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ABSTRACT  

This study tackles the challenges of providing advice for fishing EU demersal stocks 
when based solely on single-species data and Total Allowable Catches. Such advice 
neglects intricate multi-species interactions and could result in the over-exploitation of 
more vulnerable stocks. In this study, we explore ‘mixed fisheries’, a concept developed 
within ICES over the past decade. This looks at multi-species fisheries, where different 
species are caught together, to provide a more holistic approach to assessment, a step 
beyond single species considerations. To assess mixed-fisheries, scenario-based 
modelling is carried out considering different fishing regimes. However, the underlying 
assumptions of each scenario can lead to unrealistic recommendations, risking stock 
under-utilisation. The primary objective of this study was to analyse these assumptions 
and their impacts. 

Case studies in the North Sea, Celtic Sea and Bay of Biscay assess uncertainties and 
sensitivities of mixed-fisheries assessments used to guide European policy decisions on 
fishing and stock protection. This study addresses data source and resolution 
challenges, and shows that accurate fleet activity data are essential for identifying 
technical interactions. Examining fleet and métier definitions highlights the need to 
address overall model structural uncertainty, particularly in terms of fleet dynamics 
models. Characterising uncertainty in mixed-fisheries models sheds light on input 
parameter significance. 

Furthermore, this project introduces conceptual frameworks for scenario evaluation, 
stock rebuilding, adding new stocks and developing models for new areas within mixed-
fisheries models. 

RÉSUME  

Cette étude aborde les défis liés à la fourniture d'avis sur la pêche des stocks démersaux 
de l'Union européenne lorsqu'ils se fondent uniquement sur des données relatives à une 
seule espèce et sur les Totaux Admissibles de Captures (TAC). Ces avis négligent les 
interactions complexes entre plusieurs espèces et pourraient entraîner la surexploitation 
des stocks les plus vulnérables. Dans cette étude, nous explorons les "pêcheries 
mixtes", un concept développé au sein du CIEM au cours de la dernière décennie. Cela 
examine les pêcheries mixtes, où différentes espèces sont capturées ensemble, afin de 
fournir une approche d’évaluation plus holistique, allant au-delà des considérations liées 
à une pêcherie monospécifique. Pour évaluer les pêcheries mixtes, des modèles basés 
sur des scénarios variables sont réalisés en tenant compte de différents régimes de 
pêche. Toutefois, les hypothèses sous-jacentes à chaque scénario peuvent conduire à 
des recommandations irréalistes, risquant de conduire à une sous-utilisation des stocks. 
L'objectif principal de cette étude était d'analyser ces hypothèses et leurs impacts. 

Des études de cas en mer du Nord, en mer Celtique et dans le golfe de Gascogne 
évaluent les incertitudes et les sensibilités des évaluations des pêcheries mixtes utilisées 
pour guider les décisions politiques européennes en matière de pêche et de protection 
des stocks. Cette étude aborde les défis liés à la source et à la résolution des données 
et montre que des données précises sur l'activité des flottes sont essentielles pour 
identifier les interactions techniques. L'examen des définitions des flottes et des métiers 
met en évidence la nécessité d'aborder l'incertitude structurelle globale du modèle, en 
particulier en ce qui concerne les modèles de dynamique des flottes. La caractérisation 
de l'incertitude dans les modèles de pêche mixte met en lumière l'importance des 
paramètres d'entrée. 

De plus, ce projet introduit des cadres conceptuels pour l'évaluation de scénarios, la 
reconstruction des stocks, l'ajout de nouveaux stocks et le développement de modèles 
pour de nouvelles zones au sein des modèles de pêcheries mixtes. 
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EXECUTIVE SUMMARY 

Typically European Union (EU) fisheries management is guided by single-species advice 
and total allowable catches (TACs). Such an approach often does not consider 
interactions and vulnerabilities among stocks caught together, risking overexploitation 
of the more vulnerable ones. This study examines the underlying assumptions in 
applying  mixed fishery assessment models within the EU. 

To consider these issues, this study examines mixed-fisheries models that integrate the 
implications of capturing multiple species within multiple fisheries with different 
catchabilities and targeting behaviour or objectives. The concept of ‘mixed fisheries’ has 
been actively developed within the International Council for the Exploration of the Sea 
(ICES) for more than a decade. ICES provides scenario-based considerations using 
models like fleets and fisheries forecast model Fcube and Bio-Economic Impact 
Assessment using Fisheries Library in R (FLR) (FLBEIA). ICES produces considerations 
for the North Sea, the first eco-region for which ICES developed mixed-fisheries 
scenarios, the Celtic Sea, Iberian waters, and the Bay of Biscay. In 2022, ICES expanded 
its mixed-fisheries scenarios to include the Irish Sea. 

However, the assumptions underlying these models can lead to catch scenarios that do 
not align with reality, potentially causing stock under-utilisation. The current study 
aimed to analyse these assumptions and their impacts, while involving close 
collaboration with ICES. 

The goal was to provide the European Commission (EC) with insights into the reliability 
of ICES mixed-fisheries scenarios. Through case studies in the North Sea, Celtic Sea, 
and Bay of Biscay, this study examines uncertainties and sensitivities, aiding European 
policy decisions on fishing opportunities and stock protection. 

Data availability 

The data sources used for the analyses were gathered from Member States, ICES and 
the EU Data Collection Framework (DCF), each offering a varying level of detail. The 
main challenge was obtaining data that accurately reflect fleet activities at a meaningful 
resolution. Technical interactions can only be identified at the haul level, which currently 
lacks comprehensive data. The Regional Database and Estimation System (RDBES) aims 
to address this, linking multiple data sources for consistency. However, its spatial 
resolution is limited. To overcome this limitation, bespoke datasets from Member States 
are explored while respecting data sensitivity and national confidentiality rules. 

Sensitivity and uncertainty to fleet 

In the context of two case studies, the North Sea and the Celtic Sea, the base 
components of mixed-fisheries models, namely fleets and métiers, were examined. 
These components have evolved over time in accordance with DCF guidelines, but there 
remains room for refinement. These case studies aimed to evaluate the current fleet 
and métier definitions used, suggest potential improvements, and assess the impact of 
different aggregations of fleets and métiers on catch forecasts.  

In the North Sea case study, the analysis explored the influence of different fleet and 
métier aggregations, such as gear used and species targeted, on projected catch 
forecasts. While Principal Component Analysis (PCA) was used to assess the impact of 
data aggregation on catch profiles (similar species compositions), it became apparent 
that PCA alone could not entirely define fleets and métiers. Additional information 
concerning quota distribution, technical vessel characteristics and catchability is also 
needed. The study revealed aggregation of the data used by ICES WGMIXFISH at the 
country and gear levels had minimal impact on data variability. However, linking the 
results of the PCA and cluster analysis to the métier definitions used in the WGMIXFISH 
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North Sea model underscored the need for more detailed definitions in specific fleet-
métier combinations given the variability in landings-composition present in the input 
strata of those métiers. Nevertheless, as long as nothing changes at the fleet level, 
disaggregating métiers would not impact mixed fisheries projections given the 
assumption of static métier effort shares. In a static fishing effort distribution it is only 
the creation of additional fleets, that would result in a variation to the projected forecast. 

Furthermore, the study emphasised the significance of addressing the structural 
uncertainty of the models, particularly fleet dynamics models (which dictate effort 
utilisation across métiers assuming specific behavioural patterns). It was found that the 
choice of fleet dynamics model had a more pronounced effect on outcomes than fleet 
and métier definitions alone. An alternative fleet dynamics model was explored, offering 
greater flexibility in effort proportions across métiers, which led to improved quota 
utilisation but also lowered catch per unit effort (CPUE) because of an emphasis on 
métiers with low catchabilities. The adoption of historical effort constraints resulted in 
more realistic behavioural patterns. 

The Celtic Sea case study concentrated on defining fleets and métiers using highly 
spatially disaggregated data. This approach aimed to provide a more accurate 
representation of fishing dynamics. An illustrative example involved examining cod 
interactions within the Irish Nephrops fleet. By harnessing data from fishers’ reports 
and specialised tools, the study identified species interactions and assessed their 
significance. Even at the trip and ICES rectangle level, interactions between Nephrops 
and cod could not be decoupled in an area known to have lower cod presence (the 
Porcupine Bank). The key insight here was that acquiring more spatially disaggregated, 
high-resolution data is crucial for the accurate identification and delineation of fleets. 
This could potentially change our perception of technical interactions between fleets and 
stocks, and may result is fewer lost opportunities due to the elimination of artificial 
choking patterns (choking being, the result of a lower quota stock reaching its limit 
preventing continued fishing for higher quota stocks). 

Additionally, the study introduced Monte Carlo simulations, which stochastically sampled 
input parameter values from historical data. These simulations showed that parameter 
uncertainty significantly affected model outputs. Variations in forecasted catches were 
observed under different effort scenarios, underscoring the necessity for more results 
of mixed-fisheries forecasting to be accompanied with robust estimates of confidence to 
ensure that the limitations of the forecasts are clearly communicated, and areas for 
improvement can be easily identified, i.e. level of data aggregation. 

Uncertainties in input data, such as catchability conditioning (the process by which 
catchability values for future years are chosen based on certain assumptions of past 
values), may be linked to data quality issues or shifts in fleet behaviour, which could 
also be influenced by spatial differences in catch composition. The current ICES dataset 
does not allow for a comprehensive identification of such mechanisms. Therefore, it is 
imperative that these outstanding questions be evaluated on a nuanced case-by-case 
basis. These limitations posed by the lack of high-resolution data are recognised and 
emphasise the importance of addressing these questions in future research and 
analysis. 

Sensitivity and uncertainty to forecast  

In the context of two case studies, the North Sea and the Bay of Biscay, the uncertainty 
in mixed-fisheries models was characterised by focusing on the impact of forecast 
conditioning. The aim was to understand how uncertainties in historical data and input 
parameters affect model projections. Parameter uncertainties in forecasting were 
examined, and output uncertainty quantified to enable identification of the most 
influential parameters.  
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The mixed-fisheries models involve numerous input parameters, including catchability, 
effort distribution and quota allocations. These models rely on historical data, which 
may be error-prone, for parameter conditioning. Sensitivity analysis is crucial for 
understanding the relationship between input uncertainties and output variations. 
Global sensitivity analysis (GSA) efficiently characterises this relationship but can be 
computationally demanding. Within the Bay of Biscay case study, GSA was implemented 
to assess the sensitivity of catchability, quota-share and effort proportion. For the North 
Sea case study, a less computationally intensive approach was adopted, conducting 
separate uncertainty analyses for catchability, landings proportions and effort 
proportion.  

The Bay of Biscay case study focused on conducting an uncertainty analysis and GSA 
for demersal mixed fisheries in the region, with a particular focus on French and Spanish 
fleets. Catchability was conditioned based on interspecies interactions within each 
métier, considering unidimensional year effects per stock. Uncertainty in effort 
proportion and landings proportions were introduced using a Dirichlet distribution (a 
multivariate probability distribution). The GSA analysis then characterised the output 
variance as a function of input factor variances (catchability was separated in selectivity 
and intensity), including consideration of interactions between input factors. Three fleet 
(average effort, maximised catches, minimised catches) dynamic scenarios were 
examined, each with distinct factors affecting the outcomes. In the scenario maximising 
catches, the overall effort primarily depended on fleet intensity across various métiers, 
and interaction between input factors played a significant role in explaining variance. In 
the most restrictive scenario (minimised catches), the intensity in the most important 
métier had the greatest impact, with quota-share affecting the output variance for most 
stocks (excluding horse mackerel). The probability of a stock becoming a choke point 
for fishing effort was particularly influenced by quota-share, although it was not the only 
factor.  

For the North Sea case study, in terms of deviation from the observed values, the 
current assumptions, setting values equal to the last available data, generally provide 
unbiased predictions. Three alternative assumptions were tested, but the current 
assumption often outperformed the alternatives by having a lower level of uncertainty. 
Sensitivity tests then compared runs using the current assumption with runs using the 
actual observed values. Catchability and effort proportion assumptions had limited 
impacts on choke and least-limiting (more abundant) stocks, highlighting that current 
assumptions generally perform well for these parameters. Landing-proportion 
assumptions had significant impacts on choke effects, with real data showing lower 
choke effects. However, it should be noted that challenges with re-conditioning, 
including varying stock inclusions, differences in assessments, and the manner in which 
the historical advice was used, affected the accuracy of the results. To accurately assess 
the effects of the parameters on model performance a more complex approach is 
advisable. 

Stock interactions 

Technical interactions, the interactions between fishing activities and fish stocks (spatial 
and temporal), are another crucial component in mixed-fisheries modelling. Current 
explanations of stock interactions in ICES ecoregions are provided in advice sheets, 
advice report sections, and Fisheries Overviews within ICES ecoregions where advice is 
produced annually. However, there is room for improvement in these descriptions, 
particularly in terms of finer spatial and temporal detail. An analysis of stock interactions 
at the ICES rectangle level and fishing trip level was executed and methodologies for 
exploring and analysing stock interactions in mixed fisheries are introduced, with code 
available for its application for future projects. 

The analysis of mixed-fisheries interactions has shown their intricate and diverse nature 
from both technical and stock interactions, with diverse interactions between species 
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and stocks within local areas, trips, and across spatial and temporal scales. Technical 
interactions, and the measures used to alleviate pressures on stocks (such as gear 
changes or spatial and temporal closures) tend to occur at a finer scale than the fleet, 
métier and stock levels used within the models to provide mixed-fishery scenarios. 
Access to higher resolution data would likely provide better insight into the realised 
fishing patterns, and would reduce the impact of potential artificial technical interaction. 
Visualisations have been created to identify important stocks, their connections to 
fishing practices, and potential risks to these stocks. However, data limitations, 
particularly the exclusion of less commercially valuable species, present challenges in 
fully comprehending these interactions. Striking a balance between detailed modelling, 
computational capacity and interpretative issues was identified as a crucial element in 
mixed-fishery modelling. Ongoing research therefore aims to find alternative methods 
for quantifying these technical interactions, and efforts are made to address zero TAC 
stocks and vulnerable species within the models. These endeavours underscore the need 
for continual improvement in this field. Outstanding still is the question about the extent 
that higher resolution data will improve the output of the mixed fisheries scenarios. The 
robustness of model catch predictions and the sensitivity of these predictions can vary 
significantly depending on the specific cases. For instance, while some fleets and métiers 
may be well-represented in current models, others could benefit from more analysis at 
higher levels of disaggregation. 

Framework development 

The development of conceptual frameworks was explored to consider how they could be 
used to extend existing mixed-fishery models. Four frameworks have been put forward: 
‘scenario evaluation’, ‘rebuilding stock’, ‘incorporating additional stocks’ and ‘developing 
new areas’.  

‘Scenario evaluation’ incorporates gear and technical measures (such as gear changes) 
and spatial closures into mixed-fisheries assessments, and aims to account for the 
downstream impacts of these measures on catch composition, fishing pressure, stock 
dynamics, fishery viability and markets. 

The framework identifies the data, methodologies and steps necessary to account for 
the impact of gear-based and spatial technical measures within ICES mixed-fishery 
forecast projections. It outlines how management scenarios involving technical 
measures or spatial closures can be evaluated using existing modelling frameworks, 
such as FLBEIA (currently used by ICES) and DISPLACE, a spatial model of fisheries to 
help sustainable fishing and maritime spatial planning not currently used by ICES. 

The implementation of management scenarios for gear selectivity and spatial closures 
requires distinct approaches. Assessing the impact of gear changes involves considering 
changes in catchability, which may require data from gear trial studies or expert 
knowledge. Challenges arise when matching gear trial results to mixed-fisheries models, 
especially regarding size/age structure and species representation. Gear changes can 
also influence fishing effort allocation, requiring dynamic modelling of fleet behaviour. 

With respect to management scenarios that are based on spatial closures, it is important 
to be aware that mixed-fisheries models that used to provide mixed fishery 
considerations are not spatially explicit. Spatial effects can, however, be indirectly 
examined by defining métiers representing distinct spatial areas. The challenge here is 
that disaggregating métiers into discrete spatial units may be computationally expensive 
and limited by data availability. Another aspect is that fleet dynamics models are needed 
to predict how fishing effort would be reallocated in response to spatial closures or 
changes in stock distribution. The uncertainty in spatial management scenarios needs 
to be addressed; this can be done through management strategy evaluation (MSE).   
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It was also concluded that improved alignment of biological and economic information 
is essential for assessing downstream impacts; that long-term investment in research 
and development is necessary to maintain progress; and that stakeholder engagement, 
including feedback processes, is crucial for meaningful scenario development. 

‘Rebuilding stock’, associated with lengthening the forecast projection period, is a 
framework for incorporating stock rebuilding dynamics into mixed-fisheries models, to 
allow for the rebuilding of stocks in the long term. Traditional mixed-fisheries 
considerations forecasts rely on short-term projections and static assumptions (such as 
effort distribution between fleets), which are suitable for immediate planning but not 
adequate for evaluating the long-term sustainability of fisheries management. 
Therefore, introducing dynamism and uncertainty is essential, which can be 
incorporated within both the FLBEIA model and the Fcube model.  

Three main components play a crucial role in this framework: stocks, fleets and catch 
advice. The framework states that stocks need to be conditioned dynamically rather 
than statically, and that biological operating models need to account for changes in 
recruitment dynamics, biological parameters and stock assessment models. Regarding 
fleet dynamics, catchability, effort proportions and landing shares should also be 
subjected to dynamic approaches. These include profit maximisation and random utility 
models, which can be used to simulate future fleet characteristics. It is noted that capital 
dynamics, representing entry and exit of fishing units in fleets, is important but 
challenging to model. Should a management procedure component be incorporated, this 
would need to include an estimator reflecting stock status and an advice rule to generate 
catch advice. Uncertainty in biological and fleet parameters, as well as data, also needs 
to be considered; this should include process, observation, model, estimation, 
implementation and institutional uncertainty. 

Lastly, it is important to consider that in order to assess the performance of stock-
rebuilding approaches, performance statistics should ideally focus on fleet-level 
indicators. However, since there are no specific objectives at fleet level it is not possible 
to define performance statistics in terms of a target level. However, alternative statistics 
could include the probability of a stock being a choke stock, implementation error in 
catches, total yield, and variation in total effort. 

‘Incorporating additional stocks’ is a framework for selecting and adding new stocks to 
mixed-fisheries case studies. It reviews existing methods for incorporating new stocks 
into modelling tools such as Fcube and FLBEIA, and highlights data requirements and 
potential limitations associated with including new stocks. 

To address the growing and diverse need of mixed-fisheries considerations, ICES 
WGMIXIFSH has already developed several additional methodologies/tools to ensure the 
group is able to include different stocks. The inclusion of new stocks in mixed-fisheries 
considerations is not static, and should evolve alongside improvements in single-species 
stock assessments to better capture the dynamics of fish stocks. The process of 
incorporating new stocks requires continuous development through forums like ICES 
WGMIXFISH and ongoing communication with stock assessors, model developers and 
single-species working groups. 

Best practice guidelines for including new stocks emphasise several criteria, including 
commercial importance, degree of mixed-fisheries interaction, and computational 
manageability. Stocks with surplus production models (ICES category 2) can be included 
in mixed-fisheries models already, with the possibility of running them within modelling 
frameworks like Fcube and FLBEIA. Stocks without assessments can be included using 
a constant CPUE assumption for short-term forecasts, although this is mainly for 
illustrative purposes. However, when it is desirable to introduce stocks that are beyond 
defined mixed-fisheries ecoregions, challenges arise. An example is hake in Bay of 
Biscay, where a significant portion of the catch occurs outside the ecoregion. Efforts are 
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then necessary to estimate and allocate missing catches from such stocks. These efforts 
can be made more consistent across cases. Similarly, challenges arise when trying to 
incorporate stocks that cover multiple case studies. In such instances specific 
assumptions need to be made about the stock distribution, and the fleet behaviour with 
respect to it. Models that include stocks that cover multiple eco-region areas (and 
therefore mixed-fisheries models) are combined to run consistent scenarios across both 
areas, splitting results out for the mixed-fisheries considerations sheets. Future 
challenges include integrating ensemble models and dealing with complex situations like 
the integration of split sub-stocks. Incorporating new stocks is a time-consuming 
process involving data collection, quality control and model development. It requires 
ongoing research and development, along with careful review by relevant working 
groups. 

‘Developing new areas’ seeks to improve the understanding of mixed-fishery 
interactions in new areas. A development process already exists within ICES to aid the 
development of new area-based mixed-fishery considerations. There are two primary 
routes for initiating such developments: formal requests from external bodies (for 
example, the EU, Norway, UK) or informal interest within ICES. Since the level of region 
overarches all other levels, these other aspects need to be considered in the process, 
including: the species to include, the model to use, how to condition the model and 
determining the relevant scenarios to explore. The most recent example of development 
of a new area is that of the Irish Sea ecoregion. In the process of its development, and 
for other regions in the future, it was proposed that a more formal review process was 
desirable. Therefore, development of new regional mixed-fishery considerations 
involves an internal benchmark review, a review report and an external peer review. 
This process ensures the quality and reliability of the models and advice products. 

Ongoing model developments are those in the Baltic Sea and the West of Scotland. 
Challenges for the Baltic Sea are the granularity of available data. For the West of 
Scotland, the main challenge is resource limitation, more specifically the availability of 
key expertise. Work on the region has been under development since 2012 but is still 
considered to be in the initial stages of development. This highlights the need for 
commitment from experts, stakeholders, and funders for the development of models for 
new areas. 

Conclusions 

This work has gone some way to begin addressing the uncertainty and sensitivity of the 
current ICES mixed-fisheries assessment models. The study uses case studies from 
across the North Sea, Celtic Sea and Bay of Biscay to identify the need for the inclusion 
of uncertainty and account for sensitivity within the models used to generate mixed-
fisheries considerations. The differences in stocks, fishing behaviour, management and 
even assessment model in each of the case studies has identified that there is no “one 
size fits all” mixed-fisheries modelling approach that can account for uncertainty and 
sensitivity. Examining fleet and métier definitions highlights the need to address overall 
model structural uncertainty, particularly in terms of fleet dynamics models. 
Characterising uncertainty in mixed-fisheries models sheds light on the significance of 
input parameters. Within this, the study encountered, and where possible, overcame 
challenges in data availability and resolution. This study introduces conceptual 
frameworks for scenario evaluation, stock rebuilding, adding new stocks and developing 
models for new areas within mixed-fisheries models which identify a number of areas 
where additional amendments would be desirable to expand the purpose of the models. 
In terms of the frameworks, the first question going forward should be ‘who is the end 
user of mixed-fisheries considerations’, and the second ‘what is it that is needed to 
support their requirements’. From a fisheries management perspective, the issue can 
be more associated with identifying where the majority of fishing mortality is occurring 
and identifying the main sources (fleets), both spatially and temporally. This issue is 
somewhat different to identifying by which species one or more fleet is chocked.   
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RÉSUMÉ EXÉCUTIF 

La gestion des pêcheries de l'Union européenne (UE) est généralement guidée par des 
avis portant sur une seule espèce et des totaux admissibles de captures (TAC). Cette 
approche ne tient souvent pas compte  les interactions et les vulnérabilités entre les 
stocks capturés ensemble, ce qui risque d'entraîner une surexploitation des stocks les 
plus vulnérables. Cette étude aborde les défis liés aux hypothèses sous-jacentes à 
l'application de l'approche des modèles d'évaluation des pêcheries mixtes au sein de 
l'UE. 

En tenant compte de ces problèmes, cette étude examine les modèles de pêcheries 
mixtes qui intègrent les implications de la capture de multiples espèces au sein de 
multiples pêcheries avec différentes capturabilités et comportements ou objectifs de 
ciblage. Le concept de « pêcheries mixtes » a été activement développé au sein du 
Conseil International pour l'Exploration de la Mer (CIEM) depuis plus d'une décennie. Le 
CIEM fournit des considérations basées sur des scénarios en utilisant des modèles tels 
que les flottes et le modèle de prévision des pêcheries Fcube, ainsi que l'Évaluation de 
l'Impact Bio-Économique utilisant la Bibliothèque des Pêcheries dans R (FLR) (FLBEIA). 
Le CIEM produit des considérations pour la mer du Nord, la première éco-région pour 
laquelle le CIEM a développé des scénarios de pêcheries mixtes, la mer Celtique, les 
eaux ibériques, et le golfe de Gascogne. En 2022, le CIEM a étendu ses scénarios de 
pêcheries mixtes pour inclure la mer d'Irlande. 

Cependant, les hypothèses sous-jacentes à ces modèles peuvent conduire à des 
scenarios de prises qui ne correspondent pas à la réalité, ce qui peut entraîner une sous-
utilisation des stocks. L'étude actuelle visait à analyser ces hypothèses et leurs impacts, 
tout en impliquant une étroite collaboration avec le CIEM. 

L'objectif était de fournir à la Commission Européenne (CE) des éclairages sur la fiabilité 
des scénarios de pêcheries mixtes du CIEM. À travers des études de cas dans la mer du 
Nord, la mer Celtique et le golfe de Gascogne, cette étude examine les incertitudes et 
sensibilités, aidant les décisions de politique européenne sur les opportunités de pêche 
et la protection des stocks. 

Disponibilité des données 

Les sources de données utilisées pour les analyses ont été recueillies auprès des États 
membres, du CIEM et du cadre de collecte des données de l'UE (DCF), chacun offrant 
un niveau de détail variable. Le principal défi était d'obtenir des données reflétant avec 
précision les activités des flottes à une résolution significative. Les interactions 
techniques ne peuvent être identifiées qu'au niveau du trait, pour lequel il manque 
actuellement des données complètes. Le système régional de base de données et 
d'estimation (RDBES) vise à remédier à cela, en reliant plusieurs sources de données 
pour assurer la cohérence. Cependant, sa résolution spatiale est limitée. Pour surmonter 
cette limitation, des ensembles de données spécifiques des États membres sont 
explorés, tout en respectant la sensibilité des données et les règles de confidentialité 
nationales. 

Sensibilité et incertitude par rapport à la flotte 

Dans le contexte de deux études de cas, la mer du Nord et la mer Celtique, les 
composants fondamentaux des modèles de pêcheries mixtes, à savoir les flottes et les 
métiers, ont été examinés. Ces composants ont évolué au fil du temps conformément 
aux directives du DCF, mais il reste une marge d'amélioration. Ces études de cas 
visaient à évaluer les définitions actuelles de flotte et de métier utilisées, suggérer des 
améliorations potentielles et évaluer l'impact de différentes agrégations de flottes et de 
métiers sur les prévisions de capture. 
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Dans l'étude de cas de la mer du Nord, l'analyse a exploré l'influence de différentes 
agrégations de flottes et de métiers, telles que les engins utilisés et les espèces ciblées, 
sur les prévisions de captures projetées. Alors que l'Analyse en Composantes Principales 
(ACP) a été utilisée pour évaluer l'impact de l'agrégation des données sur les profils de 
capture (compositions d'espèces similaires), il est apparu que l'ACP seule ne pouvait 
pas entièrement définir les flottes et les métiers. Des informations supplémentaires 
concernant la répartition des quotas, les caractéristiques techniques des navires et la 
capturabilité sont également nécessaires. L'étude a révélé que l'agrégation des données 
utilisées par le CIEM WGMIXFISH au niveau du pays et de l'engin avait un impact 
minimal sur la variabilité des données..  Cependant, relier les résultats de l'ACP et de 
l'analyse de cluster aux définitions de métiers utilisées dans le modèle WGMIXFISH de 
la mer du Nord a souligné le besoin de définitions plus détaillées dans des combinaisons 
spécifiques de flottes et de métiers, compte tenu de la variabilité de la composition des 
débarquements présente dans les strates d'entrée de ces métiers Toutefois, tant que la 
distribution de l'effort de pêche est statique dans le modèle, la désagrégation des flottes 
en un plus grand nombre de métiers n'affecterait pas les prévisions projetées. Dans une 
distribution statique de l'effort de pêche, seule la création de flottes supplémentaires 
entraînerait une variation des prévisions.  

De plus, l'étude a souligné l'importance de s'attaquer à l'incertitude structurelle des 
modèles, en particulier les modèles de dynamique des flottes (qui dictent l'utilisation de 
l'effort à travers les métiers en supposant des modèles comportementaux spécifiques). 
Il a été constaté que le choix du modèle de dynamique des flottes avait un effet plus 
prononcé sur les résultats que les définitions de flotte et de métier seules. Un modèle 
alternatif de dynamique des flottes a été exploré, offrant une plus grande flexibilité dans 
les proportions d'effort à travers les métiers, ce qui a conduit à une meilleure utilisation 
des quotas mais aussi à une diminution de la capture par unité d'effort (CPUE) en raison 
d'un accent sur les métiers avec de faibles capturabilités. L'adoption de contraintes 
d'effort historiques a résulté en des modèles comportementaux plus réalistes. 

L'étude de cas de la mer Celtique s'est concentrée sur la définition des flottes et des 
métiers en utilisant des données hautement spatialement désagrégées. Cette approche 
visait à fournir une représentation plus précise de la dynamique de la pêche. Un exemple 
illustratif impliquait l'examen des interactions de la morue au sein de la flotte irlandaise 
de Nephrops. En exploitant des données issues de rapports de pêcheurs et d'outils 
spécialisés, l'étude a identifié des interactions entre espèces et évalué leur importance. 
Même au niveau du voyage et du rectangle ICES, les interactions entre Nephrops et 
morue ne pouvaient pas être dissociées dans une zone connue pour sa faible présence 
de morue (La Banc de Porcupine). L'aperçu clé ici était que l'acquisition de données plus 
spatialement désagrégées et de haute résolution est cruciale pour l'identification et la 
délimitation précises des flottes. Cela pourrait potentiellement changer notre perception 
des interactions techniques entre flottes et stocks, et pourrait se traduire par moins 
d'opportunités perdues en raison de l'élimination des motifs de « choke » artificiels (le 
« choke » étant, le résultat d'un stock à quota inférieur atteignant sa limite, empêchant 
la poursuite de la pêche pour des stocks à quota supérieur). 

De plus, l'étude a introduit des simulations de Monte Carlo, qui ont échantillonné de 
manière stochastique les valeurs des paramètres d'entrée à partir de données 
historiques. Ces simulations ont montré que l'incertitude des paramètres affectait de 
manière significative les résultats du modèle. Des variations dans les captures 
prévisionnelles ont été observées sous différents scénarios d'effort, soulignant la 
nécessité que davantage de résultats de prévision des pêcheries mixtes soient 
accompagnés d'estimations robustes de la confiance pour assurer que les limitations 
des prévisions soient clairement communiquées, et que les domaines nécessitant une 
amélioration puissent être facilement identifiés, c'est-à-dire le niveau d'agrégation des 
données. 
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Les incertitudes dans les données d'entrée, telles que la conditionnalité de la 
capturabilité (le processus par lequel les valeurs de capturabilité pour les années futures 
sont choisies sur la base de certaines hypothèses des valeurs passées), peuvent être 
liées à des problèmes de qualité des données ou à des changements dans le 
comportement de la flotte, qui pourraient également être influencés par des différences 
spatiales dans la composition des captures. Le jeu de données actuel du CIEM pour la 
mer Celtique ne permet pas d'identifier de manière exhaustive de tels mécanismes. Il 
est donc impératif que ces questions en suspens soient évaluées sur une base nuancée, 
cas par cas. Ces limitations posées par le manque de données à haute résolution sont 
reconnues et soulignent l'importance de traiter ces questions dans les recherches et 
analyses futures. 

Sensibilité et Incertitude par Rapport aux Prévisions 

Dans le cadre de deux études de cas, la mer du Nord et le golfe de Gascogne, 
l'incertitude des modèles de pêche mixte a été caractérisée en se concentrant sur 
l'impact du conditionnement des prévisions. L'objectif était de comprendre comment les 
incertitudes des données historiques et des paramètres d'entrée affectent les 
projections du modèle. Les incertitudes des paramètres dans les prévisions ont été 
examinées et l'incertitude des résultats a été quantifiée pour permettre l'identification 
des paramètres les plus influents.  

Les modèles de pêcheries mixtes impliquent de nombreux paramètres d'entrée, y 
compris la capturabilité, la distribution des efforts et les allocations de quotas. Ces 
modèles dépendent de données historiques, qui peuvent être sujettes à erreur, pour le 
conditionnement des paramètres. L'analyse de sensibilité est cruciale pour comprendre 
la relation entre les incertitudes des entrées et les variations des sorties. L'analyse de 
sensibilité globale (ASG) caractérise efficacement cette relation mais peut être 
exigeante en termes de calculs. Dans l'étude de cas du Golfe de Gascogne, l'ASG a été 
mise en œuvre pour évaluer la sensibilité de la capturabilité, de la part des quotas et de 
la proportion des efforts. Pour l'étude de cas de la Mer du Nord, une approche moins 
intensive en calcul a été adoptée, conduisant des analyses d'incertitude séparées pour 
la capturabilité, les proportions des débarquements et la proportion d'effort. 

L'étude de cas du Golfe de Gascogne s'est concentrée sur la réalisation d'une analyse 
d'incertitude et d'une ASG pour les pêcheries démersales mixtes de la région, avec un 
accent particulier sur les flottes françaises et espagnoles. La capturabilité a été 
conditionnée en fonction des interactions interspécifiques au sein de chaque métier, en 
considérant des effets unidimensionnels par année et par stock. L'incertitude dans la 
proportion des efforts et des débarquements a été introduite à l'aide d'une distribution 
de Dirichlet (une distribution de probabilité multivariée). L'analyse ASG a ensuite 
caractérisé la variance de sortie en fonction des variances des facteurs d'entrée (la 
capturabilité a été séparée en sélectivité et intensité), y compris la considération des 
interactions entre les facteurs d'entrée. Trois scénarios dynamiques de flotte (effort 
moyen, captures maximisées, captures minimisées) ont été examinés, chacun avec des 
facteurs distincts affectant les résultats. Dans le scénario maximisant les captures, 
l'effort global dépendait principalement de l'intensité de la flotte à travers différents 
métiers, et l'interaction entre les facteurs d'entrée jouait un rôle significatif dans 
l'explication de la variance. Dans le scénario le plus restrictif (captures minimisées), 
l'intensité dans le métier le plus critique avait le plus grand impact, avec la part des 
quotas affectant la variance de sortie pour la plupart des stocks (à l'exception du 
chinchard). La probabilité qu'un stock devienne un point de « choke » pour l'effort de 
pêche a été particulièrement influencée par la répartition des quotas, bien qu'il ne 
s'agisse pas d'un facteur déterminant. 

Pour l'étude de cas de la mer du Nord, en termes d'écart par rapport aux valeurs 
observées, les hypothèses actuelles, qui fixent des valeurs égales aux dernières données 
disponibles, fournissent généralement des prévisions non biaisées. Trois hypothèses 
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alternatives ont été testées, mais l'hypothèse actuelle a souvent été plus performante 
que les autres en raison d'un niveau d'incertitude plus faible. Les tests de sensibilité ont 
ensuite comparé les séries utilisant l'hypothèse actuelle avec les séries utilisant les 
valeurs réelles observées. Les hypothèses relatives à la capturabilité et à la proportion 
de l'effort ont eu un impact limité sur les stocks à quotas limitants (« choke ») et les 
stocks les moins limités (plus abondants), ce qui montre que les hypothèses actuelles 
donnent généralement de bons résultats pour ces paramètres. Les hypothèses relatives 
à la proportion de débarquement ont eu un impact significatif sur les effets de « choke », 
les données réelles montrant des effets de « choke » plus faibles. Il convient toutefois 
de noter que les difficultés liées au reconditionnement, notamment les différentes 
inclusions de stocks, les différences d'évaluation et la manière dont les avis historiques 
ont été utilisés, ont eu une incidence sur la précision des résultats. Pour évaluer avec 
précision les effets des paramètres sur les performances du modèle, il est conseillé 
d'adopter une approche plus complexe. 

Interactions entre les stocks 

Les interactions techniques, c'est-à-dire les interactions entre les activités de pêche et 
les stocks de poissons (spatiales et temporelles), constituent un autre composant crucial 
dans la modélisation des pêcheries mixtes. Les explications actuelles des interactions 
de stock dans les écorégions de l'ICES sont fournies dans des fiches de conseils, des 
sections de rapports de conseils et des Aperçus des Pêcheries au sein des écorégions de 
l'ICES où des conseils sont produits annuellement. Cependant, ces descriptions peuvent 
être améliorées, en particulier en termes de détails spatiaux et temporels plus fins. Une 
analyse des interactions de stock au niveau des rectangles de l'ICES et au niveau des 
voyages de pêche a été exécutée et des méthodologies pour explorer et analyser les 
interactions de stock dans les pêcheries mixtes sont introduites, avec un code disponible 
pour son application dans des projets futurs. 

L'analyse des interactions entre les pêcheries mixtes a montré la complexité et la 
diversité des interactions techniques et des interactions entre les stocks, ainsi que la 
diversité des interactions entre les espèces et les stocks au sein des zones locales, des 
sorties et à travers les échelles spatiales et temporelles. Les interactions techniques et 
les mesures utilisées pour atténuer les pressions sur les stocks (telles que les 
changements d'engins ou les fermetures spatiales et temporelles) ont tendance à se 
produire à une échelle plus fine que les niveaux de flotte, de métier et de stock utilisés 
dans les modèles pour fournir des scénarios de pêche mixte. L'accès à des données à 
plus haute résolution permettrait probablement de mieux comprendre les schémas de 
pêche réalisés et réduirait l'impact d'une éventuelle interaction technique artificielle. 
Des visualisations ont été créées pour identifier les stocks importants, leurs liens avec 
les pratiques de pêche et les risques potentiels pour ces stocks. Toutefois, les limites 
des données, en particulier l'exclusion des espèces de moindre valeur commerciale, 
posent des problèmes pour comprendre pleinement ces interactions. La recherche d'un 
équilibre entre la modélisation détaillée, la capacité de calcul et les questions 
d'interprétation a été identifiée comme un élément crucial de la modélisation des 
pêcheries mixtes. Les recherches en cours visent donc à trouver des méthodes 
alternatives pour quantifier ces interactions techniques, et des efforts sont faits pour 
prendre en compte les stocks à TAC zéro et les espèces vulnérables dans les modèles. 
Ces efforts soulignent la nécessité d'une amélioration continue dans ce domaine. La 
question de savoir dans quelle mesure des données de plus haute résolution 
amélioreraient le résultat des scénarios de pêcheries mixtes reste en suspens. La 
robustesse des prédictions de capture des modèles et la sensibilité de ces prédictions 
peuvent varier considérablement en fonction des cas spécifiques. Par exemple, alors 
que certaines flottes et métiers peuvent être bien représentés dans les modèles actuels, 
d'autres pourraient bénéficier de plus d'analyses à des niveaux de désagrégation plus 
élevés. 
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Développement de Cadres Conceptuels 

Le développement de cadres conceptuels a été exploré pour examiner comment ils 
pourraient être utilisés pour étendre les modèles existants de pêcheries mixtes. Quatre 
cadres ont été proposés : « évaluation de scénarios », « reconstruction des stocks », « 
incorporation de stocks supplémentaires » et « développement de nouvelles zones ».  

L'évaluation de scénarios’ intègre des mesures techniques et relatives aux engins de 
pêche (telles que des changements d'engins) et des fermetures spatiales dans les 
évaluations des pêcheries mixtes, et vise à tenir compte des effets en aval de ces 
mesures sur la composition des captures, la pression de pêche, la dynamique des stocks, 
la viabilité de la pêcherie et les marchés. 

Le cadre identifie les données, les méthodologies et les étapes nécessaires pour tenir 
compte de l'impact des mesures techniques basées sur les engins et les fermetures 
spatiales dans les projections prévisionnelles des pêcheries mixtes du CIEM. Il décrit 
comment les scénarios de gestion impliquant des mesures techniques ou des fermetures 
spatiales peuvent être évalués à l'aide des cadres de modélisation existants, tels que 
FLBEIA (actuellement utilisé par le CIEM) et DISPLACE, un modèle spatial des pêcheries 
destiné à favoriser la pêche durable et la planification de l'espace maritime, qui n'est 
pas actuellement utilisé par le CIEM. 

La mise en œuvre de scénarios de gestion pour la sélectivité des engins et les fermetures 
spatiales nécessite des approches distinctes. Évaluer l'impact des changements d'engins 
implique de considérer les changements de capturabilité, ce qui peut nécessiter des 
données issues d'études d'essais d'engins ou de connaissances d'experts. Des défis se 
présentent lors de l'alignement des résultats des essais d'engins avec les modèles de 
pêcheries mixtes, en particulier concernant la structure en taille/âge et la représentation 
des espèces. Les changements d'engins peuvent également influencer l'allocation de 
l'effort de pêche, nécessitant une modélisation dynamique du comportement de la flotte. 

En ce qui concerne les scénarios de gestion basés sur des fermetures spatiales, il est 
important de savoir que les modèles de pêcheries mixtes utilisés pour fournir des 
considérations de pêcherie mixte ne sont pas spatialement explicites. Cependant, les 
effets spatiaux peuvent être examinés indirectement en définissant des métiers 
représentant des zones spatiales distinctes. Le défi ici est que la désagrégation des 
métiers en unités spatiales discrètes peut être coûteuse sur le plan informatique et 
limitée par la disponibilité des données. Un autre aspect est que des modèles de 
dynamique de flotte sont nécessaires pour prédire comment l'effort de pêche serait 
réaffecté en réponse aux fermetures spatiales ou aux changements dans la distribution 
des stocks. L'incertitude dans les scénarios de gestion spatiale doit être abordée ; cela 
peut être fait par l'évaluation de stratégie de gestion (MSE). 

Il a également été conclu qu'un alignement amélioré des informations biologiques et 
économiques est essentiel pour évaluer les impacts en aval ; qu'un investissement à 
long terme dans la recherche et le développement est nécessaire pour maintenir le 
progrès ; et que l'engagement des parties prenantes, y compris les processus de 
rétroaction, est crucial pour un développement significatif de scénarios. 

La ‘Reconstruction des Stocks’, associée à l'allongement de la période de projection des 
prévisions, est un cadre permettant d'intégrer la dynamique de reconstitution des stocks 
dans les modèles de pêche mixte, afin de permettre la reconstitution des stocks à long 
terme. Les prévisions traditionnelles des pêcheries mixtes reposent sur des projections 
à court terme et des hypothèses statiques (telles que la répartition de l'effort entre les 
flottes), qui conviennent à la planification immédiate mais ne permettent pas d'évaluer 
la durabilité à long terme de la gestion des pêcheries. Il est donc essentiel d'introduire 
du dynamisme et de l'incertitude, qui peuvent être incorporés dans les modèles FLBEIA 
et Fcube. 
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Trois éléments principaux jouent un rôle crucial dans ce cadre : les stocks, les flottes et 
les avis de capture. Le cadre stipule que les stocks doivent être conditionnés de manière 
dynamique plutôt que statique et que les modèles d'exploitation biologique doivent tenir 
compte des changements dans la dynamique du recrutement, les paramètres 
biologiques et les modèles d'évaluation des stocks. En ce qui concerne la dynamique de 
la flotte, la capturabilité, les proportions d'effort et les parts de débarquement doivent 
également être soumises à des approches dynamiques. Il s'agit notamment des modèles 
de maximisation du profit et d'utilité aléatoire, qui peuvent être utilisés pour simuler les 
caractéristiques futures de la flotte. Il convient de noter que la dynamique du capital, 
qui représente l'entrée et la sortie d'unités de pêche dans les flottes, est importante 
mais difficile à modéliser. L'inclusion d'une procédure de gestion est également 
recommandée ; elle devrait inclure un estimateur reflétant l'état du stock et une règle 
d'avis pour générer un avis sur les captures. Si l'inclusion d'un composant de procédure 
de gestion doit être incorporée, cela devrait inclure un estimateur reflétant l'état du 
stock et une règle de conseil pour générer des conseils de capture L'incertitude des 
paramètres biologiques et de la flotte, ainsi que des données, doit également être prise 
en compte ; il s'agit notamment de l'incertitude des processus, des observations, des 
modèles, des estimations, de la mise en œuvre et de l'incertitude institutionnelle. 

Enfin, il est important de considérer que, pour évaluer la performance des approches de 
reconstruction des stocks, les statistiques de performance devraient idéalement se 
concentrer sur les indicateurs au niveau de la flotte. Cependant, puisqu'il n'y a pas 
d'objectifs spécifiques au niveau de la flotte, il n'est pas possible de définir des 
statistiques de performance en termes de niveau cible. Toutefois, des statistiques 
alternatives pourraient inclure la probabilité qu'un stock soit un stock à quota limitant 
«choke species», l'erreur de mise en œuvre dans les captures, le rendement total et la 
variation de l'effort total.  

L'incorporation de stocks supplémentaires’ est un cadre pour la sélection et l'ajout de 
nouveaux stocks aux études de cas sur les pêcheries mixtes. Il passe en revue les 
méthodes existantes pour incorporer de nouveaux stocks dans des outils de 
modélisation tels que Fcube et FLBEIA, et met en lumière les exigences en matière de 
données et les limitations potentielles associées à l'inclusion de nouveaux stocks. 

Pour répondre aux besoins croissants et diversifiés des considérations sur les pêcheries 
mixtes, le groupe ICES WGMIXIFSH a déjà développé plusieurs méthodologies et outils 
supplémentaires pour garantir que le groupe soit capable d'inclure différents stocks. 
L'inclusion de nouveaux stocks dans les considérations sur les pêcheries mixtes n'est 
pas statique, et devrait évoluer parallèlement aux améliorations des évaluations de 
stocks d'une seule espèce pour mieux saisir la dynamique des stocks de poissons. Le 
processus d'incorporation de nouveaux stocks nécessite un développement continu à 
travers des forums tels que ICES WGMIXFISH et une communication continue avec les 
évaluateurs de stocks, les développeurs de modèles et les groupes de travail sur mono-
espèces. 

Les directives de meilleures pratiques pour inclure de nouveaux stocks soulignent 
plusieurs critères, y compris l'importance commerciale, le degré d'interaction dans les 
pêcheries mixtes, et la gestion informatique. Les stocks avec des modèles de production 
excédentaire (catégorie 2 de l'ICES) peuvent déjà être inclus dans les modèles de 
pêcheries mixtes, avec la possibilité de les faire fonctionner dans des cadres de 
modélisation tels que Fcube et FLBEIA. Les stocks sans évaluations peuvent être inclus 
en utilisant une hypothèse constante de CPUE pour les prévisions à court terme, bien 
que cela soit principalement à des fins illustratives. Cependant, lorsque l'on souhaite 
introduire des stocks qui vont au-delà des écorégions définies pour les pêcheries mixtes, 
des défis se posent. Un exemple est le merlu dans le golfe de Gascogne, où une portion 
significative des prises se produit en dehors de l'écorégion. Des efforts sont alors 
nécessaires pour estimer et allouer les prises manquantes de tels stocks. Ces efforts 
peuvent être rendus plus cohérents à travers les cas. De même, des défis surgissent 
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lorsqu'il s'agit d'incorporer des stocks qui couvrent plusieurs études de cas. Dans de tels 
cas, des hypothèses spécifiques doivent être faites concernant la distribution des stocks, 
et le comportement de la flotte par rapport à ceux-ci. Les modèles qui incluent des 
stocks couvrant plusieurs zones d'écorégion (et donc des modèles de pêcheries mixtes) 
sont combinés pour exécuter des scénarios cohérents à travers les deux zones, en 
séparant les résultats pour les feuilles de considérations sur les pêcheries mixtes. 

Les défis futurs incluent l'intégration de modèles d'ensemble et la gestion de situations 
complexes telles que l'intégration de sous-stocks divisés. L'incorporation de nouveaux 
stocks est un processus long qui implique la collecte de données, le contrôle de la qualité 
et le développement de modèles. Cela nécessite une recherche et un développement 
continus, ainsi qu'une révision attentive par les groupes de travail pertinents  

Le ‘développement de nouvelles zones’ vise à améliorer la compréhension des 
interactions dans les pêcheries mixtes dans de nouvelles zones. Un processus de 
développement existe déjà au sein de l'ICES pour aider au développement de 
considérations sur les pêcheries mixtes basées sur des zones. Il existe deux voies 
principales pour initier de tels développements : des demandes formelles de la part 
d'organismes externes (par exemple, l'UE, la Norvège, le Royaume-Uni) ou un intérêt 
informel généré au sein de l'ICES. Étant donné que le niveau régional surplombe tous 
les autres niveaux, ces autres aspects doivent être pris en compte dans le processus, y 
compris : les espèces à inclure, le modèle à utiliser, comment conditionner le modèle et 
déterminer les scénarios pertinents à explorer. L'exemple le plus récent du 
développement d'une nouvelle zone est celui de l'écorégion de la mer d'Irlande. Dans 
le processus de son développement, et pour d'autres régions à l'avenir, il a été proposé 
qu'un processus d'examen plus formel soit souhaitable. Ainsi, le développement de 
nouvelles considérations sur les pêcheries mixtes régionales implique un examen interne 
de référence, un rapport de révision et un examen par des pairs externes. Ce processus 
garantit la qualité et la fiabilité des modèles et des produits de conseil. 

Les développements de modèles en cours concernent la mer Baltique et l'ouest de 
l'Écosse. Les défis pour la mer Baltique résident dans la granularité des données 
disponibles. Pour l'ouest de l'Écosse, le principal défi est la limitation des ressources, 
plus spécifiquement la disponibilité de compétences clés. Le travail sur la région est en 
développement depuis 2012 mais est toujours considéré comme en phase initiale de 
développement. Cela souligne le besoin d'engagement de la part des experts, des 
parties prenantes et des bailleurs de fonds pour le développement de modèles pour de 
nouvelles zones. 

Conclusions 

Ce travail a contribué à aborder l'incertitude et la sensibilité des modèles actuels 
d'évaluation des pêcheries mixtes de l'ICES. L'étude utilise des études de cas à travers 
la mer du Nord, la mer Celtique et le golfe de Gascogne pour identifier le besoin d'inclure 
l'incertitude et de tenir compte de la sensibilité au sein des modèles utilisés pour générer 
des considérations sur les pêcheries mixtes. Les différences en termes de stocks, de 
comportement de pêche, de gestion et même de modèle d'évaluation dans chacune des 
études de cas ont identifié qu'il n'existe pas d'approche de modélisation des pêcheries 
mixtes "taille unique" pouvant tenir compte de l'incertitude et de la sensibilité. L'examen 
des définitions des flottes et des métiers souligne la nécessité de traiter l'incertitude 
structurelle globale du modèle, en particulier en termes de modèles de dynamique des 
flottes. Caractériser l'incertitude dans les modèles de pêcheries mixtes met en lumière 
l'importance des paramètres d'entrée. Dans ce cadre, l'étude a rencontré, et dans la 
mesure du possible, surmonté les défis liés à la disponibilité et à la résolution des 
données. Cette étude introduit des cadres conceptuels pour l'évaluation des scénarios, 
la reconstruction des stocks, l'ajout de nouveaux stocks et le développement de modèles 
pour de nouvelles zones au sein des modèles de pêcheries mixtes, identifiant un certain 
nombre de domaines où des modifications supplémentaires seraient souhaitables pour 
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étendre l'objectif des modèles. En termes de cadres, la première question à l'avenir 
devrait être "qui est l'utilisateur final des considérations sur les pêcheries mixtes", et la 
seconde "de quoi a-t-il besoin pour soutenir leurs exigences". Du point de vue de la 
gestion des pêches, la question peut être davantage associée à l'identification de 
l'endroit où se produit la majorité de la mortalité due à la pêche et à l'identification des 
sources principales (flottes), à la fois spatialement et temporellement. Cette question 
est quelque peu différente de celle d'identifier par quelle espèce une ou plusieurs flottes 
sont limitées. 
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1 INTRODUCTION 

1.1 Background  

At present, the majority of fishing opportunities for demersal stocks within the European 
Union (EU) are in the form of TACs (total allowable catches) based on single-species 
advice. Such advice does not consider the interactions between, or differences in, the 
variety or vulnerability of stocks that are often caught together. Following single-species 
advice for more abundant stocks without additional safeguards could result in a risk of 
overexploitation of the more vulnerable stocks within the same area. 

The concept of ‘mixed fisheries’, and the need to consider the implications of capturing 
multiple species within multiple fisheries with different catchabilities and targeting 
behaviour or objectives is not new (e.g. Ulrich et al., 2011; Iriondo et al., 2012). Mixed 
fisheries is a topic of interest and active development within the International Council 
for Research of the Sea (ICES). ICES has been developing and providing scenario-based 
mixed-fisheries considerations for more than 10 years, supported by two dedicated ICES 
working groups (WGMIXFISH-ADVICE; WGMIXFISH-METHODS). In 2022, ICES 
presented mixed-fisheries scenarios for many of the ICES eco-regions focused on a 
number of demersal species1, at which time the Irish Sea was added following a period 
of development and validation (ICES, 2022a).  

The methods used in ICES to provide scenarios on mixed-fisheries considerations, are 
fleets and fisheries forecast model Fcube and Bio-Economic Impact Assessment using 
Fisheries Library in R (FLR) (FLBEIA). Both methods are based on FLR libraries (Kell et 
al., 2007). Fcube (Ulrich et al., 2011) was the first model used to provide scenarios and 
was specifically developed for this purpose. Fcube is currently only used in the 
assessment of mixed-fishery considerations within the Celtic Sea. FLBEIA (Bio-Economic 
Impact Assessment using FLR, Garcia et al., 2017) goes beyond mixed-fisheries and 
was developed to facilitate the bio-economic evaluation of management strategies 
under the management strategy evaluation (MSE) approach. FLBEIA is used to assess 
mixed fisheries within the majority of the ICES mixed-fishery ecoregions. The versatility 
of FLBEIA makes it the current preferred model for future mixed-fishery assessment 
developments. The models used within each ecoregion have a number of underlying 
assumptions that feed into the development of the predictions underpinning the mixed-
fisheries scenarios presented. 

During the 2021 annual EU-UK consultations2 it was agreed there is a need for further 
analysis of the assumptions used to produce mixed-fisheries considerations to aid 
understanding of the uncertainty around, and impacts of, these assumptions. These 
assumptions could lead to situations where mixed-fisheries scenarios indicate the need 
for lesser or greater reductions in fishing opportunities than required in reality, leading 
to stock under-utilisation, and risk undermining the utility of mixed-fisheries scenarios 
in setting TACs.  

Many of the issues and work within this study are also under consideration within ICES. 
As such, this study has been closely linked to the ICES advisory process, and the ICES 
groups developing mixed-fishery considerations, with a number of the study partners 
active within the ICES MIXFISH working groups. 

 

1 https://www.ices.dk/advice/Fisheries-overviews/Pages/fisheries-overviews.aspx 
2 Written record of fisheries consultations between the United Kingdom and the EU for 2021; paragraph 5(f)(v) 
 

https://www.ices.dk/advice/Fisheries-overviews/Pages/fisheries-overviews.aspx
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1.2 Objectives 

The overall objective of this study is to provide the European Commission (EC) with 
insights into the robustness of mixed-fisheries scenario assumptions currently made 
within the ICES advisory process. This study has examined:  

a. assumptions that could result in false technical interactions by missing spatial 
and/or temporal aggregations by examining the sensitivity of models to input 
aggregations;  

b. assumptions associated with the adaptability of those exploiting the stocks 
through analysis of the sensitivity and uncertainty of model settings (such as 
constant effort proportions within a fleet);  

c. whether there are any inputs that should be included but are currently not 
considered (in terms of vulnerabilities or technical measures);  

d. how the outcomes of scenarios could change if an important stock (due to fishing 
or vulnerability) is not included in the mixed-fishery model; and  

e. the perception of scenarios over the longer term, with current provisions focusing 
solely on the following year.  

Each of these assumptions and sensitivities have been explored within this study, and 
the outcomes are presented in the following sections of this report. Consideration of 
these outcomes could be used to support European policy decisions aimed at maximising 
fishing opportunities whilst ensuring protection of vulnerable stocks. 

1.3 Scope of the study 

The study has focused on providing case studies from three ICES mixed-fishery 
considerations areas – the North Sea, the Celtic Sea and Bay of Biscay – to demonstrate 
the impact of uncertainties and sensitivities on the interpretation of mixed-fisheries 
considerations. There are a number of differences between these three regions, making 
their examination within this study worthwhile. The most relevant difference is the type 
of modelling method and level of model development within projections for the mixed 
fishery. Modelling for the North Sea and Bay of Biscay is completed in FLBEIA, while 
Fcube is used for the Celtic Sea. In addition, the fleets fishing, stocks present, and stock 
assessment methods used within the three regions vary, providing a greater opportunity 
to explore various aggregation and assumption scenarios.  

1.4 Structure of the report 

Section 2 presents the ‘data availability’. The results and outputs of the ‘sensitivity to 
fleet’ selection is provided in section 3, including case studies for the North Sea (3.1) 
and the Celtic Sea (3.2). Section 4 then presents results and outputs of the ‘sensitivity 
to forecast’, with separate case studies presented for the North Sea (4.1) and the Bay 
of Biscay (4.2).Section 5 considers ‘stock interactions’, including Interactions at the 
ICES rectangle level (5.1) and Interactions at the trip and haul level (5.2) and ‘additional 
factors’ (5.3).Section 6 looks at how the mixed-fishery models could be extended from 
their current format through development of conceptual frameworks. More specifically, 
a ‘framework scenario evaluation’ (6.1), a framework for ‘stock rebuilding’ (6.2), a 
framework for ‘new stocks’ (6.3), and lastly a framework developing ‘new areas’ (6.4). 

