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A B S T R A C T   

Process-based crop models have faced rapid development over the last years, and many modelling platforms are 
now available and can be used in a wide range of conditions. Whilst the selection of a model should be suited to 
the purpose of its application, very few studies focused on the impact of choosing different model structures and 
data details on the simulation outputs. One important aspect is the soil water dynamics, which can be simulated 
at different levels of details in terms of data and approaches. In this study, we investigated the impact of model 
structure and data detail on simulations of sugarcane growth and irrigation scheduling. Three different soil water 
routines (Standalone, Tipping-Bucket, SWAP) were coupled with the SAMUCA model and calibrated with a 
comprehensive field experiment dataset. We also tested the influence of using simplified homogeneous (SL) and 
detailed (DL) soil profile information in model performance. The model framework was evaluated against in-
dependent field experiments across Brazil and used to simulate long-term sugarcane growth and irrigation 
scheduling. After calibration, the SWAP-DL showed the highest accuracy in soil moisture predictions, with a 6 % 
error (RRMSE), but the difference from TippingBucket-DL was small (8 %). While the performance of stalk dry 
mass, LAI and water-use efficiency simulations were within the range found in literature, comprehensive field 
experiments showing significant impacts of drought on sugarcane growth are still lacking for a more rigorous 
evaluation. Both SWAP and tipping-bucket approaches showed higher robustness to soil data detail as compared 
to the Standalone method, which should be avoided when soil water is critical for sugarcane growth. The use of 
tipping-bucket method may still be preferred when the research goal is focused on crop growth and soil pa-
rameters are limited. SWAP-SAMUCA may provide an extended ability to represent agrohydrological processes in 
sugarcane plantations and process understanding.   

1. Introduction 

Process-based crop models have become instrumental in agricultural 
systems analysis as they enable the explicit formulation and testing of 
how physiological and soil processes interact and explain emerging 
system behaviour (Jones et al., 2017). Due to the large 
multi-dimensional nature of agroecosystems, a unified model is 
improbable and not existing. Therefore, models are typically employed 
using the “fit-for-purpose” concept, where the contextualisation of the 
scientific question and data availability are central aspects in the 

selection and definition of the model boundaries, methods and processes 
(Hamilton et al., 2022). With the rapid evolution and access to 
computer-based modelling, a large number of process-based simulation 
models have become available that could be arguably used in a wide 
range of applications and spatiotemporal scales (Rosenzweig et al., 
2013; Antle et al., 2017). 

To simulate dynamic crop growth, modellers often need to incor-
porate key processes governing the soil-plant-atmosphere system into 
their simulation frameworks. Although many modules share similar 
concepts that evolved from pioneering work from the 1960s (de Wit, 
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1958; van Ittersum et al., 2003; Jones et al., 2017), the uncertainty on 
crop model simulation is still considerably large (Martre et al., 2015; Tao 
et al., 2018). In addition, very few modelling frameworks have a 
collection of modules allowing modellers to easily link and test different 
model structures according to the end-user needs (Enders et al., 2023). 
Therefore, the process of developing new modules and their incorpo-
ration into an existing simulation platform is still not easy to achieve. 

The representation of soil water dynamics and belowground process 
is a typical example of which process-based crop models may differ in 
their approach and detail. One model may use physically-based princi-
ples (e.g., mass and energy flow controlled by gradients) and detailed 
soil information to simulate water flow and use (Kroes et al., 2017), 
whereas another approach could use a simplified method (e.g., cascade 
flow) that mimics the real system behaviour (van Ittersum et al., 2003). 
Recently, the wide use of the latter has been brought into debate under 
the hypothesis that an exacerbated unnecessary empiricism also limits 
the use of crop models for process understanding, while the physical 
descriptions of many water flow processes in the soil-crop system are 
now available (Jarvis et al., 2022). While in one hand, many large-scale 
applications of crop models can only be achieved with a more simplified 
approach due to the lack of detailed and accurate soil information. On 
the other, land surface models such as JULES and CLM simulate 
large-scale carbon (including crop growth) and water cycles using 
Richard’s approach since a few years (Best et al., 2011; Osborne et al., 
2015; Lawrence et al., 2019). 

One of the aims of our study is to investigate the impact of choosing 
different model approaches and soil data details on the simulation of 
crop growth and water use. We chose the sugarcane crop as it is the main 
source of sugar globally and has emerged as the second-largest source of 
biofuel (Goldemberg et al., 2014). On a global scale, more than 70 % of 
sugarcane biomass is produced in Brazil, India, China, Thailand and 
Pakistan (FAO, 2022). Brazil alone corresponds to ca. 40 % of the global 
production, where the crop is largely cultivated under rainfed 
conditions. 

In the last years, sugarcane areas strongly expanded towards the 
central-western regions of the country production and faces difficulties 
due to higher water deficits and poor soil conditions, making supple-
mentary irrigation essential for crop production (Vianna et al., 2016; 
Dias and Sentelhas, 2018b; Marin et al., 2020). Whilst fully-irrigated 
sugarcane accounts for only 6.7 % of all Brazilian fields, fertirrigation 
using sewage and vinasse is widely adopted, corresponding to 29 % of all 
planted sugarcane in Brazil (ANA, 2019). Irrigation is also a key strategy 
for maintaining stable sugarcane yields in other countries like South 
Africa (Singels et al., 2019). In this context, soil-water and hydrological 
studies have become increasingly important for decision-makers in the 
sugarcane industry (Stenzel et al., 2021). 

Although a handful of sugarcane models were developed and 
described in the literature (Dias and Inman-Bamber, 2020; Singels, 
2013), few of them are modular and freely available for end users: 
DSSAT/CANEGRO (Jones and Singels, 2018), APSIM/Sugar (Keating 
et al., 1999) and the Agronomic Modular Simulator for Sugarcane 
(SAMUCA) (Marin and Jones, 2014). The latter was recently updated by 
Vianna et al. (2020), operating with the widely employed “tipping--
bucket” soil water balance method as in the DSSAT platform (Ritchie, 
1998; Jones et al., 2003). On its first version, SAMUCA was implemented 
with a simple standalone soil water routine, which employs Darcy-law 
principle at a limited 4-layer compartment soil profile (Marin and 
Jones, 2014; Teh, 2006). Due to its modular structure, the SAMUCA 
model can be coupled to other soil water balance routines and simula-
tion platforms. 

The SWAP platform is currently one of the most robust hydrological 
models available for end users that evolved over the last 50 years (Kroes 
et al., 2017; Heinen et al., 2024). The model employs an implicit nu-
merical solution scheme to solve Richard’s equation, simulating soil 
water movement in saturated or unsaturated soils. Soil physics modules 
are included to simulate solute transport, macropore flow, water 

repellency, soil heat flow and lateral drainage flow at the field level. In 
SWAP, crop growth can be simulated either with static crop parameters 
or dynamically with the generic crop model WOFOST (World Food 
Studies). 

In this study, we aimed to compare simulations of sugarcane growth 
and water consumption using three water balance routines with 
increasing complexity (standalone, tipping-bucket, SWAP). Therefore, 
we coupled the most recent version of the SAMUCA crop module into the 
SWAP modelling platform. The resulting model (SWAP-SAMUCA) was 
intercompared with the SAMUCA model which can still be executed 
with two soil water balance routines: the original standalone (Marin and 
Jones, 2014), and the tipping-bucket approach (Vianna et al., 2020). We 
also investigated the model performance when using detailed soil profile 
data or homogenous soil properties, which is often necessary when the 
vertical description of the soil profile is not available. The methods are 
calibrated and evaluated against field observations in different regions 
of Brazil. Finally, we tested the implications of choosing each of the 
models and detailed soil data on the simulations of sugarcane growth 
and irrigation scheduling. 

2. Material and Methods 

2.1. Modelling framework description and coupling 

All the crop growth simulations in this study were executed with the 
most recent version of the SAMUCA crop module (Vianna et al., 2020). 
By default, the model is executed with the tipping-bucket empirical 
method, but users can still select the early soil water balance routine 
described by Marin and Jones (2014). The preliminary standalone 
version of SAMUCA utilizes a simple 4-layered soil water routine based 
on the Darcy Law to simulate soil water available to the crop over the 
growing season (Teh, 2006), termed here as the “Standalone” water 
balance method. The crop module code of SAMUCA is currently main-
tained in the open-source DSSAT platform as of version 4.8 (https://gith 
ub.com/DSSAT/dssat-csm-os). 

The SWAP model platform simulates soil water, heat and solute 
fluxes following physically based approaches (Kroes et al., 2017). Three 
modular routines to simulate crop growth and development are included 
in SWAP: (i) a simple module considering static growth; (ii) the 
WOFOST model, a generic dynamic model that simulates the growth of 
many kinds of crops (de Wit et al., 2019); (iii) and a modification of the 
WOFOST model for perennial grass simulations (Kroes et al., 2017). 

To investigate the effect of using a physically-based approach for 
sugarcane simulations we coupled the corresponding crop-modules of 
the SAMUCA model into SWAP (Fig. 1). The implementation and vari-
ables’ linkage were performed directly in the Fortran source code of 
SWAP v4.0.1 (www.swap.alterra.nl) using Visual Studio 2015 IDE. In 
this way, SAMUCA could be utilized as the 4th crop module option of 
SWAP alongside WOFOST. The source code and executable version for 
the SWAP-SAMUCA model can be found in: https://github.com/Mu 
rilodsv/SWAP-SAMUCA. All the data pre-post processing and analysis 
were executed with the R language. 

