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Abstract

The plant cortical microtubule array is an important determi-
nant of cell wall structure and, therefore, plant morphology and
physiology. The array consists of dynamic microtubules inter-
acting through frequent collisions. Since the discovery by Dixit
and Cyr (2004) that the outcome of such collisions depends on
the collision angle, computer simulations have been indis-
pensable in studying array behaviour. Over the last decade,
the available simulation tools have drastically improved: mul-
tiple high-quality simulation platforms exist with specific
strengths and applications. Here, we review how these plat-
forms differ on the critical aspects of microtubule nucleation,
flexibility, and local orienting cues; and how such differences
affect array behaviour. Building upon concepts and control
parameters from theoretical models of collective microtubule
behaviour, we conclude that all these factors matter in the
debate about what is most important for orienting the array:
local cues like mechanical stresses or global cues deriving
from the cell geometry.
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Introduction

Many mechanical and other material properties of plant
parts and plant-based products derive from the structure
of the cell walls that surround all plant cells. Deposition
of the main load-bearing component, cellulose microfi-
brils, is primarily guided by cortical microtubules
[11,30,56]. Plant cortical microtubules were discovered
in 1963 [23,44], about twenty years before the first
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reports of cortical microtubules in specific cell types of
animals (starfish oocytes in 1984 [54] and, less convinc-
ingly, Tiubifex eggs in 1981 [65]). The cortical microtu-
bules themselves are thin, stiff and dynamic protein
structures that grow and shrink by polymerization and
depolymerization from their ends, respectively, with
frequent switches between the growing and shrinking
state called catastrophe and rescue. They are attached to
the inside of the cell membrane and, therefore, interact
through frequent collisions [16,22,75]. Ever since the
discovery by Dixit and Cyr in 2004 [20] that the outcome
of such collisions depends on the relative collision angle
— often simplified as bundling/zippering/entrainment for
angles < 40° and crossover or induced catastrophe for
larger angles [3,15,16,25] — theoretical and simulation
studies have been indispensable in understanding
several key processes from generic array alignment
[3,15,18,25,33,70,71], to (re)orientation, e.g., of dark
grown hypocotyls in response to blue light [47,52,59,60],
and formation of additional structure like the banded
patterns in protoxylem [38,39,63]. The cortical localiza-
tion of these microtubules has been a great advantage
for modelling approaches, as the system can be
described very realistically as a strictly 2D surface!
[3,10,15,25,45,60,63,70,71], as well as the experimental
quantification of microtubule dynamics [22,23,75].

The first debate, whether bundling or induced catas-
trophes are the most important for spontaneous align-
ment of the array [3,25,70], was initially settled in
favour of induced catastrophes with help of a strong
theoretical analysis [33,70] popularized as “survival of
the aligned”: spontaneous alignment occurs with suffi-
cient interactions per microtubule lifetime, —or, alter-
natively worded, when the ratio G = —/y// between
interaction length scale (/) and intrinsic (average)
microtubule length (7) is sufficiently large’— where the
threshold for sufficient (G*) depends on Fourier co-
efficients of the “mteraction function” —how collision
outcomes depend on relative collision angles— specif-
ically, on both the overall probability of induced catas-
trophes and how strongly these are focused on large
angle collisions. Colloquially, the transition point de-
pends on how strongly and specifically microtubules

! 2D in the mathematical sense: the surface could still occupy a complex shape in a
3D environment. This is sometimes referred to as “2.5D” in biological literature.

2 G must be negative to allow for a finite equilibrium microtubule density, so the
typically considered bifurcation diagram is on the negative G-axis only [17].
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deviating from a majority direction are penalized (for
more explanation on G and G , see [17, 70]).

