge and Denton, 2007; Bridge et al., 2005; Bridge and Worland,
2004; Brito Devoto et al., 2022; Meyling et al., 2012; Roddam and Rath,
1997), as well as the physiological response of fungi to global warming
(Geml et al., 2015; Semenova et al., 2015; Tosi et al., 2005; Weinstein
et al., 2000), changes in snow cover thickness (Morgado et al., 2016),
succession dynamics (Juottonen et al., 2020; Kerry and Weste, 1985;
Poosakkannu et al.,, 2017), changes in fungal communities due to
anthropogenic influence (Blanchette et al., 2004, 2010; Czarnecki and
Bialasiewicz, 1987; Gaiser et al., 2021; Kirtsideli et al., 2016; Korney-
kova et al., 2022; Line, 1988; Ogaki et al., 2020; Tsuji et al., 2022)
undoubtedly deserve attention.

It is impossible not to mention the works relating to paleontological
studies of fungi in polar regions. For example, we encountered such an
interesting case: Eucasphaeria capensis, firstly obtained in South Africa in
living leaves and leaf litter of Eucalyptus sp. and described by Crous et al.
(2007), was detected by metabarcoding of DNA in ancient arctic
permafrost a few years later (Bellemain et al., 2013). Analysis of pale-
ontological studies can help understand the biogeography of fungi in
polar regions hundreds and thousands of years ago (Bellemain et al.,
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2013; Gilichinsky et al., 2007; Knowlton et al., 2013; Lydolph et al.,

2005; Ma et al., 1999; Ozerskaya et al., 2008; Stakhov et al., 2008).
Thus, a more detailed description of the ecological role and adaptive

features of fungi in polar regions deserves a separate research work.

6. Are these fungi endemic?

Some fungi in polar regions have not been recorded in other parts of
our planet. Fungi that occur only in one of the polar regions, according
to one definition of endemism (Shipley and McGuire, 2022), will be
referred to as endemic species in this work. For the Arctic, this will be
the area within the polar circle, and for Antarctica, it will be the
continent itself and the islands of the Antarctic and sub-Antarctic seas.
Species known in both polar regions but not recorded in other parts of
the planet will be referred to as bipolar endemics (Cox et al., 2016).

When attempting to assess the presence and number of endemic
species and bipolar endemics, we encountered several problems: 1)
some species that were originally described as Antarctic fungi (e.g.,
Penicillium antarcticum, Drechmeria coniospora, D.obovata, Phialophora
dancoi, Sclerococcum dobrowolskii, Thelebolus mircosporus) were later
found in other regions, in certain instances including the Arctic (e.g.,
Conidiobolus antarcticus, Drechmeria balanoides, and Thelebolus ellipsoi-
deus), or only in the Arctic, making them bipolar endemics (Acrodontium
antarcticum, Antarctomyces pellizariae, A. psychrotrophicus, Cadophora
antarctica, Cladosporium antarcticum and Mortierella antarctica); 2) spe-
cies that were once considered boreal and only found in the circumpolar
regions of the Arctic and subarctic zones have since been discovered in
high mountainous areas (e.g., Inocybe arctica, I. borealis); (Cripps and
Horak, 2006; Kokkonen and Vauras, 2012), or known from Antarctic
and high alpine areas (e.g., Psychrophila antarctica, Wang et al., 2015); 3)
there are species that were previously considered bipolar endemics but
were later found in other places, such as Penicillium amphipolaria; 4) as
the number of studies analyzed increased, the number of unique fungal
species for the poles decreased, and more species became common to
both the Arctic and Antarctic; 5) the later the species were described, the
fewer regions they were recorded from, suggesting that over time, the
unique fungal species presently found in polar regions may be discov-
ered in other places. All of these issues are closely linked to researchers’
noted incomplete understanding of fungal distribution worldwide
(Tedersoo et al., 2021), and especially in polar regions (e.g., Bridge and
Spooner, 2012; Cox et al., 2016; Newsham et al., 2016), so the concept
of endemic fungal species has to be considered relative and tentative.

In this section, we have attempted to gather information about
fungal species that are currently considered endemic to polar regions, or
were believed to be so for a long time until they were found at the
opposite pole or in inter-polar regions.

