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ABSTRACT
Climate change is a heated discussion topic in public arenas such
as social media. Both texts and visuals play key roles in the debate,
as they can complement, contradict, or reinforce each other in nu-
anced ways. It is therefore urgently needed to study the messages as
multimodal objects to better understand the polarized debate about
climate change impacts and policies. Multimodal representation
models such as CLIP are known to be able to transfer knowledge
across domains and modalities, enabling the investigation of textual
and visual semantics together. Yet they are not directly able to distin-
guish the nuances between supporting and sceptic climate change
stances. This paper explores a simple but effective strategy combin-
ing modality fusion and domain-knowledge enhancing to prepare
CLIP-based models with knowledge of climate change stances. A
multimodal Dutch Twitter dataset is collected and experimented
with the proposed strategy, which increased the macro-average F1
score across stances from 51% to 86%. The outcomes can be applied
in both data science and public policy studies, to better analyse how
the combined use of texts and visuals generates meanings during
debates, in the context of climate change and beyond.

CCS CONCEPTS
• Applied computing → Sociology; • Information systems →
Clustering and classification; Social networks.
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Figure 1: Examples from the collected multimodal dataset of
climate change stances. The texts are normalized and trans-
lated into English. The visuals are verbally described while
the original images can be accessed with their twimg URLs.

1 INTRODUCTION
As a heated public-policy topic in recent decades, climate change
triggers debates in public arenas including social media [25, 36].
A wide range of stakeholders including scientists, news media,
policymakers, and action groups, etc. actively express their views
on this politically controversial issue, trying to make their voices
heard and have an influence on the agenda [41]. Understanding
people’s stances towards climate change, i.e., whether they support
or deny it, is crucial for monitoring and analyzing the dynamics
in such debates. Literature in the emerging field of Climate NLP
(Natural Language Processing) has been using verbal information to
retrieve the existence of environmental claims [11, 35, 42], summa-
rize the main topics covered during such debates [3, 8, 13–15, 40],
detect the sentiment polarity [13–15, 38, 39, 43] and potential ag-
gressiveness of discussants [14, 15], and infer the stances of users
towards climate change [9, 14–16, 22, 38–40], possibly with a hier-
archical reasoning chain of contrarian and sceptical claims [7, 26].
Whereas these studies focused on texts, visuals are equally im-
portant throughout the debate of policy controversies, containing
complementary and conflicting messages [1, 17, 27, 31, 32]. Visuals,
together with texts (Figure 1) can serve different framing functions,
such as sense-making, emotion-triggering, value-portraying, etc.,
leading to various interpretations during public debates [31, 32].

Multimodal representation models with Contrastive Language-
Image Pre-Training (CLIP), which projects textual and visual ob-
jects into the same high-dimensional vector space, are shown to
be effective in fusing and generalizing the semantics within both
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Figure 2: The workflow proposed in this paper. Dashed components are either optional (visuals and geo-locations) or not yet
implemented in the presented version of the paper (ambiguous difficult datasets and other climate change databases).

modalities [28, 34]. The resulting multimodal embeddings (often by
directly averaging the uni-modal embeddings) are also consistently
used in downstream tasks, such as multimodal topic modelling,
semantic search, zero- or few-shot learning, etc [18, 29]. However,
the CLIP models were trained on a general corpus. They cannot
necessarily distinguish the nuances between supports and sceptics
towards a particular topic (e.g., climate change) per se, failing in
zero-shot stance classification, as will be shown in Section 2.3.

This paper explores the capability of CLIP-based models to infer
the climate change stances (CCS) of multimodal tweets, provid-
ing CCS-aware multimodal embeddings for downstream tasks. A
workflow is proposed to collect multimodal datasets from Twit-
ter, generate pseudo-labels about supporting or sceptical CCS, and
classify the tweets using multimodal features with a simple strat-
egy combining modality fusion and domain-specific enhancing.
The classification performance generally increased with the ex-
perimented strategy, and visual-text pairs of similar natures were
detected that reflected both sides of the debate, as shown in Figure 1.
The new CCS dataset and multimodal embeddings prepare for fu-
ture studies in data science and policy science to better analyze
and understand the debate dynamics using both texts and visuals.
Codes and the processed dataset are available at this repository.

