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1  Introduction

The Cannabis plant is of the Cannabaceae family and is 
known to grow in various forms of cultivars or strains. 
Cannabis is popularly known for both its recreational use 
and there is emerging awareness of its medicinal properties 
(Cicaloni et al., 2022). The taxonomical classification of the 
Cannabis genus has been largely debated by taxonomists 
and botanists for decades. Majority of scientists classify 
the Cannabis genus as one parent species in the form of C. 
sativa which is subdivided into two sub-species Sativa and 
Indica. Others classify Cannabis into three separate species 
based on morphological differences in the form of C. sativa 
(taller plant with thinner fan leaves), C. indica (shorter, 
bushier plant with wider fan leaves) and C. ruderalis 
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Abstract
Introduction  The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis 
encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical 
classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical 
intricacy and the resultant medicinal qualities of the plant.
Objectives  Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond 
the cannabinoids.
Methods  Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower 
extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC).
Results  The results revealed the presence of different chemical compound classes including cannabinoids, but extending it 
to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid super-
class was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the 
overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content 
while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination 
with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the 
elucidated chemical profiles.
Conclusion  These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel map-
ping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting 
certain varieties for medicinal use.
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(wild-looking with a canonical shape, has fewer branches 
compared to C.sativa and C. indica) (Watts, 2006; Rupas-
inghe et al., 2020). Despite all the classification debates 
associated with Cannabis, the plant continues to grow suc-
cessfully in various environments worldwide. There are cur-
rently more than 700 strains of Cannabis with trivial names 
such as Purple Kush, White Widow, Amnesia Haze and 
Royal Dutch cheese. When drawing focus on the chemical 
composition of the numerous Cannabis strains or cultivars, 
the chemical classification or differentiation is limited to 
several categories or chemovars which are based only on 
the plant’s cannabinoid content (Gloss, 2015; Lewis et al., 
2018). The cannabinoid chemical class comprises a group 
of compounds that naturally occur in Cannabis varieties. 
The chemical structure of these compounds is characterized 
by a C21 terpene phenolic backbone, which can be traced 
in parent cannabinoids, cannabinoid derivatives, and trans-
formation products. These cannabinoids are further divided 
into sub-classes, namely; cannabichromene (CBC), canna-
bidiol (CBD), cannabielsoin (CBE), cannabigerol (CBG), 
cannabicyclol (CBL), cannabinol (CBN), cannabinodiol 
(CBND), cannabitriol (CBT), ∆8-trans-tetrahydrocannab-
inol (∆8-THC), ∆9-trans-tetrahydrocannabinol (∆9-THC), 
and miscellaneous-type cannabinoids (Filipiuc et al., 2021; 
Radwan et al., 2021; Procaccia et al., 2022). These canna-
binoid classes are distributed across different plant tissues 
where compounds such as ∆8-THC and/or ∆9-THC are 
highly expressed by the glandular trichomes of female flow-
ers (Lubell and Brand, 2018; Conneely et al., 2021).

Type I Cannabis cultivars are characterized by high THC 
levels and are used for both medicinal and recreational pur-
poses. Type III contains high levels of CBD, which has been 
acknowledged for its therapeutic benefits more than type I. 
This has also led to the emergence of additional chemovars 
such as type II Cannabis which is known to have equal lev-
els of both THC and CBD compounds (Lewis et al., 2018). 
Nonetheless, some of the reported medicinal applications 
and benefits of Cannabis include alleviating nausea and 
pain in cancer patients receiving chemotherapy, and alle-
viating neurological symptoms such as anxiety, stress and 
sleeping problem (Moltke & Hindocha, 2021). Additionally, 
studies have shown promising evidence of the therapeutic 
effects of the Cannabis plant (including drugs and essen-
tial oils derived from the plant) in the suppression of dis-
eases such as cancer, Alzheimer’s disease, and Huntington’s 
disease (Kogan & Mechoulam, 2007; Odieka et al., 2022). 
Although Cannabis is expected to have a rich, complex, 
and diverse chemical composition, so far, the only bioactive 
chemical constituents that have been well-studied from the 
plant are cannabinoids (Sarma et al., 2020). We note that 
this is unsurprising given the effects that cannabinoids have 
on people as well as the medical use. In general, the relative 

abundance of aroma-defining terpenes/terpenoids in Can-
nabis are highly regarded by consumers, medical scientists, 
and practitioners (Ferber et al., 2020; Duggan, 2021; LaVi-
gne et al., 2021). Studies have also shown that in Cannabis 
crude extracts, cannabinoids work synergistically with other 
specialized metabolites, such as other terpenes/terpenoids, 
to produce a heightened pharmacological effect compared 
to isolated compounds (entourage effect) (Maayah et al., 
2020; Goerl et al., 2021).

Nonetheless, the cannabinoid chemical class is still 
considered as the major chemical class and is distributed 
in varying amounts across all the different plant parts. The 
typical anatomy of the Cannabis plant is comprised of the 
leaves, flowers, stem, and roots. When considering the plant 
parts or plant tissues of Cannabis, cannabinoids are widely 
known to be abundant in the flowers (inflorescence) of the 
plant compared to the other plant tissues (Jin et al., 2020). 
Consequently, several pharmaceutical companies (sup-
ported by numerous scientific studies) exclusively focus on 
isolated compounds or crude extracts from Cannabis flow-
ers (inflorescence) for the development of new drugs due 
to the high cannabinoid content found in the flowers(Sarma 
et al., 2020; Balant et al., 2021;). However, research shows 
that the use of leaf or seed in traditional medicine (is often 
more important than the use of inflorescence for the treat-
ment of certain ailments (Balant et al., 2021). This suggests 
that Cannabis or its other plant tissues can be alternative 
sources for drug discovery. Therefore, the comprehensive 
exploration of the full phytochemical space of Cannabis 
and its different plant parts remains important as this can aid 
in identifying cultivars or specific plant parts that are more 
useful for specific ailments (Aizpurua-Olaizola et al., 2016; 
Namdar et al., 2018; Balant et al., 2021).

Nevertheless, the cannabinoid-centred approach con-
tinues to dominate the research field, and this has limited 
the exploration of the full potential of Cannabis chemis-
try. Furthermore, with an increasing attention to Cannabis, 
globally, and a growing momentum for legalization and 
commercialization of the plant (in some countries this is 
currently ongoing), there is a need to comprehensively char-
acterize the chemistry of Cannabis (and its various plant 
tissues) beyond cannabinoids to understand its full chemi-
cal composition (Lowe et al., 2021; Pattnaik et al., 2022). 
The increasing scientific efforts to characterize and explore 
the metabolome of Cannabis encompass the utilization of 
omics sciences, particularly metabolomics, which provides 
distinctive avenues to investigate the plant’s metabolism 
and unravel the biochemical mechanisms driving the syn-
thesis of various specialized metabolites within its tissues. 
Furthermore, metabolomics can facilitate and accelerate 
the search for novel bioactive compounds from plant crude 
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extracts (Aliferis & Bernard-Perron, 2020; Vásquez-Ocmín 
et al., 2021; Li et al., 2022).

