

Impact of Dutch fisheries on tub gurnard in the North Sea

Fleets BT1, BT2, TR1 and TR2

Author(s): Chun Chen, Nana Afranewaa, Danique van Wijk

Wageningen University & Research report: C049/24

Impact of Dutch fisheries on tub gurnard in the North Sea

Fleets BT1, BT2, TR1 and TR2

Author(s) Chun Chen, Nana Afranewaa, Danique van Wijk

Wageningen Marine Research Haringkade 1, 1976 CP, IJmuiden, July; 2024

Wageningen Marine Research rapport C049/24

Keywords: Tub gurnard, fisheries impact, north sea, beam trawler

Client Coöperatieve Visserij Organisatie Attn.: Amerik Schuitemaker address Het Spijk 20 8321 WT Urk

This report can be downloaded for free from <u>https://doi.org/10.18174/670289</u> Wageningen Marine Research provides no printed copies of reports

Wageningen Marine Research is ISO 9001:2015 certified.

© Wageningen Marine Research

Wageningen Marine Research, an institute within the legal entity Stichting Wageningen Research (a foundation under Dutch private law) represented by Drs.ir. M.T. van Manen, Director Operations

KvK nr. 09098104, WMR BTW nr. NL 8113.83.696.B16. Code BIC/SWIFT address: RABONL2U IBAN code: NL 73 RABO 0373599285

A_4_3_2 V33 (2023)

Wageningen Marine Research accepts no liability for consequential damage, nor for damage resulting from applications of the results of work or other data obtained from Wageningen Marine Research. Client indemnifies Wageningen Marine Research from claims of third parties in connection with this application. All rights reserved. No part of this publication may be reproduced and / or published, photocopied or used in any other way without the written permission of the publisher or author.

Contents

Summary			4		
1	Introduction				
2	Mate	rial and methods	6		
	2.1	Data inventory	6		
	2.2	Survey biomass indices estimation	7		
	2.3	Discards	8		
	2.4	From Metier to fleet level catch estimation	8		
	2.5	Fishing impact assessment	10		
3	Resu	lts	11		
	3.1	Survey biomass indices	11		
	3.2	Catch data	11		
	3.3	Fishing impact assessment	17		
4	Conc	lusion	21		
5	Quali	ity Assurance	22		
References	References				
Justificatio	n		24		

Summary

Tub gurnard (*Chelidonichthys lucerna*) is a non-quota species. Although not a targeted species, in 2017-2022, tub gurnard reached high percentage in species composition in three Dutch fleets (BT2, TR1, TR2). The quantities of dead discards as well as fishing pressure on the stock is unknown. In this context, Dutch BT2 and TR1 fisheries received conditions related to fishing impact on tub gurnard as part of their Marine Stewardship Council (MSC) certification. Therefore, it is important to evaluate the impact of Dutch fisheries on tub gurnard in the North Sea. In this study, we have provided an approximate catch rate estimation for North Sea tub gurnard for the four Dutch fleets BT1, BT2, TR1 and TR2, as a relative measure of the fishing impact on the stock. The biomass indices for tub gurnard has shown an increasing trend since 1995 and fluctuating around a higher stable level since 2016. Among the four fleets, BT2 has substantial higher impact (higher catch rate) than the other three fleets, due to its fishing ground overlap with the spatial distribution of tub gurnard, however, the fishing effort has been substantially decreasing since 2020, implying a decreasing impact. TR1 and TR2 fleets have comparable moderate impact, while TR2 impact has been increasing due to the increased fishing effort. BT1 fleet has almost no impact on tub gurnard, due to non-overlapping fishing ground.

1 Introduction

Tub gurnard (*Chelidonichthys lucerna*) is a non-quota species. Although not a targeted species, in 2017-2022, tub gurnard reached high percentage of the catch composition in three Dutch fleets (BT2, TR1, TR2). The survival rate of discards as well as fishing pressure on the stock is unknown. In this context, Dutch BT2 and TR1 fisheries received as part of their Marine Stewardship Council (MSC) certification conditions related to fishing impact on tub gurnard.

There are no clearly identified tub gurnard stocks within ICES advice. Therefore this study will focus on tub gurnard in the North Sea where the Dutch fisheries are active. The fleets of interests are BT1, BT2, TR1 and TR2.

The study includes two stages, stage 1 (i.e. data inventory) checks availability of survey and catch data and select data for further assessment; stage 2 provides the fisheries impact assessment based on the selected data.

2 Material and methods

2.1 Data inventory

Tub gurnard data were collected in the demersal surveys (BTS, SNS, DYFS) as well round fish surveys (IBTSQ1, IBTSQ3). In all surveys, hardly any age samples were collected. Due to limited budget, only biomass indices were explored for the surveys.

The typical tub gurnard spatial distribution is illustrated in Figure 1. Among all surveys, tub gurnard showed rare appearance in ICES division IVa (north of North Sea), VIId (English channel) and IIIa20 (Skagerrak area). Additionally, landing data showed consistently low catches in these areas as well. As a result, we decided to focus the study area on ICES subarea IV (North Sea).

