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A B S T R A C T

In the quest for a rapid and cost-effective tool for determining the botanical origin of monofloral honey, the
analytical capabilities of coated blade spray mass spectrometry (CBS-MS) were investigated. To this aim, the
chemical profiles of 64 honey samples from seven different botanical origins (acacia, dandelion, chestnut,
rhododendron, citrus, sunflower, and linden) were captured by the absorbent of the coated blades and then
analyzed by mass spectrometry. An exploratory analysis was performed by principal component analysis (PCA)
to generate a graphical representation of the CBS-MS data that allows the discovery of patterns, outliers, or
relations between types of honey in an unsupervised manner. Additionally, the performances of four different
classification algorithms (least absolute shrinkage and selection operator (LASSO), random forest (RF), and
neural network (NNET) partial least squares discriminant analysis (PLS-DA)) were built up and compared. The
performances of the four classifiers were verified by a 50 times-repeated, 5-fold-cross-validation and permutation
test. Although all classifiers performed well, the RF showed significantly higher performances in cross-validation
(with area under the curve (AUC) of 0.99, overall accuracy 0.94, Kappa 0.93, sensitivity 0.94, and specificity
0.99). Moreover, the permutation tests showed the models were not overfitted. Finally, to determine the mo-
lecular identities of the ions that most contribute to the classification, extracts from the same honey samples were
prepared, analyzed by liquid chromatography coupled to high resolution tandem mass spectrometry (LC-HRMS/
MS), and the most significant features were annotated. This proof-of-principle work warrants a future large-scale
study to validate and challenge this CBS-MS-based method with a greater number of honeys from different years
and geographical origins.

1. Introduction

Honey is a natural supersaturated sugar solution produced by Apis
mellifera bees, with more than 95% of its dry mass consisting of sugars
and water, and which has been valued for its sweetening properties since
ancient times (Manyi-Loh et al., 2011). The European Union (EU)
legislation aims to preserve the quality of honey as an unprocessed raw
agricultural product, prohibiting changes to its chemical composition
and mislabeling (“European Union Council Directive No. 2001/110/EC,
” 2001, p. 110).

Honey can be classified as monofloral or multifloral. Each mono-
floral honey has a distinctive flavor because it is generated

predominantly from the nectar of a single plant species. Honey is cate-
gorized as multifloral if multiple pollens are present. The floral source
gives honey a very small fraction of plant-derived compounds, such as
terpenes, benzene derivatives norisoprenoids, polyphenols, and aro-
matic volatile compounds (VOCs), which affect its organoleptic and
nutritional properties (Kaškonienė & Venskutonis, 2010). These com-
pounds are highly dependent on the floral source of the nectar and
pollen the bees forage to make up the honey. Because of their nutri-
tional, therapeutic, and organoleptic properties, monofloral honeys are
considered better-quality products that are highly appreciated and
requested by consumers (Roman et al., 2013). Therefore, compared with
multifloral honeys, monofloral honeys have higher economic value and,
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thus, are more prone to mislabeling (Soares et al., 2017).
Considering the increasing global demand for monofloral honeys

with protected designation of origin (PDO) and protected geographical
identification (PGI), the main concerns related to these honeys’
authenticity are focused on their geographical and botanical origins. In
these products, incorrect labeling claims and fraudulent practices, like
admixing with multifloral honey of lower value and quality (Soares
et al., 2017) and adding other substances, such as syrups or sugars, are
important issues (European Commission. Joint Research Centre., 2023).
Note that, while the adulteration or mislabeling of products as honey, or
honey fraud, is a major concern for industry and regulators, the impact
of honey fraud occurrence on consumer preferences leads to stronger
preferences for locally produced honey (Gustafson et al., 2024). In order
to set up new strategies for the valorization of the monofloral honey,
numerous analytical spectroscopic- and chromatographic-based tech-
niques have been developed to determine honey authenticity (Danieli &
Lazzari, 2022; Jandric et al., 2021; Koulis et al., 2021; Recklies et al.,
2021; Schievano et al., 2013, 2016; Tsagkaris et al., 2021; Zhang &
Abdulla, 2022; Łozowicka et al., 2021).