As our goal was to isolate the effect of soil water routines, we 
attempted to use similar approaches for processes that are mainly gov-
erned by the atmosphere or crop physiology. For example, all three 
model configurations utilized the same approach for potential evapo-
transpiration (Penman-Monteith) and partitioning into transpiration 
and soil evaporation components (Beer law). We also switched off any 
effect of soil temperature on crop development and considered that 
water intercepted by the canopy is neglectable. Furthermore, our sim-
ulations considered that there was no effect of soil salinity, deep 
groundwater (e.g., free drainage at the bottom layer), mulch cover or 
even surface barriers that could cause water ponding. Table 1 summa-
rizes the main configuration used for each of the three soil water balance 
routines and their differences. 

Except for potential evapotranspiration, all the routines differ on the 
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representation of soil water infiltration and runoff, vertical movement 
and the spatiotemporal discretization scheme. The standalone and 
tipping-bucket routines share similar approaches for the simulation of 
root water uptake, which is calculated based on fixed empirical co-
efficients, the current status of soil moisture and root length density, and 

must not exceed the potential crop transpiration (Tp) (Ritchie, 1998). 
For SWAP, we used the default empirical method of Feddes et al. (1978) 
due to its simplicity and because our calibration dataset does not allow 
the precise determination of root water uptake and soil evaporation. 
More mechanistic approaches that can simulate water uptake under 

Fig. 1. Simplified diagram of SWAP platform structure and its CropGrowth module, including the coupled SAMUCA crop module components (in red dotted box). 
Daily maximum, minimum and average air temperatures are expressed as tmax, tmin and tavg; photosynthetically active radiation and atmospheric CO2 concen-
tration as par and co2, respectively; crop variables linked with SWAP are the crop coefficient (cf), canopy height (ch), leaf area index (lai), and relative root length 
density (rrld). 

Table 1 
List of main agrohydrological processes and their definitions that are incorporated in each modelling approach coupled with the SAMUCA model: Standalone, Tipping- 
Bucket and SWAP.  

Process Modelling structure 

Standalone Tipping-Bucket SWAP 

Infiltration All water infiltrates Incoming water after runoff Infiltration capacity based on 
Richards’ equation 

Runoff Not considered CN curve number Infiltration capacity + Ponding 
threshold 

Reference Evapotranspiration (ETo) Penman-Monteith Penman-Monteith Penman-Monteith 
Potential Evapotranspiration (ETp) ETo x Crop coefficient ETo x Crop coefficient ETo x Crop coefficient 
Potential soil evaporation (Ep) and 

crop transpiration (Tp) 
Beer Law (LAI and light extinction) Beer Law (LAI and light extinction) Beer Law (LAI and light extinction) 

Actual soil evaporation (Ea) Reduction of Ep based on relative water 
content of topsoil (Keulen and Seligman, 

1988) 

Reduction of Ep with the soil diffusion method 
of Suleiman–Ritchie 

Reduction of Ep to maximum Darcy 
flux 

Potential root water uptake (PRWU) 
* 

Consider root length density, soil moisture 
and empirical coefficients (Ritchie, 1998) 

Consider root length density, soil moisture and 
empirical coefficients (Ritchie, 1998) 

Not needed 

Actual root water uptake (ARWU) Minimum between the total PRWU and Tp Minimum between the total PRWU and Tp Based on soil matric potential (Feddes 
method) 

Actual crop transpiration (Ta) Sum of ARWU for each soil layer Sum of ARWU for each soil layer Weighted integral of ARWU with root 
length density 

Downward soil water flux Based on the estimated unsaturated hydraulic 
conductivity 

Cascade based on water holding capacity Gradient of soil matric potentials 
(Richards’ equation) 

Upward soil water flux Not considered Estimate of soil water diffusivity and volumetric 
soil water gradient 

Gradient of soil matric potentials 
(Richards’ equation) 

Bottom flux Free drainage as a function of hydraulic 
conductivity of bottom layer 

Free drainage of excessive volumetric water 
limited to saturated hydraulic conductivity 

Free drainage as a function of 
hydraulic conductivity of bottom layer 

Vertical soil discretization Fixed 4-layered profile Any number of soil layers Any number of soil layers and sub- 
compartments 

Timestep Daily Daily Sub-daily (dynamic)  
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oxygen stress or detailed drought are also available in SWAP (Bartho-
lomeus et al., 2008; de Jong van Lier et al., 2008), but may require extra 
parametrization and a more comprehensive dataset. 

The standalone routine uses a fixed 4-layer approach, whereas the 
tipping bucket and SWAP allow for multiple soil compartments. To 
minimize the effect of vertical discretization, we harmonized the soil 
inputs so that all simulations considered the same soil depth and had 
similar sizes of compartments. Both standalone and tipping-bucket 
operate at daily timesteps, whereas SWAP solves water transport at 
sub-daily dynamic timesteps controlled by user-defined parameters and 
mass balance. In our runs, the minimum and maximum possible time-
steps ranges from 1 s to 5 h, respectively. 

2.2. Modelling dataset 

The modelling dataset of our study can be separated into three parts: 
model calibration; evaluation across different sites; and simulations for 
long-term sugarcane growth and irrigation scheduling (Table 2). We 
calibrated the three configurations of the SAMUCA water balance rou-
tines with the comprehensive field experiment conducted at the College 
of Agriculture “Luiz de Queiroz” (ESALQ/USP) in Piracicaba, Brazil (Lat: 
22◦41’55”S Lon: 47◦38’34”W Alt: 540 m). The experimental dataset 
included 4-season observations of fully-irrigated and well-fertilized 
sugarcane growth and development, soil moisture and evapotranspira-
tion under two treatments: bare soil and mulch cover. Daily evapo-
transpiration rates (ET) were determined by the integration of 15- 
minute latent heat flux measurements taken by the Bowen Ratio 
method (Perez et al., 1999). Soil moisture (SM) was measured every 3 
days or at one day after rainfall/irrigation event with a Frequency 
Domain Reflectometry (FDR) probe (Vianna et al., 2020). Stalk dry mass 
(SDM) was measured by regular destructive sample within experimental 
plots. Leaf area index (LAI) was measured by LAI-2000 sensor (LICOR) at 
different crop stages. For this simulation study, we used only the data 
from the bare soil treatment. The site’s climate is characterized by a hot 
and humid summer with a dry winter (Cwa- Köppen classification), and 
the soil is classified as Typic Hapludox. The experimental setup is fully 
described by Gonçalves et al. (2023) and Vianna et al. (2020). 

Six independent 1-season field trials across Brazil were used to 
evaluate the calibrated models with respect to crop growth simulations 
under contrasting conditions. For all of these sites, sugarcane SDM and 
LAI were measured, except Uniao, which had no LAI measurements. 
Finally, we utilized 30-year meteorological data (1980–2010) at four 
distinct sugarcane-producing regions to simulate the effect of choosing 
each version of SAMUCA and soil data detail on crop growth and irri-
gation scheduling. This dataset was also used in previous studies with 
SAMUCA and other sugarcane models for benchmarking models’ per-
formance (Marin et al., 2015; Vianna et al., 2020, 2022). 

Weather data for all sites were obtained from the nearest meteoro-
logical station and consisted of daily maximum and minimum air tem-
perature, solar radiation, precipitation, wind speed and relative air 

humidity. The cultivar in all sites was the RB867515, still one of Brazil’s 
most widely planted cultivars. For the calibration and evaluation sites, 
the soil water retention curves were determined from undisturbed soil 
samples at different depths (Vianna et al., 2020). For the long-term 
simulations, the predominant soil type characteristic was used (Tab. 
A1) (Vianna et al., 2016; Dias and Sentelhas, 2018a). 

2.3. Model calibration and evaluation runs 

The soil and crop parameters of the three combinations of SAMUCA 
and soil water routines were calibrated using the concept of inverse 
modelling, i.e. including soil and crop parameters (Ines and Droogers, 
2002). This was done because the Feddes method of SWAP generally 
requires calibration of both soil and crop properties simultaneously (de 
Melo and de Jong van Lier, 2021). Furthermore, we assume that 
applying the same calibration procedure to all three models would 
minimise any bias effect from a previous calibration in our analysis 
(Vianna et al., 2020). Thus, we tested the suitability of global optimi-
zation methods contained in the R package “nloptr” v2.0.3 (Ypma et al., 
2022) for minimizing our objective function (Fig. A1). The method that 
provided better and more stable results was the global optimization 
method based on controlled random search with local mutation (CRS2) 
from Kaelo and Ali (2006). 

The objective function for the calibration procedure was formulated 
as the average of relative root mean squared error (RRMSE) between 
simulated and observed SDM, LAI, ET and SM. The crop and soil pa-
rameters selected to minimize the objective function are shown in Tab. 
A2, where its initial values and plausible ranges were taken either from 
field measurements or literature (de Melo and de Jong van Lier, 2021; 
Pereira et al., 2021). This calibration setup was applied to both types of 
soil data (detailed profile - DL; and homogenous profile - SL) resulting in 
six sets of parameter values, one per each combination of SAMUCA 
water routine and soil data type. 

While in the calibration runs we used the calibrated soil properties 
for SL or DL conditions, in the evaluation sites where the SWC and ET are 
not known the soil input parameters were replaced with the observed 
soil profile information, which we used directly for different soil layers 
(DL) or the mean value for the whole profile to represent the SL con-
ditions (Tab. A1). The number of layers for both tipping-bucket and 
SWAP approaches used the same number of soil layers as specified in the 
soil profile, while the soil data was aggregated for standalone approach 
to conform with the 4-layered simulation profile. To minimize an effect 
of spatial resolution, we preserved the same vertical discretization for 
each model in both DL and SL conditions, i.e. SL used the same number 
of layers as in DL but with fixed soil properties for all layers (Tab. A1). 

