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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Global maps increase the precision of
field-based AGB estimates across the
tropics.

• Uncalibrated global biomass maps unfit
for country carbon reporting.

• Two-stage model-assisted estimators
qualify for common NFI clustered plot
designs.

• Estimation specifics depend on inter-
plot distance relative to map unit size.

• While country-specific solutions are
necessary, cross-country lessons were
learned.
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A B S T R A C T

Countries within the tropics face ongoing challenges in completing or updating their national forest inventories
(NFIs), critical for estimating aboveground biomass (AGB) and for forest-related greenhouse gas (GHG) ac-
counting. While previous studies have explored the integration of map information with local reference data to
fill in data gaps, limited attention has been given to the specific challenges presented by the clustered plot de-
signs frequently employed by NFIs when combined with remote sensing-based biomass map units. This research

* Corresponding author.
E-mail address: natalia.malagaduran@wur.nl (N. Málaga).

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

https://doi.org/10.1016/j.scitotenv.2024.174653
Received 22 January 2024; Received in revised form 4 June 2024; Accepted 7 July 2024

mailto:natalia.malagaduran@wur.nl
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2024.174653
https://doi.org/10.1016/j.scitotenv.2024.174653
https://doi.org/10.1016/j.scitotenv.2024.174653
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2024.174653&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Science of the Total Environment 947 (2024) 174653

2

Sampling design
Plot configuration
Model-assisted inference

addresses these complexities by conducting four country case-studies, encompassing a variety of NFI charac-
teristics within a range of AGB densities. Examining four country case-studies (Peru, Guyana, Tanzania,
Mozambique), we assess the potential of European Space Agency's Climate Change Initiative (CCI) global
biomass maps to increase precision in (sub)national AGB estimates. We compare a baseline approach using NFI
field-based data with a model-assisted scenario incorporating a locally calibrated CCI biomass map as auxiliary
information.
The original CCI biomass maps systematically underestimate AGB in three of the four countries at both the

country and stratum level, with particularly weak agreement at finer map resolution. However, after calibration
with country-specific NFI data, stratum and country-level AGB estimates from the model-assisted scenario align
well with those obtained solely from field-based data and official country reports. Introducing maps as a source
of auxiliary information fairly increased the precision of stratum and country-wise AGB estimates, offering
greater confidence in estimating AGB for GHG reporting purposes.
Considering the challenges tropical countries face with implementing their NFIs, it is sensible to explore the

potential benefits of biomass maps for climate change reporting mechanisms across biomes. While country-
specific NFI design assumptions guided our model-assisted inference strategies, this study also uncovers trans-
ferable insights from the application of global biomass maps with NFI data, providing valuable lessons for
climate research and policy communities.

1. Introduction

NFIs have been developed to flexibly assess forest resources, ac-
commodating the unique environmental characteristics specific to a
region (i.e. topography, climate, forest types); their needs (i.e. com-
mercial interests, financial restrings) and rates of change (McRoberts
et al., 2012). Consequently, NFIs around the world exhibit variations in
their definitions of a forest, sampling designs (such as systematic vs.
random sampling, stratification strategies, among others), and plot
configurations (Nesha et al., 2022). Moreover, NFIs have evolved
beyond their original purpose of solely assessing commercial timber
inventory; they now include variables such as carbon pools and biodi-
versity, which have introduced further complexity to plot configurations
(Lawrence et al., 2010). As a result, NFIs use plots of varying sizes,
shapes, and numbers. To enhance logistical efficiency, NFIs often adopt
clusters composed of plots in close proximity (Lawrence et al., 2010).

More recently, continuous advancements in remote sensing tech-
nologies have led several countries to adopt remote sensing-based
products for monitoring and reporting forest cover and changes
(Romijn et al., 2015). Yet, only a few have explored the application of
biomass maps under UNFCCC reporting schemes, often with indirect
applications (Melo et al., 2023). Open access, coarse-scale biomass maps
have actually been available for over a decade (Avitabile et al., 2016;
Saatchi et al., 2011; Baccini et al., 2012), and ongoing dedicated space-
based biomass missions, such as the European Space Agency's BIOMASS
and NASA's GEDI, are expected to further improve biomass mapping
(Ochiai et al., 2023). Recognizing the potential of this influx of data, the
2019 Refinement to the 2006 Intergovernmental Panel on Climate
Change (IPCC) Guidelines for National Greenhouse Gas Inventories
(Ogle et al., 2019) endorsed the incorporation of biomass maps into
GHG inventories and reporting schemes. While some studies have used
biomass maps to enhance national aboveground biomass (AGB) esti-
mates (Bullock et al., 2023; Málaga et al., 2022), more examples are
needed to build confidence and understand the extent to which remote
sensing-based products can effectively support GHG monitoring and
reporting. However, integrating remote sensing information with data
from cluster plot configurations remains challenging. In this research,
we probe the complexities around the integration of global biomass map
with NFI data under model-assisted inference across four tropical
country case-studies: Peru, Guyana, Mozambique, and Tanzania. These
selected countries not only represent a spectrum of NFI characteristics
but also encompass diverse biomass density ranges. One common
element among these countries, though, is the use of clusters of plots
with some form of fixed arrangement of plots within those clusters.

Given the difficulties tropical countries encounter in completing or
updating their NFIs (Nesha et al., 2022), it is crucial to explore the
benefits model-assisted estimation can offer as well as understanding the

challenges faced under diverse NFI sampling designs prevalent in the
tropics. The model-assisted framework relies on a probabilistic sample
of reference data, such as acquired by NFIs, in combination with
auxiliary information, nowadays typically based on remotely sensed
data. Model-assisted estimation has been shown to increase the preci-
sion of forest-related estimates (i.e. growing stock volume, AGB) (Ståhl
et al., 2016; Næsset et al., 2016, 2020). While the use of maps in the
context of the model-assisted estimation has been explored extensively,
little attention has been devoted to ways of accommodating NFI cluster
plot configurations and the corresponding map units when establishing
a map-to-plot regression model. A pertinent concept to explore when
working with clustered plots under model-assisted estimation is the two-
stage sampling framework described by Särndal et al. (1992) and elab-
orated by McRoberts et al. (2024). Under two-stage sampling, the pop-
ulation or area of interest is assumed to be tessellated into first-stage
units which, in turn, are tessellated into second-stage units or population
elements. In the first stage of sampling, primary sampling units (PSUs)
are assumed to be selected at random from the first-stage population
units. In the same line, the selection of secondary sampling units (SSUs)
is assumed to be done at random from within the selected PSUs;
although in most NFIs, plots (i.e. SSUs) are arranged in some kind of
fixed spatial configuration. Särndal et al. (1992) present two main cases
that apply to the map-to-plot relationship assessed in the current study:
i) case A, where the regression model is built between PSU-level mean
estimates (e.g. between mean AGB values over plots of the same cluster
as the dependent variable and PSU-level map values as the independent
variable); and ii) case B, where the model relationship is defined at the
SSU level (e.g. between the individual AGB plot values as the dependent
variable and individual AGB map unit values as the independent vari-
able). Málaga et al. (2022) and Næsset et al. (2020, 2016) also addressed
applications of case A and case B model-assisted estimators but without
explicitly referring to them as such.

The objectives of this study were to demonstrate the practicalities of
model-assisted approaches and to assess the extent to which they may
increase the precision of (sub)national AGB estimates using global
biomass maps as auxiliary information. Specifically, using four country
case-studies, the current research addresses: i) selecting the form of the
model-assisted estimator that accommodates a country's specific NFI
sampling design and plot configuration; ii) assessing the extent to which
a locally calibrated global biomass product increases the precision of
(sub)national AGB estimates in different biomes (low vs. high biomass);
and iii) identifying the main map-to-plot harmonization challenges that
countries face when integrating biomass map information with NFI data.
To evaluate the effects of the global map on the precision of (sub)na-
tional AGB estimates, we compared baseline scenarios solely relying on
the country's NFI field-based information to model-assisted scenarios
applying the global biomass map, locally calibrated using NFI data. The
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AGB estimates obtained in this study serve the specifically stated
research objectives and may not align with the official country reports.