The theory was later extended to explain the alignment
promoting effect of katanin severing at crossovers [46,77]
by understanding severing events as delayed and,
therefore, weaker-acting induced catastrophes [18].
Analytical theories are useful tools for developing a
mechanistic understanding of the system, but are
restricted to the analytically tractable. The “survival of
the aligned”-theory has been derived either with
retracting minus ends [15,71] (hybrid treadmilling [64])
or with bundling [33,70], but not (yet) with both at the
same time. With both processes combined in simulations,
bundling suddenly increases the regime of alignment
beyond what is achieved by induced catastrophes alone
[17,71]. The control parameters (like G) that are derived
with the analytical models, however, remain powerful
tools in designing insightful simulation strategies and
interpreting their results [16,17,63]. Interestingly, the
observation of [33,70] that bundling did not affect the
alignment transition was recently also reported for
“cytosolic” interacting microtubules in full 3D [29],
notably, again with static minus ends [33,70]. This his-
torical consideration clearly shows that model choices,
which often consider analytical and/or computational
tractability, can have a major impact on conclusions.

There often is a trade-off between biological realism and
computational cost. By educated guess, current simu-
lation platforms differ at least hundred-fold in compu-
tational cost, meaning computational cost itself impacts
which questions can be addressed [17].

We compare how recent key simulation models for plant
microtubules differ on multiple relevant aspects
(Figure 1). We have recently found that realistic nucle-
ation and microtubule flexibility matter for array behaviour
[38,39,58]. The mode of membrane anchoring affects the
behaviour of individual microtubules including their
apparent flexibility as well as the strength of their
interaction [6,48,69]. Finally, modelling studies differ
greatly in the mechanisms they use to adjust microtubule
orientation towards mechanical stresses in the cell wall
[31], the actual mechanism of which remains a wide-
open question.

Key simulation frameworks

Currently, the three largest simulation platforms used
for interacting plant microtubules are CorticalSim [71],
Cytosim [53], and Tubulaton [48]. Table 1 summarizes
their main differences and application areas.

CorticalSim works with an efficient event-driven algo-
rithm, focusing on cortical microtubules on 2D surfaces
and modelling them as sets of connected line segments.
Its computational efficiency makes it ideal for running

large numbers of simulations, providing more statisti-
cally robust conclusions and bringing new questions
within reach [17]. Cytosim operates on full 3D simula-
tion domains, modelling microtubules as semiflexible
objects using discrete time steps. This model is highly
realistic and computationally demanding, originally
developed for studying relatively small numbers of mi-
crotubules in animal cells. Finally, Tubulaton is a 3D-
based model with discrete time steps, treating micro-
tubules as composed of fixed-length subunits. Its
computational cost is in between CorticalSim and
Cytosim. In terms of realism and biological detail,
CorticalSim and Tubulaton are comparable overall, with
different  platforms being more realistic in
different aspects.

All simulation models differ from the analytical theory in
that they are based on discrete particles (microtubules)
with explicitly stochastic behaviour, whereas the
analytical models [29,33,70] describe continuous dis-
tributions of microtubule densities (as a function of
length, orientation) using differential equations,
without explicit stochasticity. Consequently, the
analytical theory does not cover the spatial fluctuations
in, e.g., microtubule density that arise from their in-
teractions. Simu*lations confirm, however, that an exact
prediction for G can be obtained in the limit of weakly
interacting microtubules [71].

The three models we review here are on the scale of
many interacting microtubules within a single cell.
Whereas detailed simulations of individual microtubules
e.g., Refs. [1,6,41,69] study the mechanisms behind
microtubule dynamics, whole-cell models explore their
consequences, and are in turn too detailed for whole
tissue processes. Nevertheless, they may be used to
derive coarse-grained descriptions of array behaviour to
improve tissue-level models like Refs. [31,35].

