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Demand for animal�source foods and livestock feed are forecast to increase across sub-Saharan Africa. In
this context, there is a need to estimate the availability of livestock feed to support decision�making at
local, sub-national and national levels. In this study, we assess feed balances for ruminant livestock in
Ethiopia and Burkina Faso. Feed availability was estimated using remotely sensed products and detailed
feed composition data. Feed requirements were estimated for maintenance, growth, lactation, gestation
and locomotion using a data�intensive model. Biomass available as animal feed was estimated to be 8.6
tonnes of DM per hectare in the Ethiopian highlands and midlands, 3.2 tonnes DM per hectare in the
Ethiopian lowlands, 2.9 tonnes DM per hectare in Burkina Faso’s Sudanian agro-ecological zone and
1.0 tonne DM per hectare in the Sahel. The energy requirements of lactating cows were estimated to
be 62.1 Megajoules (MJs) per animal per day in the Ethiopian highlands and midlands, 62.7 MJ in the
Ethiopian lowlands, 88.5 MJ in Burkina Faso’s Sudanian agro-ecological zone and 53.1 MJ per animal
per day in the Sahel. Feed scarcity hotspots are most prominently located in the Ethiopian highlands
and the Sahelian agro-ecological zone of Burkina Faso. Demand�side policy and investment initiatives
can address hotspots by influencing herd sizes, nutritional requirements and herd mobility.
Supply�side policy and investment initiatives can secure existing feed resources, develop new sources
of feed and incentivise trade in feed resources. Improving feed balances will be of value to decision�mak-
ers with the aims of optimising livestock productivity, minimising exposure to climatic shocks and min-
imising greenhouse gas emission intensity.
� 2024 Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

Demand for animal�source foods are forecast to increase across
sub-Saharan Africa. Using an approach with global relevance, we
assess the feed adequacy for ruminant livestock across two
nations. Our results indicate that the Ethiopian highlands and the
Sahelian zone of Burkina Faso are prominent deficit hotspots. Inter-
ventions can address hotspots by influencing herd sizes, require-
ments and mobility, and by securing feed resources, developing
new sources of feed and incentivising feed trade. Improving feed
balances will be of value to decision�makers with the aims of opti-
mising livestock productivity, minimising exposure to climatic
shocks and minimising greenhouse gas emission intensity.
Introduction

Ruminant livestock have a unique function in the bioeconomy,
converting low-value biomass to high-quality outputs (Muscat
et al., 2020). The availability of biomass for human activity is
becoming increasingly constrained globally. Biomass constraints
across sub-Saharan Africa (SSA) are being driven by a growing
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demand for staple crops, animal�source foods and bioenergy (Kalt
et al., 2020). Constraints will be exacerbated as SSA populations
continue to grow over the coming 40 years (Vollset et al., 2020;
Enahoro et al., 2021). Global demand for food, feed and fuel is fore-
cast to increase by 154% between 2015 and 2050 (von Jeetze et al.,
2022). Similarly, demand for livestock feed has been forecast to
increase substantially across SSA in order to meet the growing
demand for animal�source foods (Enahoro et al., 2021). It is not
clear how the current natural resource base will support these
growing needs as urbanisation increases and the impacts of cli-
mate change intensify. These trends in biomass demand necessi-
tate monitoring programs for forward planning of feed supply
and feed demand – feed balances.

Livestock feed availability has been modelled in numerous
ways. The most detailed analyses have been conducted at sub-
national scales, integrating ground measurements and satel-
lite�derived biomass estimates (e.g. Meshesha et al., 2019 in Har-
shin, Ethiopia; and MAFR, 2020 in Burkina Faso). The most
prominent models for policy development have incorporated esti-
mates of biomass available for ruminant livestock consumption as
well as estimates of livestock requirements (including Herrero
et al., 2013; Fricko et al., 2017; Calvin et al., 2017; van Vuuren
et al., 2017). These alternative approaches provide critical lessons
for developing effective livestock feed balance estimates. The most
salient of these lessons relate to the topics of land use classifica-
tion, biomass estimation and ruminant livestock feed requirements
– as summarised in the following paragraphs.

