
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports

Application of physics encoded
neural networks to improve
predictability of properties
of complex multi‑scale systems
Marcel B. J. Meinders 1,2*, Jack Yang 1,3 & Erik van der Linden 1,3

Predicting physical properties of complex multi-scale systems is a common challenge and demands
analysis of various temporal and spatial scales. However, physics alone is often not sufficient due to
lack of knowledge on certain details of the system. With sufficient data, however, machine learning
techniques may aid. If data are yet relatively cumbersome to obtain, hybrid methods may come to
the rescue. We focus in this report on using various types of neural networks (NN) including NN’s into
which physics information is encoded (PeNN’s) and also studied effects of NN’s hyperparameters.
We apply the networks to predict the viscosity of an emulsion as a function of shear rate. We show
that using various network performance metrics as the mean squared error and the coefficient of
determination ( R2 ) that the PeNN’s always perform better than the NN’s, as also confirmed by a
Friedman test with a p-value smaller than 0.0002. The PeNN’s capture extrapolation and interpolation
very well, contrary to the NN’s. In addition, we have found that the NN’s hyperparameters including
network complexity and optimization methods do not have any effect on the above conclusions. We
suggest that encoding NN’s with any disciplinary system based information yields promise to better
predict properties of complex systems than NN’s alone, which will be in particular advantageous for
small numbers of data. Such encoding would also be scalable, allowing different properties to be
combined, without repetitive training of the NN’s.

Keywords  Neural networks, Machine learning, Physics encoded neural networks, Multi-scale modeling,
Complex systems

Complex multi-scale systems are systems that are continuously changing, in an interdependent, self-organizing,
and adaptive manner. An example of a real-life complex multi-scale system is the agri-food system1. A system-
atic way to predict the response of a complex multi-scale system on an intervention will involve analyses on its
multiple scales, including the adaptive dynamics at all scales. This has been coined a complex systems approach1.
Such approach has been argued to thrive from integrating various methodologies, including scaling, multi-scale
modeling, machine learning, including graphical and evolutionary algorithms (1 and specific references therein).
Also computational techniques have been suggested for the same application area by Perrot et al.2. However, in
both articles, no specific methodology was articulated on how to specifically integrate multi-scale modeling and
machine learning techniques in a quantitative fashion.

Conducting a multi-scale analysis is a complex endeavor since multiple connections can exist between differ-
ent scales. Furthermore, such properties evolve, and the according dynamics usually cannot be covered by formal
analytic descriptions. This according complexity makes the use of available mechanistic models alone difficult.
A common strategy to relate scales with each other is to introduce intermediate length scales, which contain
integrated information of the scales below, which can subsequently be incorporated into descriptions for the
scale above the intermediate scale. An example is the so-called meso- or micro-structural scale in between the
molecular and macroscopic scale. This strategy still has its challenges, attributed to the ill-reliability of microscale
models, the difficulty in simulating the micro-scale properties accurately, and the often intricate “entanglement”
between micro-structural and macroscopic scale properties3.

OPEN

1Wageningen University and Research Centre, Wageningen, The Netherlands. 2Wageningen Food and Biobased
Research, Wageningen, The Netherlands. 3Wageningen University, Wageningen, The Netherlands. *email:
marcel.meinders@wur.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-65304-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

In order to accommodate these challenges described in the previous paragraph, machine learning (ML)
using neural networks (NNs) can be an asset when sufficient data are available. In practice the amount of data
available is not sufficient. In this case, using physical information may help. In general, combining physics-based
multi-scale modeling with ML techniques may cleverly solve two problems at the same time. Physics may provide
the structuring of ML techniques, and turning correlative relations into casual ones. Attempts to combine ML
with physics-based modeling for dynamics of lake temperature4–6, and phosphorus concentration7 have shown
that one can obtain better predictions with a smaller number of data and for scenarios that are distinct from the
training scenario used in the ML algorithm itself. A recent review on physics-informed machine learning can
be found in8 and with application focus on life sciences in9. In these reviews, the challenges and possible routes
forward to model spatial-temporal evolution combining physics and ML are clearly addressed. To capture the
spatio-temporal dynamics, one can use partial differential equations to express physics-based conservation laws,
where such conservation laws can be constructed from constitutive laws that represent the local behaviour, in
combination with using ordinary differential equations and their spatial derivatives. This has been illustrated in
more detail for rheology-informed neural networks (RhiNNs) by Mahmoudabadbozchelou and Jamali10. Interest-
ingly, Sadaat et al11 report the use of a platform of possible constitutive models to have the RhiNN pick from in
order to optimize its predictions for more complex fluid behavior. These constitutive models need not represent
the entire physics of the problem in all its details. Interestingly, parts of constitutive models can be captured by
means of applying scattering under flow, as demonstrated by Young et al while using Small Angle X-ray scat-
tering on dilute rod suspensions12. In trying to take into account spatio-temporal non-linear features, Dabiri et
al13 report the use of fractional derivatives to incorporate into the NN models. Fractional derivatives are used to
represent the presence of memory effects, which may be uncovered by introducing hidden variables that describe
local effects, as addressed in Weinan et al3. In that work, an exciting example of introducing temporal (dynami-
cal) information has been addressed in the form of so-called “recurrent neural networks”. The neural networks
are machine learning models for time series. These models use hidden variables, making the relationships, as
expressed in the models, local. If no hidden variables are being used, one effectively introduces memory effects3.