To avoid using expensive, toxic, and unsustainable organic solvents
mainly used in chromatography-based approaches, new methods have
been developed to analyze the compounds in honey that codify for the
discrimination of floral sources. In this context, the introduction of
ambient ionization mass spectrometry (AIMS) in the mid-2000s has
transformed analytical science, providing new tools for rapid and ac-
curate analysis without pre-separation techniques (Javanshad& Venter,
2017). AIMS analysis is performed under ambient conditions (i.e., at-
mospheric pressure and/or room temperature) with little or no sample
preparation in a nearly real-time manner. Due to its short time scales,
AIMS has been extensively used in food authenticity within targeted and
non-targeted approaches (Arrizabalaga-Larrañaga et al., 2021; Black
et al., 2016; Damiani et al., 2021; Lu et al., 2018; Massaro et al., 2021,
2024; Tata et al., 2022). Among the AIMS techniques, rapid evaporative
ionization mass spectrometry (REIMS) was used for the recognition of
monofloral honey and adulterated syrup-honey samples (Wang et al.,
2019). Direct analysis in real time mass spectrometry (DART-MS) was
tested for its ability to discriminate two monofloral (chestnut and
acacia) honeys and according to their geographical origins, i.e., Italy and
Portugal for chestnut honey and Italy and China for acacia honey
(Lippolis et al., 2020). The results suggest this technology could be
useful in providing near real-time feedback to aid in the rapid authen-
tication of honey’s geographical origin. Moreover, proton transfer
reaction-time of flight-mass spectrometry (PTR-ToF-MS) coupled to
chemometrics was applied in the classification of monofloral honeys
(Schuhfried et al., 2016).

Since the introduction of the first AIMS technique, the field of
analytical chemistry has exploded with dozens of novel ion sources,
including coated blade spray mass spectrometry (CBS-MS). CBS-MS is a
combination of AIMS and solid phase microextraction (SPME) and was
first described in 2014 (Gómez-Ríos & Pawliszyn, 2014). A sorbent
layer, mostly based on hydrophilic lipophilic balance (HLB) particles, is
attached to a metal blade and is used to extract the compounds of in-
terest from a matrix. Therefore, the blades can simply be dipped into the
sample to extract and enrich the analytes of interest while leaving most
matrix components behind. After the extraction, coated blades are
positioned in front of the mass spectrometer’ (MS) inlet, and once the
desorption solvent is added, a high voltage is applied to generate elec-
trospray from the tip of the blade. With CBS-MS, no separate gas supply
is needed, which is an advantage compared to other AIMS methods, such
as DART-MS (Blokland et al., 2020). Interestingly, CBS has successfully
been used for the analysis of drug residues in biological matrices such as
blood, urine, and tissue (Gómez-Ríos et al., 2017, 2018; Kasperkiewicz
et al., 2019; Khaled et al., 2020), classification of brain tumors
(Bogusiewicz et al., 2022), and for the detection of multi-class pesticides
in fruit (Kasperkiewicz & Pawliszyn, 2021a) and cannabis oil
(Kasperkiewicz & Pawliszyn, 2021b). To the best of our knowledge,

CBS-MS has never been applied in the non-targeted authentication of
food.

Therefore, based on the aforementioned concerns about the mis-
labeling of the botanical origin of monofloral honey, for sustainable and
quick authentication of monofloral honey, a new path using CBS-MS in
combination with statistical pattern recognition techniques was
explored. Herein, this study aimed to determine whether CBS-MS, upon
integration with statistics, is a viable choice for authenticating the floral
source of monofloral honey. The workflow of the study is reported in
Fig. 1.

2. Materials and methods

2.1. Samples

A total of 64 monofloral honeys, harvested in 2022 in Italy, were
collected during the most important national competition (Tre Gocce
D’oro), organized by the National Honey Observatory (Osservatorio
Nazionale Miele), that represents beekeeping organizations at national
and regional levels. The honeys originated from all the Italian regions,
and therefore, the sample set can be considered representative of Italian
honey production for 2022. We randomly selected and analyzed honeys
of seven different botanical origins: acacia (n = 10), chestnut (n = 9),
citrus (n = 9), dandelion (n = 9), linden (n = 9), rhododendron (n = 10),
sunflower (n = 8). A list of the honeys with their geographical origins is
provided in Table S1 of the supplementary material. The Osservatorio
Nazionale Miele previously verified the botanical origin of each honey
sample by the combination of sensory analysis (“European Union
Council Directive No. 2001/110/EC,” 2001) and physiochemical as-
sessments (Persano Oddo & Piro, 2004).

2.2. Sample preparation

One gram of each honey was diluted in 4 mL of a solution of meth-
anol:water (MeOH:H2O, 20:80, v/v) (MilliQ water and methanol HPLC-
grade of 99.9% purity from Sigma Aldrich, St. Louis, MO, USA), vor-
texed for 30 s and shaken for 25 min. The obtained sample extract was
centrifuged for 5 min at 6000×g, and 1000 μL of the supernatant was
transferred into a well in a 1-mL 96-well plate. To absorb each extract
from the plate onto a separate blade, a sample handling unit (SHU) from
Restek (Bellefonte, PA, USA) was used. This SHU enables the use of the
1-mL 96-well plates in combination with blade holders for high-
throughput sample preparation. The SHU is equipped with a shaker
for agitation purposes during extractions (Digital Vortex-Genie 2, Sci-
entific Industries, Bohemia, NY, USA), and agitation speed was set to
500 rpm during each step. Coated blades were first pre-conditioned by
dipping them in MeOH:H2O (1:1, v/v) for 1 min with agitation. After
drying, the blades were dipped into the extract supernatants in the 96-
well plates for 10 min with agitation. Finally, the blades were washed
by dipping them into milliQ water for 10 s with agitation and air-dried
before analysis. For each honey sample, two replicates were acquired to
check the repeatability of the developed method. The blades were dried
in the open air overnight before analysis.