2. Material and methods

2.1. Global biomass maps

The European Space Agency Climate Change Initiative (CCI) version
4 (v4) global biomass maps (Santoro and Cartus, 2023), expressed in
AGB, were used as a source of auxiliary information to the countries' NFI
data. In the case of Tanzania, we used the 2010 map, whereas, for Peru,
Guyana and Mozambique the 2017 map was selected. We chose the map
epochs closest to the countries' NFI implementation timeframes to
minimize potential discrepancies caused by temporal mismatches
(Duncanson et al., 2021). The 2017 epoch map was constructed by
merging data from Synthetic Aperture Radar (SAR) C-band Sentinel-1,
and Phased Array L-band SAR (PALSAR-2) obtained from ALOS-2,
along with other remote sensing sources; whereas the 2010 epoch is
based on datasets of ALOS-1 PALSAR-1 and Envisat ASAR (Santoro and
Cartus, 2023). Country-wise corresponding map tiles with ~100 m
resolution were downloaded from the ESA biomass CCI repository
(Santoro and Cartus, 2023). In this study, the biomass maps were used
solely as an auxiliary information source, so the accompanying uncer-
tainty layers to the maps were not used.

2.2. Country NFI sampling designs and ground-based information

2.2.1. Peru
The National Forest and Wildlife Inventory (NF&WI) of Peru divided

the country into six strata. Only four strata confined to the Peruvian
Amazonia are part of this study: hydromorphic zone (HZ), accessible
montane forest (AMF), inaccessible montane forest (IMF), and lowland
forest (LF). The NF&WI follows a non-aligned systematic sampling
design, in which an L-shaped cluster is randomly selected within a grid
cell whose size varies depending on the stratum (MINAGRI and MINAM,
2016). Because of the financial and logistic complexity of the NF&WI's
implementation, the inventory is executed in five panels. A panel con-
sists of a selection of grouped contiguous grid cells distributed over a
stratum; the groups belonging to a panel are assumed to be a random
sample of a stratum. As the process continues, each subsequent panel
follows the same approach, comprising roughly 20 % of the sample from
its respective stratum. The NF&WI only visits clusters that are at least
partially forested according to a remotely sensed land cover assessment
using fine-resolution imagery (MINAGRI and MINAM, 2016). Between
2013 and 2020, approximately 32 % of the NF&WI's total sample had
been measured in Peru, with most of the work restricted to panels 1 and
2. Some plots within these panels were consideredmissing at random. As
in Málaga et al. (2022), the area of interest in this study is restricted to
only those grid cells in panels 1 and 2 within the Peruvian Amazonia
forestland (Fig. 1b), from which the clusters are deemed a random
sample.

In the NF&WI, a cluster consists of seven to 10 plots configured in the

Fig. 1. Selected countries and their respective CCI biomass maps (in Mg ha− 1) and NFI reference data. In the top panel (a), country cut-outs of the CCI biomass map
are displayed in the background. The center row shows the reference data and the CCI biomass maps to the extent of the population as defined for Peru (b), Guyana
(c), Tanzania (d) and Mozambique (e), respectively. The bottom row details examples of these countries' plot configurations along with our defined polygons cir-
cumscribing a cluster (PSUs) (in continuous purple lines for our model-assisted case A countries and dotted purple lines for our model-assisted case B countries,
elaborated in Section 2.4).
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shape of an L, with one side consistently facing north and the other east.
Within the HZ, AMF and IMF strata, 10 circular plots of 0.05 ha in size
constitute a cluster, while in the lowland forest stratum the clusters are
composed of seven rectangular plots of 50 m × 20 m (0.1 ha) each
(Appendix A, Fig. A.1a and b, respectively) (MINAGRI and MINAM,
2016). The NF&WI provided tree-level (of DBH ≥ 10 cm) live-woody
AGB for the 299 clusters (32 in HZ; 46 in AMF; 11 in IMF and 210 in
LF) used in this study. Cluster-level AGB was predicted using the
BIOMASS R package (Réjou-Méchain et al., 2017). More details on the
cluster-level AGB predictions and data pre-processing analysis are
described in Málaga et al. (2022).

2.2.2. Mozambique
A restricted stratified random sampling approach was followed, with

the strata based on the four main forest types of the country, according
to a 2008 re-classified agro-ecological map (MITADER, 2018). The
distinguished forest strata are: Mopane (Mo), Mecrusse (Me), Semi-
deciduous forest (SDF) and Semi-evergreen forests (SEF). The optimal
allocation approach was followed, and within each stratum the sampling
intensity was proportional to the area and variability within the stratum
(MITADER, 2018). Plot locations were initially randomly selected
within each stratum, but later the decision was made to move the
random locations to grid intersections (Government of Mozambique,
2018). In most regions, the minimum distance between sampling units
was 4 km, with the exception of the provinces of Cabo Delgado and
Gaza, where it was 1 km. Upon visual inspection of the sampling units,
some clusters of the original design were re-located, because the strat-
ification map turned out to be too coarse and had discrepancies between
the map vegetation classes and the ground conditions (Alegria, 2020).

Each cluster consists of four 50 m × 20 m (0.1 ha) plots at 50 m
spacing configured in a square (Figs. 1e and A.1c, Appendix A), each
subdivided in four subplots of 25 m × 10 m. All trees with DBH >10 cm
were measured within a plot and trees with DBH >5 cm and lower than
10 cm were measured within the first subplot (MITADER, 2018). For the
analysis, a dataset with AGB information for 3420 plots, was obtained
from the publicly accessible Plataforma de acompanhamento dos Pro-
jectos website (Fundo Nacional de Desenvolvimento Sustentavel, n.d.).
Pre-processing of the reference data involved filtering out clusters with
missing or duplicated coordinates. Additionally, clusters that did not fall
within the four forest strata as defined by the re-classified Agro-
ecological map (our area of interest) were disregarded, assuming they
had beenmoved and departed from the original design. Clusters crossing
stratum boundaries were assigned to the majority stratum. Our analysis
involved 721 complete clusters.

2.2.3. Tanzania
In Tanzania, the NFI followed a double-sampling for stratification

design (Tomppo et al., 2014). In the first phase, a North to South, 5 km
× 5 km grid was laid over mainland Tanzania. The Northwest corner of
each grid cell was the cluster anchor point (Næsset et al., 2020) (Fig. 1d).
Based on the predicted growing stock volume, slope and time-
measurement criteria, every anchor point was assigned to one of 18
mutually exclusive strata (Tomppo et al., 2014). In the second phase, the
sample units were systematically selected from the initial grid. The
sampling intensity differed among strata. In the most intensively
sampled stratum, a cluster was selected every 5 km, while in the least
intensively sampled a cluster was selected every 45 km (MNRT, 2015).

Following the implementation of the NFI, the Food and Agricultural
Organization of the United Nations (FAO) created a spatially continuous
stratification layer, following the same stratification criteria as the
country's original design (Anssi Pekkarinen, pers.comm.). In a recent
study, Næsset et al. (2020) reported consistency between the re-
constructed stratification map and the stratum classes of the second-
phase sample for a specific area of the country. We assumed such con-
sistency also holds for the extent of our study. Following Næsset et al.
(2020), we adopted the stratification layer to define the strata of the

reference data and overall population units, meaning that we also
consider a single-phase stratified systematic design for Tanzania. Having
a spatially continuous stratification layer allows us to use the global
biomass map as a source of auxiliary information in our model-assisted
approach. Moreover, Tanzania's NFI recorded information for trees both
in and outside forestlands, hence our area of interest constitutes the
mainland territory of the country (URT, 2010).

