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Abstract
Modelling discharge is a trade-off between using simple concepts and increasing model complexity to simulate addi-
tional processes. Currently, there is a lack of understanding of the processes taking place inside a catchment that
lead to the formation of discharge after a precipitation event. This research aims to create a model that takes into
account the three flow processes that are responsible for the total discharge (deep and shallow groundwater based
discharge and overland flow) to simulate discharge based on evapotranspiration and precipitation data, while keeping
the model simple with a limited number of parameters. Starting with a baseflow separation, deep groundwater based
discharge is simulated assuming a linear relationship between water in storage and discharge. Consequently, shallow
groundwater based flow is modeled following the approach of Kirchner (2009), in which discharge is assumed to solely
depend on water storage. Lastly, overland flow is modeled as a fraction of precipitation, where the fraction depends
on catchment wetness, represented by discharge. Applied to thirteen catchments in Europe comprising a variety of
response types, the model has proven to be successful in determining the relative contribution of the three discharge
components based on the hydrograph. Additionally, the model is able to use knowledge on the component distribution
to provide satisfactory discharge predictions for most catchments. As a predictive tool, the model did not show to
outperform other rainfall-runoff models. However, the model is a valuable addition to the already-existing conceptual
rainfall-runoff models, as it provides the opportunity to determine the distribution of discharge components in a
relatively simple manner.
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1 | Introduction

1.1 Problem Description

Rainfall-runoff models are used for water resource man-
agement and have flood risk prediction as their most im-
portant application (Seibert and Bergström, 2022; To-
dini, 2011). The urge for high quality discharge pre-
diction rises as extreme rainfall events will occur more
frequent in the future, leading to an increase in river
floodings (Arnell and Gosling, 2016). Therefore, scien-
tists focus on improving models to predict river discharge
as accurately as possible. Over the years, numerous hy-
drological models have been developed to predict dis-
charge, evapotranspiration and water storage based on
precipitation data (Rosbjerg and Rodda, 2019).

Peel and McMahon (2020) discussed the histori-
cal development of rainfall-runoff models, reporting 279
models with different model structures. These models
are a trade-off between using simple concepts and in-
creasing model complexity to simulate additional pro-
cesses. Presently, there is no general classification of
catchments that can be used as a guide to model dis-
charge with a predefined model concept (Wagener et al.,
2007). Choosing the most suitable model and parame-
ters is therefore done by the modeller (Kalantari et al.,
2015) and outputs have, accordingly, shown to depend
strongly on personal judgement (Holländer et al., 2009).

There are several approaches to modelling dis-
charge, for example in a conceptual way (Todini, 2011;
Peel and McMahon, 2020). An example of a concep-
tual model is the HBV (Hydrologiska Byråns Vatten-
balansavdelning) model, which dates back to the 1970s
(Seibert and Bergström, 2022). The model consists of
multiple routines; one representing snowfall and melt
(based on the degree-day method) and one represent-
ing water storage through a soil box (Uhlenbrook et al.,
1999). Additionally, the model represents groundwater
flow based on flow equations (Driessen et al., 2010). The
model was originally developed for Scandinavian catch-
ments (Seibert, 1996), but over the years it has been
used to model discharge all over the world (Nonki et al.,
2021; Li et al., 2013; Driessen et al., 2010).

Model complexity is known to go along with uncer-
tainty and therefore, less complex models might lead to
better performance (Snowling and Kramer, 2001). Re-
search has been done into increasing model complex-
ity and the corresponding uncertainty, to make a better

consideration whether increasing complexity matches the
purpose of the model (Puy et al., 2022). Besides, some
scientists follow the theory of Occam’s razor. The prin-
ciple, dating back to the fourteenth century, states that
the simplest explanation of a phenomenon is always the
best (Braithwaite, 2007). This highlights that models
should not be more complex than necessary, showing
the importance of simple conceptual models.

An example of such a simple conceptual mode is the
Simple Dynamical Systems (SDS) approach as proposed
by Kirchner (2009). Despite the simplicity of the model
and the minimal number of parameters, the approach
has shown to perform well. In this model the assumption
is made that discharge solely depends on subsurface wa-
ter storage in a catchment. Without the need for base-
flow separation (Eckhardt, 2008), a storage-discharge re-
lationship can be identified which describes how changes
in storage affect discharge. This relationship, also known
as the discharge sensitivity function, can be inferred from
streamflow recession analysis and allows for discharge
modelling using only precipitation and evapotranspira-
tion data. Kirchner (2009) demonstrated that the SDS
approach yields good results for the Severn and Wye
river at Plynlimon, Wales, with Nash-Sutcliffe efficien-
cies (NSE) up to 0.93 with parameters obtained from
recession plots for individual years and NSE values up to
0.95 with model parameters calibrated to discharge time
series.

Corresponding, others have shown that the SDS
approach yields good results for different catchments.
Teuling et al. (2010) tested whether the assumed hy-
draulic connectivity between saturated and unsaturated
stores in a catchment is valid, by applying the SDS
approach to the Swiss Rietholzbach catchment. The
catchment has, similar to the Plynlimon catchment, a
humid climate, but receives less precipitation and has
more extreme droughts observed in the past. Teuling
et al. (2010) found that the method works generally well,
especially during wet periods, but failed to show good
model performance during dry summers.

Additionally, Brauer et al. (2013) tested the method
in the Dutch lowland Hupsel Brook catchment, which is
less humid than both the Plynlimon and Rietholzbach
catchment and has a considerably smaller runoff ratio.
Results showed that the discharge of the Hupsel Brook
catchment cannot always be modelled correctly follow-
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ing Kirchner’s approach, especially not during summer.
Adamovic et al. (2015) found corresponding results for
the Ardèche catchment in France, for which the SDS ap-
proach performed well during wet conditions, but failed
to provide good discharge predictions during dry periods.

Often, rainfall-runoff models are lumped per catch-
ment, as catchments are natural units that act as their
own system in the global water balance (Wainwright and
Mulligan, 2005). The hydrograph can reflect the result
of catchment-wide hydrological processes, such as wa-
ter routing. Catchment discharge is relatively easy to
observe through, for example, stream velocity measure-
ments (Speir et al., 2023; Gore and Banning, 2017).
However, numerous processes that are not easy to ob-
serve, take place inside a catchment before precipitation
becomes discharge. Consequently, developing models
that accurately represent these processes and perform
well at predicting discharge remains a challenge. We
pose that a better understanding of flow routes and their
relative contribution to discharge is needed to further
improve discharge predictions.

Although the SDS approach performs well at pre-
dicting discharge, best results were obtained during wet
conditions (Adamovic et al., 2015; Brauer et al., 2013;
Teuling et al., 2010). Model errors could result from the
fact that total discharge is composed of a combination
of flow routes (van der Velde et al., 2010). Catchments
dominated by overland flow are not represented well by
the SDS approach (Kirchner, 2009). Rusjan and Mikoš
(2015) therefore proposed a combination of quickly re-
sponding discharge resulting from shallow groundwater
flow, as modeled by the SDS approach, and overland
flow (very quickly responding discharge) for the Padez
stream catchment in Slovakia. The catchment is charac-
terized by rainfall-runoff that bypasses subsurface stor-
age, resulting from extreme rainfall events. Overland
flow can be caused by several mechanisms; (i) rain-
fall intensity can exceed the infiltration capacity of the
soil, known as Hortonian overland flow, and (ii) rainfall
causes overland flow when the soil is saturated and thus
no more water can infiltrate, known as Dunnian overland
flow (de Lima, 1989; Maier and van Meerveld, 2021).

A discharge component that neither Kirchner
(2009) nor Rusjan and Mikoš (2015) consider, is deep
groundwater flow. At locations where the water table
is deep, precipitation can infiltrate towards the deep
groundwater (recharge). This usually happens in areas
situated higher in the landscape, whereas water reaches
the surface again in lower areas (Batelaan et al., 2003).

Deep groundwater has a longer residence time than shal-
low groundwater, as the residence time is determined by
the depth of the aquifer (Hare et al., 2021). Figure 1.1
shows a schematic overview of the three discussed path-
ways from precipitation to discharge.

Even though rainfall-runoff models aim to represent
catchment wide hydrological processes and flow routes
through discharge, they are often validated based on the
discharge at the catchment outlet (Hattermann et al.,
2004). As most simple models focus on one specific
process that is applicable for a specific type of catch-
ment (border cases), those models give a good output
for given catchments. However, there are only few catch-
ments representing only one process and many catch-
ments for which the discharge is compiled of multiple
discharge components. Therefore, there is a need for a
simple conceptual rainfall-runoff model that takes into
account knowledge on the relative distribution of dis-
charge components to predict discharge from precipita-
tion more accurately for various types of catchments.

1.2 Research Objective & Questions

The aim of this research is to improve discharge predic-
tions by creating a model that uses information on the
relative contribution of the three discharge generating
mechanisms to model discharge based on precipitation
and evapotranspiration data, while keeping the model
simple with a limited number of parameters. The pos-
sibility of using existing discharge datasets on potential
groundwater recharge to predict the contribution of deep
groundwater based discharge in a certain catchment will
be explored, in order to reduce future calibration efforts.
The quality of the discharge predictions will be evaluated
by comparing the output of the new model to output of
more conventional methods (SDS approach and HBV)
and to observations. To reach this aim, the following set
of sub-research questions will be addressed in this thesis:

• How can relative contributions of discharge compo-
nents be determined from the hydrograph?

• Can the relative contribution of discharge compo-
nents be predicted based on already existing dis-
charge datasets?

• How do discharge predictions based on three dis-
charge components compare to conventional model
predictions?
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Figure 1.1: Schematic overview of the three flow paths from precipitation to discharge.

1.3 Thesis Outline

This thesis continues with an explanation of the field
site and data in Chapter 2. The chapter mainly focuses
on the catchment characteristics and the expected dom-
inant discharge processes. In Chapter 3 the methods
are explained that are used to create and validate the
model, followed by an overview of the results in Chapter
4. Then follow the discussion and conclusion in Chapter
5 and 6, respectively.
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2 | Field Site & Data

Discharge data of several catchments with catchment
sizes in the same order of magnitude are used. The
catchments are situated in Europe (Figure 2.1) and
range between Alpine catchments with shallow sub-soils
and catchments situated in more lowland areas with deep
groundwater tables. Therefore, the flow routes vary
and the catchments respond differently to precipitation.
The catchments are chosen as such that they comprise
a variety of response types, including extremes, there-
fore being representative for many catchments. Hourly
discharge, precipitation and potential evapotranspiration
data are collected for all catchments. For catchments
experiencing snowfall regularly in winter (mountainous
catchments), temperature data are also required to ac-
count for snow melt. The years for which the data are
available and the data providers are mentioned in Table
2.1, together with an overview of catchment character-
istics and the expected dominant discharge process(es).

Noor catchment The first catchment that is investi-
gated is the Noor catchment, situated at the border be-
tween the Netherlands and Belgium. The catchment’s
discharge is assumed to mainly consist of deep ground-
water, as the resemblance between the hydrograph and
the variation of the groundwater table over time is strik-
ing (van Lanen et al., 1995). Additionally, discharge
shows little response to precipitation events. This, in
combination with the high infiltration capacity of the
topsoil, leads to the expectation that little overland flow
occurs (Dijksma and van Lanen, 1998).

Hupsel Brook catchment The Hupsel Brook catch-
ment is an intensively investigated lowland catchment lo-
cated in the east of the Netherlands. The SDS approach
is not always performing well for the Hupsel Brook catch-
ment, especially not during dry periods (Brauer et al.,
2013). The hydrograph shows that discharge and pre-
cipitation are closely linked, as similar patterns can be
observed. Additionally, Brauer et al. (2013) found a
non-linear dependency of discharge to storage. How-
ever, more complex models, among one in which sepa-
rate flow routes are simulated separately, performed well
in predicting the catchment’s discharge. This suggests
that the catchment might have more than one dominant
flow path.