2.3. CBS-MS analysis

For the CBS-MS analysis, a CBS interface from Restek (Restek Cor-
poration, Bellefonte, PA, USA) was connected to the atmospheric
pressure-vacuum interface of a SCIEX QTRAP 6500 mass spectrometer
(AB Sciex LLC, Framingham, MA, USA). A 10 μL volume of methanol
with 12 mM ammonium acetate (methanol:H2O, 95:5 v/v, including 12
mM ammonium acetate) was used as desorption solvent. The elution and
spray times were set to 10 s. The drying and cleaning times were set to
18 and 10 s, respectively. A cleaning solution of isopropanol:methanol
(1:1, v/v) was used. The instrumental parameters of the MS were set to
those specified in the CBS interface manual (Restek Corporation, 2021).
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Briefly, the curtain gas was set to 5, ion source gas 1 to 10, and ion
source gas 2 to 0 (arbitrary units, a.u.). The spray voltage was set to
4000 V, the interface heater temperature to 150 ◦C, and the collision gas
to “low”. The instrument was used in unit resolution mode. The MS was
operated using the Analyst version 1.7 software package in full scan
mode and in negative ion mode. The dwell time was set to 50 ms, and the
pause between mass ranges was set to 5 ms. For data processing, Analyst
version 1.6.2 software was used.

2.4. Statistical analysis

The spectral data were pre-processed and statistically analyzed using
the R Statistical Software (v4.0.2; (R Core Team, 2020) software with
the MALDIquant (Gibb & Strimmer, 2012) and caret packages (Kuhn,
2008). In each spectrum (that is the m/z ratios of the ions present in a
sample plotted against their signal intensities), the ions with
signal-to-noise-ratio lower than 5 were removed, and the m/z signals
were binned with a tolerance of 0.105 Da with the subsequent genera-
tion of a single data matrix comprising all the spectral data. The data
matrix was composed of 359 features, each of them consisting of a
combination of m/z and intensity. The variables without assigned ab-
solute intensity were not removed. Instead, we replaced the missing
intensity value with 1/5 of the lowest recorded absolute intensity. With
respect to whether the mass spectra of two independent replicates of
each honey (the duplicates) were repeatable, we investigated the
repeatability of the pre-processed files by using the cosine similarity
function (Stein & Scott, 1994). Assessing the repeatability between two
analyses of the same bulk sample is an essential step in non-targeted
approaches and even more so when AIMS methods are applied
(Abbassi-Ghadi et al., 2015; Dill et al., 2011; Woolman et al., 2017).
Cosine similarity measures how much one mass spectrum overlaps with
its duplicate. If the two mass spectra of the two independent replicates of
each extract have near-perfect overlap, then the cosine similarity is high
(>95%). See some examples in the supporting info (Figs. S1–S3 of the
supplementary material).

We autoscaled the absolute intensities in each mass spectrum of the
resultant data matrix by log10 scaling. Afterward, we removed the
sparse variables by using the NearZeroVar function from caret package

(Kuhn, 2008). After running the NearZeroVar the data matrix was
composed of 252 features, each of them consisting of a combination of
m/z and intensity. We kept the mass spectral data from the individual
repetitions of each honey extract for further processing. The
pre-processed data were then submitted to principal component analysis
(PCA) for quick visualization of the discrimination capability of this
CBS-MS method by using the MetaboAnalyst 5.0 web portal
(https://www.metaboanalyst.ca/). Using caret package, the
pre-processed spectral data were then submitted to 25 times-repeated,
5-fold cross-validation recursive feature elimination (RFE), which is a
feature selection technique that iteratively eliminates less important
features with the aim of teasing out the relevant molecular features
(Granitto et al., 2006). Reducing the features can allow the subsequent
machine learning algorithms to run more efficiently (less space or time
complexity). Note that less important features can mislead some ma-
chine learning algorithms, resulting in poor predictive performance.
Taking this into account, the resulting most significant variables, opti-
mized for all the following classification algorithms, were used to build
up three different classifiers by using caret package: a random forest (RF)
model classifier (using 86 variables), a neural network (NNET) classifier
(using 78 variables) and a partial least squared discriminant analysis
(PLS-DA) classifier (using 89 variables). Moreover, an absolute
shrinkage and selection operator (LASSO) was built up. Unlike the
aforementioned classification algorithms, LASSO shrinks and selects the
best variables with the subsequent generation of a “sparse” model that
involves only a subset of the variables/predictors (Tibshirani, 1996)
without the need for an initial data reduction. Therefore, no RFE func-
tion was applied prior to LASSO modelling.