In Tanzania, six to 10 circular plots (0.07 ha) following an inverse L-
shaped configuration constitute a cluster, depending on the type of
forest in a stratum. The distance between adjacent plots within the same
cluster is 250 m (Fig. A.1d, Appendix A). The individual plots are nested,
formed by 1-, 5-, 10- and 15-m radius concentric circular subplots,
where smaller trees (DHB > 1 cm) were measured in the smallest sub-
plots and larger trees (DBH > 20 cm) within the entire plot (MNRT,
2015). Our analysis was conducted on the 2010–2013, plot-level, live-
tree AGB (Mg ha− 1), ground-based information collected as part of the
National Forest Resources Monitoring and Assessment (NAFORMA)
program led by Tanzania Forest Services (TSF) Agency, in collaboration
with the FAO-Finland forestry program (MNRT, 2015). All plots within
the same cluster were assigned to a single stratum corresponding to that
of the northwest corner of a cluster's bounding box. Additional reference
data preparation procedures involved the exclusion of plots with erro-
neously duplicated coordinates. The analysis was conducted on 3208
clusters with a total of 30,382 plots distributed over 18 strata.

2.2.4. Guyana
Guyana's National Forest Carbon Monitoring System (FCMS) origi-

nally defined a stratified two-stage list sampling design. Sampling was
carried out in six strata defined by potential for change and accessibility
criteria: high potential for change and more accessible forest (HPC/MA),
high potential for change but less accessible forest (HPC/LA), medium
potential for change and more accessible forest (MPC/MA), medium
potential for change but less accessible forest (MPC/LA), low potential
for change and more accessible forest (LPC/MA), and low potential for
change but less accessible forest (LPC/LA) (Brown et al., 2014).
Following the FCMS, forests within these six strata represent our area of
interest. In the first stage, stratified sampling was conducted by
randomly selecting cells from a 10 km × 10 km grid laid across the
country, with probability of selection proportional to the area of the
stratum of interest within the grid cells (Brown et al., 2014). In the
second stage, the anchor point of a cluster was randomly allocated inside
the selected grid cell. The 10 km × 10 km cells are very large compared
to the dimensions of the cluster (400 m × 200 m), whose plots hence
cannot be considered a random sample of the entire cell. To facilitate
statistical estimation across scenarios, we adopted an alternative view
on the sampling design. We assumed a rectangular polygon large enough
to encompass the cluster (6 × 6 CCI biomass map units) as the first stage
sampling unit. We used the original proportions of the stratum of in-
terest within the 10 km × 10 km grid cell to account for the unequal
selection probabilities into our first stage analyses of AGB mean and
variances (Section 2.5). The plots composing the cluster were assumed
to represent a random sample of the population units inside the first
stage sampling unit.

Every cluster consists of four circular plots (0.126 ha) fixed in an L-
shaped form with random orientation, separated by 200 m or 400 m
from the cluster's anchor point (Figs. 1c and A.1e, Appendix A). Plots
were nested. Trees with DBH between 5 and 25 cmwere recorded within
a smallest radius subplot (6 m) and those with DBH > 25 cm within the
entire plot. We used data from 472 plots provided by Guyana's Forestry
Commission and measured between 2011 and 2019. All plots within the
same cluster were assigned to a single stratum by overlaying the strat-
ification map provided by the country to the cluster's anchor point. One
cluster was deleted due to having duplicate coordinates. Additionally,
aboveground carbon (in the form the information was originally pro-
vided) was converted to AGB using a conversion factor of 0.49 t C (tonne
d.m.)− 1 (Aalde et al., 2006, Vol. 4, Chap 4, Section 4.5).

N. Málaga et al.
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2.3. Defining the map-to-plot assessment strategy and the regression
model

To assess the contribution of the biomass map to (sub)national AGB
estimates, we employed model-assisted regression estimators and
compared the results with a baseline approach. In the latter, the esti-
mates relied solely on field-based data from the country's NFI. In
contrast, the model-assisted estimates integrated a locally calibrated
biomass map as auxiliary information. For each country, we developed
linear regression models to predict AGB (Mg ha− 1) for every map unit,
using the CCI biomass map unit values as the independent variable.

A common element regarding plot configuration across countries is
the use of clusters with plots arranged in some kind of fixed configura-
tion. The size, shape and orientation of those clusters and plots and the
distance between them vary considerably, occasionally also within a
country (Table 1). In the case of Peru and Mozambique, the distance
between plots of the same cluster is less than the size of the CCI map
units (~100 m), whereas for Tanzania and Guyana it is at least 200 m. If
two or more plots occur within the same biomass map unit, the 1:1
relationship between the map units and plots needed for establishing a
regression model under the two-stage model-assisted estimation
framework is disrupted (Särndal et al., 1992, Chapter 8). In that case, (i.
e. for Peru and Mozambique) model-assisted case A as formulated by
Särndal et al. (1992, p. 304) was followed; whereas for Tanzania and
Guyana, we implemented case B (Table 1) Särndal et al. (1992, p. 305).

An important distinction between case A and B relates to the level of
aggregation at which the regression model associating map and field-
based AGB is fitted within each stratum, h. Referring to the terminol-
ogy of the introduction, a PSU here consists of a square polygon whose
dimensions are large enough to encompass all plots within a cluster,
where the plots are the SSUs. In case A, the dependent variable, yi,
corresponds to the mean AGB over the plots within the ith PSU and the
independent variable, ŷi, is the mean AGB over the CCI biomass map
units within the ith PSU (Eq. (1)). In case B, as opposed to case A, the
dependent variable, yij, is the individual AGB estimate at the jth plot
within the ith PSU and the independent variable, ŷij, is the matching in
location AGB individual map unit value (Eq. (2)). In case A, the auxiliary
information (i.e. the CCI biomass map) is used to predict AGB country-
fitted map values over map units aggregated to PSU-sized whereas in
case B the individual map units are used.

yhi = β0h + β1h*ŷhi + εhi (1)

yhij = β0h + β1h*ŷhij + εhij (2)

Note that for some strata within Mozambique and Tanzania, the
residuals of the selected linear models exhibited non-negligible hetero-
scedasticity according to the Breusch-Pagan test (Zeileis and Hothorn,
2002), for which we corrected following the procedure described in
McRoberts et al. (2016). i) After fitting the model in Eq. (1) or Eq. (2), we
computed the residuals (ri) as the difference between the field-based
observations (AGBi) and the model predictions (ÂGBi); (ii) the pairs

(ÂGBi,ri) were sorted with respect to the model predictions ÂGBi; iii) the
pairs were aggregated into groups of size 18 or 25 (in Mozambique and
Tanzania, respectively); iv) within each group, we calculated the stan-
dard deviation of the residuals (ri) and the mean of the model pre-
dictions (ÂGBi); v) a relationship between the group standard deviations
and the group predictions was used to predict the variance, the inverse
of the predicted variance was used to weight each observation when re-
fitting the model in Eq. (1) or Eq. (2).

2.4. Data harmonization procedures

Necessary harmonization procedures were followed to circumscribe
the CCI biomass maps to the per-country area of interest, as previously
defined in Section 2.2. For instance, in Peru, the population is restricted
to forested sites within the sections of the Peruvian Amazon where the
NFI has made progress. Two additional sources of auxiliary information
were needed to align the wall-to-wall CCI biomass map to the afore-
mentioned definition; a 2016 land use mask (Plataforma Geobosques,
2021) and the NFI original grid (SERFOR, 2016) representing the NFI
progress in panels.

As previously mentioned, PSUs are polygons large enough to
encompass all plots within a cluster. In Peru and Mozambique, PSUs
selected into the sample were re-constructed to circumscribe the cluster.
In Peru, the southwest corner of the polygons was positioned 50 m south
and 50 m west of each cluster's anchor point (Málaga et al., 2022)
(Fig. 1b). In Mozambique, the polygon was located 40 m south and 40 m
west of the anchor point of every lower-left plot (Fig. 1e). We intersected
the constructed polygons with the CCI biomass map units and computed
the AGB density as the area-weighted mean, ignoring any potential non-
forest (NA) pixels. To obtain PSU-equivalent map AGB estimates for the
population, CCI map units were aggregated into polygons of the same
size as the aforementioned PSUs. In Peru, this implied aggregation to 4
× 4 or 5 × 5 map units (size depending on the stratum) whereas in
Mozambique, the aggregation concerned 2 × 2 map units.