6.1. Characteristic Antarctic fungi

Antarctica, along with its surrounding islands, represents extreme
and well-isolated regions on our planet that are challenging for survival.
As a result, unique plant and animal communities have formed here. It
would be logical to expect unique fungi in this area, many of which are
parasitic and symbiotic species that are commonly found in association
with plants and animals. The distribution of saprotrophic fungi, as
heterotrophic organisms that feed on ready-made organic materials, is
closely associated with the presence of suitable substrates, whose
chemical composition is closely linked to the enzymatic apparatus of
fungi capable of breaking down specific substances thus determining
substrate specialization. Extreme sub-zero temperatures, dryness, and
intense UV radiation also have a significant impact on the growth and
metabolic activity of Antarctic fungi. The complex combination of these
factors determines the species composition of fungi inhabiting this area.

Out of the more than 300 Antarctic fungi we have found in various
studies, 23 species in the table are considered endemic until today. Part
of these species are actively being studied, while others have only been
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Table 4
Endemic fungal species of Antarctica; endolithics are in bold.
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Species of fungi (modern names
from the Index Fungorum)

Names of species from
articles (archaic), if
different

Substrate of detection

Ecology

References

Acremonium psychrophilum

Apenidiella antarctica
Arthroderma magnisporum

Arthroderma oceanitis

Chalara antarctica

Cladosporium austrolitorale

Comoclathris antarctica
Cryomyces antarcticus
Cryomyces minteri

Drechmeria bactrospora

Extremus antarcticus
Fried

dolithicu:

Lyces

Friedmanniomyces simplex
Humicola marvinii
Jugulospora antarctica
Laetinaevia colobanthi
Paecilomyces antarcticus

Psychronectria hyperantarctica
Rachicladosporium antarcticum
Rachicladosporium mcmurdoi
Rhizophagus antarcticus

Sclerotinia antarctica

Trichocladium antarcticum

Chrysosporium
magnasporum
Chrysosporium oceanitesii

Acrostalagmus bactrosporus

Extremus antarcticus

Apiosordaria antarctica

Thyronectria antarctica var.

hyperantarctica

Glomus antarcticum
Sclerotium antarcticum

Thielavia antarctica

Lichens

Permafrost soil
Bird pellet

Dead bird, lake sediments

Rhizosphere of Deschampsia
antarctica and Colobanthus
quitensis

Coastal sea sand

Soil

Sandstone, soil, rocks
Soil

Soil with Deschampsia
antarctica

Rocks, sandstones
Granite or pegmatite, sandston,
rocks, soil

Sandstone

Soil

Soil, bird colonies
Plant tissues
Invertebrate animals
(springtail)

Mossess

Rocks

Rocks, sandstones

Plants roots

Soil, Deschampsia antarctica

Lichens, birds spots, lake
sediments

Lichenicolous, psychrophilic

n.i.

Keratinolytic,
psychrotolerant
Keratinolytic,
psychrotolerant

Vascular plant associated

Saprotrophic,
psychrotolerant

n.i.

Endolithic, psychrophilic
Endolithic, psychrophilic
Endoparasitic
nematophagous
Endolithic

Endolithic, psychrophilic

Endolithic, psychrophilic
Psychrophilic

Bird associated

Plant associated
Entomogenous

Bryophilous

Endolithic
Endolithic
Endomycorrhizal
Plant associated

Lichen associated, bird
associated, psychrotolerant

(Etayo et al., 2023; Moller and Dreyfuss,
1996; Vishniac, 1996)

Crous et al. (2019)

Crous et al. (2013)

(Crous et al., 2013; Ogaki et al., 2020a)

(Newsham et al., 2020; Onofri, 1999;
Vishniac, 1996)

Crous et al. (2021b)

Crous et al. (2021a)

(Nikitin, 2023; Selbmann et al., 2005)
Selbmann et al. (2005)

Gray and Lewis Smith (1984)

Selbmann et al. (2021)

(Nikitin, 2023; Onofri et al., 1999;
Selbmann et al., 2005)

(Nikitin, 2023; Selbmann et al., 2005)
(Weinstein et al., 1997, 2000)
(Nikitin, 2023; Stchigel et al., 2003)
Onofri (1999)

(Bridge et al., 2005; Song et al., 2017)

(Hawksworth, 1973; Hoshino et al., 2019;
Pawlowska et al., 2017; Rosa et al.,
2020b, 2021)

(Coleine et al., 2017; Laichmanova, 2020)
Selbmann et al. (2021)