There are several ways at our disposal to add physical information into a neural network. For example, one
can ascribe physics information to nodes in the network14. Alternatively, one can add physical information
regarding symmetries that need to be obeyed. Another option could be the use of physics-based model data as
input to AI models. For a survey on recent progress in various fields, the reader is referred to Willard et al14. It is
noted that humans can develop physics-based architectures of neural networks, but this can be automated as well
(14 references 13,73, 115). A concrete set of examples of improvement of neural network performance, which at
the same time preserves the correctness of the physics, has been recently published by Takeishi and Kalousis15.

In regards to the agri-food area, in particular in applying ideas on combining multi-scale modeling with ML
directly, i.e. without the need to reprogram the neural networks ML part, a review of Peng et al16 is worthwhile to
mention. Works with more direct embedding in food science that address the combination of physics information
and ML, without reprogramming the neural networks that underlie the ML are, for example, found elsewhere17.
In this same area already some reviews can be found18,19.

We note that the above addresses adding disciplinary information to the input or output to an AI methodol-
ogy. This is referred as physical informed neural networks (PiNNs) according to Faroughi et al8. On the other
hand, physics knowledge can also be build into the network itself, referred to as physics encoded neural networks
(PeNN’s)8. It is in this spirit that we like to situate our work on PeNN’s.

To our knowledge, encoding of physics information into NN’s in the area of multi-layer complex systems as
described has not been addressed. Therefore, in the current article, we quantify the effects of including physics
information in the architecture of NNs. We investigate uncertainty in prediction as a function of training set
size, and effects on uncertainty/errors in inter- and extrapolating beyond a training set. We specifically look into
the problem of protein stabilized oil droplets aggregating into clusters, and how the cluster size distribution in
turn will determine the shear viscosity versus shear strain. The problem becomes complex as the flow influences
the aggregation and vice versa and as one adds more experimental parameters that are known to influence the
viscosity, such as the pH, protein type etc. The example lends itself to demonstrating the improvement of the
predictability of a NN by integrating physics into it, i.e. transferring an NN to a PeNN.

Flow of complex food fluids
Many complex foods are in fact dispersions, which are composed of fluid or solid particles dispersed in a fluid.
Their flow behaviour under deformation is expressed by the viscosity. Texture, consumer acceptance, and pro-
cessing conditions are strongly related to the viscosity. To optimize formulation, it is important to get insights
in the dispersion’s viscosity and its controlling factors. Similarly, this also holds for non-food materials like e.g.
paints, coatings, and cosmetics. Due to the complex nature of the dispersions, the viscosity depends on the rate
of deformation. For our purpose, we focus here on shear deformation.

The shear rate-dependent viscosity depends on the structure of the dispersions and the interactions between
the dispersed particles. The interactions control the assembly of (primary) particles into clusters. During defor-
mation of the complex fluid, formation and breakdown of these clusters depend on time, shear rate, particle
concentrations, cluster sizes, and inter-particle and inter-cluster interactions and temperature. Many studies have
been published to describe the shear-rate dependent viscosity of complex dispersions20–23. Models to describe
this kind of shear rate-dependent viscosity should contain the structural dynamics. One such model is the con-
stitutive model by Quemada and coworkers24–28, which describes the rheology of complex colloidal systems in
a large range of volume fractions using key physical parameters. Because the model fits very well with viscosi-
ties of food dispersions20,21,23,29 (see also Fig. 1), we used the Quemada model to study the predictive power of

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

different NNs, and hybrid neural networks containing physics, for predicting the shear rate dependent viscosity
of complex dispersions.

Quemada model
The Quemada model describes the viscosity of complex fluids in terms of an effective volume fraction, which
depends on the properties of the primary particles, including diffusion coefficients, interaction parameters,
packing fraction of particles in a cluster, and shear rate. Here, we will focus on the semi-stationary regime, where
the system is in equilibrium at a certain shear rate. The starting point of the model is the relation between the
viscosity of the fluid η and the effective volume fraction φe . This relation is given by24–28

with ηf the viscosity of the continuous phase, and φm the maximum volume fraction. The effective volume frac-
tion is given by24–28

with φp the volume fraction of the primary particles, C = 1/ϕ − 1 , a compactness factor where ϕ is the volume
of the particles in a cluster divided by the volume of that cluster. S is a structural parameter defined as the ratio
between the volume fraction of primary particles in the cluster φpA and the total volume fraction of primary
particles φp24–28

The structural parameter follows a certain kinetic reaction scheme, which, in its basic form, reads24–28

with κD and κh characteristic relaxation rates of Brownian (diffusion) and hydrodynamic (shear stress) forces.
S0 and S∞ correspond to the value of the structural parameter at zero and infinite shear rate. Additional terms
related to particle interactions can be added28. The steady-state value of the structural parameter at a certain
shear-rate γ̇ is then given by24–28

with

and a is the size of the primary particle, Dp the diffusion coefficient of the primary particles, kB Boltzmann’s
constant, T temperature, and Pe the Péclet number. The above equations give the fluid’s viscosity in the stationary
state as a function of the key parameters24–28

(1)η = ηf

(

1−
φe

φm

)−2

(2)φe = φpA/ϕ + (φp − φpA) = φp(1+ CS)