To evaluate model performance after calibration and across different 
sites, we used the statistical indexes of performance described by Wal-
lach et al. (2018): Relative root mean squared error (RRMSE), precision 
(R2), accuracy (d), and Nash–Sutcliffe efficiency (EF). In the calibration 
site, the performance was assessed with SDM, LAI, ET and SM data, 

Table 2 
Summary of sugarcane field experiments datasets across Brazil used for model calibration (c), evaluation (e), and long-term simulations (s). All long-term simulations 
(s) considered a 1-year growing season, totaling 30 seasons. Except for Piracicaba (c), which have 4 seasons, all the other experiments were carried out for a 1 season 
planted cane.  

Site Lat Lon Alt Soil T (◦C) P (mm) Koppen Water Regime Start Date End Date 

Piracicaba (c) 22◦41’S 47◦38’W  540 Typic Hapludox 22,0  1331 Cwa Irrigated 2012–10–16 2016–06–08 
Uniao-Irrig (e) 4◦51′S 42◦52‘W  68 Oxisol 27,0  1500 Aw Irrigated 2007–09–09 2008–06–16 
Uniao-Rain (e) 4◦51′S 42◦52‘W  68 Oxisol 27,0  1500 Aw Rainfed 2007–09–09 2008–06–16 
Coruripe (e) 10◦07′S 36◦10‘W  16 Fragiudult 21,6  1401 As Rainfed 2005–08–16 2006–09–15 
Ap. Taboado (e) 20◦05 S 51◦18′W  335 Typic Hapludox 23,5  1560 Aw Rainfed 2006–07–01 2007–09–08 
Colina (e) 20◦25′S 48◦19′W  590 Typic Hapludox 22,8  1363 Cwa Rainfed 2004–02–10 2005–12–01 
Olimpia (e) 20◦26′S 48◦32′W  500 Typic Hapludox 23,3  1349 Cwa Rainfed 2004–02–10 2005–12–01 
Piracicaba (s) 22◦41’S 47◦38’W  540 Typic Hapludox 22,0  1331 Cwa Irrigated 1980–07–01 2010–07–01 
Jatai (s) 17◦53’S 51◦43’W  663 Typic Hapludox 23,7  1657 Aw Irrigated 1980–07–01 2010–07–01 
Petrolina (s) 9◦22’S 40◦28’W  370 Cambisol 27,1  485 BSh Irrigated 1980–07–01 2010–07–01 
Recife (s) 8◦3’S 34◦57’W  7 Typic Hapludox 25,8  2267 Am Irrigated 1980–02–01 2010–02–01  
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whereas on evaluation sites only SDM and LAI data was available for the 
analysis. 

2.4. Long-term simulations of crop growth and irrigation scheduling 

After the calibration procedure, we applied the three versions of 
SAMUCA-water balance routines and soil data type to simulate sugar-
cane growth and irrigation scheduling. We employed the same approach 
as in the evaluation runs where the observed soil properties were pro-
vided for different layers or homogenized to represent the DL and SL 
conditions, respectively. Simulations were configured to represent a 1- 
year sugarcane season, continuously replicated for the years 
1980–2010. In each location we selected the most predominant cutting 
date: February for Recife; and July for Jatai, Petrolina and Piracicaba 
(Vianna et al., 2022). 

An automatic irrigation routine was implemented where irrigation 
applications are triggered when the relative available water in the 
rooting zone drops below 80 %. To mimic the drying-off period neces-
sary for sucrose accumulation, the irrigation applications were halted 1 
month before harvesting (Inman-Bamber, 2004; Dias and Sentelhas, 
2018b). Although farmers may choose different irrigation strategies 
depending on their availability to water resources and irrigation sys-
tems, we adopt this irrigation scheduling to represent intensive irriga-
tion practices without an irrigation deficit in Brazil (Nassif et al., 2019; 
Marin et al., 2020). The simulated SDM and total water application (Tirr) 
were then statistically compared separately against each model config-
uration and soil type at each location by the ANOVA test with post-hoc 
Tukey HSD (Honestly Significant Difference). The simulated water use 
efficiency in terms of irrigated water (IWUE=SDM/Tirr) and 

evapotranspired during the crop season (EWUE=SDM/Tet) were also 
used to assess the model configurations. 

3. Results 

3.1. Impact on model performance and parameter values at the 
calibration site of Piracicaba 

Results showed similar RRMSE values between models after the 
optimization procedure (Fig. 2). The highest impact was in LAI for SL 
simulations for which RRMSE was 39 % for the tipping-bucket and 31 % 
for SWAP, whereas in DL, it was 38 % (tipping-bucket) and 34 % 
(standalone). For all the other variables, RRMSE differences between 
modelling approaches were lower than 4 %. Although small differences 
were found, none of the model approaches showed the best fit for all 
variables simultaneously. For example, SWC simulations had the best 
agreement indexes for SWAP-SAMUCA when different soil layers 
(RRMSE=6 %) were considered, but this approach did not show the best 
agreement for ET and LAI simulations. 

The performance of simulations with different soil layers showed a 
relatively lower RRMSE of 25 % (mean across all variables) as compared 
to simulations assuming a homogeneous soil profile (28 %). This is more 
evident when comparing the difference in modelling efficiency (EF) and 
precision (R2) between simulations considering multiple layers and 
single-layer for SWC and ET; while the impact was more pronounced in 
SWAP-SAMUCA (difference of − 0,70 EF and − 0,65 R2) as compared to 
the other soil water routines (Fig. 2). In an overview between variables, 
the simulations of ET and LAI presented higher values of RRMSE of 
about 36 % (±3 %), followed by SDM with 27 % (±2 %), and SWC with 

Fig. 2. Statistical indices of performance of each modelling approach (SWAP, TipBucket, Standalone), using different soil data types (SL and DL) in simulating the 
evapotranspiration (ET), leaf area index (LAI), stalk dry mass (SDM) and soil water content (SWC) at the calibration experiment of Piracicaba. RRMSE is the Relative 
root mean squared error (fraction, or conversely, %), R2 and d are respectively the model precision and accuracy, and EF the Nash–Sutcliffe efficiency. 
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9 % (±2 %). The simulations of SDM had the highest values of model 
accuracy (d=0,96), precision (R2=0,87) and efficiency (EF=0,86) as 
compared to other variables. 

The temporal dynamics of soil moisture content simulated by SWAP 
and tipping-bucket showed a similar pattern (Fig. 3). Our results showed 
that the correlation indexes (r) between these two approaches were 
relatively high, ranging from 0,73 to 0,83 (Fig. A3). The standalone soil 
water routine presented a more unstable performance, with higher 
oscillation in soil moisture simulations as compared to the SWAP and 
tipping-bucket approaches. Simulations were in general more accurate 
under detailed soil (DL) than considering a homogenous profile (SL) 
(Fig. A4 and Fig. 2). In SL simulations of both the SWAP and tipping 
bucket, we observed a systematic overprediction for the topsoil (10 cm) 
and underprediction at deeper soil (60 cm) which indicates a compen-
satory effect during the calibration procedure to cope with the lack of 
soil data (Fig. 3). 

Daily ET simulations showed the lowest accuracy among the studied 
variables (Fig. 2). However, the seasonal pattern of observed ET could be 
replicated by all the models, with higher values reaching around 6 mm 
day− 1 during summer and lower than 2 mm day− 1 in winter (Fig. 4). We 
observed an overestimation of the cumulative ET for the standalone 
model, notably under the SL conditions, which may be associated with 
excessive ET rates in the early season. 

The differences in crop-related variables between model approaches 
were not large, but more pronounced in SL than DL simulations. For the 
DL case, only the second and third-season simulations of LAI presented 
noticeable differences between models (Fig. 5). On the other hand, the 
SL simulations showed clear differences between models in all seasons 
for both LAI and SDM variables, where SWAP-SAMUCA simulations 
were systematically lower than the other two model approaches. 

The impact of utilizing either DL or SL on crop and soil parameters is 
shown in Fig. 6. Optimized parameter controlling photosynthesis 
(<amax>, <eff>) and crop transpiration (<kc_min>, <eoratio>) 

presented very similar values for both DL and SL in tipping bucket and 
standalone versions. This was also the case for SWAP-SAMUCA, except 
for <amax> and <eff> parameters. Although the shape parameters 
controlling the rooting density profile presented some differences be-
tween SL and DL (<y_ini>, <tm>, <delta>), the pattern of the root 
density profile for all the models was similar (Fig A2). We also found 
differences between soil properties parameters when employing either 
SL or DL. For SWAP-SAMUCA, a gradient was observed for the soil pa-
rameters <osat>, <ksat> and <lexp> between top-to-bottom soil layers 
(Fig. 6). A similar pattern was observed for parameters <fcp>, <wpp>
and <ksat> for the tipping bucket approach and to some extent for the 
standalone version. In some cases, the soil parameter values of SL were 
within the range of variation of its corresponding DL parameter, but it 
was not observed for some parameters such as <npar> and <lexp>
(SWAP-SAMUCA). 