2 METHODOLOGY
2.1 Problem Overview
Figure 2 provides an overview of the proposed framework, reflecting
the aim of this paper to obtain both multimodal CCS datasets from
Twitter and multimodal embeddings with CCS knowledge.

The workflow starts with collecting and processing multimodal
datasets (left part of Figure 2). The datasets get user-level and
tweet-level pseudo-labels about CCS or other labels of interest
based on community detection algorithms. The labelled datasets
are further filtered to only keep an unambiguous and easy subset
to train classifiers for pragmatic reasons (middle part of Figure 2).
Both textual and visual embeddings are extracted from variants of
CLIP-based representation models. Different strategies of modality
fusion [2, 34] are experimented with to fuse the embeddings, before
feeding them into an additional Multi-layer Perceptron (MLP) clas-
sifier trained with domain-specific golden-label enhancing to infer

whether a sample supports or denies climate change (right part of
Figure 2). The end products are highlighted in the rightmost part
of Figure 2. Note that part of the proposed workflow has not yet
been implemented, i.e., inferring stances with ambiguous difficult
subsets and integrating other climate change datasets.

2.2 Dataset Collection and Pre-processing
A multimodal Dutch dataset of texts and visuals concerning sea-
level rise (zeespiegelstijging) with all available tweets containing
relevant keywords was collected using Twitter API v2. Let 𝑖 be the
index of a generic sample of the dataset, then its raw data could
be denoted as a tuple 𝔡𝑖 := (ℑ𝑖 ,SR

𝑖
, 𝔲𝑖 ,O𝑖 , 𝔱𝑖 , 𝔩𝑖 ), 𝔡𝑖 ∈ {𝔡𝑖 }𝑖=1,2,...,𝐾0 ,

where𝐾0 = 220, 494 is the initial size of the collected dataset related
to climate change issues.ℑ𝑖 is a three-dimensional image tensor rep-
resenting one of 7410 unique visuals, where ℑ𝑖 = ∅ is also allowed
when no visuals are attached in a tweet [1, 23]. Among the collected
tweets, 57,038 (25.9%) are with non-empty visual features. SR

𝑖
is

a raw paragraph within the tweet, which is first normalised into
SNL
𝑖

by transforming repeated mentionings into ‘@USER’ tokens,
changing internet links into ‘HTTPURL’ tokens, and de-emojizing
the emojis into verbal descriptions. Since many multimodal embed-
ding models are trained with English corpus, the normalised Dutch
texts are then translated into English SEN

𝑖
with Google Translator

API from the Deep Translator library. 𝔲𝑖 is a user ID among 54,005
unique users. O𝑖 is a set of user IDs that are either retweeted or
mentioned in the tweet text, of which the posting user 𝔲𝑖 is also an
instance. 𝔱𝑖 and 𝔩𝑖 represent the timestamp and the geo-location of
the tweet if the information is available, where empty values are
also allowed. In the collected dataset, 𝔱𝑖 ranges from April 26, 2007,
to January 1, 2023, and only 1225 tweets are originally geo-tagged.

A retweeting sequence within the top-1000 users is formalized as
a social network. With a community detection algorithm based on
Clauset-Newman-Moore greedy modularity maximization [6, 19],
the top users can be divided into sub-communities representing
discourse coalitions [25, 31, 44]. In the context of this study, two
prominent communities emergedwithin the top users. The hashtags
extensively used by both communities were reviewed post hoc by
domain experts, distinguishing them as typical users who support
the mainstream view on anthropogenic climate change issues, and
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users who are sceptical about the existence or anthropogenic nature
of climate change, respectively, i.e., typical in one of the CCS. This
results in a user-level pseudo-label𝑦UL

𝑗
∈ {−1, 1,∅}, where -1 labels

the user as sceptical towards climate change (578 detected); 1 means
that the user supports the mainstream (404 detected); and ∅ marks
the unlabelled users. This user-level label is mapped to tweet-level
𝑦TL
𝑖