Similarly, a PSU in Tanzania consists of a square polygon whose
dimensions approximate the length of the cluster (14 × 14 CCI biomass
map units). As previously addressed, in Guyana we imposed the PSU to
be a square polygon with a side length similar to the length of the cluster
(6× 6 CCI biomass map units). Most importantly, for both countries, the
map-to-plot intercomparison is done among individual plots and map
units (case B, Särndal et al., 1992, p. 305). For practical purposes, we
associated an NFI plot with the CCI biomass map unit that contained the
plot center, even though the footprint of the plot may be smaller or
extend beyond the boundaries of a single map unit.

Additional map pre-processing and harmonization procedures
included:

• Re-projection. The field-based information, the biomass map and any
additional auxiliary information provided by the countries were re-
projected to the projection system of choice of the country. In Peru
we worked onWGS 1984/UTM zone 18S; in Tanzania onWGS 1984/

Table 1
Key features of the four NFIs and country-specific assumptions made under the framework of this study (the two bottom rows).

Criterion Peru Mozambique Tanzania Guyana

Biomass density High Low Low High
Implementation period 2013–ongoing 2015–2017 2010–2013 2011–2019
Number of strata 4 out of 6 4 18 6
Minimum distance between plots
(m)

30 and 75 50 250 200

Plot size (ha) 0.05 and 0.1 0.1 0.07 0.126
Original sampling design Stratified non-aligned systematic

sampling design
Stratified random design,
constrained by distance

Systematic double-phase
stratified design

Two-stage stratified
design

Adaptations for implementation,
per stratum

Random sample as in panel 1 and 2 within
forested sites

Random sample Single-phased random sample Random sample

Model-assisted estimator Two-stage case A Two-stage case A Two-stage case B Two-stage case B

N. Málaga et al.
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UTM zone 36S; whereas in Guyana and Mozambique on WGS 1984
Geographic Coordinate System.

• Resampling. All other auxiliary information such as the country's
stratification rasters (e.g. Tanzania) or forest mask (e.g. the 2016
land-use mask of Peru, Plataforma Geobosques, 2021) was resam-
pled to the same unit as the biomass map (~100 m × 100 m) by
majority (mode).

• Cropping and masking the biomass map to the extent of each country's
area of interest.

2.5. Estimators

Across all scenarios (whether field-based or model-assisted), we
assumed two-stage sampling designs with some country-specific con-
siderations. The within-PSU (second-stage) variability was deemed
negligible compared to the overall variability within strata, which is
consistent with Lohr (2010, Section 5.3). In an exploratory analysis of
data from Tanzania and Guyana (Appendix B), this assumption was
corroborated; within-PSU variability accounted for <0.5 % and 0.06 %
of the total variability, respectively.

2.5.1. Peru and Mozambique
For both Peru and Mozambique, we built upon a previous study in

the Peruvian Amazon (Málaga et al., 2022). For the field-based scenario,
we implemented a simple expansion estimator (Eqs. (3) and (4)),
assuming the clusters are a random sample from each stratum
(McRoberts et al., 2020).

For a single stratum, a simple expansion estimator for the mean is
expressed as:

μ̂h =
1
nh

∑nh

i=1
yhi (3)

where yhi = 1
mhi

∑mhi
j=1yhij, yhij is the AGB observation for the j

th plot in the
ith PSU, mhi is the number of plots within the ith PSU in stratum h, and nh
is the number of PSUs selected for the sample in stratum h.

The first-stage variance estimator (disregarding the second-stage) is
defined as:

V̂AR(μ̂h) =
1

nh(nh − 1)
∑nh

i=1
(yhi − μ̂h)

2 (4)

For the model-assisted scenario, we implemented case A two-stage
estimators (Särndal et al., 1992). The estimator of the population
mean consists of the sum of a prediction-based term and a residual-based
adjustment term that reflects the sampling design (Eq. (5)). For wall-to-
wall auxiliary data, the prediction-based term is the synthetic estimator
(μ̂h syn) calculated as the mean of calibrated map predictions (ŷhg) over
all PSUs within the population (g) in stratum h (Särndal et al., 1992, p.
399), which in this case corresponds to AGB means over the 4 × 4, 5× 5
or 2 × 2 map units from our country-calibrated maps (Eq. (1)). The
within-stratum adjustment term (εhi) is computed as the difference be-
tween the AGB mean observations over the plots within the selected ith

PSU (yhi), and their corresponding mean model prediction for the ith PSU
(ŷhi), εhi = yhi − ŷhi. For a model calibrated at the level of PSUs, the
estimator is (Lohr, 2010; McRoberts et al., 2022):

μ̂h =
1
Nh

∑Nh

g=1
ŷhg +

1
nh

∑nh

i=1
εhi (5)

where Nh is the number of first-stage population units in stratum h.
The model-assisted variance estimator is the two-stage variance

estimator, assuming the second-stage component of the variance to be
negligible, equivalent to (Málaga et al., 2022) with observations
replaced by model prediction residuals. It accommodates the influence
of the field-based PSU being a mean over plots within the PSU. For Nh

large and nh≪Nh, the estimator can be approximated by:

V̂AR(μ̂h) =
1

nh(nh − 1)
∑nh

i=1
(εhi − εh)2 (6)

where εh = 1
nh

∑nh
i=1εhi.

2.5.2. Tanzania
The field-based baseline scenario estimators in Tanzania resemble

those of the previous countries. Like in Peru and Mozambique, we as-
sume that the clusters are selected by simple random sampling. An
overestimation of the variance is a plausible consequence of ignoring the
original systematic design (Næsset et al., 2020). We estimated stratum-
wise means and variances applying the simple expansion estimators of
Eqs. (3) and (4), respectively.

In our model-assisted scenario, we followed case B two-stage esti-
mators (Särndal et al., 1992, p. 323; McRoberts et al., 2024). Similar to
Eq. (5), the estimator for the mean comprises a prediction-based term
and a residual-based adjustment term (Eq. (7)). While the estimators
may appear similar, the key distinction lies in the spatial support (the
domain informed by a certain value, Kyriakidis, 2004) on which the
analysis is conducted. In Eq. (7), the within-stratum synthetic estimator
(μ̂h syn) is calculated as the average AGB predicted values for all map
units. These predictions encompass the individual map units predicted
from the calibrated map, ŷhg, as obtained from Eq. (2). Consistently, the
within-stratum adjustment term is computed as the difference between
the AGB observation for the jth plot in the ith PSU (yij), and the corre-
sponding AGB model prediction for the jth biomass map unit in the ith

PSU (ŷhij) derived from Eq. (2), εij = yij − ŷij. For two-stage sampling
designs and a model calibrated between plots and CCI individual map
units (Särndal et al., 1992, p. 323), the estimator is defined as:

μ̂h =
1
Nh

∑Nh

g=1
ŷhg +

1
nh

∑nh

i=1
εhi (7)

where εhi = 1
mhi

∑mhi
j=1εhij, mhi is the number of plots within the ith PSU, Nh

is the number of map units in stratum h, and nh is the number of PSUs
selected for the sample in stratum h.

With the finite population correction term
(

1 − nh
Nh

)

≈ 1; and

considering the second-stage component of the variance to be negligible,
the variance estimator reduces to (Särndal et al., 1992, p. 325; McRo-
berts et al., 2024):

V̂AR(μ̂h) =
1

nh(nh − 1)
∑nh

i=1
(εhi − εh)2 (8)

where εh = 1
nh

∑nh
i=1εhi

2.5.3. Guyana
For Guyana, we accounted for the original proportions of the stratum

of interest within the 10 km× 10 km grid cell, which were introduced as
weights into the first-stage estimators of the mean and variance,
equivalently to eq. 5.28 Lohr (2010, Section 5.3). Hence, the stratified
estimator of the population mean for our field-based scenario is
expressed as:

μ̂h =

∑nh

i=1
whi yhi

∑nh

i=1
whi

(9)

where h refers to the stratum, yhi = 1
mhi

∑mhi
j=1yhij, yhij is the AGB obser-

vation for the jth plot in the ith PSU, mhi denotes the number of plots
within the ith PSU, nh is the number of PSUs selected for the sample in
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stratum h, and whi is the area proportion of stratum h in a 10 km× 10 km
cell, i.e. whi =

area of stratum h in 10 km x 10 km grid cell
area a 10 km x 10 km grid cell .