The application of metabolomics in Cannabis research 
and development (R&D), coined the term “cannabolomics”, 
is still in its infancy and there is a need for the optimization 
of bioanalytical protocols, instrument analysis and metabo-
lite databases to improve the robustness of this approach 
(Aliferis & Bernard-Perron, 2020). Nonetheless, cannabo-
lomics has been suggested for the classification of Cannabis 
into chemical varieties or “chemovars,” to emphasize the 
unique overall biochemical profile of the Cannabis plant of 
interest (Ladha et al., 2020). Such chemical profiling or met-
abolic phenotyping can confirm the composition and quality 
of the chemovar of interest, with variations indicating its 
medicinal applications. Thus, the study reported herein is a 
computational metabolomics work to elucidate a Cannabis 
metabolomic atlas of two cultivars for which sufficient seed 
material was available: Amnesia Haze and Royal Dutch 
Cheese cultivars (both type I chemovars). We mapped their 
metabolome content beyond cannabinoids using a suite 
of computational metabolomics strategies including fea-
ture-based molecular networking, substructural discovery 
method (MS2LDA), in silico tools (e.g., NAP and DEREP-
LICTOR+), and MolNetEnhancer. The study contributes to 
ongoing Cannabis R&D efforts, particularly the compre-
hensive characterization of the plant chemistries of these 
two drug-type cultivars (a first of its kind) that have not been 
investigated or discussed in literature but form part of the 
many acclaimed Cannabis strains that have been generally 
hailed for their therapeutic properties against diseases such 
cancer. Hence, this study is also part of the ongoing efforts 
to determine the anti-cancer properties of Cannabis chem-
ovars and aims to contribute and build on the evaluation of 
the bioactivity elicited by the varying chemical composition 
of Cannabis chemovars.

2  Experimental procedure

2.1  Plant cultivation and harvesting

Cannabis seeds, Amnesia haze (a hybrid genetically com-
prised of 80% C. sativa & 20% C. indica) and Royal dutch 
cheese (a hybrid genetically comprised of 70% C. indica & 
30% C. sativa), were purchased from Marijuana SA (Pty) 
Ltd (Cape Town, South Africa). The seeds were grown 
into plants in Freedom farms premium classic growing 
medium (Freedom Farms Horticulture Technologies, Cape 
Town, South Africa) at 24 °C, 70% humidity and a 24-hour 
light schedule for germination and vegetative stages. The 
flowering stage for both cultivars was initiated at 27  °C, 
30% humidity and a 12-hour light/12-hour dark cycle. 

Seven-week-old plants in their vegetative stages were har-
vested for leaves per cultivar and 16-week-old plants in their 
flowering stages were harvested for flowers. The harvested 
plant-tissues were freeze-dried and crushed with a blender 
to powder form and stored at room temperature until metab-
olite extraction.

2.2  Metabolite extraction and standard preparation

Fifty milligrams (50 mg) of the plant materials were weighed 
and extracted in 1 mL of 80% methanol (Chemlab, UK). The 
samples (leaves and flowers per respective cultivar) were 
spun overnight in a digital rotisserie tube rotator at 70 rpm. 
The crude extracts were then centrifuged at 5678× g in a 
benchtop fixed-angle centrifuge (Thermo Fisher, Johannes-
burg, South Africa). After centrifugation, the supernatants 
were filtered using 0.22 μm nylon filters into glass vials with 
500 µL inserts. In this study, seven independent replicates 
for each sample group were weighed and prepared. The pre-
pared samples were then stored at 4 °C until analysis. For 
chemical baiting, the vitexin standard was prepared in 50% 
methanol to a concentration of 5 ppm. The standard was 
treated in the same manner as the samples for experimental 
procedures.

2.3  Data acquisition – LC-MS/MS analyses of crude 
extracts

Samples (methanol extracts) were analyzed on a liquid chro-
matography–quadrupole time-of-flight mass spectrometry 
(LC-qToF-MS) instrument (LCMS-9030, Shimadzu Cor-
poration, Kyoto, Japan). For chromatographic separation, a 
sample volume of 3 µL was injected on a Shim-pack C18 
column (100 mm × 2.1 mm, 2.7 μm) (Shimadzu Corpora-
tion, Kyoto, Japan) thermostatted at 55 °C. In addition to the 
stationary reverse phase, the chromatography was carried 
out with a binary mobile phase, applying a gradient elution 
method. The solvent system comprised solvent A consisting 
of 0.1% formic acid in Milli-Q water (both HPLC grade, 
Merck, Darmstadt, Germany) and solvent B being metha-
nol (UHPLC grade, Romil SpS, Cambridge, UK) with 0.1% 
formic acid, with a flow rate of 0.4 mL/min. The gradient 
elution was performed as follows, B referring to organic 
composition (i.e., solvent B): 5% B for 3  min, 5–40% B 
over 3–5 min, 40–95% B over 5–12 min, then 95% B for 
from 12 min to 18 min. The gradient was changed back to 
initial 5% B at 18 min and kept to 20 min. The column was 
re-equilibrated for 3 min.

The effluents from chromatographic separation were fur-
ther analyzed with the high-definition mass spectrometer, 
equipped with electrospray ionization (ESI), acquiring both 
negative and positive spectral data. The mass spectrometer 
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server for molecular networking. FBMNs were then com-
puted and generated using the GNPS molecular networking 
workflow. The parameters used for computing FBMN for 
the leaves and flower spectral datasets included precursor 
ion mass tolerance of 0.25 Da with fragment ion mass toler-
ance of 0.25 Da. For spectral similarity, a cosine score cut 
off was 0.65, with a minimum of 4 matched fragment ions. 
For annotation, various spectral libraries were searched and 
these included MassBank, ReSpect and NIST. To visualize 
and analyze the computed networks, the Cytoscape network 
visualization software (version 3.8.2) (Shannon et al., 2003; 
Smoot et al., 2011) was used.

All semi-annotated and some unmatched/unidentified 
nodes, visualized in Cytoscape, were verified using their 
empirical formulae calculated from accurate mass and 
fragmentation patterns. In addition to the manual inspec-
tion of annotations, some natural products dereplication 
databases such PubChem (https://pubchem.ncbi.nlm.nih.
gov) and Dictionary of Natural Products (http://dnp.chem-
netbase.com/faces/chemical/ChemicalSearch.xhtml) were 
also used. The annotations were also verified and confirmed 
against available literature. All metabolite annotations were 
carried out at level 2 and 3 of the Metabolomics Standards 
Initiative (MSI) (Sumner et al., 2007). All validated annota-
tions (manual and computational) are listed in supplemen-
tary Table S1. The networks generated were further explored 
using network annotation propagation (NAP), where first in 
silico fragmentation was applied to the generated FBMN 
where structural searches were performed in databases e.g., 
GNPS, CHEBI, SUPNAT, and DRUGBANK.

To perform network annotation propagation (NAP) (da 
Silva et al., 2018) jobs, both the fusion and consensus scores 
were used based on the first 10 structural candidates. Using 
scoring methods, NAP re-ranks the candidate structure list 
based on the network topology (Ernst et al., 2019; Kang et 
al., 2019; Nephali et al., 2022). The two scoring methods, 
as previously mentioned, utilized by NAP include (a) fusion 
scoring, which uses MetFrag in silico prediction with Met-
Fusion based on spectral library matches within a molecular 
family; and (b) consensus scoring, which uses the structural 
similarity from in silico candidates across the spectral nodes 
of a molecular family. The FBMNs were also explored 
using DEREPLICATOR (Mohimani et al., 2018) for pep-
tidic structural annotations.