Finally, sections 7 and 8 draw all the outputs together to provide a set of final 
conclusions and considerations for further development, respectively.  
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2 DATA AVAILABILITY 

Data used within this study come from three main sources: EU Member States; ICES; 
and the EU Data Collection Framework (DCF), each source providing a tool by which to 
describe fishing activity at varying levels of resolution. All sources are described in 
ANNEX 1, in terms of accessibility, coverage and limitations. During the ICES second 
workshop on fisheries overviews (ICES WKFO2) a member of this consortium was able 
to access all available data sets to assess quality and consistency and a full summary 
of the data quality and consistency is available in the workshop report (ICES, 2023a). 
A summary of the data used within the study is given in Table 1. 

The greatest challenge with any mixed-fisheries analysis is the acquisition of data at an 
appropriate resolution to accurately represent the fleet. Therefore, the remaining part 
of this section will focus on data available to achieve this. The appropriateness of the 
resolution is considered to be the level at which differences in catch composition created 
from the technical and biological interactions between fleets, gears and species can be 
detected (Ulrich and Andersen, 2004). Modelled technical interactions must account for 
the complex nature of fisheries, at a resolution that is meaningful to the end users/ 
managers. This requires suitable fleet and métier definitions, identification and 
treatment of target / bycatch stocks and incorporation of gear-based selectivity, while 
accounting for fisheries dynamics (seasonality, closures, fisher decisions). These 
definitions also need to be meaningful and applicable to economic and social outcomes. 

The true technical interactions can only be detected at the individual haul level, and 
there is currently no regulatory requirement, data-collection programme, or database 
that is able to provide a complete overview of such information in the EU. However, the 
current development of the Regional Database and Estimation System (RDBES) will 
provide the most comprehensive overview of fleet data, sampling information (at sea 
and biological), along with associated variables. It will also provide links to data collected 
by the EU for the Scientific Technical and Economic Committee for Fisheries (STECF) 
Fishery Dependent Information (FDI) and Annual Economic Report (AER) (i.e. fishing 
technique)3. In the near future the RDBES will provide a single platform from which 
highly disaggregated sampling data from ICES member nations can be extracted for use 
in single-species stock assessments, in mixed-fishery assessments, and to tie in with 
FDI data. Use of a single platform will provide better consistency and transparency 
across data sources. This consistency is key for any mixed-fisheries model where 
merging multiple data sources can lead to potential errors, gaps and bias in the data. 
The governance group for the RDBES development (WGRDBESGOV) anticipates that the 
new system will be under development until 2024, and operational for single-species 
advice by 2025. An important prerequisite for phasing out of the Regional Database 
(RDB; which was originally designed for the review of fisheries-sampling plans) and 
InterCatch4 is to demonstrate that the design of RDBES is able to provide sufficient 
support for current estimation protocols. An overview of how the RDBES data aligns 
with currently used fleet data (landings and effort) can be found in the ICES WKFO2 
report (ICES, 2023a).  

In addition to the technical interactions, the spatial resolution available in the RDBES is 
limited to ICES statistical rectangle, which may not capture more fine scale targeting 
behaviour. For this reason, a number of bespoke data sets provided by individual 
Member States are explored in section 3, including the sensitivity to fleet aggregation 
(3.2.1). These highly disaggregated data sets are built with the data collected by vessel 
monitoring systems (VMS). Given the highly sensitive nature of these data sets it is not 
possible to share the raw data, so a framework has been developed to analyse and 
share the data at a resolution that does affect national confidentiality rules.  

 

3 https://dcf.ec.euro pa.eu/data-calls/aer_en#definitions 
4 Web-based system to which national institutes from the Northeast Atlantic can upload national fish catches 
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Table 1: Summary of data used in this study. 

Type Sources Accessibility  Year coverage Limit of spatial 
resolution 

Details  

Single-species 
information  

Advice sheet (Landings 
+ discards) 

Open to all Varies per stock. 
Start of assessment 
time series until 2021 

Stock level  Estimated total landing and discards 
(where available) per year can be 
taken from the ICES advice sheet. 
This data source is used as the 
baseline when comparing other data 
sources in this exercise. The ICES 
single-species advice sheets are 
considered the standard quality-
controlled values as they are 
reviewed by data submitters, stock 
coordinators, single-species working 
groups, and advice-drafting groups. 
All other data sources will be 
compared to this to describe overall 
trends and typically account for 
adjustments such as misreports.  

Stock information Restricted to WG * 
members or via 
special request to 
ICES  

Varies per stock. 
Start of assessment 
time series until 2021 

Stock level This comes in the form of an 
FLStock object *, which contains the 
inputs and outputs of the single-
species stock assessments and 
forecasts (WGBIE, WGCSE, 
WGNSSK *) in terms of fishing 
mortality pressure (F), spawning 
stock biomass (SSB) and catch 
(tonnes). 

Age and length 
structure 

Restricted to WG 
members or via 
special request to 
ICES 

Varies per stock. 
Grouping based on 
sampling design, data 
availability and model 
needs 

Groups ICES 
divisions 

This raised sample data is extracted 
from the ICES InterCatch *database 
and represents the best-available 
description of the age and length 
structure of the stocks and gears in 
question. 
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Type Sources Accessibility  Year coverage Limit of spatial 
resolution 

Details  

Fleet WGMIXFISH * fleet data 
(landings and effort) 

Restricted to WG 
members or via 
special request to 
ICES 

2009–2021 

 

ICES Division Age information (InterCatch), in 
combined with landings and effort 
information at the level of métier by 
WGMIXFISH to produce fleet 
objects, describing the general 
patterns of fisher behaviour at a 
very aggregated level. Landings and 
effort data are provided by year, 
quarter, country, ICES division, 
métier/gear and vessel length. 
However, not all species are 
available because the landings are 
aggregated by the species 
specifically requested in the annual 
ICES fisheries data call, all other 
species are aggregated under an 
‘OTH’ species code. 

FDI (landings, discards 
and effort)  

Restricted to expert 
working group / 
STECF members or 
via request to DCF 
and each Member 
State 

2013–2021 ICES division and 
ICES statistical 
rectangle  

Data supplied by DCF, submitted by 
EU Member States during and 
analysed during the STECF Expert 
Working Group on Fisheries 
Dependent Information (STECF-22-
10). Catch, effort and landings 
tables were supplied to the 
consortium by the JRC. This data set 
provides information at the spatial 
aggregation level of ICES division 
and statistical rectangle. UK data 
not available from 2020 onwards. 
Therefore, a large proportion of the 
Celtic Seas fishing landings and 
effort data are missing.  

https://stecf.jrc.ec.europa.eu/ewg2210
https://stecf.jrc.ec.europa.eu/ewg2210
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Type Sources Accessibility  Year coverage Limit of spatial 
resolution 

Details  

Bespoke scripts  At a raw level 
accessibility is 
limited to an 
individual data 
owner (i.e. Member 
State) 

Coverage varies 
based on sampling 
programmes 

Logbook declarations 
and VMS pings 

Several bespoke scripts were 
developed to facilitate the sharing of 
sensitive fisheries information at an 
aggregated level. See section 3 
(3.2.1) where scripts were 
developed to aggregate and share 
VMS and logbook data required to 
identify finer technical interactions 
then were available in the currently 
used WGMIXFISH data call.   

*WG = working group; FL Stock Object = a data object in R that is a representation of a stock assessment and contains the inputs and outputs of the single-
species stock assessments and forecasts; WGBIE = Working Group for the Bay of Biscay and the Iberian Waters Ecoregion; WGCSE = Working Group for the 
Celtic Seas Ecoregion; WGNSSK = Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak; InterCatch = Web-based system, 
to which national institutes from the North East Atlantic can upload national fish catches; WGMIXFISH = Working Group on Mixed Fisheries. 
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3 SENSITIVITY TO FLEET 

The basic building blocks of all mixed-fisheries models are the fleet (or fleet segments), 
and the métier. The definitions of these building blocks have evolved over time and the 
most recent official definitions are set out in the DCF (Reg. (EC) No 949/20085 and 
replaced by Commission Decision 2010/93/EU6). These definitions, shown below, have 
been adopted by ICES and have been applied within this study. 

• Fleet segment: a group of vessels with the same length class and predominant 
fishing gear during the year. Vessels may have different fishing activities during the 
reference period but might be classified in only one fleet segment.  

• Métier: a subset of a fleet consisting of a group of fishing operations targeting a 
similar (assemblage of) species, using similar gear, during the same period of the 
year and/or within the same area and characterised by a similar exploitation pattern.  

A fleet should describe a physical group of vessels that share some physical traits and 
economic behaviours and execute similar activity that is meaningful to management. At 
present, WGMIXFISH defines fleets based on nationality, vessel size groups and 
aggregations of métier that use particular gear (i.e. French Otter trawlers 24–40 m in 
length). However, this grouping may not reflect the true diversity of fishing practices, 
potentially masking valuable information on polyvalent vessels that may combine 
trawling activity with potting or netting.  

Métiers should describe the behaviour executed by a fleet at the level of the fishing 
operation (outcomes of a fishing operations at the level of trip, area and gear). Ideally 
this information should be available at the highest resolution possible and should contain 
information on species / species groups targeted so that the catch compositions of the 
fisher’s intended behaviour is captured. This would provide a realistic measure of 
catchability for these stocks. In practice, fishing activity is extremely diverse, with no 
two hauls resulting in the same outcome. Further, it is often impossible to know the 
intended behaviour from a posteriori evaluation of catch compositions (ICES, 2018). In 
practice, WGMIXFISH uses the same métier classifications as those provided to the 
single-species working groups for catch estimates. The métiers provided are at DCF 
level 6 (gear, target species, mesh size range, selectivity device). In reality, they are 
grouped during the estimation process in national laboratories and by stock 
coordinators. Although these groupings have the advantage of providing consistency 
with the national sampling programmes used to estimate discards and size composition 
of catch, they are only a typology, and should be assessed for their relevance to the 
fishery and behaviour being executed to better define model inputs. Therefore, greater 
detail in terms of time (fishing trip level information) and space (highest resolution 
possible) are required to ensure that realistic and meaningful métiers are used.   

By aggregating fishing activity into discrete homogenous fishing units, it is possible to 
reflect the true nature of a fishery (ICES, 2003). Homogeneity within a unit of fishing 
activity can provide more effective estimates of catch per species, directed fishing effort 
and partitioning of fishing mortality (Pelletier and Ferraris, 2000). However, it is 
important to ensure that the unit selected correctly captures the fishing activity within 
an area and that the right level of contrast is used to capture both spatial and temporal 
differences between the fishing units (Holley and Marchal, 2004; Mateo et al., 2017).  

The section aims to evaluate the current fleet and métier definitions used, suggest 
potential improvements, and assess the impact of different aggregations of fleets and 
métiers on catch forecasts across two case studies: the North Sea and the Celtic Sea. 

 

5 OJ L 346, 23.12.2008, pp. 37–88. 
6 OJ L 41, 16.2.2010, pp. 8–71. 
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3.1 North Sea case study 

The outputs presented here are based solely on the mixed-fisheries data as submitted 
to the ICES WGMIXFISH-advice. This decision was made based on the exploration of 
available data within section 2, which highlighted the discrepancies between the 
different data products available to this study. Although this limits the scope with respect 
to fleet/métier definitions, using a single data source (validated by WGMIXFISH) 
facilitates the interpretation of the results as there are no (potential) effects of using 
different data sets. Furthermore, starting from an existing mixed-fisheries model 
allowed to invest more effort in the development of alternative fleet dynamics models. 

The data submitted to ICES Working Group on Mixed Fisheries Advice Methodology 
(WGMIXFISH-ADVICE) uses a similar stratification level as the data submitted to ICES 
for single-species stock assessments. Effort and catch/landings (by species) are 
submitted by country, quarter, métier DCF level 6, vessel length (following the Annual 
Economic Report definitions) and ICES subdivision, resulting in an extensive dataset. To 
reduce the number of strata (and potential fleet/métiers), the data are grouped into 
categories such that the variability of the data, describing the heterogeneity of the 
fishery, is maintained as much as possible.  

In the current implementation of the North Sea mixed-fisheries model used by ICES, 
the starting point of the grouping into fleets and métiers was to match the definitions 
used in the cod long-term management plan (Council Regulation (EC) No 1342/20087). 
Fleets were further split by country, and sometimes further by vessel length category 
depending on the availability of cost data from the Annual Economic Report and then 
the overall importance of the fleet in terms of total effort. Since 2012, more in-depth 
consideration has been given to the relevance of groupings of the fleet segments with 
regard to known national fishing patterns (detailed in ANNEX 2).  

As a second step, and in order to reduce the number of categories, an aggregation 
threshold was used to identify ‘small’ métiers. A métier failing to catch 1.0% of at least 
one of the stocks considered was classified as small, and not considered as a separate 
métier but aggregated by fleet in one ‘Other’ métier (OTH). Further to this, fleets that 
contain only the OTH métier were aggregated into one single OTH fleet. 

3.1.1 Framework for defining métier and fleet units 

Data submitted to ICES WGMIXFISH (see Table 1 for details on this dataset) was used 
to conduct a Principal Component Analysis (PCA) and cluster analysis following the 
methodology as described in Moore et al. (2019). This multivariate analysis allows to 
group input data according to similarities across multiple input variables. In this case, 
the input variables represent the landings proportion of a selection of important 
demersal fish species (and Nephrops) in the North Sea for the years 2019-2021 (see 
ANNEX 3 for a detailed description of the input data).  

This analysis was repeated multiple times for different grouping levels of the input data 
(Table 2 of ANNEX 3). These grouping levels included the ICES subdivision, the target 
species assemblage, vessel length, country, gear type, and mesh size used, and were 
selected as they are considered as important fishing activity descriptors that could 
inform about the fleet/métier structure in the North Sea. 

The results of this analysis showed that the grouping of variables according to the 
aforementioned descriptors has little impact on the number of principal components and 
clusters required to explain a significant part of the variability in the landings 
composition (Figure 1 and Table 2 of ANNEX 3). For each grouping, approximately 19 
to 22 clusters are retained to explain >90% of the variance, which indicates that a 

 

7 OJ L 348, 24.12.2008, pp. 20–33 
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similar number of métiers, thereby ignoring the grouping into fleets and quota allocation 
across fleets, could be used to capture the main technical interactions of the demersal 
fisheries in the North Sea. 

Linking those results to the current fleet and métiers definitions used by ICES 
WGMIXFISH in the North Sea showed a good level of agreement with about 70% of the 
non-other métiers belonging to one or two clusters (Table 3, 4, 5 of ANNEX 3). Only for 
a few métiers, a large discrepancy was found between the ICES definitions and the 
results of the PCA and cluster analysis which is likely related to the development of the 
demersal fishery over time and the inclusion of métiers targeting pelagic species that 
are difficult to describe with landings of demersal species. 

3.1.2 Links to sensitivity uncertainty of forecast conditioning 

The fishery dynamics in ICES mixed-fisheries projections are the outcome of three 
components: 

1. fishing opportunities (set as quota) defined at the fleet level (based on historical 
landing volumes of the fleets) control how much a fleet can catch from each species; 

2. métiers considered as the production units, harvest fish of which the catch 
composition is related to the species-specific catchabilities of the métier;  

3. fishing effort, which is defined at the fleet level with fixed-effort proportions by 
métier, and the abundance of the resource.  

The uncertainty of these components (quota shares, catchabilities and effort 
proportions) is addressed in section 4.1 In the following section, structural uncertainty 
with respect to the fixed effort proportion assumption is addressed by investigating the 
effect of alternative fleet dynamic models. 

A consequence of the fixed effort proportion assumption is that mixed-fisheries 
projections are independent from the métier definition of a fleet, and that a fleet 
constituted with a single métier catches exactly the same as a fleet composed of two or 
more métiers given that the same input data are used to condition the fleet and 
métier(s). If effort proportions across métiers are fixed, a fleet behaves as a fleet with 
a single métier, where the catchabilities of that métier are equal to the average 
catchabilities of all métiers weighted by the effort proportions. Hence, if one would 
define a fleet with spatially disaggregated métiers, at for example the level of an ICES 
statistical rectangle, the assumption of fixed effort proportions would imply that the 
spatial distribution of that fleet is fixed and not reallocated according to the fishing 
opportunities of that fleet. Moreover, this assumption may result in some counter-
intuitive results if a fleet is composed of métiers that are independent for at least one 
stock – as is the case for fleets of the ICES WGMIXFISH-advice North Sea model, which 
have métiers operating in the Eastern English Channel and the North Sea. In such cases, 
a fleet may be choked by a stock that is caught by a métier that operates in the English 
Channel (e.g. sol.27.7.d), while the fleet could still have quota left for North Sea stocks. 

To avoid such unrealistic choking and allow fleets to adjust the effort proportions 
between métiers given their fishing opportunities, an alternative fleet-dynamics model 
has been implemented in the WGMIXFISH-ADVICE North Sea model. As a result, there 
is a linear relationship between catch and effort, assuming that all catches are taken at 
a single point in time during the year (the middle of the year in this case). This linear 
relationship between catch and effort allowed the optimal effort levels of métiers within 
a fleet to be found using linear programming. In addition, effort limits, quota, capacity 
limits or other constraints can easily be implemented in a linear programming model to 
increase realism of the fishery. Another advantage of linear programming is that it is 
computationally efficient, giving exact solutions in little time. 

4. In this case a linear programming model was implemented with six different 
constraints that represent three different scenarios in terms of fleet-effort 
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proportions across métiers, the mathematical representations of which are given in 
ANNEX 4. 

The first scenario, ‘flex’, does not constrain the effort proportions across métiers (only 
considers constraints 1 to 3). The second scenario, ‘hist’, uses the historical effort ranges 
(lower and upper limit of a métier’s effort proportion) to constrain the effort proportions 
of a métier (considers constraints 1 to 3, and 5-6). The third scenario, ‘fix’, fixes the 
effort proportions at the average of the last three historical years (considers constraints 
1 to 4). This third scenario is similar to the ICES WGMIXFISH ‘min’ scenario (where 
fishing stops for a fleet when the fleet’s catch of the first quota species for that fleet 
meets the corresponding single-stock exploitation boundary). It should be noted that in 
each of the scenarios described here, the effort of a fleet is maximised, but constrained 
by a fleet’s fishing opportunities in terms of quota so that none of the quota are 
overshot. As such, those scenarios represent three variants of the ‘min’ scenario. 

 

3.1.3 Impact of alternative fleet–métier definitions 

Given the differences with respect to the data sources identified in section 2, the mixed-
fisheries model was conditioned with the mixed-fisheries data as used by the ICES 
WGMIXFISH. Using alternative datasets to condition fleets would hamper the 
interpretation of the results because differences in the results would likely be explained 
by both the variety in input data used and fleet/métier structure. 

The fishery implemented in the FLBEIA model used for mixed-fisheries projections 
consist of two levels: fleets and métiers. The fleet level is constrained by both the 
management through catch limits (quota) and technical constraints, i.e. the capacity of 
the fleet (i.e. number of vessels, or total effort). In this study, the capacity constraint 
is set at an unrealistic high level, so that the upper level of fishing effort exerted by a 
fleet is never reached and effort is thus unconstrained. Therefore, the quotas by fleet 
are the sole constraint in the model. These quotas by fleet are defined according to the 
principle of ‘relative stability’, i.e. fleets receive a fixed proportion of the TAC of each 
species during the projection period of the simulation and are based on the average 
proportion of a fleet’s landings to the total landings of a given stock over the last three 
years. This is a simplistic approach that is likely to be invalid when past TACs are not 
fully caught and would over/underestimate quota shares for some fleets; in addition, 
quotas are often implemented at the national level or by producer organisations, 
eventually with some flexibility between individual vessels (transferable quota systems), 
fleets or Member States (bilateral quota swaps). The métier level governs the actual 
technical interactions that exist in the fishery, defined as operational fishing strategies 
of a fleet. Each métier has its own catch composition (defined by the catchabilities and 
the métier-specific catch weights for the different stocks included in the projection). 

In this study, we compare two alternative fleet and métier definitions of the ICES 
WGMIXFISH-ADVICE North Sea model with the original fleet–métier definition. The two 
alternative definitions comprise scenarios where (a) the fleets are similar to the original 
fleet definitions, but métiers are spatially disaggregated at the ICES subdivision level 
(except for German fleets), and (b) fleets are disaggregated according to the vessel 
length into four categories (> 10 m; 10 m ≤ 24 m; 24 m ≤ 40 m, and > 40 m). For 
each of the fleet–métier definitions, the new fleet dynamics model is used to compare 
four scenarios: a status quo effort scenario, and three ‘min’ scenarios: (i) full flexibility 
of effort proportions across métiers (‘flex’), (ii) effort proportions within the historical 
ranges of a métier’s effort proportions (‘hist’), and (iii) fixed-effort proportions based on 
historical values from the last three years (‘fix’). The twelve scenarios are compared in 
terms of fleet effort and utilisation of the TACs. 

In summary, there are limited differences between the projections of the three different 
fleet and métier definitions if the same fleet dynamics model is used; this is the status 
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quo effort scenario. In contrast, using the three alternative fleet dynamics models has 
more pronounced effects, as can be seen in Figure 1. In the North Sea mixed-fisheries 
projections for 2023, more flexible fleet dynamics result in a better uptake of the flatfish 
quota in both the North Sea and Eastern English Channel. There is also a shift in quota-
prevailing choking species in the mixed-fisheries projections (Table 2), with fewer fleets 
choked by witch flounder in the more flexible-effort dynamics scenarios, and a shift 
towards mainly sole. 

 

Table 2: Number of occurrences that a prevailing quota species is the choke species by 
disaggregation scenario. Species abbreviations: COD-NS = North Sea cod; HAD = 
haddock; NEP-6 = Nephrops FU6; NEP-9 = Nephrops FU 9; PLE-EC = English Channel 
plaice; POK = saithe; SOL-EC = English Channel sole; SOL-NS = North Sea sole; TUR = 
turbot; WHG-NS = North Sea whiting; WIT = witch flounder 
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Min_fix_default 3 0 1 0 0 0 1 0 5 0 0 36 

Min_fix_fleets_length 5 1 1 0 1 0 2 1 7 2 0 46 

Min_fix_métiers_area 4 0 2 0 0 0 1 0 5 0 0 40 

Min_flex_default 3 3 0 1 5 1 3 1 11 4 2 12 

Min_flex_fleets_length 3 7 0 1 7 1 9 6 10 11 1 10 

Min_flex_métiers_area 6 7 1 0 1 1 0 7 9 0 6 14 

Min_hist_default 4 0 0 0 2 0 1 1 14 0 0 24 

Min_hist_fleets_length 5 1 2 0 7 0 3 5 17 2 1 23 

Min_hist_métiers_area 5 2 1 0 0 0 1 4 13 0 1 25 

sq_E_default 3 0 1 0 0 0 1 0 5 0 0 36 

sq_E_fleets_length 5 1 1 0 1 0 2 1 7 2 0 46 

sq_E_métiers_area 4 0 2 0 0 0 1 0 5 0 0 40 
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Figure 1: Catches of demersal North Sea stocks according to different mixed-fisheries 
scenarios. The horizontal line corresponds to the single-stock catch advice, with areas 
above and below the line representing potential over- and undershoot, respectively. 
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Disaggregating the fleets by vessel length category results in a wider spread of the 
choking effects across fleets (Figure 2). This can be interpreted as follows; some fleets 
experience stronger choking effects first, while others are choked later or experience 
fewer choking effects. Therefore, the distribution of ratio of the fleets’ effort to the status 
quo effort (sqE) has a wider spread in the ‘min_fix_fleets_length’ scenario in the figure 
when compared to the ‘min_fix_default’ scenario. Nevertheless, the median effort level 
compared to the status quo effort level is very similar as with this aggregation level the 
effort ratio is distributed around 1(Figure 2). This result is a logical consequence of 
combining multiple strata in a single fleet; if catch compositions and historical landings 
volumes differ for the strata, disaggregating those strata in multiple fleets will obviously 
result in fleets with catch opportunities and technical interactions that are more in line 
with the advice, and vice versa. Keeping the same fleets, but disaggregating the métiers 
has no effect if effort proportions across métiers are fixed. However, small differences 
may arise from métiers that are too small and are grouped in the OTH métier of a fleet. 

 

Figure 2: Effort compared to status quo effort levels by fleet for the three fleet–métier 
definitions under the fixed effort proportion scenario. 

The fleet dynamics have stronger effects on a fleets’ effort. Relaxing the constraint of 
fixed effort proportion results in increases in effort level for all fleets that comprise more 
than one métier. Removing all constraints in terms of effort proportions and allowing 
full flexibility results in effort levels that are on average similar to the sqE effort levels. 
If effort levels are constrained by the historical effort proportions, the overall median 
effort level by fleet is strongly reduced (to about 50% of the status quo). For fleets that 
fish with effort proportion ranging between the historical values, the reduction of the 
median effort level compared to status quo effort levels is less pronounced (about 12%). 
However, removing the constraints on the effort proportions reduces the overall catch 
per unit effort (CPUE) of the fleets (Figure 3). This is mainly the case for the ‘flex’ 
scenario and is a result of the objective function that seeks to maximise effort and is 
therefore favourable for métiers with low catchabilities. By constraining fleets to fish 
according to historical effort distributions, this effect is strongly reduced – indicating 
more realistic behaviour.  

Another consequence of the increased flexibility in terms of effort proportions across 
métiers is that the number of choke species by fleet increases (Table 3). Fleets do not 
necessarily have to stop fishing if the first quota is depleted but are still able to fish with 
métiers that do not catch the first choke species.  
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Figure 3: Effort (left) and CPUE (right) compared to status quo effort levels by fleet for 
the three alternative fleet dynamics models for the default fleet–métier definition. 

 

Another consequence of the increased flexibility in terms of effort proportions across 
métiers is that the number of choke species by fleet increases (Table 3). Fleets do not 
necessarily have to stop fishing if the first quota is depleted but are still able to fish with 
métiers that do not catch the first choke species.   

Table 3: Frequency table showing the number of choke species (1 to 5) by fleet for each 
scenario. 

Number of choke species 1 2 3 4 5 

min_fix_default 46 0 0 0 0 

min_fix_fleets_length 66 0 0 0 0 

min_fix_métiers_area 52 0 0 0 0 

min_flex_default 12 18 12 3 1 

min_flex_fleets_length 20 29 15 2 0 

min_flex_métiers_area 11 19 14 8 0 

min_hist_default 23 20 3 0 0 

min_hist_fleets_length 32 30 4 0 0 

min_hist_métiers_area 21 27 4 0 0 

 

3.2 Celtic Sea case study 

As only one of the four main countries fishing in the Celtic Sea was part of the 
consortium, all analysis was limited to the data currently available through WGMIXFISH, 
or Irish-specific data. However, work is ongoing at ICES, through the EU special request 
to ICES, which reflects the objectives of this study, enabling this study to work 
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collaboratively with those outside the consortium. The results of these more 
collaborative aspects will be presented under the special request report due in 2024 
rather than within this report.  

3.2.1 Framework for defining métier and fleet units 

This analysis is an update of the work previously completed by the Celtic Sea subgroup 
at WGMIXFISH (Davie & Lordan, 2011; Moore et al., 2019; ICES, 2018). A multivariate 
analysis (PCA and hierarchical clustering) has been applied to identify homogenous 
groupings of métiers (presented in ANNEX 5). This framework is currently only 
applicable to métier definitions. Vessel-level information is required to define the fleet, 
and therefore fleets are not part of this discussion 

This analysis indicates that current métier typology and grouping used in the Celtic Sea 
WGMIXFISH-ADVICE model is sensible, and consistent with the previous findings (Moore 
et al., 2019, ICES, 2018). This indicates that at the resolution of year and ICES divisions, 
there is stability in the definitions used for métiers, and they maintain relevance to the 
current fishing patterns in the Celtic Sea. However, if new input data (e.g. spatially 
disaggregated) are used for mixed-fisheries projections in the future, it is a useful 
endeavour to explore the data using a PCA analysis, as presented here, before assigning 
fleet and métier definitions. 

Ideally, high-resolution (spatial and temporal) trip-level data is required to define the 
most suitable métier for a specific mixed-fisheries case study. However, there is 
currently no such available data source within ICES and the EU. Issues of confidentiality 
currently hinder the collection and sharing of these data. To circumnavigate this issue, 
members of this consortium and the members of WGMIXFISH Celtic Seas subgroup are 
developing scripts that allow countries to merge and raise their own data to include 
high-resolution clustering of métiers and fleets segments that align with the AER. These 
data are derived from logbooks (EFLALO), VMS (TACSAT), and sales notes (AER), and 
will enable WGMIXFISH to identify real fleets (physical vessels), fisher behaviour 
(métier) and economic outcomes, while also reducing the chance of false-positive 
technical interactions (ICES, 2022b; ICES, 2023b). This work is under way beyond the 
scope of this study and will be reported as part of the response to the special request 
from the EU to ICES on this topic. 

3.2.2 Impact of fleet–métier disaggregation  

For the Celtic Sea case study there was no need to rerun the Fcube model to test the 
impact of new fleets, as no new fleets or métiers were identified from previous work. 
Future work will focus on defining fleets and métiers using highly spatial disaggregated 
data (see 3.2.1), at which point the Fcube model will be rerun with revised strata to 
determine the impacts. This is under way within the remit of the special request from 
the EU to ICES. 

3.2.3 Impact of spatial disaggregation  

WGMIXFISH produces mixed-fishery considerations using highly aggregated data, at the 
spatial level of ICES division. This level of aggregation does not always reflect the 
complexity of fisheries, or the impact of spatial or temporal dynamics on patterns in 
targeting behaviour and catch composition. This task explored the impact of spatial 
disaggregation on the choking patterns of cod in the Irish Nephrops fleet. The objective 
was to identify the number and frequency of fishing trips operating within Nephrops 
Functional Units (FUs) that could be completely decoupled from any technical 
interactions with cod, the primary choking species within the Celtic Seas mixed-fisheries 
model. 

Despite the increased spatial resolution provided by this new data, it was not possible 
to completely decouple landings of cod and Nephrops on individual trips (see ANNEX 6). 
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The case study went on to further explore a single FU at the ICES statistical rectangle, 
the Porcupine Bank (FU 16) which is considered to be a highly targeted Nephrops 
fishery. However, even in FU 16, some technical interactions with cod persisted. As, in 
this case, it was not possible to completely decouple Nephrops trips from trips where 
cod was caught, there was no clear way to refine fleets with the current available levels 
of regulatory reporting. To create fleets that are not artificially choked by false technical 
interactions would require even more spatially disaggregated data. Therefore, the 
WGMIXFISH Celtic Seas subgroup is developing a framework (see 3.2.1) that will allow 
for the identification of technical interactions at a more spatially disaggregated level 
(VMS pings).  

3.2.4 Impact of age-structured fleet and métier definitions 

It is not currently possible to assess the impact of age-structured fleet and métier 
definitions on the mixed-fisheries forecasts produced for the Celtic Sea WGMIXFISH-
ADVICE because the model used (Fcube) does not include age. In addition, the 
WGMIXFISH inter-benchmark in 2021 (IBPMIXFISH; ICES, 2021b) concluded that it was 
not possible to use FLBEIA for Celtic Seas advice purposes. When the FLBEIA model was 
applied in the Celtic Sea, several problems were encountered in reproducing the advice 
and forecast of mixed-fisheries scenarios. See Annex 7 for further details.  

Once an age-based mixed-fisheries model can be fully implemented, it will enable 
WGMIXFISH to more accurately reflect the reality of mixed fisheries, providing the 
highest detail of technical interactions, and enabling us to account for the selectivity 
impacts of gears and targeting behaviour. For now, age-structured data is still produced 
annually as a step in the data-production process as the aim is to have all case studies 
using FLBEIA within the coming years. Although the transition to an age-structured fleet 
model would provide more tools with which to predict the impact of fleets on stocks, 
there are still a number of questions around the impact of the change on the quality of 
the data and the subsequent forecasts.  

3.2.5 Links to sensitivity uncertainty of forecast conditioning 

The effect of uncertainty of fleet and métier definitions on model behaviour has never 
been investigated, despite the possibility that poor estimates of strongly influential 
parameters may have large impacts on model performance. Understanding these 
impacts will enhance the quality of mixed-fisheries products. This work is currently being 
undertaken within WGMIXFISH-METHODS a summary of which is given in ANNEX 8  

To date, the conclusions reached by WGMIXFISH-METHODS (ICES, 2023b) are that the 
generic set of methods developed by Cefas could be applied to the conditioning of any 
mixed-fisheries model and accommodate potentially noisy and poor-quality input data. 
These methods are already built into functions that can be readily applied to any data 
object in R that is a representation of amalgamated biological, assessment and fleet 
data (FLFleet object) and generate a performance log and diagnostics to screen for 
model fitting issues. Future work will improve the realism of forecasts, and will improve 
the robustness of model fitting, expanding the toolbox of user-friendly functions 
available. This work is ongoing and will be dealt with as part of WGMIXFISH-METHODS 
and the special request sent by the EU to ICES, to be published in 2024. 
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4 SENSITIVITY TO FORECAST 

The main purpose of this section is to characterise the uncertainty in the projections of 
mixed-fisheries models as a function of uncertainty in forecast conditioning. This 
involves characterising the uncertainty of parameters in the forecast based on historical 
data; quantifying the uncertainty in the output indicators; and identifying the 
parameters that have the highest contribution to the output variance. 

Mixed-fisheries scenarios provided by ICES are based on complex numerical models 
that, in addition to the parameters related to stock dynamics, also involve many input 
parameters corresponding to factors such as catchability, and proportions of effort 
between métiers for each fleet or quota distributions per fleet. These models are used 
to make short-term projections, and future values for these parameters are required for 
the projection period, namely the current year and the next year. Usually, average 
values of recent historical values are used to condition these parameters.  

In the provision mixed-fisheries considerations, it is important to provide not only point 
estimates for model results but also confidence intervals as an indicator of the precision 
of the forecast. However, currently, uncertainty is not considered in the provision of 
mixed-fisheries considerations.  In the simulation models used to generate mixed-
fisheries scenarios uncertainty can be propagated into the output using Monte Carlo 
simulation, where probability distributions are used to condition the input factors. The 
model is then applied iteratively to different values sampled randomly from these 
probability distributions. The process of conditioning the probability distributions is 
known as uncertainty analysis. In turn, Global Sensitivity Analysis (GSA) examines how 
the uncertainty in the input factors translates to the uncertainty in the output. 
Subsequently, the research focus could be on the input factors that have the highest 
impact in the output variance.  

The focus of the exercise was on the parameters directly related to catchability, quota-
share and effort proportion. For this purpose, two case studies were selected. In the 
North Sea case study, uncertainty of the three parameters (catchability, effort 
proportion and quota share) was analysed, and alternative assumptions based on the 
outcome of sensitivity tests for the forenamed parameters were evaluated. In the Bay 
of Biscay case study, the more complex GSA approach was applied to assess the 
sensitivity of input factors.  

4.1 North Sea 

For the North Sea case study, three model input parameter types were scrutinised: 
catchabilities, effort proportions and the distribution of landings - henceforth landing 
proportion. The approach taken consisted of conducting sensitivity tests, whereby, for 
each of the three input parameter types, alternative assumptions (‘scenarios’) were to 
be proposed, based on an analysis of the historical values for these parameters. Mixed-
fisheries projections were then run for the scenarios, and the output was compared to 
the base case. Because of the results of the historical values evaluation, no alternative 
assumptions were proposed and only the sensitivity of the status quo assumption was 
evaluated.  

4.1.1 Review of current assumption and comparison with alternative 
assumptions 

This section characterises the uncertainty associated with the assumptions made on 
future catchabilities, effort proportion and landing proportion when conditioning the 
North Sea mixed-fisheries model. For the three parameters, the same ‘status quo’ 
assumption is used, whereby the parameter values used for the projection period in the 
mixed-fisheries model (current year and next year) is set equal to the value in the last 
available data (one year before current year). Further details of the work can be found 
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in ANNEXES 9, 10 and 11, on the catchability assumption, effort proportion assumption 
and landing proportion assumption respectively. 

The same approach was used for the three parameters. The uncertainty stemming from 
the assumption on the future parameter values was examined by computing 
retrospectively the values corresponding to the assumption for a given year, and 
comparing it to the actual value, based on the data. The analyses were based on data 
from the 2022 ICES WGMIXFISH meeting, which contained information on landings, 
effort and catchabilities per fleet and métier for the period from 2012 to 2021. The 
predicted values based on these assumptions were calculated for each fleet and each 
stock for the years 2017 to 2021 (in order to leave enough years to fit the AR1 and lm 
models – see below for details). 

In addition to the assumptions used at WGMIXFISH, three alternative assumptions to 
the status quo assumption were tested. The assumptions tested were: 

• sQ: the parameter values in year y + 1 (for a given fleet and a given stock) is based 
on the values observed for y – 1. This is the current WGMIXFISH assumption; 

• Ave: the parameter values in year y + 1 (for a given fleet and a given stock) is based 
on the average of values for three previous years;  

• lm: the parameter values in year y + 1 (for a given fleet and a given stock) is based 
on the prediction from a linear model fitted on the values for the years 2012 to the 
year y – 1; 

• AR1: the parameter values in year y + 1 (for a given fleet and a given stock) is 
based on the prediction of an autoregressive model fitted on the values for the years 
2012 to the year y – 1. 

In order to compare the performance of the four assumptions in predicting the 
parameter values, different criteria were analysed: the prediction error was calculated 
for each data point, and the four assumptions were ranked on this basis. From this, the 
following performance descriptors were derived: 

• the percentage of the data points (year/fleet/stock combination) for which each 
assumption ranked first; 

• the average rank for each assumption;  
• the average prediction error (mean absolute proportion error) for each assumption. 

The main conclusion is that the current status quo assumption seems to provide a 
generally unbiased prediction for future parameter values (although some bias can occur 
for some stocks, (Table 7-Table 9). However, this assumption is associated with variable 
levels of uncertainty, on average, a mean error of between 20% and 50% but it can be 
higher. From a model perspective, any error on catchability or landing proportion will 
have an error of the same magnitude in the fishing effort (error of opposite direction for 
catchability, and same direction for landing proportions). Since the fishing effort is at 
the basis of the mixed-fisheries scenarios (e.g. ‘min’, ‘max’), any impact on the effort 
will be translated in catches and reflect in the catch projections from the models, in a 
similar proportion. However, it is not possible to derive overall confidence intervals for 
the mixed-fisheries catch forecast simply based on the magnitude of the errors on the 
input parameters. In order to appropriately take into the interactions in the different 
levels of complexity of the model (multiple fleets and multiple stocks) it is necessary to 
use the model itself (see section 4.1.2). 

There is also a large variability in these overall values. Overall, autocorrelation in error 
is negative, meaning that a larger error one year tends to be followed by a small error 
(or possibly of the opposite sign) the following year. 

The assumptions alternative to sQ do not, overall, provide a better basis. The ranking 
of the assumptions gives a clear advantage to the currently used one. This means that 
although the parameters are difficult to predict, the best approximation for future values 
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are the latest observed ones. On a fleet-by-fleet basis, there is a small percentage of 
cases where an alternative assumption performs better than the one currently used by 
ICES. However, it does not seem realistic to use case-specific assumptions (e.g. the 
best-performing one for each fleet/stock combination), as the best assumption may 
vary from year to year, and this can only be assessed retrospectively. Finally, in some 
instances, none of the assumptions tested seemed appropriate, for examples for cases 
where abrupt changes in catchability occurred.  

Regarding the landing proportions, the study also explored the use of an official 
database on quotas (before and after exchange) to formulate alternative assumptions 
for future TAC allocation between countries. Neither of the two alternative assumptions 
to predict future landing proportions based on quotas from FIDES provided a better 
basis than the one based on recent landing data currently used at ICES WGMIXFISH. 
The country initial quota percentages before exchanges are clearly not a good basis for 
assumptions on future landings proportions, as countries generally exchange large 
quantities to accommodate the needs of their fleets (to increase their fishing 
opportunities of their target stocks or anticipate the risk of being choked by certain 
stocks). Final quotas, those after exchange, were not a better basis either, as countries 
maybe still – consistently through the years – over-utilise, or, less likely, under-utilise, 
their fishing opportunities. 

Table 4: Performance metrics for the assumptions on catchability. Where the scenarios 
are defined as: sQ – the parameter values in year y + 1 based on the values observed 
for y – 1; Ave – the parameter values in year y + 1 based on the average of values for 
three previous years; lm – the parameter values in year y + 1 based on the prediction 
from a linear model fitted on the values for the years 2012 to the year y – 1; AR1 – the 
parameter values in year y + 1 based on the prediction of an autoregressive model fitted 
on the values for the years 2012 to the year y – 1. 

Assumption Proportion of 
being best 

Median relative error (%) Mean rank 

sQ 0.523 – 0.462 1.869 

Ave 0.135 – 1.331 2.860 

lm 0.252 – 1.392 2.432 

AR1 0.189 – 1.811 2.839 

 

Table 5: Performance metrics for the assumptions on effort proportions. Where the 
scenarios are defined as: sQ – the parameter values in year y + 1 based on the values 
observed for y – 1; Ave – the parameter values in year y + 1 based on the average of 
values for three previous years; lm – the parameter values in year y + 1 based on the 
prediction from a linear model fitted on the values for the years 2012 to the year y – 1; 
AR1 – the parameter values in year y + 1 based on the prediction of an autoregressive 
model fitted on the values for the years 2012 to the year y – 1. 

Assumption Proportion of being best Median relative 
error (%) 

Mean rank 

sQ 0.615 0.064 1.762 

Ave 0.176 – 0.167 2.753 

lm 0.217 – 0.747 2.505 

AR1 0.164 – 0.379 2.981 
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Table 6: Performance metrics for the assumptions on landing proportions. Where the 
scenarios are defined as: sQ – the parameter values in year y + 1 based on the values 
observed for y – 1; Ave – the parameter values in year y + 1 based on the average of 
values for three previous years; lm – the parameter values in year y + 1 based on the 
prediction from a linear model fitted on the values for the years 2012 to the year y – 1; 
AR1 – the parameter values in year y + 1 based on the prediction of an autoregressive 
model fitted on the values for the years 2012 to the year y – 1. 

Assumption Proportion of being 
best 

Mean absolute 
percentage error (%) 

Mean rank 

sQ 0.553 37.9 1.8 

Ave 0.157 43.4 2.7 

lm 0.195 52.6 2.6 

AR1 0.156 48.1 2.9 
 

4.1.2 Model evaluation and sensitivity  

The results of the review of the current assumptions and alternative scenarios 
highlighted that the status quo assumption in the North Sea mixed-fisheries model is 
the most robust compared to three other assumptions explored to configure future 
catchability, effort proportions per métier and landing proportions per fleet in the mixed-
fisheries model. It is therefore of interest to test how this assumption affects the 
outcome of mixed-fisheries scenarios used within mixed-fisheries considerations.  

One way to do this is to compare mixed-fisheries projections done using true parameter 
values with projections done using status quo assumption for these parameters. To have 
multiple points for comparison, the model can be run for five different starting years to 
produce five sets of results, both for the assumption and for the true parameter values.  

 
Figure 4: Retrospective approach to test the sensitivity of mixed-fisheries projections 
to the assumption made on key parameters for the North Sea case study. 

Using the North Sea mixed-fisheries model conditioned in 2022, true values for 
catchability, effort and landings proportions are available up to 2021 (last data year). 
We performed a five-year retrospective analysis where a two-year projection was run 
starting at different historical time (years from 2020 to 2016 inclusive, Figure 4).  

For each starting year, the model was run once with the parameter values unaltered 
(true values), and a second time after applying the status quo assumption, i.e. 
parameter values for the starting year and the following one were set equal to the value 
in the year preceding the starting year, as would be the case in a real situation for the 
last year of data available. This is similar to what is done when configuring the mixed-
fisheries models to produce advice. Each of the runs above (five starting years, true vs. 
assumed parameters) were repeated for different mixed-fisheries scenarios.  
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To quantify the sensitivity of the model output to the assumptions on model 
configuration, we computed the difference in the catches (advice year) and the SSB 
(advice year +1) per retrospective run and per stock between the run using a status 
quo assumption and the run using the actual parameter value. In order to summarise 
the value of these errors across the five runs (retro years), the mean error (expressed 
in percentage) is calculated. In addition, we extracted the most- and least-limiting 
stocks for each scenario and compared the results for both assumptions. 

For technical reasons, not all mixed-fisheries scenarios could be run in the sensitivity 
test of each parameter. The runs for which the sensitivity test could be done are given 
in Table 7 (see ANNEX 12 for explanations). 

Table 7: List of runs performed to test the sensitivity of FLBEIA output to assumption 
on parameters. 

Parameter Catchability Effort 
proportion 

Landing 
proportion 

Mixed-fisheries scenarios  Status quo effort Status quo effort ‘min’ and ‘max’  

 

4.1.2.1 Results 

The full set of results is presented in detail for each parameter in ANNEX 12.  

For the fish stocks (Figure 5), the error in the projected catches was the smallest for 
the runs testing the sensitivity to the proportion of effort per métier, with projected 
catches using the assumption begin from –4% for witch flounder to 2% for saithe 
compared to the projected catches using the real effort proportions. For catchability, 
the sensitivity to the assumption was larger, and mainly positive, indicating the 
assumption of status quo catchability led to higher predicted catches than when the true 
catchability is used in the model. here, the projected catches using the status quo 
catchability assumption were between 2.5% (saithe) to close to 30% (haddock and 
whiting) higher than the catches obtained using the real catchabilities. The errors 
associated with SSB for the year after the advice year were smaller and mainly negative 
(as a consequence of the positive errors on catch in the advice year). The largest errors 
were observed for the test of sensitivity to the landing proportions. The sign of the error 
was different for the ‘min’ and the ‘max’ scenario. In the ‘min’ scenario, the assumption 
resulted in lower catches in the advice year by generally around 50% (i.e. projected 
catch using the assumption being on average half of the projected catches obtained 
using the actual landing proportions). Conversely, in the ‘max’ scenario, catches are 
higher with the assumption than with true values, with an even larger error (catches 
obtained using the assumption were higher, between 25% for cod and 80% for whiting, 
than using the real landing proportions). Consequently, errors of the opposite sign, but 
of a smaller magnitude are found for the SSB in the year after the advice year.  

A possible explanation for this larger sensitivity could be that true landing proportions 
from the data correspond to the outcome of the activity of the fleets and therefore are 
representative for how each fleet has dealt with its potential quota limitations. Fleets 
can have managed to reduce choke effects by, for instance, increasing their quota for 
their potential limiting stock through exchange or transfer. It is therefore expected that 
when using the real (realised) landing proportion, the magnitude of the choke effects 
would be lower than from a forecast using status quo landing proportions. This would 
explain lower catches with the status assumption in the ‘min’ scenario. Conversely, the 
fleets are not likely to catch their full quotas for the stocks identified as least limiting; 
therefore, the proportion of landing for these stocks for the fleets for which they are 
least limiting are probably lower in reality than the ones based on the status quo 
assumption (and hence a higher forecasted catch in the ‘max’ scenario with this 
assumption). 
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For the three parameters, the mean percentage error (MPE) values for the Nephrops 
functional units (not shown here but available in ANNEX 12) were substantially higher 
than for the fish stocks. The sensitivity of the FLBEIA output is especially high for the 
landing proportion assumption, with an MPE larger than 100% for all stocks in the ‘max’ 
scenario. This is because the simulations use quotas per functional unit, while in reality 
a single quota is used for the whole of the North Sea. This adds an additional source of 
discrepancy between the real landing proportions and the ones based on status quo 
assumptions. 

Finally, the perception on most- and least-limiting stocks can change considerably when 
the status quo assumption is used compared to when the true data are used (shown in 
ANNEX 12). This is especially the case when testing for the sensitivity to the landing 
proportion assumption, where very different sets of most- and least-limited species were 
obtained. Less differences were found for the test of the catchability assumption, while 
most- and least-limiting stocks were not very affected by the effort proportion 
assumption. This difference can be explained by the fact that the landing proportion is 
a key parameter to define the quotas of the fleets per stock, which ultimately determines 
which stocks will be most and least limiting for each fleet. In addition, for the last two 
parameters, only proxies for most- and least-limiting stocks were derived for this study, 
whereas in the case of the sensitivity to the landing proportion, the ‘max’ and ‘min’ 
scenarios were run, thus allowing the identification of most- and least-limiting stocks. 

 

Figure 5: Sensitivity of FLBEIA output (catch in advice year and SSB the year after) to 
the assumptions made on future catchability, effort proportions and landing 
proportions. The sensitivity is measured by the mean percent error at the stock level. 
The boxplots depict the variability in the mean percent error amongst fish stocks for 
each parameter, and for different mixed-fisheries scenarios.  

 
4.1.2.2 Discussion 

Catchability  

Use of the status quo catchability assumption might induce an error in catch and SSB 
advice estimates for the fish species in the North Sea model, varying on average 
between 0 and 30%, and 0 and 15% respectively. The catchability assumption does not 
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seem to induce large differences in most- and least-caught stocks per fleet, which might 
indicate that the choke and least-limiting stocks would be mostly well identified with the 
status quo catchability assumption. 

Effort proportions 

The status quo effort proportion assumption might induce an error in catch and SSB 
advice estimates for the fish species in the North Sea model varying on average between 
0 and 4%, and 0 and 6% respectively. The effort proportion assumption hardly induces 
a difference in most- and least-caught stocks per fleet. This might indicate that the 
choke and least-limiting stocks would be mostly well identified with the status quo effort 
proportions assumption. 

Landing proportions 

Errors are larger as expected, because in this case the results are based on the ‘min’ 
and ‘max’ scenarios (set effort scenarios are not relevant for this parameter). The impact 
of the status quo assumption on this parameter does not only affect the calculation of 
forecasted catches and stock size for a given effort, but also the future effort itself. 
Indeed, in these scenarios, the efforts correspond to the lower and largest (for the ‘min’ 
and ‘max’ scenario respectively) of the efforts corresponding to the quota of each 
species, and these quotas are based on the landing proportions used.  

The sensitivity of the mixed-fisheries forecast to the landing proportion assumption 
appears high. However, there is no obvious alternative to the status quo assumption. 
Explorations have been made using Fcube at WGMIXFISH (ICES, 2022b) in which actual 
quota shares (before or after exchanges) are used instead of a status assumption. This 
resulted in some noticeable differences. In particular, some fleets that were strongly 
choked by COD-NS with the status quo landing proportion assumption had actually 
underused their quotas (or traded them) in the recent years, and their actual quota 
share were much higher than assumed based on recent landing proportion. For these 
fleets, COD-NS was still choking when using quota shares as an assumption for future 
landing proportions, but for a much higher effort, and their catches were overall much 
higher. However, since it is impossible to predict annual exchanges and transfers, using 
quota shares does not seem to lead to a better assumption overall than using status 
quo landing proportion (see ANNEX 11). 

4.1.2.3 Conclusions and observations 

Not having reconditioned to exactly reproduce the previous mixed-fisheries 
considerations led to more issues than initially foreseen, and has resulted in limitations 
to the validity of the results presented here.  

A first issue is related to the stocks included in the analysis for each métier. For a 
number of fleets, stocks are included in the catches of their métiers only for some years 
(the most recent ones). When running the model starting further back in time, those 
stocks remain in the list of stocks taken by these métiers, even though catches are 0. 
This leads to setting quotas for 0 catch for these stocks, which fully chokes the fleet 
(appearing as NA on the Figure 14 of ANNEX 12). 

A second issue is that the runs were also parameterised using historical ICES advice to 
define the quotas of the fleets. The biological basis for the retrospective runs was the 
assessments available in 2022, which can differ substantially from the ones used back 
in time as a basis for both the single stock and the mixed-fisheries considerations 
(because of annual revisions in assessment perception or changes in methods after 
benchmarks). Therefore, it cannot be expected that most- and least-limiting stocks in 
this analysis correspond to those identified in the historical mixed-fisheries 
considerations.  
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Not having been able to fully recondition the model for each retrospective year might 
also be the reason for the unexpected results regarding most- and least-limiting stocks 
for the landing proportion assumption.  

Reconditioning the model is very difficult, and would involve, for each retrospective run, 
a total reconstruction of each fleet-object (landing and discards at age per métier for 
each fleet, and corresponding effort), which is normally achieved after several days of 
work at each WGMIXFISH meeting. The stock object from the earlier assessments 
should also be used, and the corresponding assumption on future biology should be 
updated.  

Since the lack of reconditioning is likely an additional source of discrepancy, it can be 
expected that the analysis presented here overestimates the sensitivity of the model 
output to the assumptions on configuration. However, it is not possible to establish the 
magnitude of this overestimation. 

4.2 Bay of Biscay 

The aim of this section was to conduct an uncertainty analysis and GSA on the Bay of 
Biscay demersal mixed-fisheries as a case study. The focus was on ensuring effective 
conditioning of the models to represent accurately the uncertainty in the output and 
characterise it using the GSA. The case study comprised data on the French and Spanish 
demersal fisheries operating in the Bay of Biscay. Input data was based on the available 
information from ICES WGMIXFISH 2022 (ICES, 2022c) and some improved information 
on Spanish fleet from the AZTI database, covering the period 2009–2021. A detailed 
description of the case study including the fleets and métiers available and an 
exploratory data analysis of catchability, effort share and quota share can be found in 
ANNEX 13. 

As a proof of concept, the initial analysis focused on the analysis and conditioning of 
the two most important trawl fleets in terms of total landings. These were French 
bottom otter trawlers 10 to 24 m in length (FR_OTB_10<24m) and Spanish 24 to 
40 m bottom trawlers (ES_OTB_24<40m). As the data time series should be as long 
as possible for this type of analysis, the longest data time series available for the Bay 
of Biscay mixed-fisheries case study was used, covering the years 2009 to 2021. 
Unresolvable data gaps occurred in the earlier part of the time series, limiting use to 
the years 2014 to 2021 in some instances.  

4.2.1 Uncertainty analysis 

4.2.1.1 Conditioning of the input factors  

The focus was on the uncertainty conditioning of parameters directly related to 
catchability, quota-share and effort proportion. The catchability by fleet is calculated 
based on the model used for the simulation of catch production.  

In the following sections, for simplicity, the subscripts for fleet and métier are omitted, 
but all the calculations occur at métier level. for a detailed description of the uncertainty 
conditioning is shown and the complete set of plots can be found in ANNEX 13. 

During the process of conditioning catchability, focus was primarily on incorporating the 
effects of interspecies interactions that occur within each métier. To do so, catchability 
was decomposed in an intensity index that accounted for annual variability and a 
selectivity index that accounted for variability along ages. The uncertainty in the 
intensity, including, correlation in the intensity between species caught within the same 
métier, was modelled using a multivariate lognormal distribution. In case the 
multivariate lognormal produced outliers, i.e. values that differ greatly from observed 
intensities, we applied an envelope that constrained uncertainty estimates to the 95% 
confidence interval of observed intensities per stock. 
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The uncertainty associated with selectivity, on the other hand, was derived from a 
statistical model in which age was incorporated as an explanatory variable. The resulting 
uncertainty sometimes fell out of the observed selectivity; thus, we applied an envelope 
that constrained uncertainty estimates to the 95% confidence interval of observed 
selectivity levels. 

To introduce uncertainty in the effort proportion, a multivariate probability distribution 
that models jointly the proportion of effort exerted in each métier was used. For quota 
share the same probability distribution was used, but in this case the proportion of the 
TAC assigned to each fleet was modelled. 

Mixed-fisheries simulations were carried out under the following effort scenarios: 

• max: fleet activity stops when the quota for all stocks is consumed; 
• min-exhom: fleet activity stops when the quota for any stock is consumed, excluding 

horse mackerel that has zero catch advice for 2023, but not zero TAC; 
• sq_E: fleet activity is the average of the most recent three data years. 

4.2.1.2 Results 

The impact of fleet parameter uncertainty on model outputs varied depending on the 
effort scenarios considered (Figure 6 and Figure 7). The larger variation is observed in 
the ‘max’ scenario, both in terms of expected effort and forecasted landings. 

Extremely large efforts were simulated in the ‘max’ scenario (Figure 6) compared to 
status quo effort are due to cases with very low simulated catchabilities for some stocks, 
mainly hake and megrim.  

Regarding forecasted landings, very little variation is observed in most of the scenarios, 
except for the ‘max’ scenario, where very larger variation is observed (but still much 
lower than variation observed for effort in this scenario). This variation in forecasted 
landings is probably coming from the uncertainty in catchability coupled with the 
technical interactions among different stocks. 

Very similar results were obtained for the Spanish 24 to 40 m bottom trawlers 
(ES_OTB_24<40m). For a complete description see ANNEX 13. 