(Barbosa et al., 2017; Cabello et al., 1994)
(Bridge et al., 2008; Hoshino et al., 2019;
Onofri, 1999)

(Stchigel et al., 2003; Ogaki et al., 2020a;
Nikitin, 2023; van den Brink et al., 2015)

found in Antarctic substrates, described and studied little. The charac-
teristic Antarctic fungi identified in these studies were isolated from
typical substrates in this region, such as plants, lichens, soil, lake sedi-
ments, bird and insect waste, nematodes, and rocks. Among the species
with certain physiological characteristics, keratinophilic fungi have
been identified, which can potentially degrade animal keratin struc-
tures, and psychrophilic and psychrotolerant fungi, capable of func-
tioning at low temperatures (Table 4).

A separate group represents fungi associated with typical and
endemic Antarctic plants. De Carvalho et al. (2020), studying the
cultivable fungi in mosses, demonstrated that mosses provide a favor-
able habitat for survival, colonization and establishment of symbionts
and decomposer fungi in various extreme Antarctic conditions. How-
ever, no endemic fungi were found in this study, except for the species
Antarctomyces psychrotrophicus, but according to our data, the endemism
of this species is disputable, which will be discussed below. The authors
also note that the mycobiota of Antarctic mosses is poorly understood,
and further research is likely to lead to the discovery of new fungal
species (de Carvalho et al., 2020). Osono et al. (2019) investigated the
mycobiota of mosses and dead tissues of introduced Salix spp. in
Antarctica and compared it with the mycobiota of the same substrates in
the Arctic. They identified several similarities and differences, but no
endemic fungi were found in their study. There are studies of fungi
causing diseases in Antarctic moss "fairy ring”, among which the species
Psychronectria hyperantarctica is noted, known only for Antarctica to date
(Graciéle Cunha Alves de Menezes et al., 2019; Pawlowska et al., 2017;
Rosa et al., 2020b). The parasitic species Sclerotinia antarctica and Lae-
tinaevia colobanthi were isolated from the two known and endemic
Antarctic vascular plants Deschampsia antarctica and Colobanthus

10

quietensis, respectively, and has not been reported elsewhere in the
literature. However, Hoshino et al. (2019), noting S. antarctica
morphological similarity to the Arctic species S. borealis, suggest that a
comparative study of these two species is necessary.

The parasitic fungus Paecilomyces antarcticus was isolated from the
Antarctic springtail Cryptopygus antarcticus and described by Bridge et al.
(2005). We could not find mentions of this species elsewhere, but it is
possible that this fungus associated with the Antarctic springtail inhabits
only its habitats - Antarctica, subantarctic islands, and Australia. The
genome study of C. antarcticus by Song et al. (2017) shows that
C. antarcticus contains an endogenous fungal gene acquired through
horizontal transfer from a fungal parasite to its host. The authors also
demonstrated the potential for horizontal transfer of cellulase genes
from fungal parasites to hosts at an early stage of evolution in distantly
related species of Arctic (Onychiurus arcticus) and Antarctic
(C. antarcticus) springtails. We were unable to find other studies of
parasitic fungi in Arctic springtails to determine the species of these
fungi. However, the studies by Song et al. (2017) indicate long-term
coevolutionary relationships between fungi and springtails, suggesting
that fungi associated with endemic springtail species (and other ani-
mals) may also be endemic. Overall, a very limited number of studies on
fungi associated with Antarctic animals have been noted (Simoes et al.,
2019), although potentially new and endemic fungal species could exist
in this niche.

The study of the physiology of cryptoendolithic fungi, isolated from
rocks, has become a topic of significant interest among researchers.
Cryptoendolithic microorganisms form a small community that has
adapted to live inside rocks in the smallest pores of rocks up to 10 mm
deep, where conditions are milder than outside. Cryptoendolithic fungi
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have a melanized, thick-walled mycelium that protects against desic-
cation and intense UV radiation and have a highly reduced morphology
with scarce differentiation. Exopolysaccharides secreted by hyphae may
also protect them from desiccation and frost. As the living conditions of
Antarctic cryptoendolithic fungi are believed to be similar to those on
Mars, their physiological and genetic characteristics are actively stud-
ied. Selbmann et al. (2005) described four cryptoendolithic species
(Cryomyces antarcticus, C. minteri, Friedmanniomyces endolithicus,
F. simplex), among which F. endolithicus, noted as the most common and
well adapted species to the harshest conditions of the Antarctic cryp-
toendolithic community (Selbmann et al., 2005), is studied the most
intensively. F. endolithicus has been shown to be resistant to acute doses
of gamma radiation, accompanied by an increase in metabolic activity
(Pacelli et al., 2018). Coleine et al. (2020) sequenced the genome of
F. endolithicus to study gene content and genomic patterns that can be
associated with its specialization and found that some stress-resistance
features, such as meristematic growth and cold tolerance, are enriched
in F. endolithicus, which could be attributed to the adverse conditions of
Antarctica. They also identified genomic features in response to salt,
X-ray radiation, cold, and DNA damage, confirming the exceptional
polyextremotolerance and ability to survive various stresses of this
species.