Each model was cross-validated by 50 times-repeated, 5-fold cross-
validation with simultaneous optimization of the hyperparameter.
While running the cross-validation, we kept the duplicates of each
sample together in the training or test set (group split). Finally, to check
for overfitting, a permutation test was performed on each model (500
iterations) by randomly permuting the class labels of the samples in the
training set. Using caret package, the performances of the classification
models for each test were evaluated by calculating the contingency
table-derived parameters of accuracy, Kappa-statistic, sensitivity and
specificity (Ellison & Fearn, 2005). Moreover, the area under the curve

Fig. 1. Workflow of the study. A) A total of 64 samples from seven types of monofloral honey were analyzed by coated blade spray mass spectrometry (CBS-MS). B)
The dataset was preprocessed and submitted to an exploratory principal component analysis (PCA) that graphically evaluated the discrimination capabilities of the
CBS-MS with regard to the honeys’ botanical origins. C) The preprocessed dataset was used to build up four different classifiers. D) The performances of the four
classifiers (least absolute shrinkage and selection operator (LASSO), random forest (RF), and neural network (NNET) partial least squares discriminant analysis (PLS-
DA)) were evaluated by cross-validation and permutation tests. The calculated indicators of performances were the area under the curve (AUC) of the receiving
operating characteristic curve (ROC), accuracy, Kappa-statistic, sensitivity, specificity.
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(AUC) of the receiving operating characteristic curve (ROC) was calcu-
lated (López et al., 2014). Note that the AUC, which is a
probabilistic-based method, can be considered the main performance
parameter (Hossin & Sulaiman, 2019). For the permutation test, we
reported the highest values of performance parameters obtained from
the 500-iterated permuted models.

2.5. HPLC-HRMS/MS analysis

After statistical evaluation and selection of significant ions (the sig-
nificance of which were confirmed by non-parametric analysis of vari-
ance (ANOVA) with false discovery rate (FDR) adjustment (padj ≤ 0.05)),
honey extracts were prepared very similarly to the method described
above. The only difference was that 1 g of honey was diluted in 9 mL of
methanol:water (20:80, v/v). The extracts were transferred to a plastic
HPLC vial and subjected to LC-HRMS/MS by using an Ultimate 3000
UHPLC (Thermo Fisher Scientific, Waltham, MA, USA) coupled to a Q-
Exactive (quadrupole-Orbitrap) mass spectrometer (Thermo Fisher Sci-
entific, MA, USA) operating in parallel reaction monitoring (PRM)
mode. The UHPLC system was equipped with a reversed phase C18
column (Hypersil Gold, 100 mm × 2.1 mm, 1.9 μm, Thermo Scientific,
USA) kept at 35 ◦C. Chromatographic separation of target ions was

obtained over 25 min by mixing mobile phase A (water containing
formic acid, 0.1% (v/v)) and mobile phase B (acetonitrile containing
formic acid, 0.1% (v/v)) as follows: 95/5 (A/B) from 0 to 2.5 min, then
linearly increased to 0/100 (A/B) at 15.5 min, kept at 0/100 (A/B) until
20 min, brought to 95/5 (A/B) at 20.5 min and kept unchanged until 25
min to re-equilibrate the system. The flow rate was 0.3 mL/min and the
injection volume was 3 μL.

Honey extracts were analyzed in full scan mode at 70,000 resolution
(full width at half maximum (FWHM)) to gather accurate measurements
of precursor ions and in PRM mode in negative electrospray polarity to
obtain information about product ions deriving from selected pre-
cursors. Targeted HRMS/MS fragmentation spectra were acquired using
HCD fragmentation at a resolution of 17,500 FWHM with a normalized
collision energy value optimized for each precursor and an isolation
window of 1.0 Th. Source parameters were set as follows: electrospray
voltage of 3000 V, sheath gas flow rate 40 a.u., auxiliary gas flow rate 10
a.u., capillary temperature 325 ◦C, heater temperature 325 ◦C, and S-
lens voltage 50 V.

Fig. 2. Representative coated blade spray mass spectrometry (CBS-MS) raw spectra of seven types of monofloral honey. The CBS-MS spectra are shown with the
relevant classifying m/z signals, determined by statistical analysis, and which identified the honey-floral sources. These informative m/z values were further
identified by high-performance liquid chromatography and tandem mass spectrometry. Note that we have only highlighted the m/z values of interest that were
visible on these representative spectra. For a comprehensive assessment of all the informative m/z values, see Table 2.