 

 

Figure 6: Variation in effort for the French bottom otter trawlers 10 to 24 m in length 
(FR_OTB_10<24m), given uncertainty in stocks’ catchability, effort proportion by 
métier and quota shares by fleet and stock under alternative mixed-fisheries scenarios. 
Bars represent median estimates and vertical lines the 90% confidence intervals. 
Different scales are used because of the big differences observed between scenarios 
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Figure 7: Variation in catches by stock for the French bottom otter trawlers 10 to 24 m 
in length (FR_OTB_10<24m), given uncertainty in stocks’ catchability, effort proportion 
by métier and quota shares by fleet and stock under alternative mixed-fisheries 
scenarios. Bars represent median estimates and vertical lines the 90% confidence 
intervals 

4.2.2 Global sensitivity analysis 

GSA consists of the characterisation of the output variance of simulation models as a 
function of the variance in the input factors (Saltelli et al., 2008) (Figure 8). The 
difference between GSA and the common sensitivity analysis considered in most of the 
analysis of simulation studies (one factor at a time, OAT, sensitivity analysis) is that 
GSA considers interaction between input factors. In complex simulation models, the 
contribution of input factors to the output of the model is usually governed by its 
interaction with other input factors. Hence, OAT approaches underestimate the impact 
of input factors on the simulation results (Saltelli et al., 2019).  

 

Figure 8: Graphical representation of GSA. X1, X2 and X3 represent the input factors for 
the GSA and ϕ the simulation model, Y the output variable of the model, σ(Y) the 
variance of the output and the coloured circle represents the partition of σ(Y) as a 
function of the input factors and all their possible interactions. 
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GSA is very computationally demanding. To save computational time, only two indices 
are calculated: first-order and total-effect indices. The meaning of the indices is 
explained below and the mathematical details of their derivation and calculation can be 
found in ANNEX 13.  

• First-order indices represent the amount of variance, in percentage terms, explained 
by each of the input factors isolation. 

• Total-effect indices represent the amount of variance, in percentage terms, that is 
explained by the corresponding factor in isolation (first-order) and in interaction with 
all the other factors.  

In this analysis we have followed the approach and guidelines presented by Garcia et 
al. (2021).  

4.2.2.1 Results 

In this report we focus on the results for the Spanish trawler fleet; results for the French 
fleet can be seen in ANNEX 13. The results are based in 5,000 based simulations that 
correspond to 175,000 iterations in total (5,000 iterations multiplied by the number of 
effective number of input factors (33) plus 2). We analysed three same fleet dynamic 
scenarios analysed in the uncertainty analysis in the previous section (sq_E, 
min_exHOM and max).  

The total effort in the ‘max’ scenario depended mostly on the intensity exerted by the 
fleet in each of the métiers (Figure 9). Furthermore, the variance was mainly explained 
by the interaction between input factors. The quota share of some stocks in isolation 
explained some of the output variance. This happened because these stocks were the 
less-restrictive stocks for the fleet in some cases. In the ‘min’ scenario the most 
important input factor was the intensity in the ’DEF’ métier that is the most important 
métier for the fleet. In this case, most of the variance was explained by the input factor 
in isolation. In this scenario the quota shares had higher impact and the impact was 
similar for all the stock except for ANK. For HOM the impact was almost zero because it 
never limited the effort of the fleet.  

In the scenario where the effort was fixed ‘sq_E’ and the ‘max’ scenario (scenario where 
the fleets continue fishing until the last quota is exhausted) the only input factor that 
had a significant impact in the output variance of the stock catches was the intensity 
with which the stocks were caught (see ANNEX 7). The remaining factors had some 
marginal impact, especially quota share. The main difference between scenarios was 
that while in the ‘sq_E’ scenario the variance was explained almost exclusively by the 
input factors in isolation, in the ‘max’ scenario most of the variance was explained by 
interaction among factors. In the ‘sq_E’ scenario, the effort level, the variable that is 
directly related to the catch level, was fixed as an input parameter; hence the interaction 
between the input factors was low.  

In the ‘min_exHOM’ scenario the variable with the highest impact was the intensity 
exerted in the most important métier (Figure 9). Furthermore, in most of the cases, 
most of the variance was explained by the input factor in isolation. In this case the quota 
share of all the stocks, except horse mackerel (HOM), had a significant impact on the 
output variance. The amount of variance explained by the input factor in isolation and 
in interaction with other factors depended on the stock.  
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Figure 9: Global sensitivity indicators for the Spanish trawling fleet effort under ‘max’ 
and ‘min’ scenarios. The red bar corresponds to the first-order index and the whole bar, 
red plus blue, to the total index 

 

The probability of being a choke stock was the variable that was affected by more input 
factors (Figure 11). As expected in this case, the quota share explained a significant 
proportion of the variance. The selectivity had little impact on catch and effort variables, 
however it had some significant impact in this case. The impact was almost always of 
first order, i.e. the interaction of selectivity with other input factors had minimal impact 
on the output variance. The effort proportions also had a significant impact in this case, 
in particular for white anglerfish, hake and smooth-hounds. The values around 0.25 and 
0.15 for anglerfish, smooth-hounds and whiting are likely related to a convergence issue 
and do not indicate a real impact on the choking effect. 
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Figure 10: Global sensitivity indicators for the Spanish trawling fleet catch under ‘min’ 
scenario. The red bar corresponds to the first-order index and the whole bar, red plus 
blue, to the total index 

 

 

Figure 11: Global sensitivity indicators for the Spanish trawling fleet probability of 
being a choke stock under ‘min’ scenario. The red bar corresponds to the first-order 
index and the whole bar, red plus blue, to the total index 
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4.2.2.2 Conclusions and observations 

The uncertainty conditioning approach estimates uncertainties in selectivity and 
intensity in two steps, extracting the intensity before modelling the selectivity. In the 
future, intensity and selectivity could be estimated simultaneously. The key problem 
would be to propose an appropriate model that accounts for the correlation among 
different species’ intensities. As a further step, intensities could be modelled using a 
time-series-oriented approach (e.g. AR1 or random walks) so that predictions in one 
year depend on the predictions in the year before. 

Introduction of uncertainty provided a better representation of plausible future 
situations. In a deterministic approach, a single stock is identified as the choke stock 
for each fleet in the landing obligation scenario. However, several stocks had similar 
probability of choking the fishery but were hidden in the deterministic approach.  

The intensity with which the stocks are caught in each métier were the input factors 
that had the highest impact in almost all the output variables analysed. The variance in 
the intensity input factors was high. In fact, the confidence intervals were forced to be 
within the range of historical observations. The high uncertainty in the intensity could 
have conditioned the results, giving prominence to this variable to the detriment of the 
rest.  

The selectivity had only little impact. The role of selectivity in the model is to give age 
structure to the catches but does not affect the volume. Thus, in the short term, where 
catch structure and biomass are not analysed, it makes sense that selectivity has no 
impact. However, in long-term simulations, when there is a feedback loop between the 
stock biomass and exploitation pattern, selectivity could have a significant impact. At 
present the output variables are not structured by age, however, should this be 
introduced it is likely that the impact of selectivity would be even higher. 

Quota share explained a significant part of the output variance for some variables, 
especially in the event of strict compliance with the landing obligation (‘min_HOM’ 
scenario), but the amount explained was low in general. The low observed variability in 
the input data and the high variability in the intensity input factor could have led to a 
downplay of the importance of this input factor. Quota share was conditioned based on 
the historical catches instead of real quotas; therefore, including the uncertainty in the 
process of quota trading could be interesting.  

Garcia et al. (2021) conducted a GSA in the Iberian Waters mixed-fisheries demersal 
system and found that effort–share was the most important input factor. However, in 
this case study, effort proportion among métiers had very limited impact. Garcia et al. 
(2021) applied the same variability to all the input factors, which likely over-estimated 
the variance in this variable and as a result its relevance was over-estimated. This 
contradiction highlights the importance of conditioning the uncertainty properly.  

5 STOCK INTERACTIONS 

‘Technical interactions’ is the term used to represent interactions between a fishing 
activity and the fished stocks, and forms the basis of any mixed-fisheries modelling. 
Therefore, for a robust model, it is key to understand the interactions between fish 
stocks caught in mixed fisheries. 

Stock interactions within the ICES ecoregions where advice is produced annually are 
well explained in the corresponding advice sheets, advice report sections and Fisheries 
Overviews. However, there is still room for improvement, especially at a finer scale at 
both a spatial and temporal level. The work described in this section is a new detailed 
analysis of stock interactions at ICES rectangle level and fishing trip level. 
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The following sections present methodologies for exploration and analysis of stock 
interactions within mixed fisheries in the future. The examples presented were 
developed within the R environment (R Core Team, 2023) and all the code to run these 
methods for other datasets or ecoregions have been made available for use8. 

The outcomes of the work described in this section are the results of a close collaboration 
between this study and several ICES working groups (notably ICES WKFO2 and ICES 
WGMIXFISH-METHODS) with contributions ranging from conceptualisation to code 
development in both directions. The reader is also referred to the ICES WKFO2 report 
(ICES, 2023a) for a number of alternative visualisations not included in this section. 

5.1 Interactions at the ICES rectangle level  

One of the key priorities of future mixed-fisheries models is an increased spatial 
disaggregation of the fishery to better account for spatial heterogeneity in terms of catch 
compositions. This could allow managers to identify areas with high choking risks, as 
well as more-favourable fishing grounds in terms of mixed-fisheries considerations. 
Typically, maps are produced that show the spatial variation in terms of catch 
compositions. Nevertheless, no single map can meet the interests of all end users, 
whose interests are likely to differ in terms of species diversity, fishing fleets, time frame 
or region. Therefore, more tools with interactive features are required to address this 
gap. 

Currently, ICES and WGMIXFISH are developing such an interactive tool that will allow 
end users to explore catch compositions and effort distributions of fleets in space and 
time through a Shiny application9. Developing such an app is time consuming and 
requires specific programming skills and is beyond the scope of this study. However, 
members of the consortium have actively participated in the conceptualisation of this 
tool, and further developments via their participation in ICES WGMIXFISH. 

The tool that is being developed uses FDI effort and landings data at the ICES statistical 
rectangle level by ICES ecoregion. Users can query the data via a dashboard by defining 
the following parameters: time frame (year range), vessel length categories (the 
categories used by the AER), gear types, mesh ranges and a selection of species. After 
filtering the data, 4 plots are shown that highlight the spatial landings composition for 
the selected input data by ICES statistical rectangle (i.e. the relative proportion of the 
colours in each grid cell), the spatial distribution of fishing effort, and the Pearson 
correlation between the landings and effort of the selected species and fleets, 
respectively.  

Figure 12 shows an example of graphs that generated by the development version of 
the Shiny application. Developments are ongoing and aim to include visualisation of 
mixed-fisheries projections, as well as review some of the methods to, for example, 
calculate correlation statistics.  

Alternatively, trip data can be used to prove information about technical interactions at 
the ICES rectangle level using a method similar to that described in 5.2 below. Figure 
10 shows the number of trips in which a species had the highest share in terms of 
landings, as well as the share of other species in each of these trips in ICES rectangle 
30E4. This gives a view, by strata, of how variable targeting is with respect to the main 
species caught, as well as the co-occurring species in each of those strata. 

 

8 https://github.com/IrishMarineInstitute/STARMixFish/tree/main/lot_2/TASK_4/ and 
https://github.com/ices-taf/2023_WKFO2/ 

9 https://github.com/ices-tools-dev/mixfish_fo_app_dev/tree/main 
 

https://github.com/IrishMarineInstitute/STARMixFish/tree/main/lot_2/TASK_4/
https://github.com/ices-taf/2023_WKFO2/
https://github.com/ices-tools-dev/mixfish_fo_app_dev/tree/main
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Figure 12: Screenshot showing the graphs (species composition in the landings for the 
selected species and fleets by ICES statistical rectangle, top-left panel: effort 
proportions by ICES statistical rectangle for the selected fleets; top right: correlation 
between the landings and effort with respect to the selected input data; bottom 
left/bottom right) created in the development version of the Shiny app developed in 
the framework of the ICES mixed-fisheries considerations 
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Figure 13: Targeting behaviour and catch composition by trip ordered by targeting for the Belgian beam trawl fishery targeting demersal species 
using mesh size 70-99 mm (TBB_DEF_70-99 métier) operating in ICES statistical rectangle 30E4 in the Celtic Sea. Species abbreviations: ANF = 
anglerfish; BIB = bib; BLL = brill; BSS = seabass; CAA = wolffish; COD = cod; COE = conger eel; CRE = edible crab; CTC = common cuttlefish; 
DAB = dab; FLE = flounder; GUG = grey gurnard; GUR = gurnard; GUU = tub gurnard; HAD = haddock; HKE = hake; JOD = John dory; LEM = 
lemon sole; LEZ = megrim; LIN = ling; MAC = mackerel; MUR = Surmullet; NEP = Nephrops; OCZ = octopus; OTH = ‘other’; PLE = plaice; POK = 
saithe; POL = pollack; RJC = thornback ray; RJH = blond ray; RJM = spotted ray; RJU = undulate ray; SCE = king scallop; SKA = skates and rays; 
SOL = common sole; SOC = sockeye salmon; SYC = small-spotted catshark; TUR = turbot; WHG = whiting; WIT = witch flounder. 
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5.2 Interactions at the trip and haul level  

Trip-based data (e.g. from electronic logbooks or sales notes) were used to create new 
visualisations highlighting the variability in target behaviour and catch composition 
between individual fishing trips.  

First, landing proportions at the trip level, or alternatively at a more disaggregated level 
such as the ICES subdivision, or statistical rectangle within a single trip, were calculated. 
From the landing proportions, trips were classified according to the dominant species in 
terms of landing composition. This classification enables trips to be grouped according 
to the ‘target’ behaviour (i.e. the species with the highest share in the landings). It also 
enables visualisation of how variable targeting is between trips of similar strata (e.g. 
gear, métier and/or ICES subdivision or rectangle). 

Next, for each trip the catch composition is calculated. A colour code is used to indicate 
the proportion of the species in the landings (where black indicates high proportions and 
yellow indicates low proportions) at trip level. As such, the graphs show the variability 
in catch composition of trips with a certain targeting behaviour, as well as the relative 
number of other species caught alongside ‘target’ species. To aid visualisation, trips 
targeting species that contribute less than 0.5% to the total number of trips are 
excluded from the figure, and rare species are grouped in an OTH category. Such 
disaggregated visualisations are possible for many strata, and future work should focus 
on the development of interactive tools that allow users to explore strata of interest. 

Figure 13 at the ICES statistical rectangle level, section 5.1, Figure 14, and ANNEX 14 
show examples of the developed visualisation for a selection of Irish and Belgian fleets. 
For the Irish fleets, Figure 14 shows that catches of the bottom otter trawlers are mixed. 
Most of the bottom trawling trips target Nephrops effectively (shown by the dominance 
of black/dark-red colouring for Nephrops in the Nephrops panel). A number of trips 
targeting Nephrops also target anglerfish, comprising 25% of the catch, and a number 
of other species are also caught, i.e. megrim, haddock, hake, sole and witch. However, 
other bottom trawling trips targeting anglerfish, haddock, megrim or whiting are more 
mixed – for these trips, black is not the dominant colour and the yellow indicates that 
many other species are caught at lower proportions.  
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Figure 14: Targeting behaviour and catch composition by trip ordered by targeting of Irish bottom otter trawl gear (OTB) across all areas. Species 
abbreviations: ANF = anglerfish; BLL = brill; CAA = wolffish; COD = cod; COE = conger eel; DAB = dab; FLE = flounder; GUR = gurnard; HAD = 
haddock; HAL = halibut; HER = herring; HKE = hake; HOM = horse mackerel; LEM = lemon sole; LEZ = megrim; LIN = ling; MAC = mackerel; NEP 
= Nephrops; OTH = ‘other’; PLE = plaice; POK = saithe; POL = pollack; SDV = smooth-hounds; SKA = skates and rays; SOL = common sole; SPR 
= sprat; TUR = turbot; WHB = blue whiting; WHG = whiting; WIT = witch flounder. 
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5.3 Additional factors 

Within this study the investigation of ICES rectangle and trip-level interactions has 
highlighted further the diversity of interactions between species and stocks within 
localised areas, within and between trips. These interactions vary with spatial and 
temporal scale, along with the type of fishing activity carried out (the technical operation 
of the fishing activity – e.g. gear type). A number of alternative visualisations have been 
prepared, developed by Consortium members attending ICES WKFO2, and based on the 
ICES mixed-fisheries data used for the mixed-fisheries considerations. These alternative 
visualisations are intended to show interactions between stocks and fisheries, subsets 
of which are detailed below.  

Figure 15 presents a subset of the technical interactions between métiers and stocks 
across the Bay of Biscay ecoregion. The full figure, and visualisations for the Celtic Sea 
and North Sea case study areas are presented in ANNEX 15 with additional ecoregions 
made available via web link10. Each visualisation allows identification of the important 
stocks within an ecoregion and the métiers landing them. The plot depicts the proportion 
of each stock landed within an ecoregion by métier, whereby columns sum to the total 
proportion of a stock landed in that ecoregion, totalling 1 if the ecoregion is the same, 
or larger than the stock area. Métiers are ordered according to their proportional 
importance within the area (summing the stock proportion landed by that métier). The 
métiers shown within the ecoregion are limited to those accounting for a proportion of 
at least 0.01 of stock landings within the area. This removes those métiers with very 
minor contributions from the visualisation to prevent overwhelming the plot with métiers 
of little impact within the area. The darker the colour of the cell, the greater the 
proportion of landings reported for a stock by a métier. The Bay of Biscay example 
presented below (Figure 15) has an interesting combination of stocks solely caught in 
the area and others with the majority of landings outside the ecoregion. The most 
important métier is OTB_DEF_>=70, which shows a diverse diversity of stocks caught. 
The OTB_CRU_>70 unsurprisingly catches most of the Nephrops (nep.fu.2324), with 
comparatively little contribution from any other métiers.  

 

Figure 15: Subset of technical interactions between stocks and métiers within the Bay 
of Biscay in 2021  

 

10 https://github.com/ices-taf/2023_WKFO2/tree/main/ToR_B/figures 

https://github.com/ices-taf/2023_WKFO2/tree/main/ToR_B/figures
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An additional method of visualising interactions would be identifying high choking risks 
within an ecoregion, prepared by combining the degree of technical interactions (the 
number of strata in which species y is caught together with species x, divided by the 
number of strata in which species x is caught) and the ratio of the catch to the scientific 
advice released by ICES.  

Figure 16 provides a subset of a such a visualisation for the Celtic Sea. The full 
visualisation and a North Sea example are given in ANNEX 16 and more detailed figures 
have been made available11. Each panel shows a stock and the proportion of stocks 
caught together with this stock. The height of the bars shows how frequently a stock 
appears in strata of the stock shown in the title of each panel, while the colour of the 
bar indicates the ratio between the catch and scientific advice of a stock. Stock in red 
indicate stocks with a zero scientific advice. Noting that the numbers presented are the 
“encounter probability” and not related to landing volumes. 

In the Celtic Sea for example, in around 45% of the strata where sole 7.e is caught, 
Celtic Sea hake and whiting are also caught, but the percentage of the scientific advice 
caught is very different in each of them (40% and 140% respectively), making only 
whiting a potential choke species for sole; additionally, around 40% of sole 7.e is caught 
together with Celtic Sea cod, where the red colour of the bar indicates that Celtic Sea 
cod has a zero-catch advice.  

  
Figure 16: Subset of technical interactions between stocks and choking risk (catch 
uptake versus advice) for a selection of demersal fish stocks in the Celtic Sea for 2021.  

Many trips have been shown to land 15 or more species, adding great complexity to the 
interactions. At present, none of the mixed-fishery assessments include all species. In 
most cases this will be as a result of the species inhabiting the same space and having 
varying degrees of susceptibility to the type of fishing operation. It should be noted that 
the investigations were carried out on landings data, which will bias the perception of 
interactions by excluding species with no commercial value.  

 

11 https://github.com/ices-taf/2023_WKFO2/tree/main/ToR_B/figures 

https://github.com/ices-taf/2023_WKFO2/tree/main/ToR_B/figures
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Investigations into the impact of fleet and métier selections within the mixed-fishery 
models have shown that a balance is needed between the detail included to adequately 
represent the fishing operations, the impact on stocks as a result of interactions, and 
computational and interpretative limitations.  

Technical interactions, and the measures used to alleviate pressures on stocks (such as 
gear changes or spatial and temporal closures) tend to occur at a finer scale than the 
fleets, métiers and stock levels used within the models to provide mixed-fishery 
scenarios. This is also linked to the granularity at which data is collected, particularly 
age, length and discard data that would prevent model disaggregation to the level 
required to enable scenarios to detect subtleties to alleviate pressures. The level of data 
granularity required to generate ICES mixed-fisheries scenarios for reducing pressure 
on vulnerable stocks is currently not feasible: if a vulnerable stock is considered to be 
a stock for which a zero TAC has been set, any métier in which that stock is caught is 
instantly choked, the result being the ‘min’ scenario. To work around this, ad hoc 
scenarios have been developed to test outcomes for a zero TAC stock by special request, 
where the constraints within the scenario have been adjusted. An example of this was 
the technical request made to ICES to provide advice on potential catches of zero-catch-
advice stocks given fishing opportunities for target stocks. For Celtic Sea cod, three 
additional scenarios were provided using the Celtic Sea mixed-fishery model. Including 
catches: 1 – based on haddock fished at a level equivalent to maximum sustainable 
yield (FMSY); 2 – based on haddock fished at FMSY lower (MSY estimates are often 
given as a point estimate and a range of fishing mortalities may be associated with 
generating the MSY estimate, FMSY lower is the lower, more conservative, estimate of 
the range); 3 – based on haddock fished at an intermediate level between FMSY and 
FMSY lower (ICES, 2022c). 

If single-species assessments are available, vulnerable stocks – defined as those stocks 
with impaired recruitment, or classified as an endangered threatened and protected 
(ETP) species – could be included within the assessment models. More and more 
category 3 assessments (ICES, 2016) are being developed for elasmobranchs for 
example, which could then be included within the models and within the scenarios. The 
restrictions here are the time required to include large numbers of these stocks, 
complexity of the resultant model, and what is wanted from the resultant scenarios. The 
outcome for many would be similar or the same as the outcomes for zero TAC stocks. 
At that point, the question of what is needed by the end user should become the primary 
focus to determine whether the current mixed-fishery assessment methods are what is 
required, or whether some alternative may be more appropriate, i.e., identifying ways 
to decouple, where possible, technical interactions.  

The ICES WGMIXFISH group highlights that there is a need to develop and apply 
methods that can describe the strength of technical interactions between stocks, both 
quantitatively and qualitatively, to provide information about the impact of fisheries on 
the management outcome for other stocks. This alternative is being investigated 
intersessionally by several ICES member institutions, looking at developing spatially 
explicit clustering. Further information can be obtained from the 2023 ICES 
WGMIXFISH-METHODS report (ICES, 2023b).   
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6 FRAMEWORK DEVELOPMENT 

This section considers how mixed-fishery assessment models could be extended from 
their current format. This is done through development of conceptual frameworks. The 
current mixed-fishery models are under continuous development to find ways to more 
accurately represent the real world in order to provide the best projections of the 
implications of mixed-fisheries considerations on stocks caught together. This 
information can then be used to identity impacts of management measures, and provide 
a scientific grounding for variations to these measures as necessary. 

6.1 Scenario evaluation 

Implementation of technical and spatial measures can have direct impacts on the 
composition of catch (e.g. Cosgrove et al., 2019; Browne et al., 2021), which in turn 
can have impacts on fishing pressure, stock dynamics, economic viability of a fishery 
and markets. There is a growing need to incorporate these downstream impacts into 
our understanding of mixed fisheries. If operationalised, it would allow scientists and 
stakeholders to explore long-term impacts of proposed and implemented measures. On 
this basis, the main objective of this section was to develop a conceptual framework 
detailing how gear and technical measures might be accounted for in mixed-fisheries 
assessments. Mixed-fisheries models could be used to evaluate alternative management 
scenarios, including technical measures (i.e. gear changes) or spatial closures. 

This framework has identified the data, methodologies and steps that would be needed 
to be able to take account of the impact of gear-based and spatial technical measures 
within ICES mixed-fishery projections. Additionally, the framework outlines how such 
management scenarios could be evaluated through the mixed-fisheries models that are 
currently used for producing advice considerations. This framework will be developed 
around FLBEIA, which can already be used to develop scenarios able to account for gear-
based technical measures. Although the FLBEIA model is not yet used to produce advice 
in all ICES mixed-fisheries considerations ecoregions (the Celtic Sea is currently within 
Fcube), the code and models do exist, and will be used to aid development of the 
conceptual framework. This framework could be operationalised within ICES. 

6.1.1 Baseline scenarios  

The implementation of any scenario around management measures requires two quite 
different approaches: one for gear selectivity and another for spatial closures. These 
two approaches are detailed below.  

6.1.1.1 Selectivity measures 

Assessing the impact of mesh-size changes or selectivity devices such as escape panels 
in trawl gears can be done in mixed-fisheries models if some pre-conditions are met.  

First, information needs to be available on how gear changes affect a metiers’ selectivity 
through changes in catchability. Such information is typically obtained from gear trial 
studies, or alternatively, expert knowledge can be used. Such information needs to 
represent a relative change of the new catchability value compared to the existing value.  

In practice, several difficulties often arise when transferring results from gear trial 
studies to mixed-fisheries models. One needs to be able to match the gear and mesh 
size used in the study to the métiers used in the mixed-fisheries models. In case of 
aggregated métiers (i.e. those that represent a wide mesh-size range) this is difficult. 
The amalgamation of the fine-scale métier structure within the current mixed-fisheries 
models may limit effective implementation of gear changes when the gear change is too 
subtle to be detected within a larger métier grouping.  
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The second difficulty of gear trial studies is that they often provide information about 
changes in catch efficiency with respect to the size structure of a species. If the size 
category of such studies does not correspond with the size structure used in the mixed-
fisheries models, post-processing of those results is required according to the size/age 
structure of the mixed-fisheries model. In most cases, a change from length (gear trial 
study) to age structure (mixed-fisheries projections) is needed, requiring information 
on growth parameters. In the case of age-aggregated mixed-fisheries models, if no such 
aggregated estimate is available, the catchability of a métier can only be changed with 
respect to the selectivity of the fishery (at the stock level).  

Another shortcoming that may arise from using gear trial studies to parametrise 
selectivity is that the study needs to inform the model on the changes in all species 
considered in the mixed-fisheries model. However, in practice, gear trial studies are 
often targeted on a limited number of (commercially important) species, and the trial 
fishing grounds are often therefore chosen as a function of the species of interest with 
potentially a limited number of catches of other species (and thus information on change 
in selectivity) relevant for the mixed-fisheries models.  

Gear changes are also likely to affect the tactical behaviour of fishers in terms of spatio-
temporal fishing effort allocation, or gear/mesh-size used. If a gear change results in a 
loss of commercially important species and makes a métier less profitable, it is likely 
that the fleet affected would allocate relatively more effort to alternative métiers if 
possible. It is important to consider such changes in fleet dynamics in mixed-fisheries 
models that can be done through either a scenario analysis (where effort proportions of 
a fleet are set according to some predefined values) or the implementation of a dynamic 
model of effort proportion allocation. Ideally, this would include some optimisation 
procedures as presented in section 3, eventually including some economic factors in the 
objective function. 

Finally, there may be uncertainty around the new catchability estimates if, for example, 
uncertainty estimates are available from gear trial studies, or if multiple studies are 
available with diverging results. Ideally, such uncertainty needs to be integrated in the 
mixed-fisheries projections (see section 4) and assessed through an MSE framework. 

6.1.1.2 Spatial closures 

The mixed-fisheries models that are used for advice are not spatially explicit, though 
the effect of spatial management measures could be investigated implicitly by defining 
métiers that represent distinct spatial areas. As such, all spatial effects are captured 
through the catchabilities of the métiers, where a métier that fishes in an area with low 
density for a certain species would be characterised by a low catchability for that 
species, and vice versa for that métier with exactly the same technical properties. 
Hence, the catchabilities would capture both technical gear and vessel characteristics, 
and the spatial heterogeneity of the stock (although, cannot strictly speaking be called 
catchability in this case as the term also includes density of the stock).  

In theory, fleets/métiers can be disaggregated to the spatial level of the data, e.g. a 
métier by ICES statistical rectangle. However, from a practical point of view there are a 
number of caveats that would need to be considered, as highlighted below. 

Disaggregating métiers into more discrete spatial units could result in a high number of 
métiers, which may come at a computational cost. Therefore, it is advisable to limit the 
number of métiers by grouping spatial strata according to similarities in catchabilities. 
Alternatively, new software should be developed that is more performant in terms of 
fleet/métier dimensions than the current software used for mixed-fisheries projections. 
Furthermore, there is currently a limited number of datasets available that would allow 
the definition of such spatially disaggregated métiers. The FDI database, and future 
RDBES database, provide both landings and effort at the ICES statistical rectangle level; 
nevertheless, information on discards or age-disaggregated catch information are 
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limiting the usability of these datasets, and assumptions on how to impute these data 
gaps should be made to address these data gaps. Alternatively, national databases could 
be used to inform spatially disaggregated métiers; however, this is often hampered by 
data protection regulations in terms of commercial sensitivity and confidentiality. 

Disaggregating métiers to account for spatial variation would only have an effect if effort 
proportions across métiers used within the models are not fixed. This requires the 
implementation of fleet dynamics models that allow predictions of where fishing effort 
would be reallocated in case of spatial closures, or changes in spatial distribution of fish 
stocks. Such fleet dynamics could rely on the optimisation of an economic objective 
(e.g. profit) by fleet, or more heuristic decision rules. In addition, constraints should be 
defined so that the catches in a particular area (e.g. ICES statistical rectangle) cannot 
be larger than the biomass in that area. This could be done by assigning biomass shares 
to each spatial units based on, for example, species distribution models fitted on survey 
data. 

Disaggregating métiers and adding alternative fleet dynamic models is likely to have an 
impact on the level of uncertainty, either through the data used to condition métiers 
(for example to reflect spatio-temporal variation in species distribution) and structural 
uncertainty through the assumptions related to fleet dynamics. Ideally, these sources 
of uncertainty should be considered when assessing spatial management scenarios with 
mixed-fisheries models through MSE.    

6.1.2  Conclusions and observations 

There are a number of modelling frameworks available that could be used to develop 
management scenarios around technical measures and spatial closures, such as FLBEIA 
(Garcia et al., 2017) and DISPLACE (a spatial model of fisheries to help sustainable 
fishing and maritime spatial planning; Bastardie et al., 2013). These modelling 
frameworks are data hungry and require many streams of data to answer the pertinent 
biological and economic questions. In recent years, a number of advancements have 
improved the alignment of biological and economic information supplied under the DCF, 
aligning FDI and AER (STECF, 2023a). Improvements in the alignment of fleet segments 
reported to both data calls, along with the availability of the fishing fleet segment 
variable in the RDBES, will provide an internally consistent baseline from which to build 
fleets that are capable of assessing downstream impacts. 

Parameterisation of these complex models and scenarios requires a multidisciplinary 
team, incorporating skills in modelling, fisheries stock assessment, economics, gear 
technology, and social science. Occurrence of such forums is on the increase, with cross-
team collaborative research-project working groups within ICES (WGMIXFISH, Working 
Group on Economics (WGECON), WKMIXFISH) and expert working groups within STECF 
(STECF, 2023b). However, to ensure momentum in development is maintained, long-
term investment in research and development is required.  

6.2 Rebuilding stocks  

Currently, mixed-fisheries considerations are based on a two-year forecast of stock 
assessment model-output and catch-and-effort data at métier level. This is because, in 
single-stock short-term forecasting, everything is considered constant in the projection 
period. Although this assumption is considered valid in the short term, to evaluate stock 
rebuilding in the long term it is necessary to introduce dynamism and uncertainty to the 
projection.  

The FLBEIA model (Garcia et al., 2017) used in most of the mixed-fisheries case studies 
was built for long-term simulations and has all the elements needed to run long-term 
mixed-fisheries simulations. In fact, it has already been used to analyse the 
performance of management strategies in a mixed-fisheries framework (see Garcia et 
al., 2019; Garcia et al., 2021). In comparison, the Fcube model was built to run short-
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term projections, but it is possible to extend it to run long-term projections in specific 
cases.  

The steps required to extend both models to produce mixed-fisheries considerations in 
order to analyse stock rebuilding in the long term are shown in Figure 17 below. The 
first step is to define the dynamics of the processes that form the system. The system 
can be divided in three main components: the stocks, the fleets and the catch-advice 
components. In turn these three components are formed by several processes. To 
simulate these processes into the future a mathematical model is needed to describe 
their evolution along time, the system dynamics. Furthermore, as the knowledge about 
system dynamics is limited and there is high natural variability in these processes the 
long-term simulations should include uncertainty in most of the processes.  

 

Figure 17: Conceptual diagram with the steps required to run long-term simulations 
from mixed-fisheries model conditioning  

In this section we list the three processes that need to be modelled in long-term 
simulations and a detailed description of system dynamics modelling and uncertainty 
conditioning can be found in ANNEX 17. 

• Stock dynamics: This component describes de evolution of stock populations over 
time. In the base case the populations are usually projected forward using an 
extension of the stock assessment model used to estimate historical abundance and 
exploitation level. In addition, in the case of length and age structured models, and 
stock recruitment model needs to be defined to project the population forward. 
Uncertainty in stock dynamics is already considered in the calculation of the 
reference points and it represents a good starting point to introduce uncertainty 
when analysing stock rebuilding. Data limited stocks represent a particular challenge 
and data-limited approaches that represent the existing uncertainty adequately are 
needed.  

• Fleet Dynamics: The main processes to dynamically model the fleet component 
are the total effort, the effort share among métiers, the quota share and catchability. 
Total effort and effort-share are usually calculated within the same model and 
several models are available in the literature. The simplest approach is to use an 
effort share based on historical observations and to calculate the total effort based 
on the quota-share of the stocks. For quota-share and catchability mechanistic 
models are not available and approaches based on trends in historical data should 
be used. The conditioning of uncertainty of the fleet component has typically been 
overlooked and the approach described in ANNEX 12 represents a good starting 
point.  

• Management procedure: In the management procedure the main component is 
the harvest control rule (HCR) which calculates TACs based on the status of the 
stocks. In the simplest case, the HCR can use the stock status directly from the 
biological operating model. In more complex cases, a full feedback approach can be 
used where an observation model for data and an assessment model to obtain stock 
status estimates are used. An intermediate approach could be a short cut approach 
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where some error is added to the stock indicators in the biological operating model 
to mimic the assessment model error. FLBEIA is able to simulate any of these 
approaches. There are many HCRs already available, and implementing new ones is 
considered to be easy.  

When running long-term simulations the number of iterations required and the number 
of years in the projection are both important factors. Whereby the model is allowed to 
run until a steady state is reached, which depends on the lifespan of the stocks. The 
number of iterations is usually no fewer than 1000. Mixed-fisheries models are complex 
models that require a large amount of computational time when running several 
iterations and projecting several years. Thus, analysing stock rebuilding with mixed-
fisheries models would require a high-performance computing system such as a cluster 
with various nodes.  

The final requirement associated with long-term projections is the need to include 
performance statistics. In mixed-fisheries models performance statistics need to 
summarize the performance of the fleet in addition of the performance of the stocks. As 
there are no specific objectives at fleet level, it is not possible to define performance 
statistics that measure the achievement of the target. However, there are useful 
performance statistics that could be calculated at both the stock and fleet level. All of 
which can be calculated annually and then select specific years or calculate the mean of 
the indicator along different time periods. In relation to stock level these would be: 

• The Probability of being below Blim 
• Ratio between fishing mortality and fishing mortality target 
• Total catch 
• Depletion level or other indicator of relative biomass 
• Inter annual variability in catch 

In relation to fleet level these performance statistics could include:  

• Probability of being a choke stock. 
• Implementation error in catches at stock and fleet level. Implementation error arises 

naturally in mixed-fisheries models as reaching all the catch quotas simultaneously 
is impossible. The difference between the catch quotas and the real catches provides 
an idea of the use of fishing opportunities at fleet level. 

• Total yield. 
• Variation in total effort. 

6.3 Incorporating additional stocks 

A framework to include new stocks in mixed-fisheries models is presented in detail in 
ANNEX 18. 

The key factors to consider when including a new stock in mixed-fisheries models are 
the economic importance of the stock, its relevance for the mixed fisheries in terms of 
technical interactions with the other stocks in the model, and the availability of a stock 
assessment and catch and effort data. When including new stocks, there is generally a 
trade-off between improving the description of the mixed fisheries under consideration 
and including potential new choke stocks, and a decreasing ability to appropriately 
model the dynamics of the new stocks. Therefore, adding more stocks to better describe 
the technical interactions in the fisheries would at some point be of limited interest if 
the dynamics of the stocks to be added cannot be modelled (as they are likely to lack 
an assessment). The number of stocks that can be included is also necessarily limited, 
as the models need to be updated every year and the work this represents has to be 
manageable.  

Adding stocks with an analytical assessment or a biomass based assessment is in 
principle technically straightforward, as the mixed-fisheries models have been 
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developed for that purpose. The models were developed to accommodate stock with 
age-based assessment (category 1), and the frameworks were extended to biomass 
dynamics stocks (partly during the DRuMFISH project (EASME, 2018)). However, the 
increasing complexity of the stock assessment tools used at ICES, represents a 
challenge for the incorporation of these stocks. For example, the number of stocks for 
which the advice is based on stochastic forecast has increased, and this cannot be 
reproduced in the current mixed-fisheries models. The conversion of (age-) length-
based assessments (for example conducted using stock synthesis) to simple age-based 
stocks used in the mixed-fisheries model can be problematic. New types of models, such 
as the new multi-stock assessment for Northern Shelf cod also represent new challenges 
for the Mixed Fisheries groups. 

6.4 Developing new Areas 

ICES currently covers a number of mixed-fisheries regions within its mixed-fisheries 
assessment process. However, a number of additional areas would benefit from an 
increased understanding of the mixed-fishery interactions and implications of changing 
stock health on the fleets and fisheries operating within an area, for example the west 
of Scotland. A development process already exists within ICES to aid the development 
of new area-based mixed-fishery considerations.  

The flow diagram below (Figure 18) highlights the development process to clarify the 
current process, providing the sequence of events. The detail of what occurs within the 
various decision diamonds is given within ANNEX 19. There are two primary routes into 
initiating development of a new area of assessment: a formal request made to ICES 
from an external body (like the EU, Norway, UK); or informally, where interest 
generated within ICES or through other research and development indicates that such 
an assessment would aid a possible future management issue (horizon scanning). Many 
of the current assessments have originated from the informal route along with a large 
part of the mixed-fisheries methodology development, which results from the 
commitment of individuals to carry out research and development work intersessionally. 
Much of the new Irish Sea assessment development has occurred within this 
intersessional space.  

The development of new regional mixed-fishery considerations is a lengthy process from 
the initial stages of identifying a need for an assessment, through the collation and 
quality checking of data, to model development, and finally peer review and 
benchmarking.  
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Figure 18: Flow chart of current development process for generating mixed-fisheries 
considerations for a new area 
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The most recent example of assessment development is the Irish Sea ecoregion, 
released by ICES in 2022. This outlined mixed-fisheries scenarios, based on advised 
catches for cod, haddock, Nephrops and whiting in the region. Mixed-fishery scenarios 
are based on minimum, maximum, and status quo effort scenarios for the 
aforementioned stocks, with the addition of plaice and sole12. The process followed in 
developing the model and advice for this region was presented to ICES WGMIXFISH in 
2022. This was agreed by the group to be an example of best practice for generating 
advice for new regions. The below highlights the additional steps the assessment went 
through prior to its acceptance by ICES. The information was kindly shared by the key 
developer of the new Irish Sea mixed-fisheries assessment, Ruth Kelly (AFBI).  

The Irish Sea mixed-fisheries Fcube model was developed in conjunction with 
WGMIXFISH over a period of four years (2019-2022), and model developments were 
documented in the WGMIXFISH report over this period. Each meeting of the WGMIXFISH 
over this period enabled those scientists working on the Irish Sea model to benefit from 
the expertise, analyses, code and experiences encountered in the development of 
assessments for other ecoregions.  

Prior to the acceptance of the Irish Sea assessment, there was no formal requirement 
for a model benchmarking mixed-fisheries products. However, in the case of the Irish 
Sea, and for other regions, it was proposed that a more formal review process was 
desirable. Therefore, the following steps were followed prior to issuing the first advice 
product for the Irish Sea: 

1. an internal WGMIXFISH model review meeting was held (benchmarking with other 
ecoregions); 

2. a review report and stock annex were written;  
3. the review report, draft stock annex and fully reproducible model code were sent to 

an external expert by ICES for review and approval (external peer review).  

On 22 August 2022, 15 members of the WGMIXFISH group attended the WGMIXFISH 
benchmark review. The presentations and report of the meeting covered: model 
background, software, data sources, treatment of Nephrops functional units, fleet and 
métier definitions, ability to reproduce advice and advice scenarios for 2022 (with 
estimated values for Nephrops used where surveys and advice were not yet available). 
The draft stock annex was also included as an appendix to the report for external review. 
These documents, along with fully reproducible model code, were made available to the 
external reviewer on the ICES SharePoint, and the reviewer was selected and contacted 
by the ICES professional officer for WGMIXFISH.  

The peer review in mid-September 2022 allowed sufficient time for the model and advice 
product to be included in the WGMIXFISH advice meeting in October 2022, and advice 
production in November 2022 (ICES, 2022c; ICES, 2022f; ICES, 2022g). This process 
ensured a high degree of model scrutiny and external quality assurance prior to 
publication of the ICES advice product. WGMIXFISH deemed the development process 
a good template for the development mixed-fisheries considerations for new regions.  

6.4.1 New model developments  

6.4.1.1 Baltic Sea 

WGMIXFISH-METHODS is currently looking at developing a model for the Baltic 
ecoregion. Work is at a very early phase, i.e. the group is examining and reviewing the 
data available for use in development. Currently, data for the ecoregion is submitted to 
the ICES data call at a gear resolution of ‘active’ or ‘passive’. It has been highlighted 

 

12 https://doi.org/ 10.17895/ices.advice.21532950 

https://doi.org/%2010.17895/ices.advice.21532950
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(ICES, 2022b) that the level of granularity in the data is currently insufficient for 
development of an assessment for this ecoregion.  

6.4.1.2 West of Scotland 

West of Scotland has been under consideration for production of a mixed-fishery 
assessment intermittently since 2012. In 2013, the WGMIXFISH-METHODS group began 
an application of the Fcube methodology. While it was stated that ‘significant progress 
was made’ (ICES, 2013), the group considered that there was no certainty the expertise 
for the West of Scotland was going to be available going forward, and concluded there 
was no clear route to transitioning to the regular provision of mixed-fisheries 
considerations for the region (ICES, 2013).  

In subsequent years, a West of Scotland extension to the North Sea Fcube model was 
trialled. The latest trial was in 2020, when the WGMIXFISH-METHODS group presented 
results from an updated North Sea – West of Scotland (NS–WoS) implementation of 
Fcube (ICES, 2021a). The group reproduced and updated the older implementation with 
what was in 2020 the most recent data available at the time (2019 data). This version 
used the same setup and data processing as the North Sea implementation and included 
West of Scotland cod, West of Scotland whiting, Nephrops from functional units 11–13 
and the more widely distributed anglerfish and megrim.  

At that time, the group believed it would be worthwhile to continue to develop the 
inclusion of West of Scotland stocks into the mixed-fisheries considerations. Since then, 
the North Sea implementation focus within WGMIXFISH-METHODS has been to develop 
a North Sea FLBEIA model, and the West of Scotland inclusion has been put on hold.  

In terms of next steps for the NS–WoS mixed-fishery assessment in relation to the flow 
chart (Figure 18), the assessment development is in its infancy. The first step will need 
to be commitment from experts to ensure that there is sufficient availability, particularly 
from Marine Scotland Science (MSS) and the Agri-Food and Biosciences Institute (AFBI). 
From there, the focus will need to be on a review of the species to be included, and 
further development of the model. The group highlighted a number of focal points for 
the model development process (ICES, 2021a), which will need to be considered after 
the current Fcube NS–WoS model has been converted into an FLBIEA model. Focal 
points to be considered include: 

• a need to consider a mixed fishery of the two herring stocks covering these areas;  
• the most appropriate method for defining, conditioning and modelling behaviour. 
• the behaviour of fleets in the minimum and maximum scenarios, where fleets may 

be restricted by fishing on North Sea stocks by West of Scotland quota and vice 
versa and stop fishing completely, whereas in reality these fleets would continue to 
fish in the other area;  

• review of the intermediate-year assumptions. 
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7 CONCLUSIONS 

Traditionally, single-species advice is considered when setting total allowable catch 
limits, however single-species advice does not account for the technical interactions that 
occur in mixed fisheries. When multiple stocks are caught together, overexploitation of 
the more vulnerable species, or missed fishing opportunities due to choking poses 
issues. To overcome these, mixed-fisheries models have been considered, which 
integrate the implications of capturing multiple species within multiple fisheries with 
different catchabilities and targeting behaviour or objectives. ICES provides scenario-
based considerations focused on the use of two models at present: Fcube and FLBEIA.  

This study investigates the implications of assumptions and decisions made within these 
models to provide ICES mixed-fishery considerations. Specific case studies are used to 
examine the impacts of changes to the design of fleets and métiers, the settings used 
within the models, and how these models could be extended in terms of stocks or areas 
through the development of frameworks. The work in this study is closely linked to the 
current workstreams of the ICES WGMIXFISH, and part of the work presented was done 
in collaboration with members of this group, and the members of ICES WKFO2 in relation 
to stock interactions. Mixed-fisheries is a high-priority topic within ICES, and has been 
under development for more than 10 years. Within that context the current study 
provides a focal point for further research and development. 

7.1 Data availability 

Modelled technical interactions must account for the complex nature of fisheries, at a 
resolution that is meaningful to the end users/managers. This requires input data to be 
available at a level able to detect fisheries dynamics (seasonality, closures, fisher 
decisions). This is, as a minimum, at the métier level with information on both target 
and bycatch stocks, and where possible gear-based selectivity information. The data 
used within this study come from three main sources that offered a varying level of 
detail: Member States (trip level), ICES (métier level), and the EU DCF in the form of 
the STECF FDI data (spatially disaggregated, statistical rectangle level). The main 
challenge was obtaining data that accurately reflect fleet activities at a meaningful 
resolution. The study has been constrained by the data available. A tailored data 
request, in which additionally disaggregated data would be requested from all relevant 
nations within the North Sea, Celtic Sea, and Bay of Biscay, was not possible. In 
consequence, the scope of case studies within each area has been dictated by the data 
made available within the timeframe of the study. 

Particular issues were encountered within the Bay of Biscay data, which showed missing 
information for some Member States in earlier years. This required shortening of the 
time series to reduce the impact of such missing information. No other particular issues 
were identified in the remaining case study areas. 

Technical interactions can only be identified at a very fine scale, the preference being 
at the individual haul level. The impact of using haul level data compared to courser 
scale data to identify interactions is currently not identifiable. In an Irish example using 
trip level data at the statistical rectangle, decoupling species interactions was not 
possible. Work is ongoing to look at the possibility of using VMS level data for this 
purpose. However, there are very few datasets available at such a fine scale because 
these are often not recorded during a fishing trip. Trip-level data can be made available 
in some instances within a Member State but is compounded by confidentiality issues of 
sharing such data either with other Member States or in a public arena. The developing 
RDBES aims to partially address this, linking multiple data sources for consistency. 
However, it is unlikely that haul- or trip-level data will be available for all data types 
used within the mixed-fishery assessment models and its spatial resolution is limited. 
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To overcome this limitation, bespoke datasets from Member States, based on VMS, 
EFLALO and AER data are being explored.  

7.2 Assessment of model uncertainty and sensitivity 

The basic building blocks of all mixed-fisheries models are the fleet (or fleet segments), 
and the métier. At present, ICES WGMIXFISH defines fleets based on nationality, vessel 
size groups, and aggregations of métier that use particular combinations of gear and 
target assemblage. Fishing activity is extremely diverse, with no two hauls resulting in 
the same outcome, and as such an incorrect grouping within mixed-fishery assessments 
can mask valuable information on interactions between stocks. 

This study has reviewed the appropriateness of the input fleet and métier groupings 
through two case studies, one in the North Sea, the other in the Celtic Sea. A PCA 
analysis within each case study based on the ICES WGMXFISH advice data provided 
useful insights into the input data, and showed which different strata could be grouped 
together to help simplify the mixed-fisheries models used. However, the PCA cannot be 
used directly to define fleets and métiers. This requires additional information on how 
quotas are distributed according to fishing vessels, as well as (technical) characteristics 
of fishing vessels that provide information on the different fishing strategies fishing 
vessels have (e.g. switching between mesh size, or gear, or spatial differentiation). 

In the North Sea case study, different grouping levels of the input data resulted in a 
similar amount of clusters (ranging from 19-22) that could explain more than 90% of 
variability. This has a good level of agreement with current fleet and métiers definitions 
used by ICES WGMIXFISH in the North Sea. However, because for a few métiers large 
discrepancies were observed still, the analysis highlighted the need for more detailed 
definitions in specific fleet–métier combinations used within the ICES WGMIXFISH 
model. 

The structural uncertainty with respect to the fixed-effort proportion assumption was 
addressed by investigating the effect of alternative fleet dynamic models. It was found 
that the choice of fleet-dynamics model had a more pronounced effect on outcomes 
than fleet and métier definitions alone. The cumulative effect marginally exceeded the 
effect of the fleet dynamics alone, likely related to the input data used. An alternative 
fleet-dynamics model was explored, applying three differing constraints, offering 
greater flexibility in assigning effort proportions across métiers. Limited differences 
between the projections of the three different fleet and métier definitions were observed 
when applying the standard fleet-dynamics model. In contrast, using alternative fleet-
dynamics models has more pronounced effects, leading to improved quota utilisation; 
however, because of an emphasis on métiers with low catchabilities, this also lowered 
catch rates in terms of CPUE. The adoption of historical effort constraints resulted in 
more realistic behavioural patterns.  

In the Celtic Sea case study, analysis was constrained by the number of consortium 
members participating in the study, with several of the key fishing nations not 
represented. The PCA revealed a consistency in identified métiers between this current 
application and that previously completed by Moore et al. (2019). As a result, no 
additional runs of the Celtic Sea Fcube model were completed. Instead, focus was 
concentrated on defining fleets and métiers using highly spatially disaggregated data. 
This approach aimed to provide a more accurate representation of fishing dynamics. An 
illustrative example involved examining cod interactions within the Irish Nephrops fleet. 
By harnessing data from fishers’ reports and specialised tools, the study identified 
species interactions and assessed their significance. At the ICES statistical rectangle 
level, it was not possible to decouple the landing of cod and Nephrops on individual 
trips. The key insight here was that acquiring more spatially disaggregated data (at the 
level of VMS pings) is crucial for the accurate identification and delineation of fleets. 
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Additionally, propagation of fleet parameter uncertainty in mixed-fisheries forecasts was 
carried out via an ICES development study that introduced Monte Carlo simulations to 
stochastically sample input parameter values from historical data. This method of 
propagating uncertainty has been developed in such a way to allow application to the 
conditioning of any mixed-fishery model. The impact of fleet-parameter uncertainty on 
model outputs was reported to have varied depending on the stock and the effort 
scenarios considered and could be greatly affected by technical interactions (ICES, 
2023b). Variations in forecasted landings were observed under different effort scenarios, 
underscoring the necessity for more-precise data in specific areas of mixed-fisheries 
forecasting. For instance, cod is the chief limiting stock in the Celtic Sea and very little 
variation was observed under the ‘min’ scenario; the scenario where fishing stops for a 
fleet when the fleet’s catch of the first quota species for that fleet meets the 
corresponding single-stock exploitation boundary. However, technical interactions with 
haddock and whiting in many métiers means that uncertainty in catchability translates 
to large variation in the forecasted landings under the haddock and whiting scenarios. 

The question as to the extent to which higher resolution data will improve the output of 
the mixed-fisheries scenarios remains outstanding. The robustness of catch predictions 
and the sensitivity of these predictions are believed to vary significantly depending on 
the specific case studies. For instance, while some fleets and métiers may be well-
represented in current models, others could benefit from more granular analysis and 
disaggregation. Additionally, uncertainties in input data, such as catchability 
conditioning, may be linked to data quality issues or shifts in fleet behaviour, which 
could also be influenced by spatial differences in catch composition. The current 
aggregation level does not allow for a comprehensive identification of such mechanisms. 
Therefore, it is imperative that these outstanding questions be evaluated on a nuanced 
case-by-case basis and generalizations are hard to be made. In theory, very 
disaggregated métiers would likely increase the solution space, and thus result in higher 
uptake of fishing opportunities. If you would assume that fishers exactly know what 
they are going to fish (and ignore causal relationships) at the haul level, it is likely that 
a solution exists where fishers can select those hauls that result in a 100% uptake of 
their quota. However, the issue of causality may become important when disaggregating 
métiers to very granular levels (i.e. ICES rectangle or fishing trip) although this is very 
hard to test. Two case studies, the North Sea and the Bay of Biscay, were used to 
investigate the impact of uncertainty in the conditioning of mixed-fisheries model 
forecasts. Parameter uncertainties in forecasting were examined, and output 
uncertainty quantified in order to enable identification of the most influential 
parameters. The intention was to understand how uncertainties in historical data and 
input parameters affect model projections.  

The mixed-fisheries models involve numerous input parameters, including catchability, 
effort distribution and quota allocations. These models rely on historical data, which 
may be error-prone, for parameter conditioning. Sensitivity analysis is crucial for 
understanding the relationship between input uncertainties and output variations. GSA 
efficiently characterises this relationship but can be computationally demanding. Within 
the Bay of Biscay case study, GSA was implemented to assess the sensitivity of 
catchability, quota share and effort proportion. For the North Sea case study, a less 
computationally intensive approach was adopted, with separate uncertainty analyses 
for catchability, landings proportions, and effort proportion.  

For the North Sea case study, sensitivity tests were conducted for the three model input 
parameter types – catchabilities, effort proportions and landing proportion – with a view 
to proposing alternative assumptions (‘scenarios’) based on an analysis of the historical 
values for these parameters. In terms of deviation from the observed values, the current 
assumptions, setting values equal to the last available data, generally provide unbiased 
predictions. When tested against the alternative assumptions, the assumption currently 
used by WGMIXFISH often outperformed them.  
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Sensitivity tests for the North Sea case study then compared runs using the current 
assumption to runs using the actual observed values. Catchability and effort proportion 
assumptions had limited impacts on choke and least-limiting stocks, highlighting that 
current assumptions generally perform well for these parameters. The landing 
proportion assumption had significant impacts on choke effects, with real data showing 
lower choke effects. However, challenges with reconditioning, including varying stock 
inclusions, differences in assessments, and the way the historical advice was used, 
affected the accuracy of the results. To accurately assess the effects of the parameters 
on model performance, a more complex approach is necessary. 

The Bay of Biscay case study focused on conducting an uncertainty analysis and GSA 
for demersal mixed fisheries in the region, with a particular focus on French and Spanish 
fleets as proof of concept. Introduction of uncertainty provided a better representation 
of plausible future situations. As opposed to a deterministic approach, where a single 
stock is identified as the choke stock for each fleet, in the current approach multiple 
stocks with a similar probability of choking the fishery were identifiable.   

The intensity with which the stocks are caught in each métier were the input factors 
that had the highest impact in almost all the output variables analysed. It needs, 
however, to be stated that the high uncertainty in the intensity could have conditioned 
the results, giving prominence to this variable to the detriment of the rest. Selectivity 
had the smallest impact. However, in long-term simulations, when there is a feedback 
loop between the stock biomass and exploitation pattern, selectivity could have a 
significant impact, especially if age-structured outputs are introduced. 

The current findings do not neatly align with the findings for the Iberian Waters mixed-
fisheries demersal system by Garcia et al. (2021). There it was found that effort–share 
was the most important input factor. However, in this case study, effort proportion 
among métiers had very limited impact. This contradiction highlights the importance of 
conditioning the uncertainty properly.  

7.3 Stock interactions 

‘Technical interactions’ is the term used to describe the interactions between a fishing 
activity and the fished stocks and forms the basis of any mixed-fisheries modelling. 
Therefore, for a robust model, it is key to understand in detail the interactions between 
fish stocks caught in mixed fisheries. Stock interactions within the ICES ecoregions 
where advice is produced annually are well explained within the materials published by 
ICES. However, there is still room for improvement on this description, especially at 
finer scale at both spatial and temporal levels. Indeed, one of the key priorities of future 
mixed-fisheries models is to increase the spatial disaggregation of the fishery, to better 
account for spatial heterogeneity in terms of catch compositions. Such a development 
could allow managers to managers to identify areas where spatial decoupling may be 
possible and focus on areas where the main source of catches occur in order to reduce 
mortality of more vulnerable stocks (those with poor stock status) whilst reducing choke 
risks in the wider of the fleet. 