The cryptoendolithic species Cryomyces antarcticus has been exten-
sively studied for over a decade (Onofri et al., 2020). The genome
project of C. antarcticus has been published (Sterflinger et al., 2014), and
analysis of the genome did not reveal significant deviations from mes-
ophilic fungi, but it suggests that the fungus possesses a unique set of
previously unknown proteins that exhibit high stress resistance. The
authors emphasize the need for a deep analysis of the C. antarcticus
genome (Sterflinger et al., 2014). Selbmann et al. (2011) found that the
DNA of C. antarcticus and C. minteri species exhibited high resistance to
prolonged (up to 240 min) UV-B radiation compared to Saccharomyces
pastorianus. Studies have been published on the radiation-protective
pigments melanin of C. antarcticus, demonstrating its enhanced radio-
resistance (Pacelli et al., 2020). This fungus also maintained survival,
DNA integrity, ultrastructure stability, and rapid recovery of metabolic
activity after 18 months of exposure to space and Martian conditions in
low-Earth orbit (Onofri et al., 2020). The authors of these studies note
that their findings have astrobiological value and warrant reconsidera-
tion of the possibility of extraterrestrial life. Rachicladosporium antarc-
ticum, R. mcmurdoi and Extremus antarcticus appears to be the least
endolithic species studied for now (Table 4).

Table 5
Endemic fungal species of Arctic.

Substrate of References

detection

Species of fungi
(modern names
from the Index

Ecology

Fungorum)
Comoclathris Plants: Festuca Plant parasitic (Crous et al., 2021a;
arctica” brachyphylla, Shoemaker and
Puccinellia Babcock, 1992)
angustata
Monodictys Roots of Endophytic, (Day et al., 2006;
arctica Saxifraga lichen Timling et al., 2014;
oppositifolia, associated, Zhang et al., 2015a,
lichens, plant water 2015b; Zhang and
tissues, soil, lake Yao, 2015)
water
Penicillium Ice, water Saprotrophic Gunde-Cimerman
arcticum et al. (2003)
Penicillium Ice, water Saprotrophic, Gunde-Cimerman
svalbardence psychrotolerant et al. (2003)
Penicillium Ice, water Saprotrophic Gunde-Cimerman
groenlandense® et al. (2003)
Psychromyces Ice, cryoconite Psychrophilic Perini et al. (2021)
glacialis

2 these names are not on the Indexfungorum or are outdated.
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Based on these findings, it can be summarized that the Antarctic
region harbors scientifically intriguing fungal species, including those
with potential biotechnological applications. However, further research
is needed to explore the overall diversity of fungi in Antarctica, as well as
in similar habitats, to ascertain the endemism of Antarctic species.
Additionally, the physiology and genome of the fungi already described
in Antarctica require further investigation.