Substructure annotation and initial exploration was car-
ried out using the MS2LDA (MS2 latent Dirichlet alloca-
tion) tool (van der Hooft et al., 2016; Rogers et al., 2019) 
in GNPS and substructure annotations from MotifDB were 
included in the analyses. From the default settings, some of 
the parameters were changed as follows for the ESI negative 
dataset: Bin width was set at 0.01 (Tof data) and LDA free 
motifs set at 150. The MotifDB included was Rhamnaceae 

parameters used were the following: 4.5 kV interface volt-
age, with interface temperature of 300 °C; 3 L/min flow rate 
for nebulization and dry gas; DL temperature of 250  °C, 
and 400 °C for heat block; detector was operated at 1.8 kV 
voltage. For monitoring the accuracy of acquired mass-
to-charge ratio (m/z), sodium iodide (NaI) was used as a 
calibration solution. Both non-fragmented (MS1) and frag-
mented (MS2) spectral data were acquired with m/z range 
of 100–1200 Da. For MS/MS experiments, data-dependent 
acquisition method was applied, with an intensity threshold 
of 5000 counts. The collision-induced dissociation (CID) 
method was applied for the fragmentation of ions, using 
argon as a collision gas at a collision energy of 30 eV with 
a spread of 5 eV.

2.4  Data mining: processing and chemometrics 
analyses

The acquired raw datasets (ESI negative and positive cen-
troid data) were processed using MetaboAnalyst version 5.0 
(Pang et al., 2021). The data was processed with UPLC-Q/
TOF default parameters using the centWave method. From 
the default setting, the max peak width was changed to 15. 
The resulting feature tables with 3560 and 3570 features 
for (ESI) negative and positive datasets respectively were 
imported into soft independent modelling of class analogy 
(SIMCA) version 17.0 software (Sartorius, South Africa) 
for chemometrics modelling. Principal component analysis 
(PCA) and hierarchical cluster analysis (HCA) models were 
computed for data exploration, and group classification and 
discriminant analysis.

2.5  Molecular networking and metabolite 
annotation

Prior to computing the feature-based molecular networks 
(FBMN) through the Global Natural Product Social 
(GNPS), the acquired raw datasets obtained from the Shi-
madzu LCMS-9030-qTOF-MS were converted to open-
source format (.mzML) files. The mzML files were then 
uploaded to Mass Spectrometry-Data Independent AnaLy-
sis (MS-DIAL) platform for data processing. The parame-
ters used for MS-DIAL data processing parameters included 
mass accuracy MS1 and MS2 tolerance of 0.25 Da and 0.1 
Da respectively, with the MS/MS range of 50–800 Da; the 
minimum peak height was 2000 amplitude, mass slice width 
of 0.1 Da for peak detection, a sigma window value of 0.5 
was used, and retention time tolerance was 0.1  min and 
MS1 tolerance set at 0.015.

Post MS-DIAL data processing, the GNPS export files, 
both GNPS MGF files and feature quantification tables, 
were exported into the GNPS ecosystem using the WinSCP 
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a 1.5 ml microcentrifuge tube, 10 µl of cells in DMEM was 
gently mixed with 10 µl of trypan blue and was followed 
by aliquoting 10 µl of the mixture into the cell counter slide 
compatible with the TC20. Cell viability and cell concentra-
tion were read and cells that exhibited 95% viability were 
used for cytotoxicity and caspase activity assays.

2.8  Extract preparation

The 80% methanol flower extracts of AMNH and RDC 
were prepared using the protocol reported in Sect. 2.2. The 
80% methanol plant extracts were then dried into solid 
using the rotary evaporator and the two extracts (AMNHF 
and RDCF) were stored at room temperature until further 
analysis. The dried extracts were made up to a stock con-
centration of 100 mg/ml w/v in 100% dimethyl sulphoxide 
(DMSO) (PanReac AppliChem, Germany) respectively. 
The extract stock solutions were stored in the dark at 4 ºC 
awaiting further analysis.

2.9  Alamar blue cellular viability assay

The HEK 293 and MIA PaCa-2 were plated in 96 well plates 
(at 5000 cells per well). The cells were treated with AMNHF 
and RDCF and were incubated for 24 h with an untreated 
control, the negative control set as 0.1% DMSO and the 
positive control set as 100 µM etoposide (Sigma Aldrich, 
Germany), and a media blank column (plated per column). 
The AMNHF and RDCF extracts were used to treat the cells 
in a concentration-based series starting from 100 µg/ml and 
serially diluting it 2X to 3.125 µg/ml. A volume of 10 µl of 
the Alamar blue (Thermofisher, USA) reagent was added to 
each well following the 24 h treatment and the plate was 
incubated for 2 h at 37 ºC. The fluorescence was measured 
in each well using a plate reader and the Gen 5 program 
530/25 nm excitation and 590/35 nm emission. The analysis 
was repeated three times.

Cell viability % =

Fluorescence of treated

− f luorescence of blank

F luorescence of untreated

− f luorescence of blank

× 100

2.10  10 caspase Glo® 3/7 activity assay

MIA PaCa-2 and HEK 293 cells were plated and treated 
with AMNHF and RDCF in 33 mm petri dishes in a similar 
manner as described in Sect. 2.9 with the IC50s and con-
trols. The MIA PaCa-2 cell line was subjected to a caspase 

Plant and the rest were excluded. For the ESI positive data-
set, the the parameters were changed as follows: LDA free 
motifs set at 200. The MotifDB included were GNPS, Mass-
bank and Euphorbia.

Finally, MolNetEnhancer (Ernst et al., 2019) which incor-
porated outputs from both FBMN and in silico tools such 
as MS2LDA, DEREPLICATOR, NAP, and the automated 
chemical classification through ClassyFire, was applied, 
providing thus a holistic chemical overview of measured 
metabolomics spectral data, with enhanced structural details 
for each fragmentation spectrum. The GNPS job links are 
provided in the Supplementary materials.

2.6  Pathways analysis and relative quantification

The metabolomic pathway analysis (MetPA) tool in Metabo-
Analyst, version 5 (Pang et al., 2021) was used to perform 
functional analysis, particularly pathway analysis. The latter 
was computed using identifiers of the annotated metabolites, 
KEGG IDs, as input data. For overrepresentation analysis, 
the enrichment method, hypergeometric test was used; and 
for the node importance measure, i.e., topological analysis, 
the relative betweenness-centrality was employed. For visu-
alization was done using scatterplots and the pathway library 
used was Arabidopsis thaliana (thale cress) (KEGG). Using 
integrated peak areas, (relative) quantitative analysis was 
done, and colour-coded heatmap generated in MetaboAna-
lyst. Pareto-scaling and log-transformation were applied as 
data pre-treatment methods.

2.7  Cell culture

The MIA PaCa-2 pancreatic cancer and HEK 293 human 
embryonic kidney were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) (Sigma Aldrich, USA) supple-
mented with 10% fetal bovine serum (FBS) (Biogen, UK) 
and 1% Pen-Strep (penicillin-streptomycin) (Biowhitakker, 
Germany) at 37 ºC in 95% humidity and 5% CO2. About 
75% of confluent cells were harvested and rinsed with 6 ml 
Dulbecco’s Phosphate-buffered Saline (DBPS) (Sigma 
Aldrich, USA). The cells were then trypsinized with 2 ml 
of 1 X trypsin and were incubated for 45 s (HEK 293) and 
90 s (PaCa-2) at 37 ºC in 95% humidity and 5% CO2. Four 
millilitres of fresh DMEM were added to both cell lines 
respectively to stop trypsinization. Into a new 50 ml cen-
trifuge tube, 6 ml of cell solution was transferred into the 
centrifuge tube, and the cell solution was centrifuged for 
4 min at 2200 rpm (779 × g). After centrifugation, the pellet 
was resuspended in 3 ml of DMEM for cell quantification 
and further subculturing.

After cell culturing, cell quantification was done using 
trypan blue and TC20 automated cell counter (Bio-Rad). In 
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metabolite profiles which were further investigated (Figure 
S1).