Nucleation

Microtubules in the interphase cortical array are pre-
dominantly nucleated by <y-tubulin ring complexes (-
TuRC) [50], with the exception of nearly empty arrays
[45]. The v-TuRC independent fraction decreases
rapidly with increasing density, because the critical
tubulin concentration for nucleation is much higher
than for elongation [76]. Combined with a finite pool of
available tubulin, biases in, e.g., absolute nucleation
orientation can have a big impact on array orientation
[60], and an overall change in the net nucleation rate
can change the length distribution of microtubules, e.g.,
with a direct effect on spindle length [49]. On micro-
tubules, Y-TuRC nucleates more efficiently [51], with a
distinct angular distribution relative to the parent
[12,50]. This microtubule based nucleation enhances
alignment and pattern formation, as it introduces a
positive feedback on microtubule density [15,26,39,63].
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Figure 1
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Nucleation, flexibility, and directional biases in cortical microtubule simulations. (a) Microtubule nucleation in simulations can be isotropic, i.e.,
microtubules are initiated at random positions and orientations within the simulation domain [9,18,21,29,48]; microtubule-based with global density-
dependence, where nucleation events occur from extant microtubules with positions proportional to microtubule length [3,15,63], which results in the
inhomogeneity problem; or locally density-dependent via directly accounting for the diffusion of nucleation complexes [39,49], or a proxy for it [58] prior to
nucleation from microtubules. Such approaches avoid the inhomogeneity problem. (b) In between interactions, microtubule segments can be considered
as straight line segments [3,9,10,15,18,25,58,63] or as (simplified) semiflexible objects with finite persistence length, giving the cortical array a more
realistic appearance [21,29,38,48,49]. (c) Simulations with orientational biases in microtubule dynamics, influenced by factors such as the coupling
between stress patterns and growth propensity, catastrophes, or rescues, as well as the interaction of individual microtubules with cell geometry, have
revealed that such factors significantly affect the preferred alignment direction of the cortical microtubule array [10,21,48,60,63].

Many theoretical studies, however, still use isotropic
nucleation [e.g., 10, 18, 21, 29, 48, see also Table 1], as it
is simpler and avoids the so-called “inhomogeneity
problem” [39]. In the simplest implementation
[3,15,63], microtubule nucleation sites on microtubules
are distributed uniformly over all available microtubule
length (“global density dependence”). As beautifully
explained in Ref. [39], this introduces a global

competition for nucleation favouring the densest areas,
until ultimately one superbundle or similar structure
remains. This problem disappears when considering the
nucleation complexes explicitly as diffusing agents
(with increased nucleation rates on microtubules)
[39,51] because, then, a higher local density reduces the
local probability per microtubule length to attract a
particular nucleation event [39]. Diffusion of nucleation
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Table 1

Overview of major microtubule simulation platforms used for plant cells in recent years. References are only given if later publications
differ in the relevant aspect from the key reference given at the top. +: implemented; —: not implemented. Grey shade in the left column
means the aspect is comparable with the analytical model of Hawkins et al. [33], Tindemans et al. [70]. Light blue shade in the right
column means the aspect is (approximately) the same as in the analytical model of Hawkins et al. [33] and Tindemans et al. [70].

Framework CorticalSim [71] Tubulaton [48] Cytosim [53]

URL github.com/corticalsim/ gitlab.com/slcu/teamHJ/ gitlab.com/f-nedelec/
corticalsim tubulationtubulaton cytosim

Algorithm Event based Discrete subunits and time Continuous positions,

steps discrete time steps

Base unit® Arbitrary length line Tubulin subunit (8 nm) Dynamic fibres, solids,
segment spheres

Dimensionality 2D, “2.5D” [9,10] “2.5D”, 3D 3D

Application areas Cortical microtubules [15] Cortical microtubules Spindle [49]
[10,18,38,39,45,58,63,71] [21,48], phragmoplast [29]

Relative computational cost Light Intermediate Heavy

Membrane anchoring Immediate Immediate (“strong”) or N/A®

Microtubule flexibility

Microtubule dynamics
V+, v, rcd,e,i

Rescues (r;)

— end retrac- tion (V™9
Crossover severing (ry)
Uniform severing rg"

Straight [71] or discrete
deflections [38]

+
+
-
+[18]
-

“weak”®
Per subunit, /, = 26 nm°

+

-k
+ [21]

From forces and elastic
modulus

+
+

(by explicit severing entities)
[49]

Nucleation

Cell shape

Isotropic, microtubule-
based [15,58]

Periodic, cylinder [71], box
[17], arbitrary triangulation

(9]

Isotropic from specified
region

Smooth shapes (sphere,
ellipsoid, rounded box, ...)
via triangulation; arbitrary
shape possible

Explicit nucleators

Sphere, ellipsoid

@ Shading: See table caption.

b Microtubule-membrane anchoring only applies for cortical microtubules.