Although tub gurnard is a round fish, the CPUE (catch number per haul duration min) in subarea IV in the IBTS survey is significantly lower than in the two beam trawl BTS and SNS surveys (Figure 2). Therefore, we decided to use the BTS and SNS survey to estimate biomass indices.

The sample size in BTS and SNS are illustrated in Figure 3. Since 1995, both surveys have consistent sample size and spatial coverage. Therefore, we chose 1995-2023 to estimate biomass indices. Note that the average CPUE in Figure 2 are not standardized, especially not adjusted for unbalanced spatial coverage in both surveys before 1995. Because of this, we cannot evaluate the CPUE trend in Figure 2. Instead, we use Figure 2 as a rough indicator of catchability between surveys and based on this, we selected the BTS and SNS surveys for biomass indices calculation.

Figure 1. Spatial distribution of CPUE (weight per minute) per haul in BTS, SNS and DYFS surveys in 2022 and 2023. Bubble size per haul location is proportional to the square root transformed CPUE (biomass per minute) per haul . Zero catch hauls are plotted as red cross.

Survey - BTS - SNS - DYFS - NS-IBTSQ3 - NS-IBTS

Figure 3. Sample size for BTS and SNS.

Discards data are collected from the demersal discards sampling programme since 2011 covering ICES subarea IV. Since all discarded species are sampled, tub gurnard is being sampled when they appear in the discards. Logbook landing data are available since 2002. No species mis-identification issues in survey and catch data.

Eventually, the following data are chosen for the impact assessment:

Survey	Type: BTS, SNS,					
	Area: ICES subarea IV					
	Year: 1995-2023 for indices estimation. When doing impact assessment, only 2011-					
	2023 are used.					
Catch data	Discards: Estimated from the demersal discards sampling programme					
	Landing: Logbook reported landing					
	Area: ICES subarea IV					
	Year: 2011-2023					

2.2 Survey biomass indices estimation

Catch number per length class (1cm interval) are collected per haul in BTS and SNS surveys. The length is converted to weight using a length-weight relationship from literature (which also fits well with measured

length-weight data from few fishes collected in survey). The weight is then aggregated across length to estimate the biomass caught per haul.

Since there is a high proportion (58.7%) of zero catches. A delta-lognormal GAM model [Berg *et al.*, 2014] was applied to estimate the biomass indices, including the following two models:

- i. a presence-absence model that estimates the probability of zero (or non-zero) biomass. The presenceabsence is modelled as a Bernoulli distribution;
- ii. a positive model that estimates the average positive biomass. The positive abundance is modelled as lognormal distribution.

The covariates include year, gear, ship, spatial smoother using thin plate regression spline, depth smoother using thin plate regression spline and swept area as offset. The covariates and formulas are the same for both presence-absence and positive models.

After the delta-GAM model is applied, a regular spatial grid is established and a predicted value of average biomass density per km² is estimated per grid location, given a gear BT8 and a swept area of 1km². The biomass per grid is then calculated using the density multiplied with the area size per grid and then summed up to get the total biomass.

2.3 Discards

Sampled discards: Collected and analyzed discard samples by WMR with numbers and weights standardized into discards per unit effort rates (number/hour and kg/hour) by dividing them by the deployment duration (i.e. fishing time). Total numbers and weights per fishing trip are calculated by multiplying the standardized rates with the total duration of all hauls together.

Trip effort: The fishing effort of the sampled trips calculated as effort multiplied by power of the fishing vessel and expressed in KilowattDays (kWdays).

Fleet effort: The fleet effort is calculated using the WMR VISSTAT database containing the official Dutch logbook information and expressed in KWdays. In this database, the date and time of port departure and arrival, and other vessel characteristics (such as gear type, engine power, mesh size) are registered for all Dutch fishing vessels over 12 metres.

Discards estimation (raising)

The ratio between fleet effort and sampling effort is used as an auxiliary variable (raising factor) to estimate total discards of the species for each metier of the Dutch demersal fleet. Thus, by multiplying the raising factor by the weight per fishing trip. The estimation is conducted for a specific stratum (year, quarter, metier, area) only on the condition that for all metiers except TBB_DEF_S300hp, the number of trips per strata is greater than or equal to 3.

2.4 From Metier to fleet level catch estimation

Tub gurnard is a by-catch species, and the discards are related to gear, mesh as well as fishing ground. To get accurate discards estimate, the discards is estimated by ICES metier definition. As a result, the estimated discards are consistent to estimates submitted to ICES data calls. Missing discards are then imputed and aggregated to CVO fleet level. The categorization of ICES metier and CVO fleets are listed in the table below.