A. Tata et al.
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3. Results

3.1. Evaluation of the CBS-MS analysis

After data acquisition, the average spectra of the first 10 s after the
high-voltage was applied to the blade were retrieved. These spectra were
first visually inspected and compared between the honeys of different
botanical origins. Fig. 2 shows representative average mass spectra of
honeys from different botanical origins acquired by CBS-MS. Very
distinct volatile profiles for each different botanical source can be
observed. For example, when the spectrum of linden is compared with
rhododendron, it is clear that much higher m/z are present in the spectra
of the linden honey samples.

Although a simple comparison of the CBS-MS profiles enabled the
visual discrimination of the floral source of the honey (Fig. 2) and
indicated that CBS-MS is indeed a viable choice for botanical origin
authentication, the spectral data were further interrogated by statistical
analysis.

The repeatability of the two CBS-MS spectral repetitions was
assessed by cosine similarity. We observed that only 8 out of 64 honeys
produced spectra that were not repeatable using a threshold of 95%
similarity (Table S2). As the repeated spectra for these eight honeys
presented similarities ranging between 88% and 93%, we decided to
include all the readings in the classifiers. The decent repeatability of the
duplicated spectra alleviated the need for multiple instrumental repe-
titions and for invoking “majority rule” decision-making in the case of
discordant outcomes of the classifiers resulting from the predictions of
the duplicates of the spectra.

3.2. Exploratory statistical analysis

Exploratory unsupervised data analysis was performed by PCA
analysis of the CBS-MS data to determine if the spectral differences could
be used for classification analysis. The plot of the resultant PCA three-
dimensional (3D) scores provides graphical representations that allow
the discovery of patterns, outliers, or relations between groups. The PCA
3D scores plot exhibited good clustering of the chestnut, linden, sun-
flower, and dandelion honeys, but a high degree of overlap between
acacia, citrus and rhododendron honeys (Fig. 3). The PCA scores plot
demonstrated that there were enough spectral differences between the
groups that they can be discriminated by more powerful statistical
models.

3.3. Generation and validation of statistical classifiers

To investigate the possibility of authenticating the botanical origin of
the honeys only on the basis of the chemical signatures captured by CBS-
MS, we built-up the machine learning classifiers. To this aim, we applied
four classification algorithms, LASSO, RF, NNET, and PLS-DA. After-
ward, we performed a variety of control experiments to ensure that the
models’ performances were not artifacts of our statistical analysis, and
thus, we estimated their error probabilities.

As shown in Table 1, the four classifiers were cross-validated. The
hyperparameter optimization plots of each model are shown in the
supplementary material (Figs. S4–S7) together with the PLS-DA score
plot (Fig. S8). We observed that the classifications of the honey were
robust against cross-validation, with the RF achieving the highest clas-
sification performances (AUC 0.99, accuracy 0.94, Kappa 0.93, sensi-
tivity 0.94, and specificity 0.99) and the LASSO reaching the lowest
performances (AUC 0.97, accuracy 0.85, Kappa 0.82, sensitivity 0.85,
and specificity 0.97). The contingency tables of each classifier are re-
ported in Tables S3–S6.

Permutation tests, which are based on random relabeling of the data
and on repeating the modelling multiple times, were carried out to
ensure the models were not over-fitted. The low performance indicators
achieved by the permutation tests showed that the classification per-
formances of each model were not likely due to coincidence or over-
fitting (Table 1).

3.4. Annotation of the most significant molecular features

Considering the good performances of the classifiers built on the m/z
values retrieved by RF-RFE (and verified by ANOVA test), we explored
the possibility of determining these ions’ molecular identities. To this
aim, we prepared suitable extracts from the same honey samples and
subjected them to LC-HRMS/MS. Tentative annotations for 20 of the
most informative m/z values were established (Table 2). Fig. S9 of the
supplementary material illustrates the HPLC-HRMS/MS of the anno-
tated molecular features.

Table 2 shows the list of the most distinguishing m/z, alongside the
observed m/z of precursor ions from HPLC-HRMS and associated mass
shifts from theoretical m/z, ion forms, predicted molecular formulas,
and hits from the library. We have included the observed diagnostic
fragments from LC-HRMS/MS characterization. A literature search
further confirmed these assignments, as discussed in the text.