Considering the finite population correction terms
(

1 − nh
Nh

)

≈ 1,

and the second-stage component of the variance negligible, the esti-
mator of the variance of the field-based scenario is:

V̂AR(μ̂h) =
1
wh2

⎡

⎢
⎢
⎣

∑nh

i=1
(whi yhi − whi μ̂h)

2

nh(nh − 1)

⎤

⎥
⎥
⎦ (10)

where additionally, wh is the average weight (whi) within the stratum of
interest.

Like in Tanzania, for our model-assisted scenario, we followed case B
two-stage estimators (Särndal et al., 1992, p. 325; McRoberts et al.,
2024). Similar to Eq. (7), the estimator of the mean compromises the
synthetic estimator (μ̂h syn), which encompasses all individual map unit
predictions of the calibrated map (ŷhg) obtained from Eq. (2), and a
residual-based adjustment term (Eq. (11)). An adaption to Eq. (7) is the
incorporation of the proportion of the h stratum of interest within the
original 10 km × 10 km grid cell (whi) within the adjustment term. The
model-assisted estimator of the mean is defined as:

μ̂h =
1
Nh

∑Nh

p=1
ŷhg +

∑nh

i=1
whi εhi

∑nh

i=1
whi

(11)

where εhi = 1
mhi

∑mhi
j=1εhij and Nh is the number of map units in stratum h.

Considering the finite population correction terms
(

1 − nh
Nh

)

≈ 1,

and the second-stage component of the variance negligible, the esti-
mator of the variance of the model-assisted scenario is reduced to:

V̂AR(μ̂h) =
1
wh2

⎡

⎢
⎢
⎣

∑nh

i=1
(whi εhi − whi εh)2

nh(nh − 1)

⎤

⎥
⎥
⎦ (12)

where εh =

∑nh
i=1

whi εhi∑nh
i=1

whi
.

2.5.4. Country estimates
We used stratified estimators for our country-wise estimates (Næsset

et al., 2020):

μ̂ =
∑H

h=1

Nh

N
μ̂h (13)

V̂AR(μ̂) =
∑H

h=1

(
Nh

N

)2

V̂AR(μ̂h) (14)

In Peru and Mozambique, Nh represents the number of all PSUs
within the population in stratum h (Eq. (5)); whereas in Tanzania and
Guyana Nh refers to all individual map units in stratum h (Eqs. (7) and
(11), respectively). Further, N refers to the country-wise sum of Nh. N in
Peru is equivalent to 1,673,270, in Mozambique to 253,643,899, in
Tanzania to 1,262,897,847 and Guyana to 20,012,861.

2.5.5. Relative efficiency
As in Málaga et al. (2022), we assessed the contribution of the

biomass map to increase the precision of (sub)national AGB estimates by
means of relative efficiency (RE) which compares the variance estimate
for our field-based scenario, V̂AR(μ̂h)field− based, relative to the model-

assisted variance estimate, (V̂AR(μ̂h)map).

RE =
V̂AR(μ̂h)field− based

V̂AR(μ̂h)map

(15)

3. Results

3.1. Field-based and model-assisted AGB estimates

We assessed the performance of the CCI biomass map products (v4)
in four country case-studies. Our findings indicate that, prior to cali-
bration, the CCI biomass maps systematically underestimate above-
ground biomass (AGB) at both country and stratum levels in three of the
four country case-studies. Within the four strata in the Peruvian Ama-
zonia, we observed no systematic error between the 2017 CCI biomass
synthetic map estimates and the field-based AGB estimates (Fig. 2,
supporting systematic error analysis in Appendix C). In contrast, to-
wards the north-eastern side of the Amazon basin, synthetic estimates
from the map consistently underestimated the stratum-wise AGB values
when compared to those obtained from the Guyana NFI data (Fig. 2 and
Appendix C). Among smaller biomass biomes in East African countries,
the CCI products almost consistently underestimated stratum-wise NFI
AGB estimates in Tanzania (with exception of strata 13, 15 and 18) and
Mozambique (Fig. 2 and Appendix C).

After fitting linear regression models to locally calibrate the remote-
sensing-based products we found consistent, relatively weak coefficients
of determination (R2 0.01–0.39) in all countries, with some regression
model relationships being non-significant (p > 0.05) (Table 2). There
was no evident trend in the level of agreement between map and field-
based units across large or small biomass biomes, nor at the level at
which the regression models associating map and field-based units were
constructed (Fig. 3). At both large and small biomass, the model-assisted
estimates exhibited little agreement with field-based estimates at the
local level (Appendix D displays map-to-plot relationships in more
detail). Non-intercept models were used in the HZ stratum of Peru and
stratum 18 in Tanzania to avoid calibrating to unrealistic negative AGB
values. Some specific strata in Tanzania and Mozambique incorporated
heteroscedasticity correction in the regression models (Table 2).

In general, after calibrating the biomass map with country-specific
NFI data, the model-assisted stratum-wise and country-level AGB esti-
mates were found to be well-aligned with the corresponding field-based
estimates (Fig. 2, Table 2). Within the Peruvian Amazon, the model-
assisted stratum-wise AGB estimates were in the range of
163.5–254.2 Mg ha− 1, with an overall estimate of 219.5 Mg ha− 1.
Similarly, in Guyana, the model-assisted mean estimates (321.5 to
574.4 Mg ha− 1) were in a similar order as those from the NFI. Likewise,
in Tanzania, the model-assisted mean estimates were in the order
10.4–106.5 Mg ha− 1 and 42.7 Mg ha− 1, at the stratum and country level,
respectively. In Mozambique, the model-assisted estimates ranged be-
tween 43.6 and 85.6 Mg ha− 1 among strata and 58.0 Mg ha− 1 at the
country level. However, significant differences were found between
field-based and model-assisted AGB estimates in the semi-deciduous
forest (SDF) and semi-evergreen forest (SEF) strata in Mozambique, as
well as at the country level. Fig. E.1 in Appendix E provides a visual
representation of the uncalibrated and calibrated versions of the CCI
biomass maps for the four country case studies.

3.2. Contribution of the map to the precision of (sub)national estimates

We evaluated the gain in precision of model-assisted (sub)national
AGB estimates compared to field-based estimates across countries with
diverse biomass densities, NFI sampling designs, and plot configura-
tions. Our findings demonstrate that introducing a locally calibrated
biomass map as a source of auxiliary information to the conventional
NFI information fairly improved the precision of stratum and country-
wise AGB estimates. The degree of improvement is expressed by
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means of RE (Eq. (15)), where values >1.0 indicate a gain in precision
(smaller variance) (McRoberts et al., 2014). For instance, an RE value of
1.2 corresponds to a 20 % increase in precision. In Peru, the gain in
precision was in the order of 0–60%. For Tanzania andMozambique, the
contribution to precision at the stratum and country levels was slightly
greater, ranging from 0 to 70 % and 0 to 100 %, respectively. The
smallest gain in precision through locally calibrating the global biomass
map was observed in Guyana (Table 2). Although no clear trend was
evident between the gain in precision and the magnitude of biomass
density (Fig. 3), at the country level, the gain in precision was slightly
greater among small biomass (RE of 1.5 in Mozambique and 1.3 in

Tanzania) compared to large biomass biomes (RE of 1.1 in both Peru and
Guyana). In general, stronger map-to-plot correlations result in greater
RE values (Fig. 3).