3.2. Model evaluation across different Brazilian regions 

The performance SWAP-SAMUCA and the tipping bucket approach 
were superior to the standalone approach in the evaluation dataset 
(Fig. 7, Table 2). This was evident for LAI simulations where the 
standalone version presented an error of about 47 % (RRMSE) while 
SWAP and tipping bucket approaches showed errors between 25 % and 
28 % (Fig. 7). Further, the standalone approach was the only one pre-
senting negative EF index values (-0,52) for LAI simulations in both DL 
and SL conditions. We observed that LAI simulations were consistently 
underpredicted at the CLER site (Fig. 8), which is mainly owed to the 
exacerbated water stress representation by this approach. As a result, 
SDM simulations were also consistently lower than the observations at 
this site for the standalone approach. On the other hand, the SWAP 
simulations of SDM at this site showed systematically higher values 
under DL conditions but presented good agreement for the SL simula-
tions (Fig. 8). 

Fig. 3. Comparison between observed (dark points) and simulated (coloured lines) soil water content by each modelling approach (SWAP, TipBucket, Standalone), 
using different soil data types (SL and DL) at 10 cm, 30 cm and 60 cm soil depths at the calibration experiment of Piracicaba. 
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The simulations for all other sites reproduced the observed pattern 
for LAI and SDM (Fig. 8). Comparing DL and SL results, SL showed 6 % 
and 11 % lower EF for SDM simulations compared to the DL with the 
standalone and SWAP approaches, respectively. For LAI, the DL simu-
lations presented 23 % higher EF as compared to the SL condition for the 
tipping bucket approach (Fig. 7). All the other variables and indexes 
were generally improved under DL conditions, but differences were 
lower than 6 %. 

3.3. The effect of model structure and soil detail on the simulations of 
sugarcane growth and water use in the long-term dataset 

Using different model structures and soil data types significantly 
impacted the simulations of SDM and total irrigation in all sites of the 
long-term dataset (Fig. 9, Table 2). Simulations of SDM showed statis-
tical difference between the SWAP and tipping-bucket approaches in all 
sites, with an average 7 % higher SDM simulations using SWAP. In most 
of DL cases, the SDM simulations between the standalone and SWAP 

method did not show statistical difference (except in Jatai). However, 
under SL data, the simulations of SDM for the standalone method were 
consistently lower than both SWAP (-10 %) and tipping-bucket (-3 %) 
approaches. When comparing soil data types (boxplots of same colour in 
Fig. 9), only the standalone approach showed statistical difference in 
SDM, where DL simulations were in average 9 % higher than SL simu-
lations in across all sites. 

The irrigation simulations were statistically different between 
modelling approaches in most of the sites. The exceptions are in DL 
simulations between SWAP and tipping-bucket in Piracicaba, and the 
standalone and tipping-bucket in Recife (Fig. 9). Although statistically 
different, the magnitude of differences between irrigation simulations of 
SWAP and tipping-bucket were smaller as compared to the standalone 
approach. For example, under SL conditions, the irrigation simulations 
of the standalone approach were between 21 % and 421 % times higher 
than SWAP and tipping-bucket approaches. Soil data type also sub-
stantially impacted the irrigation simulations for the standalone 
method. In all sites, the total irrigation simulated by the standalone 

Fig. 4. Comparison between observed (dark points) and simulated (coloured lines) cumulative and daily evapotranspiration by each modelling approach (SWAP, 
TipBucket, Standalone), using different soil data types (SL and DL) at the calibration experiment of Piracicaba. 

Fig. 5. Comparison between observed (dark points) and simulated (coloured lines) leaf area index (LAI) and stalk dry mass (SDM) by each modelling approach 
(SWAP, TipBucket, Standalone), using different soil data types (SL and DL) at the calibration experiment of Piracicaba. 
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method was in average 47 % higher in SL conditions than in DL condi-
tions. SWAP and tipping-bucket simulations between DL and SL soil data 
types were also statistically different in Petrolina and Recife, but the 
differences were smaller. In average, the irrigation simulations with 
SWAP-DL were 7 % lower than SWAP-SL, whereas tipping-bucket-DL 
were 20 % smaller than tipping-bucket-SL across all sites. 

These differences were translated to the water use efficiency based 
on irrigated applications (IWUE) (Table 3). Therefore, IWUE values 
were in average 109 % higher in standalone-DL than standalone-SL 
simulations, whereas the relative differences between DL and SL simu-
lations were +26 % for the tipping-bucket, and +6 % for the SWAP 
methods. The highest IWUE in dry mass were obtained using SWAP 
(16,5 g L− 1), followed by the tipping-bucket (12,5 g L− 1) and stand-
alone (7,4 g L− 1) approaches. For EWUE, the differences between soil 
data type were rather small but the pattern was similar to IWUE, with 
higher relative differences between DL and SL for standalone approach 
(+7 %), followed by tipping-bucket (+4 %) and SWAP (+1 %). The 
EWUE simulations in Petrolina were in average (2,6 g L− 1) lower than 
other locations (3,5 g L− 1). Except for EWUE, we observed statistically 
significant interaction between model approaches and soil data types in 
all sites and other variables (Tabellen A4, A5). 

Overall, the impact of choosing different soil data types was smaller 
for SWAP and tipping-bucket approaches but had a stronger effect on the 
standalone approach where all of the SDM and irrigation simulations 
were statistically different in all locations. The spatial pattern of higher- 
to-lower yields simulations were preserved in all combinations of model 

approaches and soil data types, with higher yields in Recife (47–52 Mg 
hm− 2), followed by Petrolina and Jatai (39–48 Mg hm− 2), and Piraci-
caba (34–43 Mg hm− 2). The simulations of total irrigation showed the 
highest values in the semi-arid site Petrolina (840–2262 mm year− 1), 
whereas in other sites it ranged from 48 to 1134 mm year− 1. 

4. Discussion 

4.1. Model calibration and evaluation: how good is enough? 

While process-based crop models are powerful tools to formulate and 
test hypothesis about the functioning of agroecosystems, comprehensive 
field experiments with measured properties of the system are difficult to 
be conducted and are, therefore, scarce. As a result, process-based crop 
models are often calibrated and evaluated with limited information, 
which should expose the model to a range of conditions over which the 
key processes can be assessed. In our study, the field experiment of 
Piracicaba provides measured crop growth information and water fluxes 
both in soil and atmosphere that is used to calibrate and assess the 
models. Although the analysis in Section 3.1 showcases the model fea-
tures and the impact of different model approaches and soil data detail 
on model performance, it can be prone to model over-fitting. In Section 
3.2 we evaluated the models in a more rigorous manner, by using in-
dependent field trials across different pedoclimatic conditions, though 
soil moisture and evapotranspiration information were not available. 

Nevertheless, the models showed similar performance in the 

Fig. 6. Normalized parameter values after the optimization procedure for SWAP (a), Tipping-Bucket (b), and Standalone(c) approaches and different soil data types 
(Different Layers-DL, and Homogenous Layers-SL) utilising the calibration dataset of Piracicaba. Parameters were normalized within their minimum and maximum 
limits, which are defined in Tab. A2. 
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calibration dataset and performed relatively well across the different 
regions of the evaluation set. The reference for our comparison is based 
on previous studies which assessed the SAMUCA (tipping-bucket) model 
using the same dataset, and found a modelling efficiency (EF) for soil 
moisture of 0,61 (Vianna et al., 2020), while the re-calibrated versions of 
the model using SWAP and the tipping-bucket approaches in our study 

showed higher EF values of 0,75 and 0,70, respectively. The other var-
iables showed only small improvement, for example, SDM with the best 
EF of 0,89 for SWAP as compared to 0,87 by Vianna et al. (2020), or a 
reduction from 0,55 to 0,50 for LAI when using SWAP-SAMUCA. These 
performance metrics were also at the same level of accuracy as other 
sugarcane models, such as DSSAT-CANEGRO, APSIM-Sugar, MOSICAS 

Fig. 7. Statistical indices of performance of each modelling approach (SWAP, TipBucket, Standalone), using different soil data types (SL and DL) in simulating the 
leaf area index (LAI) and stalk dry mass (SDM) at the evaluation experiments across Brazil. RRMSE is the Relative root mean squared error, R2 and d are respectively 
the model precision and accuracy, and EF the Nash–Sutcliffe efficiency. 

Fig. 8. Comparison between observed (dark points) and simulated (coloured lines) leaf area index (LAI) (a) and stalk dry mass (SDM) (b) by each modelling 
approach (SWAP, TipBucket, Standalone), using different soil data types (SL and DL) at the evaluation experiments across Brazil. ATAB: Ap. Taboado; CLER: 
Coruripe; COLI: Colina; OLIM: Olimpia; UNII: Uniao-Irrig; UNIR: Uniao-Rain. 
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and JULES, with RMSE values ranging between 4,3 to 12,8 Mg hm− 2 for 
SDM and 1,1 to 1,6 for LAI (Marin et al., 2015; Hoffman et al., 2018; 
Jones and Singels, 2018; Dias et al., 2019; Christina et al., 2021; Vianna 
et al., 2022) (Tab. A6). 

Although performance indices can be used as an indicator to monitor 
the progress of model improvement, it should not be solely the criteria 
for model suitability and selection. Model calibration typically requires 
optimisation of a given objective function to a calibration dataset and 
respective target variables. If not carefully analyzed, it could lead to 
misleading interpretation. For example, the best agreement for SWC 
simulations (SWAP-DL, Fig. 2) did not lead to the absolute best agree-
ment for the LAI or ET variables (Fig. 2). In this case, the role of the 
modeller, who may identify an overfitting and avoid getting the “right 
answer for the wrong reason” is crucial (Keating, 2020). In addition, the 
human decision factor during the calibration steps has shown to be 
significant (Albanito et al., 2022), whereas the definition of a consensus 

about a general calibration protocol for process-based crop models is 
still a work in progress (Wallach et al., 2021, 2023). 