∈ {−1, 1,∅} by labelling tweets that are merely associated with
one type of users holding either supporting or sceptical stances in
O𝑖 . This mapping process ensures a collection of unambiguous
examples to avoid confusion during training. Furthermore, for two
unambiguous tweets 𝔡𝑖 , 𝔡𝑖′ containing exactly the same pair of
texts and visuals, it is possible that the pair of information is used
by opposite parties, i.e., 𝑦TL

𝑖
𝑦TL
𝑖′ = −1. This is not uncommon in

social media debates, as the same message can be used by various
parties differently, possibly also containing contradictory meanings
depending on the context. However, this will make the later training
unstable. Filtering out those cases (279 examples) can result in an
easy sub-dataset that only contains straightforward examples.

By keeping the non-redundant, unambiguous, and easy examples,
a final dataset 𝔇 := {𝔡𝑖 }𝑖=1,2,...,𝐾1 is obtained labelled with 𝑦𝑖 ∈
{−1, 1}, where 𝐾1 = 49, 316 (22.3% of 𝐾0). Among the tweets, 29,306
(59.4% of 𝐾1) are climate change mainstream, and 20,010 (40.6%
of 𝐾1) are sceptics. The dataset is further randomly divided into
training set, validation set, and test set with a proportion of 70/15/15.

2.3 Modality Fusion and Stance Classification
Pilot studies of this research showed that only by averaging the
textual and visual embeddings, original CLIP-based multimodal
embeddings confused the CCS and failed to give correct predictions
in zero-shot classifications even when the stances are obvious for
humans. Therefore, this study explores strategies of modality fusion
and domain-knowledge enhancing to further improve the ability
of classifiers to distinguish supporting and sceptical stances.

Let fCLIP denote the CLIP-based models with parameters ΦCLIP,
then the textual embeddings 𝒙TEX

𝑖
= fCLIP (SEN

𝑖
|ΦCLIP) and the

visual embeddings 𝒙VIS
𝑖

= fCLIP (ℑ𝑖 |ΦCLIP) of data 𝔡𝑖 would be vec-
tors with the same dimensionalityR𝑑×1. Whenℑ𝑖 = ∅,ℑ𝑖 is univer-
sally replaced with a white image of the same size, as 𝒙VIS∅ . Let gF de-
note modality fusion operations [2, 34], then the initial multimodal
embedding 𝒙MULT

𝑖
= gF

(
𝒙TEX
𝑖

, 𝒙VIS
𝑖

)
would be a vector with possi-

bly a different dimensionality R𝑑0×1. Let f (𝑡 )MLP denote the first 𝑡 lay-
ers of a 𝜏-layer MLP classifier with parameters ΦMLP, the interme-
diate vectors can be written as 𝒛 (𝑡 )

𝑖
= f (𝑡 )MLP (𝒙

MULT
𝑖

|ΦMLP), 𝒛 (𝑡 )𝑖 ∈
R𝑑𝑡×1, where 𝒛 (0)

𝑖
:= 𝒙MULT

𝑖
, 𝒛 (𝜏 )
𝑖

∈ R2×1, meaning that the 𝜏th
layer generates the final 2-dimensional stance classification results.

As domain knowledge, sentences {SG
𝑘
} clearly referring to either

side of CCS are prepared as golden examples, given arbitrary labels
𝑦G
𝑘
∈ {−1, 1}. In this initial stage of exploration, one sentence per

stance was used as golden examples, both of which can also be seen
in the left side of Figure 1. For each epoch of training, in addition
to the conventional classification loss with the loss function 𝓁, an
optional enhancing step also optimizes for the golden examples:

LG =
∑︁
𝑘

𝓁(f (𝜏 )MLP (gF (fCLIP (S
G
𝑘
|ΦCLIP), 𝒙VIS∅ ) |ΦMLP), 𝑦G𝑘 ), (1)

hypothetically pushing the intermediate vectors of different stance
labels farther from each other. After rounds of training, the vectors
𝒛 (𝑡 )
𝑖

(especially 𝒛 (𝜏−1)
𝑖

) effectively become the new multimodal
embeddings of data point 𝔡𝑖 , and the chained models of f (𝜏−1)MLP , gF,
and the original fCLIP become the new embedding model.