4. Discussion

Following the results, the discussion section delves deeper into our
model-assisted AGB estimates compared to the field-based ones, exam-
ines the gains in precision from our model-assisted estimates, and ad-
dresses the main takeaways from our four country case studies regarding
the integration of global biomass maps with NFI data within the model-

Fig. 2. Per stratum and per country aboveground biomass (AGB) estimates for the country case-studies. Unlike the synthetic mean estimate (μ̂h syn, indicated by ),
the field-based ( ) and model-assisted ( ) mean estimates are accompanied by their 95 % confidence intervals.
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assisted estimation framework.

4.1. Field-based and model-assisted AGB estimates

Both our field-based and model-assisted AGB estimates show
reasonable alignment with official reports from the respective countries.
Our Peruvian Amazon estimates are fairly similar to those described in a
SERFOR (2020) report (AMF: 145.4 Mg ha− 1; IMF: 166.5 Mg ha− 1; LF:
295.4 Mg ha− 1; HZ:188.6 Mg ha− 1). In Mozambique, with the exception
of the SDF stratum, both country and stratum-wise AGB estimates
aligned similarly to those described on the country's REDD+ Forest
Reference Emission Level (Mopane: 40.7–48.4 Mg ha− 1; Mecrusse
73.2–84.1 Mg ha− 1; and SEF: 94–105.8 Mg ha− 1) (Government of
Mozambique, 2018). In Tanzania, although expressed in different clas-
ses, our AGB estimates are in line with those described in a NAFORMA
report (ranging from 2.9 in open lands to 59.5 Mg ha-1 in forested areas)
(MNRT, 2015). Finally, in Guyana, there are no significant differences

between our AGB estimates and those reported in the REDD+ Reference
Level (HPfc/MA: 395.1 Mg ha− 1; HPfc/LA; 546.1 Mg ha− 1, and MPfc/
MA and MPfc/LA: 468.78 Mg ha− 1) (Government of the Cooperative
Republic of Guyana, 2015). Differences between our findings and offi-
cial reports may arise from the assumptions made in our study, such as
population definition and the challenges encountered during map-to-
plot harmonization, as discussed in Section 4.3.

Our study sheds light on the limitations of the CCI biomass map
products (v4) in accurately predicting AGB and underscores the
importance of using local reference data to calibrate the global products
for achieving accurate (sub)national estimates. With the exception of
Peru, the uncalibrated form of the maps systematically underestimated
AGB at the (sub)national level in both large and small biomass biomes.
Málaga et al. (2022) showed systematic overestimation of the 2017 CCI
biomass product (v3) within the Peruvian Amazon, whereas this sys-
tematic error is absent in v4. Notably, AGB densities within the Guyana
shield have been reported to be twice as large as within the Western

Table 2
Field-based and model-assisted AGB estimates and the relative efficiency (RE) of the biomass map to increase the precision of the (sub)national AGB estimates.

Stratum n Field-based Model-assisted RE

μ̂ V̂AR(μ̂) μ̂syn model R2 μ̂ V̂AR(μ̂)

Peru
HZ 32 223.8 242.0 211.7 yi=1.1ŷi * 0.39 228.6 149.4 1.6
AMF 46 165.3 247.5 169.3 yi=93.4 + 0.4ŷi 0.08 163.5 226.8 1.1
IMF 11 181.5 547.8 220.9 yi=219.9 − 0.2ŷi 0.01 182.6 542.0 1.0
LF 210 253.5 52.0 258.2 yi=167.6 + 0.3ŷi * 0.02 254.2 50.8 1.0
Country 299 218.6 47.9 228.0 – – 219.5 44.9 1.1

Mozambique
Mecrusse 50 88.7 45.7 14.4 yi=78 + 0.5ŷi 0.01 85.6 45.1 1.0
Mopane 105 49.4 15.8 9.0 yi=30.3 + 1.4ŷi ◊ * 0.24 43.6 8.0 2.0
SDF 446 75.0 8.5 20.7 yi=21.5 + 1.8ŷi ◊ * 0.17 57.5 5.8 1.5
SEF 120 88.8 38.2 26.1 yi=11.6 + 2.5ŷi ◊ * 0.23 61.6 31.2 1.2
Country 721 76.2 6.7 21.0 – – 58.0 4.6 1.5

Tanzania
1 241 9.6 1.1 3.3 yij=5.9 + 1.4ŷij ◊ * 0.01 10.4 0.9 1.3
2 69 26.0 13.6 10.7 yij=13.6 + 1.1ŷij * 0.03 25.4 13.1 1.0
3 27 33.9 55.9 15.1 yij=9.3 + 1.6ŷij ◊ * 0.05 30.9 51.4 1.1
4 19 40.3 110.7 13.9 yij=34.9 + 0.3ŷij 0.01 38.0 113.5 1.0
5 678 18.6 1.1 5.1 yij=9 + 2ŷij ◊ * 0.05 18.5 0.8 1.4
6 641 43.4 3.3 15.1 yij=13.6 + 2ŷij ◊ * 0.13 43.1 2.3 1.4
7 467 71.4 10.3 25.9 yij=14.6 + 2.2ŷij◊ * 0.15 71.1 7.8 1.3
8 159 90.0 57.8 30.2 yij=7.6 + 2.7ŷij ◊ * 0.21 84.8 43.3 1.3
9 98 29.4 15.0 7.4 yij=19 + 1.4ŷij * 0.06 28.9 12.3 1.2
10 162 59.3 23.3 19.3 yij=20.3 + 2.1ŷij◊ * 0.07 58.9 18.4 1.3
11 151 78.0 15.1 31.5 yij=24.8 + 1.8ŷij◊ * 0.12 77.8 13.2 1.1
12 85 94.3 52.1 39.5 yij=24.6 + 1.8ŷij◊ * 0.21 92.3 39.3 1.3
13 103 22.1 9.2 17.2 yij=7 + 1ŷij ◊ * 0.09 25.0 6.9 1.3
14 157 71.9 99.4 33.5 yij=9.2 + 1.9ŷij ◊ * 0.08 73.6 86.7 1.1
15 8 26.0 99.1 26.5 yij=14.8 + 0.7ŷij * 0.16 34.4 59.9 1.7
16 100 102.0 113.8 47.9 yij=14.6 + 1.9ŷij * 0.08 106.5 97.0 1.2
17 30 67.8 324.4 30.4 yij=35.4 + 0.8ŷij * 0.03 68.2 308.0 1.1
18 13 66.1 590.5 46.6 yij=1.6ŷij ◊ * 0.21 73.8 453.8 1.3
Country 3208 42.8 0.8 15.6 – – 42.7 0.6 1.3

Guyana
HPfc/LA 8 561.4 3351.6 241.3 yij=652.2 − 0.6ŷij 0.06 574.4 2334.0 1.4
HPfc/MA 35 430.2 414.7 242.5 yij=289.3 + 0.5ŷij * 0.06 414.7 363.5 1.1
LPfc/LA 11 385.3 532.9 273.1 yij=516 − 0.5ŷij 0.06 391.2 509.4 1.0
LPfc/MA 20 324.9 521.0 250.8 yij=276.7 + 0.2ŷij 0.02 321.5 603.6 0.9
MPfc/LA 18 419.8 1205.7 235.8 yij=300.2 + 0.6ŷij 0.04 427.4 1107.9 1.1
MPfc/MA 25 439.8 688.3 222.7 yij=372.5 + 0.3ŷij 0.02 433.5 658.0 1.0
Country 117 423.6 163.3 248.5 – – 422.9 145.8 1.1

Where: μ̂syn corresponds to the uncalibrated version of the map; ◊ to strata in which models were corrected for heteroscedasticity; and * to strata where the models
were significant (p < 0.05). Models are expressed in terms of Eqs. (1) and (2).
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Amazon, mostly attributed to taller trees found in the former region
(Feldpausch et al., 2012), which likely contributes to the substantial
underestimation by v4 in Guyana. Furthermore, differences might be
partially explained by the reference data of Guyana's NFI including trees
starting at 5 cm DBH, whereas the biomass map does not fully represent
biomass in the understory. Hunka et al. (2023) found overall fair
agreement between the uncalibrated CCI biomass map (v4) mean AGB
estimates and (sub)national NFI-based estimates in Peru, Mexico, Laos,
and Spain. They reported that approximately half the time, the map
produced estimates falling within the 95 % confidence interval of
country NFI-based estimates. In a different study, Næsset et al. (2020)
applied a prior version of the product used in our research within a
smaller study area in Tanzania and reported no systematic under- or
overestimation of the map when compared to local reference data.
Conversely, our results do signal the need of calibrating the global
product for producing accurate (sub)national synthetic AGB estimates.
However, as global biomass products continue to enhance—as exem-
plified by the improvement from v3 to v4 in the Peruvian Amazon— we
can envision a future where achieving accurate (sub)national AGB
synthetic estimates becomes a common practice in large and small
biomass settings.