3.2  Global chemical profiling – key constituents of 
Cannabis metabolome

The chemical profiling of plant extracts such as Cannabis, 
achieved through GNPS-based molecular networking (MN) 
tools, can assist in bettering and laying the foundation for 
the differentiation of Cannabis cultivars into chemovars 
based on their chemical class content. In doing so, metabo-
lite biomarkers can be identified for each chemovar, and 
this would aid in understanding the non-generic medicinal 
or bio-active potential elicited by each Cannabis chemovar 
or plant-tissue thus narrowing down the medicinal applica-
tions of the chemovar of interest. Thus, in this study, the 
metabolic inventory of the two cultivars was investigated. 
The obtained spectral data were submitted to mass spectral 
molecular networking (MN) through the GNPS ecosystem, 
a scalable workflow that digitalizes the diversity and distri-
bution of metabolites in plants (Kang et al., 2019).

Feature-based molecular networking (FBMN) enabled 
the semi-automated putative annotation of metabolites with 
confidence level 2 (or level 3) annotations as defined in the 
proposed minimum reporting standards of the metabolomics 
standards initiatives (MSI) (Sumner et al., 2007) (Fig. 1). 
FBMN represents a computational strategy that facilitates 
the visualization and compound annotation of complex, 
high-resolution untargeted LC-MS/MS metabolite data from 
natural extracts (Hammerle et al., 2021). This type of MN 
is designed to distinguish structural isomers by incorporat-
ing features such as chromatographic retention times which 
enhances metabolite annotation and thus the dereplication 
of metabolites whilst also retaining semi-quantitative infor-
mation to perform statistical analyses (Quinn et al., 2017; 
Nothias et al., 2018, 2020). The computed FBMN of spec-
tral data from leaf samples (from both cultivars) comprised 
2914 nodes (metabolite features with an MS//MS spectrum) 
where 997 nodes clustered into 128 molecular families 
(MF) based on spectral similarity while 1917 nodes formed 
singletons (stand-alone nodes that are not incorporated into 
a MF) (Fig. 1A). Searching spectral libraries in GNPS, 166 
nodes (from the 2914 nodes) were putatively annotated, with 
varying relative distributions across the cultivars, which 
point to diverse chemistries in the leaves of these Cannabis 
cultivars. For the samples from the flower tissues, the com-
puted FBMN was of 2829 nodes of which 119 nodes were 
putatively annotated and 998 nodes clustered to form 172 
molecular families while 1831 formed singletons (Fig. 1B). 
The singletons (selfloop nodes) positioned at the bottom of 
both networks (Fig. 1A-B) represented spectra that were not 

detection assay to determine if caspase-3 and -7 were acti-
vated due to the compound treatment. The cells were plated 
for 24 h in 33 mm petri dishes at 1 × 105 cells/ml. The cells 
were treated 24 h after plating with 2 ml treatments consist-
ing of an untreated control, the positive and negative con-
trols, and the AMNHF and RDCF treatments with the IC50s 
of each extract. The assay was repeated three times and was 
conducted using the Caspase Glo® 3/7 assay kit (Promega, 
USA) based on the manufacturer’s recommendations.

2.11  In silico molecular docking

The PDB files of the target proteins were obtained from the 
Protein Data Bank (https://www.rcsb.org/) database and 
selected based on their resolution: <2.0Å (1.5–2.0Å), while 
the structures of the ligands were retrieved from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/). The files were then 
prepared in UCSF Chimera for docking by deleting and 
adding hydrogens to the receptors and ligands respectively. 
The structures were respectively saved in .pdb and .mol2 
formats and converted into rec.pdb and .pdbqt formats 
using Autodock tools. After predicting the active sites of the 
receptors, a grid box was created to surround the binding 
residues present in the site using specific X, Y, and Z dimen-
sions and centres. Setting the results to give five prediction 
outputs, Raccoon and Autodock Graphical user interface 
supplied by MGL tools were then used to dock the ligands 
onto the receptors. The complexes exhibiting the lowest 
Z-scores i.e., the least energy functions were then selected. 
The resulting .pdb files were viewed in UCSF Chimera, 
which was used to identify and label the residues involved 
in the docking.

3  Results and discussion

3.1  Chemometric analysis of Cannabis cultivars

As detailed in the experimental section, a nontargeted 
LC-MS/MS-based metabolomics approach was applied for 
profiling the metabolome of leaves and flowers of two culti-
vars that are used for medicinal purposes: Amnesia haze (C. 
sativa dominant) and Royal dutch cheese (C. indica domi-
nant). The methanol extracts from leaf and flower tissues 
were analyzed on an LC-MS/MS platform. The processed 
spectral data was explored and evaluated by applying unsu-
pervised chemometrics methods, namely, principal com-
ponent analysis (PCA) and hierarchical clustering analysis 
(HCA) modelling. The generated models revealed certain 
structures within the data, such as tissues- and cultivar-
related sample groupings, pointing to underlying differential 
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cluster also suggest that there may be other unknown CBD 
related compounds or analogues present.

Furthermore, as may be expected from plant samples, fla-
vonoids were also one of the major metabolite classes found 
in the Cannabis tissues. In this flavonoid cluster, there are 
spectral nodes (such as m/z 489.10, 505.28, 479.15, 639.23 
and 669.31) that could not be annotated through GNPS 
spectral library matching, yet they are postulated to be 
structurally related to glycosylated flavonoids (Table S1) 
due to their grouping with flavonoids such as isoquercitrin 
(m/z 433.07) and isorhamnetin-3-glucoside (m/z 477.09) 
(Fig. 2B) (Table S1).

As above mentioned, it is worth noting that applying 
these computational tools improves annotation as it pro-
vides insights into possible molecular families in the mea-
sured metabolome. However, there are some limitations, 
related to similarity scoring algorithms and the complex-
ity of untargeted metabolomics spectral data. To improve 
on this, the “chemical baiting” concept was explored and 
applied. The baiting approach is a concept that is predomi-
nantly used in protein biochemistry where chemical baits 
or probes are used to bind or concentrate a diverse range 
of biomarkers (proteins & peptides, metabolites, lipids & 
fatty acids, nucleic acids, and post translationally modified 
peptides) that are either occurring in low concentrations 
or masked by other dominant resident proteins (Luchini et 
al., 2010). Nonetheless, within metabolomics approaches 
based on molecular networking (MN), a known exogenous 
compound (a bait) can be employed to screen for related 
endogenous metabolites residing within the same molecular 

clustered into molecular families, i.e., low spectral similar-
ity scores.

The molecular families (MFs) in the networks provided a 
global visualization and insights on the metabolome of the 
two cultivars, revealing diverse metabolite classes includ-
ing phospholipids, cannabinoids and flavonoids, which are 
differentially distributed across the cultivars and across the 
tissues (Fig.  1 and Figure S2). From the 128 MFs found 
in the leaf data (where two or more connected nodes are 
considered as an MF), 94 MFs were comprised of unknown 
metabolites. However, 34 MFs had at least one metabolite 
automatically matched to the GNPS libraries, a similar trend 
that was also observed in the MFs found in the flower MN. 
Considering that MN is rationally constructed based on 
spectral similarities (Aron et al., 2020; Vincenti et al., 2020; 
Yu et al., 2022; Zhang et al., 2023), automated annotation 
of one node in a cluster can aid in decoding and annotating 
other structurally similar metabolites or features in the same 
molecular family. As such, MN improves on metabolite 
annotation, decoding ‘dark matter’ in spectral data, which 
subsequently provides an improved coverage on the anno-
tated metabolome. In this study, this is illustrated by Fig. 2A 
where one spectral node in the MF was putatively annotated 
through GNPS spectral library matching as CBD. Based on 
the concept of molecular networking, theoretically this clus-
ter posed as a cannabinoid cluster formed by metabolites 
with similar structures and fragmentation patterns. This then 
propagated the manual annotation of unidentified metabo-
lites such as cannabidiolic and cannabidivarinic acids in 
the cluster (Fig. 2A). The unannotated metabolites in this 

Fig. 1  Feature-based molecular networking (FBMN): Molecular networks representing the general mass spectrometry detected chemical space of 
Cannabis cultivars Amnesia haze (AMNH) and Royal dutch cheese (RDC). (A) mass spectral molecular network for the leaves, L denoting leaves 
and (B) mass spectral network for the flowers, F denoting flowers. Key: Amnesia haze leaves (AMNHL), Amnesia haze flowers (AMNHF), Royal 
dutch cheese leaves (RDCL) and Royal dutch cheese flowers (RDCF). Some major molecular families from each network are highlighted, e.g., 
flavonoids, cannabinoids and phospholipid Clusters.
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formed their own MF (Fig.  4). It was previously demon-
strated that cannflavins (canflavin A, B and C) are geranyl-
ated flavones postulated to be unique to Cannabis cultivars 
(Rea et al., 2019; Bautista et al., 2021; Tomko et al., 2022).

