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Abstract
Anthropogenic	climate	change	has	led	to	globally	increasing	temperatures	at	an	un-
precedented	pace	and,	to	persist,	wild	species	have	to	adapt	to	their	changing	world.	
We,	however,	often	fail	to	derive	reliable	predictions	of	species'	adaptive	potential.	
Genomic	selection	represents	a	powerful	 tool	 to	 investigate	 the	adaptive	potential	
of	a	species,	but	constitutes	a	‘blind	process’	with	regard	to	the	underlying	genomic	
architecture	of	the	relevant	phenotypes.	Here,	we	used	great	tit	(Parus major)	females	
from	a	genomic	selection	experiment	for	avian	lay	date	to	zoom	into	this	blind	pro-
cess.	We	aimed	to	identify	the	genetic	variants	that	responded	to	genomic	selection	
and	epigenetic	variants	that	accompanied	this	response	and,	this	way,	might	reflect	
heritable	genetic	variation	at	the	epigenetic	level.	We	applied	whole	genome	bisulfite	
sequencing to blood samples of individual great tit females from the third generation 
of	bidirectional	 genomic	 selection	 lines	 for	 early	 and	 late	 lay	date.	Genomic	 selec-
tion	 resulted	 in	 differences	 at	 both	 the	 genetic	 and	 epigenetic	 level.	Genetic	 vari-
ants	that	showed	signatures	of	selection	were	located	within	genes	mostly	linked	to	
brain	development	and	functioning,	including	LOC107203824 (SOX3-	like).	SOX3	is	a	
transcription	factor	that	is	required	for	normal	hypothalamo-	pituitary	axis	develop-
ment	and	 functioning,	 an	essential	part	of	 the	 reproductive	axis.	As	 for	epigenetic	
differentiation,	the	early	selection	line	showed	hypomethylation	relative	to	the	late	
selection	line.	Sites	with	differential	DNA	methylation	were	located	in	genes	impor-
tant	for	various	biological	processes,	including	gonadal	functioning	(e.g.,	MSTN	and	
PIK3CB).	Overall,	genomic	selection	for	avian	lay	date	provided	insights	into	where	
within	 the	 genome	 the	heritable	 genetic	 variation	 for	 lay	 date,	 on	which	 selection	
can	operate,	resides	and	indicates	that	some	of	this	variation	might	be	reflected	by	
epigenetic variants.
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1  |  INTRODUC TION

Climate change has led to environmental changes at an unprec-
edented	 pace	 and,	 to	 persist,	 wild	 species	 need	 to	 adapt	 to	 their	
changing world. Data from long- term study populations of wild 
animals have enabled the quantification of selection pressures and 
additive genetic variation for various phenotypes in many species 
and,	 based	 on	 these	 estimates,	 predictions	 of	 the	 potential	 for	
micro-	evolutionary	 responses	 to	 selection	 were	 derived	 (Grant	
&	Grant,	1995;	Kruuk	et	al.,	2008).	However,	despite	many	exam-
ples	of	directional	selection	in	the	wild	(Kruuk	et	al.,	2002;	Marrot	
et	 al.,	 2018;	 Nussey	 et	 al.,	 2005;	 Ramakers	 et	 al.,	 2019;	 Sheldon	
et	al.,	2003),	micro-	evolutionary	responses	to	selection	that	match	
the	estimated	predictions	are	 rare	 (Charmantier	&	Gienapp,	2014; 
Merilä	et	al.,	2001).	Predicting	micro-	evolutionary	responses	relies	
on	 accurate	 estimates	 of	 selection	 and	 genetic	 variation,	 but	 the	
complex	 nature	of	wild	 study	 systems	 and	 focal	 traits	 (and	hence	
statistical	 frameworks)	 in	 combination	with	 the	 limited	data	 avail-
ability almost unavoidably leads to biased estimates of such param-
eters	(but	see	the	review	by	Pujol	et	al.,	2018).

Advances	 in	 genomics	 provide	 us	 with	 the	 opportunity	 to	
zoom	 into	 the	genomic	architecture	of	phenotypes	with	 the	aim	
to identify the causal genes and genomic mechanisms that trans-
late	 the	 relevant	 genes	 into	 phenotypes.	 This	way,	 we	 can	 pre-
dict	the	potential	for	a	micro-	evolutionary	change	to	take	place	at	
specific	genetic	variants	and	derive	predictions	that	take	the	ge-
nomic	architecture	of	phenotypes	 into	account.	 Indeed,	 loci	that	
explained	a	moderate	proportion	of	the	genetic	variation	of	phe-
notypes	have	been	identified	for	some	phenotypes,	such	as	birth	
weight	and	recombination	rate	in	ungulates	(Johnston	et	al.,	2016; 
Slate	et	al.,	2002),	wing	length	or	bill	morphology	in	birds	(Bosse	
et	al.,	2017;	Tarka	et	al.,	2010)	or	age	at	maturity	in	salmon	(Barson	
et	 al.,	2015).	Many	phenotypes,	 however,	 are	 thought	 to	be	de-
termined by a large number of genetic variants which each have 
a	small	effect	on	the	phenotype	(e.g.,	Husby	et	al.,	2015;	Santure	
et	al.,	2015).	In	combination	with	rather	small	sample	sizes	in	most	
evolutionary	studies	of	wild	populations,	small	effects	sizes	 lead	
to	low	power	in	detecting	genetic	variants,	especially	when	phe-
notypes	are	phenotypically	plastic,	that	is	there	is	an	environment	
dependent association between genetic variants and phenotypes 
(e.g.,	 Gienapp	 et	 al.,	 2017).	 As	 a	 consequence,	 genetic	 variants	
only	explain	a	small	proportion	of	the	heritable	phenotypic	varia-
tion	for	many	phenotypes	(e.g.,	references	in	table	S1	of	Gienapp	
et	al.,	2017),	leaving	a	large	proportion	of	the	heritable	phenotypic	
variation	unexplained	(or	‘missing’).

Epigenetics	marks,	that	is	chemical	modifications	of	the	DNA	
sequences	 or	 DNA-	associated	 histones,	 are	 suggested	 to	 con-
tribute	 to	heritable	phenotypic	variation	 (Trerotola	et	al.,	2015).	
Epigenetic	marks	 are	 involved	 in	 the	 regulation	of	 gene	expres-
sion	 and,	 as	 such,	 contribute	 to	 the	 expression	 of	 phenotypes.	
Especially	 if	 epigenetic	 marks	 are	 inherited	 independently	 of	
genetic variants or are involved in mediating genotype–environ-
ment	 interactions,	 they	 could,	 in	 theory,	 contribute	 to	heritable	

phenotypic	 variation.	 While	 there	 are	 sources	 of	 epigenetics	
marks	 that	 are	 thought	 to	 be	 independent	 of	 genetic	 variation,	
such as the environmental induction of epigenetic modifications 
and	spontaneous	epi-	mutations	(Sepers	et	al.,	2019),	it	is	under	de-
bate whether epigenetic variants that are independent of genetic 
variants	can	be	inherited	(especially	in	vertebrates).	Nevertheless,	
the identification of epigenetic variants can provide insights into 
the	 genomic	 architecture	 of	 phenotypes,	 especially	 for	 pheno-
types	 that	are	dependent	on	 the	environment.	 In	maize,	pheno-
typic plasticity in plant growth is suggested to be regulated by 
epigenetic processes that are driven by a genetic variant in the 
rice plasticity 1 (RPL1)	gene.	 Individuals	 that	harbour	 the	genetic	
variant in RPL1 showed specific epigenetic signatures and in-
creased	levels	of	phenotypic	plasticity	(Zhang	et	al.,	2012).	In	this	
case,	epigenetic	processes	are	responsive	to	the	environment,	but	
the	degree	of	responsiveness	 is	dependent	on	a	genetic	variant,	
indicating that the observed phenotypic plasticity is facilitated 
by	genotype-	dependent	epigenetic	variation.	Hence,	specifically	
those epigenetic variants that are dependent on genetic variants 
are of particular interest for understanding how phenotypic vari-
ation is shaped.

Artificial	selection	is	a	promising	and	powerful	tool	for	study-
ing the genes and genomic mechanisms underlying natural varia-
tion of quantitative traits as it facilitates the comparison between 
individuals	 of	 extreme	 phenotypes	 at	 different	molecular	 levels	
(Hill	 &	 Caballero,	 1992).	 In	 contrast	 to	 phenotype-	based	 selec-
tion,	genomic	 selection	 relies	on	 the	marker-	based	prediction	of	
genomic	breeding	values	 (GEBVs),	 the	additive	effect	of	an	 indi-
vidual's	 genotype	 on	 the	 phenotype	 relative	 to	 the	 population	
mean	phenotype	(Charmantier	et	al.,	2014).	Despite	its	promising	
advantages and common application in animal and plant breeding 
(Jannink	et	al.,	2010;	Meuwissen	et	al.,	2016),	the	only	application	
of genomic selection in a wild animal population stems from the 
long- term study population of great tits (Parus major)	at	the	Hoge	
Veluwe	National	 Park	 (Gienapp	et	 al.,	 2019;	Verhagen,	Gienapp,	
et	al.,	2019).

In	 the	 Dutch	 study	 population	 of	 great	 tits,	 bidirectional	 ge-
nomic	selection	was	applied	to	avian	 lay	date,	a	 trait	with	a	heri-
tability	of	about	0.2	(Gienapp	et	al.,	2019).	For	this,	GEBVs	for	lay	
date	 were	 estimated	 (Gienapp	 et	 al.,	 2019)	 and	 individuals	 with	
GEBVs	for	extremely	early	and	late	lay	date	were	selected	to	estab-
lish	the	genomic	selection	 lines	 (Verhagen,	Gienapp,	et	al.,	2019).	
The	genomic	selection	experiment	allows	us	to	study	the	genetic	
and	genomic	basis	underlying	lay	dates,	a	complex	phenotype	that	
is phenotypically plastic to spring temperature and of high evo-
lutionary and ecological relevance for the population due to its 
effect	 on	 reproductive	 success	 (Schaper	 et	 al.,	 2012;	 Verhagen	
et	al.,	2020;	Visser	et	al.,	1998).	The	preparations	for	egg	laying	on	
a	molecular	and	physiological	level	are	initiated	6–8 weeks	prior	to	
the initiation of egg laying when increasing photoperiods in early 
spring induce a neuro- endocrine cascade along the hypothalamic–
pituitary–gonadal–liver	 axis	 (HPGL	 axis)	 that	 activates	 the	 onset	
of	gonadal	growth	(Dawson	et	al.,	2001;	Williams,	2012).	The	final	

 17524571, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.13703 by W

ageningen U
niversity A

nd R
esearch Facilitair B

edrijf, W
iley O

nline L
ibrary on [05/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3 of 17LINDNER et al.