(3)S =
φpA

φp

(4)
dS

dt
= κD(S0 − S)− κh(S − S∞)

(5)S =
S0 + θS∞

1+ θ

(6)θ =
κh

κD
=

γ̇

a2/Dp
= Pe =

6πηf a
3γ̇

kBT

Figure 1.   Example of a flow curve of an oil-in-water emulsion and Quemada-model-fit.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

Figure 1 shows an example of a measured flow curve of a pea protein stabilized oil-in-water emulsion, with an
oil volume fraction of 0.5. The figure also shows the fit with the Quemada model with γ̇c =

6πηf a
3

kBT
= 4.7 (cor-

responding to an average droplet size of a = 1 µm), CS0 = 0.25 (indicating that less than about 25% of the oil
droplets are flocculated at zero shear rate) and CS∞ = 0 (indicating that all clusters broke up at a high shear rate).

Neural networks and physics‑encoded neural networks
To investigate the predictive power of NNs and PeNNs, shear rate dependent viscosity data was generated with
the Quemada model and used to train and test NNs and PeNNs with different architectures. In order to align with
physical experiments, we aim to predict y = η from a set of input parameters {xi} . In an experimental setting,
η is measured as a function of the shear rate γ̇ , so γ̇ ∈ {xi} . Various other input characteristics of the dispersion
can be measured or are known. For example, when preparing a sample, the volume fraction φp of the primary
particles is known, like the volume fraction of oil in an emulsion. Other parameters can be measured and esti-
mated using various different, often indirect, techniques, like e.g. the particle and cluster size distributions from
light scattering techniques and inter-particle forces from DLVO theory.

The NNs and PeNNs were built using Python (version 3.9.16) in combination with the open source platform
for machine learning TensorFlow (version 2.11.0), which uses Keras (version 2.11.0) as the high-level API. Data
was generated and used to train various NNs and PeNNs with different architectures. The shear rate γ̇ and viscos-
ity η can vary over several orders of magnitude. To train, validate, and test the NNs and PeNNs, we used log γ̇
and log η , so that all input and output parameters are in the order of 1 to 10, and no normalization of the input
and output data is needed. We performed some extra calculations using batch normalization within the neural
network layers. However, it turned out that the performance of the networks did not improve.

Different architectures of NN’s were investigated, varying in number of hidden layers and number of neurons
per layer. The rectified linear (ReLu) activation function was used in all layers except for the final layer, for which
we used the linear activation function because we are dealing here with a regression problem30–32 and not a clas-
sification problem. As default we used the Adam optimization algorithm to train the NN’s, which is generally
accepted to be one of the most efficient algorithms in machine learning. We used a learning rate of 10−3 with
a decay of 5 · 10−6 , mean squared error (mse) as loss function or performance metric, and 20% of the learning
data for validation. The training was stopped when the loss function of the validation set has stopped improving
in 500 epochs using the build-in TensorFlow callback function Early-Stopping.

We also performed hyper parameter tuning by investigating different NN’s with different complexities, opti-
mization routines like Nadam, AdamW, and Lion, learning rates, and activation functions.

We investigated two cases to compare. In case one, we predict the viscosity as a function of two input param-
eters, while in case two, we predict the viscosity as a function of four input parameters.

Performance of the NNs and PeNNs was assessed using the performance metrics coefficient of determina-
tion R2 and the mean square error (mse) between predicted and ground truth viscosity values of the test set, for
unbiased evaluation. To check to what extent the performance of the studied networks differ, a graphical com-
parison of the metrics was performed. We also includied a Friedman test to quantify the performance differences,
similar as done by Zamri et al33. In addition, we compared the predicted and ground truth viscosities graphically.

Case 1: networks with 2 input parameters and 1 output parameter
For case one, two different NNs were studied (see Fig. 2). One with an architecture consisting of two hidden
dense layers. The first layer has n1 = 32 neurons and is densely connected to the nin = 2 input nodes, while the
second layer has n2 = 8 neurons. Another NN studied has an architecture consisting of three hidden dense
layers. The first, second and third layer has n1 = 128 , n2 = 32 and n3 = 8 neurons, respectively. For both NNs,
the first layer is densely connected to the nin = 2 input nodes, while the last layer is densely connected with the
output layer having nout = 1 neuron.

The PeNN consists of 3 layers, each corresponding to a physical quantity, in other words, the activation func-
tions are completely physics-based. In this sense, this PeNN is actually totally dominated by physics, to illustrate
the importance of physics in a NN. The first layer corresponds to the structure parameter S. It has one input
x = log γ̇ and activation function Sact = 1/(10xw + 1) . Here, w is a trainable parameter and should correspond

to 6πηf a
3

kBT
 as can be simply derived from Eqs. 5 and 6. The second layer corresponds to the effective volume

fraction φe having two inputs, being the output of the S-layer and the input φp . The activation of the φe-layer is

(7)η = η(γ̇ ,φp, S0, S∞,C, ηf , a,T)

Figure 2.   Schematic architecture of the NN (left, middle) and PeNN (right) configuration.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

φe,act = x1(x2w + 1) , with input x = [x1, x2] and w a trainable parameter corresponding to C (equation 2). The
third layer corresponds to the viscosity with activation function ηact = −2 log(1− xw)+ b , where w and b are
trainable parameters, corresponding to 1/φm and log ηf  , respectively, and x is the input equal to the output of
the effective-volume-fraction-layer.