The area attributed to different land uses –such as cropland,
grassland and shrubland– has a significant bearing on feed balance
estimates. In approximating land use, there are trade-offs between
quality, temporal resolution and scalability – where quality here is
defined as a combination of spatial resolution and accuracy. High-
quality products can be readily produced to accurately represent
land use and phenology at sub-national level; however, scaling
these products is expensive in terms of computation and validation
(e.g. Meshesha et al., 2019 classify land uses and compare with a
high concentration of ‘‘ground control points”). Similarly, existing
high-quality gridded products are often limited by their spatial
extent and temporal resolution (e.g. Rahimi et al., 2021). Coarser
products at the global scale also suffer from limitations in temporal
resolution and have been augmented using national and sub-
national statistics to temporally extrapolate and attribute land area
to specific crops (e.g. GLC2000 1 000 m in Emmerling et al., 2016;
and in ESA 300 m land cover maps in Goldewijk et al., 2017). These
coarser inputs used in integrated assessment models are also lim-
ited in their ability to accurately represent sub-national conditions
(Krisztin et al., 2015).

Biomass production can be approximated using a range of mod-
els, including: EPIC, Century, LandscapeDNDC, Copernicus DMP,
LPJml and G-range (Williams, 1995; Parton et al., 1993; Haas
et al., 2013; Copernicus, 2018; Rolinski et al., 2018; Sircely et al.,
2019). These models incorporate inputs on soils, climate, land
use, satellite�derived indices, fertiliser use and irrigation to esti-
mate biomass production and biomass partitioning, which can be
undermined by any one data input. Pasture�specific models also
incorporate interactions between grazing and short- and long-
term pasture productivity, which is desirable yet difficult to
achieve when livestock movements are not known. Regional and
global models have been developed for food insecurity early-
warning, as well as for policy development purposes. Models
developed for early warning systems quantify anomalies in bio-
mass availability using satellite imagery and approximate the level
of stress on agricultural systems using proxies for biomass demand
(as summarised by Nakalembe et al., 2021). These early warning
systems are valuable for raising the alarm in anomalous years,
but do not lend themselves to forward planning.
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Ruminant livestock feed requirements have been approximated
using mechanistic models (e.g. Herrero et al., 2008), data�inten-
sive models (e.g. Herrero et al., 2013; Rahimi et al., 2021) and
liveweight-based proxies (e.g. Meshesha et al., 2019; Piipponen
et al., 2022). These methods all require information on livestock
population by species, herd composition, liveweights and an indi-
cation of the type of livestock system. More detailed models
include information on feed nutritional profile as well as weight
gain, milk yield, locomotion and draught power. The suitability
of these methods depends on the quality of data available and
the level of uncertainty tolerated by decision�makers.

Reliable feed balances have been lacking for SSA nations. Previ-
ously developed feed balance estimates at national scale have had
limitations in estimating both supply and demand of feed
(Assouma and Mottet, 2020). In this study, our objectives have
been to assess the energy balance of ruminant livestock feed at
national scale while still being relevant sub-nationally and over
time. From this overarching objective, two sub-objectives have
been to i) estimate feed availability using existing high-quality
gridded estimates that are available globally and over time, and
ii) estimate ruminant livestock feed requirements using a data�in-
tensive model that is scalable across SSA and other data-
constrained regions globally.
Material and methods