‘decision’	on	when	to	initiate	egg	laying	is	regulated	much	later	in	
spring downstream of the underlying neuro- endocrine cascade 
and depends on supplementary cues such as increasing tempera-
tures	 (Caro	 et	 al.,	 2013;	 Schaper	 et	 al.,	 2012;	 Verhagen,	 Laine,	
et	al.,	2019).	This	complex	regulation	of	 lay	dates	across	all	 levels	
of	 the	HPGL	 axis	 in	 interaction	with	 various	 environmental	 vari-
ables and the highly polygenetic nature of the trait have proven 
challenging	for	genome-	wide	association	studies	(GWAS)	on	avian	
lay	 dates	 in	wild	 populations.	 Even	when	moderate	 sample	 sizes	
are used (>2000	great	tit	females)	and	genotype–environment	in-
teractions	are	accounted	for,	GWAS	failed	to	detect	genome-	wide	
significant	genetic	variants	for	lay	dates	(Gienapp	et	al.,	2017).	As	
a	consequence,	the	genetic	and	genomic	basis	underlying	lay	dates	
remain	mostly	unknown.

Genomic	selection	for	lay	dates	has	led	to	a	clear	differentiation	
in	GEBVs	accompanied	by	phenotypic	differentiation	when	lay	dates	
were	 recorded	 in	 aviaries	 (Verhagen,	Gienapp,	 et	 al.,	 2019)	 and	 in	
the	wild	(Lindner	et	al.,	2023).	However,	genomic	selection	based	on	
GEBVs	is	a	‘blind	process’	that	does	not	provide	any	information	on	
the genetic variants that responded to genomic selection or the epi-
genetic	marks	that	accompanied	the	genetic	response.	Genetic	sig-
natures	of	selection	within	the	genomic	selection	experiments	were	
previously	identified	at	a	number	of	loci,	in	the	form	of	single	nucle-
otide	polymorphisms	 (SNPs)	 (Verhagen,	Gienapp,	 et	 al.,	 2019)	 and	
we	here	expand	on	these	findings	by	exploring	epigenetic	signatures	
of	the	genomic	selection	line	experiment.	For	this,	we	used	a	whole	
genome	bisulfite	sequencing	(WGBS)	approach	on	blood	samples	of	
female great tits from the third generation of the genomic selection 
lines for early and late lay dates to simultaneously profile heritable 
genetic	variants	and	epigenetic	marks	in	the	form	of	SNPs	and	CpG	
site	methylation	(i.e.,	the	methylation	status	of	bi-	nucleotides	within	
the	DNA	sequence	that	consist	of	a	potentially	methylated	cytosine	
and	 an	 unmethylated	 guanine).	We	 found	 differences	 at	 both	 the	
genetic and epigenetic level between females from the early and late 
selection	line.	Epigenetic	variants	were	related	to	general	biological	
processes,	while	genetic	variants	were	related	to	brain	development	
and	functioning.	This	way,	our	findings	provide	insights	into	where	
within the genome heritable genetic variation for lay date resides 
and point towards complementary functions of genetic and epigen-
etic variants for avian lay dates.

2  |  METHODS

2.1  |  Genomic selection lines for avian lay date

The	great	tit,	is	a	well-	known	model	species	in	ecology	and	evolu-
tion	with	a	reference	genome	(Laine	et	al.,	2016)	and	whole	tran-
scriptome	and	methylome	for	various	tissues	 (Derks	et	al.,	2016; 
Laine	et	al.,	2016;	Santure	et	al.,	2011).	The	females	included	here	
originated	 from	 a	 bidirectional	 genomic	 selection	 experiment,	
in	which	 great	 tits	were	 selected	 based	 on	GEBVs	 for	 early	 and	
late	 lay	dates	 (full	methods	are	provided	 in	Gienapp	et	al.,	2019; 

Verhagen,	Gienapp,	et	al.,	2019).	We	define	a	female's	lay	date	as	
the date a female initiates egg laying within a year. In contrast to 
traditional methods for artificial selection where individuals are 
selected	based	on	their	expressed	phenotype,	genomic	selection	
is	based	on	genomic	breeding	values	(GEBVs),	the	additive	effect	
of	an	individual's	genotype	on	the	phenotype	relative	to	the	popu-
lation	mean	phenotype	(Charmantier	et	al.,	2014).

For	 the	genomic	selection	experiment,	a	wild	 training	popula-
tion of >2000	great	tit	females	from	the	Hoge	Veluwe	National	Park	
(The	Netherlands)	with	known	lay	dates	and	genotyped	at	>500,000	
single	nucleotide	polymorphisms	 (SNPs)	was	used	to	estimate	ge-
nomic	breeding	values	 (GEBVs)	using	the	 ‘genomic	best	 linear	un-
biased	prediction’	(GBLUP)	approach	(Gienapp	et	al.,	2019).	Within	
this	 approach,	 the	 pedigree-	based	 relatedness	 matrix	 within	 the	
animal	model	was	replaced	by	a	SNP-	based	relatedness	matrix.	The	
animal	model	constitutes	a	specific	 form	of	a	mixed-	effect	model	
frequently	used	in	quantitative	genetic	studies	(Wilson	et	al.,	2010).	
Within	 this	 framework	GEBVs	 of	 genotyped	 individuals	with	 un-
known	lay	date	can	be	predicted	based	on	the	SNP-	based	related-
ness	 between	 individuals.	 To	 initiate	 the	 selection	 lines	 for	 early	
and	late	lay	dates,	28	breeding	pairs	from	the	Hoge	Veluwe	study	
site	were	selected	 in	2014	as	 ‘parental’	generation	based	on	their	
breeding	values	for	lay	dates	(Verhagen,	Gienapp,	et	al.,	2019).	All	
nestlings	produced	by	 the	wild	parental	generation	 (i.e.,	 the	 first-	
generation	offspring)	were	brought	to	aviary	facilities	at	the	NIOO-	
KNAW	on	the	tenth	day	after	hatching	(d10),	where	they	were	hand	
raised	until	independence	(Drent	et	al.,	2003).	First-	generation	off-
spring were genotyped (n = 163	 first-	generation	 genotyped	 nest-
lings)	 to	estimate	 their	GEBVs	and	 individuals	with	extreme	early	
GEBVs	 and	 extreme	 late	 GEBVs	 were	 selected	 for	 breeding	 the	
selection lines for early and late lay dates in captivity (n = 37	first-	
generation	breeding	pairs).	Eggs	produced	by	 the	 first-	generation	
offspring in captivity were moved into nests of wild foster parents 
in	spring	2015.	Second-	generation	offspring	hatched	in	these	foster	
nests	and	foster	parents	undertook	the	brood	care	until	d10.	Then,	
the nestlings were brought to the aviary facilities at the NIOO- 
KNAW	for	hand	rearing	and	genotyping	(n = 189 second-	generation	
genotyped	 nestlings)	 and,	 based	 on	 the	 predicted	 GEBVs	 for	 lay	
date,	selected	into	breeding	pairs	(n = 33 second-	generation	breed-
ing	 pairs)	 for	 spring	 2016.	 This	 procedure	 was	 repeated	 for	 the	
third- generation (n = 280	 third-	generation	 genotyped	 nestlings).	
Overall,	average	GEBVs	for	third-	generation	individuals	(−0.50	and	
0.61	for	the	early	and	late	selection	line,	respectively)	corresponded	
reasonably well to the cumulative predictive response to genomic 
selection	 of	 −0.72 days	 for	 the	 early	 selection	 line	 and	 0.84 days	
for	the	late	selection	line	(Verhagen,	Gienapp,	et	al.,	2019).	The	re-
sponse	to	genomic	selection	at	the	level	of	GEBVs	translated	to	a	
response at the phenotypic level when birds were breeding in avi-
aries	(Verhagen,	Gienapp,	et	al.,	2019)	as	well	as	in	the	wild	(Lindner	
et	 al.,	2023).	 The	 experiment	was	 performed	 under	 the	 approval	
by	the	Animal	Experimentation	Committee	of	the	Royal	Academy	
of	Sciences	 (DEC-	KNAW),	Amsterdam,	The	Netherlands,	protocol	
NIOO 14.10.
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2.2  |  Sample selection and DNA extraction

For	 the	WGBS	 libraries,	 we	 selected	 19	 individual	 blood	 samples	
that included 10 samples from third- generation females of the early 
selection line and nine samples from third- generation females of the 
late selection line as well as one toe sample of a third- generation 
female of the late selection line (Table S1).	 The	 toe	 sample	 was	
excluded	 from	 the	 DNA	 methylation	 analyses,	 but	 included	 for	
analyses	 on	 SNP	 data.	 We	 extracted	 DNA	 from	 blood	 samples	
(whole	 blood	 or	 blood	 of	 which	 plasma	 was	 removed)	 that	 were	
taken	closest	to	the	first	of	June	in	the	first	year	of	breeding.	DNA	
was	 extracted	 from	 the	 samples	 using	 FavorPrep	DNA	extraction	
kit	 (Bio-	Connect,	 The	 Netherlands)	 following	 the	 manufacturer's	
instructions.

2.3  |  Whole genome bisulfite sequencing

Library	 preparation	 and	 sequencing	 was	 performed	 at	 the	 Roy	
J. Carver Biotechnology Centre (University of Illinois at Urbana- 
Champaign,	 USA).	 WGBS	 data	 showed	 high	 rates	 of	 technical	
duplicates (Table S2)	which	 can	 bias	 the	methylation	 status	 and	
coverage	of	CpG	sites.	In	contrast	to	RRBS,	where	the	non-	random	
fragmentation complicates the differentiation between technical 
(e.g.,	 PCR)	 and	 biological	 duplicates,	 the	 random	 fragmentation	
in	WGBS	allows	for	the	removal	of	technical	duplicates	(for	more	
details	 on	 technical	 duplicates	 see	 Laine	 et	 al.,	2023).	However,	
when	 duplication	 rates	 are	 high,	 the	 removal	 of	 technical	
duplicates	results	in	a	drastic	loss	of	data.	To	circumvent	data	loss,	
we performed library preparation and sequencing twice for all 
libraries and a third time for eight libraries with particularly high 
duplication rates (Table S2).	For	the	first	two	sequencing	runs	DNA	
from	 the	 same	 extraction	was	 used	 and	 library	 preparation	 and	
sequencing	were	 performed	 in	 the	 same	way.	 Shotgun	 genomic	
libraries	(with	read	length	of	150	nucleotides)	were	prepared	with	
the	Hyper	Library	construction	kit	from	kapa	Biosystems	(Roche)	
and	treated	with	the	EZ	DNA	Methylation-	Lightning	kit	from	Zymo	
Research.	Libraries	were	quantitated	by	qPCR	and	sequenced	for	
151 cycles	from	each	end	of	the	fragment	(i.e.,	paired-	end)	in	two	
lanes	of	a	S4	flow	cell	on	a	NovaSeq	6000.	See	Table S3 for how 
libraries	were	divided	across	lanes.	For	the	third	run,	we	extracted	
more	DNA	from	eight	of	the	previously	sequenced	samples	using	
the	same	extraction	protocol.	Libraries	were	prepared	as	described	
above,	 pooled	 into	 one	 pool	 and	 sequenced	 for	 151 cycles	 from	
each	end	of	the	fragment	(i.e.,	paired-	end)	in	one	lane	of	a	SP	flow	
cell	on	a	NovaSeq	6000.