In case one, only the shear rate γ̇ and particle volume fraction φp were varied and taken as input parameters
for the constitutive model to generate the steady-state fluid viscosity η . Other parameters were taken constant,
being T = 293 K, a = 5 nm, C = 2 , S0 = 1 , S∞ = 0 , and ηf = 10−3 Pa.s.

Case 2: networks with 4 input parameters and 1 output parameter
In case 2, also S0 and S∞ were varied to generate flow curve data to train NNs and PeNNs with architectures,
as depicted in Fig. 3. These parameters correspond to the structure parameter at zero and infinite shear rate,
respectively. In this sense, this PeNN is not totally dominated by physics. In general, parameters are difficult to
asses as they can be related to handling history, inter-particle forces, amount of protein denaturation, pH, salt
concentration, etc. Here, we took two representative input parameters p1 and p2 between 0 and 1.

Similar as above, two different NNs were studied with architectures consisting of two and three dense hidden
layers consisting of 32-8 and 128-32-8 neurons. For both, the first layer is densely connected to the nin = 4 input
nodes, while the last layer is densely connected with the output layer having nout = 1 neuron.

The PeNN consist of 6 layers, of which the first 3 are a dense connected NN with outputs that should
mimic the structure factor at low and high shear rate S0 and S∞ , respectively. The following and last 3 lay-
ers correspond each to the physical quantities, as explained above. The only exception is that the S-layer
now has three inputs x = [x1x2x3] corresponding to [S0S∞ log γ̇  ] and physics-based activation function
Sact = (x1 + 10x3wx2)/(10

x3w + 1) . Here, again w is a trainable parameter and should correspond to 6πηf a
3

kBT
 .

The last layers are the same as described above.

Data sets
For both cases 1 and 2, various data sets were generated and used to train and test the performance of the NNs
and PeNNs, varying in number of input parameters (as discussed above) as well as varying in number of data
points per input parameter. The generated data was split into a training set (75%, randomly chosen) used to
train NNs and PeNNs, and a test-holdout set (25%) to test the performance after training. During training, 20%
of the set was used for validation.

It is noted that in rheology experiments, in general the number of data points for the shear rate γ̇ is much
larger than that for a parameter like the volume fraction of the primary particles φp . This is because it is rather
simple to obtain 100 or more data points ( η(γ̇) ) in a viscosity measurement for just one sample (with a certain
φp ). For better comparison with real life experiments we therefore generated the data sets in a similar way: for
each of n different φp ’s (with φp ∈ {φ1 . . . φn} ), N different log γ̇ (with γ̇ ∈ {γ̇1 . . . γ̇N } were chosen as input
parameters, with N >> n . This yields n× N data triplets ( η(φp, γ̇) for case 1, and n× N × np1 × np2 data
quintets ( η(φp, γ̇ , p1, p2) for case 2. Here np1 and np2 are the number of input parameters p1 and p2 respectively.
Here we choose np1 = np2 = 2 . The generated data set was randomly split into a training set (75%, thus 0.75nN
and 0.75nNnp1np2 data points for case 1 and 2, respectively) and a test-holdout set (0.25nN and 0.25nNnp1np2
data points for case 1 and 2, respectively). In general, the test-holdout set is used to check the performance of a
NN to unseen data. Although the NN did not see the data triplets ( η(φp, γ̇) of the test set, it did see numerous
data with φp ∈ {φ1 . . . φn} . In order to check to what extend the NNs and PeNNs can also generalize to unseen
volume fractions, thus how they perform for φp /∈ {φ1 . . . φn} , another set, referred to as the test set, was created
by choosing randomly ntst = 104 input parameters (φp, log γ̇) with φp between φp,min = 0.01 and φp,max = 0.2
and log γ̇ between log γ̇min = −5 and log γ̇max = 3 . This test set ( 104 data points for case 1 and 2) was used for
an unbiased comparison of the performance of the networks.

The pseudo code of the algorithms used can be found in the appendix.

Results
Case 1: networks with 2 input parameters and 1 output parameter
Figure 4 shows an example of the results of a NN for case 1, with two input nodes ( φp and log γ̇ ), three hidden
layers with 128, 32, and 8 neurons, respectively, and one output layer log η . This NN was trained and tested using
a data set generated from n = 3 different φp and for each φp N = 300 different γ̇ . The top-left panel shows the loss
function as a function of the number of epochs. The top-right panel shows the predicted output as a function of

Figure 3.   Schematic architecture of the NN (left, middle) and PeNN (right) configuration.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

the actual (ground truth) output, for the training set (675 data points) as well as the test-holdout set (225 data
points). The predicted values and actual values of the validation set ( 104 data points), also containing φp-values
not seen by the NN, are plotted against each other in the left-bottom panel. In addition, the right-bottom panel
of the figure shows the predicted and ground truth viscosity as function of shear rate and for different φp , seen,
as well as unseen during training.

Figure 5 shows an example of the results of the PeNN for case 1, with two input nodes ( φp and log γ̇ ), two
layers completely physics-encoded, and one output layer log η . The top-left panel shows the loss function as a
function of the number of epochs. The top-right panel shows the predicted output as a function of the actual
(ground truth) output, for the training set (675 datapoints) as well as the test-holdout set (225 data points).
The predicted values and actual values of the test set ( 104 data points) containing φp ’s not seen by the PeNN
are plotted against each other in the left-bottom panel. In addition, the right-bottom panel of the figure shows
the predicted and ground truth (actual) viscosity as function of shear rate and for different φp , seen, as well as
unseen during training.