In collaboration with ICES WKFO2 and WGMIXFISH the work conducted within this study 
brings a new detailed analysis of stock interactions at ICES rectangle level and fishing-
trip level. In the case of aggregated data sources that depict interactions at the stock 
level, a single figure can tell a story in terms of catch/landing proportions by métier, 
importance of a stock in an ecoregion, or probability of co-occurrence in the landings 
across different strata by ecoregion. However, visualising technical interactions at more 
disaggregated levels is more complicated because the number of strata increases 
exponentially with the number of factors used to disaggregate the data source. This has 
been shown by the visualisation of trip-level and ICES statistical rectangle data, in which 
great variability in the targeting behaviour and catch composition is observed between 
trips within strata. There is a higher spatial and temporal variability than included within 
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models at present. No two trips were the same. A balance required between the detail 
included to adequately represent the fishing operations, the impact that has on stocks 
as a result of interactions, and the computational and interpretative limitations. A point 
will be reached where the resolution is so granular that model outputs are not useful to 
the end user (e.g. managers). 

Inclusion of stock interactions need not only be through the assessment models. 
Information, useful to managers, can also be obtained through visualisation of data. 
section 5 provides an overview of collaborative visualisation development between this 
study and ICES, providing useful information on the scale of interactions between fishing 
operations and stocks varying in location, time, and type. The development of 
interactive methods to view this information is currently under way at ICES, particularly 
at the ICES statistical rectangle scale, which will provide an excellent tool for examining 
species and gears spatially and temporally. 

7.4 Framework Development 

It is acknowledged that the mixed-fishery assessment models are a continual ‘work in 
progress’ as the level of understanding, skill and technology develops. At the same time, 
the fisheries, fleets and management are evolving, and the mixed-fishery assessments 
need to reflect this. Within section 6 on Framework Development, a number of 
frameworks are presented for how the information gleaned within this study could be 
incorporated into mixed-fisheries assessment modelling. Here, four aspects have been 
considered:  

• development assessments for additional areas (6.4, Developing new Areas); 
• methods to include additional stocks (6.3, Incorporating additional stocks);  
• inclusion of technical and spatial measures (6.1, Scenario evaluation);  
• lengthening the forecast period (6.2, Rebuilding stocks).  

ICES currently covers a number of mixed-fisheries ecoregions within its mixed-fisheries 
assessment process. However, there are a number of additional areas that would benefit 
from an increased understanding of the mixed-fishery interactions and implications of 
changing stock health on the fleets and fisheries operating within an area. The 
development of a mixed-fishery assessment is time-consuming, and ICES is currently 
developing best practice guidelines to follow for such development. This study provides 
an outline of the development process and highlights areas where important decisions 
are made, provides an overview of the process undergone in the most recent ecoregion 
to have been developed (the Irish Sea), highlights the difficulties the Baltic region is 
experiencing and suggests what would be needed for the continuation of a West of 
Scotland assessment (noting that the current view of ICES MIXFISH is that West of 
Scotland be incorporated within the North Sea assessment). 

In addition to the inclusion of new areas, ICES is currently developing best practice 
guidelines to cover the inclusion of new stocks. This study includes an overview of the 
current practices for inclusion of new stocks into the mixed-fishery assessments, with 
details of how this could be extended (section 6.3). The aim is to build on the guidelines 
being developed and outline a framework by which new stocks are selected and added 
to a mixed-fisheries assessment. To this end, this study reviews existing methods to 
include new stocks in Fcube and FLBEIA, highlights data requirements, and includes a 
discussion on the potential limitations and research needs. 

Often, selection of stocks for inclusion in a mixed-fishery assessment is based on data 
and single-species assessment availability, management needs, and expertise in the 
room. However, the exclusion of data-poor species could result in missed management 
goals, or bias in understanding of pressures on an ecoregion. Therefore, to produce 
more-useful management tools, all relevant stocks should be captured by a model, and 
not just those stocks most readily available. However, this has its own limitations – one 
of which being the current best practice quality control for all WGMIXFISH advice 
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products, which is the teams’ ability to reproduce the single-species advice forecast. 
This means that, in the absence of an analytical stock assessment and forecast, there 
is currently no defined basis to include data-poor stocks (data assessment category 3–
6; ICES, 2016) or stocks with no advice. This study includes a possible method for 
including these stocks based on assuming a constant catch rate (constant CPUE). 
However, because of the need to assume constant biomass, it might only be possible to 
include these stocks for ‘illustrative’ purposes, meaning that they are not used in the 
computation of the effort per fleet, and therefore cannot become choke species. 
Whether a species chokes a fleet or not is the primary point of interest to fishery 
managers, making it one of the main reasons to include, more vulnerable, stocks within 
mixed-fishery considerations. 

However, a growing number of stocks in ICES with category 2 assessments (such as 
SPiCT) could be included thanks to the DRuMFISH project (EASME, 2018). Running of 
category 2 assessments inside Fcube considerably increased the running time, which 
proved to be a major issue when conducting long-term simulations but was acceptable 
when producing the short-term forecast as used in the mixed-fisheries considerations. 
Computational limitations for these stocks were less of an issue for FLBEIA. 

The process of including new stocks requires good communication between WGMIXFISH 
and the stock assessor, collection of all current data, quality control reviews, and clear 
definitions of limitations and assumptions. This is time-consuming, and work cannot 
always be completed in one advice year. Incorporation of new stocks takes 
intersessional research and development, along with development at WGMIXFISH-
METHODS before it can be approved for use in the production of mixed-fishery 
considerations. The inclusion of each new stock also changes the structure and dynamics 
of the fleet and model. This may also require the development of specific scenarios and 
time spent by WGMIXFISH-METHODS and WGMIXFISH-ADVICE reviewing the revised 
products to ensure that the outcomes of the scenarios are logical and meaningful. There 
is no one-size-fits-all in terms of assessment model or advice product. Time and human 
capacity are currently the key limiting factors when incorporating additional stocks.  

This study also looks at possibilities for developing the existing assessment models to 
provide additional context to evaluate impacts of management, such as technical and 
spatial management measures, and potential for management measures to rebuild 
stocks. This was achieved via development of two conceptual frameworks. 

In relation to the inclusion of technical and spatial measures, there is a growing need to 
incorporate downstream impacts of these into our understanding of mixed fisheries. If 
operationalised, this would allow scientists and stakeholders to explore long-term 
impacts of currently implemented and proposed future measures. The framework has 
identified the data, methodologies and steps necessary to account for the impact of 
gear-based and spatial technical measures. Two separate approaches are presented, 
both focused around extending the FLBEIA model. Additionally, the proposed framework 
outlines how such management scenarios could be evaluated through the assessment 
models that are currently used to provide mixed-fishery considerations.  

The drawback of integration of such measures is the level of data disaggregation needed 
to be able to detect impacts as observed within this study. The drawbacks to using 
highly disaggregated métiers (or strata) are the likely additional manual processing and 
computational costs, which could reach prohibitive levels. It is therefore advisable to 
limit the number of métiers, by grouping strata according to similarities in catchabilities 
to maintain a realistic level of processing and computational cost. Alternatively, new 
software could be developed that reduces the computational demand of increased 
granularity of fleet/métier dimensions.  

An additional requirement when including gear and spatial technical measures is the 
finer-scale data that is needed for the development of segment-level stratification to 
detect fishing associated with the relevant technical and or spatial measures to be 
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assessed. It was found that data at the fine scale required is not often available. The 
future RDBES database may alleviate this in terms of landings and effort; however, 
availability of discards and/or age-disaggregated catch information will remain limiting 
factors for the development of fine-scale strata. Specifically in relation to technical 
measures, in practice, several difficulties often arise when transferring results from 
gear-trial studies to mixed-fisheries models. In such cases, one needs to be able to 
match the gear and mesh size used in the study to the métiers used in the mixed-
fisheries models. In case of aggregated métiers, which might represent a wide range of 
mesh sizes, matching métiers can be difficult. The métier structure of the current mixed-
fisheries models may turn out to be a limitation to effective implementation of gear 
changes. 

In order to provide outputs associated with evaluating stock-rebuilding measures, the 
duration of the current model projection functionality would need to be extended. At 
present, the assessment models projects two years into the future, with the use of fixed 
variables within projections. Although this assumption is considered valid in the short 
term, to evaluate stock rebuilding strategies it is also necessary to introduce dynamism 
and uncertainty into the projection. This would allow dynamic changes in all forecast 
settings, particularly catchability, effort proportions between métiers and quota shares. 
However, from a technical perspective, the models used can be extended easily.  

The steps required to extend the models used to produce mixed-fisheries considerations 
to analyse stock rebuilding in the long term are presented. The first step towards 
running long-term projections is to define the dynamics of the processes that form the 
system. The system can be divided in three main components: the stocks, the fleets 
and the catch advice. The processes that should be modelled in each of these 
components in order to run long-term simulations have been identified, along with 
where and how uncertainty should be introduced. In relation to dynamic models, the 
major work would be in the conditioning of the stock-recruitment relationship, the fleet 
dynamic model, in terms of effort allocation among métiers and total annual effort, and 
the HCRs to provide the catch advice. A full MSE approach would require introducing the 
assessment model within the simulation; for many stocks this would imply a huge 
amount of work to prepare the algorithm and a huge amount of computational time. For 
uncertainty conditioning, at least in the base case, that of the biological component 
should be based on the conditioning of the single-stock models used to calculate 
reference points. For the fleet component, the uncertainty conditioning carried out in 
section 3 could be used as a basis.   

An overarching theme that is applicable to the development of all forementioned 
frameworks is that stakeholder engagement is a key aspect of this development. 
Stakeholders are central to the development of meaningful management scenarios that 
could be produced with mixed-fisheries models. Forums such as WKMIXFISH (ICES, 
2023d) are essential to collecting some of the information. Annual iterative feedback 
processes will need to be developed to ensure progress can be aligned with 
requirements.  
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8 CONSIDERATIONS FOR NEXT STEPS 

Mixed fisheries is a high-priority topic for development within ICES, and will continue to 
be for the foreseeable future. Many of the investigations carried out within this study 
represent a point on a larger development scale, and these developments should be 
continued. More specifically, these include those within the joint EU-UK request sent to 
ICES, and those of ICES WGMIXFISH. There is a number of limitations to the further 
progressive development of mixed-fishery assessment and advice that have relevance 
to this study but also go beyond its capacity. These can be broadly summarised into 
four categories. 

1. The current form of mixed-fishery assessment within ICES has tended to develop as 
a result of needs to answer specific questions around the consequences to a 
particular stock. Each ecoregion has had its own focal requirements originating from 
management questions. This includes consideration of cod stocks and associated 
recovery management. Greater clarity of the end-user requirements of mixed-
fishery considerations will be needed to enable harmonisation between ecoregions, 
and future development of mixed-fishery models to encapsulate these requirements. 

2. The majority of case study investigations would have been aided by a dedicated data 
call, which was not possible within the timeframe of this study. This would need to 
be a data call in which additional disaggregated data would be requested from all 
relevant nations within the North Sea, Celtic Sea and Bay of Biscay, including EU 
Member States and third countries to ensure sufficient representative coverage can 
be achieved. 

3. As the interest in the use of mixed-fisheries considerations increases beyond ICES, 
there is a need to continue supporting research and development of the mixed-
fisheries assessment models under development. This should incorporate a greater 
complexity of métiers, stocks and scenario projections, and ways to reduce human 
and computational time commitments. This can be facilitated by adopting and 
implementing many of the aspects described as part of the framework development. 

4. As the priority of mixed fisheries grows within ICES and beyond, there is a need for 
additional technical staff to support the research-and-development process needed 
to progress the topic. 

The following considerations provide more specific requirements associated with further 
development of mixed fisheries within Europe. 

8.1 Data availability 

The considerations associated with data availability are cross-cutting, and would benefit 
all aspects of continuing work carried out within this study. 

• As stated in the more general terms, a data request with data disaggregated, ideally 
at the trip level, would be requested from all relevant nations within the North Sea, 
Celtic Sea and Bay of Biscay, both within the EU and beyond to ensure sufficient 
representative coverage can be achieved. It would also be preferable to have access 
to VMS ping data to further investigate the spatial element of classifying strata for 
inclusion into mixed-fishery models. 

• Long time series of complete data are needed to obtain a good representation of 
uncertainty and an effort should be made to complete and extend the existing time 
series in the historical period. There were many gaps in the data used for the 
uncertainty conditioning in the Bay of Biscay case study into the sensitivity of 
forecasting. These gaps made it difficult to distinguish between real zeros and lack 
of data. The distinction has big implications because it has a big impact on the 
conditioning of catchability, for example. Time constraints made it impossible to 
identify the real nature of all the gaps. For some stocks this significantly reduced 
forecasted catchability and it had a non-desirable impact in the uncertainty analysis.  

 



Study to assess the robustness of mixed-fisheries scenario assumptions 

 

56 

8.2 Assessment mode uncertainty and sensitivity 

The following considerations are  additions to those already listed in 8.1. 

• Further refine the definition of the strata (fleets and métiers) used within mixed-
fishery models, giving consideration not only to landings but also quota, technical 
and socio-economic aspects. Wherever possible, this should be done at a finer spatial 
scale than DCF métier level 6. This level is considered insufficient to decouple 
fisheries, such as decoupling targeting Nephrops on the Porcupine Bank from cod 
targeting at an ICES statistical rectangle level. 

• Develop and integrate more-realistic fleet dynamics models in future mixed-fisheries 
models to more accurately account for changes in fishing opportunities and spatially 
disaggregated model projections. 

• Continue the development of the effect of uncertainty of fleet and métier definitions 
on model behaviour via use of the Monte Carlo simulation method developed within 
WGMIXFISH. This would be focused to improve the realism of forecasts, such as the 
use of auto-regressive functions to constrain sampled projection values, as well as 
improve the robustness of model fitting and expand the toolbox of user-friendly 
functions. This work will be dealt with as part of WGMIXFISH-METHODS and the 
special request sent by the EU to ICES, to be published in in 2024. 

• With respect to the model conditioning, explore alternative approaches or data 
sources to better predict future landing proportions, especially in cases where quota 
exchanges and transfers significantly affect these proportions. 

• Future investigations that compare the projection runs that have status quo 
parameter assumptions with projection runs that use the observed values for the 
parameters should consider reconditioning of the model. Reconditioning the model 
to exactly reproduce the mixed-fisheries considerations in past years is necessary 
to get a sense of model sensitivity to the conditioning of forenamed parameters.  
Currently, only the observed values available from the most recent mixed-fisheries 
considerations are used. 

• Correlation among stocks’ catchability arises at haul level. However, mixed-fisheries 
models are conditioned at métier level, and the correlation between the catchability 
(intensity) was derived at this more aggregated level. It could be interesting to 
calculate correlation among stock catchabilities at haul level and compare them with 
the correlations obtained in this analysis to check for similarity. Alternatively, it could 
be interesting to analyse options for using existing data at the haul level to improve 
conditioning at the métier level. 

• The GSA results are highly sensitive to the uncertainty conditioning. In this case, 
the variance in the intensity was limited because the model used produced over-
wide confidence intervals that extended beyond the historical observations. This 
behaviour could be related to the lack of long-enough time-series data and the 
selected model itself. Further research is needed to extend the time-series data and 
improve the models used in the uncertainty conditioning.  

• Time constraints meant that convergence of the indices has not been analysed. 
However, Garcia et al. (2021) used 10 000 base interactions with a more complex 
model and observed that the sensitivity indices were fairly stable from 2 000 
iterations on. In their analysis they used Sobol sequences to speed up convergence 
(Renardy et al., 2021). The work here attempted to use Sobol sequences in this 
analysis; however, it was not possible to transform Sobol sequences to constrained 
sampling of intensity. The sensitivity indices showed little variability in some cases 
(quota-share indices for example), the reason for such pattern could be related to 
convergence issues and should be examined in further analysis.   

8.3 Stock interactions  

• The complexity of technical interactions lends itself to interactive visualisation tools 
that allow the end user to specify the information of interest; this can be fishing 
operation style, stock, spatially or temporally specific. Development of interactive 
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tools is becoming more mainstream and ICES is moving towards this method of 
information dissemination. The continued development of the spatially explicit tool 
described within the current study is in line with this evolution..  

• In order to further investigate stock interactions for vulnerable stocks, the meaning 
of vulnerable should be determined. 

• Further develop current mixed-fishery modelling methods (or alternative models) to 
allow incorporation of spatially and temporally disaggregated strata that are treated 
within the model at an appropriate scale, e.g. a smaller than annual time step.  

8.4 Framework development 

Considerations for the four framework development topics are detailed below. Three 
overarching considerations were identified, which apply to each framework. 

• Further develop mixed-fishery assessment models to enable more advanced 
integration, and/or less computationally demanding methods of processing greater 
granularity of fleets/métiers and stocks.  

• Feed into and support the developing ICES WGMIXFISH best practice guidance, 
particularly in relation to the development of assessments for additional areas and 
methods to include additional stocks. 

• A key aspect of this development is stakeholder engagement. This is central to the 
development of meaningful management scenarios. Forums such as WKMIXFISH 
(ICES, 2023d) are key to collecting some of the information. Annual iterative 
feedback processes will need to be developed to ensure progress can be aligned with 
requirements.  

Specific considerations in relation to Scenario evaluation (6.1): 

• Technical and spatial measures can be considered with the current mixed-fisheries 
models but would likely require assumptions on the input data to condition fleets 
and métiers in case of technical changes. Besides, such analysis would benefit from 
more realistic fleet dynamic models, as such measures are likely to affect the 
profitability of the fleets. 

Specific considerations in relation to Rebuilding stocks (6.2):Rebuilding stocks  

• FLBEIA uses Cobb–Douglas production function, a function widely used in economic 
literature to describe production in diverse economic activities, to relate catch and 
effort. It has been shown that when the stocks are at low biomass levels, the 
dynamic of this function and the Baranov production function, the most popular 
function to calculate catch as a function of effort in age-structured models, are 
significantly different. A Baranov approach should be implemented in FLBEIA to 
ensure full replicability of single-stock approaches. This development would benefit 
long-term simulation approaches, and short-term projections used in the generation 
of mixed-fisheries considerations. 

• Intra species correlation in the intensity parameter at métier level has been modelled 
using data at métier level. However, the correlation arises at haul level. However, 
an attempt should be made to use haul level data to improve the conditioning of the 
uncertainty.  

• Dynamic modelling and uncertainty conditioning require long time-series data to 
provide a good basis for inference into the future. Thus, the time series available 
should be extended. 

• Alternative fleet dynamic models that are able to replicate the past adequately and 
are appropriate for forecasting are needed. The development of a hindcasting 
module that allows identification of what works better in the historical period would 
be useful.  

• HCRs used to provide advice for category 3 stocks should be implemented in FLBEIA. 
• Some of the exemptions of the landing obligation are already implemented in FLBEIA 

but have not been tested extensively. More testing is needed to validate the model.  
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ANNEX 1: OVERVIEW OF THE FLEET AND MÉTIERS DEFINITION USED IN THE ICES WGMIXFISH ADVICE NORTH SEA 
MODEL 

The below table provides an overview of the fleet and métiers definition used in the ICES WGMIXFISH advice North Sea model, as well as the strata 
used to condition the métiers. The columns ‘n cluster’ and ‘NA cluster’ indicates the number of clusters to which the strata belong, and indicate 
strata that could not be matched to a cluster, respectively. 

Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

BE_Beam<24 BT2.4 2 TBB_DEF_100-119_0_0_all / 4 / 10-24 & TBB_DEF_70-99_0_0_all / 4 / 10-24 2 0 9887 

BE_Beam<24 BT2.7D 1 TBB_DEF_70-99_0_0_all / 7D / 10-24 1 0 10013 

BE_Beam<24 beam_oth.4 1 TBB_CRU_16-31_0_0_all / 4 / 10-24 1 0 1193 

BE_Beam>=24 BT1.4 1 TBB_DEF_>=120_0_0_all / 4 / 24-40 1 0 42960 

BE_Beam>=24 BT2.4 2 TBB_DEF_70-99_0_0_all / 4 / 24-40 & TBB_DEF_100-119_0_0_all / 4 / 24-40 2 0 25868 

BE_Beam>=24 BT2.7D 1 TBB_DEF_70-99_0_0_all / 7D / 24-40 1 0 19997 

BE_Otter OTH 6 

OTB_DEF_32-69_0_0_all / 4 / 24-40 & OTB_DEF_32-69_0_0_all / 4 / 10-24 & 
OTB_DEF_32-69_0_0_all / 7D / 24-40 & OTB_DEF_32-69_0_0_all / 7D / 10-24 
& OTB_CRU_70-99_0_0_all / 7D / 10-24 & OTB_CRU_70-99_0_0_all / 7D / 24-
40 

2 0 317 

BE_Otter TR1.4 4 
OTB_DEF_>=120_0_0_all / 4 / 24-40 & OTB_DEF_100-119_0_0_all / 4 / 24-40 
& OTB_DEF_>=120_0_0_all / 4 / 10-24 & OTB_DEF_100-119_0_0_all / 4 / 10-
24 

2 0 7866 

BE_Otter TR2.4 4 OTB_CRU_70-99_0_0_all / 4 / 10-24 & OTB_CRU_70-99_0_0_all / 4 / 24-40 & 
OTB_DEF_70-99_0_0_all / 4 / 10-24 & OTB_DEF_70-99_0_0_all / 4 / 24-40 2 0 16366 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

DK_<10towed OTH 6 
OTB_CRU_32-69_0_0_all / 3AN / <10 & OTB_DEF_>=120_0_0_all / 3AN / <10 
& SDN_DEF_>=120_0_0_all / 3AN / <10 & OTB_DEF_>=120_0_0_all / 4 / <10 
& SDN_DEF_>=120_0_0_all / 4 / <10 & OTB_CRU_70-99_0_0_all / 4 / <10 

4 0 3668 

DK_<10towed TR2.3AN 1 OTB_CRU_90-119_0_0_all / 3AN / <10 1 0 2170 

DK_Otter<24 OTH 4 
OTB_CRU_32-69_0_0_all / 3AN / 10-24 & OTB_CRU_32-69_0_0_all / 4 / 10-24 
& OTB_DEF_>=120_0_0_all / 3AN / 10-24 & OTB_CRU_16-31_0_0_all / 3AN / 
10-24 

3 0 19448 

DK_Otter<24 TR1.4 1 OTB_DEF_>=120_0_0_all / 4 / 10-24 1 0 39193 

DK_Otter<24 TR2.3AN 1 OTB_CRU_90-119_0_0_all / 3AN / 10-24 1 0 77522 

DK_Otter<24 TR2.4 1 OTB_CRU_70-99_0_0_all / 4 / 10-24 1 0 3769 

DK_Otter>=24 OTH 7 

OTB_CRU_32-69_0_0_all / 3AN / 24-40 & OTB_CRU_32-69_0_0_all / 4 / 24-40 
& OTB_CRU_70-89_2_35_all / 3AN / 24-40 & OTB_CRU_70-89_2_35_all / 3AN 
/ >=40 & OTB_CRU_16-31_0_0_all / 3AN / 24-40 & OTB_CRU_16-31_0_0_all / 
4 / 24-40 & OTB_CRU_16-31_0_0_all / 4 / >=40 

3 0 3453 

DK_Otter>=24 TR1.3AN 2 OTB_DEF_>=120_0_0_all / 3AN / 24-40 & OTB_DEF_>=120_0_0_all / 3AN / 
>=40 1 0 7374 

DK_Otter>=24 TR1.4 2 OTB_DEF_>=120_0_0_all / 4 / 24-40 & OTB_DEF_>=120_0_0_all / 4 / >=40 1 0 98338 

DK_Otter>=24 TR2.3AN 2 OTB_CRU_90-119_0_0_all / 3AN / 24-40 & OTB_CRU_90-119_0_0_all / 3AN / 
>=40 2 0 11152 

DK_Otter>=24 TR2.4 2 OTB_CRU_70-99_0_0_all / 4 / 24-40 & OTB_CRU_70-99_0_0_all / 4 / >=40 2 0 6251 

DK_Seine TR1.3AN 4 
SDN_DEF_>=120_0_0_all / 3AN / 10-24 & SSC_DEF_>=120_0_0_all / 3AN / 
24-40 & SSC_DEF_>=120_0_0_all / 3AN / 10-24 & SDN_DEF_>=120_0_0_all / 
3AN / 24-40 

4 0 50991 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

DK_Seine TR1.4 4 
SDN_DEF_>=120_0_0_all / 4 / 10-24 & SSC_DEF_>=120_0_0_all / 4 / 24-40 
& SSC_DEF_>=120_0_0_all / 4 / 10-24 & SDN_DEF_>=120_0_0_all / 4 / 24-
40 

3 0 28839 

DK_Static GN1.3AN 7 

GNS_DEF_>=220_0_0_all / 3AN / 10-24 & GNS_DEF_>=220_0_0_all / 3AN / 
<10 & GNS_DEF_100-119_0_0_all / 3AN / 10-24 & GNS_DEF_100-119_0_0_all 
/ 3AN / <10 & GNS_DEF_120-219_0_0_all / 3AN / <10 & GNS_DEF_120-
219_0_0_all / 3AN / 24-40 & GNS_DEF_120-219_0_0_all / 3AN / 10-24 

3 0 24214 

DK_Static GN1.4 9 

GNS_DEF_>=220_0_0_all / 4 / <10 & GNS_DEF_>=220_0_0_all / 4 / 24-40 & 
GNS_DEF_>=220_0_0_all / 4 / 10-24 & GNS_DEF_100-119_0_0_all / 4 / <10 
& GNS_DEF_100-119_0_0_all / 4 / 10-24 & GNS_DEF_120-219_0_0_all / 4 / 
<10 & GNS_DEF_120-219_0_0_all / 4 / 24-40 & GNS_DEF_120-219_0_0_all / 
4 / 10-24 & GNS_DEF_100-119_0_0_all / 4 / 24-40 

3 0 66846 

DK_Static OTH 5 
LLS_FIF_0_0_0_all / 3AN / <10 & LLS_FIF_0_0_0_all / 3AN / 10-24 & 
LLS_FIF_0_0_0_all / 3AN / 24-40 & LLS_FIF_0_0_0_all / 4 / 10-24 & 
LLS_FIF_0_0_0_all / 4 / <10 

3 0 936 

EN_<10 GN1.4 1 GNS_DEF_all_0_0_all / 4 / <10 1 0 2081 

EN_<10 GN1.7D 1 GNS_DEF_all_0_0_all / 7D / <10 1 0 4912 

EN_<10 GT1.7D 1 GTR_DEF_all_0_0_all / 7D / <10 1 0 2309 

EN_<10 OTH 19 

TBB_DEF_70-99_0_0_all / 7D / <10 & GTR_DEF_all_0_0_all / 4 / <10 & 
LLS_FIF_0_0_0_all / 4 / <10 & LLS_FIF_0_0_0_all / 7D / <10 & OTB_CRU_32-
69_0_0_all / 4 / <10 & OTB_SPF_32-69_0_0_all / 4 / <10 & 
MIS_MIS_0_0_0_HC / 4 / <10 & MIS_MIS_0_0_0_HC / 7D / <10 & 
OTB_CRU_100-119_0_0_all / 4 / <10 & OTB_DEF_>=120_0_0_all / 4 / <10 & 
OTB_DEF_100-119_0_0_all / 4 / <10 & OTB_PEL_100-119_0_0_all / 4 / <10 & 
OTB_DEF_>=120_0_0_all / 7D / <10 & OTB_CRU_100-119_0_0_all / 7D / <10 
& OTM_SPF_32-69_0_0_all / 4 / <10 & OTB_CRU_32-69_0_0_all / 7D / <10 & 
OTB_SPF_32-69_0_0_all / 7D / <10 & MIS_MIS_0_0_0_HC / 6A / <10 & 
FPO_CRU_0_0_0_all / 6A / <10 

6 4 4994 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

EN_<10 TR2.4 4 OTB_CRU_70-99_0_0_all / 4 / <10 & OTB_DEF_70-99_0_0_all / 4 / <10 & 
OTB_SPF_70-99_0_0_all / 4 / <10 & OTB_MOL_70-99_0_0_all / 4 / <10 3 1 12229 

EN_<10 TR2.7D 4 OTB_DEF_70-99_0_0_all / 7D / <10 & OTB_CRU_70-99_0_0_all / 7D / <10 & 
OTB_MOL_70-99_0_0_all / 7D / <10 & OTB_SPF_70-99_0_0_all / 7D / <10 3 0 2627 

EN_<10 pots.4 1 FPO_CRU_0_0_0_all / 4 / <10 1 0 996 

EN_<10 pots.7D 1 FPO_CRU_0_0_0_all / 7D / <10 1 0 40 

EN_Beam BT1.4 3 TBB_DEF_>=120_0_0_all / 4 / >=40 & TBB_DEF_>=120_0_0_all / 4 / 24-40 & 
TBB_DEF_>=120_0_0_all / 4 / 10-24 2 0 54177 

EN_Beam BT2.4 3 TBB_DEF_70-99_0_0_all / 4 / 24-40 & TBB_DEF_70-99_0_0_all / 4 / 10-24 & 
TBB_DEF_70-99_0_0_all / 4 / >=40 2 0 34572 

EN_Beam BT2.7D 2 TBB_DEF_70-99_0_0_all / 7D / 24-40 & TBB_DEF_70-99_0_0_all / 7D / 10-24 1 0 3403 

EN_Beam OTH 2 TBB_CRU_16-31_0_0_all / 4 / 10-24 & TBB_CRU_16-31_0_0_all / 4 / >=40 2 0 31 

EN_Otter24-40 OTH 4 
OTB_DEF_>=120_0_0_all / 6A / 24-40 & OTB_DEF_>=120_0_0_all / 6A / 24-
40 & OTB_CRU_100-119_0_0_all / 6A / 24-40 & OTB_DEF_100-119_0_0_all / 
6A / 24-40 

3 1 254 

EN_Otter24-40 TR1.4 5 
OTB_DEF_>=120_0_0_all / 4 / 24-40 & OTB_DEF_>=120_0_0_all / 4 / 24-40 
& OTB_CRU_100-119_0_0_all / 4 / 24-40 & OTB_CRU_100-119_0_0_all / 4 / 
24-40 & OTB_DEF_100-119_0_0_all / 4 / 24-40 

3 0 24568 

EN_Otter24-40 otter_oth.4 2 SSC_DEF_All_0_0_All / 4 / 24-40 & SDN_all_0_0_all / 4 / 24-40 1 1 97 

EN_Otter24-40 otter_oth.7D 2 SSC_DEF_All_0_0_All / 7D / 24-40 & SDN_all_0_0_all / 7D / 24-40 1 1 41 

EN_Otter<24 OTH 7 OTB_CRU_32-69_0_0_all / 4 / 10-24 & OTB_SPF_32-69_0_0_all / 4 / 10-24 & 
SSC_DEF_All_0_0_All / 4 / 10-24 & SDN_all_0_0_all / 4 / 10-24 & 

3 2 1641 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

SSC_DEF_All_0_0_All / 7D / 10-24 & OTB_CRU_70-99_0_0_all / 6A / 10-24 & 
OTB_DEF_70-99_0_0_all / 6A / 10-24 

EN_Otter<24 TR1.4 7 

OTB_CRU_100-119_0_0_all / 4 / 10-24 & OTB_CRU_100-119_0_0_all / 4 / 10-
24 & OTB_DEF_>=120_0_0_all / 4 / 10-24 & OTB_DEF_>=120_0_0_all / 4 / 
10-24 & SDN_DEF_>=120_0_0_all / 4 / 10-24 & OTB_DEF_100-119_0_0_all / 
4 / 10-24 & OTB_MOL_100-119_0_0_all / 4 / 10-24 

4 1 14084 

EN_Otter<24 TR1.7D 1 OTB_DEF_>=120_0_0_all / 7D / 10-24 1 0 41 

EN_Otter<24 TR2.4 4 OTB_CRU_70-99_0_0_all / 4 / 10-24 & OTB_CRU_70-99_0_0_all / 4 / 10-24 & 
OTB_DEF_70-99_0_0_all / 4 / 10-24 & OTB_DEF_70-99_0_0_all / 4 / 10-24 2 0 31104 

EN_Otter<24 TR2.7D 2 OTB_DEF_70-99_0_0_all / 7D / 10-24 & OTB_CRU_70-99_0_0_all / 7D / 10-24 2 0 1085 

EN_Otter>=40 OTH 4 
OTB_DEF_>=120_0_0_all / 6A / >=40 & OTB_DEF_>=120_0_0_all / 6A / 
>=40 & OTB_DEF_70-99_0_0_all / 4 / >=40 & OTB_SPF_70-99_0_0_all / 4 / 
>=40 

3 0 1506 

EN_Otter>=40 TR1.4 3 OTB_DEF_>=120_0_0_all / 4 / >=40 & OTB_DEF_>=120_0_0_all / 4 / >=40 & 
OTB_DEF_100-119_0_0_all / 4 / >=40 3 0 36534 

EN_Pelagic pelagic.4 2 OTM_SPF_32-69_0_0_all / 4 / >=40 & OTM_SPF_32-69_0_0_all / 4 / 10-24 2 0 248 

EN_Pelagic pelagic.6A 2 OTM_SPF_32-69_0_0_all / 6A / >=40 & OTM_SPF_32-69_0_0_all / 6A / 10-24 1 1 13 

EN_Pelagic pelagic.7D 1 OTM_SPF_32-69_0_0_all / 7D / >=40 1 0 14 

EN_Static GN1.7D 1 GNS_DEF_all_0_0_all / 7D / 10-24 1 0 149 

EN_Static OTH 9 

GNS_DEF_all_0_0_all / 4 / 10-24 & GNS_DEF_all_0_0_all / 4 / 10-24 & 
GNS_DEF_all_0_0_all / 4 / 24-40 & GTR_DEF_all_0_0_all / 4 / 10-24 & 
LLS_FIF_0_0_0_all / 7D / 10-24 & GTR_DEF_all_0_0_all / 7D / 10-24 & 
LLS_FIF_0_0_0_all / 4 / 10-24 & LLS_FIF_0_0_0_all / 4 / 24-40 & 
FPO_CRU_0_0_0_all / 6A / 10-24 

6 1 1821 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

EN_Static pots.4 2 FPO_CRU_0_0_0_all / 4 / 10-24 & FPO_CRU_0_0_0_all / 4 / 24-40 1 1 117 

EN_Static pots.7D 1 FPO_CRU_0_0_0_all / 7D / 10-24 1 0 3 

FR_<10 GN1.7D 6 
GNS_DEF_120-219_0_0_all / 7D / <10 & GNS_DEF_all_0_0_all / 7D / <10 & 
GNS_DEF_80-99_0_0 / 7D / <10 & GNS_DEF_100-119_0_0_all / 7D / <10 & 
GNS_DEF_>=220_0_0_all / 7D / <10 & GNS_DEF_120-219_0_0 / 7D / <10 

4 1 298 

FR_<10 GT1.7D 6 
GTR_DEF_all_0_0_all / 7D / <10 & GTR_DEF_100-119_0_0_all / 7D / <10 & 
GTR_DEF_120-219_0_0_all / 7D / <10 & GTR_DEF_90-99_0_0_all / 7D / <10 & 
GTR_CRU_0_0_0_all / 7D / <10 & GTR_DEF_>=220_0_0_all / 7D / <10 

4 1 3038 

FR_<10 OTH 25 

MIS_MIS_0_0_0 / 7D / <10 & DRB_all_0_0_all / 7D / <10 & 
DRB_MOL_0_0_0_all / 7D / <10 & OTB_DEF_100-119_0_0 / 7D / <10 & 
OTB_DEF_>=120_0_0 / 7D / <10 & TBB_DEF_70-99_0_0_all / 7D / <10 & 
GTR_DEF_90-99_0_0_all / 4 / <10 & GTR_DEF_all_0_0_all / 4 / <10 & 
GTR_DEF_120-219_0_0_all / 4 / <10 & GTR_DEF_100-119_0_0_all / 4 / <10 & 
GTR_DEF_>=220_0_0_all / 4 / <10 & OTB_DEF_32-69_0_0 / 7D / <10 & 
OTB_SPF_32-69_0_0_all / 7D / <10 & MIS_MIS_0_0_0 / 4 / <10 & 
OTB_DEF_<16_0_0_all / 7D / <10 & OTB_DEF_All_0_0_All / 7D / <10 & 
OTB_CRU_all_0_0_all / 7D / <10 & OTB_DEF_all_0_0_all / 7D / <10 & 
OTM_DEF_70-99_0_0_all / 7D / <10 & OTM_DEF_32-69_0_0_all / 7D / <10 & 
OTM_SPF_32-69_0_0_all / 7D / <10 & OTM_SPF_70-99_0_0_all / 7D / <10 & 
OTM_SPF_16-31_0_0 / 7D / <10 & FPO_CRU_0_0_0_all / 7D / <10 & 
FPO_MOL_0_0_0_all / 7D / <10 

8 9 2068 

FR_<10 TR2.7D 4 OTB_DEF_70-99_0_0 / 7D / <10 & OTB_SPF_70-99_0_0_all / 7D / <10 & 
OTT_DEF_70-99_0_0 / 7D / <10 & OTB_CRU_70-99_0_0_all / 7D / <10 4 0 1313 

FR_Beam BT2.7D 3 TBB_DEF_70-99_0_0_all / 7D / 10-24 & TBB_DEF_70-99_0_0_all / 7D / 24-40 
& TBB_DEF_100-119_0_0_all / 7D / 10-24 3 0 3610 

FR_Beam OTH 4 TBB_DEF_all_0_0_all / 4 / 10-24 & TBB_DEF_all_0_0_all / 7D / 10-24 & 
TBB_DEF_all_0_0_all / 7D / 24-40 & TBB_DEF_70-99_0_0_all / 4 / 10-24 3 0 644 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

FR_Nets GT1.4 6 
GTR_DEF_100-119_0_0_all / 4 / 10-24 & GTR_DEF_120-219_0_0_all / 4 / 10-
24 & GTR_DEF_90-99_0_0_all / 4 / 10-24 & GTR_DEF_all_0_0_all / 4 / 10-24 & 
GTR_DEF_100-119_0_0_all / 4 / >=40 & GTR_DEF_>=220_0_0_all / 4 / 10-24 

4 0 8262 

FR_Nets GT1.7D 7 

GTR_DEF_100-119_0_0_all / 7D / 10-24 & GTR_DEF_all_0_0_all / 7D / 10-24 & 
GTR_DEF_120-219_0_0_all / 7D / 10-24 & GTR_DEF_90-99_0_0_all / 7D / 10-
24 & GTR_DEF_all_0_0_all / 7D / 24-40 & GTR_CRU_0_0_0_all / 7D / 10-24 & 
GTR_DEF_>=220_0_0_all / 7D / 10-24 

3 2 18080 

FR_Nets OTH 13 

GNS_DEF_120-219_0_0_all / 7D / 10-24 & GNS_DEF_all_0_0_all / 7D / 10-24 
& GNS_DEF_80-99_0_0 / 7D / 10-24 & GNS_DEF_100-119_0_0_all / 7D / 10-
24 & GNS_DEF_all_0_0_all / 7D / 24-40 & GNS_DEF_>=220_0_0_all / 7D / 10-
24 & GNS_DEF_120-219_0_0 / 7D / 10-24 & GNS_DEF_all_0_0_all / 4 / 10-24 
& GNS_DEF_120-219_0_0_all / 4 / 10-24 & GNS_DEF_80-99_0_0 / 4 / 10-24 & 
GNS_DEF_100-119_0_0_all / 4 / 10-24 & GNS_DEF_120-219_0_0 / 4 / 10-24 & 
GNS_DEF_>=220_0_0_all / 4 / 10-24 

5 3 737 

FR_OTH OTH 22 

MIS_MIS_0_0_0 / 7D / 10-24 & MIS_MIS_0_0_0 / 7D / 24-40 & 
DRB_all_0_0_all / 7D / 10-24 & DRB_all_0_0_all / 7D / 24-40 & 
MIS_MIS_0_0_0 / 7D / >=40 & DRB_MOL_0_0_0_all / 7D / 10-24 & 
DRB_MOL_0_0_0_all / 7D / 24-40 & DRB_all_0_0_all / 4 / 10-24 & 
MIS_MIS_0_0_0 / 4 / 24-40 & MIS_MIS_0_0_0 / 4 / 10-24 & MIS_MIS_0_0_0 / 
4 / >=40 & DRB_MOL_0_0_0_all / 4 / 10-24 & SSC_DEF_All_0_0_All / 4 / 24-
40 & SSC_DEF_All_0_0_All / 4 / 10-24 & SSC_DEF_All_0_0_All / 7D / 24-40 & 
SSC_DEF_All_0_0_All / 7D / 10-24 & SSC_DEF_70-99_0_0_all / 4 / 24-40 & 
SSC_DEF_70-99_0_0_all / 4 / 10-24 & MIS_MIS_0_0_0 / 6A / >=40 & 
MIS_MIS_0_0_0 / 6A / 24-40 & FPO_CRU_0_0_0_all / 7D / 10-24 & 
FPO_MOL_0_0_0_all / 7D / 10-24 

7 6 13900 

FR_OTH TR2.7D 2 SSC_DEF_70-99_0_0_all / 7D / 24-40 & SSC_DEF_70-99_0_0_all / 7D / 10-24 1 0 3268 

FR_OTH pelagic.4 15 

OTM_SPF_70-99_0_0_all / 4 / 10-24 & OTM_SPF_70-99_0_0_all / 4 / 24-40 & 
PS_SPF_0_0_0 / 4 / 24-40 & 

OTM_SPF_32-69_0_0_all / 4 / 24-40 & OTM_SPF_32-69_0_0_all / 4 / >=40 & 
OTM_SPF_32-69_0_0_all / 4 / 10-24 & OTM_DEF_70-99_0_0_all / 4 / 10-24 & 

4 6 2040 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

OTM_DEF_32-69_0_0_all / 4 / 10-24 & OTM_DEF_100-119_0_0_all / 4 / 10-24 
& OTM_DEF_70-99_0_0_all / 4 / 24-40 & OTM_SPF_16-31_0_0 / 4 / 24-40 & 
PS_SPF_0_0_0 / 4 / 10-24 & 

OTM_SPF_16-31_0_0 / 4 / 10-24 & OTM_DEF_32-69_0_0_all / 4 / 24-40 & 
OTM_DEF_32-69_0_0_all / 4 / >=40 

FR_OTH pelagic.6A 2 OTM_SPF_32-69_0_0_all / 6A / >=40 & OTM_DEF_32-69_0_0_all / 6A / >=40 1 1 3 

FR_OTH pelagic.7D 16 

OTM_DEF_70-99_0_0_all / 7D / 10-24 & OTM_SPF_70-99_0_0_all / 7D / 24-40 
& OTM_SPF_70-99_0_0_all / 7D / 10-24 & OTM_DEF_70-99_0_0_all / 7D / 24-
40 & OTM_DEF_100-119_0_0_all / 7D / 10-24 & OTM_SPF_32-69_0_0_all / 7D 
/ 10-24 & OTM_SPF_32-69_0_0_all / 7D / 24-40 & OTM_SPF_32-69_0_0_all / 
7D / >=40 & OTM_DEF_32-69_0_0_all / 7D / 24-40 & OTM_DEF_32-69_0_0_all 
/ 7D / 10-24 & PS_SPF_0_0_0 / 7D / 24-40 & OTM_SPF_16-31_0_0 / 7D / 24-
40 & OTM_SPF_16-31_0_0 / 7D / 10-24 & PS_SPF_0_0_0 / 7D / 10-24 & 
OTM_DEF_100-119_0_0_all / 7D / 24-40 & OTM_DEF_32-69_0_0_all / 7D / 
>=40 

3 9 1674 

FR_Otter10-40 OTH 20 

OTB_DEF_32-69_0_0 / 4 / 10-24 & OTB_DEF_32-69_0_0 / 4 / 24-40 & 
OTB_SPF_32-69_0_0_all / 4 / 10-24 & OTB_DEF_32-69_0_0 / 7D / 10-24 & 
OTB_DEF_32-69_0_0 / 7D / 24-40 & OTB_SPF_32-69_0_0_all / 7D / 10-24 & 
OTB_SPF_32-69_0_0_all / 7D / 24-40 & OTB_CRU_32-69_0_0_all / 7D / 24-40 
& OTB_DEF_<16_0_0_all / 7D / 10-24 & OTB_DEF_All_0_0_All / 7D / 10-24 & 
OTB_DEF_All_0_0_All / 7D / 24-40 & OTT_CRU_<16_0_0_all / 7D / 10-24 & 
OTB_DEF_<16_0_0_all / 7D / 24-40 & OTB_DEF_all_0_0_all / 7D / 10-24 & 
OTB_DEF_100-119_0_0 / 4 / 24-40 & OTB_DEF_>=120_0_0 / 4 / 10-24 & 
OTB_DEF_>=120_0_0 / 4 / 24-40 & OTB_DEF_100-119_0_0 / 4 / 10-24 & 
OTB_DEF_16-31_0_0 / 7D / 10-24 & OTB_DEF_70-99_0_0 / 6A / 24-40 

9 6 750 

FR_Otter10-40 TR1.6A 7 

OTB_DEF_100-119_0_0 / 6A / 24-40 & OTB_DWS_100-119_0_0_all / 6A / 24-
40 & OTT_DEF_100-119_0_0 / 6A / 24-40 & OTT_DEF_100-119_0_0 / 6A / 10-
24 & OTB_DWS_>=120_0_0_all / 6A / 24-40 & OTB_DEF_>=120_0_0 / 6A / 
24-40 & OTT_DEF_>=120_0_0_all / 6A / 24-40 

4 0 1438 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

FR_Otter10-40 TR1.7D 7 

OTB_DEF_100-119_0_0 / 7D / 24-40 & OTB_DEF_100-119_0_0 / 7D / 10-24 & 
OTB_DEF_>=120_0_0 / 7D / 10-24 & OTB_DEF_>=120_0_0 / 7D / 24-40 & 
OTT_DEF_100-119_0_0 / 7D / 10-24 & OTT_CRU_100-119_0_0 / 7D / 10-24 & 
OTB_DWS_>=120_0_0_all / 7D / 10-24 

4 1 305 

FR_Otter10-40 TR2.4 6 
OTB_DEF_70-99_0_0 / 4 / 10-24 & OTB_DEF_70-99_0_0 / 4 / 24-40 & 
OTB_CRU_70-99_0_0_all / 4 / 10-24 & OTB_SPF_70-99_0_0_all / 4 / 10-24 & 
OTB_SPF_70-99_0_0_all / 4 / 24-40 & OTB_CRU_70-99_0_0_all / 4 / 24-40 

2 0 19903 

FR_Otter10-40 TR2.7D 9 

OTB_CRU_70-99_0_0_all / 7D / 10-24 & OTB_DEF_70-99_0_0 / 7D / 10-24 & 
OTB_DEF_70-99_0_0 / 7D / 24-40 & OTB_SPF_70-99_0_0_all / 7D / 10-24 & 
OTT_DEF_70-99_0_0 / 7D / 10-24 & OTB_SPF_70-99_0_0_all / 7D / 24-40 & 
OTB_MOL_70-99_0_0_all / 7D / 10-24 & OTT_CRU_70-99_0_0_all / 7D / 10-24 
& OTT_CRU_>=70_0_0 / 7D / 10-24 

4 2 56423 

FR_Otter>=40 TR1.4 6 

OTB_DEF_>=120_0_0 / 4 / >=40 & OTB_DEF_100-119_0_0 / 4 / >=40 & 
OTB_DWS_100-119_0_0_all / 4 / >=40 & OTB_DWS_>=120_0_0_all / 4 / 
>=40 & OTT_DEF_100-119_0_0 / 4 / >=40 & OTT_DEF_>=120_0_0_all / 4 / 
>=40 

2 0 131512 

FR_Otter>=40 TR1.6A 5 
OTB_DEF_>=120_0_0 / 6A / >=40 & OTB_DEF_100-119_0_0 / 6A / >=40 & 
OTB_DWS_100-119_0_0_all / 6A / >=40 & OTB_DWS_>=120_0_0_all / 6A / 
>=40 & OTT_DEF_>=120_0_0_all / 6A / >=40 

2 0 28104 

GE_Beam<24 BT2.4 3 TBB_DEF_70-99_0_0_all / 4 / 10-24 & TBB_DEF_70-99_0_0_all / 4 / <10 & 
TBB_DEF_100-119_0_0_all / 4 / 10-24 2 1 2054 

GE_Beam<24 OTH 1 TBB_CRU_16-31_0_0_all / 3AN / 10-24 0 1 0 

GE_Beam<24 beam_oth.4 2 TBB_CRU_16-31_0_0_all / 4 / 10-24 & TBB_CRU_16-31_0_0_all / 4 / <10 2 0 33 

GE_Beam>=24 BT2.4 3 TBB_DEF_70-99_0_0_all / 4 / >=40 & TBB_DEF_70-99_0_0_all / 4 / 24-40 & 
TBB_DEF_100-119_0_0_all / 4 / 24-40 1 1 25641 

GE_Beam>=24 OTH 1 TBB_CRU_16-31_0_0_all / 4 / 24-40 1 0 18 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

GE_Otter24-40 OTH 3 OTB_DEF_>=120_0_0_all / 3AN / 24-40 & SSC_DEF_>=120_0_0_all / 3AN / 
24-40 & OTB_CRU_70-99_0_0_all / 7D / 24-40 2 1 3382 

GE_Otter24-40 TR1.4 3 OTB_DEF_>=120_0_0_all / 4 / 24-40 & SSC_DEF_>=120_0_0_all / 4 / 24-40 
& SSC_DEF_100-119_0_0_all / 4 / 24-40 1 2 68560 

GE_Otter24-40 TR2.4 3 OTB_CRU_70-99_0_0_all / 4 / 24-40 & OTB_DEF_70-99_0_0_all / 4 / 24-40 & 
SSC_DEF_70-99_0_0_all / 4 / 24-40 1 2 6137 

GE_Otter<24 OTH 6 

OTB_DEF_>=120_0_0_all / 3AN / 10-24 & SSC_DEF_>=120_0_0_all / 3AN / 
10-24 & OTB_DEF_>=120_0_0_all / 4 / 10-24 & SSC_DEF_>=120_0_0_all / 4 
/ 10-24 & OTB_CRU_90-119_0_0_all / 3AN / 10-24 & OTB_CRU_70-99_0_0_all 
/ 3AN / 10-24 

3 3 12194 

GE_Otter<24 TR2.4 2 OTB_CRU_70-99_0_0_all / 4 / 10-24 & OTB_DEF_70-99_0_0_all / 4 / 10-24 1 1 16366 

GE_Otter>=40 OTB32-69.4 2 OTB_CRU_32-69_0_0_all / 4 / >=40 & OTB_SPF_32-69_0_0_all / 4 / >=40 1 1 411 

GE_Otter>=40 OTB32-69.7D 2 OTB_CRU_32-69_0_0_all / 7D / >=40 & OTB_SPF_32-69_0_0_all / 7D / >=40 0 2 0 

GE_Otter>=40 OTH 3 OTB_DEF_>=120_0_0_all / 4 / >=40 & OTB_CRU_32-69_0_0_all / 3AN / >=40 
& OTB_SPF_32-69_0_0_all / 3AN / >=40 2 1 48991 

GE_Otter>=40 TR3.4 1 OTB_CRU_16-31_0_0_all / 4 / >=40 1 0 757 

GE_Static GN1.3AN 5 
GNS_DEF_all_0_0_all / 3AN / 10-24 & GNS_DEF_all_0_0_all / 3AN / 24-40 & 
GNS_DEF_120-219_0_0_all / 3AN / 10-24 & GNS_DEF_120-219_0_0_all / 3AN 
/ 24-40 & GNS_DEF_100-119_0_0_all / 3AN / 10-24 

1 3 441 

GE_Static GN1.4 9 

GNS_DEF_all_0_0_all / 4 / 24-40 & GNS_DEF_all_0_0_all / 4 / 10-24 & 
GNS_DEF_all_0_0_all / 4 / <10 & GNS_DEF_120-219_0_0_all / 4 / 10-24 & 
GNS_DEF_120-219_0_0_all / 4 / <10 & GNS_DEF_120-219_0_0_all / 4 / 24-40 
& GNS_DEF_>=220_0_0_all / 4 / 24-40 & GNS_DEF_100-119_0_0_all / 4 / 10-
24 & GNS_DEF_100-119_0_0_all / 4 / 24-40 

3 6 3772 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

GE_Static OTH 5 
GNS_DEF_>=220_0_0_all / 6A / 24-40 & GNS_DEF_>=220_0_0_all / 6A / 10-
24 & GNS_DEF_all_0_0_all / 6A / 10-24 & FPO_CRU_0_0_0_all / 4 / 10-24 & 
FPO_CRU_0_0_0_all / 4 / <10 

2 3 2 

NL_Beam24-40 BT1.3AN 1 TBB_DEF_>=120_0_0_all / 3AN / 24-40 1 0 1161 

NL_Beam24-40 BT1.4 1 TBB_DEF_>=120_0_0_all / 4 / 24-40 1 0 3670 

NL_Beam24-40 BT2.4 3 TBB_DEF_100-119_0_0_all / 4 / 24-40 & TBB_DEF_70-99_0_0_all / 4 / 24-40 
& TBB_CRU_70-99_0_0_all / 4 / 24-40 2 1 71847 

NL_Beam24-40 OTH 2 TBB_CRU_16-31_0_0_all / 4 / 24-40 & TBB_DEF_<16_0_0_all / 4 / 24-40 1 1 843 

NL_Beam<24 BT1.3AN 2 TBB_DEF_>=120_0_0_all / 3AN / 10-24 & TBB_DEF_>=120_0_0_all / 3AN / 
<10 1 0 1781 

NL_Beam<24 BT1.4 2 TBB_DEF_>=120_0_0_all / 4 / 10-24 & TBB_DEF_>=120_0_0_all / 4 / <10 1 0 2757 

NL_Beam<24 BT2.4 5 
TBB_DEF_70-99_0_0_all / 4 / 10-24 & TBB_DEF_100-119_0_0_all / 4 / 10-24 
& TBB_DEF_70-99_0_0_all / 4 / <10 & TBB_DEF_100-119_0_0_all / 4 / <10 & 
TBB_CRU_70-99_0_0_all / 4 / 10-24 

2 1 22177 

NL_Beam<24 beam_oth.4 5 
TBB_CRU_16-31_0_0_all / 4 / 10-24 & TBB_CRU_16-31_0_0_all / 4 / <10 & 
TBB_DEF_16-31_0_0_all / 4 / 10-24 & TBB_DEF_32-69_0_0_all / 4 / <10 & 
TBB_CRU_16-31_0_0_all / 4 / all 

1 3 1758 

NL_Beam>=40 BT1.3AN 1 TBB_DEF_>=120_0_0_all / 3AN / >=40 1 0 8354 

NL_Beam>=40 BT1.4 1 TBB_DEF_>=120_0_0_all / 4 / >=40 1 0 38721 

NL_Beam>=40 BT2.4 3 TBB_DEF_100-119_0_0_all / 4 / >=40 & TBB_DEF_70-99_0_0_all / 4 / >=40 & 
TBB_CRU_70-99_0_0_all / 4 / >=40 2 1 343675 

NL_Otter OTH 19 OTB_DEF_All_0_0_All / 3AN / >=40 & OTB_DEF_All_0_0_All / 3AN / 10-24 & 
SSC_DEF_All_0_0_All / 3AN / 24-40 & OTB_MCD_>=55_0_0 / 3AN / 24-40 & 

2 12 942 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

OTB_DEF_>=120_0_0_all / 3AN / 10-24 & OTB_DEF_100-119_0_0_all / 3AN / 
10-24 & OTB_DEF_>=120_0_0_all / 3AN / 24-40 & OTB_DEF_100-119_0_0_all 
/ 3AN / >=40 & OTB_DEF_100-119_0_0_all / 3AN / 24-40 & SSC_DEF_100-
119_0_0_all / 3AN / 24-40 & OTB_DEF_>=120_0_0_all / 3AN / >=40 & 
SSC_DEF_>=120_0_0_all / 3AN / 24-40 & SSC_DEF_>=120_0_0_all / 3AN / 
<10 & SSC_DEF_100-119_0_0_all / 7D / 24-40 & SSC_DEF_100-119_0_0_all / 
7D / >=40 & SDN_DEF_>=120_0_0_all / 7D / 24-40 & 
SSC_DEF_>=120_0_0_all / 7D / 24-40 & SSC_DEF_100-119_0_0_all / 7D / 10-
24 & SSC_DEF_100-119_0_0_all / 7D / <10 

NL_Otter TR1.4 17 

OTB_DEF_>=120_0_0_all / 4 / 10-24 & OTB_DEF_>=120_0_0_all / 4 / >=40 & 
OTB_DEF_>=120_0_0_all / 4 / 24-40 & OTB_DEF_100-119_0_0_all / 4 / 10-24 
& OTB_DEF_100-119_0_0_all / 4 / >=40 & OTB_DEF_100-119_0_0_all / 4 / 
24-40 & OTB_DEF_>=120_0_0_all / 4 / <10 & OTB_DEF_100-119_0_0_all / 4 / 
<10 & SSC_DEF_100-119_0_0_all / 4 / 24-40 & SSC_DEF_>=120_0_0_all / 4 / 
24-40 & SDN_DEF_>=120_0_0_all / 4 / 24-40 & SSC_DEF_>=120_0_0_all / 4 
/ 10-24 & SSC_DEF_100-119_0_0_all / 4 / 10-24 & 
SDN_DEF_>=120_0_0_all_FDF / 4 / 24-40 & OTB_CRU_100-119_0_0_all / 4 / 
10-24 & SSC_DEF_>=120_0_0_all / 4 / <10 & SSC_DEF_100-119_0_0_all / 4 / 
<10 