Plynlimon catchment Kirchner (2009) showed very
good model model performance using the SDS approach
as a predictive tool for rainfall-runoff modeling in the
Plynlimon catchment in Wales, with Nash-Sutcliffe effi-
ciencies exceeding 0.9. The catchment can be divided
into two sub-catchments; Severn and Wye. The two
catchments are geologically similar, but are dominated
by grassland and conifers, respectively (Brandt et al.,
2004). The non-linear dependency of discharge to stor-
age found by Kirchner (2009) and the good performance
lead to the believe that the catchment’s discharge mainly
consists of shallow groundwater based discharge, where
overland flow is only a small component of the total
discharge.

Rietholzbach catchment The Rietholzbach catch-
ment is a pre-Alpine catchment situated in north-east
Switzerland. The discharge of this humid catchment fol-
lows precipitation closely. Teuling et al. (2010) showed
non-linear dependency of the discharge to subsurface
storage and accurate discharge predictions using the
SDS approach. However, under dry conditions, over-
land flow occurs more frequent and the effect of evapo-
transpiration, which is strongly correlated with the avail-
able radiative energy, is more pronounced (Teuling et al.,
2010). Therefore, discharge is believed to mainly consist
of shallow groundwater flow, occasionally supplemented
with with overland flow.

Alptal catchment The pre-Alpine Alptal catchment is
situated in the centre of Switzerland (Stähli et al., 2021)
and includes three smaller sub-catchments: Erlenbach,
Lümpenenbach and Vogelbach. The hydrographs show
a fast response to precipitation, in general responding
within ten minutes after the event (van Meerveld et al.,
2018). Additionally, their soils have a low permeabil-
ity (Milzow et al., 2006) and shallow groundwater tables
that also respond quickly to rainfall (van Meerveld et al.,
2018). A correlation was found between groundwater
tables and discharge measurements, most pronounced
during the growing season. Next, overland flow was
observed often during precipitation events, except for
the forested areas (van Meerveld et al., 2018). To-
gether, this suggests that discharge will be dominated
by the quickest processes; shallow groundwater flow and
overland flow. Compared to the other two catchments,
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Figure 2.1: Map of Europe showing locations of the studied catchments.

Vogelbach has the highest forested area (65%) (Stähli
et al., 2021), which could explain its (slightly) slower
discharge response (Staudinger et al., 2017).

Sperbelgraben and Rappengraben catchment The
Sperbelgraben and Rappengraben catchments are two
parallel catchments with a similar area and channel den-
sity, located in the Swiss pre-Alpine Emmental (Stähli
et al., 2011). The main difference between the two is the
forested area; whereas Sperbelgraben is almost entirely
forested, the Rappengraben contains about 50% forest
and 50% pasture (Stähli et al., 2011). Discharge re-
sponds quickly to rainfall, especially with wet antecedent
conditions. The response of discharge to rainfall in
the Rappengraben catchment is more pronounced than
the response in the Sperbelgraben catchment (Roessel,
1950). As a result of the higher fraction of forest, the
fraction of baseflow in the Sperbelgraben catchment is
expected to be higher than in the Rappengraben catch-
ment. Yet, the fraction of shallow groundwater based
discharge is expected to be larger, based on the quick
response to precipitation events.

Attert catchment The Attert catchment is located
in the west of Luxembourg and can be divided into
seven sub-catchments (Martínez-Carreras et al., 2012).
Three sub-catchments will be investigated: Hueweler-
bach, Weierbach, and Wollefsbach, which have similar
climatologies (Fenicia et al., 2014). During summer, the
Huewelerbach catchment shows a very stable base flow,
which is assumed to be the result of deep groundwater
(Martínez-Carreras et al., 2012; Fenicia et al., 2014).
During winter, the hydrograph shows more peaky be-
haviour, directly following precipitation patterns. The
Weierbach catchment’s hydrograph seems to correlate
with precipitation patterns, but with some retention
time. Therefore it is assumed that the total discharge
consists of mainly deep and shallow sub-surface flow
(Fenicia et al., 2014). The hydrograph of the Wollefs-
bach catchment shows most peaky behaviour, quickly re-
sponding to precipitation events. It is expected that this
is the result of shallow sub-surface flow supplemented
with overland flow (Fenicia et al., 2014).
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3 | Methods

To create a model that predicts discharge based on three
flow paths, first the data, as described in Chapter 2, were
analyzed. For all catchments, the discharge components
were identified based on the hydrograph and their rela-
tive contribution to the total discharge were evaluated
after plotting them in a ternary plot. The next step was
to predict the discharge based on the found distribution
of the three components. Identifying the components
and predicting discharge was done by creating a model
in Python. An overview of the model is given in Figure
3.4. To reduce calibration efforts, it was investigated
whether the component fractions coincide with already-
existing datasets on groundwater recharge. Finally, the
new discharge predictions were compared to discharge
observations and outputs of two more conventional mod-
els, the SDS approach and HBV.

3.1 Data Preparation & Analysis

The collected data were organized in such a way that
the data for all catchments are in equal format. The
discharge, precipitation and potential evapotranspiration
data are measured in units of depth per time, as an aver-
age value for the entire catchment. The potential evap-
otranspiration and precipitation data that were collected
from the ERA5 single levels database were transformed
from spatial data (horizontal resolution: 0.25° x 0.25°)
to time series as an average value over the catchment.

3.1.1 Evaporation Correction

First of all, a water balance check was executed for the
raw data. Assuming closure of the water balance fol-
lowing a closed system in which conservation of mass
is true, precipitation, actual evapotranspiration and dis-
charge fluxes should add up to zero. However, as poten-
tial evapotranspiration data were used, an evaporation
correction factor, r [-], was determined to close the water
balance. The correction fraction was calculated follow-
ing equation 3.1, where ETpot is the potential evapo-
transpiration [mm/h] and P precipitation [mm/h]. Us-
ing the found evaporation correction factor, the actual
evapotranspiration, ET [mm/h] can be calculated as
ET = r ∗ ETpot.

r =
Psum −Qtotal,sum

ETpot,sum
(3.1)

3.1.2 Discharge Threshold

Additionally, a second evapotranspiration reduction
method was applied. Potential evapotranspiration is a
measure of actual evapotranspiration, assuming an un-
limited water availability (Li et al., 2016). A reduction
of the actual evapotranspiration as compared to the po-
tential evapotranspiration occurs as a result of dry soil
moisture conditions. In the model, discharge was used
as an approach to soil moisture conditions, as storage
and discharge are linked monotonically. Following Teul-
ing et al. (2010) and Buitink et al. (2020), the threshold
value for discharge was set to 10−4 mm/h. When dis-
charge was below this value, actual evapotranspiration
was set to a value of zero to prevent modeling negative
discharge.

3.1.3 Spectral Analysis

Spectral analysis was executed to gain more insight into
the most important time frames at which discharge and
precipitation occur. This insight served as a first es-
timation of the important mechanisms playing part in
a catchment. Additionally, power spectra are a useful
tool for investigating the differences in precipitation and
discharge regimes between catchments. Using Python,
the Fast Fourier Transform (FFT) algorithm was applied
and FFT frequencies were calculated. The Power Spec-
tral Density (PSD) was computed as the square of the
absolute value of FFT, divided by the period.

An example power spectrum for the observed dis-
charge and precipitation of the Rietholzbach and Severn
catchment is shown in Figure 3.1. A strong power output
indicates a strong response for that certain timescale. It
can be seen that for higher frequencies, the power out-
put is larger for precipitation than for discharge for both
catchments. This is an indication of water retention
by the catchment, as it increases the response time of
streamflow to precipitation. A catchment for which the
discharge responds very quickly to precipitation due to
a high contribution of overland flow would show more
similar power outputs for the higher frequencies.

For frequencies larger than 0.2 cycles per day the
power output is larger for the Rietholzbach catchment
than for the Severn catchment. This indicates that there
is more (very) quickly responding discharge in the Ri-
etholzbach catchment than in the Severn catchment.
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Figure 3.1: Power spectrum for the observed discharge and precipitation of the Severn and Rietholzbach catchment,
zoomed in to the higher frequencies. With PSD as the Power Spectral Density of discharge (Q) on the y-axis and
frequencies on the x-axis where a frequency of one indicates one cycle per day.

Figure 3.2: Cross correlation between changes in discharge (dQ/dt) and variations in precipitation (P ) plotted over
time for the Hupsel Brook catchment. Indicating lag times for deep (orange) and shallow (red) groundwater flow.

3.2 Model Development

When building the model, it was assumed that the
total discharge, Qtotal [mm/h], consists of three dis-
charge components (equation 3.2) following the flow
paths as explained in the introduction (Figure 1.1): deep
groundwater generated discharge, also known as base-
flow (QGW ), shallow groundwater generated discharge
(QS) and overland flow (QOF ). The relative contri-
bution of these components differs between catchments
due to differences in catchment characteristics and pre-
cipitation regimes.

Qtotal = QGW +QS +QOF (3.2)

3.2.1 Lag Time

Changes in catchment discharge may show a lag with
precipitation. Therefore, the lag time was inferred from
the peaks in the cross correlation between changes in
discharge (dQ/dt) and variations in precipitation. The
smallest lag time that was found is used as lag for the
shallow groundwater flow, whereas the secondary peaks
in lag time were used to approach the lag time of deep
groundwater flow. Figure 3.2 shows the determination
of the lag time for the Hupsel Brook catchment. The
first peak, at a lag time of 3 hours is assigned to the
shallow groundwater flow. The second peak is located
at a lag time of 32 hours and is assigned to the deep
groundwater flow. Lag times were taken into account
when modeling discharge in Section 3.2.2 and 3.2.3.
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3.2.2 Deep Groundwater Flow

Parameter Identification

Primarily, the discharge generated by deep groundwater
flow was identified from the total discharge by executing
a baseflow separation. Baseflow separation is a tech-
nique that has been widely used to separate the slowly
responding runoff as a result of deep groundwater flow
(also called the baseflow, Qb [mm/h]) from the total
discharge. Subtracting the baseflow from the total dis-
charge results in the sum of shallow groundwater gen-
erated discharge and overland flow (Chapman, 1999).
Following Eckhardt (2008), it was assumed that there
is a linear response of baseflow to the amount of wa-
ter stored in the catchment, leading to an exponential
baseflow recession (equation 3.3). In this equation, Qt

is discharge at time step t [mm/h], Q0 discharge at time
step zero [mm/h], t the time step [h] and τ represents
the recession coefficient [h−1].

Qt = Q0 ∗ e−t/τ (3.3)

In a frequency spectrum, baseflow gives a higher re-
sponse to long waves with a low frequency whereas quick
flow processes have a higher frequency. Lyne and Hol-
lick (1979) used a filter equation to separate the baseflow
from the total discharge. Based on this, Eckhardt (2008)
formulated a two parameter Recursive Digital Filter:

Qb,t =
(1−BFI) ∗ z ∗Qb,t−1 + (1− z) ∗BFI ∗Qt

1− z ∗BFI
(3.4)

Where Qb,t is the baseflow at time step t [mm/h],
and Qb,t−1 the baseflow at the previous time step
[mm/h]. The parameter BFI indicates the maximum
value of the baseflow index [-], which is the ratio be-
tween baseflow and total discharge (Kissel and Schmalz,
2020). Eckhardt (2008) suggested to set BFI = 0.80

for perennial streams with porous aquifers, BFI = 0.50

for ephemeral streams with porous aquifers, and BFI =

0.25 for perennial streams with hard rock aquifers. From
the data analysis (Section 3.1.3), a first impression of
the difference in precipitation and discharge regimes was
gained, which was, together with the first expectations
as described in Chapter 2 and the BFI values as sug-
gested by Eckhardt (2008), used as a starting point for
the cutoff between deep and shallow groundwater. The
model was calibrated on the value of BFI after the deep
and shallow groundwater based discharge were deter-
mined, to get the most accurate discharge predictions
(Section 3.2.4).