4. Discussion

The described study evaluates the capabilities of CBS-MS as a rapid
screening method to ascertain monofloral honey’s botanical origin. We
demonstrated that the CBS-MS spectra can capture the chemical signa-
tures that differentiate the botanical origin of the seven studied mono-
floral honey types (Fig. 2). We showed that CBS-MS unveils various
molecular features that distinctly characterize the floral source of the
honey. Generally, AIMS analyses outcomes largely depend on the matrix
effect, whether on food or biomedical samples, resulting in limited
quantification, high detection limits, and poor repeatability (Gross,
2014). However, unlike other AIMS techniques, CBS-MS is a solid-phase
microextraction (SPME)-based technique that provides a number of
advantages over other AIMS techniques: i) it guarantees an efficient
sample clean-up and enrichment, ii) it is fast, and iii) it has proven to be
an appealing alternative tool for the fast screening of target analytes in
complex matrices. These benefits led us to the successful first application
of CBS-MS to food authentication in a non-targeted interrogation of the
samples without a priori knowledge of the chemical profile. Our statis-
tical analysis of the chemical profiles confirmed that different mono-
floral honey types, produced by honeybees capturing nectars and
pollens of different plant species, can be categorized by different clas-
sifiers to a clear extent. All the classifiers achieved highly satisfactory

Fig. 3. Exploratory principal component analysis (PCA) three-dimensional
(3D) scores plotting the honey analyzed by coated spray blade mass spec-
trometry (CBS-MS). The PCA 3D scores plot shows good clusterization of linden,
chestnut, sunflower, and dandelion honeys, but a clear overlap of acacia, citrus,
and rhododendron honeys. The highlighted area for each group corresponds to
a confidence interval of 95%.
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performances, with the RF classifier being the most powerful and having
the highest values of the key indicators in cross-validation. The high
AUC obtained, 0.99, illustrates the high discriminative ability of the RF
model, since a good non-targeted method should have an AUC-value
close to 1 (USP Pharmacopeia, 2018). In order to exclude overfitting
issues, we performed permutation tests, making use of the proof of
contradiction. The lowest permutation outcomes were obtained by the
RF classifier, demonstrating its reliability and the statistical significance
of its performances.

Having addressed the recommended crucial points for a robust
validation of our RF model, we are confident with the performance of
this non-targeted method that saves time and resources. Unfortunately,
an agreed, harmonized, and ‘official’ workflow for developing and
validating non-targeted methods has not yet been published. However,
careful late-stage validation is still needed according to Alewijn et al.
(Alewijn et al., 2016), the guidelines of the United States (US) Phar-
macopoeia (USP Pharmacopeia, 2018), and the recommendations on
developing and validating non-targeted methods described in recent
reviews (Cavanna et al., 2018; McGrath et al., 2018).

While correctly applying a feature reduction before classification
may result in classifiers being less susceptible to population noise
compared with wide mass range models, the correct assignment of the
molecular features (m/z values) can strengthen their statistical associ-
ation with the authenticity. However, statistical association as the sole
criterion for the use of diagnostic m/z values in a non-targeted approach
can be misleading if not supported by additional verification of m/z
identity by LC-HRMS/MS analysis in conjunction with additional sepa-
ration (ion mobility and/or chromatographic) methods (Hanash, 2011;
Katz et al., 2021). Therefore, our significant molecular features were
tentatively assigned by LC-HRMS/MS.

CBS-MS revealed high levels of kynurenic acid (m/z 188.1), and its
potential insource fragment of m/z 144.1, in chestnut honey. In accor-
dance with Combarros-Fuertes et al., the honeys in which chestnut
pollen predominated presented higher amounts kynurenic acid, which
suggests the relationship between these compounds and a chestnut
source (Combarros-Fuertes et al., 2019; Turski et al., 2016). The high
relative abundance of pinocembrin mainly codifies for the differentia-
tion of rhododendron honey. This flavonoid, present in honeys from
various botanical origins, has various antioxidant, antimicrobial, and
anti-inflammatory properties (Cianciosi et al., 2018). While Kečkeš et al.
(Kečkeš et al., 2013) claimed that a large amount of dicaffeoylquinic
acid was detected in honey samples derived from annual plants, such as
sunflower, the same secondary metabolite allowed differentiation of the
geographical origin of multifloral honey (Gašić et al., 2014). Stachyose
is an ubiquitous and abundant oligosaccharide of plants, and it has
already been detected in Italian acacia honey by ion-chromatography
mass spectrometry (Tedesco et al., 2020). Malto-oligosaccharides,
such as maltopentaose, are common oligosaccharides in honey (Shinde
& Vamkudoth, 2022). Maltopentaose usually characterizes immature
honey (Ji et al., 2019).

While our CBS-MS-based approach cannot be a replacement for
confirmatory tests (Persano Oddo & Piro, 2004), it provides a

complementary method for the rapid authentication needed by bee-
keepers and for industrial quality checks. This method could be used by
the competent authority prior to launching confirmatory tests on sus-
picious samples, thereby accomplishing time and resource savings and
enabling the more efficient deployment of laboratory instrumentation.