6.2. Characteristic Arctic fungi

The identification of information about endemic fungi in the Arctic
has proven to be more challenging than the search for Antarctic en-
demics. This may be due to the fact that the investigated Arctic regions
are less isolated, except for islands, many of which have been sporadi-
cally or not studied at all for their mycota. Additionally, the Arctic re-
gion is inhabited by numerous mycorrhizal fungal species, the
distribution of which is often studied by collecting fruiting bodies or
direct microscopy, which was not included in this review. As a result of
our study, only a few unique fungal species specific to the Arctic region
were identified (Table 5), and there is practically no information about
these species. The parasitic fungus Comoclathris arctica, which parasit-
izes herbaceous plants, is known from the high Arctic of Canada
(Shoemaker and Babcock, 1992). The name of this species in Index
Fungorum is marked as obsolete (http://www.indexfungorum.org/Nam
es/NamesRecord.asp?RecordID=360252), and no DNA sequences or
other studies of this fungus could be found. The species Monodictys
arctica was found in the roots of Saxifraga oppositifolia in the high Arctic
of Canada in 2006 and described by Day et al. (2006). It was later found
in Alaska (Timling et al., 2014) and Svalbard (Zhang et al., 2015a,
2015b; Zhang and Yao, 2015), but we could not find any mentions of its
distribution in other regions. Three species of the genus Penicillium
(P. arcticum, P. groenlandense, P. svalbardence) were discovered and
identified as potentially new to science by Gunde-Cimerman et al.
(2003) in the ice and seawater of Svalbard. We could not find any further
mentions of P. arcticum, including its name in Indexfungorum or DNA
sequences in the GenBank. P. svalbardence was described as a new spe-
cies a few years later and noted as psychrotolerant (Sonjak et al., 2007),
but we could not find more information about its distribution and
physiology. The dimorphic fungus Psychromyces glacialis was recently
discovered in the ice and cryoconites of Svalbard and Greenland, and
described and noted as psychrophilic by Perini et al. (2021). Arai et al.
(2022) isolated and characterized proteins from P. glacialis that bind ice,
which are necessary for the fungus to survive freezing temperatures.

6.3. Bipolar endemic fungi

Fungi that we refer to as putative bipolar endemics were identified
by researchers exclusively in two polar regions. We were able to identify
six such species of fungi (Table 6), while Cox et al. (2016), through the
analysis of Antarctic fungal eDNA (ITS region) and comparison with
similar data from other regions, discovered approximately 20 bipolar
fungi identified to the genus or higher taxonomic category. In our study,
all bipolar species were initially found in Antarctica, and then, usually
after a significant time lapse, they were also observed in the Arctic
(Table 6). In attempting to ascertain the complete identity of putative
bipolar endemic species, we encountered a number of challenges: 1) for
Acrodontium antarcticum and Antarctomyces pellizariae, only sequences
from Antarctic cultures are known, and Arctic studies (Conery, 2021;
Nikitin and Semenov, 2022) only mention the names of these species,
with the DNA sequences themselves not deposited in GenBank; 2) the
well-known endemic Antarctic species, Antarctomyces psychrotrophicus,
was recorded in Arctic soil studies by Timling et al. (2014), but BLAST
results show similarity of ITS regions of the Arctic fungus with the type
strain at 96.21%, which is insufficient for species identification; 3)
Cladosporium antarcticum was recorded in Arctic peat (Grum-Grzhimaylo
et al., 2016, 2018) and on feathers of Arctic birds (Robicheau et al.,
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Table 6

Presumably bipolar endemic species of fungi; proved bipolar species is in bold.