In our study, cannflavins A and B were detected in both 
the leaves and flowers of AMNH and RDC and reported 
in Table S1. Cannflavin A (m/z 435.1825) was distributed 
evenly across the plant tissues of both cultivars, and can-
nflavin B (m/z 367.1193) was recognisably present in the 
leaves and flowers of RDC but significantly abundant in 
the flowers of AMNH (Fig. 4). Using the GNPS analogues 
library search, the unknown metabolites in the cannflavin 
cluster were matched to flavone analogs such as afrormosin 
and 3’,3’,4’-trimethoxyflavone which are structurally simi-
lar to the detected cannflavins.

Thus, the computed FBMN (Fig.  3) provided spectral 
clustering and putative annotations of the measured metab-
olomes from the leaves of the cultivars, revealing action-
able insights and key characteristic features of the chemical 
space of Cannabis such as 289 spectral library matches of 
flavonoids, cannabinoids, phospholipids and more (Table 

network. Thus, in this study, the vitexin standard was used 
as a probe to determine the effect of chemical baiting on 
FBMN (Fig. 3).

The overall observed effect of chemical baiting on FBMN 
(Fig. 3) showed that using a known refererence standard, in 
this case the vitexin standard, can aid in probing or fishing 
out known, “unknown knowns” and “unknown unknown” 
that are structurally similar and thus have similar fragmen-
tation patterns depending on one or more standards used. As 
such, the use of molecular baits would speed up the annota-
tion process, increasing the accuracy in forming molecular 
families or clusters (based on structural similarities) in the 
network. This was shown by the clustering of vitexin and 
vitexin-2-O-rhamnoside into one molecular family when 
the vitexin standard was added as a chemical bait.

We also note that metabolite features annotated with 
cannflavins A and B, flavonoids unique to Cannabis culti-
vars and structurally related to vitexin, were also initially 
detected in the same MF as vitexin-2-O-rhamnoside before 
the addition of the vitexin standard (a molecular bait). How-
ever, once the vitexin standard was added, the cannflavins 

Fig. 2  Molecular clusters extracted from FBMN. A detailed visual representation of the output of feature-based molecular networking highlighting 
some of the major chemical classes in leaves /flowers of Amnesia haze and Royal dutch cheese. Key: Amnesia haze leaves (AMNHL), Amnesia 
haze flowers (AMNHF), Royal dutch cheese leaves (RDCL) and Royal dutch cheese flowers (RDCF). (A) Cannabinoid cluster in the leaves con-
sisting of cannabidiolic (m/z 357.20) and cannabidivarinic acid (m/z 329.17) (B) flavonoid cluster in the flowers consisting of Isoquecetrin (m/z 
463.12) and isorhamnetin-3-glucoside (m/z 477.09). In addition to the annotation of the metabolites in the clusters, FBMN also aids in visualizing 
the relative abundance of each metabolite in the extracts
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within each class of metabolites (van der Hooft et al., 2016). 
During MS2LDA analyses, sets of previously annotated 
Mass2Motifs can be added from MotifDB (Rogers et al., 
2019), whilst unknown chemistry is captured in Mass2Mo-
tifs that are numbered to enable highlighting and further 
studying them during subsequent analysis (van der Hooft et 
al., 2020). As such, the generated substructural information 
highlights the (bio)chemical relationships of the connected 
compounds. Moreover, these (shared) substructures or scaf-
folds can point to functional groups and/or core structures of 
the compounds, potentially revealing common biosynthetic 
routes in a molecular family (van der Hooft et al., 2016; 
Beniddir et al., 2021; Ramabulana et al., 2021).

In total, one hundred and eighty-one (181) Mass2Mo-
tifs were discovered, and most were common in both 
the Cannabis leaves and flowers datasets (ESI negative) 
of the two cultivars, respectively. The Mass2Motifs, 
annotated and unannotated were visualized through the 
MS2LDA website (ms2lda.org) (Wandy et al., 2018). As 
an illustration, some of the characterized Mass2Motifs 
found in the Cannabis leaves are highlighted and shown 
in Fig.  5. These discovered substructural Mass2Motifs 
are significant in the sense that they can aid in the struc-
tural elucidation of “unknown knowns’’ (metabolites or 
spectral nodes whose reference spectra are not found in 
the GNPS spectral libraries and therefore represented as 

S1), 1265 connected nodes and 192 molecular families. Fur-
thermore, chemical baiting assisted, for instance, in more 
confident annotation of vitexin-related structures. More-
over, the generated network showed differential distribution 
of metabolites across the cultivars. For instance, clusters 
of lipid-like molecules were more abundant in the plant 
tissues of RDC and flavonoids such as isoquercitrin were 
more abundant in the tissues of AMNH, while a cluster of 
hydroxy acids such as citric acid occured in similar levels 
across both the cultivars (Figure S2).

To further explore and characterize the metabolome 
of the Cannabis cultivars, in silico annotation tools such 
as substructure recognition topic modelling through the 
MS2 Latent Dirichlet Allocation (MS2LDA), and the net-
work annotation propagation (NAP) were performed for 
all spectral datasets from both cultivars, AMNH and RDC. 
To illustrate the contribution of these tools to the Canna-
bis metabolite annotation and identification at a scaffold 
diversity level, the outputs obtained from both AMNH and 
RDC dataset are reported herein (Fig. 5 and Table S1). The 
machine learning (ML)-based tool, MS2LDA, allows an 
unsupervised decomposition of fragment spectra, discov-
ering mass fragmental patterns of co-occurring mass frag-
ments as well as neutral losses (termed ‘Mass2Motifs’, 
or shortly ‘m2m’) from different MS/MS spectra, which 
enables extracting information on substructural diversity 