The second parameter in equation 3.4, z, is the re-
cession rate, which was determined based on a recession
analysis of the measured discharge data. For the reces-
sion analysis, only the discharge measurements that are
part of a dry period of three days or more were consid-
ered. According to Eckhardt (2008), if the recession is
long enough that the current day and the next day con-
sist only of baseflow and there is no recharge during this
time, discharge at the next time step can be calculated
according to equation 3.3, where the recession constant
z is as follows:

e−t/τ = z (3.5)

Using the polyfit function (Python, using numpy
package version 1.26.4), which fits the best line through
the points of current discharge plotted against the dis-
charge at the next time step, the value of z was de-
termined as the slope of this line. Consequently, the
found value for z could be implemented in equation 3.4
together with the first estimate of BFI to calculate base-
flow. The intercept, l, which was found when fitting the
regression line will be used in section later to predict
deep groundwater flow.

Discharge Prediction

Based on the conditional BFI value, the precipitation
and evapotranspiration fraction belonging to the deep
groundwater based flow (PGW and ETGW , respectively)
are determined by multiplying the total precipitation and
evapotranspiration with BFI. Following Kirchner (2009),
discharge can be predicted without needing data on stor-
age using equation 3.6. The equation can be solved fol-
lowing a fourth-order Runge-Kutta integration scheme.

Precipitation was measured as the liquid precipita-
tion that falls. Therefore, MGW in equation 3.6 ac-
counts for snow melt [mm/h], as it also contributes to
the water availability (Teuling et al., 2010). Snow stor-
age is modelled following the approach of Buitink et al.
(2020). In the catchments for which ERA5 data were
used, the total water availability was modeled by sub-
tracting snowfall from the total precipitation and adding
snow melt. Snow processes were only taken into account
in catchments experiencing snowfall regularly in winter.

d(ln(QGW ))

dt
= g(QGW )∗(PGW +MGW − ETGW

QGW
−1)

(3.6)
In equation 3.6, g(QGW ) is the sensitivity function

of the deep groundwater flow, as defined in equation
3.7. In this function, z is the slope found during the
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baseflow separation and k can be calculated as negative
one divided by the logarithm of the intercept l.

g(QGW ) = k ∗Qz+1
GW (3.7)

Lag times were taken into account by shifting the
calculated discharge in time (Tlag,gw) compared to pre-
cipitation and evapotranspiration data.

3.2.3 Shallow Groundwater Flow

Parameter Identification

The second component that was identified was the shal-
low groundwater flow, which was based on the SDS
approach by Kirchner (2009). The deep groundwater
flow has been determined (Section 3.2.2) and was sub-
tracted from the total observed discharge. The resid-
ual discharge, which is the summation of the shallow
groundwater flow and overland flow (Chapman, 1999),
was used to determine the relative contribution of the
shallow groundwater generated discharge to the total
discharge. Besides, the residual discharge was used to
validate the modeled shallow groundwater flow on. The
same was done for precipitation and evapotranspiration;
based on the value of BFI, the fraction of precipitation
and evapotranspiration used for baseflow generation was
subtracted from the total, resulting in PS and ETS , re-
spectively.

Following Kirchner (2009), it was assumed that
the quickly responding discharge solely depends on the
amount of water in storage, S [mm], in the catchment:

Q = f(S) (3.8)

A storage-discharge relationship was identified from
discharge recession and was used later on to predict dis-
charge from precipitation, following the methodology of
Kirchner (2009). Storage changes result from the dif-
ference between incoming and outgoing water fluxes, as
can be seen in equation 3.9.

dS

dt
= P +M − ET −Q (3.9)

From these equations the sensitivity function of shal-
low groundwater flow, g(QS), was derived, which was
defined by Kirchner (2009) as the discharge sensitivity
to changes in catchment storage. The function follows
from the derivative of f(S), leading to equation 3.10.

g(QS) =
dQS

dS
=

dQS/dt

PS +MS − ETS −QS
(3.10)

As precipitation, evapotranspiration and snow melt
can be measured less accurately than discharge due to
their spatial variability, it is best to determine the sensi-
tivity function when discharge is large compared to the
other parts of the water balance. Equation 3.10 then
simplifies to:

g(QS) =
dQS/dt

QS
(3.11)

Data were selected for which the assumption can be
made that discharge is larger than the other parts of the
water balance. Following Kirchner (2009), data were
selected based on the following criterion: discharge at
time step i is ten times as large as precipitation and
evapotranspiration at the same time step.

After the records have been selected, the recession
curve was determined. Non-linearity of the system was
assumed (equation 3.12), as multiple studies showed
non-linear behaviour of catchments (Kirchner, 2009;
Teuling et al., 2010; Rusjan and Mikoš, 2015; Brauer
et al., 2013; Adamovic et al., 2015).

−dQS

dt
= a ∗Qb

S (3.12)

Following the approach of Kirchner (2009), the se-
lected records were used to calculate the discharge re-
cession as the difference between discharge of two con-
secutive hours (−dQS/dt = QS,i−1 −QS,i). Next, the
average discharge of two consecutive hours has been de-
termined as follows: QS,avg = (QS,i−1 +QS,i)/2. The
two were plotted in a scatter plot in log space. The data
were binned into ranges of QS , spanning at least 1% of
the range of QS in log space and fulfilling the criterion
that std.error(−dQS/dt) ≤ mean(dQS/dt)/2. If the
criteria was not fulfilled, binning size increased until the
requirements were met. Using the optimization function
curve fit (Pyhton, using scipy package version 1.13.0),
a quadratic curve was fitted through the binned data
to find values for parameters a and β in equation 3.12,
which gives the sensitivity function through:

g(QS) =
dQS/dt

−QS
= a ∗Qβ−1

S (3.13)

Discharge Prediction

As said before, the residual precipitation and evapotran-
spiration are calculated based on the fraction used for the
deep groundwater modelling. In this section, the residu-
als will be used to approach the precipitation and evap-
otranspiration fraction belonging to the shallow ground-
water based flow.
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Similar to the baseflow prediction, shallow ground-
water based discharge can be predicted without needing
data on storage using equation 3.14, which again can
be solved following a fourth-order Runge-Kutta integra-
tion scheme. In the equation, MS accounts for the snow
melt [mm/h], which was modeled similar to MGW (sec-
tion 3.2.2).

d(ln(QS))

dt
= g(QS) ∗ (

PS +MS − ETS

QS
− 1) (3.14)

The sensitivity function for quickly responding dis-
charge uses the found values for a and β. Lag times
were taken into account by shifting the calculated dis-
charge in time (Tlag,s) compared to precipitation and
evapotranspiration data.

3.2.4 Model Calibration

Calibration Methods

The deep and shallow groundwater based discharge were
summed, after which the model was calibrated. The
BFI value was calibrated by optimizing the Nash-Sutcliffe
efficiency (NSE) of the summed discharge predictions
and the observed total discharge, using the Nelder–Mead
method. The optimization was done based on a time
period of one year. NSE values were calculated using
the hydroeval package in Python (version 0.1.0), which
was developed especially to evaluate the goodness of
fit between observed and modeled discharge time series
(Hallouin, 2021).

Component Predictions

A test was executed to see whether the relative frac-
tions of discharge can be estimated beforehand based
on an already existing dataset: the pan-European high-
resolution groundwater recharge map by Martinsen et al.
(2022), in which amount of potential recharge [mm/yr]
is given. In this dataset, recharge is defined as the water
percolating from upper soil layers to the groundwater
table and can be calculated as the excess water (pre-
cipitation minus actual evapotranspiration, also known
as effective precipitation) times the recharge coefficient.
The recharge coefficients were compared to the found
BFI values and the recharge values were compared to
the modeled deep groundwater generated discharge.

3.2.5 Overland Flow

The overland flow component of discharge is the quick-
est responding part occurring as a result of high in-
tensity rainfall or as a result of soil saturation caused
by much antecedent rainfall (de Lima, 1989; Maier and
van Meerveld, 2021). Next to this, part of the precipita-
tion will fall directly into the stream, causing discharge
without any lag time. Determining when this occurs and
in what proportions, was hard to conceptualize. There-
fore, the overland flow fraction was determined based on
the difference between the total observed discharge and
the discharge generated by deep and shallow groundwa-
ter flow, as follows:

QOF = Qtotal −QGW −QS (3.15)

The fraction of overland flow was compared to other
data, like precipitation, to find a correlation that could
be used to predict overland flow. In many catchments,
overland flow occurs as a result of paved area. Therefore,
the amount of overland flow might be a fraction of the
the amount of precipitation that can be linked to the
pavement. However, the importance of Hortonian and
Dunnian overland flow to the total amount of overland
flow was not known. Therefore, the response of the
overland flow fraction was also compared to the rainfall
intensity and antecedent precipitation. However, none
of these showed clear correlations that could be used to
make a reasonable estimate of the overland flow fraction.

As a result of soil saturation, the area contributing
to overland flow is variable. Therefore, a relationship
between the overland flow fraction and antecedent dis-
charge was searched for, to define an equation account-
ing for a variable source area. This was done by plotting
the overland flow part of the discharge divided by the to-
tal precipitation against the total discharge, as discharge
is an indicator of catchment wetness. The data points
were binned into ranges of the total discharge, spanning
1% of the range of the total discharge in the log space.
Next, the optimization curve fit function (Python, using
scipy package version 1.13.0) was used to fit a quadratic
curve through the binned data. The found parameters,
c and d, were used to model the fraction of precipitation
that forms overland flow (fOF ) as a function of the to-
tal discharge (equation 3.16). However, when predicting
discharge, the total observed discharge is unknown and
is therefore approached as the summation of the deep
and shallow groundwater based discharge (Qtotal).

fOF = c ∗Qd
total (3.16)
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To avoid overestimating the amount of overland flow,
the calculated fractions were multiplied with the differ-
ence between the total observed precipitation and the
modeled deep and shallow groundwater flow:

QOF = fOF ∗ (P −QGW −QS) (3.17)

The total modeled discharge could then be calculated
as the sum of the three components. The last step was
to do another water balance check, in which the modeled
and observed discharge are compared.

3.2.6 Ternary Plot

After the steps mentioned above were executed, two re-
cession curves and the fraction of overland flow based
on discharge and precipitation were known. The rela-
tive fractions were defined as the discharge generated by
one mechanism divided by the total modeled discharge.
To create an overview of the catchments, the relative
fractions were plotted in a ternary plot.

Ternary plots are a useful tool to show the propor-
tions of three variables. Figure 3.3 provides an explana-
tion of the layout of the created ternary plot. The cor-
ners of the plot indicate the extremes; when a catchment
is located in one of the corners, it means that its total
discharge consists of only one (or is strongly dominated
by one) discharge component, whereas a catchment lo-
cated more towards the middle of the plot indicates that
the discharge consists of a mixture of all three compo-
nents.

However, the fraction of overland flow, deep and
shallow groundwater based discharge in the total dis-
charge will differ for different climatic/weather condi-
tions. Therefore, the location of a certain catchment
on the ternary plot was defined as a yearly average. To
show the yearly variability, plots were made showing the
relative fractions as a function of a time (over a time
span of one year).

3.3 Model Quality Assessment

3.3.1 General Model Performance

NSE was calculated as a measure of the general accuracy
of the model, using the hydroeval package in Python
(version 0.1.0). NSE values are often used as evalu-
ation criterion for hydrological models. The values for
which a model is considered unsatisfactory varies around
0.36 (Eryani et al., 2022) to 0.50 (Moriasi et al., 2015).

Values above 0.50 are considered satisfactory and val-
ues above 0.70 are considered good (Eryani et al., 2022;
Moriasi et al., 2015).

Additionally, the Kling-Gupta efficiency (KGE) was
calculated, also using the hydroeval package (Hallouin,
2021). KGE is an increasingly used metric to indicate
model performance in a slightly more balanced way than
NSE values do (Knoben et al., 2019). A KGE value is
considered good when it is above 0.75 and poor when
it is below 0.5 (Rogelis et al., 2016). However, different
authors consider different KGE values to be satisfactory,
as discussed by Knoben et al. (2019).