To assess how good is enough, the process-based modeler should take 
into account not only a referential level of performance, but also carry 
out a heuristic analysis on the spatiotemporal dynamics of the key 
variables and processes in question. We observed that the SWC dynamics 
simulated by the standalone approach showed a substantially different 
temporal dynamics as compared to SWAP and tipping-bucket approach 
(Fig. 3 and Fig. A3). This departure was not translated to other variables 
(e.g., LAI and SDM) for most cases, except in the Coruripe site where 
rooting depth is restricted to 40 cm and SWC becomes more important 
for crop growth. The drop in performance results between the calibra-
tion and evaluation simulations for the standalone approach also in-
dicates that this approach has more limitations as compared to the 
SWAP and tipping-bucket methods. Yet, our analysis would be improved 
if more comprehensive datasets were available to evaluate other 

Fig. 9. Boxplots of final stalk dry mass yields and total irrigation applications simulated for each year from 1980–2010 by each modelling approach (Standalone, 
SWAP and Tipping Bucket) and using different soil data types (SL and DL) across four producing regions in Brazil (Jatai, Petrolina, Piracicaba and Recife). Capitalized 
letters compare the model approaches in each location for a given soil type [DL or SL] (i.e. compare between coloured boxplots), whereas the lowercase letters 
compare the soil data types in each location for a given model approach [standalone or tipping-bucket or SWAP] (i.e. compare between boxplots of the same colour). 

Table 3 
Simulated mean and standard deviation (brackets) of water use efficiencies in a dry mass (g L− 1) based on applied irrigation (IWUE) and evapotranspiration (EWUE) by 
each combination of modelling approach (SWAP, TipBucket, Standalone) and soil data types (SL and DL) at the four long-term simulations sites (1980–2010). 
Capitalized letters compare the model approaches in each location for a given soil type [DL or SL], whereas the lowercase letters compare the soil data types in each 
location for a given model approach [standalone or tipping-bucket or SWAP].  

WUE in dry mass (g L-1) Site Standalone Tipping Bucket SWAP 

DL SL DL SL DL SL 

IWUE Jatai 10.4 (±1.6)Ca 5 (±0.7)Cb 17.2 (±1)Ba 14.5 (±1.3)Bb 28.7 (±2.9)Aa 27.4 (±2.7)Ab 

Petrolina 4.2 (±0.5)Ba 2.2 (±0.2)Bb 4.2 (±0.6)Ba 3.5 (±0.5)Ab 3.5 (±0.4)Aa 3.3 (±0.3)Aa 

Piracicaba 8.4 (±0.6)Ca 3.9 (±0.5)Cb 18.6 (±2)Ba 13.7 (±1.5)Bb 23.3 (±2.1)Aa 22.4 (±1.1)Ab 

Recife 17.4 (±1.9)Ca 8.2 (±0.8)Cb 15.7 (±1.6)Ba 12.4 (±1.6)Bb 12.2 (±1.5)Aa 11 (±0.7)Ab 

EWUE Jatai 3.7 (±0.4)Aa 3.4 (±0.3)Aa 3.8 (±0.6)Aa 3.7 (±0.5)Aa 3.8 (±0.6)Aa 3.7 (±0.4)Aa 

Petrolina 2.4 (±0.1)Aa 2.4 (±0.2)Aa 3.2 (±0.2)Ba 2.8 (±0.3)Aa 2.4 (±0.1)Aa 2.4 (±0.1)Aa 

Piracicaba 3.5 (±0.2)Aa 3.2 (±0.4)Aa 3.5 (±0.4)Aa 3.5 (±0.3)Aa 3.6 (±0.4)Aa 3.6 (±0.4)Aa 

Recife 3.6 (±0.5)Aa 3.3 (±0.4)Aa 3.7 (±0.2)Aa 3.6 (±0.4)Aa 3.3 (±0.2)Aa 3.3 (±0.2)Aa 

IWUE Mean 10.1 (±4.8)Ca 4.8 (±2.2)Cb 13.9 (±5.7)Ba 11 (±4.4)Bb 16.9 (±9.8)Aa 16 (±9.4)Ab 

EWUE Mean 3.3 (±0.5)Aa 3.1 (±0.4)Aa 3.6 (±0.2)Aa 3.4 (±0.4)Aa 3.3 (±0.5)Aa 3.3 (±0.5)Aa  
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important processes concerning soil evaporation and root growth and 
water uptake dynamics (Singels et al., 2010). 

4.2. How did we improve SAMUCA, limitations and opportunities for 
further research 

Each modelling framework inherits unique features that may suit 
better for the given application or target system it was initially devel-
oped for, i.e. the “fit-for-purpose” concept. One model may require a 
simplified representation of soil processes whereas others would incor-
porate complex interactions mimicking the real system. Passioura 
(1996) hypothesises that this practice could lead to the categorisation of 
models for “scientific” or “engineering” applications, and the misuse of 
them could be detrimental to education or decision-making (comparing 
it to “snake oil” salesmen). Keating (2020) have recently revisited Pas-
sioura’s work and reinforced the warning of models in the context of 
“snake oil salesmen”, which could be mitigated with a rigorous scientific 
approach to model development, parameterisation and application. 

In the context of soil water dynamics, Jarvis et al. (2022) postulate 
that the use of overly simplified soil water routines is unnecessary as 
physics-based flow models are at least as parsimonious and not difficult 
to parameterise. They also acknowledge the challenge on the parame-
trization of physically-based approaches to represent, for example, the 
complex role of soil macropores on the saturated hydraulic conductivity. 
With all that, modelers must face the challenge to investigate when 
enough detail is included parsimoniously depending on the research 
goal, scale and data availability (George et al., 2024). While 
tipping-bucket methods have been proved to work well for mimicking 
soil water fluxes for crop growth simulations (van Ittersum et al., 2003), 
the amount of “work-around fixes” needed to incorporate new features 
(e.g., capillary rise, leaching, dynamic watertable) may very well in-
crease the number of empirical parameters needed, which are harder to 
measure or estimate as compared to physically-based properties. On the 
other hand, gradient-based models connect well with plant hydraulics 
theory and atmospheric sciences and provide a solid foundation for 
process understanding (Jarvis et al., 2022; George et al., 2024). 

In this study, we equipped SAMUCA with two widely used soil water 
balance techniques for process-based crop models (tipping-bucket and 
Richards’ equation). An intercomparison of its performance under 
different locations and input soil information was assessed, including 
the simpler standalone water balance routine. Although the improve-
ments in performance indices of using SWAP over tipping-bucket were 
small, having SAMUCA incorporated into SWAP opens new opportu-
nities to explore and improve understanding of new aspects, for 
example, solute flow (vinasse application) (Christofoletti et al., 2013a, 
2013b), heat-flow (mulch-cover) (Vianna et al., 2020), intercropping 
(Pinto et al., 2019), waterlogging (Nóia Júnior et al., 2023) and root 
water and nutrients uptake (de Melo and de Jong van Lier, 2021). This 
rather qualitative improvement should be acknowledged and used in 
favour of future applications of the SAMUCA model. 

For our simulations, we did not consider soil temperature or mulch 
cover effect and also calibrated the soil hydraulic parameters. We opted 
to re-calibrate the three model approaches using the same optimization 
scheme to avoid any bias effect from a previous calibration procedure 
(Wallach et al., 2023), thereby isolating the impact of model structure 
and soil data quality. As a result, we observed that for each combination 
of model approach and data type, the crop and soil parameter values 
slightly changed within their limit range that was set according to the 
literature (de Melo and de Jong van Lier, 2021; Pereira et al., 2021). The 
reasons for that may very well lie in the differences in model structure 
that the parameter values would compensate for during the optimization 
procedure. Additionally, even within the expected plausible range of 
variation, multiple combinations of parameter values can lead to the 
same or very similar model performance. This makes it difficult to 
compare parameter values between modelling approaches. However, 
physically-based approaches such as SWAP may provide good 

approximations of the real system, i.e., via inverse modelling concept 
(Ines and Droogers, 2002; de Jong van Lier et al., 2015). 

Another overlooked aspect is the natural variability of observations 
which are generally not taken into account and difficult to infer for such 
comprehensive datasets. Stochastic techniques can be used to explore 
this aspect (Marin et al., 2017; Pereira et al., 2021), but the definition of 
a plausible range of parameter values and their interdependencies is still 
very challenging. The use of simplified input information also has a 
significant effect on the model results, as observed in our study. This is 
especially important when the goal of the work is directly related to the 
input information in question (e.g., soil water dynamic). In the same 
direction, model ensembles have proved their role in increasing pre-
diction accuracy and quantification of uncertainty (Martre et al., 2015; 
Wallach et al., 2018), but also at the cost of the heuristic feature of the 
models, limiting the understanding of emerging properties of the system 
(Yin et al., 2021). 

Although we did not modify crop-related algorithms, our results 
provide insights into the indirect effect of below-ground processes and 
water dynamics on crop growth and irrigation simulations. The stand-
alone water routine neglects important components of water balance, 
such as runoff and capillary rise. But most importantly, the highly 
oscillating pattern in SWC simulations with this routine may be directly 
associated with the fact that the original method presented by Teh 
(2006) was not developed and tested for daily time step and the limited 
number of soil layers. This is more evident especially in dry periods (e.g., 
between DAS 500–750 in Fig. 3), where the mass balance using this 
approach not always match (Fig. A5). 