Fig. 3  Chemical baiting in FBMN. The effect of chemical baiting on FBMN using the Vitexin standard as a probe for Vitexin-2-O-rhamnoside 
and any other metabolites that are structurally similar to vitexin. (A) FBMN before analyzing samples in the presence of the standard, (B) FBMN 
after analyzing samples with the standard and (C) zoomed-in vitexin cluster from (B)- showing the clustering of the vitexin standard together 
with vitexin-2-O-rhamnoside, as well as the incorporation of an unknown metabolite and other structurally similar metabolites into one molecular 
family.
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related to apigenin with mass features specific for vicenin. 
Furthermore, MS2LDA also highlighted some of the chemi-
cal moieties that make up cannabinoids as shown in Fig. 5B. 
It is worth noting that the fragmentation patterns (in mass 
spectrometry) of C-linked flavonoids, such as vitexin dis-
play key structural information. The latter can aid in dif-
ferentiating flavonoids by examining first-order ion spectra 
or low-energy CID spectra. However, a detailed account on 
this (C-linked and O-linked glucosides) is beyond the scope 
of this study, and the reader is referred to the literature (Ma 
et al., 2000; Cuyckens & Claeys, 2004; Cao et al., 2014; 
Geng et al., 2016). It suffices here to mention that O-glyco-
sides, linked through an oxygen atom, frequently undergo 
glycosidic cleavages, producing a variety of sugar moiety 
fragments and prominent Y ions formed by rearrangement 
reactions at the interglycosidic bonds. On the other hand, 
C-glycosides (such as vitexin), with a more stable carbon-
carbon linkage, mostly molecular ions are observed together 
with cross-ring cleavages of the saccharidic residue and 
the loss of molecules of water, i.e., mostly X ions, in the 

unknowns) such as m/z 609.1476 identified as luteolin-
glucoside-arabinoside. When evaluating the chemical 
makeup of the glucosylated flavonoids, Fig.  5A illus-
trates that m/z 609.1476 shares a common substruc-
ture (unknown motif_61) with the manually annotated 
metabolites luteolin-glucoside and luteolin-rutinoside. 
This resulted in the structural elucidation of luteolin-glu-
coside-arabinoside (m/z 609.1476) and led to the shared 
unknown motif_61 being annotated as a substructure that 
is related to luteolin (m/z 285). Additionally, this also 
suggests that motif_107, motif_48, and motif_45 are all 
related to some sugar loss, respectively.

Moreover, it can be postulated that motif_ 76 and 
motif_42 are both related to the apigenin scaffold as they 
both form the core structure of the putative annotations 
of vitexin (m/z 431.0996) and vicenin II (m/z 593.1529) 
where motif_76 is found in compounds related to vitexin 
while motif_42 is found in compounds related to vicenin 
II. This implies that the mass fragmental pattern captured 
in motif_76 is related to apigenin with mass features spe-
cific for vitexin, whereas the pattern captured in motif_42 is 

Fig. 4  Cannflavin cluster. A representation of the distribution of the detected cannflavins (cannflavin A and B) and some of the GNPS matched 
analogues acquired in ESI negative. Key: Amnesia haze leaves (AMNHL), Amnesia haze flowers (AMNHF), Royal dutch cheese leaves (RDCL) 
and Royal dutch cheese flowers (RDCF). (A) Uknown compound ( m/z 367.156) (B) unknown compound (m/z 367.1193) matched through GNPS 
analogue library as afrormosin and ‘3,3’,4’-trimethoxyflavone respectively.

 

1 3

   62   Page 10 of 19



Charting the Cannabis plant chemical space with computational metabolomics

In addition to MS2LDA, Network Annotation Propaga-
tion (NAP) was also applied to facilitate metabolite feature 
annotation and to serve as an input for chemical compound 
classicifation performed by MolNetEnhancer. NAP per-
forms in silico fragmentation-based metabolite predictions 
or annotations of candidate structures through searching 
several databases including GNPS, ChEBI (Chemical Enti-
ties of Biological Interest), SUPER NATURAL (II) and 
DNP. Therefore, using these two scoring methods, NAP is 
a beneficial tool when experimental spectra are matched 
to a few spectral libraries matches as it also allows the 
propagation of annotations in the absence and presence of 
library spectral matches (da Silva et al., 2018; Nephali et 
al., 2022; Kim et al., 2023). The outputs of NAP obtained 
in this study are reported in the supplementary material. 
In brief, when looking at the annotation of individual fea-
tures, we could verify that NAP was able to correctly pre-
dict 18 (out of 997 spectral features) metabolites for the 
leaves data and 25 (out of 998) for the flower data. In both 
leave and flower exctracts, the NAP predicted metabolites 
include, cannabidiol, vitexin, orientin, and luteolin. These 
metabolite annotations were verified through manual 
inspection of fragmentation patterns and literature. Whilst 
other NAP annotations could not be verified as being 
exact matches, many are likely representing structurally 
related molecules present in compound databases, and all 

nomenclature model by Domon and Costello (Cuyckens & 
Claeys, 2004).

Furthermore, in addition to flavonoids, compounds 
such as cannabidiol (CBD) were annotated through GNPS 
spectral library matching and with the use of FBMN, it 
was shown to be structurally similar to cannabidiolic 
acid (CBDA - m/z 357.2074) and cannabidivarinic acid 
(CBDVA - m/z 329.1765) (Fig.  2). The MS2LDA dis-
covered substructures of these clustered metabolite fea-
tures clearly describe the chemical relationship between 
the compounds through rhamn_motif_172.m2m which 
describes the carboxylic acid that is attached to CBDA 
and CBDVA (Fig. 5B). Furthermore, this led to the shared 
unknown motif_86 being annotated as a substructure 
that is related to cannabidiol (m/z 313.2175). Combin-
ing Mass2Motif annotations and library matches, we can 
observe how the known compounds and unknown canna-
bidiol analogues are associated with the cannabidiol sub-
structure. This makes sense as the cannabidiol derivatives 
would have a cannabidiol core structure. Altogether, the 
here highlighted Mass2Motifs are indicative of flavonoids 
and cannabinoids, respectively, and their decorations (i.e., 
glycosylations). Consequently, this confirms and gives 
confidence to the FBMN annotations such as those previ-
ously made on the highlighted molecular family (Fig. 2) 
and listed in Table S1.

Fig. 5  MS2LDA output. Molecular network clusters extracted from an MS2LDA substructure exploration analysis of Cannabis cultivars AMNH 
and RDC in ESI negative ionization mode. (A) and (B) illustrate the MS2LDA-driven annotations of flavonoids (A) and cannabinoids (B) in the 
leaves of the cultivars. The coloured nodes represent some of the recognized substructures.
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metabolites, in addition to their plant functions, exhibit 
biological activities such anti-inflammatory and antioxi-
dant properties.

Other polyphenolic compounds such as feruloyl quinic 
acid and caffeoylquinic acid reported in Table S1 were also 
detected in the leaves. These phenolic acids which form part 
of chlorogenic acids are known to possess anticarcinogenic 
properties due to their antioxidant activities (Makhafola 
et al., 2016; Bouyahya et al., 2022). When evaluating the 
superclasses present in the flowers of the two cutivars, the 
Phenylpropanoids and polyketide superclass (comprised of 
polyphenolic compounds) was less dominant. Contradic-
tory to this observation, flowers are regarded as important 
reproductive organs thus high levels of polyphenols are 
expected (Piccolella et al., 2020). However, the clear lack of 
polyphenols in the flowers of the studied cultivars (Fig. 6B) 
poses questions on the presence of intact biosynthetic routes 
of these compounds or the effects that the breeding pro-
cess could have had on the chemistry of these cultivars. 
Moreover, literature regarding polyphenols in the flowers 
of Cannabis cultivars remains scarce and limited (Izzo et 
al., 2020). It has been shown that Cannabis cultivars lose 
genetic variation due to domestication and excessive breed-
ing for selective traits (Clarke & Merlin, 2016). Therefore, 
such losses could contribute to the observed differences in 
the distribution of the phenylpropanoids and polyketides 
(polyphenols) between the leaves and flowers of the studied 
cultivars.

structural annotations were used by MolNetEnhancer to 
infer chemical compound classes of the molecular families 
in the generated networks.

To get an improved chemical compound class annotation 
and a comprehensive chemical overview of the measured 
spectral data, the outputs from FBMN, MS2LDA, NAP and 
DEREPLICATOR + were combined in an enhanced molec-
ular network workflow, MolNetEnhancer, which integrates 
also the automated chemical classification of molecular 
families with ClassyFire (Ernst et al., 2019). MolNetEn-
hancer enabled the chemical annotation, visualization, and 
discovery of the subtle substructural diversity within molec-
ular families (Fig. 6).