A crucial insight gained from the calibration was the limited align-
ment between the NFI reference data and the map values at the smallest
spatial support level, whether it was among ~100 m CCI map units (i.e.
Guyana and Tanzania) or polygons of aggregated map units (~400–500
m in Peru and ~200 m in Mozambique). Regardless of large or small
biomass regions, the coefficients of determination were uniformly small.
Even within the Peruvian Amazon, where the stratum-wise synthetic
AGB map estimates mirrored those based on NFI information, the rela-
tionship at the local level was still weak. The absence of agreement at the
finest spatial support level is not surprising, as previous studies have
likewise reported weak coefficients of determination between global
remote sensing-based products and local reference data, with values of
R2 < 0.3 (Réjou-Méchain et al., 2019) and R2 < 0.4 in Tanzania (Næsset
et al., 2020). Similarly, a study comparing CCI biomass change estimates
with reference data at global scale indicated that NFI-based estimates
showed only a moderate level of agreement with the global product (R2

~ 0.2) starting at 1 km aggregation (Araza et al., 2023).

4.2. Using global biomass maps to increase the precision of (sub)national
AGB estimates

The introduction of CCI biomass maps, calibrated with local
regression models, as a source of auxiliary information resulted in a fair
increase in precision of our (sub)national AGB estimates. From a pre-
vious study within the Peruvian Amazon, we showed that transitioning
from a locally calibrated 2017 v3 product (RE = 1.0–1.5) (Málaga et al.,
2022), to the v4, resulted in marginal improvements in precision for
certain strata while causing a decline in others. A study conducted in
Tanzania reported a notably larger contribution from a preceding locally
calibrated 2010 GlobBiomass map (Santoro et al., 2018), to the precision
of field-based estimates (RE = 2.7) (Næsset et al., 2020). Still, given the
different extent of the study and reference data (evidenced, among other
factors, by differing sample sizes and site re-measurements), direct
comparisons must be interpreted with caution. In the LPfC/MA stratum
of Guyana, an increase in variance from our model-assisted estimates is
observed (RE < 1), which may be attributed to the aggregation or
weighting effect. The modest contribution of the biomass maps to
increasing the precision of model-assisted (sub)national AGB estimates
can be attributed to the weak map-to-plot correlations at the finest
spatial scale observed across biomes. The factors contributing to weak
map-to-plot agreement are manyfold and can be attributed to the limi-
tations of the remote-sensing-based global biomass products (i.e., in
capturing fine scale AGB variability), the limitations of the reference
data (i.e., AGB measurement errors, positional errors), the way these
two sources of information are integrated (i.e., mismatches in the spatial
support of the remote sensing-based information and the size of the
reference data), along with the chosen inferential approach. All of which
are addressed in more detail in Section 4.3.

Notwithstanding, even a small gain in precision can entail non-
marginal advantages. In the case of simple random sampling of the
clusters and the number of plots within a cluster remaining constant, an
initial sample size of 91 clusters within the HZ stratum in Peru and a RE
of 1.6 implies that the same targeted precision could be achieved with a
reduced number of clusters (~60) by incorporating the calibrated map
as auxiliary data (cf. McRoberts et al., 2014). Achieving precision goals
with a smaller sample size is particularly advantageous for countries like
Peru, navigating the challenges of completing their first ever NFI. Yet,
it's vital to ensure that reducing the sample size for country-level AGB
estimation does not risk the precision of other attributes measured in a
country's NFI (i.e., biodiversity and other forest structural parameters),
as well as safeguard the representativeness of forest ecosystems yet
encompassed within the evaluated sampling units. Furthermore, for
countries that have concluded their initial NFI rounds (e.g., Tanzania,
Mozambique, Guyana), the incorporation of a locally calibrated global
map translates into greater confidence in AGB estimates, reflected by
narrower confidence intervals in their country-level greenhouse gas
(GHG) reporting. Reducing uncertainties as far as practical in country
GHG inventories is an IPCC good practice guideline under the UNFCCC
(Eggleston et al., 2006, Vol 1, Chap 1, Section 1.2). Similarly, in REDD+
results-based payment frameworks like the Forest Carbon Partnership
Facility (FCPC), in which all of these countries participate, the estima-
tion and reduction of uncertainties related to emission factors is
encouraged. This holds particular significance since it translates into
incentives, emphasizing how countries stand to gain from improved
precision and narrower confidence intervals given the encouraged
conservative approach when establishing reference levels (FCPF, 2020).
Finally, Tanzania, Guyana and Mozambique have yet to update their
field campaigns, meaning that among countries struggling with updat-
ing their NFIs, further studies are merited for exploring the opportunities
global biomass products present for efficiently planning future field
campaigns, potentially involving less intensive sampling.

A recent study conducted in Paraguay, comparing hybrid inference
AGB estimates based on a country-specific GEDI-calibrated model,
yielded a boost in precision compared to AGB estimates based on the

Fig. 3. Stratum-wise field-based mean aboveground biomass (AGB) estimates
and correspondent relative efficiencies (RE), colored in terms of regression
model R2.
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country's NFI data (Bullock et al., 2023). The substantial increase in
precision could be related to the better agreement found between the
predicted GEDI values and reference data, along with the substantial
increase in sample size achieved through the use of GEDI shots to esti-
mate sampling variability in hybrid inference. Nonetheless, the focus of
our study is on model-assisted estimation, maintaining the unbiased or
nearly unbiased nature of design-based inference (McRoberts et al.,
2014). The selection of unbiased estimators aligns with an IPCC good
practice guideline, urging countries to neither over- nor under-estimate
GHG emissions or removals as far as can be judged (Eggleston et al.,
2006; Næsset et al., 2020).

4.3. Map-to-plot harmonization takeaways that countries face when
integrating global biomass products with NFI data

The integration of remote sensing-based products with NFI data in-
troduces a fresh set of challenges within the model-assisted estimation
framework, given that NFIs were not initially designed to accommodate
remote sensing-based products. A key take-away from our four country
case-study within the tropics is that no single recipe fits all circum-
stances. The selection of the estimators under model-assisted inference
requires a context-specific assessment that accommodates the decisions
made by the countries in the design and implementation of the NFIs.
Notwithstanding, common lessons learned emerged from the integration
of global biomass map with NFI data in the model assisted-estimation
framework. These insights will now be elaborated and exemplified in
light of the unique characteristics of each country's NFI.