Study area

Our study area spans the extent of Ethiopia’s 1.10 million km2

landmass in East Africa and Burkina Faso’s 0.27 million km2 land-
mass in West Africa (presented in Supplementary Fig. S1). Ethiopia
has the largest livestock population in Africa, with over 70 million
head of cattle, 40 million sheep and 50 million goats in 2019 (CSA,
2021). Approximately 74% of the cattle population are reared in
highland mixed crop-livestock systems and 25% of cattle are reared
in pastoral or agro-pastoral systems (FAO, 2018a). There are three
seasons in the north of Ethiopia (> 6�N), including Bega dry season
(October to January), Belg short rains (February to May) and Kiremt
long rains (June to September). In the south of Ethiopia, there is a
bimodal rainfall pattern with the long rains spanning March to
May and short rains spanning October to November (Alhamshry
et al., 2020). Burkina Faso had approximately 10 million head of
cattle, 11 million sheep and 17 million goats in 2019 (FAO,
2022). Approximately 87% of the cattle population are reared in
pastoral or agro-pastoral systems, 11% are reared in semi-
intensive systems and approximately 2% are reared in intensive
systems (FAO, 2018b). There are two dominant seasons in Burkina
Faso (Zampaligré et al., 2022), namely the dry season (October to
June for the Sahelian zone, November to May for the northern
and southern Sudanian zones) and wet season (July to September
for the Sahelian zone; May/June to October/November for the
northern and southern Sudanian zones).
Potential DM production for ruminant consumption

Biomass availability for ruminant livestock consumption was
estimated using gridded products on land use, above-ground dry
matter productivity (DMP), crop type, phenology, biomass burning
and protected area demarcations.

We used existing estimates for net DM productivity
(Copernicus, 2018). Summarising the Copernicus (2018) technical
documentation: gross above-ground dry matter production
(GDMP) in kilograms per hectare (kg/ha) was approximated using
Eq. (1). Absorbed photosynthetically active radiation was calcu-
lated as the product of incident solar radiation (R), the fraction of
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radiation available for photosynthesis (ԑC) and the fraction of radi-
ation that is observed to be absorbed (fAPAR). GDMP is then the
product of APAR, maximum light use efficiency (ԑLUE), tempera-
ture stress limitation (ԑT), and the CO2 fertilisation effect (ԑCO2).
DM production was then calculated as the product of GDMP and
the autotrophic respiratory fraction (ԑAR) – the fraction of carbon
lost through respiration. The autotrophic respiratory fraction is
assumed to be 0.5 (Eq. (2)). The resulting product is an estimate
of total DM production per hectare every 10 days. Drought stress,
nutrient deficiencies, and pests and plant diseases are omitted
from the DMP product. As a consequence, the product might better
be called ‘‘potential DMP”.

GDMP ¼ R� �C � fAPAR� eLUE� eT � eCO2 ð1Þ

DMP ¼ GDMP � eAR ð2Þ
To estimate the total DM availability for ruminant consumption, we
first attributed total DMP to land use categories based on propor-
tional coverage. The proportion of each land use category per grid
cell was taken from Buchhorn et al. (2020), including cropland,
grassland, shrub land and forest (see Supplementary Box S1 for
methodology and Copernicus, 2019 for quality assessment). The
proportion of cropland in this product was found to under represent
arable land, so we used the region-specific cropland product from
Digital Earth Africa (DEA, 2022; See Supplementary Fig. S2). Rumi-
nant feedable crop DM was calculated using the spatial production
allocation model estimates of the 2017 cropping seasons (IFPRI,
2020). Only feedable crops were incorporated in the calculation,
removing the following: coffee, coco, tea, tobacco, oil palm, coconut,
other oil, cotton, rice, potato, tropical fruit and temperate fruit. Crop
residues were calculated as the reciprocal of the harvest index –
defined as the proportion of grain from above-ground biomass at
harvest. Harvest index estimates were tabulated for 31 crops using
references from the Feed Assessment Tool database and published
literature (Duncan et al., 2023). We assumed that crop residues
were not available for feeding in locations with burn scars visible
in satellite imagery in the postharvest period. Biomass estimates
for crop by-products in Ethiopia were estimated based on Central
Statistical Agency (CSA, Ethiopia) reports and conversion factors
from the literature, representative of 2018–19 – compiled as an
extension to the work by Feyisa et al. (2022). There was not suffi-
cient data on crop by-products in Burkina Faso to allow for its inclu-
sion in our model. The availability of crop by-products in Burkina
Faso are considered marginal and inconsequential for feed balance
estimates (FAO, 2014).