2.4  |  Bioinformatics processing

We	ran	the	bioinformatics	pipelines	with	snakemake	v5.17.0	(Koster	
&	 Rahmann,	 2012).	 We	 used	 R	 v4.0.1	 (R	 Core	 Team,	 2021)	 for	
additional	scripts	used	within	the	pipeline	and,	 in	addition	to	base	

R	 packages,	 we	 used	 dplyr	 v1.0.0	 (Wickham	 et	 al.,	 2020),	 tidyr	
v1.1.0	 (Wickham	&	Henry,	2020),	 stringr	 v1.4.0	 (Wickham,	 2019),	
ggplot2	v3.3.2	(Wickham,	2016,	p.	2),	cowplot	v1.1.0	(Wilke,	2020)	
and	RColorBrewer	v1.1.2	(Neuwirth,	2014)	for	data	formatting	and	
visualization.	 Environments	 were	 build	 and	 managed	 with	 conda	
v4.8.4	(Anaconda	Software	Distribution,	2016).

2.5  |  Quality control of whole genome bisulfite 
sequencing data

For	the	initial	quality	control,	we	used	FastQC	v0.11.9	(Andrew,	2010),	
FastQ	Screen	v0.11.1	(Wingett	&	Andrews,	2018),	and	MultiQC	v1.7	
(Ewels	et	al.,	2016)	in	default	settings	but	allowed	parallel	processing	
of	samples	by	FastQC.	Results	are	presented	in	Table S2.	We	trimmed	
the	 data	 and	 removed	 adapters	 using	 TrimGalore	 v0.6.5	 (https:// 
github.	com/	Felix	Krueg	er/	TrimG	alore	)	 in	 settings	 for	 paired-	end	
data	and	set	a	NovaSeq	specific	quality	cut-	off	of	20	(by	specifying	
–2coulor	20)	 accounting	 for	NovaSeq	 specific	over-	representation	
of	Gs	(poly-	G).	We	repeated	the	quality	control	by	running	FastQC	
and	MultiQC	for	the	trimmed	data.

2.6  |  Methylation calling

We	used	Bismark	v0.22.3	(Krueger	&	Andrews,	2011)	for	alignment	
and	methylation	calling.	First,	the	great	tit	reference	genome	build	
1.1 (https://	www.	ncbi.	nlm.	nih.	gov/	assem	bly/	GCF_	00152	2545.	3)	
was	 in	 silico	bisulfite	 converted	and	 indexed	with	default	 settings	
using	Bismark's	genome	build	function.	We	aligned	the	reads	with	
default settings for paired- end reads and set the number of parallel 
instances	to	be	run	concurrently	to	eight.	We	used	the	percentage	
of	CHH	methylation	from	the	Bismark	alignment	reports	 to	calcu-
late the minimal bisulfite conversion efficiency (Table S4).	We	dedu-
plicated the alignments with default settings for paired- end reads 
using	Bismark.	Using	Picard	v2.23.3	(https:// github. com/ broad insti 
tute/ picard)	we	added	read	groups	to	the	alignments	and	merged	the	
alignment files for either the first two sequencing runs or all three 
sequencing runs of the same sample depending on whether a sample 
was	 run	 two	or	 three	 times.	We	assessed	 the	number	of	mapped	
reads,	average	coverage	depth	and	breadth	of	coverage	using	sam-
tools (Table S5).	The	breadth	of	coverage	was	calculated	as	the	num-
ber of bases with a minimum coverage of 10 divided by the total 
number	of	bases	within	the	great	tit	genome,	that	is	genome	length;	
calculated	using	Bowtie2	v2.3.5.1	(Langmead	&	Salzberg,	2012).	We	
used	Bismark	to	call	methylation	from	the	deduplicated	and	merged	
alignments using default setting for paired- end reads ignoring the 
first two and three bases from the 5′	end	(of	both	reads)	and	the	3′ 
end	(of	both	reads),	respectively.

In addition to methylation called from the merged alignments 
(which	are	analysed	in	this	study),	we	also	called	methylation	from	
the	alignments	prior	to	merging,	that	is	from	alignment	files	for	ei-
ther the first two sequencing runs or all three sequencing runs of 
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the	same	sample,	using	the	pipeline	described	above.	We	used	the	
derived methylation calls to assess whether our findings are robust 
in regard to the use of multiple sequencing runs.

2.7  |  Processing and analysis of methylation data

We	 used	 R	 package	 MethylKit	 v1.16.1	 (Akalin	 et	 al.,	 2012)	 to	
import	the	raw	methylation	counts	(Bismark	output;	CpG	reports)	
into	R.	We	excluded	CpG	 sites	with	 a	CpG	 site	 coverage	 higher	
than	 the	 99.9	 percentile	 from	 further	 analyses.	 We	 combined	
methylation data of all samples into one data frame using 
MethylKit	 while	merging	 cytosines	 from	 both	 strands	 of	 a	 CpG	
site	 into	one	CpG	site	by	calculating	 the	 sum	of	methylated	and	
unmethylated	 cytosines.	We	 used	 custom	R	 code	 to	 format	 the	
data	for	downstream	analysis	in	which	we	removed	CpG	sites	that	
did	not	have	a	coverage	of	10x	 in	all	 samples	and	 removed	CpG	
sites with 0% or 100% methylation across all samples (resulting in 
a	total	of	1,334,373	CpG	sites).

2.8  |  Differential methylation analysis on CpG sites

We	 used	 the	 R	 package	 MethylKit	 to	 perform	 a	 differential	
methylation	 analysis	 on	 each	CpG	 site	 to	 test	 for	 differences	 in	
DNA	methylation	between	third-	generation	females	of	 the	early	
(n = 10)	and	late	(n = 9)	selection	line.	To	calculate	the	differential	
methylation	 statistics,	 we	 use	 the	 calculateDiffMeth	 function	
which	 calculates	 differential	 methylation	 using	 a	 Fisher's	 Exact	
test.	Within	the	function	call	we	applied	overdispersion	correction	
(overdispersion	 set	 to	 ‘MN’)	 as	 proposed	 by	 (McCullagh	 &	
Nelder,	1989).	We	validated	the	model	by	visually	 inspecting	the	
p-	value	distribution,	the	relationship	of	p- values as - log10(p-	value)	
with	CpG	site	coverage,	the	correlation	of	observed	p- values with 
the	expected	p- values (both as - log10(p-	value),	QQ-	plot)	and	 the	
relationship of p- values as - log10(p-	value)	with	the	differences	 in	
mean	methylation	level	between	the	selection	lines	(volcano	plot).	
To	identify	differentially	methylated	sites	(DMS),	we	corrected	for	
multiple	testing	by	using	two	adjustment	methods.	We	(i)	applied	
Benjamini	and	Hochberg's	method	implemented	within	MethylKit	
that	 controls	 the	 false	 discovery	 rate	 (FDR),	 the	 expected	
proportion of false discoveries within the rejected hypotheses 
(Benjamini	&	Hochberg,	1995),	using	a	q- value threshold of 0.05. 
We	 (ii)	 applied	 the	 Bonferroni	 approach	 using	 a	 corrected	 α- 
threshold that was calculated as the initial α-	threshold	 (of	 0.05)	
divided	 by	 the	 number	 of	 tests	 performed	 (i.e.,	 1,334,373	 CpG	
sites).	 Validation	 plots	 of	 the	 differential	 methylation	 analysis	
show	that,	overall,	the	model	was	well-	suited	for	the	methylation	
data (Figure S1a–d),	although	the	QQ-	plot	indicates	some	p- value 
inflation (λ = 1.15;	Figure S1c).	Moreover,	for	DMS	that	passed	the	
Bonferroni α- threshold we showed that the identification of those 
DMS	is	not	a	statistical	artefact	of	combining	multiple	sequencing	
runs by repeating the differential methylation analysis for the 

first	and	second	sequencing	run	separately	which,	 in	both	cases,	
confirmed our findings (Table S6).

In	addition	to	the	CpG	site-	based	analysis,	we	tested	for	a	differ-
ence	in	overall	methylation	level	across	CpG	sites	between	females	
from	the	early	and	late	selection	line	using	the	CpG	sites	that	passed	
the q-	value	 threshold.	For	 this,	we	used	 the	 following	generalized	
linear	mixed	model	with	binomially	distributed	errors	implemented	
with	the	R	package	lme4	v1.1.27	(Bates	et	al.,	2015);

with	y	as	dependent	variable,	a	two-	column	matrix	of	methylated	
and	unmethylated	counts	to	account	for	variation	in	CpG	site	cov-
erage (corresponding to methylation levels weighted by the total 
number	of	counts;	Lea	et	al.,	2017;	Zhang	et	al.,	2016),	with	μ for 
the	intercept	term,	with	β for the selection line regression coeffi-
cient,	with	Si and Fj	for	the	random	effect	terms	of	CpG	site	and	
female identity respectively (for i = 1.37	and	 j = 1.19)	and	with	eij 
for	the	residual	term.	Significance	was	assessed	by	comparing	the	
full	model	to	its	corresponding	null	model,	that	is	a	model	equiv-
alent to the full model but without the selection line regression 
coefficient,	using	an	ANOVA.