We conclude that in this case 1, replacing neural nodes by physics does improve NNs significantly. The vis-
cosity as function of shear rate and primary particle volume fraction are predicted very well, also for values of
input parameters which the model has not been trained for. Thus interpolation and extrapolation are captured
well for the PeNNs.

Case 2: networks with 4 input parameters and 1 output parameter
Figure 6 shows an example of the results of a NN for case 2, with four input nodes ( φp , log γ̇ , p1 , and p2 ), two
hidden layers with 32 and 8 neurons, respectively, and one output layer log η . This NN was trained and tested
using a data set generated from n = 3 different φp and for each φp N = 300 different γ̇ and np1 = np2 = 2 dif-
ferent values for p1 and p2 respectively. The top-left panel shows the loss function as a function of the number
of epochs. The top-right panel shows the predicted output as a function of the actual (ground truth) output,
for the training set (2700 data points) as well as the test-holdout set (900 data points). The predicted values and
actual values of the test set ( 104 data points) are plotted against each other in the left-bottom panel. In addition,
predicted and actual curves with different φp , seen, as well as unseen during training, as function of γ̇ are shown
in the right-bottom panel.

Figure 7 shows an example of the results of the PeNN for case 2, with four input nodes ( φp , log γ̇ , p1 , and
p2 ), 2 dense NN-layers and 3 layers completely physics-encoded, of which the last one is the output layer log η .
The top-left panel shows the loss function as a function of the number of epochs. The top-right panel shows
the predicted output as a function of the actual (ground truth) output, for the training (2700 data points) and
test-holdout set (900 data points), while the left-bottom panel shows this for the test set ( 104 data points). The

Figure 4.   Results of the NN 2-128-32-8-1 neural network (see Fig. 3). This NN was trained and tested using
a data set generated from n = 3 different φp and for each φp N = 300 different γ̇ . Top-left: loss as a function of
number of epochs; Top-right: predicted versus actual values of the training (blue) and test-holdout (orange)
set; Bottom-left: predicted versus ground truth of the test set containing unseen φp ; Bottom-right: examples of
ground truth (actual) shear rate dependent viscosity ( ◦ (seen φp ) and � (unseen φp )) and predicted shear rate
dependent viscosity ( • ). The colors indicate different φp.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

Figure 5.   Results of the PeNN 2-1-1-1 [physical-encoded neural network (see Fig. 3). This NN was trained and
tested using a data set generated from n = 3 different φp and for each φp N = 300 different γ̇ . Top-left: loss as a
function of number of epochs; Top-right predicted versus actual values of the training (blue) and test-holdout
(orange) set; Bottom-left: predicted versus actual values of the test set containing unseen φp ; Bottom-right:
examples of actual shear rate dependent viscosity ( ◦ (seen φp ) and � (unseen φp )) and predicted shear rate
dependent viscosity ( • ). The colors indicate different φp.

Figure 6.   Results of the NN 4-32-8-1 neural network (see Fig. 3). The NN was trained and tested using a data
set generated from n = 3 different φp and for each φp N = 300 different γ̇ . Top-left: loss as a function of number
of epochs; Top-right predicted versus actual values of the training and test-holdout set; Bottom-left: predicted
versus actual values of the test set; Bottom-right: examples of actual shear rate dependent viscosity ( ◦ (seen φp )
and � (unseen φp )) and predicted shear rate dependent viscosity ( • ). The colors indicate different φp.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

right-bottom panel of the figure shows the predicted and ground truth viscosity as function of shear rate and
for different φp , seen, as well as unseen during training.

We conclude also for case 2 that replacing neural nodes with physics does improve the NNs significantly.
The viscosity as function of shear rate and primary particle volume fraction are predicted very well, also for
values of input parameters which the model has not been trained for. Thus interpolation and extrapolation are
captured well for the PeNNs.

The observation that PeNNs perform better than NNs is also nicely illustrated in Fig. 8, showing the mean
squared error (mse) for the NNs and PeNN for the test set. The figure shows that the mse of the PeNN is always
at least about a factor 100 to 1000 smaller than that of the NNs. This indicates that the PeNN’s performes sig-
nificantly better than the NN’s. This is also confirmed by the Friedman test performed on the data displayed in
Fig. 8. The Friedman test resulted in rejection of the H0 hypotheses (there is no performance differences between
the models) with a p-value smaller than 0.0002. A Wilconox signed-rank test shows that the performances of all
NNs are equal (not significantly different, with p-values larger than 0.6) while the PeNN performs significantly
better than the NNs, with according p-values smaller than 0.002. We refer to Supplementary Information for
more details.

We also studied the effect of NN’s hyperparameters (different architectures with different complexities, opti-
mization algorithms, learning rates) as well as different performance metrics and have found that these have
no effect on our main conclusion about the differences between performance of NN’s and PeNN’s that PeNN’s
outperform NN’s. We refer to Supplementary Information for more details.