A power spectrum analysis was executed to gain more
insight into the timescales for which the model works
well or less well. For this analysis, the similarity between
the power spectrum of the observed discharge and the
modeled discharge was compared. It was assumed that
the more similar the power spectra are, the more accu-
rate the prediction is.

3.3.2 Comparison to Other Models

The SDS approach by Kirchner (2009) does not take
into account the possibility of multiple flow routes in a
catchment. This section displays the methodology used
to test whether accounting for this possibility improves
discharge prediction, or whether it decreases its accu-
racy, as the number of parameters in the new model
does increase significantly. An increase in the number of
model parameters could be at hand with simulating ad-
ditional processes, but could also cause overfitting when
the available data is limited, which can introduce a noise
increasing model uncertainty.

HBV does account for different response times,
but has a different model concept using an upper
and lower groundwater box. The discharge predic-
tions of the HBV model will also be compared to
the output of the new model. Discharge predictions
based on the SDS approach were made following the
methodology of Kirchner (2009). Additionally, the
model by Kirchner (2009) was calibrated based on the
Levenberg-Marquardt algorithm, to optimize the model
prediction. The other discharge predictions are made
using HBV light, using a Matlab version by McGuire
(2012), which was rewritten into Python. The HBV
light model uses a Monte-Carlo calibration, which finds
the most suitable parameter set resulting in the highest
NSE values, based on 1000 model runs.
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Figure 3.3: Explanation of the ternary plot that was created to show the relative distribution of the discharge
components for the different catchments.

First, the model performance was compared based on
the NSE and KGE. Next to these statistical measures,
the models were evaluated based on other hydrological
signatures. In his paper, McMillan (2021) shows the
relevance of hydrological signatures to evaluate the sim-
ilarity of hydrological time series, which could also be
used for model evaluation. Two of those signatures, the
rising limb density (RLD) and the flow duration curve
(FDC) were used to asses how similar the modeled dis-
charge is to the observed discharge.

RLD is a measure of the time it takes for the catch-
ment to reach the peak discharge after a rainfall event,
influenced by e.g. slope, moisture conditions and soil
type (Mathai and Mujumdar, 2022). RLD can therefore
be used to investigate the similarity in runoff mechanisms
between catchments (Mathai and Mujumdar, 2022), but
in this case it was used to compare the correctness of the
modeled storage-discharge relationship and water reten-
tion times.

FDC is a curve that shows the percentage of time
during which a certain discharge is exceeded (Searcy,
1959). It is a statistical measure of the flow distribu-
tion (McMillan, 2021), which is unique per catchment.
It can be used to evaluate similarities between catch-
ments, but is also used to calibrate hydrological models
on (Westerberg et al., 2011). In this case, FDC was
used to evaluate the similarity between the modeled and
observed hydrographs.
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Figure 3.4: Graphical overview of the methods with P = precipitation, ET = evapotranspiration and Q = discharge.
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4 | Results & Interpretation

This chapter provides an overview of the found results.
Figures for parameter identification, discharge prediction
(Section 4.2) and model comparison (Section 4.3.2) are
only shown for the Severn catchment, but the same steps
were taken for the other catchments. Severn was cho-
sen as an representative catchment as high quality and
complete data was available.

4.1 Data Preparation & Analysis

4.1.1 Evaporation Correction

First of all, the raw data was analyzed to investigate the
differences between the catchments. In Table 4.1, the
evapotranspiration correction factors (r) are displayed.
These values are used to approach the actual evapotran-
spiration (ET) from potential evapotranspiration (PET)
in order to close the water balance. What is striking
about the found values of r is that they tend to differ
quite a lot between catchments close together, such as
Erlenbach and Lümpenenbach.

The determination of r is done based on the assump-
tion that the multi-year water balance is closed. This
means that there is no change in storage over the years,
implying that precipitation (P), actual ET and discharge
(Q) add up to zero. A small actual ET as compared
to the PET is caused by a water shortage. Having a
stable baseflow could be an indication of a steady water
availability throughout the year, resulting in an energy
limited system instead of water limited, for which PET is
a good approximation of actual ET. This could serve as
an explanation for the differences in the found r-values.
However, no clear evidence of this relation was found for
the studied catchments.

For some catchments, the found correction factor is
above 1, which is counter-intuitive considering that the
input data is PET. However, the catchments for which
this was found are catchments that use ERA5 data,
which have a larger spatial coverage than the size of
the catchment. Therefore, the PET data could be an
underestimation of ET occurring in the catchment as it
represents an average for a larger region.

4.1.2 BFI Estimation

The expected BFI values (Table 4.1) are based on knowl-
edge of the catchment’s discharge characteristics (Chap-

ter 2) and analysis of the Power Spectral Density (PSD)
of P and Q. The highest expected BFI was found for
the Noor catchment, as it is known that this catch-
ment’s discharge mainly consists of deep groundwater
flow, showing little response to rainfall events. Besides,
the power output for discharge at higher frequencies was
very low, showing a large difference with the output of
rainfall data, which supports the high expected BFI.

Based on the hydrograph, BFI for the Hupsel Brook
catchment is expected to be slightly larger than BFI for
the Severn and Wye catchment. This is supported by
the PSD of Q, which showed a slightly smaller power
output at the higher frequencies for the Hupsel Brook
catchment than for the Severn and Wye catchment. Ri-
etholzbach is an pre-Alpine catchment for which stream-
flow is mainly a function of subsurface water storage.
The power spectrum showed a strong output for P and
for the higher frequencies the difference between P and
Q was remarkable. However, the power output for Q was
still higher than for the other four catchments analyzed
before, therefore leading to a smaller expected BFI.

Erlenbach, Lümpenenbach and Vogelbach showed
very similar power spectra, with a distinct peak at a
frequency of 0.035 per day, equal to about a month.
The discharge is expected to mainly consist of shal-
low groundwater based discharge and the power spec-
tra showed similar results to Rietholzbach. Therefore,
the BFI is expected to be low. The power spectra of
Sperbelgraben and Rappengraben are again very similar,
only the output being slightly higher for Rappengraben
than Sperbelgraben. The power spectra are compara-
ble to that of the Rietholzbach, except for the higher
frequencies, where the power output is larger than for
Rietholzbach, leading to a smaller expected BFI.

The sub-catchments of the Attert catchment showed
differences mainly for the higher frequencies. This is due
to the lack of overland flow in the Weierbach catchment,
whereas this is present in the Huewelerbach catchment.
Therefore, Weierbach is expected to have to highest BFI
and was chosen similar to that of the Hupsel Brook
catchment, as their power spectra were comparable. The
power spectrum of Wollefsbach was comparable to that
of Severn and therefore, the BFI value was expected to
be similar.
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Table 4.1: Overview of the studied catchments, the
found evaporation correction factors (r) and expected
baseflow indices (BFI).

Catchment r Expected BFI
Noor 1.19 0.75
Hupsel Brook 0.87 0.40
Severn 0.86 0.35
Wye 1.00 0.35
Rietholzbach 0.79 0.10
Erlenbach 0.98 0.10
Lümpenenbach 0.65 0.10
Vogelbach 1.11 0.10
Sperbelgraben 0.77 0.08
Rappengraben 0.80 0.08
Huewelerbach 1.19 0.30
Weierbach 0.79 0.40
Wollefsbach 0.96 0.35

4.2 Model Development

4.2.1 Lag Time

Lag times were calculated for all catchments and are
displayed in Table 4.2. Some catchments show a clear
distinction between lag time for the shallow groundwater
flow and deep groundwater flow, while this distinction is
less clear for other catchments. The found lag times
range between 0 to 3 hours for the shallow groundwater
flow. The largest differences in lag times can be found in
the deep groundwater based discharge. These lag times
range from 5 hours for catchments with shallow sub-soils
or steep slopes (Alpine catchments) and lag times larger
than one hundred hours in the Noor catchment, which
is characterized by its high infiltration capacity and deep
groundwater tables.

These first findings serve as a good insight into the
processes taking place inside the catchments. For the
catchments showing a long retention time for the deep
groundwater, the importance of the memory of the dis-
charge to precipitation is highlighted. For the catch-
ments showing only a small difference in retention time
between the two, one may question the effectiveness of
explicitly modelling deep groundwater separately and the
necessity of using the new model.

4.2.2 Deep Groundwater Flow

Parameter Identification

The first step in predicting the deep groundwater flow, is
executing a baseflow separation. For this only those time

steps are selected that are part of a discharge recession
of three days or longer (72 consecutive hours). Figure
4.1a shows an hourly time series of total discharge in
the Severn catchment. It can be seen that the discharge
peaks follow the timing of precipitation closely, whereas
this behaviour was less clear in for example the Noor
catchment. During some instances the discharge seems
to recede for a longer time period, however, no time
steps were selected. In these cases, the hourly discharge
did not recede continuously for 72 hours, even though
the average discharge trend is decreasing.

The selected discharge values are plotted in Figure
4.1b, against the associated discharge at the next time
step. It can be seen that the data points are situated
in a fairly neat line, through which a least-squares linear
regression line is fitted. The R2 value of the fit is 0.999,
associated with small residuals (Figure 4.1c). However,
the residual plot does indicate some heteroscedasticity,
which could be an indicator of unequal variance over
the measurement data. The found intercept and slope
of the linear regression line are used later on to perform
the baseflow separation. The same procedure is exe-
cuted for all catchments. Baseflow was assumed to de-
pend (approximately) linearly on storage (section 3.2.2),
which is true for z = 1. This is in accordance with the
found slopes, which vary between 0.948 (Wollefsbach)
and 0.989 (Weierbach). Similar to the results in Figure
4.1, the R2 values found are high, ranging from 0.993
(Lümpenenbach) to 0.999 (Severn). The found param-
eters are displayed in 4.2 for all catchments.

In literature, the point selection was often done based
on a coarser time scale (e.g. daily or multiple hours). As
a result of the requirement that the discharge needs to
recede continuously for 72 time steps, not that much
data points were selected. This raises the question
whether the limited amount of selected data points rep-
resents the catchments low-flow behaviour properly, or
whether the data pool is too small to represent all data.

Discharge Prediction

Figure 4.2a shows the precipitation associated with deep
groundwater flow, calculated as BFI ∗ P . This precipi-
tation was used to model baseflow, which can be seen in
Figure 4.2b. The smoothed baseflow prediction shows
a quite accurate resemblance with the observed base-
flow (the results from baseflow separation are assumed
to be the ’true’ deep groundwater flow), whereas the
non-smoothed prediction shows too peaky behaviour.
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Figure 4.1: Plots showing baseflow separation steps and parameter determination for the Severn catchment. a)
Semi-log plot of total discharge, indicating the selected intervals for which a discharge recession of a minimum of
three days is true. On the right axis total precipitation. b) Selected discharge time steps with time step i on x-axis
and i+1 on the y-axis (black), and the best fit line found using least-squares linear regression (grey). c) Residuals
from the best fit line (grey), plotted against discharge.

Observed baseflow was obtained from the baseflow sep-
aration, and is assumed to be the true value of base-
flow. The accurate resemblance is also reflected in the
NSE, which is 0.96 (Table 4.2). In log-space (Figure
4.2c), which is a useful tool to investigate the prediction
quality during low flows, it can be seen that the predic-
tion sometimes over- or underestimates the peak and low
flows. The timing of precipitation and discharge peaks
only show a small deviation, indicating a small time lag.
This time lag is implemented in the modeled baseflow,
which therefore shows discharge peaks at the same time
as the observed discharge.