The generated networks indicated the varying distribu-
tion of major superclasses such as phenylpropanoids & 
polyketides, lipids and lipid-like molecules, organic oxy-
gen compounds, benzonoids and organoheterocyclic com-
pounds across the leaves (Fig. 6A) and flowers (Fig. 6B). 
A major difference observed between the plant-tissues of 
the cultivars (Fig.  6) was the abundance of phenylpro-
panoids and polyketides superclass, which was the second 
most dominating superclass in the leaves of the cultivars 
(Fig. 6A). Phenylpropanoids and polyketides include fla-
vonoids, lignins, phenolic acids, stilbenes and coumarins. 
A considerable number of flavonoids, a chemical class 
whose biosynthetic pathway was identified as one of the 
significant metabolic pathways in the two cultivars (Table 
S2 and Figure S3), were identified in the leaves. These 

Fig. 6  Enhanced molecular networking. MolNetEnhancer mass spectral FBMN of (A) leaves and (B) flowers of both AMNH and RDC Cannabis 
cultivars acquired in ESI negative. The MolNetEnhancer FBMNs highlight the chemical superclasses present in leaves and flowers of two cul-
tivars. The networks were computed from the combined outputs of FBMN putative annotations, substructure annotations (MS2LDA), network 
annotation propagation (NAP), and DEREPLICATOR.
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of the revealed cultivar chemistries supported by biological 
assay studies.

3.3  Anti-proliferative properties of AMNH and RDC: 
in silico molecular docking and biological assay 
studies

The phytochemistry of both cultivars illuminated various 
chemical classes including cannabinoids and flavonoids- 
with some described to have anti-cancer properties amongst 
other biological activities. Selected cannabinoid and flavo-
noid ligands, based on the elucidated chemical profiles of 
the two cultivars (Tables S1 and S3), were docked against 
various cancer targets. Each ligand was docked against its 
known target since the targets have been shown or sug-
gested to play vital roles in cancer pathways. The interac-
tions of the ligands with the receptor/protein targets were 
investigated through computer-assisted modelling to reveal 
their effective binding capacities (Table S3). Illustratively, 
the most significant receptor and ligand interactive bind-
ing affinity or docking score (-10.3 kcal/mol) was observed 
between cannabinoid receptor type 2 (CB2) and ∆9-THC 
(Fig. 7). The amino acid residues involved in the interaction 
were shown to be SER285, PHE281, VAL113 and SER90.

This was followed by the interaction between cannabi-
noid receptor 2 (CB2) and CBD where the binding affin-
ity of -9.5  kcal/mol.CB1 and CB2 are endocannabinoid 
cannabinoid receptors or membrane proteins with seven 

Additionally, Cannabis genomics data lacks plant-tissue-
specific data (Hussain et al., 2021) but the metabolite data 
generated in this study could lay the foundation for further 
exploration of the regulatory genetic networks of chemical 
classes in plant tissues of Cannabis cultivars. For example, 
when zooming in on these identified superclasses and detail-
ing the relative abundance of the identified metabolites, 
Figure S2 highlights the cultivar-specific and plant-tissue-
specific metabolite differences where lipid-like molecules 
such as Glc-Glc-octadecatrienoyl-sn-glycerol (isomer 2) are 
dominant in the tissues of RDC while flavonoids (phenyl-
propanoids and polyketide superclass) such as isoquercitrin 
are more dominant in the tissues of AMNH. These meta-
bolic differences could be related to changes in regulatory 
networks underlying the specialized metabolome of these 
cultivars.

The chemical profiling achieved through the GNPS-
molecular networking tools revealed a complex and diverse 
phytochemical space of the cultivars based on the leaf and 
flower metabolite profiles. The leaves and flowers were 
characterized by the presence of chemical classes such as 
flavonoids, cannabinoids and phospholipids which have 
various medicinal properties as discussed above. Possible 
anti-cancer properties are one of the medicinal properties 
that were postulated from the revealed metabolomes of the 
two cultivars. To further explore this postulation, in silico 
molecular docking studies were performed to computation-
ally predict the anti-cancer or anti-proliferative properties 

Fig. 7  Molecular docking to predict the activity of selected Cannabis metabolites. Structure of CB2 active site in complex with ∆9-THC. The 
docking pose indicates the receptor interactive amino acid residues SER285, PHE281, VAL113 and SER90 that position ∆9-THC in the binding 
pocket of CB2.
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cannflavin A, a flavone unique to the Cannabis plant, 
were also investigated. Among all the screened flavo-
noids, cannflavin A had the most significant docking score 
of -9.3 kcal/mol through its interaction with amino acids 
SER144, THR143, GLU196, TRY200, PRO206, TRY202, 
ARG167 on caspase 3, a cysteine–aspartic acid protease 
that is predominantly found in the cytoplasm of cells and 
exists as an inactive pro-enzyme (pro-caspase 3) (Luo et 
al., 2010; Ponder & Boise, 2019). Studies done on cannfla-
vin A as a ligand to caspase-3 have shown that the interac-
tion causes slight cleavage on caspase-3 which results in 
cytotoxic effects to a variety of cancer cells such as human 
bladder transitional carcinoma cells (Tomko et al., 2022). 
The stimulation of caspase-3 results in apoptosis, often 
described as a “point of no return” for a cell and is char-
acterized by apoptotic nuclear changes such as DNA frag-
mentation, chromatin condensation and nuclear disruption 
(Luo et al., 2010; Boudreau et al., 2019).

Overall, all the flavonoids and cannabinoids exhibited 
good binding affinity with the various cancer targets which 
may be responsible for the anti-proliferative properties of 
Cannabis flower extracts observed in Figures S4 and Fig. 8. 
When considering Cannabis in natural consumer products 
and cancer research, several studies have been done to 
support the efficacy of Cannabis varieties for various can-
cer treatment-related symptoms. Some studies have also 
explored the efficacy of Cannabis in inducing apoptosis in 
cancer cells. However, most of these studies mainly focus 
on the effect of isolated major cannabinoids (e.g., CBD, 
CBG, THC etc.) and focus less on other chemical classes 
or their combined synergistic effect. Since Cannabis flow-
ers are mostly studied in drug discovery and bioactive com-
pound exploration, herein, the flowers of the two cultivars 
(AMNHF and RDCF) previously profiled for their chemical 
content (through computational metabolomics) were inves-
tigated for anti-proliferative effects through in vitro cell via-
bility assays complemented with in silico molecular docking 
studies (discussed above) to determine if they elicited simi-
lar cytotoxic effects. The in vitro cell viability assays such 
as the alamar blue assay (Longhin et al., 2022) showed that 
both AMNHF and RDCF extracts were cytotoxic to the can-
cerous MIA PaCa-2 cell line which indicated anti-prolifera-
tive properties (Figure S4). However, the effect of AMNHF 
displayed a concentration-dependent pattern on the MIA 
PaCa-2 cells where lower cellr viability (high cell death) 
was achieved through lower extract concentrations which 
can be seen as counterintuitive. This points out the instabil-
ity of crude extracts versus isolated compounds on cytotoxic 
screening since different compounds could be present at dif-
ferent concentrations thus the observed effect. Additionally, 
the observed effect can be further investigated through more 
reliable and reproducable studies such as xCELLigence cell 

transmembrane helices and belong to the rhodopsin-like 
G-protein-coupled receptor superfamily (Sharif et al., 2016). 
CB1 is predominately found in the central nervous system 
(CNS) and in addition to its ability to bind to a wide range of 
cannabinoids, CB1 actively binds and mediates the psycho-
active effects of ∆9-THC (Kendall & Yudowski, 2017). On 
the other hand, CB2, which had the highest docking score 
or interacting with ∆9-THC, is known to play a significant 
role in the regulation of immune responses, inflammation, 
pain, and other metabolic processes (Yeliseev & Gawrisch, 
2017). In the many types of cancers, the activation of both 
CB1 and CB2 triggers several pathways. In lung cancer, it 
has been reported that when bound to the CB receptors, ∆9