CVO FLEET	ICES METIER	DEFINITION
BT1		Beam trawl, mesh size >= 120 mm
	TBB_DEF_>=120_0_0	Beam trawl, Demersal species, see the code reg. mesh size and selectivity device
	TBB_UND_>=120_0_0_all	Beam trawl; Undefined

Table 1. CVO fleet definition using ICES metie	r
--	---

BT2		Beam trawl, mesh size 70-119 mm
	TBB_DEF_70-99_0_0	Beam trawl, Demersal species, see the code reg. mesh size and selectivity device
	TBB_UND_70-99_0_0	Beamtrawl; Undefined
	TBB_CRU_70-99_0_0	Beam trawl; Crustaceans, see the code reg. mesh size and selectivity device
	TBB_DEF_100-119_0_0	Beam trawl, Demersal species, see the code reg. mesh size and selectivity device
	TBB_UND_100-119_0_0_all	Beam trawl; Undefined
TR1		Demersal otter trawl or flyshooter or twinrig, mesh size > 100 mm
	OTB_DEF_100-119_0_0	Bottom otter trawl, Demersal species, see the code reg. mesh size and selectivity device
	OTB_DEF_>=120_0_0	Bottom otter trawl, Demersal species, see the code reg. mesh size and selectivity device
	SSC_DEF_100-119_0_0	Fly shooting seine, Demersal species, see the code reg. mesh size and selectivity device
	SSC_DEF_>=120_0_0	Fly shooting seine, Demersal species, see the code reg. mesh size and selectivity device
	OTB_CRU_100-119_0_0_all	Bottom otter trawl, Crustaceans, see the code reg. mesh size and selectivity device
	OTB_UND_>=120_0_0_all	Bottom otter trawl; Undefined
TR2		Demersal otter trawl or flyshooter or twinrig, mesh size 70-100 mm
	OTB_DEF_70-99_0_0	Bottom otter trawl, Demersal species, see the code reg. mesh
	OTB_CRU_70-99_0_0	Bottom otter trawl, Crustaceans, see the code reg. mesh size and selectivity device
	SSC_DEF_70-99_0_0	Fly shooting seine, Demersal species, see the code reg. mesh size and selectivity device
	OTB_UND_70-99_0_0	Bottom otter trawl; Undefined

The estimation of annual catch data follows the diagram in Figure 4. The estimated discards (from discards sampling programmes) are first matched to logbook landings per year+quarter+metier. Based on the matched discards ratio, imputation strategies are decided to impute discards rate to strata that are without discards. Since tub gurnard is a by-catch species (i.e. discards are related to gear/metier and fishing ground, rather than directly related to fishing effort), we cannot impute discards using discards-effort ratio, like what was done in discards estimation described in Section 2.3. As a result, we impute discards across strata using discards-landing ratio (i.e. we believe that higher landing corresponds to higher discards for all season, gear and fishing ground). Using landing to impute discards means zero landings will receive a zero discards estimate, which may not be true. In the current data, we have only one strata with such situation, so we expect that the underestimation of discards are negligible.

Figure 4. Diagram of discards estimation, imputation and estimation from metier to fleet.

2.5 Fishing impact assessment

We assume the all discards have zero survival rate, leading to the maximum catch scenario. An approximate catch rate (CR) per year can be evaluated as the ratio between catch data and the biomass indices.

CR = catch/biomass_indices

The following issues need to be considered when evaluating the fishing impact using the CR as formulated above:

- 1) Although not in a high magnitude, uncertainty of discards estimates are not taken into account in this calculation.
- 2) The biomass indices calculated from survey data is only for quarter 3 and BT8 gear. The estimated absolute biomass is dependent on the gear catchability, using the absolute value of the catch rate would indicate a catchability of 1, which is not true. In reality, the catchability is always lower than 1, this implies the true biomass for quarter 3 is likely higher than the estimated indices.
- 3) The biomass indices are estimated based a certain grid size, which assumes uniform fish density within the grid, which is not true in reality.
- 4) Although the MSC certificates is only applied for a subset of vessels, we assess the impact of fisheries from the entire Dutch fleet, corresponding to a maximum impact in terms of the Dutch fisheries.
- 5) The impact is partial for the entire fishing activities since it is only assessed using Dutch fleets.

Based on the above reasons, the fishing impact is evaluated based on only the trend of the catch rate, rather than the absolute value.

3 Results

3.1 Survey biomass indices

The estimated biomass indices for ICES subarea IV are illustrated in Figure 5, with uncertainty bands as 2 times standard error (SE). Overall, tub gurnard showed an increasing trend since 1995, with a high biomass in 2015.

Figure 5. Estimated biomass indices for tub gurnard in ICES subarea IV, using delta-lognormal GAM model. The uncertainty band indicates the 2SE.

3.2 Catch data

Figure 6 illustrates the total landings per metier group in 2011-2023: The TBB_DEF_70-99 (BT2) metier contains the majority (69%) of tub gurnard landings, while the SSC_DEF_70-99 (TR2) and SSC_DEF_100-119 (TR1) metiers contain 14.5% and 13.3% of the landings. Overall BT1 fleet hardly catches any tub gurnard. The spatial distribution of fishing efforts by the four fleets are illustrated in Figure 7. Comparing to the high abundance of tub gurnard close to coastal area as shown in the surveys (Figure 1), the lack of BT1 fishing activity close to coast is consistent to the low catch of tub gurnard.

cvo_fleet 📕 BT1 📕 BT2 🗾 TR1 📕 TR2

Figure 6. Total landing by metier group

Figure 7. Fishing effort (days at sea) in 2023 for BT1 (top left); BT2 (top right); TR1 (bottom left) and TR2 (bottom right).

quar 🕶 1 🕶 2 🕶 3 🕶 4

Figure 8. Number of sampled trips (>=3 trips) as the primary sampling unit in discards sampling programme per year, quarter and metier.