Moreover, the standalone approach showed the higher differences in 
long-term simulations when the model was employed under DL or SL 
conditions (Fig. 9 and Table 3). In contrast, the SWAP and tipping- 
bucket approaches showed the highest robustness to soil data detail as 
the difference between long-term simulations under DL and SL were 
small for both methods (Fig. 9 and Table 3). However, it must be noted 
that our SL soil properties were generated with observed average DL 
data, which does not imply that gridded and/or coarser resolution 
datasets always agree with local DL information. Furthermore, there’s a 
growing number of methods that can be used to estimate vertical soil 
properties, and some are freely available for end-users (Hengl et al., 
2017). Future studies could systematically assess the impact of choosing 
different techniques for acquiring soil properties on process-based crop 
simulations. 

In a cross-site analysis, our results showed higher differences for 
IWUE than EWUE simulations, with EWUE values consistently lower in 
Petrolina site than in other sites which agrees with the higher soil 
evaporation in this semi-arid location. Our simulated EWUE values were 
also close to the range observed by Olivier and Singels (2015) of be-
tween 2,4 to 3,1 dry mass (g L− 1) (assuming a typical 70 % moisture in 
fresh stalks). A comprehensive field experiment with clear water stress 
impact on sugarcane is still missing. As observed in our results, only the 
CLER site presents a significant water stress condition, and this is mainly 
imposed by rooting depth restrictions as pointed out in previous studies 
(Marin et al., 2015; Vianna et al., 2022). Sugarcane roots can surpass 
4 m in depth giving more access to the water supply in the soil, which is 
reported as the main cause for small or non-significant differences of 
SDM in field trials testing irrigated versus rainfed conditions (Suguitani, 
2006; Laclau and Laclau, 2009). This is also evident at the Uniao site 
with irrigated and rainfed conditions, where less than a 5 % difference in 
SDM was observed between both treatments. The conjunction of this 
factor with the long-lasting characteristics of the sugarcane growing 
season and subsequent regrows prompts the development and assess-
ment of algorithms that better represent root growth dynamics and 
water and nutrient uptake (de Jong van Lier et al., 2008; de Melo and de 
Jong van Lier, 2021). 
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5. Conclusions 

This study examined the influence of different soil water balance 
approaches and soil data detail on sugarcane growth and irrigation 
scheduling simulations. The use of Richard’s equation approach (SWAP) 
showed slightly superior performance than the tipping-bucket method 
for soil moisture simulations, while both were superior than the stand-
alone method. Other variables, such as LAI and SDM presented similar 
performance using these both approaches, but this may be due to lack of 
comprehensive dataset on sugarcane growth under extreme drought or 
wet conditions. In terms of soil data detail, both methods (SWAP and 
tipping-bucket) showed higher robustness in long-term simulations as 
compared to the standalone approach which was more sensitive to soil 
detail conditions. In addition, the original standalone approach showed 
inconsistent spatiotemporal pattern as compared to the other routines, 
and therefore, should be avoided with the SAMUCA model. The differ-
ences between SWAP and tipping-bucket simulations were small, so 
modelers may select the appropriate approach based on the research 
question and data availability. While the tipping-bucket approach may 
be, at current date, easier to upscale and be employed at regional scale, 
the SWAP method opens new opportunities for process-understanding as 
it approximates to the physical system. 
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Appendix A

Fig A1. Objective function values as a function of iteration steps in the optimization process for each combination of the SAMUCA model and soil water balance 
routine (Standalone, SWAP, Tipping Bucket) using detailed soil profile data (DL) or a homogenous single layer (SL). Iterations were set to a maximum of 10000 and 
the test was repeated ten times to check the robustness of results. 
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Fig A2. Relative root profile as a function of the relative rooting depth after the optimization procedure for the SAMUCA model and soil water balance routine 
(Standalone, SWAP, Tipping Bucket) using detailed soil profile data (DL) or a homogenous single layer (SL). Curves were adjusted with a sigmoid curve controlled by 
parameters <y_ini>, <tm> and <delta> (Tab. A2).

Fig A3. Pearson correlation indices (r) between simulated soil moisture content by each modelling approach (SWAP, Tipping-Bucket, Standalone), using different soil 
data types (SL and DL), and for the 10 cm, 30 cm and 60 cm depth in the calibration site Piracicaba, Brazil. The color scale represents the Pearson correlation indices 
(r) between each modelling approach. When the values of Pearson correlation indices (r) are closer to 1 (red) it indicates high correlation between the corresponding 
modelling approaches. 
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Fig A4. Scatter plot of observed versus simulated soil moisture content by each modelling approach (SWAP, Tipping-Bucket, Standalone), using different soil data 
types (SL and DL), for the calibration site in Piracicaba, Brazil.

Fig A5. Time course simulations of water balance components by the Standalone version (Marin and Jones, 2014) at the Piracaba site between 500 and 750 days after 
simulation started (Fig. 3). RAIN+IRRIG is the incoming daily amount of water considered by the model as infiltration; DRN+EVA+RWU is outcoming (negative) 
daily amount of water considered by the model as deep drainage, soil evaporation and root water uptake; difTotalWater is daily difference in total water volume 
stored in the soil column. Days when difTotalWater > RAIN+IRRIG or difTotalWater < DRN+EVA+RWU indicate mass balance mismatch.  

Table. A1. Soil hydraulic characteristics for different soil (DL) layers and single layer (SL). Where WP, FC and SP are the soil water contents at the wilting point, field 
capacity and saturation, in cm3 cm− 3; ThetaRes and ThetaSat are the residual and saturation water content; alpha and n are the Mualen van Genuchten parameters; 
KSat is the soil saturated hydraulic conductivity, in cm day− 1; Size Sub-Comp is the corresponding sub-compartment size for each layer in SWAP, in cm; and the 
standalone layers defined for each of the 1–4 layers (average used for same layer number). SL data was calculated as the weighted mean of layers’ depth provided in DL, 
and used the same vertical discretization as DL  

Soil Type Site Depth WP FC SP alpha n ThetaRes ThetaSat KSat Size Sub-Comp Standalone Layer 

DL Piracicaba 5 0210 0280 0379 0153 1076 0000 0379 40,8 2,50  1 
15 0240 0300 0361 0069 1058 0000 0361 24,0 2,50  2 
30 0250 0320 0365 0020 1066 0000 0365 24,0 5,00  3 
60 0320 0390 0440 0029 1052 0000 0440 14,4 5,00  3 
100 0230 0399 0475 0005 1165 0000 0475 4,8 10,00  4 

Ap, Taboado 15 0200 0360 0430 0007 1163 0000 0430 57,6 2,50  1 

(continued on next page) 
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(continued ) 

Soil Type Site Depth WP FC SP alpha n ThetaRes ThetaSat KSat Size Sub-Comp Standalone Layer 

60 0210 0340 0470 0038 1126 0000 0470 57,6 5,00 2 
90 0220 0330 0480 0100 1106 0000 0480 57,6 7,50 3 
120 0250 0330 0490 0323 1081 0000 0490 57,6 10,00 4 

Colina 15 0110 0210 0410 0137 1173 0000 0410 69,6 2,50  1 
50 0120 0270 0350 0008 1222 0000 0350 45,6 5,00 2 
90 0120 0290 0400 0010 1238 0000 0400 40,8 10,00 3 

Olimpia 21 0150 0360 0490 0009 1236 0000 0490 43,2 3,00  1 
58 0160 0370 0480 0007 1230 0000 0480 36,0 7,40 2 
112 0160 0370 0480 0007 1230 0000 0480 19,2 9,00 3 
130 0160 0370 0480 0007 1230 0000 0480 16,8 9,00 4 

Coruripe 5 0044 0076 0287 0254 1273 0000 0287 76,8 2,50  1 
15 0050 0100 0241 0196 1204 0000 0241 76,8 2,50 2 
40 0112 0164 0232 0095 1100 0000 0232 76,8 5,00 3 

Uniao 5 0106 0201 0344 0074 1167 0000 0344 28,8 2,50  1 
15 0090 0220 0332 0016 1236 0000 0332 24,0 2,50 2 
75 0077 0201 0310 0015 1254 0000 0310 14,4 6,00 3 
120 0077 0201 0300 0013 1255 0000 0300 14,4 9,00 4 

Jatai 15 0126 0208 0451 0282 1160 0000 0451 43,2 3,00  1 
30 0115 0189 0430 0296 1167 0000 0430 26,4 5,00 2 
70 0129 0207 0422 0286 1148 0000 0422 19,2 5,00 3 
90 0140 0220 0402 0252 1131 0000 0402 4,8 10,00 4 

Petrolina 45 0216 0321 0436 0057 1103 0000 0436 4,8 3,00  1 
90 0208 0313 0434 0063 1106 0000 0434 36,0 7,50 2 
120 0221 0324 0439 0061 1100 0000 0439 36,0 10,00 3 

Recife 15 0089 0245 0461 0032 1264 0000 0461 36,0 2,50  1 
30 0274 0436 0491 0005 1133 0000 0491 38,4 5,00 2 
60 0230 0350 0564 0185 1114 0000 0564 36,0 5,00 3 
90 0201 0302 0474 0174 1109 0000 0474 36,0 10,00 4 

Piracicaba 5 0216 0285 0380 0147 1073 0000 0380 33,6 2,50  1 
15 0240 0303 0352 0033 1061 0000 0352 31,2 2,50 2 
45 0278 0347 0390 0019 1059 0000 0390 31,2 5,00 3 
90 0307 0394 0428 0007 1070 0000 0428 26,4 9,00 3 
120 0253 0393 0456 0008 1122 0000 0456 33,6 10,00 4 

SL Piracicaba 100 0260 0373 0432 0011 1098 0000 0432 40,8 Same as DL 
Ap, Taboado 120 0221 0338 0473 0062 1110 0000 0473 26,4 
Colina 90 0118 0269 0382 0013 1218 0000 0382 21,6 
Olimpia 130 0158 0368 0482 0008 1231 0000 0482 4,8 
Coruripe 40 0088 0137 0241 0236 1125 0000 0241 4,8 
Uniao 120 0079 0203 0310 0015 1248 0000 0310 14,4 
Jatai 90 0129 0207 0424 0284 1149 0000 0424 57,6 
Petrolina 120 0214 0319 0436 0060 1103 0000 0436 48,0 
Recife 90 0204 0331 0505 0084 1126 0000 0505 26,4 
Piracicaba 120 0277 0370 0417 0012 1079 0000 0417 76,8 

c: data used in the calibration runs; s: data used in the long-term runs (Vianna and Sentelhas, 2016)  

Table. A2. Calibrated parameter values for each model approach (SWAP, Tipping-Bucket, and Standalone) and soil data type (SL, DL), with their respective minimum 
and maximum ranges (defined from literature and field data). The relative results of this table are shown in Fig. 6, whereas the definition of each parameter is given in 
Tab. A3. The resulting roots distribution are shown in Fig. A2.  