The power output for the higher frequencies (larger
than 0.1 cycles per day) overestimates the output for
the observed baseflow. This also shows in the discharge
time series, where the modeled baseflow is showing more
short term variation than the observed baseflow. The
quicker response of modeled baseflow as compared to
the observed baseflow also shows in the rising limb den-
sity (RLD). RLD is a value that reflects on the travel
times in a catchment by comparing the number of dis-
charge peaks and the average time it takes to reach such
a peak. For the Severn catchment, the RLD of the ob-
served baseflow is 0.0620, whereas that of the modeled

baseflow is 0.285, which is more than a factor four dif-
ference. The smoothed modeled baseflow, on the other
hand, has a RLD value much closer to the observed base-
flow, showing the importance of smoothing.

For the other catchments, the model performance
(looking at NSE) is less accurate than it is for the
Severn catchment. However, for most catchments the
model performance can be considered satisfactory or
even good, except for Rappengraben and Huewelerbach,
which both have a NSE below 0.36, indicating unsatis-
factory model performance (Table 4.2).
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Figure 4.2: Baseflow prediction for the Severn catchment for the year 1992. a) Precipitation used for baseflow
prediction over time (with the date given as (YYYY-MM-DD). b) Observed baseflow and (smoothed) modeled
baseflow plotted over time. c) Observed and (smoothed) modeled baseflow plotted over time on semi-log axis. d)
Power spectra of the observed discharge, observed baseflow and smoothed modeled baseflow.
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4.2.3 Shallow Groundwater Flow

Parameter Identification

After the parameters for the deep groundwater flow have
been determined and the baseflow is predicted, the resid-
ual P, ET and Q data are calculated as the difference be-
tween the total data and the data used for deep ground-
water prediction. The residual discharge is assumed to
be the true value of shallow groundwater flow, and will
be used to evaluate model predictions. Firstly, discharge
intervals are selected for which the discharge is ten times
larger than both evapotranspiration and precipitation.
These intervals are highlighted in Figure 4.3a, which dis-
plays a time series of total discharge and precipitation.

For the selected intervals flow recession rates are cal-
culated and plotted as a function of Q (Figure 4.3b).
Similar to the analysis by Kirchner (2009), a significant
variation of the scatter can be seen for smaller values
of Q. This can be caused by multiple factors, such as a
measurement noise. As the variation of data points is
larger for smaller values of Q, it is also an indication of
heteroscedasticity, which could indicate underlying prob-
lems in the data causing the unequal variance over Q.

Negative or zero values for −dQ/dt cannot be plot-
ted on log-axis. Even though these values do not cor-
respond with a discharge recession, the values could
still reflect variations in Q around the average recession
trends, such as daily fluctuations. It can therefore not
be justified to excluded all negatives and zeros from the
determination of g(Q), as the positive variations around
the recession trend are not excluded, which could give a
biased estimation of g(Q). Therefore, the data binning
has been done based on all data points, so the negative
−dQ/dt are not neglected. It is therefore assumed that
the estimation of g(Q) is not biased towards the positive
variations.

The binned data are shown in Figure 4.3b, c (loga-
rithm of the binned values) and d (regular axis). Smooth
curves are fitted through the binned data using least
squares non-linear regression. In Figure 4.3c a second
order polynomial is fitted and in Figure 4.3d a power-
law is fitted. The residuals of the fitted power-law are
plotted in Figure 4.3e. The residuals show somewhat
sinusoidal behaviour, especially for lower Q, indicating
that the found regression line might not adequately re-
flect the relationship between −dQ/dt and Q. There can
be many factors causing this behaviour, among which an
imperfect measurement method or scaling errors for lab-
oratory derived Q-h relationships. Additionally, the ob-

served sinusoidal behaviour could be the result of daily
cycles, for example that of evapotranspiration. As the
residuals only deviate a few percent from the discharge
values and the found R2 value is high (0.958), the ob-
served behaviour was assumed not to have a significant
impact on the results. The same sinusoidal tendency was
observed for other catchments, and R2 values varied be-
tween 0.611 (Rappengraben) and 0.911 (Huewelerbach).

The found parameters are displayed in Table 4.2. The
table shows β values ranging from 1.75 (Weierbach) to
3.25 (Sperbelgraben), indicating non-linear and storage
dependent behaviour, as was expected based on litera-
ture (Kirchner, 2009; Teuling et al., 2010; Brauer et al.,
2013; Buitink et al., 2020).

Discharge Prediction

Shallow groundwater based discharge was predicted us-
ing the residual precipitation (shown as a time series
in Figure 4.4a) and residual evapotranspiration. Figure
4.4b shows the modeled shallow groundwater based dis-
charge together with the observed shallow groundwater
based discharge as a function of time. It can be no-
ticed that the discharge peaks follow precipitation. The
timing of the modeled discharge and the observed dis-
charge are in accordance, however, discharge peaks are
often underestimated in the model prediction. This also
shows in Figure 4.4c, which again shows a time series of
modeled and observed shallow groundwater based dis-
charge, but now on a logarithmic axis. Besides, in this
plot it can also be seen that the low flows are under-
estimated, especially more towards spring times (right
side of the plot). Still, the modeled discharge is a good
approximation of the observed discharge, as shows from
the found NSE value of 0.94.

The power spectrum of the modeled and observed
discharge (Figure 4.4d) show very similar patterns, with
a slight underestimation of the power output for frequen-
cies between 0.01 and 0.4 cycles per day. The summa-
tion of deep and shallow groundwater based discharge
gives an approximation of the total discharge. For the
Severn catchment this approximation is close to the to-
tal discharge, as shows in the found NSE value of the
summed discharge, which is 0.94 (Table 4.2).

The discharge prediction is not as accurate for all
catchments. Seven out of thirteen catchments show a
NSE lower than 0.6 for the modeled shallow groundwa-
ter based discharge, of which five catchments even show
unsatisfactory model performance. However, there are
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Table 4.2: Found BFI values and parameters after calibrating the model, lag times of both deep and shallow
groundwater based discharge (Tlag,gw and Tlag,s, respectively) in hours. NSE values calculated separately for baseflow
(NSEbf ) and shallow groundwater based discharge (NSEs), and for the summation of the two (NSEsum).

Catchment BFI Tlag,gw z k NSEbf Tlag,s a β NSEs NSEsum

(h) (h)
Noor 0.91 900 0.988 0.0683 0.637 1 1.23 2.33 0.611 0.691
Hupsel Brook 0.30 32 0.984 0.165 0.882 3 0.120 2.07 0.780 0.792
Severn 0.36 23 0.972 0.115 0.958 2 0.151 1.93 0.937 0.944
Wye 0.30 23 0.977 0.0775 0.911 2 0.194 2.07 0.943 0.954
Rietholzbach 0.05 28 0.978 0.620 0.741 1 0.0921 1.92 0.661 0.681
Erlenbach 0.11 5 0.982 0.274 0.765 1 0.217 2.15 0.728 0.738
Lümpenenbach 0.18 5 0.951 0.185 0.732 0 0.224 2.27 0.506 0.512
Vogelbach 0.14 5 0.955 0.212 0.570 0 0.0909 1.81 0.507 0.551
Sperbelgraben 0.07 12 0.993 0.304 0.535 0 0.461 3.25 0.275 0.319
Rappengraben 0.09 12 0.987 0.119 0.305 0 0.103 2.19 0.216 0.243
Huewelerbach 0.25 28 0.977 0.348 -9.01 0 1.22 3.10 -0.312 -2.53
Weierbach 0.38 192 0.989 0.114 0.619 0 0.0214 1.75 0.326 0.460
Wollefsbach 0.25 12 0.948 0.482 0.643 0 0.315 1.97 0.553 0.588

also some catchments for which the model performance
is better, some even showing a good model performance.
The NSE values are in general higher for the modeled
deep groundwater based discharge. Therefore, the NSE
of the sum of both predictions, as compared to the total
observed discharge, is slightly higher than the NSE val-
ues for the shallow groundwater based discharge. How-
ever, still many catchments show NSE values below 0.6,
and Huewelerbach even shows a negative NSE.

4.2.4 Component Prediction

After the BFI values were determined, a test was ex-
ecuted to check whether the amount of deep ground-
water generated flow or the BFI value can be predicted
based on a groundwater recharge dataset by Martinsen
et al. (2022), shown in Figure B.1. In the used dataset
the groundwater recharge coefficient is defined as the
difference between the potential groundwater recharge
and the effective precipitation. The values were read
from the potential recharge groundwater map, which
is shown in Figure B.2, together with the locations of
the researched catchments. These fractions, however,
showed no agreement with the found BFI values.

Next, the yearly potential groundwater recharge per
catchment was read from Figure B.1. The found val-
ues were plotted against the modeled groundwater based
discharge, as can be seen in Figure B.4. The potential
recharge is often higher than the modeled baseflow, as
most catchments are located below the 1:1 line. How-
ever, the Wye catchment is located almost perfectly on
the line and the Noor catchment is close.

As the potential recharge is often higher than the
modeled baseflow, the potential recharge was reduced
based on the actual evapotranspiration (which was based
on the same dataset, Figure B.3). Figure B.5 shows the
modeled baseflow plotted against the potential recharge
minus the actual ET times BFI, to simulate the effect of
water loss by evapotranspiration on baseflow. It shows
that this water reduction is way too large for the Noor
catchment, and also the Severn and Wye catchment are
further away from the 1:1 line than before. The Hupsel
Brook and Huewelerbach catchment, on the other hand,
are located on the 1:1 line. For these catchments the
reduction is effective.

The figure also shows that the reduction is too lit-
tle for the catchments that are still located on the right
side of the line (Rietholzbach, Sperbelgraben, Rappen-
graben, Erlenbach and Vogelbach). Striking is that these
are the catchments with the smallest found BFI values.
The catchments with larger found BFI values are located
more towards the left side of (or on) the 1:1 line. The
outcome of the reduction raises the question whether
the amount of potential recharge that is lost depends on
BFI, which indirectly links to the depth of the aquifer
(Hare et al., 2021). However, the test shows little re-
semblance between potential groundwater recharge and
deep groundwater generated discharge, even after reduc-
ing with evapotranspiration, therefore not being useful
in predicting the deep groundwater fraction.
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Figure 4.3: Plots showing steps taken in parameter determination for shallow groundwater flow in the Severn catch-
ment. a) semi-log plot of total discharge, indicating the selected discharge intervals for which Q > 10*P and Q >
10*ET. With on the right axis precipitation on a regular scale. b) Flow recession rates (-dQ/dt) plotted over Q for
the selected discharge points (grey), binned as described in section 3.2.3 (black). c) Natural logarithm of the binned
averages (black) and the associated best fit line (grey) calculated using least-squares regression. d) Binned averages
(black) and the associated best fit line (grey) calculated using least-squares regression. e) Residuals from the best
fit line (d), plotted over discharge Q.
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Figure 4.4: Shallow groundwater flow prediction for the Severn catchment for the year 1992. a) Precipitation used for
shallow groundwater flow prediction over time. b) Observed shallow groundwater flow, modeled shallow groundwater
flow plotted over time. c) Observed, modeled shallow groundwater flow plotted over time on semi-log axis. d) Power
spectra of the Observed discharge, observed shallow groundwater flow and modeled shallow groundwater flow.
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4.2.5 Overland Flow

Parameter Identification

The last step in the development of the model is to pre-
dict overland flow occurrence. The summation of the
modeled deep and shallow groundwater based discharge
is shown as a time series in Figure 4.5a, together with
the total observed discharge and total precipitation. It
can be seen that the timing of the discharge peaks is in
accordance, although sometimes underestimated by the
model. Therefore, parameters are determined to model
overland flow. Figure 4.5b shows the difference between
observed and modeled discharge normalized by the pre-
cipitation as a function of discharge.

Significant scatter can be observed over the whole
range of Q, and therefore the data was binned into
ranges of Q. The natural logarithms of the binned data
points are shown in Figure 4.5c, as a function of the nat-
ural logarithm of Q. Through the binned data, a line is
fitted as determined using least-squares regression anal-
ysis. The residuals of the line in Figure 4.5d are shown
in Figure 4.5e, again showing a somewhat sinusoidal
pattern, but with a R2 value of 0.874. The sinusoidal
pattern is expected to result from the same reasons as
mentioned in Section 4.2.3. Similar, the residuals are
small, deviating only a few percent from the the dif-
ference between observed and modeled Q divided by P.
This, together with the high R2, leads to the assumption
that the sinusoidal behaviour does not have a significant
impact on the results.