The NFI sampling design determines the selection of the specific
model-assisted estimator. While variations are inherent among the NFIs
of these four countries, a shared characteristic —widespread among
other tropical countries— is the adoption of clustered plots following
some kind of fixed configuration within the cluster (Nesha et al., 2022).
In Tanzania, the inverse L-shaped cluster configuration adheres to a fully
fixed systematic design. In Peru, the allocation of the anchor point of the
L-shaped cluster is random, while the orientation remains fixed. In
Guyana, both the anchor point and orientation of the L-shaped plots are
randomized within a larger grid cell. In Mozambique, the cluster is ar-
ranged in the form of a fixed squared. Clusters are often employed in
NFIs to enhance logistical efficiency, owing to the considerable effort
required to access sample plots (Tomppo et al., 2010). However,
methods for accommodating cluster designs with remote sensing-based
products under a model-assisted estimation framework have not been
extensively explored. For this purpose, our study embraced two-stage
model-assisted estimators, as outlined by Särndal et al. (1992, pp.
304–305) and elaborated by McRoberts et al. (2024). This approach
considers the distance among plots within the same cluster relative to
the size of the map units as a defining criterion to distinguish between
case A (involving some level of aggregation) and case B (element sam-
pling). When two or more plots may fall within the a single biomass map
unit (~100 m, e.g. Peru and Mozambique) the expected 1:1 relationship
between map units and plots is disrupted Särndal et al. (1992); with
potentially unknown implications for the estimated variance. Imple-
menting case B across countries could be possible if resampling the map
into smaller units similar in size to the plots or distance between sub-
plots, thereby maintaining the 1:1 relationship. However, this approach
might entail more processing capacity and not necessarily produce more
precise results, as evidenced by the already modest level of map-to-plot
agreement at approximately 100 m resolution.

For full consistency across field-based and model-assisted estimates,
in case of a stratified sampling design, the stratification layer should
completely cover the country's defined population and it should be
consistent with the NFI's sampling design. Peru stratified the country
into six strata defined by different criteria that are expressed in a map,
four of which were part of this study (MINAGRI and MINAM, 2016).
Mozambique employed a relatively coarse stratification map that
exhibited disparities between map vegetation classes and on-ground

conditions and resulted in the re-location of field-samples (Alegria,
2020). Tanzania initially followed a double sampling for stratification
design, which was here reduced to a single-phase design by adopting a
stratification layer produced later that mirrored the original criteria
(Næsset et al., 2020). Guyana's stratification is rooted in accessibility
considerations, which underwent modifications during its implementa-
tion (Petrova et al., 2013). While the study's best interest rested on
ensuring consistent cross-scenario estimates, the assumptions made
around the stratification reveal consequences. For instance, in
Mozambique, discrepancies observed between our field-based and
model-assisted AGB mean estimates (both at the country level and
within the SDF and SEF strata), may be attributed to the potential lack of
representation of the reference data to capture the within-strata vari-
ability, possibly influenced by the decision to relocate some of the plots
during the implementation of the NFI. Despite the country's imple-
mentation of alternative strategies to account for NFI deviations
(Government of Mozambique, 2018), for the purposes of this study we
were constrained to employ the original stratification layer and assume
its representativeness in terms of the original inclusion probabilities.

A forest mask may be needed to properly reflect how the population
is defined by the country's NFI. In Peru, a country-specific forest mask
needed to be introduced because the biomass maps provide spatially-
continuous AGB estimates, whereas the NFI AGB estimates are
confined to forested sites. Tanzania's field-crew measurements encom-
passed trees meeting the minimum DBH threshold, regardless of their
location in or outside forested sites (MNRT, 2015), hence no forest
masking was necessary. In the case of Guyana, the stratification layer
inherently adjusted for forest cover (Petrova et al., 2013); and the same
was assumed for Mozambique.

CCI map epochs were selected to closely align with the countries' NFI
implementation timeframe so as to reduce potential uncertainties
related to temporal mismatches (Duncanson et al., 2021). While the
implementation periods for Mozambique and Tanzania were restricted
to 3–4 years, countries within the Amazon opted for a longer imple-
mentation timeframe in stages. Moreover, the progress of Peru's NFI to
date is around 30 % and is being carried out through panels which
represent uniformly distributed sample units across each stratum. As the
NFI in Peru remains ongoing, such panel implementation holds impli-
cations to the estimator. Hence, as implemented in a previous study, we
confined our analysis to the panels (sections) of the Peruvian Amazon
where progress has been made (Málaga et al., 2022). Discrepancies
between the AGBmeans estimated in our study and those reported in the
country's official reports (SERFOR, 2020) might stem from the as-
sumptions made when defining the population and its effects in a
slightly smaller the sample size.

Additional considerations regarding the selected two-stage esti-
mator. The employed variance estimators for two-stage sampling as-
sume random selection of both PSUs and SSUs within PSUs. However,
within the four countries assed in this study, the SSUs are arranged in
various fixed spatial configurations. It's prudent to acknowledge that
disregarding the actual fixed spatial layout of plots might carry un-
foreseen consequences for the variance estimation. Furthermore, a
notable aspect involving the two-stage model-assisted estimators used in
this research is that, from a design-based perspective, we found the
contribution of the within PSU variability (second component of the
variance) to be negligible in comparison to the among PSU variability
(first-stage).

To further increase the precision of AGB estimates within the model-
assisted framework, we need better agreement of the map-to-plot rela-
tionship, particularly at finer scales. This entails enhancement of the
remote sensing-based products' ability to predict local AGB variability
and to reduce uncertainties associated with integrating the two sources
of information. Næsset et al. (2016) observed a threefold augmentation
in the precision of AGB estimates upon transitioning from coarser res-
olution remotely sensed data to finer resolution data (such as ALS or
Rapid Eye) in miombo woodlands. At present, to mitigate local
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restrictions inherent to coarse-scale remote sensing-based biomass
products, the adoption of finer resolution information may be consid-
ered. However, such decision rests upon individual countries, weighing
the potential increase in precision against the financial cost and pro-
cessing capacities associated with finer resolution power. Ultimately,
the difference in the spatial support between global biomass maps and
NFI field-plots has shown to be a relevant contributor to the sources of
uncertainty when integrating map and field-based information (Málaga
et al., 2022). Uncertainties arising from the spatial support mismatches
between the two sources of information are more pronounced in areas
with forests displaying greater AGB variability and in cases where field
plots are particularly small (Réjou-Méchain et al., 2014). The influence
of geo-location errors on model-assisted estimation has also been noted
(Saarela et al., 2016), albeit to a lesser extent when the information is
aggregated (Málaga et al., 2022), as we did in the cases of Peru and
Mozambique. In broad terms, the magnitude of uncertainties arising
from integrating remote sensing-based information and field data
decrease as the spatial support of the map and field data become more
similar in size and better overlap (Duncanson et al., 2021; Tomppo et al.,
2017). Furthermore, from the use of remote sensing-based products as
sources of auxiliary information, RE has also been seen to benefit (by 50
%) when the size of a plot doubles (200 m2–400 m2) (Næsset et al.,
2015). Yet, determining the optimal NFI plot size and configuration for
integration with remote sensing products involves a comprehensive
discussion encompassing criteria such as efficiency, cost, and repre-
sentativeness, among others; one that extends the scope of this study.

5. Conclusions

We conducted an evaluation of robust model-assisted estimation
strategies, using CCI global biomass maps as a source of auxiliary in-
formation to increase (sub)national AGB precision across varying
biomass densities and diverse NFI sampling designs. While country-
specific characteristics involving the NFI objectives and sampling
design guided tailored model-assisted inference strategies, common
lessons emerged from integrating global biomass maps with NFI data
within this framework.

Our four country analyses revealed that, while the uncalibrated CCI
biomass maps (v4) tend to underestimate (sub)national AGB across bi-
omes, after calibration, our model-assisted estimates aligned well with
field-based estimates and country reports. Consequently, the use of
global products for (sub)national estimates without prior calibration
using local reference data would still not be recommended at this stage.
Upon calibration, introducing the global maps as auxiliary information
to (sub)national estimates resulted in a fair gain in precision; slightly
larger within low biomass countries. The increase in precision holds
promising benefits, including optimized NFI sampling intensities and
greater confidence in AGB estimates for GHG reporting, aligning with
IPCC good practice guidelines.

The prospect of achieving even greater precision relies on improving
map-to-plot correlations at finer spatial scales. This improvement can be
attained through more advanced remote sensing-based biomass prod-
ucts that better predict local AGB variability as well as accounting for
and reducing the sources of uncertainties posed by integrating biomass
maps with NFI reference data, especially related with the lack of
agreement in their spatial support. As these factors improve, the po-
tential for increasing the precision of AGB (sub)national estimates with
the adaptable model-assisted framework here presented becomes even
more prominent.
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