2.4 Experiments
Experiments were set up to evaluate the proposed strategy of com-
bining modality fusion with golden-example enhancing, with both
the trained classifier and the intermediate layers as embeddings.
Without loss of generality, four variants of the CLIP checkpoints
have been experimented with as the baselines: clip-ViT-B-32 (B-32),
clip-ViT-B-16 (B-16), clip-ViT-L-14 (L-14), and the distilled multilin-
gual clip-ViT-B-32, all implemented from the Sentence Transformer
Python library [28–30]. In addition to the translated English sen-
tences, the normalised Dutch sentences were also tested with the
multilingual model (ML-EN and ML-NL, respectively).

Five versions of modality fusion gF were implemented: only
keeping textual embeddings 𝒙TEX

𝑖
, only keeping visual embeddings

𝒙VIS
𝑖

, averaging 𝒙TEX
𝑖

and 𝒙VIS
𝑖

, concatenating them, and merging
them with a complex function similar to previous study [34]:

gF_complex (𝒗1, 𝒗2) = [𝒗1, 𝒗2, 𝒗1 + 𝒗2, 𝒗1 − 𝒗2, 𝒗1 ⊙ 𝒗2] . (2)

For each model variant, all versions of the modality fusion strat-
egy were paired with the optional enhancing operation mentioned
in Equation (1), resulting in 10 runs of experiments. 3-layer MLP
models with the same hyper-parameter configuration were trained
on mini-batches for 200 epochs, where cross-entropy was used as
the loss function 𝓁 and early-stopping was implemented with the
overall accuracy on the validation set. The models were eventually
evaluated with the accuracy and the macro-average F1 scores of
three sub-cases: examples that are truly multimodal (ℑ𝑖 ≠ ∅), ex-
amples that only have textual information (ℑ𝑖 = ∅), and examples
only containing visuals not previously seen in training.

Furthermore, themultimodal embeddings 𝒛 (𝑡 )
𝑖

(especially 𝒛 (𝜏−1)
𝑖

)
from the intermediate layers of the trained MLP were used to com-
pare the cosine similarity of those computed with the golden exam-
ples. The best-performing embeddings were eventually consulted
to extract the closest multimodal examples from the dataset D that
best align with each statement in the golden examples.

3 RESULTS AND DISCUSSIONS
3.1 Classification Outcomes
Merging the results with all CLIP variants on both validation and
test sets, the ranges of the macro-average F1 scores are plotted in
Figure 3. Fusing the multimodal embeddings generally increased
the classification performance compared to any single modality,
and the complex fusion strategy mentioned in Equation (2) was
generally the most effective one. This is, however, not the case for
multimodal examples with unseen visual images. Even though all
text-visual pairs (SEN

𝑖
,ℑ𝑖 ) are unique, it is possible that some visu-

als in the validation and test sets were previously paired with other
sentences in the training set. The models may have remembered
the associations of visuals with the labels and thus over-fitted on
those visuals. This observation invites further investigation.
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Figure 3: The macro-average F1 score of trained models on
validation and test sets on the three sub-cases. The two par-
allel boxes show the results with or without the optional
enhancing step of golden examples.

Figure 4: The macro-average F1 score based on cosine sim-
ilarity of embedding layers on the three sub-cases. All em-
beddings are computed with complex fusion and enhancing.
Error-bars show the range in validation and test sets.

Despite having the risk of overfitting the models with the ad-
ditional enhancing step with golden textual examples, the per-
formance also either increased or stayed unharmed. Instead, the
enhancing solved a problem observed and mentioned in Section 2.3:
15 out of 25 trained models without enhancing still predicted wrong
labels for the golden examples (e.g., the B-32 using multimodal-
complex fusion strategy predicted both sentences as ‘sceptical’, and
the one using text-only predicted both as ‘mainstream’). The loss
LG dropped from 1.11±0.22 to 0.77±0.41 by adding the text-based
enhancing, reversing the partially wrong predictions of 10 trained
models except for the ones using visual embeddings only.