¢ |p: persistence length.

d v*: Microtubule plus end growth (speed).

€ v': Microtubule plus end shrinkage (speed).

f r;: Spontaneous catastrophe (rate).

9 In cases where end retraction is implemented, it can easily be turned off for comparison with theory. See main text for discussion of this aspect.

4 Severing uniformly distributed along the microtubule lattice, i.e., rate per microtubule length.

complexes at or close to the membrane is experimen-
tally observed in sparse (oryzalin-treated) arrays [39].
Explicit diffusion of nucleation complexes is used in
Cytosim, [e.g., 49], and CorticalSimple, a simplified
cortical array simulator with all transverse microtubules
[39], but is computationally expensive. A new algorithm
for CorticalSim describes the appearance of nucleation
complexes at the membrane and their diffusion until
nucleation occurs by a single analytical approxima-
tion [58].

This realistic microtubule-based nucleation considers
both local density dependence and some background
nucleation, which ensures homogeneity against fluctu-
ations [39,49,58] but also enhances patterning of the
array given sufficient local variation in microtubule dy-
namics [38,39], though the positive feedback is less
strong than with global density-dependent nucleation
[c.f., 63]. Microtubule-based nucleation increases
bundle stability, allowing geometrical cues to propagate
further. Indeed, realistic microtubule-based nucleation
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produced a much stronger sensitivity to cylindrical ge-
ometry than isotropic and global density-dependent
nucleation [58].

Together, these findings demonstrate that microtubule-
based nucleation has substantial effects on array
behaviour. However, microtubule-based nucleation
provides more realistic results than isotropic nucleation
only when the inhomogeneity problem is avoided.

Microtubule membrane anchoring and array
organization

Microtubules are rather stiff polymers, with w vitro
persistence lengths (/,) up to millimetres [34,62], which
may contribute to their cortical localization [48]. Freely
rotating microtubules confined in small containers tend
to minimize their bending energy via orientations that
minimize their total curvature [14]. Cortical microtu-
bules, however, are anchored to the inside of the cell
membrane, preventing translational movement. In the
mathematical limit of immediate and continuous
anchoring, microtubules would only minimize their
curvature locally and, consequently, follow geodesic
paths. E.g., the locally straight paths on a cylinder:
perfectly transverse, longitudinal or a constant-pitched
helix [6,71]. Reality is intermediate, with anchoring by
discrete proteins, giving growing microtubules a short
“free” plus-end that could locally sense and minimize its
curvature before anchoring. Depending on anchor
spacing, this may lead to a substantial force away from
geodesics, e.g., implying gradual reorientation from
transverse to longitudinal on an infinitely long cylinder
[6,69]. Interestingly, stochastic attachment of the an-
chors can result in both smaller and larger deflection
than deterministic anchoring at regular intervals with
the same anchor density, for large and small average
anchoring distance relative to curvature, respectively
[69]. Indeed, when MT anchoring is reduced by chem-
ical or mutational targeting of Phospholipase D4
(PLDJ), the frequency of longitudinal arrays increases
at the expense of transverse arrays [5,19,28]. Note that
these papers explain the effect via assumed increased
exposure to cytoplasmic streaming rather than as an
effect of bending energy minimization over a larger free
length. An additional effect of PLD¢ disruption is an
increase of disordered arrays [5,19,28] in line with the
effect of reduced interaction intensity predicted by the
“survival of the aligned”-theory [71], and confirmed by
3D simulations [48] comparing “weak” and “strong”
anchoring to the membrane. The observation of hyper-
aligned arrays in the c/asp-1 mutant in combination with
reduced membrane anchoring [4] seems, at first glance,
at odds with the theory. It may be explained, however, by
the wider range of collision angles resulting in zippering
[2,4], which seem to specifically reduce induced catas-
trophes for intermediate collision angles, leading to a
larger aligned regime (more negative G*) [17,18].
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Most simulation models of interacting microtubules
implicitly assume infinitely fast and dense anchoring.
We expect that the effect of realistic anchoring in these
models will be minor in most cases, but may be impor-
tant in understanding the phenotypes of a few specific
mutants, or in parameter regimes where the array is
extremely sensitive to any kind of orienting bias.