2.9  |  Differential methylation analysis on regions

To	 identify	 differentially	 methylated	 regions,	 we	 predicted	 CGIs	
using	cpgplot	(Larsen	et	al.,	1992),	a	software	part	of	the	EMBOSS	
package	v6.6.0.0,	in	default	settings.	We	predicted	a	total	number	of	
33,142	CGIs	and	matched	the	1,334,373	CpG	sites	that	passed	data	
processing	to	GCIs	using	BEDtools	v.2.26.0	(Quinlan	&	Hall,	2010).	
We	 applied	 a	 filter	 threshold	 of	 10	 or	 more	 CpG	 sites	 (with	 10x	
coverage	in	all	samples)	per	CGI,	resulting	in	a	total	of	596	CGIs.	We	
used	MethylKit's	regionCounts	function	to	sum	up	methylated	and	
unmethylated	base	counts	for	each	CGI	and	tested	for	differences	
in	 DNA	 methylation	 between	 the	 early	 (n = 10)	 and	 late	 (n = 9)	
selection	 line	 using	 MethylKit's	 calculateDiffMeth	 function.	 We	
used the same settings in the function call and the same approach 
for	multiple	testing	correction	as	described	above	for	the	CpG	site-	
based differential methylation analysis.

2.10  |  SNP calling

Based	on	our	recent	evaluation	of	SNP	calling	tools	for	bisulfite	
sequencing	data	(Lindner	et	al.,	2022),	we	used	the	Bayesian	wild-
card	 strategy	 of	 CGmapTools	 v0.1.2	 (Guo	 et	 al.,	2018)	 for	 SNP	
calling.	Due	to	the	bisulfite	treatment	 (conversion	of	C	to	T	 if	C	
is	unmethylated),	 the	presence	of	Ts	might	 indicate	either	Ts	or	
Cs in the unconverted genome resulting in ambiguous genotypes. 
Wildcards	are	used	 to	denote	 this	ambiguity	 in	predicted	geno-
types	with	Y	referring	to	either	T	or	C	and	R	referring	to	either	
A	 or	 G.	When	 both	 strands	 have	 high	 coverage,	 this	 ambiguity	
can	 be	 resolved	 and	 an	 exact	 genotype	 can	 be	 computed	 (Guo	

(1)y = � + �xLine + Si + Fj + eij
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et	al.,	2018).	Prior	to	SNP	calling,	however,	we	were	required	to	
repeat	 the	 alignments	 as	Bismark	 implemented	 new	 flag	 values	
(from	 v0.8.3	 onwards)	 while	 CGmapTools	 requires	 the	 previ-
ous	flag	values	for	SNP	calling.	For	the	Bismark	alignments	with	
‘old’	flag	values	we	aligned	the	reads	with	the	settings	described	
above	 and	 additionally	 specified	 ‘–old_flag’	 and	 ‘–no_dovetail’.	
We	deduplicated	the	alignments,	added	read	groups	and	merged	
alignments as described above (see Methylation calling).	 As	 fe-
males	 are	 the	heterogametic	 sex,	 there	 is	 only	 one	 copy	of	 the	
Z	chromosome	while	autosomes	have	two	copies.	Here,	we	split	
the merged alignments such that the Z chromosome and mito-
chondrial	DNA	were	removed	and	only	autosomes	and	scaffolds	
were	 kept.	We	 converted	 the	 alignments	 into	ATCGmaps	while	
removing	the	overlap	of	read	pairs	using	CGmapTools.	We	called	
SNPs	from	the	ATCGmaps	using	CGmapTools'	Bayesian	wildcard	
strategy	 in	default	 settings.	We	 removed	ambiguous	genotypes	
and	 applied	 a	 filter	 for	 minimum	 and	maximum	 coverage	 using	
GATK	 v4.2.0	 (DePristo	 et	 al.,	2011;	McKenna	 et	 al.,	2010).	We	
set	the	threshold	for	minimum	coverage	to	10	and	the	maximum	
coverage	 threshold	 to	 the	 99th	 percentile	 of	 coverage	within	 a	
sample	averaged	across	sequenced	samples.	We	merged	samples,	
selected	only	positions	that	were	SNPs	and	created	unique	SNP	
identifiers	using	GATK	and	BCFtools	v1.11	(Danecek	et	al.,	2021).	
The	merged	 SNP	 data	 sets	 included	 10,546,938	 SNP	 positions	
prior to quality control.

2.11  |  Processing and analysis of SNP data

We	used	Plink	v1.9	(Purcell	et	al.,	2007)	to	manage	SNP	data	and	
GenABEL	 v1.8.0	 (Aulchenko	 et	 al.,	 2007)	 to	 perform	 the	 qual-
ity	 control.	 We	 discarded	 SNP	 positions	 that	 were	 present	 in	
less	 than	90%	of	samples	per	selection	 line	and	had	a	minor	al-
lele	frequency	below	0.125	(corresponding	to	five	alleles),	reduc-
ing	 the	 number	 of	 SNP	 positions	 to	 451,600.	We	 calculate	 the	
identity-	by-	state-	based	 genetic	 distance	 matrix	 for	 all	 samples	
over	all	SNPs	which	we	 then	used	 for	multi-	dimensional	 scaling	
(MDS,	also	known	as	principal	coordinates	analysis;	Gower,	1966)	
to identify outliers and clusters of genetically similar individuals. 
No clear outlier was detected and samples clustered by selection 
line	alongside	the	second	PC	(explaining	for	8.84%	of	SNP	varia-
tion; Figure S2 and Table S7).

The	 calculation	 of	 GEBVs	 for	 the	 genomic	 selection	 line	 ex-
periment	 (Gienapp	 et	 al.,	 2019)	 was	 based	 on	 SNPs	 from	 a	 high-	
density	SNP	chip	for	the	great	tit	that	covers	>500,000	SNPs	(Kim	
et	 al.,	2018).	 SNPs	 from	 the	SNP	chip	of	 females	 from	all	 genera-
tions	in	the	genomic	selection	line	experiment	(parents:	n = 40,	first-	
generation offspring: n = 158,	second-	generation	offspring:	n = 184,	
third- generation offspring: n = 277),	that	after	quality	filter	included	
437,271	SNPs,	were	previously	used	for	 fixation	 index	 (Fst)	outlier	
analysis	(Verhagen,	Gienapp,	et	al.,	2019).	There	was	an	overlap	of	
less that 15% (n = 31,423)	between	 the	SNPs	covered	on	 the	SNP	
chip (n = 437,271)	 and	 SNPs	 called	 from	WGBS	 data	 (n = 451,600)	

and hence we consider our Fst outlier analysis complementary to the 
Fst	outlier	analysis	performed	in	Verhagen,	Gienapp,	et	al.	(2019).

2.12  |  SNP outlier detection

To	identify	potential	SNPs	that	differentiated	in	response	to	genomic	
selection	for	early	and	late	lay	dates,	we	performed	three	analytical	
approaches	 for	SNP	outlier	detection	described	below;	 (i)	 fixation	
index	(Fst)	outlier	analysis,	(ii)	a	genome	scan	for	selection	based	on	
principle	component	analysis	(PCA)	and	(iii)	redundancy	analysis.	For	
SNPs	without	missing	data,	we	defined	outlier	SNPs	as	SNPs	 that	
were	detected	as	outliers	 in	all	three	approaches.	The	redundancy	
analysis	required	to	exclude	SNPs	with	missing	genotypes.	Hence,	
for	SNPs	with	missing	genotypes	we	defined	outlier	SNPs	as	SNPs	
that were detected as outliers in the Fst	outlier	analysis	and	the	PCA-	
based genome scan for selection.

2.13  |  Fixation index (Fst) outlier analysis

We	 estimated	 SNP-	specific	 Fst	 coefficients	 for	 SNPs	 called	 from	
WGBS	data	(n = 451,600)	using	BayeScan	v2.1	(Foll	&	Gaggiotti,	2008),	
a method that aims to directly estimate the locus- specific probability 
that	SNPs	are	subject	to	selection	using	a	Bayesian	method.	While	the	
use	of	BayeScan	can	result	in	a	high	number	of	false	positives,	this	is	
not the case when a large number of neutral loci (relative to selected 
loci)	is	included	in	the	analysis	(Lotterhos	&	Whitlock,	2014),	which	is	
the	case	here.	We	first	converted	SNP	data	into	a	BayeScan-	readable	
format	 using	 R	 packages	 adegenet	 v2.1.5	 (Jombart,	2008; Jombart 
&	Ahmed,	2011)	and	dartR	v1.9.9.1	 (Gruber	et	al.,	2018).	We	 imple-
mented	BayeScan	with	a	few	adjustments	relative	to	the	default	set-
tings.	We	(i)	increased	the	prior	odds	to	100	(default:	10)	as	low	prior	
odds	lead	to	false	positives	when	testing	a	large	number	of	markers,	
we	(ii)	increased	the	number	of	iterations	to	25,000	(default	5000)	and	
the	number	of	the	thinning	interval	size	to	50	(default:	10)	to	decrease	
autocorrelation	between	iterations	while	keeping	the	same	number	of	
iterations	as	in	default	settings,	and	we	(iii)	set	the	number	of	threads	
used	to	60.	Trace	plots	indicate	good	convergence	of	chains	(Figure S3)	
and	effective	sample	sizes	to	estimate	the	posterior	distributions	were	
sufficiently large (neff > 7000	for	loglikelihood	and	neff > 13,000	for	Fst 
coefficients).	We	considered	SNPs	with	q-	value < 0.05	as	Fst outliers. 
In	 addition	 to	BayeScan,	we	estimated	Fst	 using	Arlequin	and	plink.	
For	Fst	outlier	analysis	with	Arlequin	v3.5.2	(Excoffier	&	Lischer,	2010)	
we	followed	the	analysis	described	in	Verhagen,	Gienapp,	et	al.	(2019)	
and	considered	SNPs	with	a	p-	value < 0.01	as	potential	Fst	outlier.	For	
estimating locus- specific Fst	 coefficients	with	 plink	we	 set	 the	 –fst	
and	–within	flags	in	combination	with	a	file	linking	sample	IDs	to	the	
selection line. Overall Fst	coefficients	estimated	with	BayeScan	were	
lower	 than	estimated	with	Arlequin	and	plink	 (Figure S4).	However,	
the	order	of	SNPs	in	regard	to	Fst coefficients is quite comparable be-
tween	tools,	specifically	for	SNPs	with	the	highest	Fst coefficients that 
correspond to Fst outliers.
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2.14  |  Genome scan for selection based on 
principle component analysis (PCA)

We	used	the	R	package	pcadapt	v4.3.3	(Luu	et	al.,	2017)	to	implement	
a	genome	scan	for	selection	based	on	PCA	under	the	assumption	that	
SNPs	 that	 excessively	 relate	 to	 population	 structure	 are	 candidate	
SNPs	for	local	adaptation.	pcadapt	performs	two	successive	tasks,	(i)	
a	PCA	on	 the	centred	and	scaled	SNP	matrix	and	 (ii)	 the	computa-
tion of test statistics and p- values based on the correlations between 
SNPs	 and	 the	 first	 K	 principal	 components	 (PCs).	 For	 our	 data	 set	
(n = 451,600	SNPs),	we	set	K = 1,	because	only	the	first	PC	was	signifi-
cantly associated with selection line (p-	value = 2.04E-	10,	all	other	PCs	
had p-	value > 0.05)	otherwise	and	used	default	settings.	SNPs	with	p- 
values smaller that the Bonferroni- based threshold (calculated as the 
initial α-	threshold	of	0.05	divided	by	the	number	of	tests	performed,	
that	is	451,600	SNPs)	are	considered	PCA-	based	outliers.