3 8 47045 

NL_Otter TR2.4 16 

OTB_DEF_70-99_0_0_all / 4 / 10-24 & OTB_DEF_70-99_0_0_all / 4 / 24-40 & 
OTB_DEF_70-99_0_0_all / 4 / >=40 & SSC_DEF_70-99_0_0_all / 4 / 24-40 & 
OTB_DEF_70-99_0_0_all / 4 / <10 & SSC_DEF_70-99_0_0_all / 4 / 10-24 & 
OTB_MCD_70-99_0_0_all / 4 / 24-40 & OTB_MCD_70-99_0_0_all / 4 / 10-24 & 
OTB_MCD_70-99_0_0_all / 4 / <10 & SSC_DEF_70-99_0_0_all / 4 / <10 & 
SDN_DEF_70-99_0_0_all / 4 / 24-40 & SDN_DEF_70-99_0_0_all / 4 / 10-24 & 
OTB_CRU_70-99_0_0_all / 4 / 24-40 & OTB_CRU_70-99_0_0_all / 4 / >=40 & 
OTB_CRU_70-99_0_0_all / 4 / 10-24 & SDN_DEF_70-99_0_0 / 4 / 24-40 

3 9 35254 

NL_Otter TR2.7D 8 

OTB_DEF_70-99_0_0_all / 7D / 24-40 & SSC_DEF_70-99_0_0_all / 7D / 24-40 
& OTB_DEF_70-99_0_0_all / 7D / 10-24 & SDN_DEF_70-99_0_0_all / 7D / 24-
40 & OTB_CRU_70-99_0_0_all / 7D / >=40 & SSC_DEF_70-99_0_0_all / 7D / 
10-24 & SSC_DEF_70-99_0_0_all / 7D / <10 & SDN_DEF_70-99_0_0 / 7D / 24-
40 

2 5 286 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

NL_Otter otter_oth.4 9 

OTB_DEF_All_0_0_All / 4 / 10-24 & OTB_DEF_All_0_0_All / 4 / 24-40 & 
OTB_DEF_All_0_0_All / 4 / >=40 & SSC_DEF_All_0_0_All / 4 / 24-40 & 
OTB_MCD_>=55_0_0 / 4 / 24-40 & OTB_MCD_>=55_0_0 / 4 / 10-24 & 
SDN_all_0_0_all / 4 / 24-40 & SSC_DEF_All_0_0_All / 4 / <10 & 
OTB_MCD_>=55_0_0 / 4 / >=40 

2 5 2784 

NL_Pelagic pelagic.4 7 

OTM_SPF_32-69_0_0_all / 4 / 24-40 & OTM_SPF_32-69_0_0_all / 4 / 10-24 & 
OTM_SPF_32-69_0_0_all / 4 / >=40 & OTM_SPF_32-69_0_0_all / 4 / <10 & 
OTM_SPF_100-119_0_0 / 4 / >=40 & OTM_SPF_16-31_0_0 / 4 / >=40 & 
OTM_SPF_16-31_0_0 / 4 / 10-24 

4 3 944 

NL_Pelagic pelagic.6A 2 OTM_SPF_32-69_0_0_all / 6A / >=40 & OTM_SPF_32-69_0_0_all / 6A / 24-40 1 1 386 

NL_Pelagic pelagic.7D 2 OTM_SPF_32-69_0_0_all / 7D / >=40 & OTM_SPF_16-31_0_0 / 7D / >=40 1 1 10 

NO_DSeine24-
40 OTH 5 

SSC_DEF_<16_0_0 / 4 / 24-40 & SSC_DEF_90-99_0_0 / 4 / 24-40 & 
SSC_DEF_16-31_0_0 / 4 / 24-40 & SSC_DEF_<16_0_0 / 3AN / 24-40 & 
SSC_DEF_32-69_0_0 / 4 / 24-40 

3 2 318 

NO_DSeine24-
40 TR1.4 2 SDN_DEF_>=120_0_0_all / 4 / 24-40 & SSC_DEF_>=120_0_0_all / 4 / 24-40 0 2 0 

NO_Otter otter_oth.4 3 OTB_DEF_>0_0_0 / 4 / all & OTB_DEF_<16_0_0 / 4 / all & OTB_CRU_>0_0_0 / 
4 / all 0 3 0 

NO_Otter24-40 OTB32-69.4 2 OTB_CRU_32-69_0_0_all / 4 / 24-40 & OTB_SPF_32-69_0_0_all / 4 / 24-40 0 2 0 

NO_Otter24-40 OTH 7 

OTB_CRU_32-69_0_0_all / 3AN / 24-40 & OTB_SPF_32-69_0_0_all / 3AN / 24-
40 & OTB_DEF_<16_0_0 / 3AN / 24-40 & OTB_CRU_<16_0_0 / 3AN / 24-40 & 
OTB_SPF_<16_0_0 / 3AN / 24-40 & OTB_DEF_>=120_0_0_all / 3AN / 24-40 & 
OTB_CRU_16-31_0_0_all / 3AN / 24-40 

2 4 13 

NO_Otter24-40 TR1.4 3 OTB_DEF_>=120_0_0_all / 4 / 24-40 & PTB_SPF_>=120_0_0 / 4 / 24-40 & 
OTB_DEF_100-119_0_0 / 4 / 24-40 2 1 296 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

NO_Otter24-40 TR3.4 4 OTB_CRU_16-31_0_0 / 4 / 24-40 & OTB_DEF_16-31_0_0 / 4 / 24-40 & 
OTB_SPF_16-31_0_0 / 4 / 24-40 & OTB_CRU_16-31_0_0_all / 4 / 24-40 1 1 47262 

NO_Otter24-40 otter_oth.4 5 
OTB_DEF_<16_0_0 / 4 / 24-40 & OTB_SPF_<16_0_0 / 4 / 24-40 & 
OTB_DEF_70-89_0_0 / 4 / 24-40 & OTB_SPF_>0_0_0 / 4 / 24-40 & 
OTB_CRU_<16_0_0 / 4 / 24-40 

4 0 1743 

NO_Otter>=40 OTB32-69.4 2 OTB_CRU_32-69_0_0_all / 4 / >=40 & OTB_SPF_32-69_0_0_all / 4 / >=40 0 2 0 

NO_Otter>=40 OTH 5 
OTB_CRU_32-69_0_0_all / 3AN / >=40 & OTB_SPF_32-69_0_0_all / 3AN / 
>=40 & OTB_CRU_16-31_0_0_all / 3AN / >=40 & OTB_CRU_16-31_0_0 / 3AN 
/ >=40 & OTB_DEF_16-31_0_0 / 3AN / >=40 

1 3 80 

NO_Otter>=40 TR1.4 1 OTB_DEF_>=120_0_0_all / 4 / >=40 0 1 0 

NO_Otter>=40 TR3.4 4 OTB_CRU_16-31_0_0 / 4 / >=40 & OTB_DEF_16-31_0_0 / 4 / >=40 & 
OTB_SPF_16-31_0_0 / 4 / >=40 & OTB_CRU_16-31_0_0_all / 4 / >=40 1 1 150397 

NO_Otter>=40 otter_oth.4 5 
OTB_CRU_<16_0_0 / 4 / >=40 & OTB_DEF_<16_0_0 / 4 / >=40 & 
OTB_SPF_<16_0_0 / 4 / >=40 & OTB_CRU_>0_0_0 / 4 / >=40 & 
OTB_DEF_>0_0_0 / 4 / >=40 

5 0 10533 

NO_Pelagic OTH 5 
OTM_DEF_16-31_0_0 / 3AN / >=40 & PTM_DEF_16-31_0_0 / 3AN / >=40 & 
OTM_DEF_<16_0_0 / 3AN / >=40 & OTM_DEF_16-31_0_0 / 3AN / 10-24 & 
OTM_DEF_<16_0_0 / 3AN / 10-24 

2 0 38 

NO_Pelagic pelagic.4 24 

OTM_DEF_16-31_0_0 / 4 / >=40 & OTM_DEF_<16_0_0 / 4 / >=40 & 
PS_SPF_>0_0_0 / 4 / >=40 & PS_SPF_>0_0_0 / 4 / 10-24 & PS_SPF_>0_0_0 / 
4 / 24-40 & PS_SPF_16-31_0_0 / 4 / >=40 & PS_SPF_32-69_0_0 / 4 / >=40 & 
PTM_DEF_16-31_0_0 / 4 / >=40 & PTM_DEF_<16_0_0 / 4 / >=40 & 
OTM_SPF_16-31_0_0 / 4 / >=40 & PS_SPF_16-31_0_0 / 4 / 24-40 & 
PS_SPF_32-69_0_0 / 4 / 24-40 & OTM_DEF_16-31_0_0 / 4 / 10-24 & 
OTM_SPF_16-31_0_0 / 4 / 10-24 & PTM_DEF_<16_0_0 / 4 / 24-40 & 
PTM_SPF_16-31_0_0 / 4 / >=40 & PS_SPF_32-69_0_0 / 4 / 10-24 & 
OTM_DEF_>0_0_0 / 4 / >=40 & OTM_SPF_<16_0_0 / 4 / >=40 & 
OTM_DEF_70-89_0_0 / 4 / >=40 & OTM_SPF_<16_0_0 / 4 / 24-40 & 

6 6 7899 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

OTM_DEF_<16_0_0 / 4 / 24-40 & OTM_DEF_<16_0_0 / 4 / 10-24 & 
PS_SPF_>=120_0_0 / 4 / >=40 

NO_Static GN1.4 9 

GNS_CRU_120-219_0_0 / 4 / 10-24 & GNS_DEF_all_0_0_all / 4 / 24-40 & 
GNS_DEF_all_0_0_all / 4 / 10-24 & GNS_DEF_all_0_0_all / 4 / >=40 & 
GNS_DEF_120-219_0_0_all / 4 / 24-40 & GNS_DEF_120-219_0_0_all / 4 / 10-
24 & GNS_DEF_120-219_0_0_all / 4 / >=40 & GNS_DEF_>=220_0_0_all / 4 / 
24-40 & GNS_DEF_>=220_0_0_all / 4 / 10-24 

1 8 374 

NO_Static LL1.4 3 LLS_FIF_0_0_0_all / 4 / >=40 & LLS_FIF_0_0_0_all / 4 / 24-40 & 
LLS_FIF_0_0_0_all / 4 / 10-24 0 3 0 

NO_Static OTH 11 

GNS_DEF_all_0_0_all / 3AN / 10-24 & GNS_DEF_all_0_0_all / 3AN / 24-40 & 
LLS_FIF_0_0_0_all / 3AN / 10-24 & FPO_CRU_0_0_0_all / 3AN / 10-24 & 
FPO_CRU_>0_0_0 / 3AN / 10-24 & FPO_DEF_>0_0_0 / 3AN / 10-24 & 
FPO_DEF_>0_0_0 / 3AN / 24-40 & FPO_DEF_>0_0_0 / 4 / 10-24 & 
FPO_CRU_0_0_0_all / 4 / 10-24 & FPO_CRU_>0_0_0 / 4 / 10-24 & 
FPO_DEF_>0_0_0 / 4 / 24-40 

4 6 69 

OTH_OTH OTH 77 

SSC_DEF_32-69_0_0_all / 4 / 24-40 & SSC_DEF_32-69_0_0_all / 7D / 24-40 & 
SSC_DEF_100-119_0_0_all / 4 / 24-40 & SSC_DEF_100-119_0_0_all / 4 / 10-
24 & SSC_DEF_>=120_0_0_all / 4 / 24-40 & SSC_DEF_70-99_0_0_all / 4 / 24-
40 & SSC_DEF_70-99_0_0_all / 4 / 10-24 & SSC_DEF_70-99_0_0_all / 7D / 
24-40 & SSC_DEF_70-99_0_0_all / 7D / 10-24 & MIS_MIS_0_0_0_HC / 4 / 24-
40 & MIS_MIS_0_0_0_HC / 4 / 10-24 & MIS_MIS_0_0_0_HC / 7D / 24-40 & 
MIS_MIS_0_0_0_HC / 7D / 10-24 & GTR_DEF_all_0_0_all / 4 / 10-24 & 
GTR_DEF_all_0_0_all / 7D / 10-24 & TBB_DEF_>=120_0_0_all / 3AN / >=40 & 
TBB_DEF_>=120_0_0_all / 3AN / 10-24 & TBB_DEF_>=120_0_0_all / 4 / 
>=40 & TBB_DEF_>=120_0_0_all / 4 / 10-24 & TBB_DEF_>=120_0_0_all / 4 / 
24-40 & MIS_MIS_0_0_0_HC / 3AN / <10 & MIS_MIS_0_0_0_HC / 3AN / 24-40 
& MIS_MIS_0_0_0_HC / 3AN / 10-24 & MIS_MIS_0_0_0_IBC / 3AN / 10-24 & 
MIS_MIS_0_0_0_IBC / 3AN / 24-40 & MIS_MIS_0_0_0_IBC / 3AN / >=40 & 
MIS_MIS_0_0_0_HC / 3AN / >=40 & MIS_MIS_0_0_0_IBC / 3AN / <10 & 
MIS_MIS_0_0_0_HC / 4 / <10 & MIS_MIS_0_0_0_IBC / 4 / 10-24 & 
MIS_MIS_0_0_0_HC / 4 / >=40 & MIS_MIS_0_0_0_IBC / 4 / >=40 & 
MIS_MIS_0_0_0_IBC / 4 / 24-40 & MIS_MIS_0_0_0_IBC / 4 / <10 & 
MIS_MIS_0_0_0_IBC / 6A / >=40 & MIS_MIS_0_0_0_IBC / 7D / >=40 & 

0 77 0 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

MIS_MIS_0_0_0_HC / 7D / >=40 & MIS_MIS_0_0_0_HC / 6A / >=40 & 
MIS_MIS_0_0_0_HC / 6A / 10-24 & MIS_MIS_0_0_0_HC / 6A / 24-40 & 
OTM_SPF_32-69_0_0_all / 4 / >=40 & MIS_MIS_0_0_0_HC / 4 / all & 
MIS_MIS_0_0_0_HC / 7D / <10 & GNS_DEF_all_0_0_all / 4 / <10 & 
GNS_DEF_10-30_0_0_all / 4 / <10 & GNS_DEF_all_0_0_all / 4 / 10-24 & 
GNS_DEF_100-119_0_0_all / 4 / 10-24 & FPO_CRU_0_0_0 / 4 / 10-24 & 
FPO_CRU_0_0_0 / 4 / 24-40 & SDN_DEF_>=120_0_0_all / 3AN / 10-24 & 
SSC_DEF_>=120_0_0_all / 3AN / 10-24 & SDN_DEF_>=120_0_0_all / 4 / 10-
24 & SSC_DEF_>=120_0_0_all / 4 / 10-24 & DRB_CRU_>0_0_0 / 4 / all & 
SPR_DEF_>0_0_0 / 4 / 24-40 & OTB_CRU_32-69_0_0_all / 3AN / 10-24 & 
OTB_SPF_32-69_0_0_all / 3AN / 10-24 & OTB_CRU_32-69_0_0_all / 4 / 10-24 
& OTB_SPF_32-69_0_0_all / 4 / 10-24 & OTB_DEF_70-89_0_0 / 3AN / 10-24 & 
OTB_DEF_90-99_0_0 / 3AN / 10-24 & OTB_SPF_70-89_0_0 / 3AN / 10-24 & 
OTB_SPF_90-99_0_0 / 3AN / 10-24 & OTB_CRU_70-89_0_0 / 3AN / 10-24 & 
OTB_DEF_<16_0_0 / 3AN / 10-24 & OTB_SPF_<16_0_0 / 3AN / 10-24 & 
OTB_CRU_<16_0_0 / 3AN / 10-24 & OTB_DEF_>=120_0_0_all / 3AN / 10-24 & 
OTB_DEF_>=120_0_0_all / 4 / 10-24 & OTB_CRU_90-119_0_0_all / 3AN / 10-
24 & OTB_DEF_16-31_0_0 / 3AN / 10-24 & OTB_CRU_16-31_0_0 / 3AN / 10-
24 & OTB_CRU_16-31_0_0_all / 3AN / 10-24 & OTB_DEF_16-31_0_0 / 4 / 10-
24 & OTB_SPF_16-31_0_0 / 4 / 10-24 & OTB_CRU_16-31_0_0_all / 4 / 10-24 & 
MIS_MIS_0_0_0_HC / 6A / <10 

SC_Beam BT2.6A 2 TBB_DEF_70-99_0_0_all / 6A / 10-24 & TBB_DEF_70-99_0_0_all / 6A / <10 1 0 58 

SC_Beam OTH 8 

TBB_DEF_>=120_0_0_all / 4 / >=40 & TBB_DEF_>=120_0_0_all / 4 / <10 & 
TBB_DEF_>=120_0_0_all / 4 / 10-24 & TBB_DEF_>=120_0_0_all / 6A / <10 & 
TBB_DEF_>=120_0_0_all / 6A / 10-24 & TBB_DEF_70-99_0_0_all / 4 / >=40 & 
TBB_DEF_70-99_0_0_all / 4 / 10-24 & TBB_DEF_70-99_0_0_all / 4 / <10 

5 1 9369 

SC_Otter<10 OTH 2 OTB_DEF_>=120_0_0_all / 4 / <10 & OTB_DEF_>=120_0_0_all / 6A / <10 1 0 461 

SC_Otter<10 TR2.4 1 OTB_CRU_70-99_0_0_all / 4 / <10 1 0 7636 

SC_Otter<10 TR2.6A 1 OTB_CRU_70-99_0_0_all / 6A / <10 1 0 8872 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

SC_Otter<24 TR1.4 2 OTB_DEF_>=120_0_0_all / 4 / 10-24 & OTB_DEF_>=120_0_0_all / 4 / 10-24 1 0 252675 

SC_Otter<24 TR1.6A 2 OTB_DEF_>=120_0_0_all / 6A / 10-24 & OTB_DEF_>=120_0_0_all / 6A / 10-
24 2 0 19920 

SC_Otter<24 TR2.4 2 OTB_CRU_70-99_0_0_all / 4 / 10-24 & OTB_CRU_70-99_0_0_all / 4 / 10-24 2 0 98627 

SC_Otter<24 TR2.6A 1 OTB_CRU_70-99_0_0_all / 6A / 10-24 1 0 103818 

SC_Otter>=24 OTH 4 
OTB_DEF_>=120_0_0_all / 7D / 24-40 & OTB_DEF_>=120_0_0_all / 7D / 
>=40 & OTB_CRU_70-99_0_0_all / 4 / 24-40 & OTB_CRU_70-99_0_0_all / 4 / 
>=40 

4 0 9774 

SC_Otter>=24 TR1.4 4 OTB_DEF_>=120_0_0_all / 4 / 24-40 & OTB_DEF_>=120_0_0_all / 4 / 24-40 
& OTB_DEF_>=120_0_0_all / 4 / >=40 & OTB_DEF_>=120_0_0_all / 4 / >=40 3 0 552632 

SC_Otter>=24 TR1.6A 4 
OTB_DEF_>=120_0_0_all / 6A / >=40 & OTB_DEF_>=120_0_0_all / 6A / 
>=40 & OTB_DEF_>=120_0_0_all / 6A / 24-40 & OTB_DEF_>=120_0_0_all / 
6A / 24-40 

2 0 73018 

SC_Otter>=24 TR2.7D 2 OTB_CRU_70-99_0_0_all / 7D / 24-40 & OTB_CRU_70-99_0_0_all / 7D / >=40 1 0 2191 

SC_Static GN1.4 2 GNS_DEF_>=220_0_0_all / 4 / 24-40 & GNS_DEF_>=220_0_0_all / 4 / 10-24 0 2 0 

SC_Static LL1.4 4 LLS_DEF_0_0_0_all / 4 / 10-24 & LLS_DEF_0_0_0_all / 4 / 24-40 & 
LLS_FIF_0_0_0_all / 4 / 24-40 & LLS_FIF_0_0_0_all / 4 / 10-24 2 2 283 

SC_Static LL1.6A 3 LLS_DEF_0_0_0_all / 6A / 24-40 & LLS_FIF_0_0_0_all / 6A / 24-40 & 
LLS_DEF_0_0_0_all / 6A / 10-24 1 2 19 

SC_Static OTH 2 GNS_DEF_>=220_0_0_all / 6A / 24-40 & GNS_DEF_>=220_0_0_all / 6A / 10-
24 0 2 0 

SC_Static pots.4 2 FPO_CRU_0_0_0_all / 4 / 24-40 & FPO_CRU_0_0_0_all / 4 / 10-24 2 0 34 
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Fleet Métier n 
strata Strata (corresponding to the country of the fleet) n 

clusters 
NA 

cluster 
Landed weight 
(t;2019-21) 

SC_Static pots.6A 2 FPO_CRU_0_0_0_all / 6A / 10-24 & FPO_CRU_0_0_0_all / 6A / 24-40 1 1 6893 

SC_Static<10 LL1.4 2 LLS_DEF_0_0_0_all / 4 / <10 & LLS_FIF_0_0_0_all / 4 / <10 1 1 1493 

SC_Static<10 OTH 6 
GNS_DEF_>=220_0_0_all / 4 / <10 & FPO_CRU_0_0_0_all / 4 / <10 & 
FPO_CRU_0_0_0_all / 7D / <10 & GNS_DEF_>=220_0_0_all / 6A / <10 & 
LLS_DEF_0_0_0_all / 6A / <10 & LLS_FIF_0_0_0_all / 6A / <10 

1 4 942 

SC_Static<10 pots.6A 1 FPO_CRU_0_0_0_all / 6A / <10 1 0 12842 

SW_Otter OTH 9 

OTB_CRU_32-69_0_0_all / 3AN / 24-40 & OTB_CRU_32-69_0_0_all / 3AN / 10-
24 & OTB_CRU_32-69_2_22_all / 3AN / 24-40 & OTB_CRU_32-69_2_22_all / 
3AN / 10-24 & OTB_CRU_32-69_2_22_all / 3AN / <10 & OTB_CRU_32-
69_0_0_all / 3AN / <10 & OTB_CRU_32-69_0_0_all / 4 / 24-40 & 
OTB_CRU_32-69_0_0_all / 4 / 10-24 & OTB_CRU_32-69_0_0_all / 4 / <10 

3 0 5381 

SW_Otter TR1.4 3 OTB_DEF_>=120_0_0_all / 4 / 10-24 & OTB_DEF_>=120_0_0_all / 4 / 24-40 
& OTB_DEF_>=120_0_0_all / 4 / <10 3 0 16306 

SW_Otter TR2.3AN 3 OTB_CRU_90-119_0_0_all / 3AN / 24-40 & OTB_CRU_90-119_0_0_all / 3AN / 
10-24 & OTB_CRU_90-119_0_0_all / 3AN / <10 2 0 14584 

SW_Otter TR2_grid.3AN 3 OTB_CRU_70-89_2_35_all / 3AN / 10-24 & OTB_CRU_70-89_2_35_all / 3AN / 
<10 & OTB_CRU_70-89_2_35_all / 3AN / 24-40 1 0 5842 

SW_Static OTH 6 
GNS_DEF_all_0_0_all / 3AN / 10-24 & GNS_DEF_all_0_0_all / 3AN / <10 & 
GTR_DEF_all_0_0_all / 3AN / 10-24 & GTR_DEF_all_0_0_all / 3AN / <10 & 
LLS_FIF_0_0_0_all / 3AN / 10-24 & LLS_FIF_0_0_0_all / 3AN / <10 

3 0 1738 

SW_Static pots.3AN 2 FPO_CRU_0_0_0_all / 3AN / 10-24 & FPO_CRU_0_0_0_all / 3AN / <10 1 0 3629 
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ANNEX 2: OVERVIEW OF NORTH SEA FLEET DISTINCTIONS USED IN 
THE ICES WGMIXFISH ADVICE NORTH SEA MODEL 

In the current implementation of the North Sea mixed-fisheries model used by ICES, 
accounts for known national fishing patterns which give the resulting decisions associated 
with fleets: 

• Belgium: distinction between < 24 m and ≥ 24 m beam trawlers; shrimp fisheries with 
16–31 mm excluded; 

• Denmark: distinction of the < 10 m vessels (trawlers only); separation of the trawlers 
at < 24 m, 24–40 m and ≥ 40 m; fully documented fishery (FDF) vessels in a separate 
fleet; 

• England: distinction of the < 10 m vessels; otter trawlers and seiners pooled together, 
with separation at < 24 m, 24–40 m and ≥ 40 m; FDF vessels in a separate fleet; 

• France: distinction of the < 10 m vessels; separation of the trawlers at < 40 m and 
≥ 40 m, specific gill- and trammel-net fleet; 

• Germany: distinction between < 24 m and ≥ 24 m beam trawlers; shrimp fisheries with 
16–31 mm excluded; otter trawlers and seiners pooled together with separation at 
< 24 m, 24–40 m and ≥ 40 m; 

• Netherlands: distinction between < 24 m, 24–40 m and ≥ 40 m beam trawlers; otter 
trawlers and seiners pooled together; 

• Norway: otter trawlers and seiners pooled together, with separation at < 40 m and 
≥ 40 m; no mesh size used for métiers definition;  

• Scotland: distinction of the < 10 m vessels (trawlers only); separation of the trawlers 
at < 24 m and ≥ 24 m; FDF vessels in a separate fleet; otter trawlers and seiners 
pooled together; 

• Sweden: no distinction of vessel size.  
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ANNEX 3: FRAMEWORK FOR DEFINING MÉTIER AND FLEET UNITS 
IN THE NORTH SEA 

Data submitted to ICES WGMIXFISH (see Table 1 of the main report for details on this 
dataset) was used to conduct a principal component and cluster analysis following the 
methodology as described in Moore et al. (2019). This multivariate analysis allows to 
group input data according to similarities across multiple input variables. In this case, 
the input variables represent the landings proportion of a selection of important 
demersal fish species (and Nephrops) in the North Sea for the years 2019-2021 

1 DATA 

For the North Sea case study, the mixed-fisheries data were first filtered using a 
selection of species that are considered as the main target species describing the 
demersal fisheries in the region. These include the species assessed in WGNSSK: brill, 
cod, dab, flounder, grey gurnard, haddock, lemon sole, red mullet, Nephrops, Norway 
pout, plaice, saithe, pollock, sole, turbot, whiting and witch flounder. Furthermore, the 
analysis was restricted to the years 2019–2021 inclusive. As a result, not all fleet–métier 
definitions of the North Sea WGMIXFISH model can be matched to a cluster: because of 
the mismatch in the time frame (2009–2021 vs 2019–2021), some strata used to define 
those métiers did not appear in the data used for clustering. 

2 METHODOLOGY 

To identify the effect of data aggregation according to different strata describing 
potential fleets and métiers in the North Sea, the method described in Moore et al. 
(2019) was applied to the WGMIXFISH data. In this method, the variance in catch 
profiles after grouping the data according to some predefined strata is analysed using a 
principal component analysis (PCA). In a second step, clusters are identified according 
to the results of the PCA, which can give guidance for the definitions of fleets and/or 
métiers in a fishery. 

3 RESULTS 

At the start of the analysis, data were grouped according to a selection of fishing activity 
descriptors – including gear, ICES subdivision, target species assemblage, mesh size 
and vessel length. The country was always retained in the grouping as it is an important 
variable underlying the management of fleets (e.g. TACs are distributed in quota at the 
national level). Next, the PCA analysis was performed on the catch proportions (of the 
17 selected species). The results of this analysis are summarised in Table 2. 

All PCAs presented perform similarly in terms of explained (60 %–68 %) variance by 
the first four components and none of them showed a clear inflection point in the scree 
plot (Figure 1). However, the PCAs cannot be compared directly because they use 
different input data. This indicates that the aggregation level of the data up to the 
country and gear level has little effect on the variability in the data. This is also reflected 
by the number of clusters required to explain 90 % of the variability in catch 
composition, as well as the description of the clusters in terms of gears and catch 
composition (for example, see PCA 4 (8)). 

The PCA analysis provides useful insights into the input data and shows which different 
strata can potentially be grouped together. However, the PCA cannot be used directly 
to define fleets and métiers; this requires additional information on how quotas are 
distributed according to fishing vessels, as well as (technical) characteristics of fishing 
vessels that provide information on the different fishing strategies the vessels have (for 
example, switching between mesh size, or gear, or spatial differentiation). Ideally, the 
PCA should also be run on data for a single year (or even a single quarter if strong 
seasonal fluctuations in stock biomass are present) or a metric of catchability, this would 
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avoid effects of biomass changes over time reflected in the landings compositions of the 
strata present in the data.  

PCA 4, which best reflects the aggregation level of the fleet–métier definitions used to 
define fleets and métiers by WGMIXFISH-ADVICE, is used to test the fleet–métier 
definitions of this model. In ANNEX 1, the fleet and métier definitions of the current 
WGMIXFISH North Sea model used for advice are presented, including the number of 
strata on which the fleet–métier combinations are based.  

In total, 56 % (88 out of 159) of all fleet–métier combinations (representing 51 % of 
the landed weight) are based on a relatively small number of strata (≤ 3) (Table 3). For 
the other fleet–métier combinations presented in the model, the number of strata used 
ranges from 4 to 77. However, the fleet–métiers with a high number of strata are mainly 
found in the OTH métier groups, which represent métiers that do not reach the landing 
threshold of any of the species included in the model. The OTH_OTH fleet, that includes 
all fleets, across countries, comprising a single OTH métier, is defined based on 77 
strata. The non-OTH métiers composed of a high number of strata (≥ 10) comprise 
mainly pelagic fleets including the FR_OTH fleet (pelagic 4 métier, with 15 strata, and 
the pelagic 7d métier with 16 strata), the NO_Pelagic fleet with the pelagic 4 métier 
composed of 24 strata, and the NL_Otter fleet (TR1.4 métier, with 17 strata, and the 
TR2.4 métier with 16 strata). The NL_Otter fleet comprises both the OTB (bottom otter 
trawl), and SDN/SSC (Danish/Scottish seine) gears, of which the latter comprised a 
relatively small fishery (targeting mainly non-quota species) at the time of development 
of the North Sea mixed-fisheries model; however, the Dutch flyshoot fisheries expanded 
over the last decade. 

Table 4 shows the number of clusters by fleet–métier for both the specific métiers, and 
the métiers classified as OTH. Overall, 31 % of the métiers belong to a single cluster, 
while another 29 % of the métiers comprises strata that belong to different clusters in 
terms of catch composition. In addition, 5 % of the fleet–métiers (of which one non-
OTH métier) has strata that belong to ≥ 6 different clusters. For the non-OTH métiers, 
37 of the fleet–métiers belong to a single cluster, while 33 % of the fleet–métier 
combinations have strata that are grouped in two different clusters according the PCA 
and subsequent cluster analysis.  

The fleet–métier disaggregation in the North Sea WGMIXFISH advice model is sensible. 
Nevertheless, the PCA analysis indicated that some fleet–métier combinations would 
benefit from a further disaggregation in terms of variability in catch composition. In 
addition, the model comprises a large number of OTH métier categories, which have a 
poorer performance in terms of fleet–métier aggregation. Nevertheless, all these 
métiers comprise < 5 % of the total landed volume of demersal species.    

If new input data (e.g. spatially disaggregated) is used for the short-term mixed-
fisheries projections (1 year in the North Sea) in the future, it is recommended that the 
data be explored using a PCA analysis, as presented here, before assigning the fleet and 
métier definition 
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Table 2: Summary of the eight PCA runs showing the aggregation level of the data and 
the resulting number of observations after grouping, the variance explained by the first 
four PCA axes, and the number of clusters that explain 90 % of the variance in catch 
composition of the data.  

PCA run Aggregation level n Var. by first 
four axes 

n_clust (90 % 
var) 

PCA 1 Country + year + ICES div * + gear + 
dom. spp. * + mesh size + vessel length 

1 585 63 22 

PCA 2 Country + year + ICES div + gear + 
dom. spp. + mesh size 

855 60 2 2 

PCA 3 Country + ICES div + gear + dom. spp. 
+ mesh size 

369 62 23 

PCA 4 Country + ICES div + gear + dom. spp. 
+ mesh size + vessel length 

729 65 23 

PCA 5 Country + year + ICES div + gear + 
dom. spp. 

540 64 22 

PCA 6 Country + ICES div + gear + dom. spp. 208 65 21 

PCA 7 Country + gear 74 68 19 

PCA 8 Country + gear + target spp. 104 68 19 

* ICES div = ICES division; Dom. spp. = target assemblage 

 

 

Figure 1: Scree plot of principal component analysis components (labelled dimensions) 
in order of the proportion of the data variance they explain.  
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Table 3: Overview of the number of strata used to condition métiers. Only values for 
strata for which a fleet–métier combination exists are presented in the table. 

Number 
of strata 

Specific 
métiers 

OTH 
métiers 

1 27 2 

2 36 4 

3 17 2 

4 13 5 

5 7 5 

6 5 5 

7 6 3 

8 1 1 

9 5 2 

11 0 1 

13 0 1 

15 1 0 

16 2 0 

17 1 0 

19 0 2 

20 0 1 

22 0 1 

24 1 0 

25 0 1 

77 0 1 

 

Table 4: Overview of the number of clusters to which the métiers are assigned with 
respect to PCA 4 and the number of clusters that explain 90 % of the variance. 

Number of clusters 1 2 3 4 5 6 7 8 9 10 

Non-OTH métiers 45 40 17 11 8 0 1 0 0 0 

OTH métiers 5 6 12 6 1 2 2 1 1 1 
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ANNEX 4: MATHEMATICAL REPRESENTATION OF CONSTRAINTS 
USED IN TESTING NORTH SEA CASE STUDY LINKS TO SENSITIVITY 
UNCERTAINTY OF FORECAST CONDITIONING 

For the North Sea case study a linear programming model was implemented with 
different constraints that represent three different scenarios in terms of fleet-effort 
proportions across métiers:  

𝑀𝑀𝑀𝑀𝑀𝑀 �� � 𝐸𝐸𝑚𝑚
𝑚𝑚∈𝑚𝑚é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 

Subjected to the following constraints: 

1. 𝐸𝐸𝑚𝑚 ≥ 0, for each 𝑚𝑚 ∈ 𝑚𝑚é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
2. ∑ 𝐸𝐸𝑚𝑚𝑚𝑚∈𝑚𝑚é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⩽ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
3. ∑ 𝑞𝑞𝑚𝑚𝑠𝑠𝑚𝑚∈𝑚𝑚é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝑚𝑚𝐵𝐵𝑠𝑠 ⩽ 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑠𝑠, for each 𝑠𝑠 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
4. 𝐸𝐸𝑚𝑚 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 ∑ 𝐸𝐸𝑚𝑚𝑚𝑚∈𝑚𝑚é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0 
5. 𝐸𝐸𝑚𝑚 −𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎)𝑚𝑚 ∑ 𝐸𝐸𝑚𝑚𝑚𝑚∈𝑚𝑚é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 0 
6. 𝐸𝐸𝑚𝑚 −𝑚𝑚𝑚𝑚𝑚𝑚(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎)𝑚𝑚 ∑ 𝐸𝐸𝑚𝑚𝑚𝑚∈𝑚𝑚é𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤ 0 
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ANNEX 5: CELTIC SEA CASE STUDY INVESTIGATION INTO DEFINING 
MÉTIER AND FLEET UNITS 

This analysis is an update of the work previously completed by the Celtic Sea subgroup at 
WGMIXFISH (Davie & Lordan, 2011; Moore et al., 2019; ICES, 2018). A multivariate 
analysis (principal component analysis and hierarchical clustering) has been applied to 
identify homogenous groupings of métiers. This framework is currently only applicable to 
métier definitions.  

1 DATA 

The outputs presented here are solely based on the mixed fisheries data as submitted to 
the ICES WGMIXFISH-advice. This decision was made based on the exploration of available 
data within section 2, which highlighted the discrepancies between the different data 
products available to this study. Although this limits the scope with respect to fleet/métier 
definitions, using a single data source (validated by WGMIXFISH) facilitates the 
interpretation of the results as there are no (potential) effect of using different data sets 
on the results.  

The data submitted to ICES WGMIXFISH-advice uses a similar stratification level as the 
data submitted to ICES for single species stock assessments. Effort and catch/landings (by 
species) are submitted by country, quarter, métier DCF level 6, vessel length (following 
the STECF AER definitions), and ICES subdivision resulting in an extensive dataset. To 
reduce the number of strata (and potential fleet/métiers), the data is grouped into 
categories as such that the variability of the data, describing the heterogeneity of the 
fishery, is as much as possible maintained.  

In order to reduce the number of categories, an aggregation threshold was used to identify 
‘small’ métiers. A métier failing to catch 1.0% of at least one of the stocks considered was 
classified as small, and not considered as a separate métier but aggregated by fleet in one 
‘Other’ métier (OTH). Further, fleets that contain only the ‘OTH’ métier are aggregated into 
one single ‘OTH’ fleet. 

2 METHODOLOGY  

To identify the effect of data aggregation according to different strata describing potential 
fleets and métiers in the North Sea, the method described in Moore et al. (2019) was 
applied to the WGMIXFISH data. In this method, the variance in catch profiles after 
grouping the WGMIXFISH data according to some predefined strata is analysed using a 
PCA. Clusters were identified according to the results of the PCA which can give guidance 
for the definitions of métiers in a fishery. 

The mixed fisheries data were first filtered using a selection of species that are considered 
as the main target species describing the demersal fisheries in the region. These include 
the species assessed in WGCSE and WGBIE: for cod (cod.27.7e-k), haddock (had.27.7b-
k), whiting (whg.27.7b-ce-k), Norway lobster (FUs 16, 17, 19, 20–21, 22, and 27.7 outside 
FUs), sole (sol.27.7e and sol.27.7fg), white and black-bellied anglerfish (mon.27.78abd 
and ank.27.78abd), megrim (meg.27.7b-k8abd), and hake (hke.27.3a46-8abd) in the 
Celtic Sea. The analysis was restricted to the years 2019-2021 inclusive.  

The landings data was grouped according to a selection of fishing activity descriptors with 
country (flag of vessel provenance), area (ICES Division), vessel length class, and year of 
retained catch. Therefore, providing a description of fishing activity which is aggregated to 
the level of year and ICES Division. Country was always retained in the grouping as it is 
an important variable underlying the management of fleets (e.g. TACs are distributed in 
quota at the national level). The PCA analysis was then performed on the landings 
proportions of the 15 selected stocks.  



Study to assess the robustness of mixed fisheries scenario assumptions 

 

2 
 

The results of the analysis are summarised in Table 1. PCA 7 and 8 were excluded from 
the final comparison, the cluster catch profiles these PCAs created were inconsistent with 
the expert understanding of the fisheries. These landings profiles can be reviewed here as 
part of study code (1). These inconsistencies are likely driven by the overly simplistic nature 
of the model set up, only incorporating gear and target assemblage as fishing activity 
descriptors.  

Table 1: Summary of the 8 PCA runs showing the aggregation level of the data and the 
resulting number of observations after grouping, the variance explained by the first four 
PCA axes, and the number of cluster that explain 90% of the variance in catch composition 
of the data 

PCA 
run Aggregation level n Var. by first 

4 axes 
n_clust 

(90% var) Included 

PCA 1 
Country + Year + ICES Div + Gear + 
Dom spp. + Mesh Size + Vessel 
Length 

1204 58% 21 
Yes 

 

PCA 2 Country + Year + ICES Div + Gear + 
Dom spp. + Mesh Size 768 61% 19 

Yes 

 

PCA 3 Country + ICES Div + Gear + Dom 
spp. + Mesh Size 520 62% 17 

Yes 

 

PCA 4 Country + ICES Div + Gear + Dom 
spp. + Mesh Size + Vessel Length 829 60% 19 

Yes 

 

PCA 5 Country + Year + ICES Div + Gear + 
Dom spp 1118 63% 18 

Yes 

 

PCA 6 Country + ICES Div + Gear + Dom 
spp 345 69% 18 

Yes 

 

PCA 7 Country + Gear 61 79% 17 No 

PCA 8 Country + Gear + Target spp 75 81% 20 No 

 

3 DISCUSSION 

All PCAs presented perform very similar in terms of explained (58 %-69 %) variance by 
the first 4 components and none of them showed a clear inflection point in the scree plot. 
Although the PCAs cannot be compared directly, each PCA is run on varying levels of 
aggregation of fishing activity. The results of the PCA, combined with expert knowledge to 
review the resulting landings profile for each principle component, provides information 
This is also reflected by the number of clusters required to explain 90 % of the variability 
in catch composition, as well as the description of the clusters in terms of gears and catch 

 

(1) https://github.com/IrishMarineInstitute/STARMixFish/blob/main/lot_2/TASK_2/0 7a_PCA_7.html and 
https://github.com/IrishMarineInstitute/STARMixFish/blob/ main/lo t_2/TASK_2/08a_PCA_8.html 

https://github.com/IrishMarineInstitute/STARMixFish/blob/main/lot_2/TASK_2/0%207a_PCA_7.html
https://github.com/IrishMarineInstitute/STARMixFish/blob/%20main/lo%20t_2/TASK_2/08a_PCA_8.html
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composition. PCA 6 provides best the aggregation level at which to define métiers within 
the mixed fishery assessment model for the Celtic Sea (2). 

4 CONCLUSION  

This analysis indicates that current métier typology and grouping used in the Celtic Sea 
WGMIXFISH advice model is sensible, and consistent with the previous findings (Moore et 
al., 2019, ICES, 2018). This indicates that at the resolution of year and ICES divisions, 
there is stability in the definitions used for métiers, and they maintain relevance to the 
current fishing patterns in the Celtic Sea. However, if new input data (e.g. spatially 
disaggregated) are used for mixed fisheries projections in the future, it is recommended 
to explore the data using a PCA analysis, as presented here, before defining the fleet and 
métiers definitions. 
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ANNEX 6: EXAMPLE OF IMPACT OF SPATIAL DISAGGREGATION 
FOR THE IRISH NEPHROPS FLEET  

This case study explores the impact of spatial disaggregation on the choking patterns 
of cod in the Irish Nephrops fleet.  

To complete this work, landings data reported by fishers to the operations table (daily 
activity recorded by fishers) of the electronic logbooks system was used to describe the 
landing species composition of trips (Figure 1). This format of data would be similar to 
that reported to ICES RDBES. These data were visualised using the tools developed to 
identify species interactions (section 5.2 of the main report). 

The objective was to identify the number and frequency of fishing trips operating within 
Nephrops Functional Units (FUs) that could be completely decoupled from any technical 
interactions with cod, the primary choking species within the Celtic Seas mixed-fisheries 
model. 

Despite the increased spatial resolution provided by this new data, from ICES division 
(currently used by WGMIXFISH) down to ICES statistical rectangle, it was not possible 
to completely decouple landings of cod and Nephrops on individual trips. Based on 
Nephrops biology and their fisheries, the occurrence of technical interactions between 
these two species is likely to be highly influenced by the FU being presented.  

For this case study FU 16, the Porcupine Bank, was selected as an example. FU 16 is 
considered to be a highly targeted Nephrops fishery, executed predominantly by bottom 
otter trawl (OTB) gears from the Irish fleet. However, even in FU 16, it can be seen that 
there are still some technical interactions with cod, with a number of trips (< 10) still 
catching cod in this area, see Figure 6. As it was not possible to completely decouple 
Nephrops trips from trips where cod was caught at the level of statistical rectangle, 
there was no clear way to refine fleets in this case. Therefore, there was no need to 
rerun Fcube.  

To create fleets that are not artificially choked by false technical interactions would 
require more spatially disaggregated data. Therefore, the WGMIXFISH Celtic Seas 
subgroup is developing a framework (see section 3.2.1 of the main report) that will 
allow for the identification of technical interactions at a more spatially disaggregated 
level (VMS pings).  
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Figure 1: Targeting behaviour and landings composition by trip ordered by targeting. The panels show the trips of Irish fleets operating with 
bottom otter trawl (OTB) gear in the Celtic Sea. Species abbreviations: ANF = anglerfish; BLL = brill; CAA = wolffish; COD = cod; COE = conger 
eel; DAB = dab; FLE = flounder; GUR = gurnard; HAD = haddock; HAL = halibut; HER = herring; HKE = hake; HOM = horse mackerel; LEM = lemon 
sole; LEZ = megrim;; LIN = ling; MAC = mackerel; NEP = Nephrops; OTH = ‘other’; PLE = plaice; POK = saithe; POL = pollack; SDV = smooth-
hounds; SKA = skates and rays; SOL = common sole; SPR = sprat; TUR = turbot; WHB = blue whiting; WHG = whiting; WIT = witch flounder. 
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Figure 2: Targeting behaviour and landings composition by trip ordered by targeting. The panels show the trips of Irish fleets operating with the 
OTB gear for trips that fished the Porcupine Bank (encompassing statistical rectangles: 31D5, 32D5, 33D5, 31D6, 32D6, 33D6, 32D7, 33D7, 34D8, 
35D8, 34D5, 35D5, 34D6, 35D6, 34D7, 35D7, 32D8, 33D8). Species abbreviations: ANF = anglerfish; BLL = brill; CAA = wolffish; COD = cod; COE 
= conger eel; DAB = dab; FLE = flounder; GUR = gurnard; HAD = haddock; HAL = halibut; HER = herring; HKE = hake; HOM = horse mackerel; 
LEM = lemon sole; LEZ = megrim;; LIN = ling; MAC = mackerel; NEP = Nephrops; OTH = ‘other’; PLE = plaice; POK = saithe; POL = pollack; SDV 
= smooth-hounds; SKA = skates and rays; SOL = common sole; SPR = sprat; TUR = turbot; WHB = blue whiting; WHG = whiting; WIT = witch 
flounder. 
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ANNEX 7: TECHNICAL EXPLANATION PREVENTING USE OF FLBEIA 
IN THE CELTIC SEA 

The WGMIXFISH inter-benchmark in 2021 (IBPMIXFISH; ICES, 2021b) concluded that 
it was not possible to use FLBEIA for Celtic Seas advice purposes. When the FLBEIA 
model was applied in the Celtic Sea, several problems were encountered in reproducing 
the advice and forecast of mixed-fisheries scenarios. 

These problems were mainly attributed to the use of the Cobb–Douglas model at high 
levels of fishing mortality and the impact of discards weight-at-age in the forecast of 
discards. IBPMIXFISH recommended continuing working on the Celtic Sea model 
conditioning, the implementation of Baranov catch production function in FLBEIA and 
identifying the most appropriate way to project over-quota discards and discard weights 
to be implemented later in FLBEIA. This work has continued intersessionally, the Centre 
for Environment, Fisheries and Aquaculture Science (Cefas) presented an update of this 
work at WGMIXFISH-METHODS 2023 (ICES, 2023b). This work has focused on 
improving the implementation of Pope’s approximation as a method to improve the 
outcomes of using FLBEIA in the Celtic Sea (ICES, 2023b). Using a simplistic test data 
set the behaviour of the equations was explored, rather than the complex reality of 
mixed fisheries, therefore drivers in changes in the forecast could be attributed to the 
equation behaviour rather than masked by other factors (i.e. fishery dynamics). 
Arbitrary values for stock numbers, catchability and natural mortality are used to 
generate simple simulation scenarios to understand how and where the Baranov and 
Pope’s approximation catch-production functions differ.  

The intersessional analysis has demonstrated how the decoupling of dependencies 
among fleet harvesting under Pope’s approximation leads to differences with Baranov 
in realised fleet catches for a given level of fleet effort. Consequently, the identified 
effort-limiting stock may differ between the two catch-production functions. The 
simulations do not aim to emulate reality, there are clear mismatches in quota share 
given the differences in fleet catchabilities, so it remains unclear how these findings map 
onto real-world management strategies. Nevertheless, simulations showed that 
discrepancies increased at high stock-exploitation levels, and this has implications for 
catch-advice-based mixed-fisheries models using Pope’s approximation, especially when 
considering stocks with poor status. 
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ANNEX 8: LINKS TO SENSITIVITY UNCERTAINTY OF FORECAST 
CONDITIONING IN THE CELTIC SEA  

Investigations into the effect of uncertainty of fleet and métier definitions on model 
behaviour is currently being undertaken within WGMIXFISH-METHODS, where Cefas has 
applied Monte Carlo simulations to stochastically sample input parameter values from a 
suitable probability distribution fitted to historical data. At WGMIXFISH-METHODS 2023 
(ICES, 2023b) several methodological advances were presented, many of which derive 
from this, the outcomes of the Second Scoping Workshop on Next Generation of Mixed 
Fisheries Advice (WKMIXFISH2; ICES, 2023d), or have been identified as a priority by 
WGMIXFISH. These analyses explored sensitivity to model assumptions, incorporating 
uncertainty in model parameters and novel methods for using spatial data to define 
métiers. Additionally, the application of mixed-fisheries methods in externally developed 
models of the Bay of Biscay and Western Mediterranean were presented. The work 
reported here has also been reported in its complete format in the WGMIXFSH-
METHODS report (ICES, 2023b), where the Celtic Sea Case study was developed.  

Mixed-fisheries considerations are based on model forecasts that explicitly account for 
technical interactions among fleets and characterise the quota underutilisation or 
overshoot that may occur for given assumptions around fleet activity. Following 
WKMIXFISH2 (ICES, 2023d) there is growing stakeholder appetite for more robust 
incorporation of fishery uncertainties into mixed-fisheries forecasts. Here, we present 
work on the propagation of fleet parameter uncertainty in mixed-fisheries forecasts 
using the Celtic Seas Fcube model as a case study. Analyses are based on data from 
the 2022 ICES WGMIXFISH-ADVICE meeting (ICES, 2022c), which contains information 
to 2021. 

Three major sources of fishing fleet parameter uncertainty are delt with as three main 
sub-headings: catchability; métier effort proportion and fleet quota share; realised 
quota share. The objectives are two-fold. First, to develop a generic set of methods to 
condition parameter uncertainty that will perform well in most cases and are robust to 
moderate levels of missing and noisy data. Second, to evaluate the effect of forecasted 
parameter ranges on model outputs compared with current deterministic condition 
approaches. 

For each parameter type, we use historical variation to estimate future parameter 
uncertainty. For métier-stock catchability and métier-effort proportion, observation data 
are derived from landings and effort accessions data. However, there are few good data 
sources for quota allocation to fleets. Currently, the historic shares of stock landings are 
used as a proxy for quota share, assuming that quota allocations and fishing patterns 
are stable from year to year. However, stakeholders have highlighted that recorded 
landings are not necessarily an accurate reflection of quota share for several quota-
limited stocks (ICES, 2023c; WKMIXFISH2), and historical under-utilisation of quota 
could therefore lead to unrealistically conservative estimates of future quota share and 
potentially erroneous identification of choke stock(s). WGMIXFISH-METHODS (ICES, 
2022b) highlighted the potential value of the Fisheries Data Exchange System (FIDES), 
the official register of quota and quota exchanges in the EU at the national level, to 
inform the forecast of quota share for quota-limited stocks. We therefore explore the 
effects of using FIDES in conjunction with landings data, compared to current historical 
landings-share methods.  

The use of time-series observations means that the analysis must account for temporal 
correlations and observation uncertainty. Improving on methods presented at ICES 
WGMIXFISH-METHODS 2022 (ICES, 2022b), a simple state-space modelling approach 
was adopted, consisting of a random walk on the latent temporal process and an 
observation noise model. Models were developed using TMB (Template Mode Builder; 
Kristensen et al., 2016), which facilitates automatic differentiation using C++ 
programming templates, and fitted using maximum likelihood techniques. For details on 
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the specific methodology refer to the 2023 WGMIXFISH-METHODS report (ICES, 
2023b). 

SIMULATION RESULTS 

Mixed-fisheries simulations were carried out under four effort scenarios:  

1. Min: fleet activity stops when the quota for any stock is consumed; 
1. Status quo: fleet activity is the average of the most recent three data years; 
2. Haddock: fleet activity is the effort required to consume haddock quota (or status 

quo if haddock is not exploited); 
3. Whiting: fleet activity is the effort required to consume whiting quota (or status quo 

if whiting is not exploited).  

The impact of fleet parameter uncertainty on model outputs varied depending on the 
stock and the effort scenarios considered (see Figure 1 for illustrative example). For 
instance, cod is the chief limiting stock in the Celtic Sea and very little variation is 
observed under the ‘min’ scenario. However, technical interactions with haddock and 
whiting in many métiers means that uncertainty in catchability translates to large 
variation in the forecasted landings under the haddock and whiting scenarios. 

For Celtic Sea cod, simulations using deterministic conditioning fall within the 90 % 
uncertainty envelope, although overall output uncertainties are large. However, there 
are large deviations between outputs from deterministic and stochastic conditioning for 
sole, suggesting that existing conditioning approaches are not adequately capturing the 
historical quota-share dynamics for this stock. 

 

Figure 1: Variation in landings of cod (cod.27.7e-k) and sole (sol.27.7e) given 
uncertainty in métier-stock catchability, métier effort-share and fleet-stock landings-
share under different effort scenarios. Boxes and whiskers span the 50 % and 90 % 
confidence intervals, respectively. Blue points are outputs under current deterministic 
methods. 



Study to assess the robustness of mixed-fisheries scenario assumptions 

3 
 

These outputs may be easily integrated into the existing headline message in the mixed-
fisheries considerations to provide context around predicted choking patterns under 
each effort scenario. Confidence intervals help to bracket predictions and highlight the 
key system uncertainties to stakeholders. Disaggregated sources of uncertainty are 
complementary to a more comprehensive sensitivity analysis and help highlight where 
more precise data are needed. 

 



CINEA Task 3, catchability

Vanessa Trijoulet

Contents
1 Task 3.1 Review the catchability assumption made when conditioning the North Sea

mixed fisheries model, and characterise the resulting uncertainty in the input parameters 1

2 Task 3.2 Formulate a limited number of simple alternative scenarios for model conditioning
of catchabity. 2
2.1 Results at the maximum level of aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Results at the stock level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Results at the fleet level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Results at the fleet level and per predicted year . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Results at the métier level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 References 9

A Appendix A: Change in observed catchability over time 9

B Appendix B: Error in the current status-quo catchability assumption 9

C Appendix C: Correlation in the current status-quo catchability residuals 9

1 Task 3.1 Review the catchability assumption made when condi-
tioning the North Sea mixed fisheries model, and characterise
the resulting uncertainty in the input parameters

The current assumption for catchability per métier in the North Sea mixed fisheries advice is that catchability
in the projection years is the same as the last observed catchability (last data year). However, catchability
can be quite variable over time as it often reflects changes in fishing behavior or opportunities (see Appendix
A).

The most recent North Sea mixed fisheries advice model includes observed catchability by métier for the
years 2014-2021 (ICES 2022b, 2022a). We back calculated the catchability in 2015-2021 following the current
status-quo catchability assumption and compared this to the true observed catchability for the same years.
Standardized residuals where estimated for each year (y), fleet, (f), métier (m), stock (s), and stock age (a)
as follows:

resy,f,m,s,a = q̂y,f,m,s,a−qy,f,m,s,a

sd(q̂f,m,s,a) , with q̂ being the predicted catchability and q the observed catchability.

Given that the catchability are very small numbers used as scaler on the total catch per stock, the performance
metrics could be considered on the log scale. However, given that some of the observed or predicted catchability
values are 0 in some years, a lot of the diagnostics are lost by making the computation not possible on log
scale. As a result, standardized residuals are calculated on the natural scale.

For each fleet, métier and stock, the histogram of the residuals distribution is given in Appendix B. Overall,
the residuals vary per fleet, métier and stocks. Some are satisfactory residuals (normally distributed around

1



0) but others are unsatisfactory (e.g., skewed, with large variance).

Correlation in the residuals was estimated using the autocorrelation function (ACF) in the three dimensions
(years, ages and cohort), with lag being set at the maximum the number of ages caught for a stock (Appendix
C). Most métiers show a correlation across years, which was expected given that the predicted catchability is
the observed catchability in the previous year. However, many métiers also show a high correlation across
ages and to a lesser extent within cohort but it varies across métiers and stocks. Most métiers show a strong
lag 1 correlation in their residuals, predicting catchability with correlation across years, ages or cohort could
therefore be considered as possible alternative model assumption.

2 Task 3.2 Formulate a limited number of simple alternative sce-
narios for model conditioning of catchabity.

Here, four simple assumptions for modelling catchability are considered and evaluated through a simple
retrospective analysis with different performance metrics. The retrospective exercise was performed on the
catchability per métier using the latest advice model conditioning (ICES 2022b, 2022a). Catchability in the
last 5 years (2017-2021) was predicted following four assumptions:

• sQ: catchability for a métier is set equal to the previous year catchability (status-quo, current assumption
for the mixed fisheries North Sea case study)

• Ave: catchability for a métier is set equal to the previous 3-year catchability average (assumption
currently used for some mixed fisheries case studies other than the North Sea case study)

• lm: catchability for a métier is estimated following a linear regression on the previous years (starting in
2014). The catchability is set to 0 if predicted to be negative.