5. Conclusions

This study presents the combination of coated blade enrichment
signatures and multivariate statistical analysis to demonstrate the po-
tential of CBS-MS as a rapid authentication platform of high sensitivity
and specificity for the differentiation of monofloral honey. The RF al-
gorithm generated the most powerful classifier, based on our multiple
tests. The most significant m/z values were annotated by LC-HRMS/MS.
This study shows encouraging results that could open a new avenue for
the rapid and accurate authentication of monofloral honey. The careful
late-stage validation of all non-targeted methods, including controls on
the consistency of measurements and classification outcomes over time
and with different operators and samples from various geographical
origins and years, is mandatory to move these non-targeted methods to
official controls and quality checks for accredited certifications. For this
reason, future challenges to this CBS-MS method will be made to eval-
uate its possible adoption in routine analysis. We envision that,
compared with the current situation, greater numbers of honey samples
could be screened by incorporating CBS-MS into the quality control
explorations of the food companies or other analytical laboratories. On
the maturity of this CBS-MS method, technicians will be able to perform
faster analysis than is currently possible, and at the same time, laborious
melissopalinology analyses will be performed only on suspicious
samples.
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Table 1
Classification performance indicators (area under the curve-AUC, accuracy, Kappa statistics, sensitivity and specificity) for the evaluations of the Least Absolute
Shrinkage and Selection Operator (LASSO), random forest (RF), neural network (NNET) and partial least squared discriminant analysis (PLS-DA) classifiers. Classi-
fication performances of each model were evaluated by repeated cross-validation and permutation tests.

Classifier Classifier evaluation AUC Accuracy Kappa Sensitivity Specificity

LASSO Repeated cross validation 0.97 0.85 0.82 0.85 0.97
Permutation test (n = 500) 0.59 0.17 0.04 0.18 0.86

RANDOM FOREST Repeated cross validation 0.99 0.94 0.93 0.94 0.99
Permutation test (n = 500) 0.57 0.15 0.02 0.17 0.86

NNET Repeated cross validation 0.98 0.93 0.92 0.94 0.98
Permutation test (n = 500) 0.58 0.18 0.06 0.20 0.86

PLS-DA Repeated cross validation 0.98 0.90 0.88 0.91 0.98
Permutation test (n = 500) 0.60 0.19 0.07 0.20 0.87
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Table 2
List of discriminant compounds, retrieved by random forest recursive feature elimination (RF-RFE), and used to build up the RF classifier. The table reports for each discriminant compound: the botanical origin of honey to
which the ion contributes to distinguish, the m/z observed by coated blade spray mass spectrometry (CBS-MS), the m/z observed by liquid chromatography-high resolution mass spectrometry (LC-HRMS), the theoretical
m/z, the ion adduct, the retention time, the ion assignment, the predicted molecular formula, mass shift (Δppm), and the distinguishing MS/MS fragments (product ion 1, product ion 2, product ion 3), the tentative
assignment, and the adjusted p-value (padj) that demonstrates the statistical significance.

BOTANICAL
ORIGIN

m/z observed
by CBS-MS

m/z observed
by LC-HRMS

Theoretical
m/z

Retention
Time (min)

Ion
Assignment

Predicted
molecular formula

Δppm Product 1 Product 2 Product 3 Annotation padj

value

Acacia 665.3 665.2154 665.2140 0.8 [M-H]- C24H42O21 2.04 383.1200 179.0550 161.0450 stachyose oligosaccharide 3.5E-
18

Chestnut 144.2 144.0443 144.0449 4.65 and 6.29 [M-H]- C9H7NO − 4.03 114.0290 86.0310 72.0157 in source fragmentation of kynurenic
acid

8.0E-
11

Chestnut 188.2 188.0343 188.0348 4.65 and 6.29 [M-H]- C10H7NO3 − 2.66 144.0440 kynurenic acid 1.2E-
14

Chestnut 239.2 239.0822 239.0821 6.28 [M-H]- C14H12N2O2 0.46 179.0680 102.9600 – 9.0E-
10

Chestnut 599.4 599.3194 599.3196 13.5 [M-H]- C27H53O12P − 0.27 531.2290 283.2700 152.9950 1-stearoylglycerophosphoinositol 3.1E-
15

Citrus 121.2 – – – – 9.0E-
15

Dandelion 129.2 128.9585 – 0.8 [M-H]- – – – 5.2E-
10

Dandelion 153.2 – – – – 8.4E-
13

Dandelion 209.2 209.0787 209.0774 7 and 9.5 [M-H]- C6H14N2O6 6.41 181.0840 – 3.8E-
18

Dandelion and
Acacia

785.6 785.3550 785.3596 8.21 [M-H]- C46H50N4O8 − 1.27 665.2990 545.2400 145.0290 N1,N5,N10,N14-tetra-trans-p-
coumaroylspermine