SWAP Tipping-Bucket Standalone 

Parameter min max DL SL Parameter min max DL SL Parameter min max DL SL 

<amax> 40 62 41,30 60,68 <amax> 40 62 41,30 41,30 <amax> 40 62 41,30 41,30 
<eff> 0,04 0,08 0,06 0,04 <eff> 0,04 0,08 0,06 0,06 <eff> 0,04 0,08 0,06 0,06 
<kc_min> 0,05 0,8 0,13 0,07 <kc_min> 0,05 0,8 0,79 0,79 <kc_min> 0,05 0,8 0,79 0,79 
<eoratio> 0,75 1,3 1,29 1,30 <eoratio> 0,75 1,3 1,00 1,00 <eoratio> 0,75 1,3 1,00 1,00 
<maxlai_eo> 2 6 3,07 3,00 <maxlai_eo> 2 6 4,50 4,50 <maxlai_eo> 2 6 4,50 4,50 
<y_ini> 0,5 20 12,43 18,08 <y_ini> 0,5 20 15,60 19,94 <y_ini> 0,5 20 13,00 20,00 
<tm> 0001 0,6 0,1260 0,0800 <tm> 0001 0,6 0,1500 0,0280 <tm> 0001 0,6 0,1000 0,0200 
<delta> 0,5 20 14,8 20,0 <delta> 0,5 20 10,0 20,0 <delta> 0,5 20 11,0 20,0 
<HLIM3H>0 -1600 -400 -1219 -1218           
<HLIM3L>0 -3326 -1600 -2033 -2750           
<HLIM4>0 -16000 -10000 -16000 -16000           
<ores>1 0 0,23 0,00 0,05 <stp>1 0,34 0,54 0,39 0,41 <stp>1 0,34 0,54 0,44 0,40 
<ores>2 0 0,23 0,08 0,05 <stp>2 0,34 0,54 0,35 0,41 <stp>2 0,34 0,54 0,38 0,40 
<ores>3 0 0,23 0,00 0,05 <stp>3 0,34 0,54 0,39 0,41 <stp>3 0,34 0,54 0,43 0,40 
<ores>4 0 0,23 0,03 0,05 <stp>4 0,34 0,54 0,51 0,41 <stp>4 0,34 0,54 0,39 0,40 
<ores>5 0 0,23 0,23 0,05 <stp>5 0,34 0,54 0,53 0,41      
<osat>1 0,34 0,52 0,43 0,48 <fcp>1 0,26 0,4 0,30 0,36 <fcp>1 0,26 0,4 0,30 0,41 
<osat>2 0,34 0,52 0,35 0,48 <fcp>2 0,26 0,4 0,32 0,36 <fcp>2 0,26 0,4 0,32 0,41 
<osat>3 0,34 0,52 0,41 0,48 <fcp>3 0,26 0,4 0,35 0,36 <fcp>3 0,26 0,4 0,30 0,41 
<osat>4 0,34 0,52 0,42 0,48 <fcp>4 0,26 0,4 0,39 0,36 <fcp>4 0,26 0,4 0,41 0,41 
<osat>5 0,34 0,52 0,45 0,48 <fcp>5 0,26 0,4 0,38 0,36      
<alfa>1 0 0,98 0675 0011 <wpp>1 0,19 0,35 0200 0248 <wpp>1 0,19 0,35 0244 0243 

(continued on next page) 
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(continued ) 

SWAP Tipping-Bucket Standalone 

Parameter min max DL SL Parameter min max DL SL Parameter min max DL SL 

<alfa>2 0 0,98 0150 0011 <wpp>2 0,19 0,35 0228 0248 <wpp>2 0,19 0,35 0250 0243 
<alfa>3 0 0,98 0025 0011 <wpp>3 0,19 0,35 0234 0248 <wpp>3 0,19 0,35 0274 0243 
<alfa>4 0 0,98 0014 0011 <wpp>4 0,19 0,35 0305 0248 <wpp>4 0,19 0,35 0321 0243 
<alfa>5 0 0,98 0071 0011 <wpp>5 0,19 0,35 0285 0248      
<npar>1 1,04 1,5 1101 1152           
<npar>2 1,04 1,5 1051 1152           
<npar>3 1,04 1,5 1075 1152           
<npar>4 1,04 1,5 1047 1152           
<npar>5 1,04 1,5 1086 1152           
<ksat>1 2,64 1000 63,9 953,2 <ksat>1 0,11 42 39,7 19,8 <ksat>1 0,11 42 1,7 0,2 
<ksat>2 2,64 1000 166,0 953,2 <ksat>2 0,11 42 39,7 19,8 <ksat>2 0,11 42 0,2 0,2 
<ksat>3 2,64 1000 326,6 953,2 <ksat>3 0,11 42 0,2 19,8 <ksat>3 0,11 42 0,2 0,2 
<ksat>4 2,64 1000 881,3 953,2 <ksat>4 0,11 42 30,6 19,8 <ksat>4 0,11 42 42,0 0,2 
<ksat>5 2,64 1000 953,3 953,2 <ksat>5 0,11 42 39,7 19,8      
<lexp>1 -5,3 -0,1 -3,93 -5,23           
<lexp>2 -5,3 -0,1 -4,04 -5,23           
<lexp>3 -5,3 -0,1 -3,80 -5,23           
<lexp>4 -5,3 -0,1 -3,10 -5,23           
<lexp>5 -5,3 -0,1 -0,51 -5,23             

Table. A3 
Model parameter names, definitions and units  

Parameter Definition Unit 

<amax> Assimilation rate at light saturation point µmol/m2/s 
<eff> Carboxylation efficiency µmol/m2/s (µmol/m2/s)-1 
<kc_min> Minimum crop coefficient (Kcb_ini) dimensionless 
<eoratio> Ratio between maximum LAI and crop coefficient at maximum canopy formation dimensionless 
<maxlai_eo> Leaf area index when maximum evapotranspiration occurs m2/m2 
<y_ini> Empirical coefficient defining vertical root profile dimensionless 
<tm> Empirical coefficient defining vertical root profile (mid-point) dimensionless 
<delta> Empirical coefficient defining vertical root profile (shape) dimensionless 
<HLIM3H> Feddes root water uptake pressure head limit 3High (SWAP) cm 
<HLIM3L> Feddes root water uptake pressure head limit 3Low (SWAP) cm 
<HLIM4> Feddes root water uptake pressure head limit 4 (SWAP) cm 
<ores> Residual soil water content (SWAP) cm3/cm3 
<osat> Saturated soil water content (SWAP) cm3/cm3 
<alfa> Parameter alfa of main drying curve (SWAP) 1/cm 
<npar> Parameter n of MvG model (SWAP) dimensionless 
<ksat> Soil hydraulic conductivity at saturation cm/d, cm/h 
<lexp> Exponent in hydraulic conductivity function (SWAP) dimensionless 
<stp> Saturated water content (Tipping-bucket/Standalone) cm3/cm3 
<fcp> Field capacity point (Tipping-bucket/Standalone) cm3/cm3 
<wpp> Wilting point (Tipping-bucket/Standalone) cm3/cm3   

Table. A4 
Two-way ANOVA results comparing 30-year simulations of Total irrigation (Tirr) and Stalk Dry Mass (SDM) with different Models (Standalone, Tipping-Bucket, SWAP) 
and Soils (DL and SL). P-values lower than 0.01 represent statistically significance of 1 %  

Variable Site Sources of variation Degrees of Freedom Sum of Squares Mean of Squares F-value P-value 

Tirr Recife Model 2 3.35E+05 1.67E+05 20.2 1.2E-08 
Soil 1 8.50E+05 8.50E+05 102.7 2.2E-19 
Model:Soil 2 4.59E+05 2.29E+05 27.7 3.3E-11 
Residuals 180 1.49E+06 8.28E+03   

Piracicaba Model 2 1.04E+07 5.22E+06 538.7 1.0E-76 
Soil 1 1.51E+06 1.51E+06 156.2 3.3E-26 
Model:Soil 2 1.86E+06 9.30E+05 96.0 4.2E-29 
Residuals 180 1.74E+06 9.68E+03   