• AR1: catchability for a métier is estimated following an autoregressive process (AR1) using an integrated
moving average (ARIMA) on the previous years (starting in 2014). The catchability is set to 0 if
predicted to be negative. This might/will be changed to Klaas’ AR1 model instead, or we can also use
Klaas’ option as an additional one

Different types of performance metrics are considered to compare the four models and each of them are
presented below for different levels of aggregation:

• Proportion of a model being the best model based on the model having the smallest residuals (i.e.,
abs(res))) as estimated in Part 1. Larger is the proportion, better is the model.

• Relative errors on the log scale, i.e., RE = log(q̂)−log(q)
log(q) . This performance metric is the only one

considered on log scale but inherently ignores catchability of 0. The best model is the one with the RE
the closest to 0.

• Rank of each model, based on sorting in ascending order the absolute value of res. If residuals are the
same, the rank will be shared between the model at the same level (e.g, rank of 1.5 if two models have
best residuals, mainly happens when q = q̂ = 0). The best model is the one with the lowest rank.

2.1 Results at the maximum level of aggregation
If the results are fully aggregated (no distinction between fleet, métier, year or stock), the status-quo
catchability, which is the option currently used for the North Sea case study is the best option for the three
performance metrics (Table 1). The performance of the other models depends on the performance metric
considered but it seems that the linear regression model could be the best assumption after the status-quo
one.
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Table 1: Performance metrics aggregated at the level of the entire North Sea model.

Proportion of being best Median relative error (%) Mean rank
sQ 0.523 -0.462 1.869
Ave 0.135 -1.331 2.860
lm 0.252 -1.392 2.432
AR1 0.189 -1.811 2.839

2.2 Results at the stock level
When the results are aggregated at the stock level, for 12 out of 20 stocks, the status-quo catchability is the
best predictor no matter the performance metric considered (Figure 1 and Table 2).

Table 2: Number of stocks for which a model does the best according to each performance metric. There are
20 stocks in total (10 fish stocks and 10 Norway lobster stocks), it is possible that the number of stocks for
the proportion of being the best model metric sum to more than 20 if some models have the same standard
residuals (usually when catchabilty is 0).

Proportion of being best Median relative error (%) Mean rank
sQ 20 12 20
Ave 0 5 0
lm 0 2 0
AR1 1 1 0
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Figure 1: Performance metrics presented at the stock level. The best value for each performance metric is
highlighted by a solid circle. 4



2.3 Results at the fleet level
When the results are aggregated at the fleet level, the status-quo assumption is the best model overall for all
performance metrics considered (Figure 2). Other models can be favored when looking at the mean relative
error in the log catchability but the status-quo model is still the most often chosen as best model (Table 3).

Table 3: Number of fleets for which a model does the best according to each performance metric. The total
number of fleets is 46.

Proportion of being best Median relative error (%) Mean rank
sQ 46 29 46
Ave 0 5 0
lm 0 9 0
AR1 0 3 0

5



0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

B
E

_B
ea

m
<

24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

B
E

_B
ea

m
>

=
24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

B
E

_O
tte

r

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

D
K

_<
10

to
w

ed

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

D
K

_O
tte

r<
24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

D
K

_O
tte

r>
=

24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

D
K

_S
ei

ne

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

D
K

_S
ta

tic

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

E
N

_<
10

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

E
N

_B
ea

m

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

E
N

_O
tte

r<
24

0.
0

0.
4

0.
8

sQ Ave lm AR1

−
10

0
5

sQ Ave lm AR1

1.
0

2.
0

3.
0

sQ Ave lm AR1

E
N

_O
tte

r>
=

40

Proportion of being best Median relative error (%) Mean rank

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

E
N

_O
tte

r2
4−

40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

E
N

_P
el

ag
ic

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

E
N

_S
ta

tic

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

F
R

_<
10

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

F
R

_B
ea

m

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

F
R

_N
et

s

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

F
R

_O
T

H

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

F
R

_O
tte

r>
=

40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

F
R

_O
tte

r1
0−

40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

G
E

_B
ea

m
<

24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

G
E

_B
ea

m
>

=
24

0.
0

0.
4

0.
8

sQ Ave lm AR1

−
10

0
5

sQ Ave lm AR1

1.
0

2.
0

3.
0

sQ Ave lm AR1

G
E

_O
tte

r<
24

Proportion of being best Median relative error (%) Mean rank

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

G
E

_O
tte

r>
=

40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

G
E

_O
tte

r2
4−

40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

G
E

_S
ta

tic

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
L_

B
ea

m
<

24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
L_

B
ea

m
>

=
40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
L_

B
ea

m
24

−
40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
L_

O
tte

r

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
L_

P
el

ag
ic

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
O

_D
S

ei
ne

24
−

40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
O

_O
tte

r>
=

40

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
O

_O
tte

r2
4−

40

0.
0

0.
4

0.
8

sQ Ave lm AR1

−
10

0
5

sQ Ave lm AR1

1.
0

2.
0

3.
0

sQ Ave lm AR1

N
O

_P
el

ag
ic

Proportion of being best Median relative error (%) Mean rank

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

N
O

_S
ta

tic

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

O
T

H
_O

T
H

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

S
C

_B
ea

m

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

S
C

_O
tte

r<
10

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

S
C

_O
tte

r<
24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

S
C

_O
tte

r>
=

24

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

S
C

_S
ta

tic

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

S
C

_S
ta

tic
<

10

0.
0

0.
4

0.
8

−
10

0
5

1.
0

2.
0

3.
0

S
W

_O
tte

r

0.
0

0.
4

0.
8

sQ Ave lm AR1

−
10

0
5

sQ Ave lm AR1

1.
0

2.
0

3.
0

sQ Ave lm AR1

S
W

_S
ta

tic

Proportion of being best Median relative error (%) Mean rank

Figure 2: Performance metrics presented at the fleet level. The best value for each performance metric is
highlighted by a solid circle.
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2.4 Results at the fleet level and per predicted year
The best model can vary at the fleet level, over time, and depending on the performance metric considered
but the status-quo option is still the best overall (Figure 3). Results are more variable when looking at the
relative error in log catchability where for a specific fleet, the best model might differ depending on the
predicted year. This makes it difficult to choose one assumption that is best for all fleets at any time since
catchability will also depend on fleet opportunities.
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Figure 3: Performance metrics presented at the fleet level and over time. The best value for each performance
metric is highlighted by a solid circle.
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2.5 Results at the métier level
Given than the North Sea case study includes 152 métiers, the results are only presented as the number of
métiers for which the different models are best (Table 4). The status-quo assumption is the one that is the
best for most of the métiers no matter the performance metric considered.

Table 4: Number of métiers for which a model does the best according to each performance metric.

Proportion of being best Median relative error (%) Mean rank
sQ 149 87 141
Ave 0 21 0
lm 3 28 7
AR1 0 16 4

3 References
ICES. 2022a. “Working Group on Mixed Fisheries Advice (WGMIXFISH-ADVICE; Outputs from 2021

Meeting).” https://doi.org/10.17895/ices.pub.9379.
———. 2022b. “Greater North Sea - Mixed Fisheries Considerations.”

A Appendix A: Change in observed catchability over time
Figure 4 shows the observed catchability at age per fleet, métier and stock for the years 2014-2021. For some
métiers and stocks, catchability can vary over time, making the current assumption of status-quo catchability
in the projections questionable.

B Appendix B: Error in the current status-quo catchability as-
sumption

Figure 5 shows the distribution of the error (standardized residuals) in the current catchability predictions
(status-quo) for the years 2015-2021.

C Appendix C: Correlation in the current status-quo catchability
residuals

Figure 6 shows the ACF plot for correlation in the status-quo catchability residuals. It is possible that some
correlations are missing for certain lags, notably if residuals could not be computed because the catchability
was null.
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Figure 4: Observed catchability at age per fleet, métier and stocks.
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Figure 4 (continued): Observed catchability at age per fleet, métier and stocks.
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Figure 4 (continued): Observed catchability at age per fleet, métier and stocks.
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Figure 4 (continued): Observed catchability at age per fleet, métier and stocks.
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Figure 4 (continued): Observed catchability at age per fleet, métier and stocks.
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Figure 4 (continued): Observed catchability at age per fleet, métier and stocks.
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Figure 4 (continued): Observed catchability at age per fleet, métier and stocks.
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Figure 4 (continued): Observed catchability at age per fleet, métier and stocks.
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Figure 5: Distribution of the standardized residuals when catchability follows the status-quo assumption.
Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 5 (continued): Distribution of the standardized residuals when catchability follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 5 (continued): Distribution of the standardized residuals when catchability follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 5 (continued): Distribution of the standardized residuals when catchability follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 5 (continued): Distribution of the standardized residuals when catchability follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 5 (continued): Distribution of the standardized residuals when catchability follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.

23



−3 −2 −1 0 1 2

0.
0

0.
4

0.
8

GN1.4

−8 −6 −4 −2 0 2 4

LL1.4

−8 −6 −4 −2 0 2

OTH

C
O

D
−

N
S

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

−4 −3 −2 −1 0 1 2 3 −6 −4 −2 0 2

H
A

D

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

P
LE

−
N

S

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

−3 −2 −1 0 1 2 3 −6000 −5000 −4000 −3000 −2000 −1000 0 1000

P
O

K

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

−100 −80 −60 −40 −20 0

T
U

R

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

−8 −6 −4 −2 0 2 4

W
H

G
−

N
S

−4 −3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

W
IT

0.
0

0.
4

0.
8

−2 −1 0 1 2 3

N
E

P
32

NO_Static

Standardized residuals

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

−1 0 1 2 3

0.
0

OTH

C
O

D
−

N
S

−3 −2 −1 0 1 2 3

0.
0 H
A

D

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

N
E

P
10

−0.5 0.0 0.5 1.0 1.5

0.
0

N
E

P
32

−3 −2 −1 0 1 2

0.
0

N
E

P
5

−3 −2 −1 0 1 2 3 4

0.
0

N
E

P
6

−0.5 0.0 0.5 1.0 1.5 2.0

0.
0

N
E

P
7

−6 −4 −2 0 2 4

0.
0

N
E

P
8

−3 −2 −1 0 1 2 3

0.
0

N
E

P
9

−3 −2 −1 0 1 2

0.
0

N
E

P
O

T
H

−
N

S

−3 −2 −1 0 1 2 3

0.
0

P
LE

−
E

C

−2 −1 0 1 2 3

0.
0

P
LE

−
N

S

−2 −1 0 1 2

0.
0 P
O

K

−3 −2 −1 0 1 2 3

0.
0

S
O

L−
E

C

−3 −2 −1 0 1 2

0.
0

S
O

L−
N

S

−3 −2 −1 0 1 2 3

0.
0 T
U

R

−3 −2 −1 0 1 2 3

0.
0

W
H

G
−

N
S

−2 −1 0 1 2 3

0.
0 W

IT

OTH_OTH

Standardized residuals

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

−2 −1 0 1 2

0.
0

0.
6

OTH BT2.6A

C
O

D
−

N
S

−3 −2 −1 0 1 2 3

0.
0

0.
6

H
A

D

−2 −1 0 1 2

0.
0

0.
6

N
E

P
5

−3 −2 −1 0 1 2 3

0.
0

0.
6

N
E

P
8

−1 0 1 2 3

0.
0

0.
6

N
E

P
O

T
H

−
N

S

−4 −3 −2 −1 0 1 2 3

0.
0

0.
6

P
LE

−
N

S

−3 −2 −1 0 1 2 3

0.
0

0.
6

P
O

K

−3 −2 −1 0 1 2 3

0.
0

0.
6

S
O

L−
N

S

−3 −2 −1 0 1 2 3 4

0.
0

0.
6

−3 −2 −1 0 1 2 3

T
U

R

−3 −2 −1 0 1 2 3

0.
0

0.
6

W
H

G
−

N
S

−3 −2 −1 0 1 2 3

0.
0

0.
6

W
IT

SC_Beam

Standardized residuals

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

−4 −2 0 2

0.
0

0.
6

OTH

−3 −2 −1 0 1 2 3

TR2.4 TR2.6A

C
O

D
−

N
S

−3 −2 −1 0 1 2 3 4

0.
0

0.
6

−15 −10 −5 0 −25 −20 −15 −10 −5 0 5

H
A

D

−3 −2 −1 0 1 2

0.
0

0.
6

−2 −1 0 1 2 3

N
E

P
O

T
H

−
N

S

−10 −5 0

0.
0

0.
6

−6 −4 −2 0 2

P
LE

−
N

S

−3 −2 −1 0 1 2 3

0.
0

0.
6

T
U

R

−3 −2 −1 0 1 2 3

0.
0

0.
6

−30 −20 −10 0

W
H

G
−

N
S

−8 −6 −4 −2 0 2 4

0.
0

0.
6

−300 −250 −200 −150 −100 −50 0 50

W
IT

0.
0

0.
6

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

N
E

P
6

0.
0

0.
6

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

N
E

P
8

0.
0

0.
6

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

N
E

P
9

0.
0

0.
6

−8000 −6000 −4000 −2000 0

S
O

L−
N

S

SC_Otter<10

Standardized residuals

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

−2 −1 0 1 2 3

0.
0

1.
0

TR1.4 TR1.6A

−3 −2 −1 0 1 2 3 4

TR2.4 TR2.6A

C
O

D
−

N
S

−3 −2 −1 0 1 2 3

0.
0

1.
0

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −4 −2 0 2

H
A

D

−2 −1 0 1 2

0.
0

1.
0

N
E

P
10

−3 −2 −1 0 1 2 3

0.
0

1.
0

−3 −2 −1 0 1 2 3

N
E

P
34

−3 −2 −1 0 1 2

0.
0

1.
0

N
E

P
5

−4 −2 0 2 4

0.
0

1.
0

−2 −1 0 1 2

N
E

P
6

−3 −2 −1 0 1 2

0.
0

1.
0

−2 −1 0 1 2

N
E

P
7

−3 −2 −1 0 1 2

0.
0

1.
0

−2 −1 0 1 2 3

N
E

P
8

−3 −2 −1 0 1 2 3

0.
0

1.
0

−3 −2 −1 0 1 2 3

N
E

P
9

−3 −2 −1 0 1 2

0.
0

1.
0

−4 −3 −2 −1 0 1 2 N
E

P
O

T
H

−
N

S

−3 −2 −1 0 1 2 3

0.
0

1.
0

−3 −2 −1 0 1 2 3

P
LE

−
N

S

−3 −2 −1 0 1 2 3

0.
0

1.
0

−15 −10 −5 0 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

P
O

K

−2 −1 0 1 2 3

0.
0

1.
0

−3 −2 −1 0 1 2 3

S
O

L−
N

S

−2 −1 0 1 2 3

0.
0

1.
0

−3 −2 −1 0 1 2 3 −2 −1 0 1 2

T
U

R

−3 −2 −1 0 1 2 3

0.
0

1.
0

−2 −1 0 1 2 3

W
H

G
−

N
S

−4 −2 0 2 4

0.
0

1.
0

−2 −1 0 1 2 −3 −2 −1 0 1 2 3 4 −2 −1 0 1 2 3

W
IT

SC_Otter<24

Standardized residuals

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

−3 −2 −1 0 1 2 3

0.
0

1.
0

OTH

−2 −1 0 1 2

TR1.4 TR1.6A

−3 −2 −1 0 1 2 3

TR2.7D

C
O

D
−

N
S

−3 −2 −1 0 1 2 3

0.
0

1.
0

−4 −3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3 −60 −50 −40 −30 −20 −10 0

H
A

D
−3 −2 −1 0 1 2 3

0.
0

1.
0

−6 −4 −2 0 2
P

LE
−

N
S

−3 −2 −1 0 1 2 3

0.
0

1.
0

−4 −2 0 2 4 −6 −4 −2 0 2 4 −2 −1 0 1 2 3

P
O

K

−20 −15 −10 −5 0 5

0.
0

1.
0

−3 −2 −1 0 1 2 3

S
O

L−
N

S

−3 −2 −1 0 1 2 3

0.
0

1.
0

−4 −2 0 2 −3 −2 −1 0 1 2

W
H

G
−

N
S

0.
0

1.
0

−3 −2 −1 0 1 2 3

N
E

P
33

0.
0

1.
0

−2 −1 0 1 2

N
E

P
34

0.
0

1.
0

−3 −2 −1 0 1 2 3

N
E

P
5

0.
0

1.
0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

N
E

P
7

0.
0

1.
0

−1 0 1 2 3

N
E

P
9

0.
0

1.
0

−3 −2 −1 0 1 2 3 N
E

P
O

T
H

−
N

S

0.
0

1.
0

−2 −1 0 1 2 −3 −2 −1 0 1 2 3 −2 −1 0 1 2

T
U

R

0.
0

1.
0

−6 −4 −2 0 2 −3 −2 −1 0 1 2 3

W
IT

0.
0

1.
0

−2 −1 0 1 2

P
LE

−
E

C

0.
0

1.
0

−2 −1 0 1 2

S
O

L−
E

C

SC_Otter>=24

Standardized residuals

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

Figure 5 (continued): Distribution of the standardized residuals when catchability follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 5 (continued): Distribution of the standardized residuals when catchability follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 6: Autocorrelation in the the current status-quo catchability standardized residuals. The dimensions
"row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across years, ages, and
within cohort, respectively. The maximum lag is set to be the maximum number of ages caught by the métier
for each stock. The dashed horizontal lines represent the 95% confidence interval. Correlations beyond these
lines are therefore considered non-zero.
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Figure 6 (continued): Autocorrelation in the the current status-quo catchability standardized residuals. The
dimensions "row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across
years, ages, and within cohort, respectively. The maximum lag is set to be the maximum number of ages
caught by the métier for each stock. The dashed horizontal lines represent the 95% confidence interval.
Correlations beyond these lines are therefore considered non-zero.
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Figure 6 (continued): Autocorrelation in the the current status-quo catchability standardized residuals. The
dimensions "row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across
years, ages, and within cohort, respectively. The maximum lag is set to be the maximum number of ages
caught by the métier for each stock. The dashed horizontal lines represent the 95% confidence interval.
Correlations beyond these lines are therefore considered non-zero.
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Figure 6 (continued): Autocorrelation in the the current status-quo catchability standardized residuals. The
dimensions "row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across
years, ages, and within cohort, respectively. The maximum lag is set to be the maximum number of ages
caught by the métier for each stock. The dashed horizontal lines represent the 95% confidence interval.
Correlations beyond these lines are therefore considered non-zero.
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Figure 6 (continued): Autocorrelation in the the current status-quo catchability standardized residuals. The
dimensions "row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across
years, ages, and within cohort, respectively. The maximum lag is set to be the maximum number of ages
caught by the métier for each stock. The dashed horizontal lines represent the 95% confidence interval.
Correlations beyond these lines are therefore considered non-zero.
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Figure 6 (continued): Autocorrelation in the the current status-quo catchability standardized residuals. The
dimensions "row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across
years, ages, and within cohort, respectively. The maximum lag is set to be the maximum number of ages
caught by the métier for each stock. The dashed horizontal lines represent the 95% confidence interval.
Correlations beyond these lines are therefore considered non-zero.
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Figure 6 (continued): Autocorrelation in the the current status-quo catchability standardized residuals. The
dimensions "row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across
years, ages, and within cohort, respectively. The maximum lag is set to be the maximum number of ages
caught by the métier for each stock. The dashed horizontal lines represent the 95% confidence interval.
Correlations beyond these lines are therefore considered non-zero.
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Figure 6 (continued): Autocorrelation in the the current status-quo catchability standardized residuals. The
dimensions "row" (green), "column" (purple) and "diagonal" (orange) correspond to the correlation across
years, ages, and within cohort, respectively. The maximum lag is set to be the maximum number of ages
caught by the métier for each stock. The dashed horizontal lines represent the 95% confidence interval.
Correlations beyond these lines are therefore considered non-zero.
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1 Task 3.1 Review the effort proportions assumption made when
conditioning the North Sea mixed fisheries model, and charac-
terise the resulting uncertainty in the input parameters

The most recent North Sea mixed fisheries advice model includes observed effort share by métier for the
years 2012-2021 (ICES 2022b, 2022a). We back calculated the effort shares in 2013-2021 following the current
status-quo effort proportions assumption and compared this to the true observed effort proportions for the
same years. Standardized residuals where estimated for each year (y), fleet, (f) and métier (m) as follows:

resy,f,m =
ˆeffy,f,m−effy,f,m

sd( ˆefff,m,s) , with ˆeff being the predicted effort shares and eff the observed effort shares.

For each fleet and métier , the histogram of the residuals distribution is given in Appendix B. Overall, the
residuals vary per fleet and métier. Some are satisfactory residuals (normally distributed around 0) but
others are unsatisfactory (e.g., skewed, with large variance).

Correlation in the residuals was estimated using the autocorrelation function (ACF) in the three dimensions
(years, ages and cohort), with lag being set at the maximum the number of ages caught for a stock (Appendix
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C). Most métiers show a high correlation across years, which was expected given that the predicted effort
proportions is the observed effort proportions in the previous year. Some métiers also show correlation across
ages and cohort but it varies across métiers and stocks. Most métiers show a strong lag 1 correlation in
their residuals, predicting effort proportions with correlation across years, ages or cohort could therefore be
considered as possible alternative model assumption.

2 Task 3.2 Formulate a limited number of simple alternative sce-
narios for model conditioning of catchabity.

Here, four simple assumptions for modelling effort proportions are considered and evaluated through a
simple retrospective analysis with different performance metrics. The retrospective exercise was performed
on the effort proportions per métier using the latest advice model conditioning (ICES 2022b, 2022a). Effort
proportions in the last 5 years (2017-2021) was predicted following four assumptions:

• sQ: effort proportions for a métier is set equal to the previous year’s effort (status-quo, current as-
sumption for the mixed fisheries North Sea case study)

• Ave: effort proportions for a métier is set equal to the previous 3-year effort proportions average
(assumption currently used for some mixed fisheries case studies other than the North Sea case study)

• lm: effort proportions for a métier is estimated following a linear regression on the previous years
(starting in 2012). The effort proportions is set to 0 if predicted to be negative.

• AR1: effort proportions for a métier is estimated following an autoregressive process (AR1) using an
integrated moving average (ARIMA) on the previous years (starting in 2012). The effort proportions
is set to 0 if predicted to be negative. This might/will be changed to Klaas’ AR1 model instead, or we
can also use Klaas’ option as an additional one

Different types of performance metrics are considered to compare the four models and each of them are
presented below for different levels of aggregation:

• Proportion of a model being the best model based on the model having the smallest residuals (i.e.,
abs(res))) as estimated in Part 1. Larger is the proportion, better is the model.

• Relative errors on the log scale, i.e., RE = log(q̂)−log(q)
log(q) . This performance metric is the only one

considered on log scale but inherently ignores effort proportions of 0. The best model is the one with
the RE the closest to 0.

• Rank of each model, based on sorting in ascending order the absolute value of res. If residuals are the
same, the rank will be shared between the model at the same level (e.g, rank of 1.5 if two models have
best residuals, mainly happens when q = q̂ = 0). The best model is the one with the lowest rank.

2.1 Results at the maximum level of aggregation

If the results are fully aggregated (no distinction between fleet and métier), the status-quo effort proportions,
which is the option currently used for the North Sea case study is the best option for the three performance
metrics (Table 1). The performance of the other models depends on the performance metric considered.
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Table 1: Performance metrics aggregated at the level of the entire North Sea model.

Proportion of being best Median relative error (%) Mean rank
sQ 0.615 0.064 1.762
Ave 0.176 -0.167 2.753
lm 0.217 -0.747 2.505
AR1 0.164 -0.379 2.981

2.2 Results at the fleet level

When the results are aggregated at the fleet level, the status-quo assumption is the best model overall for 2
out of 3 of the performance metrics considered (Figure 1 (continued)). Other models can be favored when
looking at the mean relative error in the log effort proportions but the status-quo model is still the most
often chosen as best model (Table 2).

Table 2: Number of fleets for which a model does the best according to each performance metric.

Proportion of being best Median relative error (%) Mean rank
sQ 41 16 42
Ave 2 17 1
lm 5 8 3
AR1 2 4 2
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Figure 1: Performance metrics presented at the fleet level. The best value for each performance metric is
highlighted by a solid circle. 4
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Figure 1 (continued): Performance metrics presented at the fleet level. The best value for each performance
metric is highlighted by a solid circle. 5
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Figure 1 (continued): Performance metrics presented at the fleet level. The best value for each performance
metric is highlighted by a solid circle. 6
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Figure 1 (continued): Performance metrics presented at the fleet level. The best value for each performance
metric is highlighted by a solid circle. 7



2.3 Results at the fleet level and per predicted year

The best model can vary at the fleet level, over time, and depending on the performance metric considered
but the status-quo option is still the best overall (Figure 2 (continued)). Results are more variable when
looking at the relative error in log effort proportions where for a specific fleet, the best model might differ
depending on the predicted year. This makes it difficult to choose one assumption that is best for all fleets
at any time since effort share will also depend on fleet opportunities.
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Figure 2 (continued): Performance metrics presented at the fleet level and over time. The best value for
each performance metric is highlighted by a solid circle.9
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Figure 2 (continued): Performance metrics presented at the fleet level and over time. The best value for
each performance metric is highlighted by a solid circle.10
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Figure 2 (continued): Performance metrics presented at the fleet level and over time. The best value for
each performance metric is highlighted by a solid circle.11
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Figure 2 (continued): Performance metrics presented at the fleet level and over time. The best value for
each performance metric is highlighted by a solid circle.12



2.4 Results at the métier level

Given than the North Sea case study includes 156 métiers, the results are only presented as the number of
métiers for which the different models are best (Table 3). The status-quo assumption is the one that is the
best for most of the métiers no matter the performance metric considered.

Table 3: Number of métiers for which a model does the best according to each performance metric.

Proportion of being best Median relative error (%) Mean rank
sQ 120 67 127
Ave 18 35 11
lm 28 36 26
AR1 26 17 17

3 References
ICES. 2022a. “Working Group on Mixed Fisheries Advice (WGMIXFISH-ADVICE; Outputs from 2021

Meeting).” https://doi.org/10.17895/ices.pub.9379.
———. 2022b. “Greater North Sea - Mixed Fisheries Considerations.”

A Appendix A: Change in observed effort proportions over time

Figure 3 (continued) shows the observed effort proportions per fleet, for the years 2012-2021. Effort pro-
portions can vary over time, making the current assumption of status-quo effortshare in the projections
questionable.

B Appendix B: Error in the current status-quo effortshare as-
sumption

Figure 4 shows the distribution of the error (standardized residuals) in the current effortshare predictions
(status-quo) for the years 2013-2021.

C Appendix C: Correlation in the current status-quo effortshare
residuals

Figure 5 shows the ACF plot for correlation in the status-quo effortshare residuals. It is possible that some
correlations are missing for certain lags, notably if residuals could not be computed because the effortshare
was null.
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Figure 3 (continued): Observed effortshare at age per fleet, métier and stocks.
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Figure 4: Distribution of the standardized residuals when effortshare is follows the status-quo assumption.
Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 4 (continued): Distribution of the standardized residuals when effortshare is follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 4 (continued): Distribution of the standardized residuals when effortshare is follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 4 (continued): Distribution of the standardized residuals when effortshare is follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 4 (continued): Distribution of the standardized residuals when effortshare is follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 4 (continued): Distribution of the standardized residuals when effortshare is follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 4 (continued): Distribution of the standardized residuals when effortshare is follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 4 (continued): Distribution of the standardized residuals when effortshare is follows the status-quo
assumption. Mean and median of the distribution are showed as red and dashed blue lines, respectively.
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Figure 5: Autocorrelation in the the current status-quo effortshare standardized residuals. The dimension
"row" (green) corresponds to the correlation across years. The maximum lag is set to be the number of years
in series minus 2, because no status Quo for the first year can be applied, and lag only occurs after the first
year. The dashed horizontal lines represent the 95% confidence interval. Correlations beyond these lines are
therefore considered non-zero.
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Figure 5 (continued): Autocorrelation in the the current status-quo effortshare standardized residuals. The
dimension "row" (green) corresponds to the correlation across years. The maximum lag is set to be the
number of years in series minus 2, because no status Quo for the first year can be applied, and lag only
occurs after the first year. The dashed horizontal lines represent the 95% confidence interval. Correlations
beyond these lines are therefore considered non-zero.
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Figure 5 (continued): Autocorrelation in the the current status-quo effortshare standardized residuals. The
dimension "row" (green) corresponds to the correlation across years. The maximum lag is set to be the
number of years in series minus 2, because no status Quo for the first year can be applied, and lag only
occurs after the first year. The dashed horizontal lines represent the 95% confidence interval. Correlations
beyond these lines are therefore considered non-zero.
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Figure 5 (continued): Autocorrelation in the the current status-quo effortshare standardized residuals. The
dimension "row" (green) corresponds to the correlation across years. The maximum lag is set to be the
number of years in series minus 2, because no status Quo for the first year can be applied, and lag only
occurs after the first year. The dashed horizontal lines represent the 95% confidence interval. Correlations
beyond these lines are therefore considered non-zero.
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Figure 5 (continued): Autocorrelation in the the current status-quo effortshare standardized residuals. The
dimension "row" (green) corresponds to the correlation across years. The maximum lag is set to be the
number of years in series minus 2, because no status Quo for the first year can be applied, and lag only
occurs after the first year. The dashed horizontal lines represent the 95% confidence interval. Correlations
beyond these lines are therefore considered non-zero.
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Figure 5 (continued): Autocorrelation in the the current status-quo effortshare standardized residuals. The
dimension "row" (green) corresponds to the correlation across years. The maximum lag is set to be the
number of years in series minus 2, because no status Quo for the first year can be applied, and lag only
occurs after the first year. The dashed horizontal lines represent the 95% confidence interval. Correlations
beyond these lines are therefore considered non-zero.
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Figure 5 (continued): Autocorrelation in the the current status-quo effortshare standardized residuals. The
dimension "row" (green) corresponds to the correlation across years. The maximum lag is set to be the
number of years in series minus 2, because no status Quo for the first year can be applied, and lag only
occurs after the first year. The dashed horizontal lines represent the 95% confidence interval. Correlations
beyond these lines are therefore considered non-zero.

29



0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

GN1.4

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

LL1.4

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

LL1.6A

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

OTH

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

pots.4

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

pots.6A
SC_Static

Lag

A
C

F

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

LL1.4

0 2 4 6 8

as.vector(acfr$lag)
as

.v
ec

to
r(

ac
fr

$a
cf

)

OTH

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

pots.6A
SC_Static<10

Lag

A
C

F

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

OTH

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

TR1.4

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

TR2.3AN

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

TR2_grid.3AN
SW_Otter

Lag

A
C

F

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

OTH

0 2 4 6 8

as.vector(acfr$lag)

as
.v

ec
to

r(
ac

fr
$a

cf
)

pots.3AN

SW_Static

Lag

A
C

F

Figure 5 (continued): Autocorrelation in the the current status-quo effortshare standardized residuals. The
dimension "row" (green) corresponds to the correlation across years. The maximum lag is set to be the
number of years in series minus 2, because no status Quo for the first year can be applied, and lag only
occurs after the first year. The dashed horizontal lines represent the 95% confidence interval. Correlations
beyond these lines are therefore considered non-zero.
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SENSITIVITY OF THE NORTH SEA MIXFISH FORECAST TO 

UNCERTAINTIES IN FUTURE LANDING SHARES PER FLEET (TASK 3) 

Thomas Brunel1 

 

One of the key assumptions in the mixed fisheries models used to provide the ICES advice is about how 
the TAC advice for each stock is allocated in quotas for the different fleets. For each fleet, the fishing 
effort corresponding these quotas for each of the stocks are calculated, and used as the basis for the 
different mixed fisheries scenarios (i.e “MIN”, “MAX”…). The assumption made at WGMIXFISH is that 
future landing shares (for the present year and the next year for which the advice applies) are equal to 
the landing shares in the last year where data are available (typically the year prior to the current year). 
This document presents an evaluation of the uncertainty in the future landing shares related to this 
status quo assumption and compares it with uncertainty from alternative assumptions based on past 
landing shares. Additionally, the document explores a different approach to future allocation, based on 
the actual historic quotas per country rather than observed landings per fleet.. 

 

1 TASK 3.1 : UNCERTAINTY IN CURRENT ASSUMPTION ON LANDING SHARES 

The analysis is based on the catch and effort data per fleet collated for the 2022 North Sea mixed 
fisheries advice. The so-call “fleet object” contains detailed information (landings/discards number at 
age, effort, catchability…) on the activity of the fleets, covering the period 2012 to 2021.  

 

1.1 VARIABILITY IN HISTORICAL LANDING SHARES 

To get a first idea of what might be a good assumption for future landing shares, it can be useful to look 
at the historical variations in the landing shares per fleet.  

Figure 1 presents three contrasting examples of temporal variability in landing shares. It illustrates how 
the landing shares per fleet can vary in relation to changes in the national shares, and changes in 
allocation between fleets within countries. 

In the case of the landing shares of North Sea for the Dutch fleet, values are rather stable in time, with a 
slight increase for the larger beam trawlers and a slight decrease for the medium sized ones (first row). 
This pattern is the consequence of a slight increase in the Dutch contribution to the total landings for this 
stock (second row) and stable distribution of the national landings across fleet (with a slight increase for 
the larger vessels, and a corresponding decrease in the mid-sized vessels). 

In the case of the French landing shares of Eastern Channel plaice, the proportions of the total landings 
taken by these fleets decreased for all fleets (top row), but had a sudden increase in 2018 for the main 
fleet (Otter trawlers). The French contribution to the landings also showed a jump in 2018, after a period 
of constant decrease (second row). When this increase occurred in 2018, the part of the French landings 
taken by the otter trawlers increased.  

For landing shares of haddock for the Scottish fleets showed a strong temporal trend, with an increase 
for the larger otter trawlers, and a decrease of the smaller ones. This was mainly the results of changes 
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in the contribution of these two fleets to the Scottish catch, and not to changes in the UK share (mostly 
Scotland) which was overall stable over this period.  

Percentage of total landings per fleet 

  
 

 

Percentage of the total landings per country 

   
Percentage of the national landings per fleet 

 

 
 

 

Figure 1 : illustration of the temporal variability in landing shares (first row) in relation to the variability 
in allocation of landings between countries (second row), and amongst fleets at the country level (third 
row) for three examples (North Sea sole for the Netherlands, Eastern Channel plaice for France and 
haddock for Scotland).  



Based on these examples, it appears that in some cases, the assumption made in mixed fisheries models 
might be quite appropriate. For example, landing shares of sole for the Dutch fleet in a given year are 
probably very well approximated by landing shares two years earlier (i.e. time lag between advice year 
and last data year). However this assumption will potentially produce larger errors in the case of eastern 
channel plaice for the French otter trawlers, for which the landing shares are highly variable. For the 
landing shares of haddock for Scottish fleet, this assumption will result in a systematic error (bias), due 
to the strong trend in the data. 

 

1.2 QUANTIFICATION OF THE UNCERTAINTY IN THE CURRENT ASSUMPTION FOR FUTURE LANDING 

SHARES AND IN ALTERNATIVE ASSUMPTIONS 

The uncertainty associated to the assumption on future landing shares was examined by computing 
retrospectively the values corresponding to the assumption for a given year, and comparing it to the 
actual value, based on the data. 

In addition to the assumption used at WGMIXFISH, three alternative assumptions were tested. The 
assumptions tested were : 

- AR1 : the landing shares in year y+1 (for a given fleet and a given stock) is based on the 
prediction of an autoregressive model fitted on the proportions for the years 2012 to the year y-
1. 

- Ave : the landing shares in year y+1 (for a given fleet and a given stock) is based on the 
average of the three previous years 

- Lm : the landing shares in year y+1 (for a given fleet and a given stock) is based on the 
prediction from a linear model fitted on the proportions for the years 2012 to the year y-1. 

- sQ : the landing shares in year y+1 (for a given fleet and a given stock) is based on the values 
observed for y-1. 

The predicted values based on these assumptions were calculated for each fleet and each stock for the 
years 2017 to 2021 (in order to leave enough years to fit the AR1 and lm models).  

To describe the predictive power of each assumption, the following indicators were calculated on a 
fleet/stock basis, based on the predictions for 2017 to 2021 : 

- bias in prediction was measured by the average over the years of ratio of the predicted values 
over the observed ones. A mean ratio of 1 indicates that the prediction is unbiased, a ratio larger 
than 1 indicates over-estimation (and conversely lower than1 indicates under-estimation). 

- Error magnitude was measured as the mean of the absolute percentage error (MAPE). The value 
of the MAPE indicates by how much, on average, the prediction differs from the observed, as a 
percentage of the observed value 

- Error autocorrelation was measured by computing the temporal autocorrelation in the difference 
between prediction and observation, at a one-year lag. 

 

Figure 2 shows the distribution of fleet specific values these three indicators for each stock. The 
distribution of the indicators values within each stock were often quite large (note that outliers were 
removed from figure 2 to improve readability) indicating that the performance of each assumption could 
be very different amongst the fleets for a given stock. 

Overall, the bias appear to be small (most median values close to one), although in many cases, there 
were fleets with large positive or negative bias (e.g. values larger than 1.5 or lower that 0.5). The sQ 
assumption had in general a narrower distribution of value (although the lm assumption also had for the 
some stocks), and a median of the values often the closest to 1. On the other hand AR1 and Ave had 
wide distribution and often median values further away from 1. 



The magnitude of the error (MAPE) differed amongst stocks, with stocks such as cod, north sea sole or 
witch for which the median of the distribution was above a 50% error, and stocks such as North Sea 
plaice of Eastern channel sole for which the median was around 25%. None of the assumption performed 
clearly better than the others. Although the sQ assumption led to clearly lower MAPE values for some 
stocks (plaice and sole in the eastern channel), it did not perform clearly better than the other 
assumptions for the other stocks. 

The 1 year lag autocorrelations also varied greatly amongst stocks with the median of the values are 
close to 0 (haddock, witch, plaice and sole in the Eastern channel) and stocks positive autocorrelation 
(cod). Negative autocorrelation was often observed for sQ assumption (North Sea plaice and sole, turbot, 
whiting, witch and Eastern channel sole). 

 

Figure 2 : distribution of indicators of bias, error magnitude and autocorrelation  for predictions of fleets 
landing shares based on four different (see text for definition). Outliers were removed to improve the 
readability of the figure. 

 

In order to get a more synthetic comparison of the performance of the 4 assumptions in predicting 
landing shares, the same approach as presented for catchability and effort share assumption was 
applied. It consisted in:  

- ranking the four assumptions on the basis of their prediction error for each data point (year/fleet/stock 
combination) and looking which assumption ranks best overall, 

- computing the average rank for each assumption, 

- looking at which assumption gets the lowest MAPE, either fleet by fleet, or stock by stock. 



The overall comparison of the performance of the assumptions showed that the sQ assumption 
performed best in 55% of the cases (smaller prediction error for a larger proportion of the fleet/stock 
combinations). The sQ assumption also performs best in term of mean error (lowest MAPE) and average 
rank. The performance of the other assumptions is lower, and none of the  three is clearly better than 
the two others.  

 

Table 1 : ranking of the performance of the 4 assumptions in predicting future landing shares, based on 
all fleets and stocks. P(Best) : proportion of the fleet/stock combination for which each assumption give 
the best prediction ; MAPE : mean absolute percentage error ; mean rank : mean across all fleet/stock 
combinations of the rank of each assumption. 

 

 

 

 

2 TASK 3.2 : FORMULATING ALTERNATIVE SCENARIOS USING THE FIDES DATABASE 

At WGMIXFISH, it is common practice to allocate TACs to countries and fleets based on the latest 
available landing data. However, some stakeholders in the North Sea have challenged this approach, 
arguing that their landings do not accurately reflect their quota shares for certain species, like cod. This 
can lead to incorrect assessments of the choking effect of these stocks, as some countries' true quota 
shares may be higher than estimated based on recent landings. 

To address this issue, WGMIXFISH explored using information on actual fishing quotas and exchanges to 
better reflect each country's actual fishing opportunities. They turned to the Fisheries Data Exchange 
System (FIDES), which contains annual records of quotas and transfers for all species managed under a 
quota regime in the EU. 

Although WGMIXFISH initially used this data in their mixed-fisheries advice for 2019 and 2020, they later 
withdrew it for unknown reasons. In this section, we revisit the potential usefulness of FIDES for making 
assumptions about future quota allocations in mixed-fisheries models. 

 

2.1 CONTENT OF THE FIDES DATABASE 

2.1.1 Reconstruction of quotas per stock 

The data from FIDES contains annual quotas (initial and final, after transfers and exchanges) per country 
by species and for the different management areas for the different commercial species. The North Sea 
mixed fisheries model takes into account the fleets active in the North Sea (defined as covering areas 7d, 
4 and 3a) and also incorporates for each country, the “other” fleet that aggregates all the catches taken 
outside the North Sea for those stocks that have a distribution wider than the North Sea (e.g. saithe and 
haddock also distributed in 6a). The mixed fisheries model also has a fleet named “OTHER” that mainly 



accounts for the catches of Norway (for which no detail data is available to WGMIXFISH, until 2022) and 
an aggregation of all the minor métiers.  

A first step to the utilisation of FIDES in mixed-fisheries models consisted in making a selection of the 
quotas in the database that correspond to the stocks modelled by WGMIXFISH. In some instances, 
quantities appeared twice in FIDES and a selection of the relevant occurrence had to be made. That was 
mainly the case of stocks for which part of the TAC from EU countries were taken in Norwegian waters 
(e.g North Sea plaice, Saithe prior to 2018), but not discounted from the quotas listed in EU waters. For 
the more recent years, the EU quotas in Norwegian water were already subtracted from the quotas in EU 
waters.  

Overall, there was a good agreement (figure 3) between the sum of the initial quotas in the FIDES 
database and the agreed TAC (as published in the ICES advice sheets). There was only one noticeable 
difference, for North Sea plaice in 2019, which was a year where only part of the EU quota taken in 
Norwegian waters was removed from the quotas in EU waters.  

The sum of the final quotas, however, frequently exceeded the initial quotas. There must be quota 
transfers from area to area that we are not able to track. But that suggests that the TAC that is set in 
MIXFISH equal to advices, may not correspond to the sum of the real quotas available to the fleets 

. 

 

Figure 3 : comparison of the agreed TAC and the sum of the quotas (initial and final) from the FIDES 
database for the stocks included in the North Sea mixed fisheries model. 

 

2.1.2 Quota transfers and exchanges :  

The figure 4 shows that the sum of the quota acquisitions (positive differences between final and initial 
quota) is always larger than the sum of quota sold or traded (negative bars) for the stocks considered in 



the mixed fisheries models. There are differences amongst countries, with France and to a lesser extent 
Germany generally trading quota, while UK, Denmark and the Netherlands generally acquiring quota. 

These differences between initial and final quotas in the FIDES databased were compared with the 
reports on quota swaps2 in the case of the Netherlands, for the year 2018 (figure 5). Both sources 
broadly agreed. They indicate that the Netherlands exchanged around 2000t of the North Sea cod quota 
and acquired plaice quota, although the amounts different (11 000t according to FIDES, compared to 
5500 t from the swap records).  

A number of reasons may explain this unbalance between quota acquisition and quota trade, but they 
could not be investigated fully here. Those differences could be linked, for example, to transfers from 
other areas, to exchanges involving stocks that were not included in this analysis (because they are not 
part of the North Sea mixed fisheries model, such as the pelagic stocks), or to interannual transfers. 

 

 

Figure 4 : cumulated positive (bars above 0) and negative (bars below 0) differences between final 
quotas and initial quotas per country 

 

 
2https://circabc.europa.eu/ui/group/9d6098eb-e128-45ae-a4ca-5703b31d8257/library/2bcbd1b1-521e-48a1-9f82-
7d42ad72e475?p=1&n=10&sort=modified_DESC 



 

Figure 5 : cumulated positive and negative differences between final and initial quota from the FIDES 
database for the Netherlands in 2018 (left) and net quota swaps for the Netherlands in 2018 from EU 
reports on quota swaps 

 

2.1.3 quota consumption 

Quota consumption expressed using as reference the initial quota often show values very different from 
100% (value of 1 on figure 6), but after quota exchange, values get closer to 100%. For example in the 
case of cod, the Netherlands use typically around 50% of their initial quota, but after quota exchange, 
they use almost always close to 100% of their final quota. On the other hand, the UK who are acquiring 
quota (partly from the Netherlands) are able to have almost no overshoot of their final quota (while the 
initial quotas would have been overshot). Other examples where countries were able, though quota 
exchange, to adjust their final quotas to their needs include UK, Denmark and the Netherlands for 
Saithe, the Netherlands for eastern Channel plaice (initial quota of 0) of France with North Sea sole.  

There are also several instances where undershot (both based on initial and final quotas), as for example 
North Sea plaice (especially in the recent years) or haddock.  

 



 

 

Figure 6 : rate of quota consumption (national level) expressed as realised catch or landings (solid and 
dasher lines respectively) expressed as a proportion of initial or final quotas (red and blue respectively). 
Note that for turbot and witch, this figure is not relevant since there are not TAC defined specifically for 
these stocks (combined TAC). Note also that for whiting, the area 7d is part of the quota for area 7, 
which is not included in the calcultions here, which explain the very high consumption rates. 

 

2.2 PROPOSING ALTERNATIVE ASSUMPTIONS FOR FUTURE LANDING SHARES 

Using a similar approach as in section 1, the performance of two assumptions for future landing shares, 
based on FIDES initial and final quotas, was assessed, against the sQ assumption currently used at 
WGMIXFISH. As fishing quotas are defined at the country level (the further allocation between fleets 
being the responsibility of each member state), the analysis was conducted at the country level (i.e. 
landing shares are here shares per country and not per fishing fleet). The two alternative assumptions 
for future landing shares that were tested against the sQ one were: 

- TAC shares based initial quotas in FIDES (from year minus one), which would represent the 
official allocation keys 



- TAC shares based final quotas in FIDES (from year minus one), which would represent the 
official allocation keys and the most recent quota trading practices. 

The figure 7 shows, per country and stock, the differences between the predicted and observed landing 
shares for each of the 3 assumptions (expressed as a proportion of the mean landing share per 
country/fleet). In general, using the most recent landing shares as a predictor for future values is the 
best performing assumption. In many cases, the three assumptions seem to perform similarly (eg. Cod 
and haddock for UK, North Sea plaice and sole for the Netherlands). In other occasions, both 
assumptions based on FIDES provide a clearly wrong basis for prediction (North Sea plaice and cod for 
France). In some occasions, predictions based on final quota in FIDES and the  sQ assumption perform 
equally well (cod for the Netherlands, whiting for Germany and Belgium). 

Overall, the average error (figure 8) is lower for the sQ assumption, higher for the assumption using final 
quotas, and the highest for the assumption using initial quotas. 

 

 

Figure 7 : prediction error relative to mean landing share ((pred. – obs.)/mean(obs.)) for the current 
assumption based on landing shares, and the assumptions based on FIDES quotas. 

 



 

Figure 8 : distribution of the mean error for the 3 assumptions 

 

 

3 CONCLUSION 

- Uncertainty associated to the current assumption on landing shares 

The current assumption seems to provide a generally unbiased prediction for future landing shares 
(although some bias can occur for some stocks), but has variable levels of uncertainty associated (on 
average, mean error between 20% and 50% but can be higher). There is also a large variability around 
these overall values. Most of the very high values occasionally observed, often correspond to fleets that 
have very small (or no) landings share for a particular stock, and for which an minimal increase in 
landing shares would correspond to a very large proportion of their average share. Overall, 
autocorrelation in error is negative, meaning that a larger error one year tends to be followed by a small 
error (or possibly of the opposite sign) the following year. 

 

- Alternative assumptions using recent landing data 

The assumptions alternative to sQ shares do not, overall provide a better basis. The ranking of the 
assumptions gives a clear advantage to the currently used one. This means that although landing shares 
are difficult to predict, the best approximation for future values is the latest observed one. 

On the fleet by fleet basis, there is a small percentage of the cases where an alternative assumption 
performs better than the one currently used. However, it does not seem realistic to use case specific 
assumptions (e.g. the best performing one for each fleet/stock combination), as the best assumption 
may vary from year to year, and this can only be assessed retrospectively.  

 

- Alternative assumptions using official quotas 

The exploration of the FIDES database indicated that initial quotas are usually in line with the agreed 
TACs, but that cumulated quotas after exchange can sometimes be higher. None of the two alternative 
assumptions to predict future landing shares based on quotas from FIDES provided a better basis than 
the one currently used at WGMIXFISH. The initial quotas before exchanges are clearly not a good basis 
for assumptions on future landings shares, as countries generally exchange large quantities to 
accommodate the needs of their fleets (to increase their fishing opportunities of their target stocks or 
anticipate the risk of being choked by certain stocks). Final quotas after exchange are also not a better 



basis, as countries maybe still – consistently through the years – over (or, less likely,  underuse) their 
fishing opportunities.  

 

 

- Scenarios to be test as sensitivity test 

In order to assess the sensitivity of the mixed fisheries forecast to the assumption on landing shares, two 
sensitivity tests will be conducted, in which the model will be run using the current assumption and 
alternative one and the different model output (landings per stocks, fleet efforts) will be compared. 

o Considering that none of the alternative assumptions using past landing shares give a 
better basis than the current assumption, none of these assumptions will be used as the 
basis for a sensitivity test. Instead, as a way to quantify the impact of the actual error in 
the current assumption for landing shares, a first sensitivity test will consist in 
comparing a run in which the sQ assumption is used, with a run in which the actual 
observed landing shares are used. This will be done by using the data from the 2022 
WGMIXFISH (last data year 2021) and running the model using the configuration used 
for the 2021 advice. A second run will then be done replacing the sQ assumption for 
landing shares in 2022 by the actual values. 

o Although this was not observed in our results (nor was it carefully analysed), one can 
imagine situations where landing shares based on official allocation keys (initial quotas 
in FIDES) could represent a plausible (or at least worth investigating) scenario. For 
examples in cases where a stock suddenly becomes limiting for all fleets (after a strong 
drop in advice for example), countries normally trading their quotas may tend to keep it 
to prevent any potential choke effect. The second sensitivity test will consist in 
rerunning the model with the same configuration as for the 2022 advice, but replacing 
the sQ assumption by an assumption in which landings shares at the country level are 
based on initial quota shares from FIDES. 
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ANNEX 12: SENSITIVITY OF FLBEIA OUTPUT TO THE STATUS-QUO 
ASSUMPTIONS MADE FOR CATCHABILITY, EFFORT 
PROPORTIONS AND LANDING PROPORTIONS FOR THE NORTH 
SEA CASE STUDY INTRODUCTION 

The results of Tasks 3.1 and 3.2 highlighted that the status-quo assumption in the North 
Sea mixed fisheries model is the most robust compared to three other assumptions 
explored to configure future catchability, effort proportions per métier and landing 
proportions per fleet in the mixed fisheries model. It is therefore of interest to test how 
this assumption affects the outcome of mixed fisheries scenarios used for considerations. 
One way to do this is to compare mixed fisheries projections done using true parameter 
values with projections done using status-quo assumption for these parameters. To have 
multiple points for comparison, the model can be run for 5 different starting years (Figure 
1) to produce 5 sets of results, both for the assumption and for the true parameter values.  

 
Figure 1: Retrospective approach to test the sensitivity of mixed fisheries projections to 
the assumption made on key parameters for the North Sea case study 

This approach does not intend to reproduce past mixed-fisheries considerations. Firstly, 
because the framework has changed recently, and only the considerations of the last two 
years was based on FLBEIA runs. Secondly, because this would require a full reconditioning 
of the model for each retrospective run (including the selection of the fleets and collation 
of the corresponding data) which is a substantial task. However, since the aim was to 
compare the model outcome with the status quo assumption for model conditioning, or 
with the real data, it was not necessary for the considerations to be identically reproduced.  

1 APPROACH 

Using the North Sea mixed fisheries model conditioned in 2022, true values for catchability, 
effort and landings proportions are available up to 2021 (last data year). We performed a 
five-year retrospective analysis where a three-year projection was run starting at different 
historical time (2020 to 2016, Figure 1). For each starting year, the model was run once 
with the parameter values unaltered (true values), and a second time after applying the 
status quo assumption, i.e. parameter values for the starting year and the following one 
were set equal to the value in the year preceding the starting year, as would be the case 
in a real situation for the last year of data available. This is similarly to what is done when 
configuring the mixed-fisheries models to produce considerations. Each of the runs above 
(5 starting years, true vs. assumed parameters) were repeated for different mixed fisheries 
scenarios. However, the mixed fisheries scenarios run differed according to the parameter 
of interest, as explained below. 

1.1 Scenarios to test sensitivity to catchability and effort proportions 
assumptions 

Running the three mixed fisheries scenarios currently used in the mixed fisheries 
considerations (i.e. ‘min’, ‘max’, and ‘status-quo effort’) is not relevant for all parameters. 
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Indeed, for catchability, the ‘true’ values of catchability per métier are calculated as a 
function of observed catch, observed effort per métier, and stock biomass. As a result, if 
one of these variables changes, the catchability will also change. In the three mixed 
fisheries scenarios used for mixed fisheries considerations, the effort will vary depending 
on the scenario. In the status-quo effort scenario, the effort is set to the last observed 
effort. In the min scenario, the effort per fleet stops as soon as the first stock share of that 
fleet has been caught; and in the max scenario, the effort per fleet corresponds to the 
effort needed for all stock shares of the fleet to be caught. In addition, in the min and max 
scenarios, the catch target in the stock advice year is set to be the stock advice catch for 
the stocks included in the model. The biomass of the stocks in the model will also be 
affected by the changes in effort and catch in each scenario. Because of the changes in 
effort, biomass and catches, the true catchability estimated from observed data is not true 
anymore. A similar reasoning applies when testing of the sensitivity to effort proportion 
per métier. 

To test the sensitivity of the catchability and effort proportions assumptions in the mixed 
fisheries projections, it is therefore necessary to run a fixed effort scenario set to the true 
observed effort to keep the consistency between the effort, catches, and biomass in the 
model. For these two parameters, the only valid scenario to test the sensitivity to the 
status quo assumption is therefore running with the actual observed efforts of the fleets. 

1.2 Scenarios to test Sensitivity to stock landing proportions per fleet 

Regarding the sensitivity to the assumption on future landing proportions per fleet, the 
situation is the opposite. The landings proportions affect the quotas that are allocated to 
each fleet for all stocks, which in turn define the effort per fleet in the ‘min’ and the ‘max’ 
scenario. Therefore, the assumption on landing proportions will have an impact on the 
outcome of these two scenarios. For the status quo effort scenario, or a scenario using the 
actual realized effort, future effort is set and is therefore independent from the quotas per 
fleet. The outcome of such a scenario is therefore per definition insensitive to the assumed 
landing proportions, and this scenario will not be run in this case. 

 

1.3 Error quantification 

To quantify the sensitivity of the model output to the assumptions on model configuration, 
we compare the catches in the stock advice year per stock and the SSB per stock in the 
stock advice year +1 for the run done using a status quo assumption for the parameter 
and the run using the actual value. When ‘max’ and ‘min’ scenarios are run, efforts per 
fleets are also compared. For each of these quantities, we compute the relative error 
expressed as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞sQ assumption − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞true)/ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞true 

In order to summarize the value of these errors across the 5 runs (retro years), the mean 
percentage error is computed as a measure of overall bias (value close to zero means no 
bias). The mean of the absolute percentage error (or MAPE) is also calculated as a measure 
of the magnitude of the error. 

In addition, when ‘max’ and ‘min’ are run, we extract the most and least limiting stocks. 
When only the set effort scenario is run, we calculate a proxy for choke and least limiting 
species by extracting the stock with the minimal and maximal quota uptake per fleet. We 
then compare the results for both assumptions. 

 



Study to assess the robustness of mixed fisheries scenario assumptions 

 

3 
 

2 RESULTS 

2.1 Catchability assumption 

Errors in catch in the stock advice year due to the status-quo catchability assumption is 
largest for the Nephrops stocks in FU32 (NEP32) and other parts of the North Sea 
(NEPOTH-NS, Figure 1). This is mainly due to the fact that these stocks often have a 
catchability of zero back in time (more often than for the other stocks). It is therefore an 
artifact due to the non-reconditioning of our model when run back in time. In practice, the 
stocks with null catchability for specific métier (no catches in the terminal year) would be 
removed as caught stocks for this métier when conditioning the model. 

Error in advised catch for the fish species is lower and overall less than 25 % (median 
estimate, Figure 2). In terms of mean and mean absolute relative errors across 
retrospective years, the mean error is below 30% for most roundfish stocks and below 
20 % for flatfish (Table 1). The error increases slightly for some stocks when computed on 
the absolute scale. 

Median relative error in spawning stock biomass (SSB) due to the status-quo catchability 
assumption is below 20% for all stocks (Figure 3). Mean relative error is less than -15 % 
for all stocks but this increase to a maximum of 21 % when on the absolute scale (Table 
2). 

Comparing the proxies for choke and least limiting species between the two catchability 
assumptions illustrate very limited differences due to assuming status-quo catchability in 
the mixed fisheries projections (Figure 4). This is explained by a majority of fleets for which 
the choke or least limiting stocks are unchanged between catchability assumptions (Figure 
5). For instance, in stock advice year 2021, 30 out of 46 fleets have the same choke species 
between catchability assumptions and 33 out of 46 have the same least limiting stock. 