Figure 8. illustrates the number of sampled trips per year, quarter and metier in discards sampling programme. Overall TBB_DEF_70-99 fleet has a relatively large sample size while other fleets all have low sample size. This implies a higher uncertainty in discards estimates for these fleets.

Figure 9 illustrates the estimated discards-landing ratio per year, quarter and metier. Given the discards rate and the metier characteristics, we applied the discards imputation strategy as in Table 2.

The discards before and after imputation are shown in Figure 10. Overall the impact of discards imputation is small, since the imputed discards strata all have very low landing and discards rate.

Note that the uncertainty of discards estimates from raised fleets were not provided in this study.

The aggregated annual catch per CVO fleet is illustrated in Figure 11. The catch of the largest fleet BT2 has been decreasing since 2017, this is likely due to a substantial decrease of fishing effort in this fleet (Figure 12).

Figure 9 illustrates the estimated discards-landing ratio per year-quarter-metier

Strata with missing discards	Strata used to impute discards from
TR1: SSC_DEF_>=100;	BT2: TBB_DEF_70-99_S300hp
SSC_DEF_>=120_0_0_all	
TR2: SSC_DEF_70-99	
BT2: TBB_CRU_70-99_0_0_all	
TR1: OTB_DEF_100-119,	TR1: OTB_DEF_100-119;
OTB_UND_>=120_0_0_all	TR2: OTB_DEF_70-99
TR1: OTB_DEF_>=120_0_0_all	
TR2: OTB_DEF_70-99	
OTB_UND_70-99_0_0_all	
BT1	BT2: TBB_DEF_100-110
TBB_DEF_>=120_0_0_all;	
TBB_UND_>=120_0_0_all,	
BT2: TBB_DEF_100-119_0_0_all,	
TBB_UND_100-119_0_0_all,	
TBB_UND_70-99_0_0_all	

catchcategory discards landing

logbook landing and estimated discards (after discards imputation)

catchcategory 📕 discards 📕 landing

Figure 10. Discards (before and after imputation) and landing per strata

Figure 11. Estimated (a) catch and (b) landing and discards per fleet.

Figure 12. Annual fishing effort per metier group.

3.3 Fishing impact assessment

Tub gurnard biomass estimated based on the surveys has been increasing since 1995 (Figure 5), and fluctuating around since 2016 with a high peak in 2015 (Figure 13). The catch biomass calculated per fleet are illustrated in Figure 14-15 and Table 3. Overall, BT2 Dutch fleet (TBB_DEF_70-99) has the highest impact on tub gurnard in ICES subarea IV, and the impact has been decreasing since 2020, likely due to the large decommissioning of this fleet. As compared to BT2, TR2 and TR1 have relatively lower impact on tub gurnard, the impact of TR2 is increasing likely due to increased fishing effort in SSC_DEF_70-99 fleet (Figure 12), and decreasing TR1 impact due to decreasing effort in SSC_DEF_100-119 fleet. BT1 fleet has almost no impact on tub gurnard, due to non-overlapping fishing ground.

Note that as addressed in Section 2.4, the catch rate estimated is used as an indicator of percentage removal from the total population. Thus only the relative trends are interpretable for the impact assessment, rather than the absolute values.

Figure 13. Estimated biomass indices for tub gurnard in ICES subarea IV from 2011-2023, using deltalognormal GAM model.

Figure 14. Ratio of Catch and survey biomass indices for the 4 fleets.

fleet 💻 BT1 💻 BT2 💻 TR1 💻 TR2

Figure 15. Ratio of Catch and survey biomass indices for the 4 fleets.