2.15  |  Redundancy analysis

We	 implemented	 a	 redundancy	 analysis	 (Forester	 et	 al.,	 2016)	 that	
aims	to	detect	SNP	outlier	that	constitute	footprints	of	divergent	se-
lection	typically	expected	in	polygenetic	adaptation	when	traits	are	in	
complex	interactions	with	the	environment	(Caizergues	et	al.,	2022).	
Redundancy analysis requires complete data and hence we removed 
SNPs	with	missing	 genotypes	 from	 the	data	 set,	 reducing	 the	data	
set	to	164,959	SNPs	with	genotypes	in	all	samples.	We	implemented	
the	 redundancy	 analysis	 with	 R	 package	 vegan	 v2.5.7	 (Oksanen	
et	al.,	2019)	and	specified	selection	line	as	explanatory	variable.	We	
considered	a	relationship	between	SNP	data	and	selection	line	with	
p-	value < 0.05	 as	 significant	 and	 extracted	 the	 SNP-	specific	 load-
ings	 in	 the	 ordination	 space	 to	 identify	 SNPs	 involved	 in	 local	 ad-
aptation.	SNPs	that	are	located	in	the	tails	of	the	distribution	of	the	
SNP-	specific	 loadings	 (using	 a	 cut-	off	 of	 three	 standard	deviations;	
Forester	et	al.,	2016)	are	considered	redundancy	analysis	outliers.

2.16  |  Annotation of CpG sites and SNPs

We	annotated	genomic	regions	using	R	packages	GenomicFeatures	
v1.42.3	 (Lawrence	et	 al.,	2013)	 and	 rtracklayer	 v1.50.0	 (Lawrence	
et	al.,	2009).	The	genomic	regions	included	the	TSS	region	(300 bp	
upstream	to	50 bp	downstream	of	the	annotated	transcription	start	
site),	promoter	region	(2000 bp	upstream	to	200 bp	downstream	of	
the	annotated	transcription	start	site),	gene	body	(exons	and	introns)	
and	10 kb	up-		and	downstream	regions	(respective	10 kb	regions	ad-
jacent	to	the	gene	body).	CpG	sites	and	SNPs	were	matched	to	the	
above-	described	annotated	genomic	regions	of	genes	with	BEDtools	
or	assigned	to	the	intergenic	region	(if	no	match	was	found).

After	 pre-	processing	 the	 methylation	 data	 sets,	 we	 retained	
1,334,373	CpG	sites	that	were	associated	to	17,917	annotated	genes.	
Mostly	CpG	sites	were	located	within	the	gene	body	(n = 773,206)	
of annotated genes or in intergenic regions (n = 421,872;	Figure S5 

and Table S8).	Moreover,	209,466	CpG	sites	were	located	in	the	10 k	
upstream	region,	186,300	CpG	sites	in	the	10 k	downstream	region,	
58,770	CpG	sites	in	the	promoter	region	and	8738	CpG	sites	in	the	
transcription start site region.

2.17  |  Gene enrichment analysis

We	performed	gene	ontology	(GO)	analyses	for	gene	lists	identified	
with the statistical analysis of the methylation data using the 
ClueGO	 v2.5.7	 (Bindea	 et	 al.,	 2009)	 plug-	in	 for	 Cytoscape	 v3.8.2	
(Shannon,	2003).	We	 used	 the	 human	 (v20.01.2022)	 and	 chicken	
(v26.01.2022)	 annotations,	 GO	 categories	 ‘biological	 process’,	
‘cellular	components’,	‘molecular	function’,	‘immune	system	process’	
and	KEGG	pathways,	and	custom	background	lists	of	all	annotated	
genes within the methylation data (n = 17,916	genes).	We	specified	
the	 selection	 criteria	 for	 GO	 terms	 such	 that >=5% of the genes 
associated	with	a	GO	term	and >=2	genes	associated	with	the	GO	
term	 had	 to	 be	 present	 in	 the	 input	 genes.	We	 used	 a	 two-	sided	
enrichment/depletion	 test,	 p- value correction for multiple testing 
via	Bonferroni	step	down	and	set	the	network	specificity	to	‘medium’	
ranging	 from	the	 third	 to	 tenth	GO	 level.	The	great	 tit	 annotation	
contains	LOC	genes	and	we	checked	whether	the	LOC	genes	were	
categorized	 as	 predicted	 genes,	 uncharacterized	 genes	 or	 small	
nuclear	RNA	and	assessed	the	reliability	of	the	gene	prediction	using	
the NCBI genome browser and blast (Table S9).

3  |  RESULTS

3.1  |  Differential methylation analysis

Of	the	1,334,373	CpG	sites	included	in	the	CpG	site-	based	differen-
tial	methylation	analysis,	we	identified	37	differentially	methylated	
CpG	sites	(DMS)	when	using	the	FDR-	based	significance	threshold	
(Figure 1).	However,	 three	DMS	showed	 less	 than	10%	difference	
in	 CpG	 methylation	 between	 selection	 lines	 (Table S10).	 Overall,	
identified	DMS	were	hypomethylated	in	females	of	the	early	selec-
tion	line	relative	to	the	late	selection	line	(LRT:	Chisq = 37.44,	Df = 1,	
p-	value < 0.001;	Figure 2).	When	applying	a	more	stringent	signifi-
cance	threshold	(i.e.,	Bonferroni)	and,	this	way,	decreasing	the	num-
ber	of	expected	false	positives,	we	identified	six	DMS	in	four	genes	
with	at	least	19%	difference	in	CpG	methylation	between	selection	
lines (Figure 2 and Table 1).	These	DMS	were	located	within	the	gene	
body (n = 3),	the	10 kb	upstream	region	(n = 1)	and	the	promoter	re-
gion (n = 1)	of	annotated	genes	(Table 1),	whose	potential	functional	
relevance for avian lay dates is described in the discussion.

Enrichment	 analysis	 of	 genes	 that	 overlap	 DMS	 (n = 25)	 pro-
vided	limited	insights,	 likely	due	to	the	low	number	of	genes.	Only	
if	we	decreased	the	number	of	genes	required	per	GO	term	to	be	
included	in	the	enrichment	analysis	to	two	genes,	we	found	enriched	
GO	terms	and	hence	findings	should	be	interpreted	with	care.	We	
found	nine	enriched	GO	terms	using	human	GOs	(Table S11A)	and	
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8 of 17  |     LINDNER et al.

seven	enriched	GO	terms	using	chicken	GOs	(Table S11B)	with	three	
GO	 terms	 shared	 between	 species-	specific	 GO	 terms.	 GO	 terms	
were	 linked	 to	 general	 biological	 processes,	 including	 protein	 ki-
nase	B	(PKB)	signalling,	that	is	linked	to	two	genes	encoding	for	the	
phosphatidylinositol-	4,5-	bisphosphate	 3-	kinase	 catalytic	 subunit	
beta (PIK3CB,	 an	 intracellular	 signal	 transducer	 enzyme)	 and	myo-
statin (MSTN,	a	growth	differentiation	factor).	DMS	in	the	promoter	
region of PIK3CB	and	in	the	10 kb	upstream	region	of	MSTN also pass 
the more stringent significance threshold.

We	performed	a	 region-	based	differential	methylation	analysis	
on	596	CGIs	and	did	not	identify	any	differentially	methylated	CGIs.

3.2  |  SNP outlier analyses

We	 implemented	 three	analytical	 approaches	 to	 identify	potential	
candidate	SNPs	underlying	genomic	selection	for	early	and	late	lay	

dates	and	focused	on	the	overlap	between	approaches;	(i)	Fst outlier 
analysis,	 (ii)	 a	 genome	 scan	 for	 selection	 based	 on	 PCA,	 and	 (iii)	
redundancy analysis (Table S12).

We	 estimated	 the	 Fst	 coefficients	 for	 451,600	 SNPs	 with	
BayeScan	and	 identified	four	Fst outliers located on chromosomes 
4	and	4A	(q-	value < 0.05;	Figure 3 and Table 2).	While	the	two	SNPs	
on	chromosome	4	were	 located	within	 intergenic	regions,	 the	two	
SNPs	on	chromosome	4A	were	 located	within	 the	10 kb	upstream	
region	of	the	transcription	factor	SOX-	3-	like	gene	(LOC107203824; 
SOX3-	like)	and	the	gene	body	of	the	nik	related	kinase	gene	(NRK).	
Fst	outliers	and	DMS	showed	no	overlap	in	physical	location	on	the	
genome or associated genes.

We	found	a	larger	number	of	Fst	outliers	with	Arlequin	(n = 2230	
with p-	value < 0.01),	which	is	in	line	with	the	large	number	of	Fst out-
liers (n = 4786	with	p-	value < 0.01)	previously	identified	in	Verhagen,	
Gienapp,	et	al.	 (2019).	When	 focusing	on	SNPs	 that	are	 shared	 in	
both data sets (n = 31,423),	156	and	391	Arlequin	Fst	outlier	SNPs	
remained	for	SNPs	used	here	and	SNPs	used	in	Verhagen,	Gienapp,	
et al. (2019),	of	which	46	SNPs	are	shared.	This	 indicates	that	the	
significance threshold used (p-	value < 0.01)	is	rather	tolerant	for	the	
number	of	SNPs	tested.	However,	Fst	outlier	analysis	with	Arlequin	
and	BayeScan	performed	here	 identified	 the	same	set	of	SNPs	as	
outlier	SNPs	with	the	largest	effect	sizes	(Figure S4).

The	PCA-	based	genome	scan	for	selection	on	451,600	SNPs	im-
plemented	with	pcadapt	revealed	that	only	the	first	PC	was	signifi-
cantly associated with selection line (p-	value = 2.04E-	10,	all	other	
PCs	p-	value > 0.05).	Based	on	correlations	between	SNPs	and	the	
first	PC,	we	identified	47	SNPs	with	outlier	loadings.