Microtubule flexibility

From experimental images, cortical microtubules appear
less straight than expected with millimetre /,. Corre-
spondingly, recent simulation studies of interacting
cortical microtubules differ in whether microtubules are
modelled as straight line segments in between in-
teractions [9,10,58,60,63], or as (simplified) semi-
flexible objects (finite /,) [21, 29, 38, 48, 49, see also
Table 1]. The immediate effect of introducing this
flexibility is that the resulting arrays look more “natu-
ral”. How else does flexibility affect array behaviour?

Obviously, the impact will depend on the value of /,, but
few relevant measurements exist. Mirabet et al. [48]
and Durand-Smet et al. [21] use /, = 26 um based on
measurements of 20—30 pm in animal cells [8,55]. With
microtubule parameters based on [63], such short /,
jeopardizes alignment [38], because the minimal
number of interactions for alignment not only has to
occur within the intrinsic microtubule length, but also
within the (in this case) much shorter /,. As the same G
value can be obtained for both relatively long, weakly
interacting and short, strongly interacting microtubules
[16,17], we expect the largest impact of flexibility for
weakly interacting microtubules, i.e., when crossover
probabilities exceed those of bundling and induced ca-
tastrophes. Actual /, in plant cells is likely at least
60—100 pwm, but hard to quantify, as  vitro gliding
assays at high and low density show that microtubule
interactions severely reduce the apparent [, [62].

In protoxylem simulations, flexibility had a mixed
impact on patterning of the array: on the one hand, the
array could more easily adopt a pattern that subopti-
mally “fits” the microtubule array. On the other hand,
microtubule density may be lost by microtubules
“wandering” into the gaps, with band density possibly
dropping below the threshold for alignment with
isotropic nucleation [38]. In metaxylem, local tuning of
/y via MAP70-5, which reduced /, 2—3 fold in vitro [62],
allows for more circular gaps compared to map70-5,
map70-1 knockouts [57,62]. Functionally, the /-
reducing effect of MAP70-5 allows for a sharp delinea-
tion of the gaps by ring-shaped bundles and reduces the
range over which the gap impacts the overall array
orientation, particularly if MAP70-5 is enriched at the
gap boundaries. From a physical perspective, MAP70-5
reduces the energy penalty for inserting a circular gap
in an aligned array.

www.sciencedirect.com

Current Opinion in Plant Biology 2024, 81:102596


www.sciencedirect.com/science/journal/13695266

6 Cell biology and cell signalling 2024

Flexibility could also affect the overall orientation of the
array in certain parameter regimes. The shape of the cell
tends to favour a limited set of array orientations, of
which one could be selected via penalties for crossing
edges (e.g., “a cdasp mutant”) or cell faces with different
microtubule dynamics (e.g., hormone-regulated), etc
[10,17,58]. Microtubule flexibility reduces how far in-
formation about cell geometry can propagate through the
array, restricting the maximum cell size for such mecha-
nisms. We expect flexibility to enhance the general trend
that “local” cues become relatively more important with
weaker “global” cues, like when increasing cell size [58].
An interesting open question is whether semiflexible
microtubules would affect the number of favourable
orientations on realistic cell shapes, which tend to have
fewer geodesic paths than the idealized cell shapes used
in many theoretical studies.

Opverall, microtubule flexibility could affect cortical
array behaviour in many ways, but whether potential
effects are relevant strongly depends on the ill
measurable value of /.

Stress-sensing and orientation-dependent
microtubule dynamics

Ever since the first discovery that cortical microtubules
can align with local stress patterns in the cell wall
[13,31,61], the question has been how this is possible.