fleet	year	biomass indice (tonnes)	indice- 2SE	indices+2 SE	catch weight (tonnes)	ratio	ratio_lower	ratio_up per	ratio unit
BT1	2011	261060	220787	327763	<1	0.3	0.2	0.4	1.0E-06
BT1	2012	312387	267522	386914	1	1.8	1.4	2.0	1.0E-06
BT1	2013	324493	274798	393971	3	8.4	6.9	10.0	1.0E-06
BT1	2014	403526	346309	502881	1	1.6	1.3	1.9	1.0E-06
BT1	2015	583606	507063	700724	1	2.4	2.0	2.8	1.0E-06
BT1	2016	475104	412228	569661	5	10.6	8.8	12.2	1.0E-06
BT1	2017	373244	313743	466873	13	34.2	27.4	40.7	1.0E-06
BT1	2018	353046	297475	434826	1	2.3	1.9	2.8	1.0E-06
BT1	2019	243452	202284	304374	4	15.3	12.2	18.4	1.0E-06
BT1	2020	358575	304056	445764	6	18.1	14.5	21.3	1.0E-06
BT1	2021	249283	209043	306198	14	54.5	44.4	65.0	1.0E-06
BT1	2022	318700	265345	396713	2	6.5	5.2	7.8	1.0E-06
BT1	2023	319512	269875	392748	<1	0.1	0.1	0.2	1.0E-06
BT2	2011	261060	220787	327763	1902	7.3	5.8	8.6	0.001
BT2	2012	312387	267522	386914	1709	5.5	4.4	6.4	0.001
BT2	2013	324493	274798	393971	1950	6.0	4.9	7.1	0.001
BT2	2014	403526	346309	502881	2095	5.2	4.2	6.1	0.001
BT2	2015	583606	507063	700724	2872	4.9	4.1	5.7	0.001
BT2	2016	475104	412228	569661	3441	7.2	6.0	8.3	0.001
BT2	2017	373244	313743	466873	2334	6.3	5.0	7.4	0.001
BT2	2018	353046	297475	434826	1959	5.5	4.5	6.6	0.001
BT2	2019	243452	202284	304374	1611	6.6	5.3	8.0	0.001
BT2	2020	358575	304056	445764	2008	5.6	4.5	6.6	0.001
BT2	2021	249283	209043	306198	967	3.9	3.2	4.6	0.001