Availability of grass and browse were estimated based on DM
production by season, tree density and use restrictions. The pro-
portion of grassland and shrub land covered by trees was based
on estimates of tree cover at 30 m resolution from Reiner et al.
(2023). The proportion of grass that could be utilised was restricted
to 55% in the wet season(s) and 33% in the dry season(s) (due to
insect herbivory, trampling and rejected patches in all seasons
and the impact of grazing on regrowth in the wet season
(Krause, 1977; Hiernaux et al., 2012). Biomass grown on cropland
outside of the cropping season was assumed to be utilised to a
maximum of 33% (same as grass in the dry period). The proportion
of browse that could be utilised was restricted to range between 5
and 38% of total DM production, with a median of 16% (median
from Sanon et al., 2007; upper limit from Rahimi et al., 2021). Graz-
ing�prohibited forests were excluded from feedable DMP
estimates.

Biomass estimates of cultivated fodder production in Ethiopia
were estimated by multiplying the area of each improved forage
species with dry-matter yield estimates. Areas cultivated were
estimated from the 5�year mean (in Tigray from 2014/15 to
2018/19 and elsewhere 2016/17 to 2020/21). Dry-matter yield
3

estimates were derived from mean values from published litera-
ture (obtained from Google Scholar search spanning 1980–2022).
These data were only available at the second administrative level
for Ethiopia (Feyisa et al., 2022). There was not sufficient data on
cultivated fodder production in Burkina Faso to allow for its inclu-
sion in our model. Data inputs used to estimate feedable biomass
were resampled to 300 m and averaged by season as defined by
the MODIS land cover dynamics product (Gray et al., 2019). For
croplands, the growing period derived from the MODIS product
was constrained to be between 90 and 220 days, allowing a contin-
uous bimodal distribution across two cropping seasons – while
removing outliers of up to 365 days.
Feed metabolisable energy concentration

The metabolisable energy (ME) concentration of feeds was
approximated using regionalised and species-specific estimates
from literature reviews and databases (Feyisa et al., 2022; Rahimi
et al., 2021; Duncan et al., 2010). These approximations assumed
a linear relationship between digestible energy (DE) and ME
(Megajoules (MJ)/kg DM), predicted by NDF and CP (Seo et al.,
2021). In vitro dry matter digestibility (IVDMD) as a percent of
total DM is estimated using laboratory methods (e.g. Tilley and
Terry, 1963). Digestible energy is calculated based on an equation
by NRC (2001), establishing a relationship between organic matter
(OM), in vitro organic matter digestibility (IVOMD) and DE. In the
case of the SSA feed database, IVDMD was assumed to be a close
proxy to IVOMD and in the absence of OM estimates, it was
assumed to be 90% of DM. We preferentially used location-
specific estimates and in the few cases where this was not possible,
we approximated ME with estimates from other regions. A full
summary of ME values and data sources is available in Supplemen-
tary Table S1 and Supplementary Table S2, and a summary has
been made available in Table 1.
Livestock metabolisable energy requirement

Ruminant livestock metabolisable energy requirements were
estimated using standard equations set out by CSIRO (2008).
Requirements were estimated for maintenance, growth, locomo-
tion, gestation and lactation for both dry and wet seasons (Eqs.
(3) and (4)). Input data included population estimates, herd struc-
ture, starting liveweight, growth rates, pregnancy rates, milk yield,
locomotion and proportion used for draught power work by spe-
cies and animal class (Robinson et al., 2022; Rahimi et al., 2021;
FAO, 2018a; FAO, 2018b; Wilkes et al., 2020). Data on draught
power was only available for Ethiopia.