Multiple biochemical pathways have been suggested for
sensing mechanical stress, but as most proteins involved
also have a major impact on microtubule dynamics,
mutant phenotypes could also be explained as response
problems [32,73]. It has also been suggested that the
microtubules themselves are sensitive to tensile stress
[32], based on  vitro observations that microtubules
under tensile stress polymerize faster [27,40,72].
Theoretical work shows that this could indeed select for
a specific direction [60]. Interestingly, Ref. [73] notes
that a few proteins — NEK6, SPIRAL2, CLLASP — that
affect the stability of microtubule ends reduce the
sensitivity to local mechanical stress patterns, suggest-
ing that plants actively reduce the risk of idiosyncratic
morphological responses to local variations in wall me-
chanical stress [24,36,68,73]. This is an interesting
topic, worthy of further exploration using both single
cell- and tissue-level simulations.

Interestingly, animal and  vitro systems show that, be-
sides full severing, katanin can remove small numbers of
tubulin subunits. These incomplete cuts subsequently
heal with GTP-tubulin, forming temporary “rescue sites”
[43,74]. Detailed energetic calculations on single mi-
crotubules and  vitro experiments suggest that without
microtubule-associated proteins, such GTP islands are
the predominant source of rescues [1]. If this “nibbling”
of katanin is dependent on tensile stress on the

microtubule, e.g., via an increased density of minor lat-
tice defects, this could increase rescue frequencies for
microtubules aligned with wall stresses. This idea
currently is quite hypothetical. The alignment of mi-
crotubules with stress depends on katanin [24,61];
however, complete severing increases in the process [61]
and, moreover, katanin severing critically amplifies mi-
crotubules with the new, opposing orientation in blue-
light induced reorientation of the hypocotyl
array [46,47,52,60].

Intuitively, any orientation-dependent bias on microtu-
bule dynamics could orient the array, as long as the
effect is strong enough and can overrule orienting ef-
fects like those from the cell geometry [10,58]. Many
biases have been tried: Mirabet et al. [48] use micro-
tubule tips preferentially adjusting their growth direc-
tion towards a particular orientation (corresponding to
maximal cortical tension on a similarly shaped pressur-
ized cell). Schneider et al. [63] bias array orientation
(for computational efficiency) by a transient bias on the
orientation of the unbound fraction of microtubule nu-
cleations. Analytical work shows that a difference in
growth propensity can be selected for a desired orien-
tation, whether modulated via growth speed, catastro-
phe rate or intrinsic nucleation rate [60]. In a
conceptually similar way, multiple studies have investi-
gated patterning of the array via local modulation of the
spontaneous catastrophe rate based on a hypothesized
[38,39,63] or simulated [66] pattern of ROPs (and ef-
fectors). Note that with biases on dynamic instability,
one has to carefully check whether microtubules remain
in the bounded growth regime for all possible orienta-
tions to avoid artefacts [16,17].

Outlook

We have shown how theoretical concepts can increase
our understanding of plant microtubule systems and
help design informative and efficient simulation strate-
gies (see also [17]). A big open question in the field is
how the cortical array integrates different orienting
factors (mechanical stress, geometry, specific proteins)
under different conditions. A related exciting question is
whether proteins like abovementioned NEK6, SPIRAL2
and CLASP tune the sensitivity of the array for specific
cues, or affect the responsiveness of local array orienta-
tion in a more generic way. These questions are inher-
ently quantitative, requiring both the increasingly
quantitative nature of experiments [13,24,37,47,52],
and matching array simulations — i.e., with sufficiently
realistic mechanical behaviour (flexibility), katanin
severing and microtubule-based nucleation — as these
factors can all have a big impact on array sensitivity to
local and global cues.

Future research may also require multi-level or multi-
component modelling strategies, like interaction with
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the actin cytoskeleton (for, e.g., division plane orientation
[42] or the shaping of metaxylem pit boundaries [67]) or
local modulation of microtubule dynamics in response to
a dynamic cue (e.g., supracellular mechanical stresses in
the cell wall or intracellular dynamics of ROPs and their
effectors). Interaction with actin is conceptually most
easily performed in Cytosim (alread;r done in, e.g.,
Ref. [7]), whereas coupling with PDE’ models for me-
chanics or ROPs is computationally much easier in 2D
models like CorticalSim or Tubulaton when restricted to
a surface, and is already implemented in Ref. [66].
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