In contrast to the Fst	outlier	analysis	and	the	PCA-	based	genome	
scan	for	selection,	redundancy	analysis	cannot	handle	missing	data	
which	reduced	the	SNP	data	set	to	164,959	SNPs.	Redundancy	anal-
ysis	showed	that	selection	line	was	indeed	a	significant	explanatory	
variable (F-	statistic = 1.56,	 Df = 1,	 p-	value = 0.001)	 that	 explained	
8.0%	of	the	total	variance	in	the	SNP	data.	Based	on	the	SNP-	specific	
loadings	on	the	first	axis,	we	identified	14	SNPs	with	outlier	loading	

F I G U R E  1 Manhattan	plot	of	the	differential	methylation	analysis.	Data	points	are	p- values (on the - log10	scale)	of	individuals	CpG	sites	
(n = 1,334,373)	that	correspond	to	the	significance	of	differential	CpG	site	methylation	between	females	from	the	early	(n = 10)	and	late	
(n = 9)	selection	line.	Black	dashed	lines	refer	to	the	significance	threshold	with	Bonferroni	(top)	and	FDR	(bottom)	correction	for	multiple	
testing.	Furthermore,	CpG	sites	that	pass	the	FDR-	based	significance	thresholds	are	highlighted	in	orange	and	plotted	with	increased	plot	
symbol	size.	‘Sc’	refers	to	unplaced	scaffolds	(x-	axis).

F I G U R E  2 CpG	site	methylation	level	(in	%)	of	37	CpG	sites	
with	differential	methylation	after	FDR	correction	for	multiple	
testing for females from the early and late selection line. Data 
point and error bars represent the selection line- specific mean and 
95%-	confidence	interval.	The	difference	between	selection	lines	
was	assessed	using	a	likelihood	ratio	test	(Chisq = 37.44,	Df = 1,	
p-	value = 9.43*10−10).
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    |  9 of 17LINDNER et al.

score	(significance	threshold:	mean ± 3sd	with	mean = 1.20*10−7 and 
sd = 0.029,	Figure 3).

When	 focusing	 on	 the	 overlap	 between	 approaches,	 we	
identified	 three	 outlier	 SNPs	 (SNP	 without	 missing	 genotypes:	

chr4A_16892597_C:T;	SNPs	with	missing	genotypes:	chr4_39145992_T	
:C	and	chr4_39145990_T:C,	Table 2)	While	the	two	SNPs	on	chromo-
some	 4	 were	 intergenic,	 the	 SNP	 on	 chromosome	 4A	 was	 located	
within	the	10 kb	upstream	region	of	LOC107203824 (SOX3-	like).

TA B L E  1 CpG	sites	with	differential	methylation	that	pass	the	Bonferroni	significance	threshold.

Site p- Value
Methylation difference 
(%, late- early) Genomic region Gene symbol

chr2_23971207 1.99E-	10 23.43 Gene	body CASD1

chr2_27152785 6.96E-	10 30.23 Intergenic NA

chr4_14314088 1.70E-	08 −28.00 Intergenic NA

chr7_7319671a 2.32E-	08 −22.00 10 kb	upstream MSTN

chr7_7319671a 2.32E-	08 −22.00 Gene	body C7H2orf88

chr9_3916309a 2.63E-	08 19.34 Promoter PIK3CB

chr9_3916309a 2.63E-	08 19.34 Gene	body PIK3CB

Scaffold101_1793295 1.74E-	08 19.75 Intergenic NA

Note:	The	CpG	site	identifier	(chromosome	and	position	on	the	chromosome),	p-	value,	difference	in	CpG	site	methylation,	genomic	region	and	gene	
symbol	of	the	annotated	gene	are	shown.	A	positive	difference	in	CpG	site	methylation	corresponds	to	hypomethylation	in	females	from	the	early	
selection	line	relative	to	females	from	the	late	selections	line	and	vice	versa.	Full	name	of	genes:	CAS1	domain	containing	1	(CASD1);	myostatin	
(MSTN);	chromosome	7	C2orf88	homologue	(C7H2orf88);	phosphatidylinositol-	4,5-	bisphosphate	3-	kinase	catalytic	subunit	beta	(PIK3CB).
aMarks	CpG	sites	that	are	annotated	to	more	than	one	genomic	region.

F I G U R E  3 Manhattan	plots	for	the	
SNP	outlier	analyses.	Fst coefficients 
estimated	with	BayeScan	(a),	PCA-	based	
genome	scan	SNP	loadings	(b)	and	
redundancy	analysis	SNP	loadings	(c)	
between females from the early (n = 10)	
and late (n = 10)	selection	line	for	each	
SNP	(n = 451,600	for	a	and	b,	n = 164,959	
for	c).	All	SNPs	above	the	significance	
thresholds are highlighted by increased 
plot	symbol	size.	Outlier	SNPs	detected	
as outliers with all three approaches (or 
with	BayeScan	and	pcadapt	for	SNPs	
with	missing	genotypes)	are	highlighted	
in	orange.	Tool-	specific	outlier	SNPs	are	
highlighted	in	blue.	SNPs	detected	as	
outliers with pcadapt and redundancy 
analysis	are	highlighted	in	yellow.	‘Sc’	(x-	
axis)	refers	to	unplaced	scaffolds.
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10 of 17  |     LINDNER et al.

4  |  DISCUSSION

Identifying the genetic variants and genomic pathways underlying 
complex	 quantitative	 traits	 is	 a	 major	 challenge	 in	 modern	
evolutionary	biology.	As	many	highly	polygenic	traits	are	expressed	
in	 interaction	 with	 the	 environment	 (e.g.,	 Gienapp	 et	 al.,	 2017),	
this	has	proven	challenging	 in	wild	populations.	A	unique	genomic	
selection	 experiment	 for	 early	 and	 late	 avian	 lay	 date	 (Gienapp	
et	al.,	2019;	Verhagen,	Gienapp,	et	al.,	2019)	enabled	us	to	identify	
both genetic and epigenetic differentiation between females of the 
early	and	late	lay	selection	line	and,	this	way,	gain	insights	into	the	
genetic variants and genomic pathways that might be involved in 
adaptation of a wild bird population.

4.1  |  Biological relevance of identified DMS and 
outlier SNPs

When	comparing	females	from	the	early	and	late	genomic	selec-
tion	lines	for	lay	date,	we	found	evidence	for	both	epigenetic	and	
genetic	differentiation	in	response	to	genomic	selection.	Overall,	
differentially	methylated	CpG	sites	(DMS)	and	outlier	SNPs	were	
located	 within	 genes	 that	 have	 known	 functions	 for	 reproduc-
tion.	 The	 biological	 relevance	 of	 genes	 with	 DMS	 mostly	 con-
cerned	ovarian	functioning	(e.g.,	PIK3CB,	C7H2orf88 and MSTN),	
while	the	biological	relevance	of	genes	with	outlier	SNPs	mostly	
concerned brain development and functioning (LOC107203824; 
SOX3-	like).

Genes	 with	 differential	 DNA	 methylation	 in	 response	 to	 ge-
nomic selection for lay dates mostly function downstream in the 
neuro-	endocrine	system	along	the	HPGL	axis	(i.e.,	in	the	ovary),	in-
dicating	that	genetic	variation	in	DNA	methylation	potentially	acts	
to	fine-	tune	lay	dates	(Lindner,	Laine,	et	al.,	2021;	Verhagen,	Laine,	
et	al.,	2019).	Genetic	differentiation,	in	contrast,	was	located	within	
genes that mostly function at the stage where the neuro- endocrine 
cascade	 is	activated	 (i.e.,	upstream	 in	 the	neuro-	endocrine	system	
along	the	HPGL	axis).

Genes	with	DMS	have	predicted	functions	in	a	variety	of	biolog-
ical	processes	including	ovarian	and	reproductive	functioning,	espe-
cially	when	focusing	on	DMS	that	passed	the	Bonferroni-	corrected	
significance threshold (CASD1,	MSTN,	C7H2orf88 and PIK3CB).	GO	
analysis pointed towards two genes encoding for an intracellular 

signal	 transducer	 enzyme	 (PIK3CB)	 and	 a	 growth	 differentiation	
factor	(MSTN),	that	are	of	relevance	for	the	protein	kinase	B	(PKB)	
signalling	pathway,	a	pathway	associated	with	the	survival	of	 folli-
cle	cells.	For	example,	inactivation	of	the	PKB	signalling	pathway	in	
chicken	granulosa	cells	of	the	three	largest	preovulatory	follicles	led	
to	oligonucleosome	 formation,	which	characterizes	ovarian	 follicle	
atresia	(Johnson	et	al.,	2001).	Although	follicle	atresia	is	a	common	
process	in	pre-	hierarchical	follicles,	follicles	that	have	been	selected	
into the preovulatory hierarchy are committed to ovulate and rarely 
undergo	follicle	atresia	 (Johnson	&	Woods,	2009),	highlighting	the	
essential	role	for	PKB-	mediated	inhibition	of	follicle	atresia	 in	pre-
ovulatory follicles for ovarian functioning.

PIK3CB	 (p100β),	 together	 with	 PIK3CA	 (p100α)	 and	 PIK3CD	
(p100δ),	builds	the	catalytic	p110	subunit	that	characterizes	a	class	
of	phosphatidylinositol	3-	kinase	(PI3K)	proteins	that	are	primarily	
responsible for the production of phosphatidylinositol in response 
to	growth	 factors	 (Cantley,	2002;	Zhang	et	al.,	2020).	 In	general,	
PI3K	signalling	pathways	play	crucial	roles	in	cell	growth,	cell	sur-
vival	 and	 cell	movement	 (Cantley,	2002),	 but	 are	 known	 to	 have	
more specific roles in reproductive functioning such as ovarian 
follicle	development	 (Li	et	al.,	2021).	For	example,	PI3K	signalling	
pathways	in	neuronal	leptin	receptors,	that	harbour	catalytic	sub-
units	PIK3CA	(p100α)	and	PIK3CB	(p100β),	are	crucial	for	pubertal	
maturation	 and	 reproductive	 functioning	 in	mice	 (Garcia-	Galiano	
et	al.,	2017,	2019)	and	the	PIK3	and	cAMP/protein	kinase	A	(PKA)	
signalling	 is	 involved	 in	 the	 crosstalk	 between	 the	 transforming	
growth	factor	(TGF)	β1	and	follicle	stimulating	hormone	(FSH)	that	
mediates steroidogenesis in ovarian granulosa cells in rats (Chen 
et	 al.,	 2007).	 Furthermore,	 C7H2orf88 encodes for the chromo-
some	 7	 C2orf88	 homologue	 that	 is	 also	 known	 as	 smAKAP,	 en-
coding	for	the	small	membrane	A-	kinase	anchor	protein.	smAKAP	
constitutes a small protein that is directly anchored to membranes 
by	acyl	motifs	and	almost	exclusively	interacts	with	the	type	I	regu-
latory	subunits	of	cAMP/protein	kinase	A	(PKA)	signalling	(Burgers	
et	al.,	2016),	a	key	signalling	pathway	during	the	ovulation	process	
(Shimada	&	Yamashita,	2011).