 

 

Figure 1: Relative error in catch (%) in the stock advice year due to using status quo 
catchability for all species in the North Sea model 
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Figure 2: Error in catch (%) in the stock advice year due to using status quo catchability 
for all fish species in the North Sea model 

 

 

Figure 3: Error in SSB (%) in the year after the stock advice year due to using status quo 
catchability for all fish species in the North Sea model. The Nephrops stocks have a fixed 
population assumption in the forecast, so SSB is unchanged and not presented 
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Table 1: Mean percentage errors (MPE, %), and mean absolute percentage errors (MAPE, 
%) in catch considerations 

stock MPE MAPE 
COD-NS 18.9 23.1 
HAD 29.9 29.9 
NEP10 -0.7 11.3 
NEP32 107.4 116.7 
NEP33 -10.0 17.7 
NEP34 -0.2 10.7 
NEP5 1.4 13.0 
NEP6 3.1 23.4 
NEP7 -24.5 32.5 
NEP8 24.2 42.8 
NEP9 24.6 42.2 
NEPOTH-NS 109.8 109.8 
PLE-EC 1.2 33.0 
PLE-NS 21.6 21.6 
POK 2.5 6.0 
SOL-EC -9.1 10.3 
SOL-NS 13.3 22.8 
TUR 7.9 14.9 
WHG-NS 29.1 29.1 
WIT 5.7 12.4 

 

Table 2: Mean relative errors (MPE, %), and mean absolute relative errors (MAPE, %) in 
SSB in the year after the considerations year 

stock MPE MAPE 
COD-NS -11.6 12.6 

HAD -14.9 15.3 
PLE-EC 0.5 12.6 
PLE-NS -3.2 3.2 

POK -10.7 10.7 
SOL-EC 0.1 6.4 
SOL-NS -10.7 17.9 

TUR -6.6 8.3 
WHG-NS -6.7 6.7 

WIT -9.1 21.1 
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Figure 4: Choke and least limiting species proxy per catchability scenario. The year is the 
stock advice year. The first column are the results using true catchability. The second 
column are the results using status quo catchability. The choke species proxy corresponds 
to the stock with minimal catch in the stock advice year and the least is the one with 
maximal catch 
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Figure 5: Number of fleets where the catchability assumption changes or not the choke or 
least limiting stock proxy per considerations year. 

 

2.2 Métiers effort proportion per fleet assumption 

Errors in catch in the considerations year due to the status-quo effort proportions 
assumption is largest for the Nephrops stocks in FU33 (NEP33) and Nephrops stocks in 
FU8 (NEP, Figure 1).  

Error in advised catch for the fish species is lower than for the Nephrops and at most 
1.07 % (median estimate, Figure 2). In terms of mean and mean absolute relative errors 
across retrospective years, the mean error is below 4 % for all roundfish stocks and below 
3.6 % for flatfish (3). The error increases slightly for some stocks when computed on the 
absolute scale. 

Median relative error in SSB due to the status-quo effort proportions assumption is below 
6 % for all stocks (median estimates Figure 3). Mean relative error is also less than -6 % 
for all stocks and increases to a maximum of 6.89% when on the absolute scale (4). 

Comparing the proxies for choke and least limiting species between the two effort 
proportion assumptions illustrates very limited differences, due to assumed status-quo 
effort proportions in the mixed fisheries projections (Figure 4). This is explained by the 
majority of fleets for which the choke or least limiting stocks remaining unchanged between 
effort proportion assumptions (Figure 5). For instance, in considerations year 2021, 44 out 
of 46 fleets have the same choke species between effort proportion assumptions, 
furthermore, they have the same least limiting stock. 
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Figure 1: Relative error in catch (%) in the considerations year due to using status quo 
effort proportions for all species in the North Sea model. 

 

 

Figure 2: Error in catch (%) in the considerations year due to using status quo effort 
proportions for fish in the North Sea model. 
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Figure 3: Error in SSB (%) in the year after the considerations year due to using status 
quo effort proportions for all fish species in the North Sea model. The Nephrops stocks 
have a fixed population assumption in the forecast, so SSB is unchanged and not 
presented. 

 

Table 3: Mean percent errors (MPE, %), and mean absolute percent errors (MAPE, %) in 
catch considerations. 

stock MPE MAPE 
COD-NS 0.1 4.2 

HAD -0.2 2.0 
NEP10 -11.7 11.7 
NEP32 -2.5 8.4 
NEP33 25.5 27.5 
NEP34 -7.6 8.0 
NEP5 3.9 7.9 
NEP6 -1.4 6.8 
NEP7 -7.3 7.3 
NEP8 6.5 24.7 
NEP9 -2.6 9.9 

NEPOTH-NS 1.3 9.3 
PLE-EC -3.6 3.8 
PLE-NS 1.1 4.4 

POK 2.0 5.5 
SOL-EC -0.6 2.0 
SOL-NS 1.7 2.0 

TUR 2.2 3.7 
WHG-NS -1.3 4.5 

WIT -4.0 4.1 
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Table 4: Mean percent errors (MPE, %), and mean absolute percent errors (MAPE, %) in 
SSB in the year after the considerations year. 

stock MPE MAPE 
COD-NS 0.3 3.1 
HAD 0.0 0.8 
PLE-EC 1.5  1.9  
PLE-NS -0.7 1.0 
POK -4.9 6.9 
SOL-EC -1.1 1.1 
SOL-NS -5.8 5.8 
TUR -2.8 3.4 
WHG-NS 0.1 1.2 
WIT 2.6 3.9 

 

 

Figure 4: Choke and least limiting species proxy per effort proportions scenario. The year 
is the considerations year. The left frames are the results using true effort proportions. 
The right frames are the results using status quo effort proportions. species proxy 
corresponds to the stock with minimal catch in the considerations year and the least is the 
one with maximal catch 
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Figure 5: Number of fleets where the effort proportion assumption changes or not the 
choke or least limiting stock proxy per considerations year 

 

2.3 Fleet Landing proportions per stock assumption 

Comparison of the runs using an assumption and the true values for the proportions of 
landings per fleets show that the errors on forecasted catches and SSB differ between the 
‘min’ and ‘max’ mixed fisheries scenarios. For most stocks, the errors are quite consistent 
across years (low variability depicted by the boxplots on Figure 1 and Figure 2). The error 
on the catch is around 50 % (underestimated) in the ‘min’ scenario, with variation amongst 
stocks, and are similar (but overestimated) for the ‘max’ scenario, with greater differences 
between stocks. 

For all stocks, the impact of the assumption in the ‘min’ scenario is that it results in lower 
catches in the considerations year than when the actual landing proportions are used (and 
consequently higher SSB the year after, Table 5). In other words, using the assumption 
results in stronger choke effects than with the real data. The real landing proportions from 
the data are the outcome of the activity of the fleets and therefore are representative for 
how each fleet have dealt with their potential quota limitations, for instance by increasing 
their quota for their potential limiting stock through exchange or transfer. It is therefore 
expected that when using the real (realised) landing proportion, the magnitude of the 
choke effects would be lower than from a forecast using status quo landing proportions. 

Conversely, for most stocks the error is positive in the ‘max’ scenario. The fleets are likely 
to not catch their full quotas for the stocks identified as least limiting, therefore the 
proportion of landing for these stocks for the fleets for which they are least limiting are 
probably lower in reality than the ones based on the status quo assumption (and hence a 
higher forecasted catch in the ‘max’ scenario with this assumption). 

Errors for the Nephrops stock (especially for the ‘max’ scenario) are larger than for the 
demersal fish. This is due to the fact that the simulations use quotas per functional unit, 
while in reality a single quota is used for the whole of the North Sea. This adds an additional 
source of discrepancy between the real landing proportions and the ones based on status 
quo assumptions.  

The stocks identified as most or least limiting are highly impacted by the assumption on 
landing proportions (Figure 3). With the true data, there is a clear principal choke stock 
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(COD-NS in 2019 and 2020, WIT in 2017, WHG-NS in 2018) and least limiting stock (PLE-
NS in 2019-2021, POK in 2017) each year. When using the assumption on landing 
proportions, the number of stocks identified both as most and least limiting increases 
substantially. This is unexpected since the actual landing proportions should reflect the 
outcome of the fleets having dealt with their potential choke issues (and presumably 
avoided some of them), which would lead to a larger diversity in choking stocks. In 
addition, the ICES mixed-fisheries considerations, using the status quo assumption, never 
identifies such a large number of most and least limiting stocks.  

 

 

Figure 1: Relative error in catch (%) in the considerations year due to using status quo 
landing proportion for all fleets in the North Sea model 
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Figure 2: Relative error in SSB (%) in the considerations year +1 due to using status quo 
landing proportion for all fleets in the North Sea model 
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Figure 3: Choke and least limiting species (considerations year) per landing proportion 
scenario. The first column are the results using true parameter values and the second 
column are the results using status quo assumption. The choke species corresponds to the 
stock for which the quota is caught with the smallest effort for each fleet (‘min’ scenario) 
and the least is the stock with a quota correspond ding to the highest effort (‘max’ 
scenario) 
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Table 5: mean percent error and mean absolute percent error related to the assumption 
on landing proportions for catch and SSB for the ‘min’ and ‘max’ scenarios 
 

Min scenario Max scenario 
 

catch SSB catch SSB 

 MPE MAPE MPE MAPE MPE MAPE MPE MAPE 

Fish stock 

COD-NS -55 55 14.2 14.2 26 26 -54.3 54.3 

HAD -57 57 10.0 10.0 53 53 -39.6 39.6 

PLE-EC -48 48 7.2 7.2 95 95 -62.1 62.1 

PLE-NS -67 67 4.0 4.0 93 93 -22.9 22.9 

POK -64 64 11.9 11.9 40 40 -63.6 63.6 

SOL-EC -23 25 2.9 4.5 62 62 -65.4 65.4 

SOL-NS -69 69 17.7 17.7 8 12 -51.8 51.8 

TUR -62 62 12.1 12.1 56 56 -52.1 52.1 

WHG-NS -55 55 4.4 4.4 107 107 -29.8 29.8 

WIT -51 51 7.1 8.2 26 26 -42.7 42.7 

Nephrops stocks 

NEP10 -11 18 
  

112 112 
  

NEP32 -78 78 
  

129 129 
  

NEP33 -69 69 
  

130 130 
  

NEP34 -20 25 
  

117 117 
  

NEP5 -69 69 
  

152 152 
  

NEP6 -46 46 
  

163 163 
  

NEP7 -19 26 
  

117 117 
  

NEP8 -15 19 
  

109 109 
  

NEP9 -21 21 
  

126 126 
  

NEPOTH-NS -47 65 
  

137 137 
  

 

3 CONCLUSIONS 

3.1 Catchability 

Use of the status-quo catchability assumption might induce an error in catch and SSB 
considerations estimates for the fish species in the North Sea model, varying on average 
between 0 and 30 %, and 0 and 15 % respectively. The catchability assumption does not 
seem to induce large differences in most and least caught stocks per fleet, which might 
indicate that the choke and least limiting stocks would be mostly well identified with the 
status-quo catchability assumption. 

3.2 Effort proportions 

The status-quo effort proportion assumption might induce an error in catch and SSB 
considerations estimates for the fish species in the North Sea model varying on average 
between 0 and 4 %, and 0 and 6 % respectively. The effort proportion assumption hardly 
induces a difference in most and least caught stocks per fleet. This might indicate that the 
choke and least limiting stocks would be mostly well identified with the status-quo effort 
proportions assumption. 

3.3 Landing proportions 

Errors are larger as expected, because in this case the results are based on the ‘min’ and 
‘max’ scenarios (set effort scenarios are not relevant for this parameter). The impact of 
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the status quo assumption on this parameter does not only affect the calculation of 
forecasted catches and stock size for a given effort, but also the future effort itself. Indeed, 
in these scenarios, the efforts correspond to the lower and largest (for the ‘min’ and ‘max’ 
scenario respectively) of the efforts corresponding to the quota of each species, and these 
quotas are based on the landing proportions used.  

The sensitivity of the mixed fisheries forecast to the landing proportion assumption appears 
high. However, there is no obvious alternative to the status quo assumption. Explorations 
have been made using FCube at WGMIXFISH (ICES, 2022) in which actual quota shares 
(before or after exchanges) are used instead of a status assumption. This resulted in some 
noticeable differences. In particular, some fleets which were strongly choked by COD-NS 
with the status quo landing proportion assumption had actually underused their quotas (or 
traded them) in the recent years, and their actual quota share were much higher that 
assumed based on recent landing proportion. For these fleets, COD-NS was still choking 
when using quota shares as an assumption for future landing proportions, but for a much 
higher effort, and their catches were overall much higher. However overall using quota 
shares does not seem to lead to a better assumption than that of status quo landing 
proportion, since it is impossible to predict annual exchanges and transfers. 

4 LIMITATIONS 

Not having re-conditioned to exactly reproduce the previous mixed-fisheries considerations 
led to more issues than initially foreseen, and has resulted in limitations to the validity of 
the results presented here.  

A first issue is related to the stocks included in the analysis for each métier. For a number 
of fleets, stocks are included in the catches of their métiers only for some years (the most 
recent ones). When running the model starting further back in time, those stocks remain 
in the list of stocks taken by these métiers, even though catches are zero. This leads to 
setting quotas for zero catch for these stocks, which fully chokes the fleet (appearing as 
NA on the Figure 3). 

A second issue is that the runs were also parameterised using historical ICES mixed-fishery 
considerations to define the quotas of the fleets. The biological basis for the retrospective 
runs was the assessments available in 2022, which can differ substantially from the ones 
used back in time as a basis for both the single stock and the mixedfisheries considerations 
(due to annual revisions in assessment perception or changes in methods after 
benchmarks). Therefore, it cannot be expected that most and least limiting stocks in this 
analysis correspond to those identified in the historical mixedfisheries considerations.  

Not having been able to fully re-condition the model for each retrospective year might also 
be the reason for the unexpected results regarding most and least limiting stocks for the 
landing proportion assumption.  

Reconditioning the model is a very difficult task, which would involve, for each retrospective 
run, to entirely reconstruct each fleet-object (landing and discards at age per métier for 
each fleet, and corresponding effort) which is normally achieved after several days of work 
at each WGMIXFISH meeting. The stock object from the earlier assessments should also 
be used, and the corresponding assumption on future biology should be updated.  

Since the lack of reconditioning is likely an additional source of discrepancy, it can be 
expected that the analysis presented here overestimates the sensitivity of the model output 
to the assumptions on configuration. However, it is not possible to establish the magnitude 
of this overestimation. 
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ANNEX 13: CHARACTERISING UNCERTAINTY ON THE BAY OF 
BISCAY DEMERSAL FISHERIES FORECASTS 

1 INTRODUCTION  

The main objective of the study was to evaluate the sensitivity and uncertainty of catch 
projections in mixed fisheries models, and to ensure effective conditioning to accurately 
represent the uncertainty in the output and characterize it. With that aim, an uncertainty 
analysis and a Global Sensitivity Analysis (GSA) were carried out. These consist of 
characterising the uncertainty of parameters in the forecast based on historical data or 
existing knowledge; quantifying the uncertainty in the output indicators; and identifying 
the parameters that have the highest contribution to the output variance.  

The Bay of Biscay demersal mixed fisheries has been selected as a case study for this 
work, using data on the French and Spanish demersal fisheries operating in the region. 
Input data was based on the available information from ICES WGMIXFISH 2022 (ICES, 
2022) and some improved information on the Spanish fleet from AZTI database, 
covering 2009-2021 period. 

2 METHODOLOGY  

2.1 Simulation framework 

Simulations were carried out using FLBEIA software (García et al., 2017). In this analysis 
we have followed the approach and guidelines presented in Garcia et al. (2021), using 
5,000 replicates, both for the uncertainty analysis and for each of the GSA matrices. 

In present study we have focused on the uncertainty conditioning of parameters directly 
related with the slots in FLFleet object (which contains most of the fleet-related 
information), namely: selectivity, catchability, quota-share and effort proportion by 
métier. 

All the code used to carry out present study have been made available in a GitHub 
repository (1). 

2.2 Uncertainty conditioning  

The focus of this case study was on the uncertainty conditioning of parameters directly 
related with catchability, effort proportion, and quota share. 

2.2.1 Catchability 

The catchability by fleet was calculated based on the model used for the simulation of 
catch production. In this case we were using FLBEIA (García et al., 2017) with a Cobb-
Douglass function and the catch is given by: 

𝐶𝐶𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚,𝑠𝑠𝑠𝑠,𝑎𝑎 = 𝑞𝑞𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚,𝑠𝑠𝑠𝑠,𝑎𝑎 ⋅ 𝐸𝐸𝑓𝑓𝑓𝑓 ⋅ 𝑒𝑒𝑒𝑒𝑠𝑠𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚 ⋅ 𝐵𝐵𝑠𝑠𝑠𝑠,𝑎𝑎 

where 𝑓𝑓𝑓𝑓, 𝑚𝑚𝑚𝑚, 𝑠𝑠𝑠𝑠 and 𝑎𝑎 are the subscripts for fleet, métier, stock and age respectively. 𝐶𝐶 
denotes total catch, 𝑞𝑞 catchability, 𝐸𝐸 effort at fleet level, 𝑒𝑒𝑒𝑒𝑒𝑒 effort proportion of fleet 𝑓𝑓𝑓𝑓 
in métier 𝑚𝑚𝑚𝑚 and 𝐵𝐵 total biomass of stock 𝑠𝑠𝑠𝑠 and age 𝑎𝑎. The catchability is then given 
by: 

 

(1) https://github.com/IrishMarineInstitute/STARMixFish/tree/main/lot_2/TASK_3 
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𝑞𝑞𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚,𝑠𝑠𝑠𝑠,𝑎𝑎 =
𝐶𝐶𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚,𝑠𝑠𝑠𝑠,𝑎𝑎

𝐸𝐸𝑓𝑓𝑓𝑓 ⋅ 𝑒𝑒𝑒𝑒𝑠𝑠𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚 ⋅ 𝐵𝐵𝑠𝑠𝑠𝑠,𝑎𝑎
 

In the event of a change to the catch production model, the calculation of catchability 
should be adjusted accordingly, but the methodologies outlined in the remainder of this 
Annex remain applicable. In the following sections, for simplicity, the subscripts for fleet 
and métier are omitted, but all the calculations occur at métier level. 

2.2.1.1 Decomposition in intensity and selectivity components 

To condition catchability we wanted to obtain a unidimensional parameter that measures 
the intensity with which the fleet catches the stocks. The objective was to be able to 
incorporate into the analysis the correlation in the yearly intensity the fleets perform in 
the stocks they exploit. 

For each stock in métier, yearly catchabilities per age (𝐪𝐪𝐬𝐬𝐬𝐬,𝐲𝐲,𝐚𝐚) are described by the 
following matrix: 

 

Where 𝐴𝐴𝑠𝑠𝑠𝑠 represents the number of age classes in the stock and 𝑌𝑌 the number of years 
in the data. 

During the process of conditioning catchability, focus was primarily on incorporating the 
effects of interspecies interactions that occur within each métier. To do so, 
unidimensional year effects per stock were extracted (intensity) from the age effect 
(selectivity) by writing catchability in the following form: 

𝐪𝐪st,y,a =  𝐒𝐒st,y,a ⋅ 𝐈𝐈𝐬𝐬𝐬𝐬,𝐲𝐲  

where 𝑆𝑆 is a proxy of selectivity and 𝐼𝐼 is the intensity with which the stock is fished. We 
can define 𝐼𝐼𝑠𝑠𝑠𝑠,𝑦𝑦 as the mean of the yearly intensities over reference ages, i.e.: 

𝐈𝐈𝐬𝐬𝐬𝐬,𝐲𝐲 =
𝟏𝟏

𝐚𝐚{𝟏𝟏𝐬𝐬𝐬𝐬} − 𝐚𝐚{𝟎𝟎𝐬𝐬𝐬𝐬} +  𝟏𝟏
 � 𝒒𝒒𝒔𝒔𝒔𝒔,𝒚𝒚,𝒂𝒂

𝐚𝐚=𝐚𝐚𝟏𝟏

𝐚𝐚=𝐚𝐚𝟎𝟎

    

Then the selectivity would be equal to the ratio between catchability and intensity: 

Sst,y,a =  
qst,y,a

Ist,y
 

In this way, the intensity 𝐼𝐼𝑠𝑠𝑠𝑠,𝑦𝑦 includes an absolute level of the catchability, and the 
selectivity the deviations around the mean. 

2.2.1.2 Intensity 

For intensity, we analysed the correlation structure between stocks under the 
assumption that changing the intensity with which one stock is fished, the intensity in 
the other fish caught together also changes (e.g. when two stocks have a high overlap 
in space). We assumed intensities are log-normally distributed with a variance-
covariance matrix at fleet-métier level. Then in the uncertainty analysis we sampled 
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catchability using a multi-lognormal distribution with the parameters obtained from the 
sample 𝐼𝐼𝑠𝑠𝑠𝑠,𝑦𝑦 values, where the list of stocks depended on the fleet and métier. 

2.2.1.3 Selectivity 

We model selectivity using a spline to obtain an overall estimate of the selectivity curve 
over time from which we can then sample to introduce uncertainty in both the 
uncertainty and the selectivity analysis. 

2.2.2 Effort proportion 

To introduce uncertainty in the effort proportion, a Dirichlet distribution was used to 
model the proportions. The Dirichlet distribution is a versatile extension of the beta 
distribution, which is commonly applied to model proportions across multiple 
dimensions. In this case a null model was fitted (i.e. only intercept model) to the 
observed proportions.  

2.2.3 Quota share 

Similar to the approach used for effort proportion, uncertainty in quota share was 
introduced by utilizing a Dirichlet distribution to model the proportions based on a null 
model consisting of only an intercept model.  

2.3 Global Sensitivity Analysis  

2.3.1 Background: SOBOL method 

Sobol variance decomposition method is based on the decomposition of the output 
variance as a function of the variance of conditional expectations of the model output 
on the input factors Sobol (1993). 

Sobol (1993) proved that any square integrable function 𝜑𝜑(𝐗𝐗) = 𝑌𝑌 in 𝛺𝛺 = [0,1]𝐾𝐾 can be 
decomposed as: 

 
where each individual term is also square integrable and depends solely on the input 
factors corresponding with its index. This expansion is called high dimensional model 
representation. Furthermore, if the terms in the equation above have zero mean (i.e. 
the integral of each term over each of the variables is zero), the terms in the equation 
above are orthogonal and can be calculated using the conditional expectations of the 
model output. Mathematically: 
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and so on. Now, if we square on both sides of the first equation, replacing the terms in 
the right-hand side by the expression obtained in previous equations, and integrate over 
𝜔𝜔, we get: 

∫ 𝜑𝜑2(𝐗𝐗)𝑑𝑑𝐗𝐗 − 𝜑𝜑02 = � � ∫
𝐾𝐾

𝑖𝑖1<⋯<𝑖𝑖𝑠𝑠

𝐾𝐾

𝑠𝑠=1

𝜑𝜑𝑖𝑖1…𝑖𝑖𝑠𝑠
2 𝑑𝑑𝑋𝑋𝑖𝑖1 … 𝑑𝑑𝑋𝑋𝑖𝑖𝑠𝑠 

The constants: 

𝑉𝑉 = ∫ 𝜑𝜑2(𝐗𝐗)𝑑𝑑𝐗𝐗 − 𝜑𝜑02 and 𝑉𝑉𝑖𝑖1…𝑖𝑖𝑠𝑠 = ∫ 𝜑𝜑𝑖𝑖1…𝑖𝑖𝑠𝑠
2 𝑑𝑑𝑋𝑋𝑖𝑖1 …𝑑𝑑𝑋𝑋𝑖𝑖𝑠𝑠 

correspond with the conditional variances of the model output on the input factor and: 

𝑉𝑉 = � � 𝑉𝑉𝑖𝑖1…𝑖𝑖𝑠𝑠

𝐾𝐾

𝑖𝑖1<⋯<𝑖𝑖𝑠𝑠

𝐾𝐾

𝑠𝑠=1

 

In variance decomposition methods, the variance is used to characterize the variation 
in the output of simulation models. Hence, Sobol (1993) proposed to use the ratio 
between the conditional variances and the total variance as sensitivity measures, i.e.: 

𝑆𝑆𝑖𝑖1,…,𝑖𝑖𝑠𝑠 =
𝑉𝑉𝑖𝑖1,…,𝑖𝑖𝑠𝑠
𝑉𝑉

 

Hence, 

� � 𝑆𝑆𝑖𝑖1,…,𝑖𝑖𝑠𝑠

𝐾𝐾

𝑖𝑖1<⋯<𝑖𝑖𝑠𝑠

𝐾𝐾

𝑠𝑠=1

= 1 

And, 

�𝑆𝑆𝑖𝑖

𝐾𝐾

𝑖𝑖=1

= 1 

means that the model is additive and there is no interaction between input factors. On 
the contrary, values much lower than 1 indicate that the model is highly non-linear. 

In simple cases, the sensitivity indices can be calculated analytically. However, in most 
cases the models are too complex to allow the derivation of analytical expressions for 
the integrals to obtain the elements in the first equation. For each of the sensitivity 
indices, the numerical approximation developed by Sobol (1993) requires evaluating the 
simulation model in a large set of Monte Carlo points. Hence, the computational cost of 
calculating all the terms in the decomposition is equal to 𝑁𝑁 ⋅ 2𝐾𝐾, where 𝐾𝐾 corresponds 
with the number of input factors and 𝑁𝑁 with the base sample size that should be big 
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enough to ensure the convergence of the method. Hence, the number of model 
evaluations required can be unapproachable even for relatively low number of factors. 

As an alternative, Homma and Saltelli (1996) proposed summarizing the contribution of 
the input factors to the output variance using two sensitivity indices: first order and 
total-effect indices. The first is equal to the ratio between the variance of the conditional 
expectation of the model output on 𝑘𝑘-th input factor and the total variance of the model 
output, mathematically: 

𝑆𝑆𝑘𝑘 =
𝑉𝑉�𝐸𝐸(𝑌𝑌|𝑋𝑋𝑘𝑘)�

𝑉𝑉(𝑌𝑌)  

where 𝑋𝑋𝑘𝑘 denotes the 𝑘𝑘-th input factor, 𝑌𝑌 = 𝜑𝜑(𝐗𝐗) is the unidimensional output of the 
simulation model represented by 𝜑𝜑 and 𝐗𝐗 = (𝑋𝑋1, … ,𝑋𝑋𝐾𝐾) represents the model input. This 
index represents the contribution of the 𝑘𝑘-th input factor to the output variance in 
isolation. 

In turn, the total-effect index is equal to the expected value of the conditional variance 
of the model output on all the input factors but one, the 𝑘𝑘-th input factor, denoted here 
as 𝐗𝐗∼𝑘𝑘. It represents the contribution to the variance of the 𝑘𝑘-th input factor alone and 
in combination with the remaining input factors. Mathematically it is written as: 

𝑆𝑆𝑇𝑇𝑘𝑘 =
𝐸𝐸�𝑉𝑉(𝑌𝑌|𝐗𝐗∼𝑘𝑘)�

𝑉𝑉(𝑌𝑌)  

In this way the decomposition of the output variance can be summarized using just two 
indices for each factor, the first-order and the total-effect sensitivity indices and the cost 
of the analysis is reduced to 𝑁𝑁 ⋅ (𝐾𝐾 + 2). 

2.3.2 Numerical calculation of the sensitivity indices 

We followed the numerical approximations proposed by Saltelli et al. (2010) which are 
based on the work by Sobol (2001). Saltelli et al. (2010) compared different approaches 
for calculating the Sobol sensitivity indices using Monte Carlo simulations. Here, we have 
used the approach that was identified by the authors as the best in terms of convergence 
rate. 

First, two independent matrices of dimension 𝑁𝑁 × 𝐾𝐾NG are constructed, 𝐴𝐴 and 𝐵𝐵, the so-
called sample and re-sample matrices, where 𝑁𝑁 and 𝐾𝐾NG are the number of base 
simulations and input factors of the model, respectively. Each row in the matrices 
correspond with a random sampling point in the input space 𝛺𝛺. The input factors can be 
multivariate, and therefore, 𝐾𝐾NG can be larger than the number of effective input factors 
in the GSA, 𝐾𝐾. When the input factors are aggregated in groups, instead of considering 
every input factor alone, the elements in the Sobol decomposition that include this input 
factor represent the contribution to the variance of all the input factors in the group as 
a whole, in isolation in the case of index, and in combination with other sets of input 
factors, in the case of the rest of the elements in the decomposition of variance. Hence, 
the input factors should be grouped sensibly to obtain meaningful results. 

Second, additional 𝐾𝐾 matrices, {𝐴𝐴𝑘𝑘𝐵𝐵}𝑘𝑘∈1,…,𝐾𝐾, are constructed from the 𝐴𝐴 and 𝐵𝐵 matrices. 
Each 𝐴𝐴𝑘𝑘𝐵𝐵 matrix is equal to 𝐴𝐴, except in the columns that correspond to the 𝑘𝑘-th input 
factor, which are taken from matrix 𝐵𝐵. If the 𝑘𝑘-th input factor is a group all the columns 
corresponding to this factor are replaced. Finally, the model is applied to each of the 
rows of 𝐴𝐴, 𝐵𝐵, and {𝐴𝐴𝑘𝑘𝐵𝐵}𝑘𝑘∈1,…,𝐾𝐾 matrices. The numerator in the mathematical expression for 
the first-order index is then approximated by: 

𝑉𝑉�𝐸𝐸(𝑌𝑌|𝑋𝑋𝑘𝑘)� =
1
𝑁𝑁
�𝜑𝜑
𝑁𝑁

𝑖𝑖=1

(𝐵𝐵𝑖𝑖.) ⋅ �𝜑𝜑�𝐴𝐴𝑘𝑘,𝑖𝑖.
𝐵𝐵 � − 𝜑𝜑(𝐴𝐴𝑖𝑖.)� 

where 𝐴𝐴𝑖𝑖., 𝐵𝐵𝑖𝑖 . and 𝐴𝐴𝑘𝑘,𝑖𝑖.
𝐵𝐵  denote the 𝑖𝑖-th row of matrices 𝐴𝐴, 𝐵𝐵, and 𝐴𝐴𝑘𝑘𝐵𝐵, respectively. In turn, 

the numerator in the mathematical expression for the total-effect index is estimated as: 



Study to assess the robustness of mixed-fisheries scenario assumptions 

6 
 

𝐸𝐸�𝑉𝑉(𝑌𝑌|𝐗𝐗∼𝑘𝑘)� =
1

2𝑁𝑁
��𝜑𝜑(𝐴𝐴𝑖𝑖.) − 𝜑𝜑�𝐴𝐴𝑘𝑘,𝑖𝑖.

𝐵𝐵 ��
2

𝑁𝑁

𝑖𝑖=1

 

Finally, the total variance 𝑉𝑉(𝑌𝑌) is approximated by: 

𝑉𝑉(𝑌𝑌) =
1
𝑁𝑁
�𝜑𝜑
𝑁𝑁

𝑖𝑖=1

(𝐴𝐴𝑖𝑖.)2 − �
1
𝑁𝑁
�𝜑𝜑
𝑁𝑁

𝑖𝑖=1

(𝐴𝐴𝑖𝑖.)�

2

 

The convergence of the estimators can be assessed using the bootstrap confidence 
intervals’ width. 

2.3.2.1 Application of Sobol to GSA of mixed fisheries considerations using FLBEIA 

The numerical approximation of the Sobol indices is a sampling method that basically 
consist of applying the model iteratively, conditioning the model in a specific way in 
each iteration. To accelerate the convergence of the method the sampling starts with 
the sampling of the unit hypercube 𝑈𝑈𝑁𝑁 = 𝑈𝑈[0,1]𝐾𝐾 using Sobol random numbers. Sobol 
random numbers ensure that the hypercube is sampled in an even way while 
maintaining randomness. The Sobol random numbers in 𝑈𝑈𝑁𝑁 are then transformed into 
the original sampling space 𝛺𝛺 using quantile transformation for univariate variables and 
special transformations for multivariate distributions. 

Steps in practice in this particular case: 

• Generate 2 ⋅ 𝑁𝑁 samples from 𝑈𝑈𝐾𝐾 using Sobol sampler: {(𝑢𝑢1𝑗𝑗 , … ,𝑢𝑢𝐾𝐾𝐾𝐾}𝑗𝑗=12⋅𝑁𝑁 . 
• Transform the {(𝑢𝑢1𝑗𝑗 , … ,𝑢𝑢𝐾𝐾𝐾𝐾} into the original: 

o Dirichlet distribution (effort and quota shares). 
o Multivariate log-normal distribution (intensity). 
o Empirical quantile transformation (selectivity). 

• Divide the 2 ⋅ 𝑁𝑁 samples in two sets, A and B. 
• For the K input factors create the AB1, … , ABK samples, also known as the C1, … , CK 

samples. For any iteration, the ABj sample is equal to the A sample except in the 
element of the j-th dimension that equal to the j-th element in the B sample.   

• Apply the simulation model ϕ in all the iterations of the samples, A, B, AB1, … , ABK, i.e, 
calculate ϕ(A), ϕ(B), ϕ(AB1), …, ϕ(ABK). 

• Calculate the sensitivity indices using the equations above. 
 

3 BAY OF BICAY CASE STUDY 

Analysis was focused on the French and Spanish demersal fisheries operating in the Bay 
of Biscay. For ensuring effective conditioning of the models to accurately represent the 
uncertainty in the output and characterize it using the GSA, input data was based on 
the available information from ICES WGMIXFISH 2022 (ICES, 2022) and some improved 
information on Spanish fleet from AZTI database, covering 2009-2021 period. 

3.1 Exploratory Data Analysis 

In this section we explore the fleet structure in terms of métiers and their relevance, 
and the stocks caught in each of them. 

A graphical representation of the fleets and métiers considered in the case study is 
shown in Figure 1. The French fleet ‘FR_OTB_10<24m’ (composed of French bottom 
otter trawlers 10 to 24m in length) is the most important fleet. The Spanish 
‘SP_OTB_24<40m’ (Spanish 24 to 40m bottom trawlers) is the second most important 
fleet among the trawlers which are the most mixed gears. Thus, we focus the analysis 
on these two fleets. 
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Table 1 shows the contribution of each of the fleets to the total catch in the fishery. The 
column ‘included’ indicates if the fleet has been included in the uncertainty and 
sensitivity analysis or not. The ‘FR_MIS_all’ fleet has been left out because it is not a 
‘real’ fleet. 

 

 

Figure 1: Fleets and métiers included in the Bay of Biscay case study. Each fleet is 
represented by a different colour. The size of each rectangle is proportional to the 
average total landings in the fleet over the last three data years (2019-2021). 
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Table 1: Fleets' contribution to the total catch in the Bay of Biscay fishery. 

 
As a proof of concept, the initial analysis was focused on the analysis and conditioning 
of the two most important trawl fleets in terms of total landings. These were French 
bottom otter trawlers 10 to 24m in length (FR_OTB_10<24m) and Spanish 24 to 40m 
bottom trawlers (ES_OTB_24<40m). As the data time series should be as long as 
possible for carrying this type of analysis, the longest data time series available to Bay 
of Biscay mixed fisheries case study was used, covering the years 2009 to 2021. 
Unresolvable data gaps occurred in the earlier part of the time series, limiting use to 
the years 2014 to 2021 in some instances.  

For the two fleets included in the analysis, Figure 2shows the catch composition of each 
of the métiers in the fleet.  
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Figure 2: Catch composition for the fleets and included in the Bay of Biscay case study 
in the period 2019-2021. Each stock is represented by a different colour.  

3.2 Uncertainty conditioning 

We will focus first in the French and Spanish bottom trawlers, the French because they 
are the most important ones, and the Spanish ones because we have haul by haul data 
to investigate the approach described above. 

First, we calculate the intensity defined above and then analyse the following properties 
graphically: 

• The time series of intensity. 
• The correlation between intensity for a given stock along the métiers. 
• The correlation between intensity for a given métier along stocks. 

3.2.1 French bottom otter trawlers (FR_OTB_10<24m) 

Obtained catchability time series for the French bottom trawler fleet are shown in Figure 
3. The variability in intensity was stock and métier dependent. In general, it was below 
50 %. The variability in seabass and sole was quite low. There were no clear correlations 
between the catchability of the stocks (Figure 4). At métier level, in some cases there 
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were apparent correlations between the catchability of the stock in the three different 
métiers. 

 
Figure 3: Catchability time series for French bottom trawler fleet by métier (columns) 
and stock (rows). Stocks' codes correspond to black-bellied anglerfish (ANK), seabass 
(BSS), hake (HKE), horse mackerel (HOM), mackerel (MAC), megrim (MEG), white 
anglerfish (MON), Norway lobster (NEP), pollack (POL), thornback ray (RJC), cuckoo 
ray (RJN), undulate ray (RJU), smooth-hound (SDV), sole (SOL), blue whiting (WHB), 
and whiting (WHG). 
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Figure 4: Correlation of catchabilities by fleet and métier among stocks for the French 
bottom trawler fleet. Stocks' codes correspond to black-bellied anglerfish (ANK), 
seabass (BSS), hake (HKE), horse mackerel (HOM), mackerel (MAC), megrim (MEG), 
white anglerfish (MON), Norway lobster (NEP), pollack (POL), thornback ray (RJC), 
cuckoo ray (RJN), undulate ray (RJU), smooth-hound (SDV), sole (SOL), blue whiting 
(WHB), and whiting (WHG). 
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3.2.2 Spanish bottom trawlers (ES_OTB_24<40m) 

For the Spanish bottom trawler fleet, the variability in intensity was not very different 
to the variability in the French fleet (Figure 5). In this case the correlation between the 
intensity of the same stock for the different métiers was not apparent (Figure 6). 

 
Figure 5: Catchability time series for Spanish bottom trawler fleet by métier (columns) 
and stock (rows). Stocks' codes correspond to black-bellied anglerfish (ANK), seabass 
(BSS), hake (HKE), horse mackerel (HOM), mackerel (MAC), megrim (MEG), white 
anglerfish (MON), Norway lobster (NEP), pollack (POL), thornback ray (RJC), cuckoo 
ray (RJN), undulate ray (RJU), smooth-hound (SDV), sole (SOL), blue whiting (WHB), 
and whiting (WHG). 
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Figure 6: Correlation of catchabilities by fleet and métier among stocks for the Spanish 
bottom trawler fleet. Stocks' codes correspond to black-bellied anglerfish (ANK), 
seabass (BSS), hake (HKE), horse mackerel (HOM), mackerel (MAC), megrim (MEG), 
white anglerfish (MON), Norway lobster (NEP), pollack (POL), thornback ray (RJC), 
cuckoo ray (RJN), undulate ray (RJU), smooth-hound (SDV), sole (SOL), blue whiting 
(WHB), and whiting (WHG). 
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This analysis highlights the importance of considering covariance between catchabilities 
when introducing uncertainty in those parameters. We have uncertainty in two levels, 
the stocks and the métiers. 

3.2.3 Catchability 

Given that certain species intensities (Ist,y) covary in time (see Figure 4 and Figure 6), 
uncertainty estimates were obtained by employing a multivariate lognormal distribution 
based on the within métier variance-covariance matrix of species. In case the 
multivariate lognormal produced outliers, i.e. values that differ greatly from observed 
intensities, we applied an envelope that constrained uncertainty estimates to the 95 % 
confidence interval of observed intensities per stock. 

The uncertainty associated with selectivity (qst,a, Figure 8), on the other hand, was 
derived from a generalized additive model (GAM) in which age was incorporated as a 
spline covariate (Figure 7) and assuming a gamma distribution for selectivity. The 
resulting uncertainty sometimes fell out of the observed selectivity; thus, we applied an 
envelope that constrained uncertainty estimates to the 95 % confidence interval of 
observed selectivity levels. 

 

 

Figure 7: Fitted spline on age in 
gamma generalized additive 
model over selectivity (𝒒𝒒𝒔𝒔𝒔𝒔,𝒂𝒂) 

 

Figure 8: Resulting uncertainty associated to 
selectivity within a stock and métier. 

 

3.2.4 Quota share 

Quota shares by fleet for each of the simulated stocks were calculated based on the 
proportion of the total catch by stock captured by these fleet. Assuming that this is the 
final quota obtained by the fleet after the different quota swaps achieved during the 
year. 

 

4 SCENARIOS 

The results are based in 5,000 simulations, which correspond with 175,000 iterations in 
total for the GSA (5,000 iterations multiplied by the number of effective input factors 
33 plus 2).  
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The following three alternative fleet dynamic scenarios were analysed:  

1. ‘fixEff’ or ‘sq_E’, where the effort is an input parameter equal to the average of last 
three years; 

2. ‘max’, where the fleets operate until the last quota is exhausted; and 
3. ‘min_HOM’ or ‘min-exhom’, where the fleets stop fishing when the first quota, except 

that of horse mackerel (HOM), is exhausted. This year catch advice for horse 
mackerel is 0 and if this was included in the simulation the effort would be zero and 
there would not be any variability in the results. 

 

5 RESULTS 

5.1 Uncertainty conditioning  

5.1.1 Catchability 

Figure 9 to Figure 21 show simulated catchabilities by métier for each of the stocks 
targeted by the two fleets analysed. Simulated values are based on variability in 
catchabilities in the period between 2009 and 2021. 

 

Figure 9: Black-bellied anglerfish (ANK) catchability by métier. Each year data is 
represented by a different colour. Solid colour lines represent historical observed values 
(2009-2021) and black lines to median estimates in the projection period (2022-2024), 
with the grey area representing the 90 % confidence intervals. 
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Figure 10: Seabass (BSS) catchability by métier. Each year data is represented by a 
different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 
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Figure 11: Hake (HKE) catchability by métier. Each year data is represented by a 
different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 
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Figure 12: Horse mackerel (HOM) catchability by métier. Each year data is represented 
by a different colour. Solid colour lines represent historical observed values (2009-
2021) and black lines to median estimates in the projection period (2022-2024), with 
the grey area representing the 90 % confidence intervals. 

 



Study to assess the robustness of mixed-fisheries scenario assumptions 

19 
 

 

Figure 13: Mackerel (MAC) catchability by métier. Each year data is represented by a 
different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 
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Figure 14: Megrim (MEG) catchability by métier. Each year data is represented by a 
different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 
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Figure 15: White anglerfish (MON) catchability by métier. Each year data is represented 
by a different colour. Solid colour lines represent historical observed values (2009-
2021) and black lines to median estimates in the projection period (2022-2024), with 
the grey area representing the 90 % confidence intervals. 



Study to assess the robustness of mixed-fisheries scenario assumptions 

22 
 

 

Figure 16: Norway lobster (NEP) catchability by métier. Each year data is represented 
by a different colour. Solid colour lines represent historical observed values (2009-
2021) and black lines to median estimates in the projection period (2022-2024), with 
the grey area representing the 90 % confidence intervals. 
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Figure 17: Pollack (POL) catchability by métier. Each year data is represented by a 
different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 
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Figure 18: Smooth-hound (SDV) catchability by métier. Each year data is represented 
by a different colour. Solid colour lines represent historical observed values (2009-
2021) and black lines to median estimates in the projection period (2022-2024), with 
the grey area representing the 90 % confidence intervals. 
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Figure 19: Sole (SOL) catchability by métier. Each year data is represented by a 
different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 
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Figure 20: Blue whiting (WHB) catchability by métier. Each year data is represented by 
a different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 
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Figure 21: Whiting (WHG) catchability by métier. Each year data is represented by a 
different colour. Solid colour lines represent historical observed values (2009-2021) 
and black lines to median estimates in the projection period (2022-2024), with the grey 
area representing the 90 % confidence intervals. 

 

5.1.2 Effort proportion 

Figure 22 shows simulated effort proportions by métier for the two main target fleets of 
the study, simulated values are based on the observed effort proportions in the period 
2009-2021. 
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Figure 22: Effort proportion by métier for the French bottom otter trawlers 10 to 24 m 
in length (FR_OTB_10<24m) and the Spanish 24 to 40 m bottom trawlers 
(ES_OTB_24<40m). Each métier is represented by a different colour. Solid lines 
represent historical observed values (2009-2021) and median estimates in the 
projection period (2022-2024) and the coloured area represents the 90 % confidence 
intervals. 

5.1.3 Quota share 

Figure 23 shows simulated quota shares for the stocks targeted by the analysed fleets. 
Simulated values are based on historical quota shares and their variability (since 2009). 
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Figure 23: Quota share for the French bottom otter trawlers 10 to 24 m in length (FR_OTB_10<24m). Each stock is represented by a different 
colour. Solid lines represent historical observed values (2015-2021) and median estimates in the projection period (2022-2024) and the coloured 
area represents the 90 % confidence intervals. Stocks' codes correspond to black-bellied anglerfish (ANK), seabass (BSS), hake (HKE), horse 
mackerel (HOM), mackerel (MAC), megrim (MEG), white anglerfish (MON), Norway lobster (NEP), pollack (POL), thornback ray (RJC), cuckoo 
ray (RJN), undulate ray (RJU), smooth-hound (SDV), sole (SOL), blue whiting (WHB), and whiting (WHG). 
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5.2 Uncertainty analysis 

5.2.1 French bottom otter trawlers (FR_OTB_10<24m) 

The impact of fleet parameter uncertainty on model outputs varied depending on the 
effort scenarios considered (Figure 24 and Figure 25). The larger variation was observed 
in the ‘max’ scenario, both in terms of expected effort and forecasted landings. 

Extremely large efforts simulated in the ‘max’ scenario (Figure 24) compared to status 
quo effort were due to cases with very low simulated catchabilities for some stocks, 
mainly hake and megrim.  

Regarding forecasted landings, very little variation was observed in most of the 
scenarios, except for the ‘max’ scenario where very larger variation was observed (but 
still much lower than variation observed for effort in this scenario). This variation in 
forecasted landings was probably coming from the uncertainty in catchability coupled 
with the technical interactions among different stocks. 

 

Figure 24: Variation in effort for the French bottom otter trawlers 10 to 24 m in length 
(FR_OTB_10<24m), given uncertainty in stocks' catchability, effort proportion by 
métier and quota shares by fleet and stock under alternative mixed fisheries scenarios 
Bars represent median estimates and vertical lines the 90 % confidence intervals. 
Different scales are used due to the big differences observed between scenarios. 
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Figure 25: Variation in catches by stock for the French bottom otter trawlers 10 to 24 
m in length (FR_OTB_10<24m), given uncertainty in stocks' catchability, effort 
proportion by métier and quota shares by fleet and stock under alternative mixed 
fisheries scenarios Bars represent median estimates and vertical lines the 90 % 
confidence intervals. Stocks' codes correspond to black-bellied anglerfish (ANK), 
seabass (BSS), hake (HKE), horse mackerel (HOM), mackerel (MAC), megrim (MEG), 
white anglerfish (MON), Norway lobster (NEP), pollack (POL), smooth-hound (SDV), 
sole (SOL), and whiting (WHG). 

 

Mackerel was identified as the main choke species (with 73 % probability, Figure 26) 
followed by pollack, sole and seabass (with 10 %, 9 % and 6 % probabilities, 
respectively). 
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Figure 26: Frequency of choking effect by stock for the French bottom otter trawlers 10 
to 24 m in length (FR_OTB_10<24m). Each stock is represented by a different colour. 
Stocks' codes correspond to mackerel (MAC), pollack (POL), sole (SOL), seabass (BSS), 
whiting (WHG), black-bellied anglerfish (ANK), white anglerfish (MON), smooth-hound 
(SDV), megrim (MEG), and hake (HKE). 

5.2.2 Spanish bottom trawlers (ES_OTB_24<40m) 

The impact of fleet parameter uncertainty on model outputs varied depending on the 
effort scenarios considered (Figure 27 and Figure 28). The larger variation was observed 
in the ‘max’ scenario, both in terms of expected effort and forecasted landings. 

Extremely large efforts obtained in the ‘max’ scenario (Figure 27) compared to status 
quo effort were due to cases with very low simulated catchabilities for some stocks, 
mainly for blue whiting, but also for smooth-hound and white anglerfish. These high 
variations in the ‘max’ scenario were also obtained in the forecasted landings. This 
variation in forecasted landings was probably coming from the uncertainty in catchability 
coupled with the technical interactions among different stocks, as occurred for the 
French bottom otter trawlers. 
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Figure 27: Variation in effort for the Spanish 24 to 40 m bottom trawlers 
(ES_OTB_24<40m), given uncertainty in stocks' catchability, effort proportion by 
métier and quota shares by fleet and stock under alternative mixed fisheries scenarios 
Bars represent median estimates and vertical lines the 90 % confidence intervals. 
Different scales are used due to the big differences observed between scenarios. 

 

 

Figure 28: Variation in catches by stock for the Spanish 24 to 40 m bottom trawlers 
(ES_OTB_24<40m), given uncertainty in stocks' catchability, effort proportion by 
métier and quota shares by fleet and stock under alternative mixed fisheries scenarios 
Bars represent median estimates and vertical lines the 90 % confidence intervals. 
Stocks' codes correspond to black-bellied anglerfish (ANK), hake (HKE), horse mackerel 
(HOM), mackerel (MAC), megrim (MEG), white anglerfish (MON), smooth-hound (SDV), 
sole (SOL), blue whiting (WHB), and whiting (WHG). 

 

Blue-whiting, smooth-hound and black-bellied anglerfish were identified as the main 
choke species (with probabilities between 20 % and 16 %, Figure 29) followed by 
megrim, hake and mackerel (with probabilities lower than 5 %) 
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Figure 29: Frequency of choking effect by stock for the Spanish 24 to 40 m bottom 
trawlers (ES_OTB_24<40m). Each stock is represented by a different colour. Stocks' 
codes correspond to whiting (WHG), white anglerfish (MON), black-bellied anglerfish 
(ANK), smooth-hound (SDV), sole (SOL), megrim (MEG), hake (HKE), mackerel (MAC), 
and blue whiting (WHB). 

5.3 Global Sensitivity Analysis  

5.3.1 Spanish bottom trawlers (ES_OTB_24<40m) 

The total effort in the max scenario depended mostly on the intensity exerted by the 
fleet in each of the métiers (Figure 30). Furthermore, the variance was mainly explained 
by the interaction between input factors. The quota-share of some stocks in isolation 
explained some of the output variance. This happened because these stocks were the 
less restrictive stocks for the fleet in some cases. In the ‘min’ scenario the most 
important input factor was the intensity in the ’DEF’ métier (the one targeting demersal 
fishes) that is the most important métier for the fleet. In this case, most of the variance 
was explained by the input factor in isolation. In this scenario the quota shares had 
higher impact and the impact was similar for all the stock except for black-bellied 
anglerfish. For horse mackerel the impact was almost zero because it never limited the 
effort of the fleet.  



Study to assess the robustness of mixed fisheries scenario assumptions 

35 
 

 

Figure 30: Global sensitivity indicators for the Spanish trawling fleet: effort under ‘max’ 
and ‘min_HOM’ scenarios. Red bar corresponds with the first order index and the whole 
bar (red plus blue) with the total index. 

In the scenario where the effort was fixed ‘fixEff’ and the ‘max’ scenario (scenario where 
the fleets continue fishing until the last quota is exhausted) the only input factor that 
had a significant impact in the output variance of the stock catches was the intensity 
with which the stocks were caught (Figure 31 and Figure 32). The rest of the factors 
had some marginal impact, especially quota share. The main difference between 
scenarios was that while in the ‘fixEff’ scenario the variance was explained almost 
exclusively by the input factors in isolation, in the ‘max’ scenario most of the variance 
was explained in interaction among factors. In the ‘fixEff’ scenario, the effort level (the 
variable that is directly related to the catch level) was fixed as an input parameter and 
hence the interaction between the input factors was low.  
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Figure 31: Global sensitivity indicators for the Spanish trawling fleet: catch under 
‘fixEff’ scenario. Red bar corresponds with the first order index and the whole bar (red 
plus blue) with the total index. 

 

 

Figure 32: Global sensitivity indicators for the Spanish trawling fleet: catch under ‘max’ 
scenario. Red bar corresponds with the first order index and the whole bar (red plus 
blue) with the total index. 
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In the ‘min_HOM’ scenario the variable with the highest impact was the intensity exerted 
in the most important métier, the Spanish otter trawlers targeting demersal fish, 
(int_SP_DEF, Figure 33). Furthermore, in most of the cases, most of the variance was 
explained by the input factor in isolation. In this case, the quota shares of all the stocks, 
except horse mackerel (HOM), had a significant impact in the output variance. The 
amount of variance explained by the input factor in isolation and in interaction with 
other factors depended on the stock.   

 

 

Figure 33: Global sensitivity indicators for the Spanish trawling fleet: catch under ‘min’ 
scenario. Red bar corresponds with the first order index and the whole bar (red plus 
blue) with the total index. 

 

The probability of being a choke stock was the variable that was affected by more input 
factors (Figure 34). As expected, in this case the quota share explained a significant 
proportion of the variance. The selectivity, that had little impact in catch and effort 
variables, had some impact in this case and the impact was almost always of first order 
(i.e. the interaction of selectivity with other input factors did not have almost any impact 
in the output variance). The effort proportion among métiers also had a significant 
impact in this case, especially for white anglerfish, hake and smooth-hound. The values 
around 0.25 and 0.15 for anglerfish, smooth-hound and withing are likely related to a 
convergence issue and do not indicate a real impact in the choking effect. 
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Figure 34: Global sensitivity indicators for the Spanish trawling fleet: probability of 
being a choke stock under ‘min’ scenario. Red bar corresponds with the first order index 
and the whole bar, red plus blue, with the total index 

 

5.3.2 French bottom otter trawlers (FR_OTB_10<24m) 

The total effort in the max scenario depended mostly on the intensity exerted by the 
fleet in the OTB_DEF métier (i.e. the otter trawlers targeting demersal fish) and the 
quota share of whiting (WHG), blue whiting (WHB), smooth-hound (SDV) and two of 
the rays (RJU and RJN) (Figure 35). In the ‘min_HOM’ scenario, all the quota-shares 
contributed significantly to the variance, the stocks which contributed the less where 
the horse mackerel, hake, seabass and anglerfish. The contribution of the rest of the 
input factors was similar. The variance in both scenarios was fully explained by the 
interaction between input factors.  
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Figure 35: Global sensitivity indicators for the French trawling fleet effort under ‘max’ 
and ‘min’ scenarios. Red bar corresponds with the first order index and the whole bar 
(red plus blue) with the total index. 

 

In the scenario where the effort was fixed, ‘fixEff’, the intensity on the ‘OTB_DEF’ métier 
and the effort proportion among métiers were the only factors with a significant impact 
in the results (Figure 36). For some stocks (horse mackerel, mackerel and one of the 
rays) the value of the first order index for the rest of the input factors was positive and 
had a very similar value which is attributed to a convergence problem and not to a real 
effect. The variance was explained by both the factors alone and in interaction with each 
other.  

In the ‘max’ scenario the intensity in the OTB_DEF métier and the quota-share of some 
of the stocks, bycatch stock specially, were the input factors with the highest impact on 
the output variance (Figure 37). The variance was partially explained by factors in 
isolation and partially in interaction among themselves.  

In the ‘min’ scenario, all the quota shares had a significant impact on the output variance 
of catches (Figure 38). Apart from that, the intensity in the OTB_DEF métier and other 
métiers in particular cases, and the effort proportion among métiers also had significant 
impact. In the case of the white anglerfish, except the intensity, all the other factors 
had an impact of first order. In the case of intensity, the impact was in interaction with 
other factors. 
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Figure 36: Global sensitivity indicators for the French trawling fleet catch under ‘fixEff’ scenario. Red bar corresponds with the first order index 
and the whole bar (red plus blue) with the total index. 
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Figure 37: Global sensitivity indicators for the French trawling fleet: catch under ‘max’ scenario. Red bar corresponds with the first order index 
and the whole bar (red plus blue) with the total index. 
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Figure 38: Global sensitivity indicators for the French trawling fleet: catch under ‘min_HOM’ scenario. Red bar corresponds with the first order 
index and the whole bar (red plus blue) with the total index. 
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Figure 39: Global sensitivity indicators for the Spanish trawling fleet: probability of being a choke stock under ‘min_HOM’ scenario. Red bar 
corresponds with the first order index and the whole bar (red plus blue) with the total index. 
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The probability of being a choke stock was mainly driven by the quota-shares in the case 
of France (Figure 39). The intensity in the OTB_DEF métier in interaction with other factors 
also explained a significant part of the variance, but less than the quota shares. The quota 
shares of the stocks with a constant CPUE approach, together with sole and blue whiting, 
had the highest impact in the probability of being a choke stocks. The impact was mainly 
in isolation but the interaction between input factors was also significant. 

 

6 CONCLUSIONS 

Propagation of fleet parameter uncertainty in mixed fisheries forecasts was carried out 
through a study, which introduced Monte Carlo simulations to stochastically sample input 
parameter values from historical data. These have been developed as a set of generic 
methods that could be applied to the conditioning of any mixed fishery model. The impact 
of fleet parameter uncertainty on model outputs varied depending on the stock and the 
effort scenarios considered and could be greatly impacted by technical interactions. 
Variations in forecasted landings were observed under different effort scenarios, 
underscoring the necessity for more precise data in specific areas of mixed fisheries 
forecasting.  