Table 3. Estimated indices uncertainty (+/-2SE uncertainty), catch and ratio

BT2202231870026534539671310053.22.2.53.8.80.001BT22023319512269875392748144734.63.8.86.5.50.001TR12011221060220787327763227771.10.8.81.0.90.0.1TR12012312387267523869122890.90.71.10.001TR12013324493274798393972830.90.71.00.001TR1201440352360905028441671.00.010.010.01TR12015553606507637072466271.10.0.90.010.01TR12016475104412285696177791.61.1.40.010.01TR120173732443134346687376772.011.1.60.010.01TR1201835306297454348244931.41.1.11.70.01TR1201923385730458445741.870.50.40.60.01TR120231870026535396731.570.50.40.60.01TR120231870226975397481.570.60.040.00.01TR12023187026975397471.61.60.00.010.0TR12023185026975 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
BT2202331951226987539274814734.663.885.550.001TR1201126106022078732776327771.110.081.130.001TR1201231238726752238691422890.990.071.110.001TR120133244932747983939712830.990.071.100.001TR1201444035263463095028144101.010.681.120.001TR1201558360650706707241.611.141.010.001TR12016475104412285596170771.611.140.010.001TR12017373244313734668770762.11.162.40.001TR12018353046297475434824.4931.41.111.170.001TR1202035857530405445761.870.50.46.00.001TR1202124345220284306182.973.020.011.140.01TR120223187025535392787370.20.040.011.140.01TR12023319512269875392787370.20.020.011.140.01TR22014216987363941.281.660.50.70.011.140.01TR2	BT2	2022	318700	265345	396713	1005	3.2	2.5	3.8	0.001
TR1201126106022078732776327771.10.081.130.001TR12012312387267523869142890.90.71.10.01TR12013322493274783939712830.90.71.00.01TR12014403526346395028144101.00.81.10.01TR12015583606507037072466271.10.91.20.01TR12016475104412285696617791.61.41.90.01TR12017373244313734668737672.11.62.40.01TR120183536462974754348264931.41.117.001TR12020358575304054457641.870.50.46.060.01TR1202124345220943361942.941.21.011.140.01TR12022318700265353967131.650.40.60.011.140.01TR120233195122698739274317570.230.60.00.011.140.01TR1202331951226987392741.150.50.40.60.011.140.01TR120233195122698739274327632.020.60.00.01.01.0 <td< td=""><td>BT2</td><td>2023</td><td>319512</td><td>269875</td><td>392748</td><td>1473</td><td>4.6</td><td>3.8</td><td>5.5</td><td>0.001</td></td<>	BT2	2023	319512	269875	392748	1473	4.6	3.8	5.5	0.001
TR120123123872675223869142890.90.71.10.001TR120133244932747983939712830.90.71.00.001TR1201440352634639502814101.00.81.20.001TR12015583606507637007246271.10.91.20.001TR120164475104412285696617791.61.41.90.001TR12017373244313734668737672.11.62.40.001TR1201835304629747543482649331.41.111.70.001TR120192434522028430437448681.450.40.60.01TR12020358575304564457641870.50.40.60.01TR12021249283209433061982.941.21.01.40.01TR12022313700265453967131.570.50.40.60.01TR12023313912269875392787.030.20.00.011.40.01TR1202431394326752386911.820.60.50.70.01TR22014403526346395028144681.10.01.40.01TR22014323449327478 <td< td=""><td>TR1</td><td>2011</td><td>261060</td><td>220787</td><td>327763</td><td>277</td><td>1.1</td><td>0.8</td><td>1.3</td><td>0.001</td></td<>	TR1	2011	261060	220787	327763	277	1.1	0.8	1.3	0.001
TR1201333244932747983939712830.90.71.00.001TR12014403526346309502814101.00.881.20.001TR12015538666507637007246271.10.91.20.001TR1201647510441228569617791.61.41.90.001TR12017373244313734668737672.11.62.40.001TR120183330462974754348264931.41.11.70.001TR120192434522028430437434661.41.11.70.001TR12020358575304564457641.870.50.40.60.001TR12021243452202843061982.941.21.01.40.01TR12022318700265453967131.570.50.40.60.01TR1202331951226987327632.030.80.60.010.01TR22014261060220787327632.030.80.60.60.01TR22013324493274783939712.080.60.60.00.01TR220144328627675366944860.10.00.011.60.001TR2201433394267823	TR1	2012	312387	267522	386914	289	0.9	0.7	1.1	0.001
TR120144035263463095028814101.00.081.20.001TR120155836065070637007246271.10.91.20.001TR12016475104412285696617791.61.41.90.011TR12017373244313734668737672.11.62.40.011TR120183530462974754348264931.41.11.70.011TR120192434522028430437434661.41.11.70.011TR120203585753040564457641.870.50.40.60.011TR12021243452202843061982.941.21.01.40.01TR120203585753040564457641.870.50.40.60.01TR12021249283209433061982.941.21.01.40.01TR120223187002653453967131.570.50.40.60.01TR120233195122698753927487.30.20.20.30.01TR22011261620207873276320280.60.50.70.01TR2201332449327479339712080.60.50.70.01TR22014403523463950281<	TR1	2013	324493	274798	393971	283	0.9	0.7	1.0	0.001
TR12015583606507037007246271.10.91.20.001TR1201647510441228569617791.61.41.90.001TR12017373244313734668737672.11.62.40.011TR1201835304629747543482649331.41.111.70.001TR120192434522022430437434661.41.111.70.001TR120203585753040564457641.870.50.40.660.001TR120212492832090433061982.941.21.01.40.001TR120223187002653453967131.570.50.40.660.001TR120233195122698753927487330.20.20.30.011TR220112610602207873277632.030.80.650.70.001TR22013312493274783939712.080.60.50.60.01TR22014403526346395028144001.10.91.30.001TR220155836065076370072446110.80.70.90.011TR2201647510441228569618091.71.42.00.011TR22016373324431373 <td< td=""><td>TR1</td><td>2014</td><td>403526</td><td>346309</td><td>502881</td><td>410</td><td>1.0</td><td>0.8</td><td>1.2</td><td>0.001</td></td<>	TR1	2014	403526	346309	502881	410	1.0	0.8	1.2	0.001
TR1201644751044122285696617791.61.41.90.001TR120173732443137434668737672.11.62.40.01TR1201835304629747543482649331.41.11.70.01TR120192434522022430437434661.41.11.70.01TR120203585753040564457641.870.50.40.60.01TR120212492832090433061982.941.21.01.40.01TR120223187002653453967131.570.50.40.60.01TR120233195122698753927487330.20.20.30.01TR22011261060220787327632030.80.60.90.01TR22012312387267523869141.820.60.50.60.01TR22013324493274783939712080.60.50.80.01TR22014403526346395028144001.10.91.30.01TR220155836665076370072446610.80.70.90.01TR22016475104412285696618091.71.42.00.01TR2201637324431373466873 <td< td=""><td>TR1</td><td>2015</td><td>583606</td><td>507063</td><td>700724</td><td>627</td><td>1.1</td><td>0.9</td><td>1.2</td><td>0.001</td></td<>	TR1	2015	583606	507063	700724	627	1.1	0.9	1.2	0.001
TR120173732443137434668737672.11.62.40.001TR120183530462974754348264931.41.11.70.001TR1201924345220228430437434661.41.11.70.001TR120203585753040564457641.870.50.40.60.001TR12021249283209433061982.941.21.01.40.001TR120223187002653453967131.570.50.40.60.001TR120233195122698753927487330.20.20.30.011TR2201126106022078732776320330.80.60.90.001TR2201231328726752369141.820.60.50.70.011TR2201332449327478393712080.60.50.80.001TR2201440352634639502814401.10.91.30.001TR220155836065076370072444610.80.70.90.001TR2201647510441228569618091.71.42.00.001TR22016373442313734668735861.61.31.90.001TR2201924345220284304374	TR1	2016	475104	412228	569661	779	1.6	1.4	1.9	0.001
TR120183530462974754348264931.41.11.70.001TR120192434522028430437434661.41.111.70.001TR120203585753040564457641.870.050.040.660.001TR120212492832090433061982.941.21.001.40.001TR120223187002653453967131.570.50.40.660.001TR120233195122698753927487330.20.20.30.011TR220112610602207873276320330.80.660.50.70.001TR22012312387267523869141.820.660.50.70.001TR2201332449327479839397120880.660.50.80.001TR2201440352634630950284144001.10.91.30.001TR2201440352634630950284144010.680.70.011.40.001TR22015583606507637072444610.80.71.42.00.001TR22016475104412285696618691.11.40.0011.40.001TR220173530462974754348246871.61.11.60.001 <td>TR1</td> <td>2017</td> <td>373244</td> <td>313743</td> <td>466873</td> <td>767</td> <td>2.1</td> <td>1.6</td> <td>2.4</td> <td>0.001</td>	TR1	2017	373244	313743	466873	767	2.1	1.6	2.4	0.001