Discharge Prediction

Consequently, overland flow is modeled as a fraction of
the precipitation, where the fraction varies as a result
of a variable source area, entailing that saturated areas
are the main contributors to overland flow. Therefore,
the variable source area is represented by the catchment
wetness, which is again determined based on discharge.
This means that for a higher discharge, the fraction of
precipitation that becomes overland flow is larger. This
could also be seen in Figure 4.5d, in which the data
showed an upward trend for increasing Q.

Figure 4.6a shows the residual precipitation, calcu-
lated as the difference between observed precipitation
and modeled discharge. In Figure 4.6b the modeled over-
land flow is shown over time, calculated as the residual
precipitation times the fraction (fOF ), which was calcu-
lated per time step based on discharge. Remarkable is

that the values are low, which results from low values for
the determined fractions. For other catchments, which
showed a larger difference between the modeled and ob-
served discharge, there is more overland flow modeled.

The total observed discharge is shown in Figure 4.6c,
together with the total modeled discharge (summation
of the three components). It shows that the peak in
March 1992 is approached more closely than it was be-
fore, due to the addition of the overland flow. Finally,
the power spectrum of the two are shown (Figure 4.6d),
showing a similar pattern as was seen for the shallow
groundwater based flow. For the Severn catchment, no
significant improvement could be seen after adding over-
land flow, mainly due to the small values of overland
flow. For catchments in which the overland flow frac-
tion played a more important role (Sperbelgraben, Rap-
pengraben and Huewelerbach), the power spectrum did
show an improved resemblance for the higher frequen-
cies.

As a result of the added overland flow, the mod-
eled discharge shows a more peaky pattern than was ob-
served, which decreases the NSE values as compared to
the NSE values found for the summation of the deep and
shallow groundwater based discharge (for most catch-
ments). On the other hand, the summation of the mod-
eled discharge did approach the summation of the ob-
served total discharge more closely, thus decreasing the
bias. The found NSE values and model performance are
discussed more elaborately in section 4.3.1.
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Figure 4.5: Plots showing steps taken in parameter determination for overland flow in the Severn catchment. a) Plot
of total discharge and the modeled discharge (sum of deep and shallow groundwater based discharge). b) Difference
in observed and modeled discharge, normalized by precipitation plotted over Q (grey), binned as described in section
3.17 (black). c) Natural logarithm of the binned averages (black) and the associated best fit line (grey) calculated
using least-squares regression. d) Binned averages (black) and the associated best fit line (grey) calculated using
least-squares regression. e) Residuals from the best fit lines, plotted over discharge Q.
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Figure 4.6: Overland flow and total discharge prediction for the Severn catchment for the year 1992. a) Precipitation
used for overland flow prediction over time. b) Modeled overland flow over time. c) Observed and modeled discharge
over time. d) Power spectra of the observed discharge (blue) and modeled total discharge (green).
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4.2.6 Ternary Plot

Yearly Average

Figure B.6 in the Appendix shows a ternary plot of the
yearly average distribution of the discharge components
for the different catchments. Remarkable is that all
catchments are situated towards the right side of the
plot, indicating a small amount of overland flow. This is
because the average was calculated over all time steps in
a year. As overland flow occurs only when precipitation
occurs, the average contribution of overland flow will be
low. Figure B.7 shows the distribution of the discharge
components when precipitation is larger than zero. The
catchments are still predominantly situated towards the
right side. As overland flow occurs in different situations,
plots were made for different precipitation amounts (P
> average P, P > 2 times average P and P > 2 mm/h),
as shown in the Appendix.

The plot for precipitation larger than 2 mm/h is dis-
played in Figure 4.7. It shows that Huewelerbach, Sper-
belgraben and Rappengraben have the highest overland
flow fraction, whereas Lümpenenbach shows the smallest
fraction even for a precipitation amount above 2 mm/h.
In the plot it can also be seen that the Noor catchment
is the only catchment dominated by groundwater. This
is according to the expectations, as little response to
rainfall was observed in its hydrograph.

The discharge compositions of the Rietholzbach, Vo-
gelbach and Wollefsbach are similar to the situation
where precipitation is larger than 2 mm/h, whereas they
are located further away from each other when the pre-
cipitation amount is smaller, resulting from their differ-
ence in BFI. The fraction of deep groundwater based dis-
charge has decreased significantly for the Vogelbach and
Wollefsbach catchment with increasing precipitation.

Additionally, the overland flow fraction for the Er-
lenbach and Lümpenenbach catchments remains below
0.15, even for precipitation amounts larger than 2 mm/h.
Contradicting, in the Alptal catchments overland flow
was said to be observed often, except for the forested
areas (van Meerveld et al., 2018). The difference could
be explained by an underestimation of the forest frac-
tion, or maybe observed overland flow only occurred in
small quantities, therefore contributing little to the total
discharge. The overland flow fraction for the Hueweler-
bach catchment is a bit larger. However, as a result
of the low model performance, the correctness of this
distribution is questionable.

Sperbelgraben and Rappengraben showed the largest
overland flow fractions in the ternary plot. The discharge
was expected to respond quickly to rainfall, which is ac-
cording to the results; little contribution by deep ground-
water. The discharge in the Sperbelgraben catchment
was expected to respond slower with a larger contribu-
tion of baseflow, resulting from the higher forested area
(Stähli et al., 2011). Baseflow in the Sperbelgraben
catchment was not found to be higher, but the con-
tribution by overland flow is lower, which is in line with
expectations based on literature (Roessel, 1950).

In the ternary plots with all time steps and all time
steps for which P>0, the catchments Erlenbach, Sper-
belgraben and Rappengraben are located close together.
In Figure 4.7, however, the catchments do not show the
same composition, as the fraction of shallow groundwa-
ter based discharge and overland flow vary. This shows
the difference in sensitivity to overland flow formation
as a result of rainfall per catchment.

Taking into account all time steps, the composition
of discharge fractions for Severn and Weierbach and for
Wye and Hupsel Brook are nearly identical, whereas this
is not the case when taking into account only those time
steps where P>0. The Severn and Wye catchment only
show a slight increase in the overland flow fraction as
a result of precipitation. The Hupsel Brook catchment
shows a little more overland flow, but not as much as
the Weierbach.

Yearly Variation

The distribution of the discharge components are plotted
as a function of time (hourly time step, within one year)
per catchment. This is done for all time steps and for
the time steps for which precipitation is not zero. In the
Appendix all plots can be found. The figures showing
only those time steps for which precipitation is not zero,
display fewer time steps, but to keep the figures compa-
rable, the time range is similar. It was noticed that the
plots with all time steps show very similar patterns as
the plots for P>0.

In this chapter, some plots are discussed more elab-
orately. Figure 4.8 shows the component distribution
of the Noor catchment. Compared to the other catch-
ments, the compositions of discharge fractions for the
Noor are located more towards the top corner. This is
due to the high contribution of baseflow to the total flow.
The plot also shows that the fraction of deep groundwa-
ter based discharge is smallest at the beginning of the
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Figure 4.7: Ternary plot of the yearly average discharge components of the studied catchments, calculated based on
all time steps where precipitation is larger than 2 mm/h.

year (January) and increases towards the end of the year.

The Lümpenenbach catchment shows a larger spread
of compositions than most catchments (Figure 4.9).
The fractions of the beginning and end of the year
are located in the same corner, approximately, with a
large amount of shallow groundwater based discharge.
Halfway through the year, the compositions move a bit
more towards the top of the plot, indicating more deep
groundwater based discharge, but also overland flow oc-
curs more.

The Huewelerbach catchment shows a remarkable
pattern; the discharge fractions show a deep groundwa-
ter based discharge fraction of (almost) zero throughout
most of the year, with the exception of the first 2000
hours (about 2.5 months) of the year (Figure 4.10). Dur-

ing this time of year the deep groundwater fraction is
higher, reaching up to almost 0.8.

Lastly, the yearly variation for the Hupsel Brook
catchment is shown in Figure 4.11, which demonstrates
very little variation throughout the year, with a overland
flow fraction that remains low. The plot shows some
variation in the amount of deep groundwater based dis-
charge with some time steps showing more overland flow.
However, no clear seasonal pattern can be distinguished.
The catchment is known to have an intense drainage
network (Brauer et al., 2013), which might reduce the
amount of overland flow due to the availability of fast
flow routes.
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Figure 4.8: Ternary plot of the yearly variation in discharge components of the Noor catchment for the year 1994,
calculated per time step where P>0 mm/h. In the legend, 0 indicates the first hour of the year (January first, 01:00).

Figure 4.9: Ternary plot of the yearly variation in discharge components of the Lümpenenbach catchment for the
year 1993, calculated per time step where P>0 mm/h. In the legend, 0 indicates the first hour of the year (January
first, 01:00).
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Figure 4.10: Ternary plot of the yearly variation in discharge components of the Huewelerbach catchment for the
year 2003, calculated per time step where P>0 mm/h. In the legend, 0 indicates the first hour of the year (January
first, 01:00).

Figure 4.11: Ternary plot of the yearly variation in discharge components of the Hupsel Brook catchment for the
year 1998, calculated per time step where P>0 mm/h. In the legend, 0 indicates the first hour of the year (January
first, 01:00).
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4.3 Model Quality Assessment

4.3.1 General Model Performance

The general model quality is assessed by looking at the
NSE and KGE of the model, and additionally by look-
ing at the similarity of the RLD of the observed and
modeled discharge. Table 4.3 shows these values for all
catchments. For eight catchments, the NSE values are
lower for the total discharge than for the summation of
the deep and shallow groundwater discharge, with the
exception of the Erlenbach, Vogelbach, Rappengraben,
Huewelerbach and Wollefsbach catchment. For most
catchments, the found KGE value can be considered sat-
isfactory or even good. However, the model performance
of Sperbelgraben, Huewelerbach and Weierbach is poor,
as the KGE values remain below 0.4.

Looking at the rising limb density (RLD) of the
model, it can be seen that for some catchments the
modeled discharge simulates this discharge metric ac-
curately. This can be seen from RLD that are similar
to the RLD of the observed discharge. For example for
the Erlenbach catchment, the RLD of the observed and
modeled discharge are similar. However, for the Noor
catchment the RLD is overestimated, indicating a mod-
eled discharge which has a shorter rising limb than the
observed discharge. This results from the model which
shows a quicker change in discharge after a precipitation
event than is observed. For the Wollefsbach catchment,
the opposite is the case.

4.3.2 Comparison to Other Models

Discharge is predicted for all three models (the new
model, SDS approach and HBV). Figure 4.12 shows the
discharge prediction and the observed discharge on both
normal (Figure 4.12b) and log scale (Figure 4.12c) based
on the total observed precipitation, which is shown in
Figure 4.12a. It can be noted that the discharge peaks
are often underestimated for all three models. The HBV
model shows most peaky behaviour, also when there are
no discharge peaks in the observed discharge data. In
the semi-log plot it can be seen that the HBV model of-
ten underestimates the discharge whereas this happens
less often (and less extreme) for the other two models.
The peaky behaviour is also reflected in the RLD (Table
4.3), which is highest for the HBV model.

The power spectra of the different models are shown
in Figure 4.12d. It can be seen that the output for the
HBV model is larger than the other two models and the

observed discharge, resulting from the quickly changing
discharge behaviour. The new model and the SDS ap-
proach show very similar patters, except for the lower fre-
quencies, where the SDS approach gives a higher output,
which is a closer resemblance to the observed discharge.

In Table 4.3 the RLD values are shown for the ob-
served and modeled discharge. The RLD showing the
closest resemblance to the observed discharge is marked
in green, whereas the value which is farthest away from
the observations is marked red. Looking at these col-
ors, it can be seen that the RLD of the HBV models are
most often marked red, usually due to an overestimation,
indicating a rising limb which responds more quickly to
precipitation than that the observed data does. The new
model and SDS approach both have some green marked
values and some red ones. The red values differ between
over and underestimating the RLD.