Similar effects with enhancing can be observed in Figure 4, where
the best-performing models with complex multimodal fusion were
evaluated. Regardless of the models being used, the macro-average
F1 score of multimodal examples (middle sub-figure) significantly
increased from 50.5%±13.4% in the initial layer 𝒛 (0) to 86.0%±2.0%
in the second-last layer 𝒛 (2) with enhancing. Similarly, the accuracy
increased from 61.6%±14.9% to 87.6%±2.2%. Later intermediate lay-
ers generally performed better than earlier layers. Among the same
layer, adding enhancing would significantly increase the general
macro-average F1 score from 66.8% ± 9.0% to 74.5% ± 7.9%, and the
accuracy from 72.8%± 6.7% to 76.2%± 8.1%, despite the discrepancy
of ML-EN. The findings suggest that with both complex fusion in
Equation (2) and text-based enhancing in Equation (1), multimodal
embeddings acquainted with CCS knowledge could be obtained.

3.2 Discussion
Figure 1 has illustrated a few typical multimodal data samples from
the collected dataset that were detected as semantically most simi-
lar to both golden examples, computed with the new embeddings

generated from B-16 and L-14 variants of CLIP-based models (i.e.,
the best models shown in Figure 4). The new embeddings managed
to catch the nuances of two stances and match them with correct
and reasonable multimodal pairs of texts and visuals. Interestingly,
from both sides of the argument, visuals of similar natures are be-
ing used, such as cartoons and memes, data visualization including
maps and infographics, as well as real-world and/or imaginary pho-
tographs. Specifically, climate change sceptics also use scientific
data to justify and strengthen their beliefs against the mainstream.
This observation is consistent with previous studies discussing
the use of visuals during policy controversies, going beyond cli-
mate change [17, 24, 31, 32]. Different types of visuals have similar
functions of supporting the main stances towards the argument
(here climate change) from a different angle. A more concrete and
nuanced understanding of the roles of visuals and multimodal inter-
actions can be obtained by thoroughly examining the universal use
of different types of visuals and multimodal pairs throughout the de-
bate, possibly augmented with spatiotemporal contexts [1, 8]. The
next steps of this study will explore the behaviour of trained models
and continue the analyses of multimodal persuasion strategies on
the examples that are not necessarily easy and unambiguous, thus
completing the workflow proposed in Figure 2. The same work-
flow could also collect datasets in other languages and countries
containing more diverse keywords concerning climate change.

The proposed framework did not include human annotators.
Rather, pseudo-labels for multimodal pairs were approximated
based on community detection algorithms. Further human-in-the-
loop evaluations and augmentations could increase the reliability
of the dataset. The robustness of trained models need to be eval-
uated on other unseen existing text-only climate change datasets
[4, 7, 14, 22, 35, 38, 40, 42, 43]. Integrating them as additional golden
examples could further enhance the ability of trained embedding
models and generate finer-grained datasets [7, 26, 40]. Broader
model searching with hyper-parameter tuning and ensemble learn-
ing combining multiple trained models can potentially increase the
performance and generalizability of the proposed approach [12]. To
combat the issue of possible over-fitting mentioned in Section 3.1,
strategies such as data augmentation, [domain-specific] regulariza-
tion, and additional search with model architecture could help [26].
Extra penalties can be given to ambiguous examples during training.
In follow-up studies, the obtained CCS-aware multimodal embed-
dings can be further extended to improve domain-specific multi-
modal topic modelling [8, 18, 25] and to assist multimodal framing
analysis [4, 10, 31, 33, 37]. Moreover, the proposed framework can
be experimented with other multimodal representation models
other than CLIP, exploring the possibility of collaborating with the
most recent advances in large language models [5, 20, 21, 45].

4 CONCLUSIONS
This paper explores the capability of CLIP-based models to infer
climate change stances (CCS) from multimodal tweets. The pro-
posed workflow yielded both a multimodal dataset about CCS and
an embedding model to obtain CCS-aware vector representations.
Both outcomes are rare in literature but provide potentials in data
science and public policy research. It prepares for a systematic
understanding of discourse coalitions during public debates and
policy controversies in the context of climate change and beyond.
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