Discussion, conclusions, and perspective
We have illustrated for a complex multi-scale problem how physics information can be encoded into a neural
network and how that leads to improvement of the predictability and robustness of the network. Similar results
have been obtained in another field giving better predictions and with a smaller number of data4–7.

Our work uses physics to improve a NN model. The incorporation of physics into the architecture of the NN
is such that the resulting architecture of the NN has the same architecture of the physics-based hierarchical archi-
tecture. It is this architectural hierarchical feature that is important in realizing the so-called Physics-encoded NN
(PeNN). The term physics-encoded has some specific implications, which are clearly different from the features
of other types of hybrid NNs, as also discussed by Faroughi et al8. Advantages of PeNNs above other forms of

Figure 7.   Results of the PeNN 4-6-2-1-1-1 physical-encoded neural network (see Fig. 3). The PeNN was
trained and tested using a data set generated from n = 3 different φp and for each φp N = 300 different γ̇ . Top-
left: loss as a function of number of epochs; Top-right: predicted versus actual values of the training (orange)
and test-holdout (blue) set; Bottom-left: predicted versus actual values of the test set φp ; Bottom-right: examples
of actual ( ◦ ) and predicted ( • ) flow curves (colors indicate φp.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

neural networks that are enriched with physics information are the efficiency of algorithms in finite dimension
settings, robustness against data scarcity, and their modular transferability into other areas. Similarly, neural-
mechanistic hybrid approaches have been utilized in genome-scale metabolic models recently by Faure et al34.

The physics-encoded NNs allows continued learning as opposed to instance learning. Instance learning
implies that it is required to retrain an entire network for predicting outcomes in a new setting for that network.
Continued learning resembles a feature of intelligence. In this view, physics-encoded neural networks should
not be viewed as an “AI” model but an “I” model, i.e. leaving out the term “Artificial”. In respect to learning, it is
noteworthy that recently Zador35 has argued that one may distinguish several levels of learning within animals,
as opposed to the technical usage of the term learning within NN’s. Within animals, there exist learned and
innate mechanisms in executing functions. The innate mechanisms are encoded in the genome, which provides
the rules that wire up the brain, for the behavioral programs for many functions (walking, swimming, etc.). The
wiring of the brain is not explicitly programmed but will evolve during development, on the basis of a set of
rules given by the coding. Interestingly, artificial NNs have to be optimized according to what is learned during
their evolution and the learning during their functioning. In contrast, animals learn only in their functioning,
as the innate part has been encoded. In analogy to the above, in physics-encoded NNs, the physics provides the
set of rules, that allow for the explicit efficient wiring of the NNs during their training period. In this sense, one
always should use NNs that build on previous solutions (use their learning). This represents a “real” learning
phase where information is stored in a structured manner, suitable for building new information on top of that
information, in a congruent manner, instead of building a structure all the time on the basis of data available, en
re-iterating this latter learning. In fact, the physical information encoding implies a form of “real” intelligence.
This explains the advantage of using physics to encode the NN wiring. This wiring is not random but instead
is containing information, obtained from exposure to its surroundings and subsequently storing that informa-
tion, which, if used again, explicates learning. This view is extended into a formal theory of clever computing
of systems as expressed by Jaeger et al36, where the ideal computing of systems occurs as a bottom-up activity
that structures the processes along which the computing takes place (cybernetic), using physically observables
(physics-encoded), instead of the classic computing systems that describe the processing along structures that
are present (algorithmic).

Our work is straightforward and uses essential physics to improve a NN model. The NNs can predict the
viscosity curves very well, when the input parameters are part of the training set. Predictions are significantly
worse for parameters not in the training set. Thus a NN does not sufficiently capture interpolation and extrapo-
lation. The physics model may not be entirely covering all aspects, but the physics will be directing the number
of possibilities for the NN while optimizing during its learning stage. The incorporation of the physics into the
architecture of the NN such that the resulting architecture of the NN has the same architecture of the physics-
based hierarchical architecture. It is this architectural characteristic that is important in being embedded into
the NN, which is different from what has been reported until now.

Figure 8.   Mean squared error (mse) of the different NN’s and PeNN between predicted and ground truth
values for the test set. The colors correspond to NN 4-32-8-1 (blue), NN 4-128-32-8-1 (orange), and PeNN 4-6-
2-1-1-1 (green). The horizontal axis correspond to different data sets generated with n ∈ [3, 5, 7] different φp ’s
and for each φp , N ∈ [20, 50, 100, 300, 500] different log γ̇.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

Using physics-based information introduces information in NN’s that has an experimental basis. The informa-
tion added incorporates the existing and known natural sequence of events and their hierarchy, i.e. it incorporates
the way that nature shows itself to us. In the same spirit as encoding physics information into NN’s (PeNN’s),
one can encode information from other disciplines into NN’s, creating in general “Information encoded NN’s,
or IeNN’s. Subsequently, one can imagine building different IeNN’s on top of one another, addressing even more
complex systems.

Data availability
The datasets used and/or analysed during the current study is available from the corresponding author on rea-
sonable request.

Code availability
The code used during the current study is available from the corresponding author on reasonable request.

Appendix
The pseudo code of the program can be found in Table 1

Received: 5 February 2024; Accepted: 19 June 2024

Table 1.   Pseudo code of the program used The parameters and symbols are also used and explained in the
manuscript. With [] a list is indicated.