TR120192434522022843043743461.41.11.70.001TR120203585753040564457641870.50.40.60.001TR120212492832090433061982941.21.01.40.001TR1202231870026534539671311570.50.40.60.001TR12023319512269875392748730.20.20.30.001TR2201126106022078732776320330.80.60.050.01TR22012312387267523869141820.60.50.70.001TR2201332449327478393712080.60.50.80.011TR220144035263463095028144041.10.91.30.001TR22015583606507037007244610.80.070.90.001TR22016475104412285696618091.71.442.00.001TR2201935304629747543482644271.21.01.40.001TR220193585753040544576450661.41.11.60.001TR220212388575304054457645061.41.11.60.001TR2202123857530405445	TR1	2018	353046	297475	434826	493	1.4	1.1	1.7	0.001
TR120203585753040564457641870.50.40.660.001TR12021249283209433061982941.21.01.40.001TR120223187002653453967131570.50.40.60.001TR12023319512269875392748730.20.20.30.001TR220112610602207873277632030.80.60.50.70.001TR22012312387267223869141820.60.50.70.001TR22013324493274798393712080.60.50.80.001TR22014403526346309502814401.10.91.30.001TR22015583666507637007244610.80.71.42.00.001TR22016475104412285696618091.71.42.00.001TR22017732443137434668735861.61.31.90.001TR22018353046297475434824271.21.01.40.001TR22019243452202843043743181.31.01.40.001TR22019243452202843043745861.41.11.70.001TR2202035857530	TR1	2019	243452	202284	304374	346	1.4	1.1	1.7	0.001
TR120212492832090433061982941.21.01.40.001TR120223187002653453967131570.50.40.60.001TR12023319512269875392748730.20.20.30.001TR220112610602207873277632030.80.60.90.001TR220123123872675223869141820.60.50.70.001TR220133244932747983939712080.60.50.80.001TR220144035263463095028814401.10.91.30.001TR22015583606507637007244610.80.70.90.001TR22016475104412285696618091.71.42.00.001TR220173732443137434668735861.61.31.90.001TR220183530462974754348264271.21.01.40.001TR220192434522028430619844571.21.01.40.001TR220203585753040564457645061.41.11.70.001TR22021202832090433061984081.61.32.00.001TR2202231870026534539671	TR1	2020	358575	304056	445764	187	0.5	0.4	0.6	0.001
TR120223187002653453967131570.50.40.60.001TR12023319512269875392748730.20.20.30.001TR220112610602207873277632030.80.60.050.01TR220123123872675223869141820.60.50.70.001TR220133244932747983939712080.60.50.80.001TR220144035263463095028814401.10.91.30.001TR22015583606507637007244610.80.70.90.001TR22016475104412285696618091.71.42.00.001TR220183530462974754348264271.21.01.40.001TR22019243452202243043743181.31.01.60.001TR22019243452202243043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR22023319512269875392748	TR1	2021	249283	209043	306198	294	1.2	1.0	1.4	0.001
TR12023319512269875392748730.20.20.30.001TR220112610602207873277632030.80.60.60.90.001TR220123123872675223869141820.60.50.70.001TR220133244932747983939712080.60.50.80.001TR220144035263463095028814401.10.91.30.001TR220155836065070637007244610.80.70.90.001TR22016475104412285696618091.71.42.00.001TR220173732443137434668735861.61.31.90.001TR220183530462974754348264271.21.01.40.001TR220192434522022843043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR1	2022	318700	265345	396713	157	0.5	0.4	0.6	0.001
TR220112610602207873277632030.80.60.90.001TR220123123872675223869141820.60.50.70.001TR220133244932747983939712080.60.50.80.001TR220144035263463095028814401.10.91.30.001TR22015583606507637007244610.80.70.90.001TR22016475104412285696618091.71.42.00.001TR22017373244313734668735861.61.31.90.001TR220183530462974754348264271.21.01.40.001TR22019243452202243043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR22021243452209433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR1	2023	319512	269875	392748	73	0.2	0.2	0.3	0.001
TR220123123872675223869141820.60.50.70.001TR220133244932747983939712080.60.50.50.80.001TR2201440352634630950288144001.10.91.30.001TR2201558360650706370072444100.80.70.90.001TR220164751044122285696618091.71.42.00.001TR220173732443137434668735861.61.31.90.001TR2201835304629747543482642771.21.01.40.001TR220192434522022843043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484384.481.41.11.60.001	TR2	2011	261060	220787	327763	203	0.8	0.6	0.9	0.001
TR220133244932747983939712080.60.50.80.001TR220144035263463095028814401.10.91.30.001TR220155836065070637007244610.80.70.90.001TR22016475104412285696618091.71.42.00.001TR220173732443137434668735861.61.31.90.001TR2201835304629747543482642771.21.01.40.001TR220192434522022843043743181.31.01.60.001TR2202035857530405644576450661.41.11.70.001TR22021249283209433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR2	2012	312387	267522	386914	182	0.6	0.5	0.7	0.001
TR220144035263463095028814401.10.91.30.001TR220155836065070637007244610.80.70.90.001TR22016475104412285696618091.71.42.00.001TR2201737324431374346687358661.61.31.90.001TR220183530462974754348264271.21.01.40.001TR22019243452202843043743181.31.01.60.001TR2202035857530405644576450661.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484384.481.41.11.60.001	TR2	2013	324493	274798	393971	208	0.6	0.5	0.8	0.001
TR220155836065070637007244610.80.70.90.001TR220164751044122285696618091.71.42.00.001TR220173732443137434668735861.61.31.90.001TR220183530462974754348264271.21.01.40.001TR220192434522022843043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484384381.41.11.60.001	TR2	2014	403526	346309	502881	440	1.1	0.9	1.3	0.001
TR220164751044122285696618091.71.42.00.001TR220173732443137434668735861.61.31.90.001TR220183530462974754348264271.21.01.40.001TR220192434522022843043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484384381.41.11.60.001	TR2	2015	583606	507063	700724	461	0.8	0.7	0.9	0.001
TR220173732443137434668735861.61.31.90.001TR220183530462974754348264271.21.01.40.001TR220192434522022843043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR2	2016	475104	412228	569661	809	1.7	1.4	2.0	0.001
TR220183530462974754348264271.21.01.40.001TR220192434522022843043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR2	2017	373244	313743	466873	586	1.6	1.3	1.9	0.001
TR220192434522022843043743181.31.01.60.001TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR2	2018	353046	297475	434826	427	1.2	1.0	1.4	0.001
TR220203585753040564457645061.41.11.70.001TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR2	2019	243452	202284	304374	318	1.3	1.0	1.6	0.001
TR220212492832090433061984081.61.32.00.001TR220223187002653453967133091.00.81.20.001TR220233195122698753927484381.41.11.60.001	TR2	2020	358575	304056	445764	506	1.4	1.1	1.7	0.001
TR2 2022 318700 265345 396713 309 1.0 0.8 1.2 0.001 TR2 2023 319512 269875 392748 438 1.4 1.1 1.6 0.001	TR2	2021	249283	209043	306198	408	1.6	1.3	2.0	0.001
TR2 2023 319512 269875 392748 438 1.4 1.1 1.6 0.001	TR2	2022	318700	265345	396713	309	1.0	0.8	1.2	0.001
	TR2	2023	319512	269875	392748	438	1.4	1.1	1.6	0.001