Parameter uncertainties in forecasting were examined for the Bay of Biscay main fleets, 
and output uncertainty quantified to be able to identify most influential parameters. The 
intention was to understand how uncertainties in historical data and input parameters 
affect model projections.  

The mixed fisheries models involve numerous input parameters, including catchability, 
effort distribution, and quota allocations. These models rely on historical data, which may 
be error-prone, for parameter conditioning. Sensitivity analysis is crucial for understanding 
the relationship between input uncertainties and output variations. GSA efficiently 
characterizes this relationship but can be computationally demanding. Within the Bay of 
Biscay case study GSA was implemented to assess the sensitivity of catchability, quota-
share, and effort proportion.  

The Bay of Biscay case study focused on conducting an uncertainty analysis and GSA for 
demersal mixed fisheries in the region, with a particular focus on French and Spanish fleets 
as proof of concept. The uncertainty conditioning approach used estimates of the 
uncertainties in selectivity and intensity separately, extracting first the intensity and 
modelling the selectivity afterwards. In the future, both intensity and selectivity could be 
estimated simultaneously instead of doing it in two steps. The key problem would be to 
propose an appropriate model that accounts for the correlation among different species 
intensities. As a further step, intensities could be modelled using a time series-oriented 
approach (e.g., AR1 or random walks) so that predictions in one year depend on the 
predictions in the year before. 

Introduction of uncertainty provided a better representation of plausible future situations. 
In a deterministic approach, a single stock is identified as the choke stock for each fleet in 
the landing obligation scenario, however there were several stocks that had similar 
probability of choking the fishery but were hidden in the deterministic approach.  

The intensity with which the stocks are caught in each métier were the input factors that 
had the highest impact in almost all the output variables analysed. The variance in the 
intensity input factors was high, in fact, the confidence intervals were limited not to greatly 
exceed the historical observations. The high uncertainty in the intensity could have 
conditioned the results, giving prominence to this variable to the detriment of the rest.  
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The selectivity had little impact in output variables analysed. The role of selectivity in the 
model is to give age structure to the catches, but does not impact the volume. Thus, in 
the short term, where catch structure and biomass are not analysed, it makes sense not 
to have any impact. However, in long term simulations when there is a feedback loop 
between the stock biomass and exploitation pattern its impact could be significant. If the 
output variables explained included some type of structure related with the age, the impact 
would be higher too. 

Quota-share explained a significant part of the output variance for some variables, 
especially in the event of strict compliance with the landing obligation (‘min_HOM’ 
scenario), but the amount explained was low in general. The low observed variability in 
the input data and the high variability in the intensity input factor could have downplayed 
the importance of this input factor. Quota-share was conditioned based on the historical 
catches instead of in real quotas and including the uncertainty in the process of quota 
trading could be interesting.  

Garcia et al. (2021) conducted a GSA in the Iberian Waters mixed fisheries demersal 
system and found that effort-share was the most important input factor. However, in this 
case study effort proportion among métiers had very limited impact. Garcia et al. (2021) 
applied the same variability to all the input factors, which likely over-estimated the 
variance in this variable and as a result its relevance was over-estimated. This contradiction 
highlights the importance of conditioning the uncertainty properly.  

 

7 RECOMMENDATIONS 

• Correlation among stocks’ catchability arises at haul level, however mixed fisheries 
models are conditioned at métier level, and the correlation between the catchability 
(intensity) was derived at this more aggregated level. It could be interesting to 
calculate correlation among stock catchabilities at haul level and compare them with 
the correlations obtained in this analysis to check if they are similar. Alternatively, it 
could be interesting to analyse options for using existing data at the haul level to 
improve conditioning at the métier level. 

• There were several NA-s in the catchability data that were replaced by a low number. 
This had a big impact in the conditioning in some cases which in turn impacted in the 
results. Alternative conditioning should be tested and, if possible, data time series 
completed. 

• The GSA results are very sensitivity to the uncertainty conditioning. In this case the 
variance in the intensity was limited because the model used produced too wide 
confidence intervals that extended beyond the historical observations. This behaviour 
could be related to the lack of long enough time series data and the selected model 
itself. Further research is needed to extend the time series data and improve the models 
used in the uncertainty conditioning.  

• Due to time constraint, convergence of the indices has not been analysed. However, 
Garcia et al. (2021) used 10,000 base interactions with a more complex model and 
observed that the sensitivity indices were fairly stable from 2,000 iterations forward. 
However, in that analysis they used Sobol sequences to speed up the convergence 
(Renardy et al., 2021). The work here attempted to use Sobol sequences in this 
analysis, however, it was not possible to transform Sobol sequences to constrained 
sampling of intensity. The sensitivity indices showed little variability in some cases 
(quota share indices for example), the reason for such pattern could be related to 
convergence issues and should be investigated in further analysis.   

• Sobol sequences are usually used in GSA to reduce the computational cost of the 
analysis. These sequences are sequences of pseudo random numbers that ensure an 
optimum coverage of the unit hypercube. Using random numbers, the coverage of high 
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dimensional spaces becomes very inefficient. In this case we couldn’t use these 
sequences because it was not possible to transform from Sobol sequences to truncated 
log-normal multivariate distributed numbers. It is recommended to quantify the save 
in computational cost in Sobol sequences to know if it is worth to use them and avoid 
using truncated distributions in the conditioning if relevant. 
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ANNEX 14: TRIP-BASED VISUALISATIONS HIGHLIGHTING 
VARIABILITY IN TARGET BEHAVIOUR AND CATCH COMPOSITION 

This annex provides additional trip visualisations of variability in target behaviour and 
catch composition between individual fishing trips.  

Landing proportions at the trip level were calculated. From the landing proportions, trips 
were classified according to the dominant species in terms of landing composition. This 
classification enables trips to be grouped according the ‘target’ behaviour (i.e. the species 
with the highest share in the landings). It also enables visualisation of how variable 
targeting is between trips. 

For each trip the catch composition is calculated and assigned a colour to indicate the 
proportion of the species in the landings (where black indicates high proportions and yellow 
indicates low proportions) at trip level. As such, the graphs show the variability in catch 
composition of trips with a certain targeting behaviour, as well as the relative number of 
other species caught alongside ‘target’ species. To aid visualisation, trips targeting species 
that contribute less than 0.5% to the total number of trips are excluded from the figure, 
and rare species are grouped in an OTH category. 

Irish pelagic trawling trips (Figure 1) have higher targeting capability than Irish bottom 
trawl trips: black is dominant in every trip group and trips usually catch between one and 
four species. 

For the Belgian fleets the beam trawl fishery with mesh size ≥120 mm (Figure 2) shows a 
clear targeting for plaice. However, cod also appears in most of the trips in relatively high 
proportions – around 25 % – followed by anglerfish, lemon sole and haddock. This fishery 
frequently catches other demersal species too, although in lower proportions. 
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Figure 1: Targeting behaviour and catch composition by trip ordered by targeting by Irish midwater pair trawls (PTM) across all areas. Species 
abbreviations: ALB = albacore tuna; ANE = European anchovy; ANX = anchovies; ARG = Argentines; BET = Bigeye tuna; BFT = bluefin tuna; BIB = 
bib; BLL = brill; BOR = boarfish; BRF = blackbelly rosefish; COD = cod; CRE = edible crab; GUR = red gurnard; GUX = gurnards; HAD = haddock; 
HER = herring; HKE = European hake; HKX = hakes; JAX = Jack and horse mackerels; JOD = John dory; LBE = European lobster; LEM = lemon sole; 
LEZ = megrim; LIN = ling; MAC = mackerel; NOP = Norway pout; PIL = European pilchard; PLE = plaice; POK = saithe; POL = pollack; RED = 
redfishes; SDV = smooth-hounds; SMD = smooth-hound; SOL = common sole; SOX = soles; SPR = sprat; SQC = common squid; SQI = northern 
shortfin squid; SQR = European squid; SQS = sevenstar flying squid; SQU = squids; SWO = swordfish; SYC = small-spotted catshark; WHB = blue 
whiting; WHG = whiting 
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Figure 2: Targeting behaviour and catch composition by trip ordered by targeting Belgian beam trawls targeting demersal species with mesh sizes 
no less than 120 mm (TBB_DEF_>=120 métier) in the North Sea. Species abbreviations: ANF = anglerfish; BIB = bib; BLL = brill; BSS = seabass; 
CAA = wolffish; COD = cod; COE = conger eel; CRE = edible crab; CTC = common cuttlefish; DAB = dab; FLE = flounder; GUG = grey gurnard; GUR 
= red gurnard; GUU = tub gurnard; HAD = haddock; HAL = halibut; HKE = hake; JOD = John dory; LEM = lemon sole; LEZ = megrim;; LIN = ling; 
MUR = Surmullet; NEP = Nephrops; OCZ = octopus; OTH = ‘other’; PLE = plaice; POK = saithe; POL = pollack; RJC = thornback ray; RJH = blond 
ray; RJM = spotted ray; SCE = king scallop; SKA = skates and rays; SOL = common sole; SOC = sockeye salmon; SYC = small-spotted catshark; TUR 
= turbot; WHG = whiting; WIT = witch flounder  
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ANNEX 15: FIGURES PRESENTING TECHNICAL INTERACTIONS 
BETWEEN MÉTIERS AND STOCKS 

These figures aim to present technical interactions between métiers and stocks across the 
Celtic Sea and North Sea case study ecoregions. Each visualisation allows identification of 
the important stocks within an ecoregion and which métiers are landing them. The plot 
depicts the proportion of each stock landed within an ecoregion by métier, whereby 
columns sum to the total proportion of a stock landed in that ecoregion, totalling 1 if the 
ecoregion is the same, or larger than the stock area.  

The métiers shown within the ecoregion are limited to those accounting for a proportion 
of at least 0.01 of stock landings within the area. This removes those métiers with very 
minor contributions from the visualisation to prevent overwhelming the plot with métiers 
of little impact within the area. The darker the colour of the cell, the greater the proportion 
of landings reported for a stock occur within a métier. Figure 1 presents the full figure of 
the Bay of Biscay example presented within the main report.  

In the Celtic Sea, Figure 2, OTB_DEF_100-119 is the most important métier in terms of 
the proportions of stocks the métier lands. In contrast, GNS_CRU_0 (indicating unknown 
mesh range) is the least important métier, with low proportions of few stocks being landed 
as a result of this métier. In relation to whiting nearly all landings are landed by the 
OTB_DEF_>=120 métier as depicted by the dark red colour. A very small proportion is 
landed by 1 other métier, depicted by the light blue colour, this was SSC_DEF_100-119. 

In the North Sea ecoregion, Figure 3, there are a large number of both stocks and métiers 
depicted. As such the figure has been trimmed to allow easier viewing. In this case the 
most important métiers (OTB_DEF_>=120 and OTB_CRU_70-99, TBB_DEF_70-99) within 
the region have very diverse catch compositions, and contribute to the main part of a 
number of stocks, depicted by the stocks having dark coloured squares associated with 
these métiers. Interestingly, some Nephrops stocks are primarily targeted by >=120 mm 
mesh gear, others by the more traditional 70-99 mm mesh sizes. The third most important 
métier in the area, TBB_DEF_70-99, has high proportions of sole but lower proportions of 
plaice.  
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Figure 1: Technical interactions between stocks and métiers within the Bay of Biscay in 
2021  
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Figure 1: Technical interactions between stocks and métiers within the Celtic Sea ecoregion in 2021 
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Figure 2: Technical interactions between stocks and métiers within the North Sea ecoregion in 2021 (métiers cropped due to page limitation) 
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ANNEX 16: FIGURES IDENTIFYING HIGH CHOKING RISKS  

This annex provides a North Sea case study of the figures prepared to identify high choking 
risks within an ecoregion presented in section 5. Combining the degree of technical 
interactions (the number of strata that species y is caught together with species x, divided 
by the number of strata where species x is caught) and the ratio of the catch to the advice. 
Each panel of the figure shows a stock and the proportion of stocks caught together with 
this stock. The height of the bars shows how frequent a stock appears in strata of the 
stock shown in the title of each panel, while the colour of the bar indicates the ratio 
between the catch and advice of a stock. Stock in red indicate stocks with a zero advice.  

In the Celtic Sea for example (Figure 1), in around 45 % of the strata where sole 7.e is 
caught, Celtic Sea hake and whiting are also caught, but the percentage of the scientific 
advice caught is very different in each of them (40 % and 140 % respectively), making 
only whiting a potential choke species for sole; additionally, around 40 % of sole 7.e is 
caught together with Celtic Sea cod, where the red colour of the bar indicates that Celtic 
Sea cod has a zero-catch advice.  

In approximately 90 % of the strata (Figure 2) where North Sea sole (sol.27.4) is caught, 
North Sea plaice is also caught (ple.27.420). However, the light blue colouring of the bar 
means that North Sea plaice catches are no more than 50% of the advice. This indicates 
that there is little choking of North Sea sole by the North Sea plaice stock. In contrast, in 
about 80% of the turbot catches (tur.27.4), cod (cod.27.47d20) is also caught. The orange 
bar of cod indicates that the catch is higher than the advice, and cod can thus be seen as 
a species with a potential choke risk for turbot.  



Study to assess the robustness of mixed-fisheries scenario assumptions 

2 
 

 
Figure 1: Technical interactions between stocks and choking risk (catch uptake versus advice) for a selection of demersal fish stocks in the Celtic 
Sea for 2021.  
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Figure 2: Technical interactions between stocks and choking risk (catch uptake versus advice) for a selection of demersal fish stocks in the North 
Sea for 2021.  



Study to assess the robustness of mixed-fisheries scenario assumptions 

4 
 

 

Figure 3: Technical interactions between stocks and choking risk (catch uptake versus advice) for a selection of demersal fish stocks in the North 
Sea by gear category for 2021.  
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ANNEX 17: DEVELPOPMENTS NEEDS TO EVALUATE REBUILDING OF 
STOCKS IN THE LONG TERM  

Currently, mixed-fisheries considerations are based on a two-year forecast of stock 
assessment model-output and catch-and-effort data at métier level. This is because, in 
single-stock short-term forecasting, everything is considered constant in the projection 
period. Although this assumption is considered valid in the short term, to evaluate stock 
rebuilding in the long term it is necessary to introduce dynamism and uncertainty to the 
projection.  

The FLBEIA model (Garcia et al., 2017) used in most of the mixed-fisheries case studies 
was built for long-term simulations and has all the elements needed to run long-term 
mixed-fisheries simulations. In fact, it has already been used to analyse the performance 
of management strategies in a mixed-fisheries framework (see Garcia et al., 2019; Garcia 
et al., 2021). In comparison, the Fcube model was built to run short-term projections, but 
it is possible to extend it to run long-term projections in specific cases.  

The steps required to extend both models to produce mixed-fisheries considerations in 
order to analyse stock rebuilding in the long term are shown in Figure 1 below. The first 
step is to define the dynamics of the processes that form the system. The system can be 
divided in three main components: the stocks, the fleets and the catch-advice components. 
In the next section we identify the processes that should be modelled in each of these 
components to run long-term simulations, and where and how uncertainty should be 
introduced.  

 

Figure 1: Conceptual diagram with the steps required to run long-term simulations from 
mixed-fisheries model conditioning  

1 SYSTEM DYNAMICS  

When conducting a short-term forecast (e.g. two years ahead) to produce the ICES mixed-
fisheries considerations, simple assumptions are made for the dynamics of the system in 
the forecasted years. This period is generally considered acceptable because the 
parameters that are based on assumptions normally have a low contribution to the 
outcome of forecast. For example, assumptions on future recruitment often represent a 
small proportion of the catches in the considerations year produced by the short-term 
forecast. In addition, over a short forecast period, the system is unlikely to undergo large 
changes, and the value of a number of parameters can be assumed to be similar to those 
in most recent years.  

However, when carrying out long-term simulations, particularly when testing for rebuilding 
of stocks, it can be expected that the whole system will change considerably through time. 
Instead of simple assumptions, a conditioning that reflects the dynamic nature of the 
stocks and their fisheries must be used. 
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If the model is to adequately represent the dynamics of the system and its natural 
variability, a number of changes to the model components are required. These changes 
are reviewed below.  

1.1 Biological operating model  

Stocks with analytical assessment 

Recruitment dynamics 

The main approach for recruitment dynamics in MSE is to use a stock-recruitment model. 
There are a number of key considerations when deciding on a recruitment model and these 
are reviewed below. 

The choice of the functional relationship (Beverton and Holt, Ricker, segmented regression 
or other) to be used should be dictated by the historical estimates of recruitment and SSB. 
However, very often there is no clear support for a specific stock-recruitment model. An 
approach to account for this uncertainty in MSEs (but that is also at the basis of EqSim1, 
the ICES software to estimate MSY) consists of using a composite stock-recruitment model: 
in each iteration (i.e. stock replicate) and for each stock the stock-recruitment relationship 
can have its own functional form, with the proportion of the iterations in the operating 
model (OM) having each functional form reflecting the likelihood of each of them 
(Simmonds et al., 2011). 

In some instances, when there is no clear indication that a specific stock-recruitment model 
formulation is more appropriate than any other, the approach has also been to use the 
simplest model, i.e. a segmented regression model.  

Finally, in some cases the stock-assessment model used for the assessment includes a 
stock-recruitment model, and the functional form of the stock-recruitment model in the 
MSE should be the one used in the stock-assessment model. 

Biological parameters 

Variability in biological parameters (weight, maturity), generally has less impact on stock 
dynamics than recruitment. Different approaches can be implemented: from constant 
values, to resampling from a set of recent values, or modelled as random processes (with 
means and variances based on past values). 

In some instances, when key biological processes have been found to influence these 
biological parameters (e.g. density dependent growth), such processes can be explicitly 
modelled in the OM, and incorporated in the MSE. 

Stocks assessed with surplus-production model 

The mixed-fisheries models currently used at ICES also include stocks for which the 
biomass is modelled (i.e. stock for which the assessment is done using a surplus-production 
model), not abundances-at-age. The OM in this case could also be a biomass-based model, 
with parameters taken from the stock-assessment model. For this stock, all the biological 
processes are modelled together. Hence, simulation of recruitment and other biological 
parameters is not required. FLBEIA already includes the possibility of simulating biomass 
dynamic models.  

 

1 A stochastic equilibrium software that may be used to explore Maximum Sustainable Yield 
reference points 
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Data limited stocks 

For stocks without an assessment, a number of approaches can be used to configure a 
population dynamics model with an appropriate representation of the key population 
dynamics parameters and of the state of the stock at the start of the simulations.  

An age-structured OM can be developed based on life-history information (growth, 
maturation, natural mortality) and assumed distributions for some of the key population 
dynamics parameters (e.g. carrying capacity or recruitment at pristine stock size, 
steepness of the stock-recruitment model or stock depletion in the present year). Historical 
data (catches or landings in weight, biomass indices from surveys) available for the stocks 
can be used to calibrate those models (i.e. obtain posterior definition for these 
parameters). Such approaches have been implemented to conduct MSE on data-limited 
stocks. Examples can be found for data on short-lived species (Sánchez-Maroño et al., 
2021), in Dutch freshwater lakes (Tien et al., 2020, using a feasible trajectories approach, 
Bentley and Langley, 2012), or Indian Ocean albacore tuna (Hillary and Mosqueira, 2023, 
using Approximate Bayesian computation). 

These approaches to develop an OM in data-poor situations rely on population-dynamics 
formulations that are similar to those in age-structured stock-assessment models. 
However, the amount and the level of detail in the data used required is much lower than 
for a stock assessment. Such OMs should be considered as tools that present plausible 
population dynamic parameters, and therefore suitable for conducting simulations. The 
OMs should not be considered as providing stock-assessments of stock status estimates. 

In some cases, such OMs have been developed without using historical data on the history 
of the stock, but purely based on life-history parameters. In this case, values for key 
population-dynamics parameters (e.g. carrying capacity or recruitment at pristine stock 
size) and on stock status at the start of the simulations are chosen arbitrarily. In practice, 
this approach is more often used to produce scenarios for simulation testing than in a 
formal MSE context (e.g. Fisher et al., 2021).  

Data-poor stocks 

Finally, stocks for which the above-mentioned approaches cannot be implemented can only 
be modelled assuming constant biomass combined with a constant CPUE approach to 
describe their exploitation. The mixed-fisheries considerations already includes stocks for 
which a constant CPUE approach is used. For those stocks, recent catchabilities, calculated 
based on catches and effort, are used in the forecast years to produce catch forecasts, 
based on the efforts of the fleets corresponding to each mixed-fisheries scenario. This 
approach to incorporate data-poor stocks in long-term simulations can be useful to give 
some idea of future trends in catches and possible choke effects but with the strong 
limitation that their biomass would be considered constant. 

1.2 Fleet operating model 

To produce the mixed-fisheries considerations, a number of parameters related to fleet 
characteristics (such a catchabilities, effort allocation per métier) are assumed to be 
constant in a short-term forecast. As for biology, these parameters are likely to change 
over time when considering a longer-term time frame. 

A simple approach to generate future values for these parameters, as done for biological 
parameters such as weight-at-age or proportion mature-at-age, would be to assume that 
they vary randomly – where randomness should be based on the historical behaviour of 
the parameters (see next section for further details on uncertainty conditioning). However, 
this type of simple approach ignores the dynamics of the system, i.e. how some parameters 
would have evolved as a consequence of other changes in the system. A number of 
modelling approaches have been proposed to provide a more realistic view of the dynamics 
of the future fleets’ characteristics.  
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• For effort-allocation to different métiers for each fleet, several approaches are possible, 
such as random utility models (Andersen et al., 2010), profit maximisation (which is 
already implemented in FLBEIA), or allocations based on landing-per-unit-effort or 
value-per-unit-effort and tradition (Marchal et al., 2013). 

• Total effort per fleet, under the mixed-fisheries scenarios used at ICES, is defined by 
the most- (or least-) limiting quotas for the fleet. Other more dynamic approaches 
could involve setting future effort based on profit maximisation. Restrictions to effort 
changes can also be implemented as well as maximum effort values to represent 
situations with limitations in fishing capacity. 

• It is important to include capital dynamics (i.e. entry-exit of units in the fleets) in long-
term simulations: however, it is usually overlooked. FLBEIA includes a model to 
describe the entry and exit into the fishery based on economic indicators (Salz et al., 
2011). However, model conditioning for this functionality has proved difficult, which 
has limited its application.  

• There are fewer approaches to model catchability, and this parameter could be 
simulated based on random walks or assuming a given value for technological creep 
(i.e. a linear increase over time). 

Management procedure  

No management procedure is implemented in the model used to provide mixed-fisheries 
considerations. Management decision is an input variable (i.e. the ICES single-stock 
advice). To conduct long-term simulations, a management-procedure component needs to 
be added to the models to mimic the process that will be followed to define single-stock 
advice in future years. There are two main parts to a management procedure: estimator 
and advice rule. Both are described below. 

Estimator 

The estimator is the quantity that reflects stock status. For most stocks included in the 
ICES mixed-fisheries models, a stock assessment is run that provides estimates of stock 
abundances and fishing mortality at the start of the current year, and using a short-term 
forecast procedure, over to the considerations year. In MSEs, this procedure can be 
replicated entirely, with input data for the assessment model generated with observation 
error from the OM, and an assessment model run for each replicate of the stock, each year 
in the simulation period. An alternative to this computer-intensive approach involves a 
priori characterisation of the assessment error(s) (i.e. variance and potential correlations 
on the errors in the estimates produce by the stock assessment) and applying these to the 
OM to generate a stock perceived with errors. 

For data-limited stocks, most of the estimators used at ICES (biomass indices from 
surveys) can be derived from the OMs by applying observation errors to the quantities of 
interest. However, the current models from WGMIXFISH are not using fish length, and 
therefore cannot produce length-based indicators (e.g. length-based proxy for F/Fmsy) 
that are used in some data-limited advice rules at ICES. Including length information (e.g. 
mean length or age-length keys) for those stocks to generate length-based indicators 
would require some new developments in FLBEIA, the modelling framework currently used. 
Alternatively, a ‘short-cut’ approach could be taken by using OM-based information on 
F/Fmsy with an additional term to represent a measure of errors. 

Advice rule 

Based on the estimators for the different stocks, the same advice rules as used at ICES 
(depending on stock categories; ICES, 2016) can be implemented to produce a catch 
advice. Many advice rules are already implemented in FLBEIA, and new ones could be 
implemented. 

2 UNCERTAINTY CONDITIONING 

A key component in long-term simulations is the uncertainty conditioning of the model. 
Knowledge of dynamics of the processes included in the model and about the parameters 
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that govern such processes is always incomplete. Furthermore, many processes, such as 
stock recruitment, are subject to natural variability. Thus, this uncertainty needs to be 
captured by the model if there is to be a realistic representation of the system dynamics. 
Moreover, the performance of management strategies is usually measured in terms of risk, 
and the accuracy of risk-related performance indicators is directly related to how well the 
existing uncertainty has been captured by the model. Based on existing literature Francis 
and Shotton (1997) categorised uncertainty in fisheries modelling into six types, listed 
below. 

• Process uncertainty is related to the natural variability in the process, such as the 
natural variability in recruitment. 

• Observation uncertainty arises in the process of data collection through measurement 
and sampling error. 

• Model uncertainty refers to the incapacity of models to describe natural processes 
perfectly. Model uncertainty is formed by structural uncertainty, related to the 
adequacy of the mathematical equations used in the model, parametric uncertainty, 
related to the difference between real parameters and parameters used in the model 
and the structure of the error used to describe variability in the model.  

• Estimation uncertainty relates to the process of parameter estimation. 
• Implementation uncertainty refers to the difference between the management policies 

and how they are implemented in practice.  
• Institutional uncertainty arises in the interaction of scientists, managers and 

stakeholders. The lack of well-defined operational objectives is a good example for this 
type of uncertainty. 

2.1 Biological operating model 

Uncertainty in biological OM is related to the first four categories described above. In the 
calculation of single-stock reference points, uncertainty is introduced in the stock-
recruitment process and biological parameters based on existing data. Thus, the 
conditioning of base-case scenarios to analyse stock rebuilding in a mixed-fisheries 
framework should be based on the conditioning used to calculate single-stock reference 
points. Additional scenarios could also be conditioned and tested. 

For the stock-recruitment relationship, several functional forms are considered (structural 
uncertainty). This includes parametric uncertainty and uncertainty around the stock-
recruitment model. The stock-recruitment component within an FLBEIA model allows the 
introduction of parametric uncertainty and uncertainty around the stock-recruitment 
model. Structural uncertainty can be introduced by running stock-recruitment specific 
scenarios or iterations.   

Weight, maturity and natural mortality-at-age are often considered constant in the 
analyses to calculate reference points. However, sometimes, historical values are used 
though resampling to introduce uncertainty in the future. In FLBEIA all the input 
parameters can incorporate uncertainty. Thus, resampled values or other probability 
distributions for the parameters obtained from other approaches can be used easily in 
FLBEIA to condition the mixed-fisheries models. 

2.2 Fleet operating model 

Uncertainty in fleet dynamics parameters is usually overlooked, especially in single-stock 
approaches, for example in the calculation of reference points. However, as shown in this 
study, they can have a significant impact on the results. The main parameters in the fleet 
component of the mixed-fisheries OMs are catchability (separated further into selectivity 
and intensity in this study), quota share, and effort proportion. 

In this study a simple approach was adopted to condition uncertainty in these parameters. 
We have seen that there is an important intra-métier correlation between stock intensities. 
This is a key aspect in mixed-fisheries models as the intensities govern the choking effect 
in mixed-fisheries.  
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In simple-effort dynamic approaches, effort proportion is considered an input parameter, 
and it would be necessary to condition uncertainty. However, in more complex approaches 
(see for example Andersen et al., 2010; Marchal et al., 2013 or Garcia et al., 2017). Effort 
proportion could be a dynamic parameter, and uncertainty should be introduced in the 
relevant model parameters. 

2.2.1.1 Management procedure 

The management procedure is divided into three components: the observation model, the 
assessment model and the advice model.  

• Observation model: In the observation model, uncertainty should be introduced. 
Observation uncertainty should not be overlooked, as is often the case, and should be 
considered in all data that is used routinely to provide advice, surveys, catch data and 
biological data. The uncertainty in these data should be quantified in collaboration with 
the experts working in data collection. Normally, this uncertainty is not considered in 
the calculation of reference points and is only present in more complex single-stock 
MSE models.  

• Assessment model and advice model: For these models, there is no need to introduce 
any uncertainty because their output comes directly from the selected assessment 
model or harvest control rule (HCR). Should the case-assessment model be replaced 
by a short-cut approach, the model error should be characterised and introduced as 
random variation (see previous section). 

3 PROJECTION 

3.1 Simulations 

Mixed-fisheries models are complex models that require a large amount of computational 
time. While mixed-fisheries considerations are calculated deterministically with a two-year 
projection, stock rebuilding should be done stochastically and for several years, no less 
that one life span of the most long-lived stocks. Thus, analysing stock rebuilding with 
mixed-fisheries models would require a high-performance computing system such as a 
cluster with various nodes.  

3.2 Performance statistics 

Performance statistics for mixed-fisheries models need to focus on the performance of the 
fleets, and differ from traditional single-stock performance statistics such as probability of 
SSB being below Blim, variability in the catch or fishing mortality level compared to the 
target. As there are no specific objectives at fleet level, it is not possible to define 
performance statistics that measure the achievement of the target. However, there are 
useful performance statistics that could be calculated at both the stock and fleet level.  

• Probability of being a choke stock. 
• Implementation error in catches at stock and fleet level. Implementation error arises 

naturally in mixed-fisheries models as reaching all the catch quotas simultaneously is 
impossible. The difference between the catch quotas and the real catches provides an 
idea of the use of fishing opportunities at fleet level.  

• Total yield. 
• Variation in total effort. 
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ANNEX 18: BEST PRACTICE AND PROCESSES TO ADD NEW STOCKS 
IN MIXED FISHERIES MODELS 

The inclusion of new stocks in ICES mixed-fisheries considerations products is not a 
static process. As single-species stock assessments evolve to better describe the 
dynamic of the stock, so too must the mixed-fishery assessments evolve to adapt to the 
new forms of information provided. This process of adaptation requires continuous 
development in forums such as WGMIXFISH, and continuous communication with stock 
assessors, model developers, and single-species working groups. The aim of this work 
is to develop the WGMIXFISH best practice guidelines and outline a framework by which 
new stocks are selected and added to a mixed-fisheries case study. This framework will 
review the existing methods by which new stocks are included in Fcube and FLBEIA, 
highlight the data requirements and discuss the potential limitations and research 
needs. 

1 CURRENT PRACTICE 

The current best practice guidelines (under development, pers coms. ICES), state that 
the following points should be considered when deciding which stocks to include in the 
assessment models 

• Priority should be given to stocks of commercial importance (i.e. target stocks, 
managed by TAC). However, bycatch of non-target stocks may also be of interest in 
a mixed-fisheries context. 

• Stocks that are not thought to have a high degree of mixed-fisheries interactions 
due to their ecology or fisheries can be excluded (e.g. pelagic stocks). 

• Specific pelagic stocks should be considered if they account for a significant 
proportion of the demersal fleet catches (for example, 50 % of demersal fleet catch 
consists of pelagic species in the Iberian Waters model). 

• The number of stocks included in the model also needs to be manageable both 
computationally and because of the time involved in data processing and model 
conditioning. 

Stock assessment results and the forecast settings used to produce the single-stock 
advice are obtained directly from the stock assessor, advice sheet or working-group 
report. Where relevant, information on the raising procedures for discards and the 
allocation of age compositions should also be collected. This ensures that the starting 
point of the mixed-fisheries scenarios is the same as for the single-stock advice.  

The ICES WGMIXFISH guide to best practices, which outlines a summary of the different 
options to consider when incorporating stocks, can be found in Table 1 (under 
development, pers coms. ICES). This summary demonstrates the possibilities and 
limitations to consider when trying to implement a new stock within a mixed-fisheries 
case study.  
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Table 11: Factors to consider when considering a stock to include in a mixed-fisheries model 

Options Stocks with full age-based 
assessments and forecast  

Also include stocks with 
biomass-dynamics methods 

Includes all TAC stocks Include all stocks 

Description Only those stocks that have a full 
category 1 assessment with age-
based or size-based population 
dynamics or an absolute 
abundance estimate (e.g., 
Nephrops) are included. 

Includes stocks that have 
biomass-dynamic models for 
future population dynamics. 

Includes all TAC managed stocks, 
including those without 
population models, which are 
included on a ‘constant CPUE’ 
basis where no assessment 
exists. 

Includes all stocks, even non-quota 
stocks, caught by the fleets and 
fisheries are explicitly included 
within the model, on a ‘constant 
CPUE basis’ where no assessment 
exists. 

Strengths Technical interactions modelled 
reflect changing stock 
abundance. 

The conditioning of the model is 
based on well-stabilised, robust, 
quantitative stock assessments. 

Differences in selectivity by 
fleet/métier can be introduced 
and evaluations of changes in 
selectivity can be evaluated.   

Technical interactions modelled 
reflect abundance changes. 

It could improve the 
description/modelling of fishing 
activity or fleet dynamics. 

Encompasses a greater number 
of potential choke stocks. 

It could improve the 
description/modelling of fishing 
activity or fleet dynamics. 

Encompasses all the target stocks so 
may better reflect fishing effort 
expected; revenue can be modelled 
better. 

Can be used to forecast bycatch of 
sensitive species that are not in the 
TAC and quota system but are 
relevant to other management 
frameworks/directives. 

It could improve the 
description/modelling of fishing 
activity or fleet dynamics. 

Limitations Does not include all stocks caught 
by fishery, and possibly not all 
target stocks. 

May not include the choke stock. 

The definition of métiers could be 
wrong because other relevant 
species are not considered. 

Does not include all stocks., 

May not have a way of 
projecting future stock size. 

Choke effects may be unrealistic 
because of increases or decreases 
in abundance. 

Assumption of constant biomass 
may only be reasonable for short-
term projections.  

Non-quota stocks cannot choke 
fisheries. 

Difficult to communicate. 

May involve too many stocks to 
accurately evaluate. 

Potential missing data on stocks. 
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Options Stocks with full age-based 
assessments and forecast  

Also include stocks with 
biomass-dynamics methods 

Includes all TAC stocks Include all stocks 

Assumption of constant biomass 
may only be reasonable for short-
term projections. 

Examples Current Fcube model for the Celtic 
Sea. 

Long-term scenarios of the 
North Sea FLBEIA model in 
external projects (ProByFish, 
EASME, 2021). Current FLBEIA 
model for the Iberian Waters 
(one cat.2 stock ank.27.8c9a). 

Current FLBEIA model for the Bay 
of Biscay, and Nephrops stocks in 
other regions. 

Long-term scenarios of the North 
Sea and Bay of Biscay FLBEIA 
models in external projects 
(ProByFish, EASME, 2021) included 
some bycatch stock. 
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Most of the stocks currently in the ICES mixed-fisheries models are category 1 stocks 
(ICES, 2016; i.e. Table 2), which are defined as stocks with quantitative assessments; this 
includes stocks with full analytical assessments and forecasts that are either age-/length-
structured or based on production models (ICES, 2022d). However, this is not the only 
limitation of the inclusion of new stocks. Often the inclusion of new stocks depends strongly 
on the technical difficulty, data quality and ability to communicate with the stock assessor 
and/or the single-species working group.  

Stocks with analytical assessments can easily be incorporated in either Fcube or FLBEIA 
models from the moment that the assessment output is provided as an age-structured FLR 
object. All assumptions used by the stock-assessment working group to condition the 
short-term forecast need to be provided to configure the mixed-fisheries model, as well as 
the reference points for the stock. The ICES mixed-fisheries working group routinely quality 
controls the catch single species advice obtained from the original framework used for 
assessment and single species advice is reproducible after migration to the mixed-fisheries 
model. 

For some stocks for which the assessments are length-structured, converting the 
assessment output to an FLR age-structured object has proven challenging. Discrepancies 
have been observed in some of the input vectors (such as weight-at-age for the hake stock 
in the Bay of Biscay case study) and some quantities (e.g. fishing mortality) are not directly 
comparable. However, the development of dedicated tools could help streamline this 
process, such as the R package ss3om (Mosqueira, 2020) to load Stock Synthesis (SS3) 
models into FLR. 

Table 2 2: Stocks and their ICES data category currently included in two ICES mixed-
fisheries case studies (ICES, 2022c) 

Mixed-fisheries 
case study 

Stock  ICES data 
category 

Celtic Sea cod.27.7e-k 1 
had.27.7b-k 1 
whg.27.7b-ce-k 1 
Nep (FUs 16, 17, 19, 20–21, 22, and 27.7 outside FUs) 1 
sol.27.7e 1 
sol.27.7fg 1 
mon.27.78abd 1 
ank.27.78abd 1 
meg.27.7b-k8abd 1 
hke.27.3a46-8abd 1 

North Sea  cod.27.47d20 1 
had.27.46a20 1 
ple.27.420 1 
ple.27.7d 1 
pok.27.3a46 1 
sol.27.4 1 
sol.27.7d 1 
tur.27.4 1 
whg.27.47d 1 
wit.27.3a47d 1 
Nep (FUs 5–10, 32, 33, 34, and Subarea 4 outside FUs) 1 

 

Several sources of data are required for each individual stock within an ICES mixed-
fisheries model. These data sources are outlined in a Celtic Sea example from WGMIXFISH-



Study to assess the robustness of mixed-fisheries scenario assumptions 

5 
 

Methods 2022 (ICES, 2022b), where how each data source feeds into the code and process 
can be seen (Figure 1). Each data source should be assessed for quality and consistency 
with other sources, i.e. the total landings should be comparable across all data sources. In 
cases when sources are not consistent, differences should be well documented, explained, 
and clarified with stock assessor and data submitters. Unresolved inconsistencies are 
resolved when all sources are merged to create the fleet data (landings, discards, effort, 
and age data, at the level of the fleet and métier). Any assumptions made during this 
process to fill in gaps in data should be fully documented and approved by group.  

  

Figure 1: Schematic of Celtic Sea code to process data inputs, and model to produce short-
term forecasts, taken from ICES, 2022b 

2 WGMIXFISH ADVANCES TO INCLUDED NEW STOCKS  

To address the growing and diverse need of mixed-fisheries condiderations products, 
WGMIXIFSH has developed several additional methodologies/tools to include ensure the 
group’s ability to include different stocks.  

2.1 Inclusion of new stocks assessed with surplus-production models 

A growing number of biomass dynamics models are being used in ICES, these stocks are 
considered category 2 stocks (ICES, 2016). The inclusion of these stocks in Fcube and 
FLBEIA to incorporate stocks assessed with a surplus-production model were achieved 
during the DRuMFISH project (EASME, 2018). During this study, the main surplus-
production model used was SPiCT. In Fcube, incorporated stocks with SPiCT assessment 
were achieved by configuring the stock and corresponding fleet data in terms of exploitable 
biomass so that the stock can be included in the calculation of the efforts per stock and 
fleet. Then, using the fishing mortality resulting from the implementation of the mixed-
fisheries scenarios, the SPiCT model was run to produce short-term prediction of the 
catches and stock size for these stocks. Running SPiCT inside Fcube considerably increased 
the running time, which proved to be a major issue when conducting long-term simulations 
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but was acceptable for producing the short-term forecast as used in the mixed-fisheries 
considerations. 

Incorporation of stocks with a biomass model in FLBEIA (including SPiCT or JABBA; Winker 
et al., 2018) is easy because the framework enables modelling of either age-structured or 
biomass population dynamics. The stock assessment output (biomass, catches, harvest 
rate) simply need to be passed to FLBEIA as FLStock objects, and the model parameters 
related to population dynamics need to be used in the configuration of the FLBEIA model. 
For example, long-term scenarios of the North Sea FLBEIA model in the ProByFish project 
(EASME, 2021). A current example from an ICES mixed-fisheries considerations product is 
the Iberian Waters advice sheet, where a category 2 stock, black-bellied anglerfish 
(Lophius budegassa) (ank.27.8c9a) in divisions 8.c and 9.a, is incorporated in the mixed-
fisheries assessment (ICES, 2022e).  

2.2 Inclusion of new stocks with no available assessment  

The species are often selected for inclusion based on data availability, management needs 
and expertise in the room. However, recent studies (Altuna-Etxabe, 2019) have shown 
that the absences of data-poor species could result in missed management goals. 
Therefore, to produce useful management tools, all relevant stocks should be captured by 
a model, and not just those most readily available. 

The quality-control basis for all WGMIXFISH considerations products is to be able to 
reproduce the single-species advice forecast. This means that in absence of an analytical 
stock assessment and forecast there is currently no defined basis to include data-poor 
stocks (category 3–6), or stocks with no advice.  

A possible approach to include such stock comprises assuming a constant catch rate 
(constant CPUE). The option of constant CPUE can be used for short-term forecasts when 
it can be assumed that the biomass next year would not be significantly different from the 
one this year. The ICES WGMIXFISH uses this approach to estimate the impact of the 
mixed-fisheries scenarios on bycatch species (e.g. whiting, rays and skates, and pollack in 
the Bay of Biscay model) and such an assumption also forms the basis of the ICES advice 
for Nephrops stocks. However, because of the necessary assumption of constant biomass, 
these stocks are included in the models for ‘illustrative’ purposes only, meaning that they 
are not used in the computation of the effort per fleet, and cannot become choke species. 

Approaches to include such stocks in a dynamic manner in long-term simulation are 
discussed in the section relating to rebuilding stocks (Annex 10). 

2.3  Stocks that extend outside the case study area  

The geographical boundaries of stocks do not always line up neatly with the mixed-fisheries 
definitions of mixed-fisheries ecoregions. This manifests in the form of missing catches 
when a stock is widely distributed, and a significant portion of a stock’s catch occurs outside 
of ecoregion, for example hake in Bay of Biscay. According to the WGMIXFISH best practice 
guidelines (under development, pers. Coms. ICES) the magnitude of the missing catches 
per stock should be estimated and is obtained by comparing the total catches from the 
fleet data to the total catches from the stock assessment. The approach taken to account 
for differences in the total catches is to allocate these catches to a pseudo fleet (details 
given in Table 3). 

There are several areas to be improved for best practice:  

• implementation of a consistent approach for ‘missing’ catches (e.g. out-of-area 
catches) across all ecoregions; 

• scaling down of procedure (implement use of estimated values in stock objects and 
develop a (scaling) procedure to unifying estimated values with observed values (e.g. 
InterCatch/Accessions data) used in conditioning fleets). 
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Table 3: How missing catches are accounted for in ICES mixed-fishery assessment model 
fleet data 

Case study Out-of-area catches 

North Sea Added to OTH_OTH fleet. 

Celtic Sea Put in a stock-specific OTH fleet (pseudo fleet). 

Bay of Biscay Put in a stock-specific OTH fleet (pseudo fleet). 

Iberian Waters Put in a stock-specific OTH fleet (pseudo fleet). 

Irish Sea Not applicable 

 
An additional issue is stocks that appear in more than one mixed-fisheries case study, such 
as including anglerfish and megrims in the Celtic Sea and Bay of Biscay advice. As 
published in the WGMIXFISH methods report in 2021 (ICES, 2021a) Figure 2 shows several 
examples where stocks are incorporated independently in the Celtic Sea case study (orange 
ellipses) and Bay of Biscay case study (blue ellipses). In these cases, the stock area is 
much larger than the individual mixed-fisheries considerations area. At present, an 
assumption is made that catches of the stock from outside the individual mixed-fisheries 
ecoregion area are included in an OTH fleet with a constant effort. For example, in the 
Celtic Sea model, catches of anglerfish from the Bay of Biscay are assumed to be based on 
constant effort in the other area across all modelled scenarios and vice versa. Different 
assumptions could also be made, such as constant catch, constant proportion of catch or 
full TAC uptake. The current approach creates an inconsistency, in that there are different 
catches in the ‘max’ scenario in the Celtic Sea considerations (where there was a large 
projected overshoot) and the Bay of Biscay considerations (where there was a smaller 
projected overshoot) for this stock (Figure 3). The level of bias this introduces is dependent 
on the relative level of catches in each area (Table 4). This makes interpreting the mixed-
fisheries considerations across the two case studies impossible. The solutions discussed 
include the following:  

• continue as at present;  
• present only catches for the region of the mixed-fisheries considerations not the stock 

level (though Fs, SSBs etc. would still need to be presented at stock level); 
• coordinate mixed-fisheries models so that one model informs the catch in the others 

fleet for the OTH model (technically challenging);  
• combine the models to run consistent scenarios across both areas, splitting results out 

for the mixed-fisheries considerations product.  

After some discussion, it was considered that the fourth solution was the most promising 
option as it results in the fewest compromises and consistent considerations. It is also 
facilitated using FLBEIA, where most objects are stored as lists that can be combined once 
the data has been compiled in each respective region. It was agreed to test this approach 
either as part of the IBPMIXFISH (ICES, 2021b) or ahead of this year’s ICES WGMIXFISH-
ADVICE meeting. It was considered that combining the models but presenting the results 
separately would be the best way to ensure consistency and easier to do in the FLBEIA 
framework. However, this data has not been implemented because the Celtic Sea ecoregion 
and Bay of Biscay are using different mixed-fisheries models. In future, when both are 
using FLBEIA, it may be possible to implement this strategy.  



Study to assess the robustness of mixed-fisheries scenario assumptions 

8 
 

 

Figure 1: Overlap of stocks with different ICES areas and stock boundaries. The Celtic Sea 
model area is indicated by the named ICES subdivisions, while the stock boundaries are 
shown as different colours for each species and the management units outside stock 
boundaries are indicated by a lighter shaded area. Ellipses illustrate the Celtic Sea 
(orange) and Bay of Biscay (blue) mixed-fisheries model boundaries in relation to some 
of the shared stocks. Reproduced from ICES, 2021a 

 

 

Figure 2: Differences in catch of mon.27.8abd in the 2020 Celtic Sea mixed-fisheries 
considerations (left) and the Bay of Biscay considerations (right), reproduced from ICES, 
2021a 
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Table 4: Landings and TAC shares for anglerfish and hake across ICES area 7 and ICES 
area 8, reproduced from ICES, 2021a 

Stock Area 𝟕𝟕 Area 𝟖𝟖 

White anglerfish (Lophius piscatorius) in 
Sub-area 7 and in divisions 8.a-b and 8.d  

Landings (2020): 
18 226 t (90 %) 

Landings (2020): 
1 852 t (9 %) 

Black-bellied anglerfish (Lophius budegassa) 
in Sub-area 7 and in divisions 8.a-b and 8.d 

Landings (2020): 
6 502 t (75 %) 

Landings (2020): 
2 174 t (25 %)  

Landings (joint 2020): 
24 782 t (86 %) 

Landings (joint 2020): 
4 026 t (14 %) 

TAC (joint 2020): 
35 299 t (80 %) 

TAC (joint 2020): 
9 008 t (20 %) 

Hake (Merluccius merluccius) in sub-areas 4, 
6, and 7, and in divisions 3.a, 8.a-b, and 8.d 

Landings (2020): 
35 100 t (48 %) 

Landings (2020): 
19 700 t (27 %) 

TAC (2020):       
63 325 t (56 %) 

TAC (2020):         
42 235 t (37 %) 

 

3 CHALLENGES FOR THE FUTURE 

As highlighted by WGMIXFISH methods 2023 (ICES, 2023b) a future challenge will be the 
integration of ensemble models which can better account for the complexity that drives 
the dynamics of fish stock. However, incorporating this into a mixed-fisheries model will 
be challenging. An example of this is the integration of newly benchmarked North Sea cod 
into the mixed-fisheries model.  

As described in the same report, North Sea cod underwent a benchmark in 2023, resulting 
in the stock being split into three sub-stocks (ICES, 2023b). The integration of these stocks 
in the mixed-fisheries model is hampered by the fact that spatially-explicit data do not 
currently exist at the métier level and the sub-stocks mix during the year, thus hindering 
the assigning of a cod catch to a specific métier/sub-stock interaction. The group discussed 
in detail the best way forward for the integration of cod in the model. Two possibilities were 
retained: either inclusion as a merged-stock object, with some loss of consistency with the 
single-stock advice forecasts, or complete removal.  

The concern with the inclusion of a merged-stock object is the loss of sub-stock advice 
considerations based on differing biological status (e.g. SSB either above or below MSY 
Btrigger). This disparity could lead to potentially different choke situations that would not be 
captured by a merged-stock object in the mixed-fisheries forecasts. This could affect the 
credibility of our projections as it is inconsistent with the cod advice based on independent 
sub-stocks. Despite this drawback, the WGMIXFISH group felt it necessary to evaluate the 
technical feasibility of merging the three sub-stocks into a single stock. The results of this 
merging test are intended to be presented in the WGMIXFISH-ADVICE 2023 report (ICES, 
2023b).  

However, the results of the merging test will not resolve the issue that a merged object 
would fail to detect differences in choking behaviour among the sub-stocks. Nevertheless, 
given that cod is the stock that motivated the development of the mixed-fisheries model 
in the North Sea, there was a general feeling that its exclusion might diminish the relevance 
and utility of the mixed-fisheries considerations. Until future data allows for the direct 
integration of sub-stocks and differentiation among fleet catches, a feasible compromise 
for the present would be to proceed with a merged cod stock object and to add clarifying 
text explaining the deviation from the stock single species advice and the possible 
consequences for the mixed-fisheries considerations. The group also discussed the 
possibility of treating the cod stock differently to the other stocks in the model (e.g. exclude 
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it from the list of restrictive stocks), or running an additional more restrictive 
considerations scenario using the smallest catch single species advice of the three sub-
stocks. The inclusion of these possible extra scenarios will be further evaluated during the 
2023 WGMIXFISH-ADVICE meeting. 

4 CONCLUSIONS AND RECOMMENDATIONS 

Although the majority of stocks represented in current mixed-fisheries considerations 
products are category 1 stocks with full analytical stock assessments, using FLBEIA there 
are methods and examples of how to include all types of stocks. The process of including 
new stock requires good communication between WGMIXFISH and the stock assessor, 
collection of all current data, quality-control reviews, and clear definitions of limitations 
and assumptions. This is time-consuming, and work cannot always be completed in one 
year. Incorporation of new stocks takes intersessional research and development, along 
with development at WGMIXFISH-METHODS before it can be approved for use in the 
production of mixed-fishery considerations. The inclusion of each new stock also changes 
the structure and dynamics of the fleet and model, and may also require the development 
of specific scenarios, and time to be spent by WGMIXFISH-METHODS and WGMIXFISH-
ADVICE in reviewing the revised products to ensure that the outcomes of the scenarios are 
logical and meaningful. There is no one-size-fits-all in terms of assessment model or 
considerations product. Time and manpower are currently the key factors for being able to 
incorporate additional stocks.  
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ANNEX 19: CONSIDERATIONS AND DECISIONS CURRENTLY MADE 
WITHIN THE NEW AREA MIXED-FISHERY ASSESSMENT 
DEVELOPMENT PROCESS 

This annex provides a summary of the considerations and decisions currently made within 
the mixed-fishery assessment development process, expanding on the decision boxes from 
the flow diagram depicted in Figure 39. This information is adapted from a mixed-fisheries 
assessment best practice guidance document currently being developed by WGMIXFISH 
(under development, Pers. Coms. ICES). 

 

Experts consider a range of factors when deciding which 
species to include in a mixed-fishery assessment. 

 

 

The decision-making process involves consideration of:  

• technical interactions from a fishing perspective within the area;  
• stock interactions of commercial species, and or vulnerable species;  
• computational and processing requirements / conditioning demand;  
• stock data available, from: 

­ only those stocks with full age-based assessments and forecast methods or an 
absolute abundance estimate;  

­ stocks with biomass-dynamics methods;  
­ TAC stocks, even where no analytical population model is available;  
­ all stocks, even non-quota. 

 
 

Two models are used for mixed-fishery assessments within 
ICES: Fcube and FLBEIA.  

 

 

• FLBEIA uses age-disaggregated catch information at the fleet and métier level, and 
allows for differences in selectivity among fleets/métiers. Additionally, FLBEIA offers 
more flexibility for future changes to methodology.  

• Fcube is used when age-disaggregated data are unreliable or where the dynamics are 
driven primarily by discarding, this is because the way discards are projected in FLBEIA 
is not considered suitable in extreme fishing situations (e.g. zero TAC advice) 
(IBPMIXFISH; ICES, 2021b).  
 

Over time, the intention is to progress all ecoregions to use FLBEIA. However, more 
development work is required for data-poor stocks before this will be feasible. 
 

This is time consuming, and deals with the variety of settings 
within the model – from forecast settings (to replicate those 
for each single-stock advice), through future recruitment 
(dependent on single-stock approach), to define 
fleets/métiers, determine minimum thresholds, how to account 
for missing catches, and fleet behaviour. 

Determine 
species to 

include 

Determine  
model to 

use 

Condition 
the model 
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Define fleets/métiers: There are currently three method choices for determining 
fleets/métiers:  

• fleet-based;  
• fishery-based;  
• fleet and métier based: the recommended method, currently used by all ecoregions. 

However, there is currently no standardised way to define the fleets and métiers, and each 
ecoregion has developed its own approach. To do so, the following should be considered: 

• matching DCF métiers with definitions used in the cod long-term management plan 
(e.g. North Sea); 

• whether separation of fleets over vessel length is necessary; 
• combining across gear groupings that have similar catch profiles; 
• combining countries that only account for a small proportion of the catch (e.g. Bay of 

Biscay – countries other than Spain and France are grouped together); 
• combining métiers across ICES divisions that are often combined for sampling, 

management and advice purposes (e.g. Celtic Sea); 
• conducting a clustering analysis (or similar) to characterise the fishery and ascertain 

whether fleets/métiers with similar data/interactions can be merged; 
• compatibility with other datasets (e.g. STECF for economic data) or with 

regulations/technical measures;  
• the expert opinion of ecoregion fisheries experts. 

Determine minimum thresholds: To maintain a manageable level of complexity 
resulting from large numbers of fleet/métier units with small contributions to catches of 
each stock included within the model, it is necessary to determine a minimum threshold 
below which units can be amalgamated into an ‘other’ or ‘miscellaneous’ category. 
Currently, these minimum thresholds vary across the ecoregions. Best practice within 
WGMIXFISH is to carry out a sensitivity analysis to determine the most appropriate 
threshold level.  

Fleet behaviour: Fleet behaviour in the mixed-fisheries model is assumed to be similar 
to the recent past as observed in the fleet data. This is intended to ensure the fleet 
behaviour is relevant. Best practice has this set to the last three years, but the North Sea 
is the exception to this as it uses the last data year. Fleet behaviour encompasses a number 
of parameters, for which different modelling approaches could be used: 

• effort allocation per métier within a fleet; 
• catchability (catch efficiency) per métier and species; 
• gear selectivity per métier and species (age-based models only); 
• quota share per fleet (typically based on historic landings share). 

The TAC used for the intermediate year and advice year in the forecast are taken from the 
last single-species advice issued for each stock. The TACs are shared between the fleets 
using the assumption made on the quota share per fleet. TACs for Nephrops need separate 
treatment to align functional units and the larger TAC areas. 

 

There are several scenarios that are current best practice to be 
included within the models. These are reproduced in Table 1 
from the developing ICES mixed-fishery assessment guidance 
document.  

 

The single-stock scenario method in Table 1 can be applied to all stocks included in the 
mixed-fisheries assessment model. There is also scope to develop scenarios to meet the 
requirements of the ecoregion, and the particular scenarios presented in subsequent ICES 
considerations sheets will consider stock protection and / or management interests, e.g. 

Determine 
relevant 
scenarios 
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in some ecoregions an economic supplementary scenario has been provided where value 
was used to maximise value of catches.  

The WGMIXFISH group considers an earlier ‘range’ scenario (that used the FMSY ranges of 
the single-species assessments to provide an optimised scenario) as no longer appropriate 
because of misinterpretation of mixed-fisheries considerations sheets and is developing an 
alternative scenario. 

Table 1: Best practice scenario descriptions included within all ecoregion assessments, 
reproduced from the developing ICES mixed-fishery assessment guidance document 

Scenario Description Aim 

Maximum 
(‘max’) 

For each fleet, fishing in the advice 
year stops when all stock shares of 
that fleet have been caught. 

This scenario highlights the least-
restrictive stocks and results in overshoot 
of the advised catch for most stocks.  

Minimum 
(‘min’) 

For each fleet, fishing in the advice 
year stops when the first stock share of 
that fleet has been caught. 

This scenario is the most precautionary 
option and can highlight some potential 
‘choke species’ issues. This option results 
in the under-utilisation of the single-stock 
advice possibilities of most stocks.  

Status 
quo effort 
(‘Sq_E’) 

The effort of each fleet in the advice 
year is set equal to the effort in the 
most recent historical period (average 
of last three years) for which landings 
and discard data are available. 

This scenario indicates the likely level of 
catch if there is no change to the fishing 
effort exerted by each fleet. 

Single 
stock 
(‘stock’) 

The effort of each fleet in the advice 
year corresponds to the effort needed 
to take their stock share of the 
specified ‘stock’, regardless of other 
catches. If a fleet does not have any 
fishing opportunities for the specified 
stock, status quo effort is used. 

This scenario indicates the likely level of 
catch for other stocks if the single stock 
advice for the stock of interest is fully 
taken.  
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