Main algorithm

Define data [n], [N], γ̇min , γ̇max , φpmin , φpmax , S0 , S∞ , C, ηf  , a, T, p1 and p2
[NNarchitectures, PeNNarchitecture], [hyper parameters]

Loop over [n] and [N]

 Generate list of particle volume fractions [φp] of length n with φpmin < φp < φpmax

 Generate list of shear rates logarithms [log(γ̇)] of length N with γ̇min < γ̇ < γ̇max

 Generate list of Quemada viscosities logarithms [log η([γ̇], [φp], S0, S∞ ,C, ηf , a,T)] of length nN

 Construct input data tensor X from [φp] and [log(γ̇)] with shape equals (nN, 4)

 Construct output data tensor Y from [log η] with shape equals (nN, 1)

 Split X and Y randomly in training set Xtrain and Ytrain (80%)

 and test-holdout set Xtest−holdout and Ytest−holdout

 Generate list [φp]test of randomly chosen φpmin < φp < φpmax

 Generate list [log η([γ̇]test , [φp]test , S0, S∞ ,C, ηf , a,T)]test

 Construct input data test tensor Xtest from [φp]test and [log(γ̇)]test
 Construct output data test tensor Ytest from [log η]test
 Generate list [φp]t2 = [φp] + [φp]2 with list [φp]2 containing φp ’s not in [φp]

 Generate list [log η([γ̇], [φp]t2, S0, S∞ ,C, ηf , a,T)]t2

 Construct input data test2 tensor Xt2 from [φp]t2st and [log(γ̇)]

 Construct output data test2 tensor Yt2 from [log η]t2
 Loop over network models list [NNarchitectures, PeNNarchitecture]

 Build model

 Compile model with using hyper parameters for loss function and optimization algorithm

 Train (Fit) network model using training set and hyper parameters for validation

 and early-stopping callback giving trained model M

 Calculate predicted outcome of training set Ŷtrain = M(Ytrain)

 Calculate predicted outcome of test-holdout set Ŷtest−holdout = M(Ytest−holdout)

 Calculate predicted outcome of test set Ŷtest = M(Ytest)

 Calculate predicted outcome of test2 set Ŷt2 = M(Yt2)

 Calculate performance metrics mseM and R2
M

 from Ŷtest and Ytest

 Plot loss function as function of epochs

 Plot Ŷtrain vs. Ytrain and Ŷtest−holdout vs Ytest−holdout

 Plot Ŷtest vs. Ytest

 Plot Ŷt2 vs. Yt2

Plot performance metrics for all models and all test sets like mseM,n,N

Perform Friedman and Wilconox test

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

References
	 1.	 van Mil, H. G., Foegeding, E., Windhab, E. J., Perrot, N. & Van Der Linden, E. A complex system approach to address world chal-

lenges in food and agriculture. Trends Food Sci. Technol. 40(1), 20–32 (2014).
	 2.	 Perrot, N. et al. Some remarks on computational approaches towards sustainable complex agri-food systems. Trends Food Sci.

Technol. 48, 88–101 (2016).
	 3.	 Weinan, E., Han, J. & Zhang, L. et al. Integrating machine learning with physics-based modeling. arXiv:​2006.​02619 (2020).
	 4.	 Jia, X. et al. Physics-guided machine learning for scientific discovery: An application in simulating lake temperature profiles. ACM/

IMS Trans. Data Sci. 2(3), 1–26 (2021).
	 5.	 Daw, A., Karpatne, A., Watkins, W., Read, J., Kumar, V. Physics-guided neural networks (pgnn): An application in lake temperature

modeling. arXiv:​1710.​11431 (2017).
	 6.	 Read, J. S. et al. Process-guided deep learning predictions of lake water temperature. Water Resour. Res. 55(11), 9173–9190 (2019).
	 7.	 Hanson, P. C. et al. Predicting lake surface water phosphorus dynamics using process-guided machine learning. Ecol. Model. 430,

109136 (2020).
	 8.	 Faroughi, S. A., Pawar, N., Fernandes, C., Das, S., Kalantari, N. K. & Mahjour, S. K. Physics-guided, physics-informed, and physics-

encoded neural networks in scientific computing. arXiv:​2211.​07377 (2022).
	 9.	 Alber, M. et al. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological,

biomedical, and behavioral sciences. NPJ Digit. Med. 2(1), 115 (2019).
	10.	 Mahmoudabadbozchelou, M. & Jamali, S. Rheology-informed neural networks (rhinns) for forward and inverse metamodelling

of complex fluids. Sci. Rep. 11(1), 12015 (2021).
	11.	 Saadat, M., Mahmoudabadbozchelou, M. & Jamali, S. Data-driven selection of constitutive models via rheology-informed neural

networks (rhinns). Rheol. Acta 61(10), 721–732 (2022).
	12.	 Young, C. D., Corona, P. T., Datta, A., Helgeson, M. E. & Graham, M. D. Scattering-informed microstructure prediction during

lagrangian evolution (simple)–a data-driven framework for modeling complex fluids in flow. arXiv:​2305.​03792 (2023).
	13.	 Dabiri, D., Saadat, M., Mangal, D. & Jamali, S. Fractional rheology-informed neural networks for data-driven identification of

viscoelastic constitutive models. Rheologica Acta 62, 557–568 (2023).
	14.	 Willard, J., Jia, X., Steinbach, M., Kumar, V. & Xu, S. Integrating physics-based modeling with machine learning: A survey. arXiv:​

2003.​04919, vol. 1, p. 34 (2020).
	15.	 Takeishi, N. & Kalousis, A. Physics-integrated variational autoencoders for robust and interpretable generative modeling. Adv.