Herds and flocks were disaggregated into adult and young for
sheep and goats, and into bulls, steers, cows, heifers and calves
for cattle (Rahimi et al., 2021; Yetera et al., 2018). All parameters
for cattle, sheep, goats, horses, donkeys and camels are tabulated
in Supplementary Information (Supplementary Table S3 and Sup-
plementary Table S4). Requirements for horses were estimated
based on gridded population statistics and DM intake as a propor-
tion of liveweight set out by Geor et al. (2013, p. 66). Requirements
for donkeys and camels in Ethiopia were estimated based on sub-
national population estimates (CSA, 2022) as well as liveweights
and equations set out in FAO (2018d). There were no gridded or
sub-national statistics on the donkey population for Burkina Faso
so it was coarsely assumed that the ratio of donkeys to horses at
national level was maintained sub-nationally (3:1). Donkey live-
weights for Bukina Faso were taken from West Africaspecific esti-
mates (Nininahazwe et al., 2017). Camels were excluded from
requirement estimates of Burkina Faso as they were less than 1%
of population head counts. Mules were excluded from the require-



Table 1
Ruminant feed utilisation, metabolisable energy (ME, MJ/kg DM), CP (%) and NDF (%) by country, region, type and season.

Country Region Feed type Season Utilisation (%) y ME (SD) CP NDF

Ethiopia National Cultivated fodder All 99 8.35 (1.18) 10.10 68.50
Concentrates All 100 9.5 (1.1) 21.2 44.6

Highlands Pasture Dry 33 8.30 (0.90) 9.20 67.10
Pasture Wet 55 8.30 (0.90) 9.20 67.10
Teff residue All 80 7.31 (0.62) 5.28 79.16
Browse All 5–38 10.00 (1.69) � 16.20 43.70

Midlands Pasture Dry 33 7.90 (0.40) 8.20 70.40
Pasture Wet 55 7.90 (0.40) 8.20 70.40
Teff residue All 80 7.31 (0.62) 5.28 79.16
Browse All 5–38 10.00 (1.69) � 16.20 43.70

Lowlands Pasture Dry 33 7.75 (4.18) 6.30 77.00
Pasture Wet 55 7.75 (4.18) 6.30 77.00
Teff residue All 80 7.31 (0.62) 5.28 79.16
Browse All 5–38 10.00 (1.69) y 16.20 43.70

Burkina Sudanian Pasture Dry 33 6.50 (0.30*) – –
Faso Pasture Wet 55 6.50 (0.30*) – –

Maize residue All 60 7.89 (0.00) 5.19 69.08
Browse All 5–38 8.10 (0.10*) – –

Sahelian Pasture Dry 33 6.10 (0.30*) – –
Pasture Wet 55 6.10 (0.30*) – –
Sorghum residue All 60 6.37 (0.00) 5.16 68.63
Browse All 5–38 6.00 (0.20*) – –

� Data not available.
* SD ¼ meanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

min�max
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min�max

p� �2
r

.
y Estimated proportion of total edible biomass used – as described in the ruminant edible biomass subsection.
� ME approximated by linear regression with in-vitro DM digestibility (IVDMD).
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ment estimates of Ethiopia and Burkina Faso as they were less than
1% of ruminant livestock population head counts.

The initial estimates of feed requirements were representative
of circa 2015 at a 10 km resolution. Requirements were then
extrapolated based on annual population statistics for cattle, sheep
and goats (FAO, 2022). Horse donkey and camel populations were
held constant over time. Annual metabolisable energy require-
ments were then calculated using Eq. (3).

MERannual ¼
XlenWS

n¼1
MERMa þMERGr þMERLoð Þ

þ
XlenDS

n¼1
MERMa þMERGr þMERLoð Þ þ

Z term

Tri3

MERPr

þ
XLL

n¼1
MERLa ð3Þ

where MERannual is the metabolisable energy requirement for one
animal over the course of the year, combining species and animal
class�specific requirements by season for maintenance (MERMa),
growth (MERGr), locomotion and draught power (MERLo), gestation
(MERPr) and lactation (MERLa). MERMa includes energy require-
ments for wool growth/hair (e.g. approximately 6 g per day for wool
sheep). MERLo was combined with draught power work, where the
proportion of animals used for work were assumed to expend an
additional 40% of their maintenance energy requirement for all of
the wet season for bulls and for half of the year for other species
(following the calculations in FAO, 2018d; utilising statistics on
the proportion of animals in Ethiopia used for draught extracted
from CSA (2022); assuming a high percentage of animals used for
draught power in Burkina Faso of 90% for horses and donkeys
nationally and 90% of bulls outside of the Sahel). MERPr is the inte-
gral of Eq. (4) from the third trimester (Tri3) of gestation to full-term
(term). MERLa is the sum of average requirements for the full lacta-
tion length (LL). MERPr and MERLa were only calculated for females
that came to term, based on national average calving intervals. The
total annual metabolisable energy requirements are then the sum
product of requirements for the population of each species and ani-
mal class, where the total population is disaggregated based on
information on herd structures. The equations for maintenance,
growth, locomotion and lactation are described in detail by
4