-THC (identified only in the flowers of the cultivars-Table 
S1) upregulates Tribbles homolog 3 (TRB3) which propa-
gates autophagy mediated apoptosis (Salazar et al., 2009; 
Fu et al., 2023). Moreover, studies conducted on pancreatic 
Mia PaCa2 cell line showed that, ∆9-THC induced cas-
pase-3 activation (characteristic of apoptotic cell death as 
illustrated above) and stimulated the de novo synthesis of 
ceramide which increased the cell apoptotic rate through the 
up-regulation of stress-regulated protein p8 (Carracedo et 
al., 2006; Laezza et al., 2020).

The cannabinoid CBD, which is known to interact with 
CB1 and CB2 in cancer pathways, was also shown to inter-
act with the G-coupled protein receptor 55 (GPR55) where 
the docking score was measured to be -7.8 kcal/mol (Table 
S3), slightly lower than the docking scores on CB1 and CB2. 
GPR55 is one of the newly discovered endogenous cannabi-
noid receptors that now form part of the extended endocan-
nabinoid system (Ramer et al., 2019). The endocannabinoid 
receptor GPR55 is abundant in the brain, skeletal muscle, 
gastrointestinal (GI) tract, white adipose tissue, the islets of 
Langerhans (β and α cells) and the pancreas. In cancer stud-
ies, GPR55 has been investigated for its vital role in cancer-
promoting activities (Falasca & Falasca, 2022). The normal 
stimulation of GPR55 by its endogenous ligand (lysophos-
phatidylinositol (LPI) activates the pro-tumorigenic Akt 
and extracellular receptor kinase (ERK) pathways which 
promote cell proliferation. However, when CBD binds to 
GPR55, it acts as an antagonist and thus promotes antipro-
liferation effects in cancer cell lines (Laezza et al., 2020).

When evaluating the flavonoid content of cultivars, 
literature highlights that more than 20 flavonoids have 
been identified in Cannabis of which the most abundant 
are flavone (luteolin and apigenin) and flavonol (querce-
tin and kaempferol) aglycones and glycosides (Bautista et 
al., 2021; Cásedas et al., 2022). Thus, flavonoids identi-
fied and reported in Table S1such as apigenin, quercetin 
and kaempferol, in their non-glycosylated forms, were 
also investigated for their binding affinities to cancer tar-
gets (Table S3). Moreover, the anti-cancer properties of 
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possible up-regulation of apoptotic caspases (caspase 3 and 
7) and thus point to apoptotic events due to the treatment of 
the cells with RDCF and AMNHF. These results also corre-
late to the Alamar blue cytotoxic activities observed on the 
treated MIA PaCa-2 cells.

No data has been reported on the displayed anti-prolifer-
ative activities of Cannabis cultivars AMNHF and RDCF. 
Therefore, we may hypothesize that the observed activities 
stem from the distinct chemical profiles of the two culti-
vars. Consequently, AMNHF and RDCF present promising 
subjects for upcoming investigations, including isolating 
compounds of various chemical classes and assessing their 
potential for anti-cancer properties. It is noted that these 
compounds usually undergo natural metabolism upon intro-
duction into the human body. Therefore, future research 
focusing on the catabolism of these metabolites following 
Cannabis consumption and their route within the body will 
be important to assess the full health-related properties of 
various Cannabis cultivars.

4  Conclusion

The numerous Cannabis cultivars that are made accessible 
for medicinal purposes, are classified into several categories 
based only on the plant’s cannabinoid content. Nonetheless, 
the metabolomics computational strategies used herein such 
as molecular networking approaches, helped in visualiz-
ing, and elucidating the chemical diversity of the studied 
cultivars beyond their cannabinoid content. The revealed 
plant-tissue based chemical profiles of the studied culti-
vars showed variation in the distribution of phytocannabi-
noids (major and minor) as well as other phytochemicals. 
Moreover, the phytochemical space of the leaves (which 
are underused in clinical studies) was highlighted as an 
alternative source of compounds with possible medicinal 
value. Such revelations, including the varying distribution 
of chemical classes across the studied cultivars, can assist 
in understanding the metabolome of Cannabis and gives an 
opportunity for the discovery of novel compounds in the 
elucidated chemical space.

Since the therapeutic outcomes of Cannabis are non-
generic, the knowledge generated from the chemotyping 
done herein can also inform further experiments such as 
the testing of the biological activities of the plant-tissues 
as they may be used to address different ailments based on 
their non-generic chemical composition. When consider-
ing the flower anti-proliferative activities of the extracts, 
these findings put emphasis on the importance of metabolic 
profiling Cannabis cultivars as they can inform their use 
as pharmacological agents, in this case as possible cancer 
suppressors. However, since this study was based on crude 

index analysis to show real-time cytotoxic activities of the 
extracts over time (Kho et al., 2015; Cerignoli et al., 2018). 
Nonetheless, the observed anti-proliferative properties were 
further supported and highlighted by the caspase activities 
of the MIA PaCa-2 cells upon being treated with AMNHF 
an RDCF extracts respectively.

Various stimuli initiate or induce the energy-dependent 
apoptosis, an anti-proliferative process, where the activation 
of enzymes called caspases (cysteine-aspartic proteases) 
occurs (Saraste & Pulkki, 2000; Elmore, 2007). Caspases 
are proteolytic enzymes that have well-defined roles in cell 
death mediated by apoptosis, necroptosis, and autophagy. 
Apoptotic caspases (involved in both intrinsic and extrinsic 
apoptotic pathways) are expressed as inactive pro-caspases 
that are activated to their active forms- caspase 2,3,7,8,9 
and 10. Their activation propagates a cascade of signalling 
events that result in the controlled demolition of cellular 
components (McIlwain et al., 2013; Shalini et al., 2015).

Cell death caused by AMNHF and RDCF on MIA 
PaCa-2 treated cells was clearly indicated in Figure S4, 
and since caspases are over-expressed during cell death 
caused by apoptosis, caspase activity was then investigated. 
An evident increase in caspase activity was seen for the 
RDCF and ANMHF treated MIA PaCa-2 cells (Fig. 8). The 
untreated cells were observed to have a reading of 3378.3 
RLU while RDCF, following the chemotherapeutic drug 
(etoposide), presented a significantly high average lumines-
cence reading of 7093.3 RLU- which was a 210% increase 
in caspase activity when compared to the untreated cells. 
Moreover, the AMNHF treated cells presented an average 
luminescence reading of 4603.7 RLU, a 136.3% increase in 
caspase activity which was lower than that of RDCF. How-
ever, these evident increases in caspase activity indicate the 

Fig. 8  Caspase activity. The average luminescence readings (in rela-
tive light units) for the 24-hour treatment of the MIA PaCa 2 cell line 
showing the untreated cells, the cells treated with 0.1% DMSO, 100 
µM etoposide and the IC50s of RDCF (65.7  µg/ml) and AMNHF 
(2 µg/ml). The asterisk (*) represents ( ***P < 0.001, ****P < 0.0001) 
as calculated by a T-test between untreated and treated samples.
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