Neural. Inf. Process. Syst. 34, 14809–14821 (2021).
	16.	 Peng, G. C. Y. et al. Multiscale modeling meets machine learning: What can we learn?. Arch. Comput. Methods Eng. 28, 1017–1037

(2021).
	17.	 Lie-Piang, A. et al. Machine learning to quantify techno-functional properties-a case study for gel stiffness with pea ingredients.

Innov. Food Sci. Emerg. Technol. 83, 103242 (2023).
	18.	 Bhagya Raj, G. & Dash, K. K. Comprehensive study on applications of artificial neural network in food process modeling. Crit.

Rev. Food Sci. Nutr. 62(10), 2756–2783 (2022).
	19.	 Datta, A. et al. Computer-aided food engineering. Nat. Food 3, 894–904 (2022).
	20.	 Derkach, S. R. Rheology of emulsions. Adv. Colloid Interface Sci. 151, 1–23 (2009).
	21.	 Rao, M. A. Rheology of Fluid and Semisolid Foods (Springer, 2014).
	22.	 Larson, R. G. & Wei, Y. A review of thixotropy and its rheological modeling. J. Rheol. 63, 477–501 (2019).
	23.	 McClements, D. J. Modeling the rheological properties of plant-based foods: Soft matter physics principles. Sustain. Food Prot. 1,

101–132 (2023).
	24.	 Quemada, D. Rheology of concentrated disperse systems and minimum energy dissipation principle—I. viscosity-concentration

relationship. Rheol. Acta 16, 82–94 (1977).
	25.	 Quemada, D. Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. Eur. Phys. J.-Appl.

Phys. 1, 119–127 (1998).
	26.	 Berli, C. L. & Quemada, D. Rheological modeling of microgel suspensions involving solid-liquid transition. Langmuir 16, 7968–

7974 (2000).
	27.	 Berli, C. L., Quemada, D. & Parker, A. Modelling the viscosity of depletion flocculated emulsions. Colloids Surf. A Physicochem.

Eng. Asp. 203, 11–20 (2002).
	28.	 Quemada, D. & Berli, C. Energy of interaction in colloids and its implications in rheological modeling. Adv. Colloid Interface Sci.

98, 51–85 (2002).
	29.	 Jansen, K. M. B., Agterof, W. G. M. & Mellema, J. Viscosity of surfactant stabilized emulsions. Cit. J. Rheol. 45, 1359 (2001).
	30.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
	31.	 Nwankpa, C., Ijomah, W., Gachagan, A. & Marshall, S. Activation functions: Comparison of trends in practice and research for

deep learning. arXiv:​1811.​03378 (2018).
	32.	 Mercioni, M. A. & Holban, S. The most used activation functions: Classic versus current. In 2020 International Conference on

Development and Application Systems (DAS), pp. 141–145, IEEE (2020).
	33.	 Zamri, N. E. et al. A modified reverse-based analysis logic mining model with weighted random 2 satisfiability logic in discrete

hopfield neural network and multi-objective training of modified niched genetic algorithm. Expert Syst. Appl. 240, 122307 (2024).
	34.	 Faure, L., Mollet, B., Liebermeister, W. & Faulon, J.-L. A neural-mechanistic hybrid approach improving the predictive power of

genome-scale metabolic models. Nat. Commun. 14(1), 4669 (2023).
	35.	 Zador, A. M. A critique of pure learning and what artificial neural networks can learn from animal brains. Nat. Commun. 10(1),

3770 (2019).
	36.	 Jaeger, H., Noheda, B. & Van Der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers.

Nat. Commun. 14(1), 4911 (2023).

Acknowledgements
We acknowledge funding from the Dutch “Sectorplan Techniek II”.

Author contributions
E. van der Linden and M. Meinders conceptualized the idea and approach. Programming has been performed by
M. Meinders. All authors discussed the results. E. van der Linden and M. Meinders drafted the first manuscript.
All authors contributed to later versions the manuscript.

Competing interests 
The authors declare no competing interests.

http://arxiv.org/abs/2006.02619
http://arxiv.org/abs/1710.11431
http://arxiv.org/abs/2211.07377
http://arxiv.org/abs/2305.03792
http://arxiv.org/abs/2003.04919
http://arxiv.org/abs/2003.04919
http://arxiv.org/abs/1811.03378

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:15015 | https://doi.org/10.1038/s41598-024-65304-w

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​65304-w.

Correspondence and requests for materials should be addressed to M.B.J.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-65304-w
https://doi.org/10.1038/s41598-024-65304-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Application of physics encoded neural networks to improve predictability of properties of complex multi-scale systems
	Flow of complex food fluids
	Quemada model
	Neural networks and physics-encoded neural networks
	Case 1: networks with 2 input parameters and 1 output parameter
	Case 2: networks with 4 input parameters and 1 output parameter
	Data sets

	Results
	Case 1: networks with 2 input parameters and 1 output parameter
	Case 2: networks with 4 input parameters and 1 output parameter

	Discussion, conclusions, and perspective
	Appendix
	References
	Acknowledgements