Ndung’u et al. (2019) and Goopy et al. (2018). Daily metabolisable
energy requirements during gestation were estimated using Eq. (4).

MERPr ¼ B� Cexp �C � tð Þ � SBW � exp A� B� exp �C � tð Þð Þð Þ
0:133

ð4Þ

In Eq. (4), SBW is the ratio of the expected birth weight to standard
birth weights (assumed to be 1); A, B and C are parameters for
energy requirements after blastocyst implantation; t is time in days
from blastocyst implantation to term, where energy requirements
are only significant in the last 12 weeks of gestation; the constant
term in the denominator refers to an assumed efficiency of ME
use of 13.3% (CSIRO, 2008).
Feed balances

An overview of the feed balance model design is presented in
Fig. 1. Feed availability and livestock requirements were aggre-
gated to the first administrative level (termed ‘‘region” for Ethiopia
and Burkina Faso) as well as livelihood-elevation zones (see Sup-
plementary Fig. S1 for zone maps). The Famine Early Warning Sys-
tem (FEWS) livelihood zones are used to differentiate between
(agro)pastoral, mixed crop-livestock and cropping regions (FEWS,
2009). In the case of Ethiopia, FEWS livelihood zones were com-
bined with three elevation zones, namely: lowlands (< 1 500 m),
midlands (� 1 500 � 2 300 m) and highlands (> 2 300 m); agro-
pastoral and pastoral zones were combined for the presentation
of results as these zones were generally neighbouring which would
potentially allow biomass to be utilised across systems; highland
and lowland (agro)pastoral zones were combined into one zone,
where the one highland agro-pastoral zone was considered to have
too small an extent to be presented on its own – which is a liveli-
hood zone named ‘‘Abijata Shala Jido Agro-Pastoral”. In the case of
Burkina Faso, FEWS livelihood zones were reduced from nine to
five zones, where Ouagadougou was combined with the Central
Plateau zone to form a zone labelled ‘‘Central mixed” (agro-
pastoral and crop-livestock) and the three west and south-west
livelihood zones were combined to form a zone labelled ‘‘Crop-



Fig. 1. Feed balance for ruminant livestock model design. A minus (�) indicates that biomass is excluded where relevant based on the specific input. An asterisk (*) indicates
that feed concentration values are incorporated in subsequent calculations. ME = Metabolisable energy.
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ping” (which also includes crop-livestock systems and fruit trees).
The remaining three FEWS livelihood zones were used in their
original form, labelled as ‘‘(Agro)pastoral Sahel” (consisting of
agro-pastoral and pastoral systems), ‘‘North mixed” and ‘‘South
mixed” (both consisting of agro-pastoral and crop-livestock sys-
tems). This differentiation avoids biases that can be introduced
by aggregating across different systems and provides a basis for
targeting interventions to broad system classifications.

Feed balance estimates were then calculated as the proportion/-
multiple of requirements met from available feed resources within
those aggregated zones. We then compared our feed balance esti-
mates to that of previous studies and government statistics, pre-
sented in Supplementary Fig. S3 (comparing against Rahimi et al.,
2021 in Burkina Faso, andMAFR, 2020 in Ethiopia). The uncertainty
around these estimates was estimated based on the range of
browse utilisation proportion, ME concentration values and live-
stock feed requirement parameters. The uncertainty analysis was
based on published literature on minimum and maximum values
for each relevant parameter. All analyses were conducted using
the R programming language (R core team, 2022). Comparisons
of results with previous studies and government statistics were
carried out by way of linear regression and Spearman’s rank corre-
lation coefficient.
Results