MSTN,	also	known	as	growth	and	differentiation	factor	8	(GDF8)	
encodes a transcriptional growth factor that actively represses 
skeletal	 muscle	 growth	 (Kollias	 &	 McDermott,	 2008;	 McPherron	
et	al.,	1997)	and	as	such	has	been	of	much	interest	in	livestock	re-
search	(Bellinge	et	al.,	2005).	Genetic	manipulation	of	MSTN in live-
stock	 resulted	 in	 increased	muscle	mass	 (e.g.,	 the	double-	muscled	

TA B L E  2 Ooutlier	SNPs.

SNP Fst q- Value Allele frequencies Genomic region Gene symbol

chr4_39145992_T:C 0.24 2.40E-	04 E = 0.00:1.00,	L = 0.85:0.15 Intergenic NA

chr4_39145990_T:C 0.23 6.20E-	04 E = 0.00:1.00,	L = 0.83:0.17 Intergenic NA

chr4A_16892597_C:T 0.21 5.52E-	03 E = 0.25:0.75,	L = 1.00:0.00 10 kb	upstream LOC107203824 (SOX3-	like)

Note:	For	SNPs	without	missing	data	we	defined	outlier	SNPs	as	SNPs	that	were	detected	as	outliers	in	all	three	approaches.	For	SNPs	with	missing	
genotypes	we	defined	outlier	SNPs	as	SNPs	that	were	detected	as	outliers	in	the	Fst	outlier	analysis	and	the	PCA-	based	genome	scan.	The	SNP	
identifier	(chromosome,	position	and	reference:alternative	allele),	Fst	coefficient,	Fst q-	value,	allele	frequencies	(reference:alternative)	for	early	(E)	and	
late	(L)	selection	line	females,	genomic	region	and	gene	symbol	of	the	annotated	gene	are	shown.	Full	name	of	gene:	transcription	factor	SOX-	3-	like	
(LOC107203824; SOX3-	like).
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    |  11 of 17LINDNER et al.

phenotype	in	cattle;	Grobet	et	al.,	1997),	but	compromised	fertility,	
calf	 viability	and	 stress	 susceptibility	 (Han	et	 al.,	2021).	 In	quail,	 a	
three base- pair deletion in MSTN resulted in amino acid deletion 
in	the	MSTN	peptide	and	led	to	increased	body	weight	and	muscle	
mass	(Lee	et	al.,	2020)	as	well	as	delayed	lay	dates,	higher	egg	weight	
and lower number of eggs produced during the active laying period 
(Lee	et	al.,	2021)	in	homozygous	mutant	quail	relative	to	heterozy-
gous	mutant	and	wild-	type	quail.	These	 studies	 in	quail	 exemplify	
the relevance of MSTN for reproductive traits in seasonally breeding 
birds,	including	lay	dates	in	quail.

CASD1	(encoding	for	CAS1	domain	containing	1)	is	also	known	as	
sialate O- acetyltransferase (SOAT)	that	catalyses	the	9-	O-	acetylation	
of sialic acids that constitute sugars at the reducing end of glycopro-
teins	and	glycolipids	(Arming	et	al.,	2011).	SOAT	has	known	to	have	
an	 important	 role	 in	 lipid	 trafficking	 and	utilization	during	 embry-
onic	development.	For	example,	zebrafish	embryos	injected	with	a	
SOAT	inhibitor	showed	a	lower	rate	of	yolk	consumption	indicating	
that	SOAT	 is	 catalytically	 active	 in	 the	yolk	 cholesterol	 trafficking	
during	embryogenesis	 (Chang	et	al.,	2016).	 In	the	chicken	embryo,	
SOAT	is	responsible	for	the	rapid	esterification	of	a	large	proportion	
of	yolk	cholesterol,	a	process	essential	for	lipid	uptake	from	the	yolk	
by	 the	 yolk	 sac	membrane	during	embryonic	development	 (Shand	
et	al.,	1993;	Wang	et	al.,	2017).	While	the	role	of	SOAT	in	lipid	traf-
ficking	and	utilization	during	embryonic	development	within	the	egg	
is	well	understood	for	oviparous	species,	including	birds,	it	is	unclear	
whether	SOAT	is	of	any	relevance	for	lipid	deposition	during	the	pro-
duction of eggs.

For	 outlier	 SNPs,	 we	 focus	 on	 outliers	 detected	 with	 all	
three	 approaches	 and	 found	 one	 gene	 with	 an	 outlier	 SNP;	
LOC107203824 (SOX3-	like).	 The	 transcription	 factor	 SOX-	3	 en-
coded by LOC107203824 (SOX3-	like)	 is	 crucial	 for	 the	 develop-
ment	 and	 functioning	 of	 the	 hypothalamo-	pituitary	 axis	 (Rizzoti	
et	 al.,	2004;	 Szeliga	 et	 al.,	2021)	which	 is	 an	essential	 component	
of	 the	 hypothalamic–pituitary–gonadal–liver	 axis	 (HPGL	 axis).	 The	
HPGL	axis	mediates	the	neuro-	endocrine	cascade	that,	in	seasonally	
breeding	birds,	 activates	 the	onset	of	gonadal	growth	 in	 response	
to	 increasing	 photoperiods	 (Dawson	 et	 al.,	2001;	Williams,	2012).	
Consequently,	 reproductive	 functioning	 is	 critically	 dependent	 on	
normal development and functioning of the hypothalamo- pituitary 
axis.	For	example,	a	genetic	variant	 in	SOX3	 in	humans	was	 linked	
to	 normosmic	 idiopathic	 hypogonadotropic	 hypogonadism,	 a	 form	
of	isolated	gonadotropin-	releasing	hormone	(GnRH)	deficiency	(Kim	
et	al.,	2019).	Next	to	the	brain,	SOX3	is	also	expressed	in	the	ovary	
where	 it	 is	 required	 for	 gonadal	 functioning.	 For	 example,	 double	
SOX3	 deletion	 in	 female	mice	 led	 to	 excess	 follicular	 atresia,	 ovu-
lation	 of	 defective	 oocytes,	 and	 severely	 reduced	 fertility	 (Weiss	
et	al.,	2003).	SOX-	3	was	also	identified	as	one	of	eight	master	tran-
scription	 factors	driving	 folliculogenesis	 in	mice	 (Bian	et	al.,	2021)	
and	was	found	to	inhibit	apoptosis	during	follicle	development	in	ze-
brafish	leading	to	improved	fecundity	(Hong	et	al.,	2019).	In	general,	
SOX3 constitutes a gene of high relevance for reproductive func-
tioning,	that	is	crucial	for	normal	development	and	functioning	of	the	
hypothalamo-	pituitary	axis.

4.2  |  Hypomethylation in the early selection line 
relative to the late selection line

The	 majority	 of	 DMS	 showed	 hypomethylation	 in	 females	 from	
the early selection line relative to females from the late selection 
line.	 However,	 the	 functional	 relevance	 of	 a	 general	 hypometh-
ylation	 in	females	from	the	early	selection	 line	 is	unclear	as	CpG	
sites are located within many genes and within different genomic 
locations	 of	 genes.	 The	 association	 of	CpG	 site	methylation	 and	
gene	expression	is	likely	to	differ	between	genomic	features	(Laine	
et	 al.,	 2016),	making	 it	 difficult	 to	 derive	 general	 conclusions	 on	
the functional relevance. Considering a previously reported as-
sociation	 between	 changes	 in	 DNA	methylation	 throughout	 the	
breeding	 season	 and	 the	 onset	 of	 lay	 dates	 in	 great	 tit	 (Lindner,	
Laine,	et	al.,	2021),	 it	 is	possible	that	the	observed	hypomethyla-
tion in the early selection line is related to differences in seasonal 
changes	in	DNA	methylation	between	the	early	and	late	selection	
line.	However,	the	CpG	sites	at	which	DNA	methylation	is	known	
to	change	with	seasonality	account	for	a	small	proportion	of	CpG	
sites	(e.g.,	35	of	5097	CpG	sites	(Lindner,	Laine,	et	al.,	2021))	and	
hence	is	unlikely	to	account	for	the	overall	hypomethylation	in	the	
early	 selection	 line	observed	here.	Due	 to	 the	 lack	of	 replicated	
selection	 lines,	 it	 is	not	possible	 for	us	 to	exclude	 the	possibility	
that the overall hypomethylation in the early selection line is a con-
sequence of genetic drift.