Species of fungi Substrate of detection Ecology GenBank GenBank Similarity ~ References of material of Comments References (Antarctica) References (Arctic)
(modern names number of numbers of articles with DNA
from the Index antarctic arctic strains sequences of isolation of
Fungorum) strains (ITS) (ITS) Arctic strains Arctic fungi
Acrodontium Rhizosphere, wood Plant MH862213 - >97% Conery (2021) eDNA no sequences of Arctic (Onofri, 1999; Vishniac, Conery (2021)
antarcticum pathogenic strains in a GenBank 1996)
Antarctomyces Soil, snow, rocks, lake Psychrophilic NR_164245 - - Nikitin and pure no sequences of Arctic ~ (de Menezes et al., 2017, Nikitin and Semenov
pellizariae sediments, anthropogenic Semenov culture strains in a GenBank 2017, 2017; Gomes et al., (2022)
substrartes (2022) 2018; Alves et al., 2019;
Ogaki et al., 2020a, 2020b;
Nikitin, 2023)
Antarctomyces Soil, anthropogenic Psychrophilic MH874317 KC965756 96.21% Timling et al. eDNA - (Stchigel et al., 2001; Arenz (Kirtsideli et al., 2014,
psychrotrophicus substrates, moss, peat, (2014) et al., 2006, 2011; Bridge and 2016; Nikitin et al.,
lichens, gut of Denton, 2007; Duncan et al., 2021; Timling et al.,
Eretmoptera murphyi, 2010; Arenz and Blanchette, 2014)
air, penguins feathers, 2011; Gongalves et al., 2012;
animal seals, lake water Yu et al., 2014; Kochkina
and sediments, snow et al., 2014; Abneuf et al.,
2016; Ding et al., 2016;
Krishnan et al., 2016; Nikitin,
2018, 2023; de Menezes
et al., 2019; de Carvalho
et al., 2020; Ogaki et al.,
2020a; Brito Devoto et al.,
2022)
Cadophora Soil with diesel, coal Psychrotolerant NR_156381 MN833351 99.21% Iliushin pure similarity of LSU Crous et al. (2017) (Iliuchin et al., 2022a;
antarctica mine spoil (2020) culture (MT362720) with a Iliushin, 2020)
type material is 100%,
morphological
description is also
provided
Cladosporium Permafrost sediments, n.i OR046553 MKO049894 100% Robicheau pure similarity 100% with (Kochkina et al., 2012; (Grum-Grzhimaylo
antarcticum peat, soil, feathers et al. (2019) culture 5 or more species of Schubert et al., 2007) et al., 2016, 2018;
Cladosporium Robicheau et al.,
including C. 2019)
antarcticum
Mortierella Soil, mosses, lake Saprotrophic MH859873 KC965343 99.45% Timling et al. eDNA - (Frate and Caretta, 1990; (Semenova et al.,
antarctica sediments, anthropogenic (2014) Onofri, 1999; Tosi et al., 2016; Timling et al.,
LC514998 99.69% Tsuji et al. pure - 2002; Ding et al., 2016; Ogaki ~ 2014; Tsuji et al.,
(2022) culture et al., 2020a, 2020b; Nikitin, 2022)
LC515021 99.69% pure - 2023; Gomes et al., 2018)
culture
LC515040 99.92% pure -
culture
LC515137 99.85% pure -
culture
- 98.5% Semenova eDNA number of the strain is
et al. (2016) among KX401620-
KX404870
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2019), but in the first case, sequences were not deposited in GenBank,
and in the second case, the BLAST results showed 100% identity of the
ITS region of the Arctic fungus not only with C. antarcticum, but also
with several other species of the genus Cladosporium; 4) for Arctic
specimens of Mortierella antarctica, the similarity of the ITS region
ranges from 98.5 to 99.92%, and no other evidence was found to suggest
that they are the same species. As a result, only one species, Cadophora
antarctica, initially found in Antarctica (Crous et al., 2017), was soon
discovered in the Arctic (Svalbard) and described as a bipolar species
based on the sequencing results of ITS and LSU rDNA sequences (99.21%
and 100% similarity to the type material, respectively) and
cultural-morphological characteristics (Iliushin, 2020). However, this
species has been recently described and there is no guarantee that it will
not be found later in other regions, especially given that both occur-
rences of this fungus are associated with anthropogenic substrates.

Thus, despite the available information on common fungal species in
Antarctica and the Arctic, and attempts to hypothesize the influence of
ecological selection and geographic distribution on fungal communities
in geographically distant polar regions (Bridge and Spooner, 2012; Cox
et al., 2016), there is currently very little evidence for fungi that are
polar or bipolar endemics.

7. Conclusions

The Arctic and Antarctic regions are extreme environments to life in
general, and fungi in particular, whether as saprotrophs or symbionts
and parasites. Of the many studies that reported on fungi in the polar
regions, only those that used cultivation and/or molecular charaterisa-
tion of eDNA provide useful information for answering the main ques-
tions of whether there are fungi unique and endemic to the Artic,
Antarctica or both.

Based on available literature in which cultivation and isolation
methods of eDNA were applied, 1324 species of fungi have been iden-
tified in polar regions, with the fungal biodiversity being higher in the
Arctic compared to Antarctica. The difference in fungal species diversity
between the two polar regions can largely be explained by variations in
substrates specific to the Arctic and Antarctica. The methods employed
for detecting fungi limit the detected biodiversity, thus a comprehensive
approach is preferred. Most fungal species discovered are cosmopolitan,
while the presence of endemic species in polar regions is mostly poorly
supported, therefore caution should be exercised when claiming certain
fungi as endemic to the polar regions or both poles. We believe that the
statement made for microorganisms "Everything is everywhere, but the
environment selects" (Baas Becking, 1934) may remain relevant for
almost a century. However, for fungi, we would slightly rephrase this
statement as: "Fungi are everywhere but the environment selects those
that can become established".
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