5.2E-
20

Linden 181.2 181.0861 181.0865 5.5 [M-H]- C10H14O3 − 2.32 163.0760 136.9800 112.9840 In source fragmentation of the ion of
m/z 505.4

2.7E-
15

Linden 505.4 505.1932 505.1935 5.5 [M-H]- C23H30N4O9 − 0.61 323.0980 221.0700 181.0860 – 2.5E-
16

Linden 565.4 565.2136 – 6.2 – – – 1.2E-
10

Rhododendron 255.2 255.0661 255.0657 9.8 [M-H]- C15H12O4 1.53 213.0650 151.0000 107.0130 pinocembrin 1.4E-
12

Rhododendron 827.3 827.2676 827.2669 0.8 [M-H]- C30H52O26 0.85 707.2270 545.1700 383.1210 maltopentaose 4.3E-
14

Rhododendron and
Acacia

845.2 845.2782 – 0.8 – – – 2.1E-
18

Sunflower 349.4 349.1867 349.1862 6.86 [M-H]- C16H30O8 1.46 331.1770 187.1330 (1S,2R,4R,8S)-p-menthane-2,8,9-triol
9-glucoside

2.5E-
11

Sunflower 399.5 – – – – 5.7E-
15

Sunflower 401.4 401.1424 401.1448 14.25 [M-H]- C18H26O10 − 6.08 265.1480 115.9200 benzyl O-[arabinofuranosyl-(1->6)-
glucoside]

2.7E-
11

Sunflower 515.3 515.1201 515.1190 6.55 [M-H]- C25H24O12 2.08 450.8310 353.0900 242.9430 dicaffeoylquinic acid 5.5E-
16

A
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(2021). Ambient ionization mass spectrometry in food analysis. In Food toxicology
and forensics (pp. 271–312). Elsevier. https://doi.org/10.1016/B978-0-12-822360-
4.00006-6.

Black, C., Chevallier, O. P., & Elliott, C. T. (2016). The current and potential applications
of Ambient Mass Spectrometry in detecting food fraud. TrAC, Trends in Analytical
Chemistry, 82, 268–278. https://doi.org/10.1016/j.trac.2016.06.005

Blokland, M. H., Gerssen, A., Zoontjes, P. W., Pawliszyn, J., & Nielen, M. W. F. (2020).
Potential of recent ambient ionization techniques for future food contaminant
analysis using (Trans)Portable mass spectrometry. Food Analytical Methods, 13,
706–717. https://doi.org/10.1007/s12161-019-01666-6

Bogusiewicz, J., Gaca-Tabaszewska, M., Olszówka, D., Jaroch, K., Furtak, J., Harat, M.,
Pawliszyn, J., & Bojko, B. (2022). Coated blade spray-mass spectrometry as a new
approach for the rapid characterization of brain tumors. Molecules, 27, 2251. https://
doi.org/10.3390/molecules27072251

Cavanna, D., Righetti, L., Elliott, C., & Suman, M. (2018). The scientific challenges in
moving from targeted to non-targeted mass spectrometric methods for food fraud
analysis: A proposed validation workflow to bring about a harmonized approach.
Trends in Food Science & Technology, 80, 223–241. https://doi.org/10.1016/j.
tifs.2018.08.007

Cianciosi, D., Forbes-Hernández, T., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P.,
Manna, P., Zhang, J., Bravo Lamas, L., Martínez Flórez, S., Agudo Toyos, P.,
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Łozowicka, B., Kaczyński, P., & Iwaniuk, P. (2021). Analysis of 22 free amino acids in
honey from Eastern Europe and Central Asia using LC-MS/MS technique without
derivatization step. Journal of Food Composition and Analysis, 98, Article 103837.
https://doi.org/10.1016/j.jfca.2021.103837

Lu, H., Zhang, H., Chingin, K., Xiong, J., Fang, X., & Chen, H. (2018). Ambient mass
spectrometry for food science and industry. TrAC, Trends in Analytical Chemistry, 107,
99–115. https://doi.org/10.1016/j.trac.2018.07.017

Manyi-Loh, C. E., Ndip, R. N., & Clarke, A. M. (2011). Volatile compounds in honey: A
review on their involvement in aroma, botanical origin determination and potential
biomedical activities. IJMS, 12, 9514–9532. https://doi.org/10.3390/ijms12129514

Massaro, A., Stella, R., Negro, A., Bragolusi, M., Miano, B., Arcangeli, G., Biancotto, G.,
Piro, R., & Tata, A. (2021). New strategies for the differentiation of fresh and frozen/
thawed fish: A rapid and accurate non-targeted method by ambient mass
spectrometry and data fusion (part A). Food Control, 130, Article 108364. https://
doi.org/10.1016/j.foodcont.2021.108364

Massaro, A., Zacometti, C., Bragolusi, M., Buček, J., Piro, R., & Tata, A. (2024).
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