The total biomass available as animal feed in Ethiopia was 443
million tonnes (Mt) of DM, averaging 8.57 tonnes DM per hectare
in the highlands and midlands and 3.18 tonnes DM per hectare
Table 2
Annual feed availability in total DM, yield and proportion of metabolisable energy (ME) fo

Country Zone DM (Mt) Yield
(t/ha)

Energy
supply
(ME EJ*)

G
(%

Ethiopia Highlands / Midlands 227 8.57 1.40 2
(Agro)pastoral / Lowlands mixed 216 3.18 1.30 6

Burkina Faso Sudanian� 64 2.93 0.33 5
(Agro)pastoral Sahel 1 0.95 0.07 9

* 1 Exajoule = 1 000 000 Terajoules; 1 Terajoule = 1 000 000 Joules; based on mean M
y Biomass that grows after harvest, including weeds and grasses, excluding crop residue
� Includes Central zone, Mixed crop-livestock (north) zone, Mixed crop-livestock (south

5

in the (agro)pastoral/lowland zones (Table 2 and Fig. 2). The higher
average yield in the Ethiopian highlands and midlands reflects
favourable growing conditions. In the highlands and midlands
grass accounted for 25% of total ME, crop residue accounted for
38%, biomass from postharvest growth accounted for 22%, culti-
vated grass accounted for 5%, browse accounted for 9% and concen-
trates accounted for an estimated 1%. In the (agro)pastoral/lowland
zones, grass accounted for 61% of total ME, crop residue accounted
for 15%, biomass from postharvest growth was 10% and browse
accounted for 14% of the total energy available.

In Burkina Faso, the total DM availability was 65 Mt, averaging
2.93 tonnes DM per hectare in the Sudanian agro-ecological zone
(AEZ; comprised of the following zones: ‘‘Central”, ‘‘Mixed crop-
livestock (north)”, ‘‘Mixed crop-livestock (south)” and ‘‘Cropping”)
and 0.95 tonne DM per hectare in the (agro)pastoral Sahel zone. In
the Sudanian, AEZ grass accounted for 52% of total ME, crop residue
accounted for 26%, biomass from postharvest growth accounted for
20% and browse accounted for 2% of the total energy available. In
the (agro)pastoral Sahel, AEZ grass accounted for 94% and other
biomass sources combined accounted for 6% (Table 2 and Fig. 2).
The ME availability estimates are available as maps in Supplemen-
tary Fig. S4. A breakdown of feed sources over time is available in
Supplementary Fig. S5.

The composition and uncertainty of feed ME by livelihood zone
are presented in Fig. 2. In the highlands and midlands, there was a
high degree of uncertainty around crop residue and browse energy
availability. In Ethiopian (agro)pastoral zones, the uncertainty due
to grass ME input values ranged by 20% of the total. In Ethiopia’s
lowland mixed crop-livestock zones, there was uncertainty around
browse, grass (± 25%) and crop residue (± 20%) availability. In Burk-
r ruminants by country and zone (2019).

rass
ME)

Crop residue
(%ME)

Postharvest
growthy (%ME)

Cultivated
grass (%ME)

Browse
(%ME)

Concentrates
(%ME)

5 38 22 5 9 1
1 15 10 0 14 0

2 26 20 – 2 –
4 3 2 – 1 –

E values.
s, cultivated fodder and concentrates.
) zone and Cropping zone.



Fig. 2. Metabolisable energy (ME) availability for ruminant livestock from feed sources in 2019 (TJ ME/year). (a) Ethiopia. (b) Burkina Faso. Uncertainty due to ME
concentration represented by error bands. Uncertainty of browse is also attributed to utilisation (5–38%).
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ina Faso, there was a lower level of uncertainty due to input values
– except for browse. In all disaggregated zones, browse was consis-
tently the most uncertain digestable energy source, crop residue
was consistently the second most uncertain (± 10% of mean), fol-
lowed by the availability of grass ME (± 5%).