The table also shows the found NSE and KGE values,
again marking the best values in green and the worst in
red. It can be noted that the new model shows most
green values for the first five models, whereas the HBV
model performs least well for these catchments. For
the following four catchments however, the HBV model
outperforms both the new model and the SDS approach.
Striking is that both the SDS approach and HBV model
have negative NSE and KGE values for the Noor catch-
ment, but that the model performance for the new model
is reasonable. For the Huewelerbach, the new and HBV
model show bad model performance. The model per-
formance for the SDS approach is better, but still not
satisfactory.

Boxplots of the NSE and KGE values are shown in
Figure 4.13, to display the general model performance.
In the top row boxplots are shown for the NSE values.
The left panels in Figure 4.13 provide an overview of
the general model performance, taking into account all
catchments. The quality of the forcing data is expected
to affect the model performance. Therefore, separate
plots were made for catchments forced with local data
(middle panel) and catchments forced with ERA5 pre-
cipitation data (right panel).

In the NSE and KGE values for all catchments, little
differences are seen between the median values. The
median of the HBV model is slightly higher than it is
for the other two models. The median value for the
new model is lowest, but the first quartile is higher
than it is for the other two models, resulting from
the absence of very low model performance. Using
only the catchments that are not forced with ERA5
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precipitation data (middle panel), it can be seen that
the median values are higher than before. The new
model now shows the best model performance, however
only slightly higher than the other models. Both NSE
and KGE show lower median values for the ERA5-forced
simulations. The performance as compared to all
catchments is decreased least for the SDS approach.

Figure 4.14a shows a scatter plot of the absolute er-
ror of the different models, calculated as the modeled
discharge minus the observed discharge. From this fig-
ure it can be seen that for low discharge HBV tends to
both over- and underestimate the discharge and the new
model mainly underestimates the discharge, which is in
agreement with Figure 4.12.

Additionally, in Figure 4.14b the flow duration curves
(FDC) of the observed and modeled discharges are seen.
As the curves were very similar, the shown plot is zoomed
in to better visualize the differences. The original FDC
can be seen in Figure B.16 in the Appendix. Figure
4.14b shows that the SDS approach and HBV model
almost perfectly follow the curve of the observed dis-
charge, whereas the new model shows a higher excee-
dence probability than the observed discharge. This in-
dicates that for the new model, higher flow rates have a
(slightly) higher probability of occurring.

Figures 4.14c-g show scatter plots of the discharge
per time step for the different models and observations,
with in black a 1:1 line. In the plots it can be seen
that the SDS approach and new model have the most
similar modeled discharges, as they are close to the line
(Figure 4.14f) and show similar patterns when plotted
over the observed discharge (Figure 4.14c and d). The
HBV model shows most variation around the 1:1 line
(Figure 4.14e) and is less comparable to the new model
(Figure 4.14g).
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Figure 4.12: Comparison of discharge prediction for the Severn catchment using three different models: the new
model, simple dynamical systems approach (sdsa) and HBV with a) total precipitation as a function of time. b)
Time series of observed and modeled discharge. c) Time series of observed and modeled discharge on semi-log axis.
d) Power spectra of the observed and modeled total discharge.
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Table 4.3: Rising limb density (RLD) and model performance statistics (Nash-Sutcliffe efficiency; NSE and Kling-
Gupta efficiency; KGE) over all researched catchments and three models, with the best (worst) performing model
per RLD or statistic marked in green (red).

Obs New SDSA HBV
Catchment RLD RLD NSE KGE RLD NSE KGE RLD NSE KGE
Noor 0.0486 0.247 0.685 0.786 0.176 -8.23 -0.468 0.202 -2.30 -0.930
Hupsel Brook 0.0801 0.203 0.785 0.845 0.381 0.792 0.833 0.397 0.778 0.875
Severn 0.242 0.213 0.931 0.961 0.274 0.927 0.905 0.350 0.851 0.925
Wye 0.288 0.265 0.932 0.962 0.310 0.938 0.855 0.372 0.824 0.908
Rietholzbach 0.236 0.287 0.669 0.836 0.302 0.656 0.828 0.363 0.679 0.815
Erlenbach 0.256 0.276 0.749 0.844 0.289 0.789 0.882 0.326 0.764 0.822
Lümpenenbach 0.272 0.334 0.506 0.724 0.277 0.660 0.810 0.320 0.707 0.798
Vogelbach 0.290 0.261 0.585 0.755 0.2741 0.586 0.795 0.322 0.668 0.795
Sperbelgraben 0.157 0.149 0.313 0.363 0.153 0.275 0.0501 0.173 0.379 0.452
Rappengraben 0.170 0.173 0.251 0.500 0.153 0.180 -0.0535 0.179 0.333 0.524
Huewelerbach 0.386 0.450 -1.44 0.116 0.190 0.169 0.538 0.237 -26.7 -3.55
Weierbach 0.100 0.278 0.446 0.389 0.205 0.372 0.310 0.211 0.316 0.304
Wollefsbach 0.312 0.0834 0.592 0.707 0.189 0.614 0.741 0.249 0.400 0.539

Figure 4.13: Boxplot to display general model performance (Nash-Sutcliffe efficiency; NSE in the top and Kling-
Gupta efficiency; KGE in the bottom), taking into account all catchments (left panels), only the catchments with
local precipitation data, i.e. excluding ERA5-forced catchments (middle panels) and only the catchments for which
ERA5 precipitation data is used (right panels). General model performance is shown for the newly created model
(New), the simple dynamical systems approach (sdsa) and for the HBV model.
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Figure 4.14: Comparison of discharge predictions for the Severn catchment using three different models: the new
model, simple dynamical systems approach (sdsa) and HBV with a) absolute errors per model, calculated as the
difference between modeled and observed discharge, plotted over discharge. b) Flow duration curves of the observed
and modeled discharge, zoomed in to the low exceedence probabilities. c) New modeled discharge over observed
discharge (blue) with 1:1 line in black. d) Sdsa modeled discharge over observed discharge (blue) with 1:1 line in
black. e) HBV modeled discharge over observed discharge (blue) with 1:1 line in black. f) Sdsa modeled discharge
over new modeled discharge (blue) with 1:1 line in black. g) HBV modeled discharge over new modeled discharge
(blue) with 1:1 line in black.
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5 | Discussion

In this study, a model was build that predicts discharge
based on precipitation and evapotranspiration data using
knowledge on the relative distribution of three discharge
components. The aim was to develop an approach that
gives high quality discharge predictions by simulating the
the different flow routes from precipitation to discharge,
while keeping the model simple with a limited number
of parameters. As a result of its simplicity, the model
has limitations, which can be linked to the original lim-
itations of the SDS approach, limitations of a baseflow
separation and to the implementation of overland flow
to the model. Besides, data availability and quality can
also act as a limitation factor for a model to perform
well. This chapter provides an overview of these limita-
tions and their consequences.

5.1 Model Structure

Potential evaporation data is used as input for the model,
which is consequently converted using an evaporation
correction factor. Additional to the evaporation correc-
tion factor, the model includes an evaporation reduction
switch, that is used when discharge reaches a set min-
imum. This is done to prevent modeling negative dis-
charge as a result of an overestimation of evapotranspi-
ration. When the discharge reaches the threshold value,
evaporation is set to zero, which is not according to
real world processes, in which evaporation reduction de-
pends on many factors, such as soil moisture, and does
not simply work as an on/off switch.

The next step in the development of the model was
to model the discharge which results from deep ground-
water flow, for which a baseflow separation was exe-
cuted. Consequently, the derived baseflow was used
as the ’true’ amount of deep groundwater flow in the
catchment. The found baseflow was used to identify pa-
rameters used in the model and was used to assess the
quality of the model output. However, in reality, a base-
flow separation is not without uncertainties, especially
when using a methodology based on Recursive Digital
Filter, instead of using tracer measurements. However,
Eckhardt (2008) showed that using tracer measurements
and equation 3.4, which was used to determine baseflow,
showed similar results when a correct filter parameter
was chosen for BFI. Besides, this approach returned hy-
drological more plausible results than the methods HY-

SEP1, HYSEP2, HYSEP3, PART, BFLOW and UKIH
(Eckhardt, 2008).

Adding to that, Nathan and McMahon (1990) pro-
posed typical recession constants ranging from 0.93 to
0.995, which is in agreement with the parameters found
during the baseflow separation (Duncan, 2019). There-
fore, it is assumed that the baseflow separation executed
provides reasonable estimates for the amount of baseflow
in a catchment, considering that the BFI values are cor-
rect. However, as the true values for BFI are unknown,
the correctness of the baseflow estimation remains un-
known, even after BFI was calibrated. Tracer measure-
ments can be at help with determining the most correct
value for BFI.

A limitation of the simple dynamical systems ap-
proach, and consequently also of the newly presented
model, is that the same storage-discharge relationship
is assumed for both the rising and falling limb, which
cannot be justified for catchments showing hysteresis.
However, as the research includes the parameterization
of the sensitivity function based on discharge observa-
tions, it is assumed that the sensitivity function reflects
the average behaviour of the catchment. Previous stud-
ies using the same methodology showed that this did
not limit the model performance (Kirchner, 2009; Teul-
ing et al., 2010).

Multiple mechanisms exist that can cause overland
flow. In the new model a fraction was determined that
represents the fraction of precipitation that becomes
overland flow, fOF . Following the concept of a vari-
able source area, in which the area contributing to sat-
uration overland flow changes as a result of antecedent
catchment wetness, fOF was determined based on dis-
charge, as it is assumed that discharge and storage are
linked monotonically. Therefore, Dunnian overland flow
is represented well by the model. Hortonian overland
flow, occurring as a result of exceedance of the infiltra-
tion capacity of the soil is not explicitly implemented
into the model, as it was unknown when the infiltration
capacity is exceeded. Additionally, the fraction of pre-
cipitation falling directly into the stream was not added
to the model. These two mechanisms could be a valu-
able addition to the model to represent more real world
processes.

Another limitation of the overland flow modelling is
that fOF is determined based on the modeled discharge,
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to be able to predict discharge even when observations
are not available. The modeled discharge, which is the
summation of deep and shallow groundwater based dis-
charge, is assumed to be an approximation of the actual
discharge. However, when the model underestimates the
actual discharge, the determined fraction will also be
small, whereas an overestimation will lead to a large frac-
tion, leading to more extreme over-/underestimations.

The model performance was compared to two other
models, using different calibration methods. HBV was
calibrated using a Monte Carlo algorithm which finds
the set of parameters resulting in the highest NSE value.
The SDS approach was calibrated using the Levenberg-
Marquardt method to optimize the model performance.
As these are two different calibration methods, the re-
liability of comparing the model performance based on
NSE and KGE values is questionable, especially since the
NSE and KGE values are similar. Additionally, the pur-
pose of using a model is very important in model choice
and might be more important than general model per-
formance. Therefore, no unambiguous conclusion can
be drawn on which model performs best.

As Kirchner (2009) mentioned in his paper, "any
analysis is only as good as the data it is based on". This
is also reflected by the model evaluation. The catch-
ments which were forced with ERA5 precipitation data
showed a considerably lower prediction quality (looking
at NSE and KGE). This can be reflected back to the hor-
izontal resolution of the ERA5 precipitation data, which
is 0.25◦ x 0.25◦, covering an area larger than the an-
alyzed catchments. Due to this, the precipitation data
used was equal for catchments located close to each
other, while in reality those areas will show heteroge-
neous precipitation patterns. Therefore, the model out-
put quality is reduced, which can also be inferred from
the fact that the NSE and KGE values for all three mod-
els are considerably smaller than average.