Jatai Model 2 7.19E+06 3.60E+06 489.2 1.7E-73 
Soil 1 9.88E+05 9.88E+05 134.4 1.4E-23 
Model:Soil 2 1.34E+06 6.72E+05 91.4 4.1E-28 
Residuals 180 1.32E+06 7.35E+03   

Petrolina Model 2 4.96E+06 2.48E+06 140.4 1.8E-37 
Soil 1 6.59E+06 6.59E+06 373.4 9.2E-46 
Model:Soil 2 4.53E+06 2.27E+06 128.3 2.3E-35 
Residuals 180 3.18E+06 1.77E+04   

SDM Recife Model 2 383.7 191.8 313.6 2.2E-59 
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Table. A4 (continued ) 

Variable Site Sources of variation Degrees of Freedom Sum of Squares Mean of Squares F-value P-value 

Soil 1 88.2 88.2 144.2 9.0E-25 
Model:Soil 2 187.5 93.7 153.2 1.4E-39 
Residuals 180 110.1 0.6   

Piracicaba Model 2 215.9 108.0 45.7 8.7E-17 
Soil 1 64.9 64.9 27.5 4.4E-07 
Model:Soil 2 118.9 59.5 25.2 2.3E-10 
Residuals 180 424.9 2.4   

Jatai Model 2 307.4 153.7 171.5 2.1E-42 
Soil 1 87.3 87.3 97.4 1.2E-18 
Model:Soil 2 150.9 75.5 84.2 1.6E-26 
Residuals 180 161.4 0.9   

Petrolina Model 2 469.5 234.8 119.3 1.0E-33 
Soil 1 61.1 61.1 31.0 9.1E-08 
Model:Soil 2 181.5 90.7 46.1 6.8E-17 
Residuals 180 354.2 2.0     

Table. A5 
Two-way ANOVA results comparing 30-year simulations of IWUE and EWUE with different Models (Standalone, Tipping-Bucket, SWAP) and Soils (DL and SL). P- 
values lower than 0.01 represent statistically significance of 1 %  

Variable Site Sources of variation Degrees of Freedom Sum of Squares Mean of Squares F-value P-value 

IWUE Recife Model 2 186,1 93,1 103,5 1,2E-30 
Soil 1 969,7 969,7 1078,2 6,4E-78 
Model:Soil 2 533,3 266,7 296,5 1,1E-57 
Residuals 180 161,9 0,9   

Piracicaba Model 2 8758,1 4379,1 4868,7 2,0E-157 
Soil 1 548,1 548,1 609,4 1,1E-59 
Model:Soil 2 150,5 75,2 83,6 2,1E-26 
Residuals 180 161,9 0,9   

Jatai Model 2 13007,3 6503,6 7230,8 1,2E-172 
Soil 1 456,5 456,5 507,6 2,9E-54 
Model:Soil 2 134,6 67,3 74,8 2,2E-24 
Residuals 180 161,9 0,9   

Petrolina Model 2 13,7 6,9 7,6 0001 
Soil 1 43,5 43,5 48,3 6,5E-11 
Model:Soil 2 26,8 13,4 14,9 1,0E-06 
Residuals 180 161,9 0,9   

EWUE Recife Model 2 3,8 1,9 2,1 0122 
Soil 1 0,8 0,8 0,9 0339 
Model:Soil 2 0,7 0,4 0,4 0670 
Residuals 180 161,9 0,9   

Piracicaba Model 2 2,0 1,0 1,1 0338 
Soil 1 0,5 0,5 0,5 0473 
Model:Soil 2 0,9 0,5 0,5 0597 
Residuals 180 161,9 0,9   

Jatai Model 2 1,7 0,8 0,9 0401 
Soil 1 1,3 1,3 1,4 0232 
Model:Soil 2 0,4 0,2 0,2 0795 
Residuals 180 161,9 0,9   

Petrolina Model 2 14,9 7,4 8,3 3,7E-04 
Soil 1 0,8 0,8 0,9 0339 
Model:Soil 2 1,7 0,8 0,9 0401 
Residuals 180 161,9 0,9     

Table. A6 
Statistical indices of performance for stalk dry mass (SDM) and leaf area index (LAI) for each modelling approach (SWAP, Tipping-Bucket, Standalone), using different 
soil data types (SL and DL). RRMSE is the relative root mean square error (%), EF is the model efficiency (dimensionless), R2 is the determination index of precision 
(dimensionless), d is the accuracy index of Wilmot (dimensionless), and RMSE is the root mean squared error (Mg hm-2 for SDM and unitless for LAI)  

Model SoilType Variable RRMSE EF R2 d RMSE 

Standalone DL SDM 0,31 0,81 0,94 0,96 6,00 
LAI 0,45 -0,51 0,20 0,67 1,16 

SL SDM 0,26 0,86 0,94 0,97 5,09 
LAI 0,45 -0,52 0,21 0,67 1,16 

TipBucket DL SDM 0,16 0,95 0,98 0,99 3,21 
LAI 0,29 0,36 0,48 0,83 0,75 

SL SDM 0,15 0,95 0,98 0,99 2,95 
LAI 0,30 0,29 0,44 0,81 0,79 
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Table. A6 (continued ) 

Model SoilType Variable RRMSE EF R2 d RMSE 

SWAP DL SDM 0,33 0,79 0,91 0,95 6,33 
LAI 0,25 0,51 0,55 0,86 0,66 

SL SDM 0,24 0,88 0,90 0,97 4,69 
LAI 0,26 0,49 0,57 0,83 0,67  
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Jarvis, N., Larsbo, M., Lewan, E., Garré, S., 2022. Improved descriptions of soil hydrology 
in crop models: The elephant in the room? Agric. Syst. 202, 103477. 

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., 
Ritchie, J.T., 2003. The DSSAT cropping system model. Eur. J. Agron.: J. Eur. Soc. 
Agron. 18 (3), 235–265. 

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Wheeler, T.R., 
2017. Brief history of agricultural systems modeling. Agric. Syst. 155, 240–254. 

Jones, M.R., Singels, A., 2018. Refining the Canegro model for improved simulation of 
climate change impacts on sugarcane. Eur. J. Agron.: J. Eur. Soc. Agron. 100, 76–86. 

de Jong van Lier, Q., van Dam, J.C., Metselaar, K., de Jong, R., Duijnisveld, W.H.M., 
2008. Macroscopic root water uptake distribution using a matric flux potential 
approach. Vadose zone J.: VZJ 7 (3), 1065–1078. 

de Jong van Lier, Q., Wendroth, O., van Dam, J.C., 2015. Prediction of winter wheat 
yield with the SWAP model using pedotransfer functions: An evaluation of 
sensitivity, parameterization and prediction accuracy. Agric. Water Manag. 154, 
29–42. 

Kaelo, P., Ali, M.M., 2006. Some Variants of the Controlled Random Search Algorithm for 
Global Optimization. J. Optim. Theory Appl. 130 (2), 253–264. 

Keating, B.A., 2020. Crop, soil and farm systems models – science, engineering or snake 
oil revisited. Agric. Syst. 184 (102903), 102903. 

Keating, B.A., Robertson, M.J., Muchow, R.C., Huth, N.I., 1999. Modelling sugarcane 
production systems I. Development and performance of the sugarcane module. Field 
Crops Res. 61 (3), 253–271. 

Keulen V.H. & Seligman N.G. (1988). Simulation of Water Use, Nitrogen Nutrition and 
Growth of a Spring Wheat Crop. 310 pages. Wageningen: Pudoc. 1987. Price Df1 
100.00 (hard covers). ISBN 90 220 0905 X. The Journal of agricultural science, 110 
(2), 428–428. 

Kroes J.G., Van Dam J.C. & Bartholomeus R.P. (2017). SWAP version 4. 
Laclau, P.B., Laclau, J.P., 2009. Growth of the whole root system for a plant crop of 

sugarcane under rainfed and irrigated environments in Brazil. Field Crops Res. 
Lawrence, D.M., Fisher, R.A., Koven, C.D., Oleson, K.W., Swenson, S.C., Bonan, G., 

Zeng, X., 2019. The Community Land Model Version 5: Description of New Features, 
Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 11 
(12), 4245–4287. 

Marin, F., Jones, J.W., Boote, K.J., 2017. A Stochastic Method for Crop Models: Including 
Uncertainty in a Sugarcane Model. Agron. J. 109, 483–495. 

Marin, F.R., Jones, J.W., 2014. Process-based simple model for simulating sugarcane 
growth and production. Sci. Agric. 71 (1), 1–16. 

Marin, F.R., Thorburn, P.J., Nassif, D.S.P., Costa, L.G., 2015. Sugarcane model 
intercomparison: Structural differences and uncertainties under current and 
potential future climates. Environ. Model. Softw. 72, 372–386. 

Marin, F.R., Inman-Bamber, G., Silva, T.G.F., Vianna, M.S., Nassif, D.S.P., Carvalho, K.S., 
2020. Sugarcane evapotranspiration and irrigation requirements in tropical climates. 
Theor. Appl. Climatol. 140 (3-4), 1349–1357. 

Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J.W., Rötter, R.P., Wolf, J., 2015. 
Multimodel ensembles of wheat growth: many models are better than one. Glob. 
Change Biol. 21 (2), 911–925. 

de Melo, M.L.A., de Jong van Lier, Q., 2021. Revisiting the Feddes reduction function for 
modeling root water uptake and crop transpiration. J. Hydrol. 603, 126952. 

Nassif, D.S.P., da Costa, L.G., dos Santos Vianna, M., dos Santos Carvalho, K., Marin, F.R., 
2019. The role of decoupling factor on sugarcane crop water use under tropical 
conditions. Exp. Agric. 1–11. 
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