4.3  |  Epigenetic differentiation is hypothesized to 
be a correlated response to genetic differentiation 
following genomic selection

We	 here	 hypothesize	 that	 the	 observed	 differentiation	 in	 DNA	
methylation was accompanying the genetic differentiation in-
duced	 by	 the	 genomic	 selection	 experiment.	 In	 other	words,	we	
hypothesize	 that	 the	variants	 in	DNA	methylation	were	 inherited 
with genetic variants that arose following genomic selection rather 
than	 inherited	 independently	of	genetic	variants.	While	we	were	
not	able	to	explicitly	test	for	an	association	between	DNA	meth-
ylation	and	genetic	variants,	this	hypothesis	is	in	line	with	findings	
by van Oers et al. (2020)	where	differences	 in	DNA	methylation	
between	 selection	 lines	 for	 exploratory	 behaviour	 in	 great	 tits	
were	 explained	 by	 genetic	 differences	 rather	 than	 spontaneous	
epi-	mutations.	 Furthermore,	 many	 recent	 studies	 have	 shown	
that	a	 large	proportion	of	variants	 in	DNA	methylation	 is	 indeed	
dependent	on	genetic	variants.	For	example,	 in	Arabidopsis thali-
ana	 the	 variation	 in	 CHH	 methylation	 in	 transposable	 elements	
was strongly associated with cis-  and trans- acting genetic vari-
ants	 (Dubin	 et	 al.,	 2015),	 in	 inter-	crosses	 between	 wild	 derived	
red	 junglefowl	and	domestic	chickens	>45% of mapped trait loci 
were controlled by five trans- acting loci mainly associated with 
an	 increase	 in	 hypothalamic	 DNA	methylation	 in	 red	 junglefowl	
genotypes	 (Höglund	 et	 al.,	2020)	 and	 in	 great	 tit	 nestlings	DNA	
methylation in early life is largely determined by genetic effects 
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(common	origin)	rather	than	environmental	effects	(common	rear-
ing	 environment)	 (Sepers	 et	 al.,	2023).	 This	 dependency	of	DNA	
methylation on genetic variation is also supported by studies show-
ing that more closely related individuals are more similar in their 
methylation	patterns	 than	unrelated	 individuals	 (Lea	et	al.,	2017; 
van	Oers	et	al.,	2020;	Viitaniemi	et	al.,	2019).	There	are,	however,	
other	sources	of	DNA	methylation	that	concern	the	environmen-
tal	induction	of	DNA	methylation	and	spontaneous	epi-	mutations.	
While	such	epi-	mutations	are	indeed	established	in	plants	(Feil	&	
Fraga,	2012),	there	is	limited	evidence	for	their	stable	inheritance	
in	vertebrates,	or	more	 specifically,	 in	avian	 species	 (e.g.,	 Sepers	
et	al.,	2019).	 In	vertebrates,	 it	 is	unclear	how	such	epi-	mutations	
would	escape	 the	extensive	 reprogramming	of	DNA	methylation	
that,	for	example	in	mammals,	takes	place	during	the	fertilization	
of	 the	 zygote	and	 in	 the	primordial	 germ	cell	 (the	progenitors	of	
sperm	cells	and	oocytes;	Seisenberger	et	al.,	2013).	Nevertheless,	
there are some comparative studies that imply a role for epigenetic 
variation	in	evolution,	assuming	that	epigenetic	variants	are	inher-
ited	 independently	 of	 genetic	 variants.	 For	 example,	 epigenetic	
variants were more common among several closely related spe-
cies	of	Darwin's	finches	than	genetic	variants	in	the	form	of	copy	
number variation and there was no apparent overlap between epi-
genetic variants and genetic variants suggesting that epigenetic 
variants are distinct and correlate with the evolutionary history of 
Darwin's	 finches	 (Skinner	 &	Guerrero-	Bosagna,	 2009).	 Although	
it	 cannot	be	excluded	 that	epigenetic	variants	are	dependent	on	
genetic	variants,	as	this	was	not	formally	assessed,	it	is	likely	that	
epigenetic changes contribute to the molecular basis of the evolu-
tion	of	Darwin's	finches.	Hence,	the	study	shows	that	DNA	meth-
ylation might be inherited and contributes to evolution in its own 
right,	that	is	independently	of	genetic	variants,	indicating	that	our	
interpretation	of	the	observed	differentiation	in	DNA	methylation	
as a response that accompanied the genetic differentiation might 
be too simplistic.

4.4  |  Caveats and future challenges

We	designed	our	study	with	great	care,	but	there	are	some	limitations	
that	we	need	to	address	here.	Firstly,	our	experimental	design	did	
not	 include	 any	 replicate	 lines	 (Verhagen,	 Gienapp,	 et	 al.,	 2019),	
limiting our ability to differentiate selection as the underlying 
cause of the reported epigenetic and genetic differentiation from 
genetic	 drift.	We,	 however	 observe	 increased	differentiation	over	
generations	between	selection	lines	in	GEBVs	(genetic	level)	and	lay	
dates	 (phenotypic	 level)	 (Lindner	 et	 al.,	2023;	 Verhagen,	Gienapp,	
et	 al.,	 2019),	 indicating	 that	 the	 genomic	 selection	 lines	 offer	 a	
suitable contrast between early and late avian lay date for the study 
of genetic variants and genomic pathways that might be involved in 
mediating avian lay date.

We	 succeeded	 to	 identify	 DMS	 and	 outlier	 SNPs	 of	 genome-	
wide	significance,	but	our	statistical	power	was	limited	with	a	sample	
size	of	9–10	females	per	selection	line.	This	means	that	we	were	only	

able	to	identify	DMS	and	outlier	SNPs	with	very	large	effect	sizes,	
resulting	in	an	incomplete	list	of	candidates	DMS	and	outlier	SNPs.

We	 hypothesize	 that	 the	 observed	 epigenetic	 differentiation	
arose as a consequence of genetic differentiation in response to ge-
nomic	selection	for	lay	date.	While,	in	theory,	it	is	possible	to	test	for	
an association between genetic variants and epigenetic variants and 
estimate	the	proportion	of	variation	in	DNA	methylation	that	is	ex-
plained	by	genetic	variation	(Dubin	et	al.,	2015;	Höglund	et	al.,	2020),	
our	limited	sample	size	did	not	provide	us	with	the	statistical	power	
needed	for	such	an	analysis.	To	increase	sample	size,	we	could	have	
chosen	an	alternative	and	more	cost-	efficient	sequencing	approach,	
such	as	reduced	representation	bisulfite	sequencing	(RRBS)	(e.g.,	Gu	
et	al.,	2011;	Meissner	et	al.,	2008).	However,	we	did	not	have	an	a	
priori	expectation	as	of	where	within	the	genome	the	genomic	se-
lection	experiment	would	induce	differentiation	in	DNA	methylation	
and,	as	such,	did	not	want	to	limit	our	analysis	to	a	reduced	and	bias	
representation of the genome.

We	used	blood	 samples,	 rather	 than	 tissues	of	 obvious	 rele-
vance	for	reproduction	(e.g.,	tissues	within	the	HPGL	axis).	While	
information	 on	DNA	methylation	 in	 blood	 per	 se	 is	 of	 little	 rel-
evance	 for	 reproductive	 functioning,	 DNA	methylation	 in	 blood	
can	 reflect	DNA	methylation	 in	other	 tissues,	when	DNA	meth-
ylation	is	 induced	in	a	tissue-	general	manner	(Lindner,	Verhagen,	
et	 al.,	 2021).	 In	 red	 blood	 cells	 and	 liver	 samples	 of	 great	 tits,	
(between-	individual)	change	in	DNA	methylation	over	time	was	es-
tablished	in	a	tissue-	general	and	tissue-	specific	manner,	indicating	
that,	at	specific	CpG	sites,	DNA	methylation	can	indeed	change	in	
a	tissue-	general	manner	(Lindner,	Verhagen,	et	al.,	2021).	However,	
DNA	methylation	is	not	exclusively	established	in	a	tissue-	general	
manner	 which	means	 that	 these	 findings	 cannot	 be	 generalized	
and that more between- tissue comparisons are needed to estab-
lish	 in	 which	 context(s)	 DNA	methylation	 patterns	 in	 blood	 can	
reflect	DNA	methylation	patterns	 in	other	 tissues.	Furthermore,	
the	 functional	 relevance	 for	 DNA	 methylation	 on	 altering	 gene	
expression	 is	 time-		 and	 context-	dependent	 (Laine	 et	 al.,	 2016; 
Stevenson	 &	 Prendergast,	 2013).	 In	 the	 great	 tit,	 low	 levels	 of	
CpG	site	methylation	 (~20%)	close	 to	 the	 transcription	 start	 site	
of	genes	are	sufficient	to	shut	down	gene	expression,	while	mod-
erate	levels	of	CpG	site	methylation	(up	to	60%)	within	the	gene	
body	 allow	 for	 high	 gene	 expression	 (up	 to	 1000	 FPKM;	 Laine	
et	al.,	2016).	Furthermore,	DNA	methylation	can	be	variable	over	
time	(Lindner,	Laine,	et	al.,	2021;	Stevenson	&	Prendergast,	2013; 
Viitaniemi	et	al.,	2019)	and	as	such	could	 lead	to	temporal	varia-
tion	in	the	expression	of	affected	genes.	However,	specifically	in	
the	case	of	 temporarily	variable	DNA	methylation,	DNA	methyl-
ation	may	not	exclusively	act	as	a	cause	of	gene	expression,	but	
can	be	a	result	of	downstream	consequences	of	gene	expression	
or	phenotypes.	For	example,	Mycobacterium tuberculosis infection 
of	 human	dendritic	 cells	 is	 accompanied	by	 changes	 in	CpG	 site	
methylation	overlapping	distal	enhancer	elements,	but	changes	in	
CpG	site	methylation	are	preceded	by	changes	in	gene	expression,	
indicating	 that	 identified	 changes	 in	CpG	site	methylation	might	
be	a	downstream	consequence	of	transcriptional	activation	(Pacis	
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et	al.,	2019).	Due	to	the	complexity	underlying	the	effects	of	DNA	
methylation	on	gene	expression	(and	likely	vice	versa),	we	do	not	
know	whether	 the	 identified	DMS	 indeed	 affect	 the	 expression	
of genes and in which tissues they may have an effect. On a simi-
lar	note,	identified	outlier	SNPs	can	have	cis-		and/or	trans-	effects	
on	gene	expression	and	above	we	discussed	the	identified	SNP	in	
the	context	of	 cis-	effects.	Assessing	 the	 functional	 relevance	of	
DMS	and	outlier	SNPs	on	gene	expression	would	require	samples	
and	gene	expression	profiling	of	the	relevant	tissues	(e.g.,	tissues	
within	the	HPGL	axis)	which	was	outside	the	scope	of	this	study.	
Furthermore,	 establishing	 causal	 links	 between	 DMS	 or	 outlier	
SNPs	 and	 lay	 dates	would	 require	 experimental	 validation	 using	
functional	 tools,	 but,	 at	 this	 point,	 the	 application	of	 such	 func-
tional tools is not feasible in vertebrate non- model organisms such 
as the great tit.

5  |  CONCLUSION

We	 observed	 genetic	 and	 epigenetic	 differentiation	 between	 fe-
males from genomic selection lines for early and late avian lay date. 
Biological functions of genes with such differentiation hint towards 
a	complementary	function	of	DNA	methylation	and	genetic	variants,	
such	 that	 DNA	 methylation	 might	 act	 downstream	 of	 the	 neuro-	
endocrine	system	underlying	lay	dates,	while	genetic	variants	might	
act	at	the	activation	of	the	neuro-	endocrine	system.	However,	func-
tional validation is required to establish whether identified genetic 
and	epigenetic	differentiation	is	affecting	gene	expression	and	repro-
ductive	functioning.	Nevertheless,	the	genomic	selection	experiment	
for avian lay dates provides insights into where within the genome 
heritable genetic variation for lay date resides and shows that a part 
of this variation might be reflected by epigenetic variants.
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