5.2 Broader Model Discussion

The newly presented model is more complex than the
SDS approach by Kirchner (2009). It includes multi-
ple flow routes that are modeled separately and there-
fore has more parameters which were inferred from ob-
servations. Studies showed that the optimal number
of free parameters is between three and five (Peel and
McMahon, 2020). Perrin et al. (2001) demonstrated
that more complex models tend to outperform the sim-
pler ones after calibration, however, lacking stability and

therefore having a lower verification performance. Over-
parameterization as a result of an inadequate model
complexity compared to the available data can lead to
parameter uncertainty. This is a risk for the model ac-
curacy and prevents a model from reaching its optimal
performance level. Corresponding, Grayson and Blöschl
(2001) discussed the relationship between data availabil-
ity and model complexity and the effect on the model’s
predictive performance. It was shown that to reach an
optimal performance, the available data and model com-
plexity should be adequate, and that an increased data
availability does not always lead to a better performance,
e.g. when the model too simple to exploit all available
data. Vice versa, when the model is too complex com-
pared to the available data, this can lead to improper
parameter identification for which the correctness of the
model output is questionable.

Perrin et al. (2001) stated that simple model struc-
tures often perform as well as complex ones for many
purposes. This corresponds with the result that were
found in this thesis, which showed similar model perfor-
mance (based on NSE and KGE) for the SDS approach,
HBV and the newly presented model. For the catch-
ments forced with ERA5 data, the median NSE values
found were highest for the SDS approach, which could
result from the optimum between model complexity and
data availability. The lower data availability has shown
to stronger affect the other models, which could be due
to their higher number of parameters.

The modeled overland flow fraction is really small in
some catchments, resulting from a modeled discharge
(sum of deep and shallow groundwater based discharge)
that is already close to the total observed discharge.
Additionally, some catchments showed to be dominated
strongly by one process, such as the Vogelbach catch-
ment. This leads to the higher question what the use of
the newly presented model is and whether distinguish-
ing three flow routes is necessary. The answer to this
might lie in the purpose of the modelling study. As com-
pared to the SDS approach and HBV, the new model
has the advantage that it provides information on the
distribution of components. When choosing a model,
one should consider the fit for purpose concept, which
entails choosing a model based on the task (required
output), but also on the available input data (Peel and
McMahon, 2020). Based on this, one chooses the most
appropriate model. Therefore, the use of the new model
lies in studies interested in the relative distribution of
components throughout the year. For studies interested
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in discharge predictions, one could question the neces-
sity of using the new model for catchments dominated
by one flow route.

An advantage of the SDS approach as compared to
other models is that the simplicity of the sensitivity func-
tion allows for the equation to be invertible, which means
that it can be used to estimate precipitation and evapo-
transpiration from discharge; doing hydrology backwards
(Kirchner, 2009). Adding to that, Kirchner (2009) men-
tions that the approach is simple and general as no dis-
tinction is made between base and quick flow and there-
fore no baseflow separation is needed. Expanding the
model by distinguishing multiple flow contributors re-
duces the simplicity of the model and thereby also com-
plicates the possibility to infer precipitation from dis-
charge. Additionally, the the new model requires more
steps reducing its simplicity and ease of use. Moreover,
the increased number of parameters leads to an increase
in risk of over-parameterization which could reduce the
model’s accuracy.

However, a limitation of the SDS approach as men-
tioned by Kirchner (2009) is its simplicity, reducing the
generality of the model to be used in different catchment
types. This limitation is reduced by expanding the model
with two discharge generating mechanisms, making the
model more general in usage, for example in catchments
characterized by much overland flow, that were not rep-
resented well by the SDS approach.

Additionally, Buitink et al. (2020) mentioned the lack
of precipitation dispersion as a result of water retention
in the SDS approach. In the paper, this was justified
by saying that for small catchments, dispersion does not
have a significant impact on the hydrograph. Dispersion
is also not implemented explicitly in the new model, how-
ever, accounting for two separate lag times (Tlag,gw and
Tlag,s) does somewhat represent dispersion as the pre-
cipitation peak is split into two and will reach the stream
at different times.

The HBV model, on the other hand, is not as sim-
ple as the SDS approach, including nine parameters,
representing snow processes and an upper and lower
groundwater box. This increased number of parame-
ters provides for the opportunity to model more com-
plex or additional processes. However, as explained be-
fore, the risk of a reduced model accuracy due to over-
parameterization will be higher compared to less com-
plex models. Again, the new model has the advantage
that it explicitly provides results on the distribution of
discharge components in the catchment.

5.3 Model Prospect

The catchment selection was done as such to include a
variety of flow processes and including extremes, such as
the Noor catchment which is unique due to its very deep
groundwater tables and little response to precipitation
events. However, the question remains whether the set
of catchments spans a range wide enough to be represen-
tative for the whole world. Therefore, in future research,
the model should be tested on catchments further away,
with different characteristics such as soil type and dif-
ferent climatic zones. Additionally, the model should be
tested using data with similar quality, to be able to make
a statement on the applicability of the model to catch-
ment types, whereas this is complicated now due to the
differences in data quality and resolution.

Additionally, to test the accuracy of the found dis-
tribution of discharge components, the model outputs
should be compared with tracer experiments that can
provide more information on the response times of a
catchment. Tracer experiments can be used to deter-
mine the value of BFI beforehand (since BFI cannot be
estimated based on the groundwater recharge dataset),
reducing both the calibration time needed and the struc-
tural uncertainty which exists due to the lack of confir-
mation on the correctness of the found BFI values.
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6 | Conclusion

The model presented in this thesis is a rainfall-runoff
model that takes into account three separate discharge
components (deep groundwater, shallow groundwater
and overland flow) to model total discharge based on
precipitation and evapotranspiration data. The total
discharge is calculated by summing the modeled compo-
nents, where deep groundwater based discharge is mod-
eled following a linear relationship with precipitation,
shallow groundwater based discharge is modeled accord-
ing to the SDS approach by Kirchner (2009), and lastly
overland flow was modeled as a function of catchment
wetness, represented by discharge, and precipitation.

Applied to thirteen catchments in Europe with areas
in the same order of magnitude, ranging from lowland
to Alpine catchments with different climates, the model
has proven to be successful in determining the relative
contribution of the three discharge components based
on the hydrograph. Starting off with a baseflow sepa-
ration, deep and shallow groundwater based discharge
were modeled after which the model was calibrated on
the most suitable cutoff between the two (BFI). After-
wards, the overland flow component was added to the
discharge prediction to improve discharge peak model-
ing. After all three components had been modeled, the
relative contribution of the components was calculated
both as yearly average fraction (for various values of
P) and as an fraction per time step (hourly), showing
the course of the component distribution throughout the
year.

While this new approach manages to produce rea-
sonable discharge predictions, the model did not prove
to be superior to two more conventional models (SDS
approach and HBV). The general model performance
(as measured by the Nash-Sutcliffe efficiency and Kling-
Gupta efficiency) showed to be relatively similar to, but
not better than, the other two. However, the lower quar-
tile of the new model shows a better model performance
than the lower quartile of the other two models. This is
due to the absence of extreme low model performance
per catchment for the new model, whereas these are
present for the other two models. Nevertheless, due to
the different calibration methods and the similar per-
formance, no significant conclusion can be drawn that
states which model is best. Additionally, model choice
also highly depends on research purpose.

The new model has two unique strengths compared

to the SDS approach by Kirchner (2009): (1) it can both
use knowledge on the distribution of discharge compo-
nents to predict discharge and the model can be used
to determine the distribution of discharge components
based on the hydrograph; (2) as total discharge is com-
puted as the sum of three discharge components, it pro-
vides the opportunity to be used more generally for dif-
ferent types of catchments. On the other hand, due to
the elaboration of the model as compared to the SDS
approach, model usage is less straightforward and the
risk of decreased model accuracy resulting from model-
uncertainty increases, due to the increased number of pa-
rameters which could cause over-parameterization when
using inadequate data.

Lastly, the possibility to predict discharge compo-
nents based on already existing recharge datasets to
reduce calibration efforts has not proven to be success-
ful. The found recharge fractions were not comparable
to the calibrated BFI values and the modeled yearly
baseflow did not show significant correspondence with
the yearly potential recharge.

Overall, the newly presented model is a valuable addi-
tion to the conceptual rainfall-runoff models, as it pro-
vides the opportunity to determine the distribution of
discharge components in a relatively simple and under-
standable manner. However, as a predictive tool, no
evidence was found that the model outperforms the con-
ceptual rainfall-runoff model HBV or the SDS approach.
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A | List of Variables

Table A.1: List of variables
Variable name Description Unit
r Evaporation reduction factor -
ETpot Potential evapotranspiration mm/h
P Precipitation mm/h
ET Actual evapotranspiration, calculated as r ∗ ETpot mm/h
FFT Fast Fourier Transform frequency s−1

PSD Power Spectral Density -
Qtotal Total discharge, summation of the three discharge components mm/h
QGW Deep groundwater generated discharge mm/h
QS Quickly responding discharge mm/h
QOF Very quickly responding discharge, overland flow generated mm/h
Qb Baseflow, where Qb is equal to QGW mm/h
Qt Discharge at time step t mm/h
Q0 Discharge at time step 0 mm/h
τ Recession coefficient h−1

Qb,t Baseflow at time step t mm/h
Qb,t−1 Baseflow at time step t - 1 mm/h
BFI Maximum value baseflow index; ratio between baseflow and total discharge -
z Recession rate, defined as e−t/τ -
S Water storage mm
M Snow melt mm/h
g(Q) Sensitivity function, defined as the discharge sensitivity to changes in catchment storage
a g(Q) parameter - intersect -
b g(Q) parameter - slope -
β g(Q) parameter - slope -
Tlag,GW Lag time of deep groundwater based discharge h
Tlag,s Lag time of shallow groundwater based discharge h
fOF Fraction op precipitation which becomes overland flow -
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B | Additional Figures

Figure B.1: Potential Groundwater Recharge map (Mar-
tinsen et al., 2022) in mm/yr with the researched catch-
ments marked in yellow.
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Figure B.2: Groundwater Recharge coefficient map (Martinsen et al., 2022) with the researched catchments marked
in yellow.

Figure B.3: Actual evapotranspiration map (Martinsen et al., 2022) in mm/yr with the researched catchments marked
in yellow.



| 53

Figure B.4: Modeled total baseflow plotted against potential recharge (Martinsen et al., 2022) per researched catch-
ment with 1:1 line in red.

Figure B.5: Modeled total baseflow plotted against potential recharge (Martinsen et al., 2022) minus actual evapo-
transpiration*BFI per researched catchment with 1:1 line in red.
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Figure B.6: Ternary plot of the yearly average discharge components of the researched catchments, calculated based
on all time steps.

Figure B.7: Ternary plot of the yearly average discharge components of the researched catchments, calculated based
on all time steps where precipitation is larger than zero.
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Figure B.8: Ternary plot of the yearly average discharge components of the researched catchments, calculated
based on all time steps where precipitation is larger than the average precipitation (average of all time steps with
precipitation).

Figure B.9: Ternary plot of the yearly average discharge components of the researched catchments, calculated based
on all time steps where precipitation is larger than two times the average precipitation (average of all time steps with
precipitation).
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Figure B.10: Ternary plot of the yearly variation in discharge components of the researched catchments, shown over
time as hour of year.
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Figure B.11: Ternary plot of the yearly variation in discharge components of the researched catchments, shown over
time as hour of year.
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Figure B.12: Ternary plot of the yearly variation in discharge components of the researched catchments, shown over
time as hour of year.
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Figure B.13: Ternary plot of the yearly variation in discharge components of the researched catchments for the time
steps where precipitation is larger than zero, shown over time as hour of year.
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Figure B.14: Ternary plot of the yearly variation in discharge components of the researched catchments for the time
steps where precipitation is larger than zero, shown over time as hour of year.
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Figure B.15: Ternary plot of the yearly variation in discharge components of the researched catchments for the time
steps where precipitation is larger than zero, shown over time as hour of year.

Figure B.16: Flow duration curves of the observed and modeled discharge, plotted against discharge.