4 Conclusion

In this study we have provided an approximate catch rate estimation for North Sea tub gurnard for four Dutch fleets BT1, BT2, TR1 and TR2. The biomass indices for tub gurnard has shown an increasing trend since 1995 and fluctuating around a higher stable level since 2016. Among the four fleets, BT2 has substantial higher impact (higher catch rate) than the other three fleets, due to its overlapping fishing ground, however, the fishing effort has been substantially decreased since 2020, implying a decreasing impact. TR1 and TR2 fleets have comparable moderate impact, TR2 impact has been increasing due to the increased fishing effort. BT1 fleet has almost no impact on tub gurnard, due to non-overlapping fishing ground.

5 Quality Assurance

Wageningen Marine Research utilises an ISO 9001:2015 certified quality management system. The organisation has been certified since 27 February 2001. The certification was issued by DNV.

References

Berg, C., Nielsen, A., and Christensen, K. 2014. Evaluation of alternative age-based methods for estimating relative abundance from survey data in relation to assessment models. Fisheries Research, 151: 91–99. https://doi.org/10.1016/j.fishres.2013.10.005

Justification

Report C049/24 Project Number: 4316100369

The scientific quality of this report has been peer reviewed by a colleague scientist and a member of the Management Team of Wageningen Marine Research

Approved: Ralf van Hal Ecologist, survey coordinator

Signature:

Ondertekend door:

Date:

August 26, 2024

Approved:	C.J. Wiebinga, PhD
	Business Manager Projects

Signature:

Signed by: D41E9304A710493.

Date: August 26, 2024

Wageningen Marine Research T +31 (0)317 48 70 00 E imares@wur.nl www.wur.nl/marine-research

Visitors'adress

- Ankerpark 27 1781 AG Den Helder
- Korringaweg 7, 4401 NT Yerseke
- Haringkade 1, 1976 CP IJmuiden

With knowledge, independent scientific research and advice, Wageningen Marine Research substantially contributes to more sustainable and more careful management, use and protection of natural riches in marine, coastal and freshwater areas.

The mission of Wageningen University & Research is "To explore the potential of nature to improve the quality of life". Under the banner Wageningen University & Research, Wageningen University and the specialised research institutes of the Wageningen Research Foundation have joined forces in contributing to finding solutions to important questions in the domain of healthy food and living environment. With its roughly 30 branches, 7,600 employees (6,700 fte) and 13,100 students and over 150,000 participants to WUR's Life Long Learning, Wageningen University & Research is one of the leading organisations in its domain. The unique Wageningen approach lies in its integrated approach to issues and the collaboration between different disciplines.