The estimated daily energy requirements of livestock are pre-
sented in Table 3. Energy requirements for livestock in (agro)pas-
toral and lowland mixed crop-livestock zones of Ethiopia were
estimated to be higher than their highland and midland counter-
parts. Cattle had the highest requirements of the six species, where
bulls required 67.9 MJ per animal per working day in (agro)pas-
toral, lowland mixed crop-livestock zones and 106.0 MJ per animal
per working day in the highland and midlands. Adult female cows
required 63.7 MJ per animal per day in (agro)pastoral, lowland
Table 3
Metabolisable energy requirements of adult female ruminant livestock by country, zone a

Country Zone Species / class^ MERMa MERGr
y

Ethiopia Periurban Cow 34.5 (28.7–41.5) –
Highlands / Cow 34.5 (28.7–41.5) –
Midlands Bull (work) 45.5 (37.6–54.6) 40.6 (19.8

Sheep 4.8 (4.5–5.2) –
Goat 4.7 (4.4–5.0) –

(Agro)pastoral/ Cow 35.2 (29.1–41.4) –
Lowlands mixed Bull (work) 45.0 (37.2 – 53.3) –

Sheep 5.5 (5.1–5.8) –
Goat 4.9 (4.6–5.0) –

Burkina Periurban Cow 31.3 (30.3–32.3) 6.3 (6.1–6
Faso Sudanian – Cow 31.3 (30.3–32.3) 6.3 (6.1––

Bull (work) 44.4 (41.4 – 47.5) 4.6 (4.3 –
Sheep 5.2 (3.9–5.5) 3.7 (3.5–3
Goat 4.4 (4.1–4.7) 3.2 (3.0–3

(Agro)pastoral Cow 33.9 (31.5–36.5) 1.1 (1.0–1
Bull 39.0 (38.1 – 40.0) 5.1 (4.8–5

Sahel Sheep 5.2 (4.9–5.6) 0.0 (0.0–0
Goat 4.6 (4.2–5.1) 0.0 (0.0–0

Abbreviations: MERMa = Metabolisable energy requirements for maintenance; MERGr
requirements for locomotion; MERPr = Metabolisable energy requirements for gestation

^ Bulls not used for draught, steers, calves, kids, lambs, horses, donkeys and camels n
y Seasonal growth data not available for adult female livestock in Ethiopia. Assumed to
� Includes draught power. Note: draught power assumed to apply to a proportion of ad
§ Metabolisable energy requirements for pregnancy included in maintenance for Burkin
– Includes Central zone, Mixed crop-livestock (north) zone, Mixed crop-livestock (south
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mixed crop-livestock zones and 61.7 MJ per animal per day in
the highland and midlands and 68.9 MJ per animal per day in peri-
urban locations. Requirements for maintenance exceeded other
energy demands for cows and sheep in all zones, as well as for
goats in the (agro)pastoral and other lowland zones. Energy for lac-
tation accounted for over 33% of the total requirements for lactat-
ing cows in all zones. For sheep and goats, maintenance
requirements were marginally higher in the (agro)pastoral and
other lowland zones due to the higher expected liveweight of
adults.

In Burkina Faso, requirements for working bulls in the Sudanian
agro-ecological zone were 63.1 MJ per animal per day and in the
Sahel, requirements were 47.5 MJ per animal per day. Require-
ments for cows in the Sudanian agro-ecological zone were 52.4
nd species (MJ day�1).

MERLo
� MERPr

§ MERLa Total

0.2 (0.2–0.3) 3.5 (3.5–3.5) 30.7 (22.5–39.8) 68.9
1.2 (1.0–1.4) 3.5 (3.5–3.5) 22.5 (18.3–29.7) 61.7

– 95.4) 19.8 (16.6–23.7) – – 106.0
0.2 (0.1–0.2) 0.3 (0.3–0.3) 1.7 (1.5–2.2) 7.0
0.2 (0.1–0.2) 0.4 (0.3–0.4) 5.2 (4.4–6.5) 10.5
3.7 (3.1–4.3) 3.5 (3.5–3.5) 21.3 (15.8–28.4) 63.7
22.9 (19.0–27.1) – – 67.9
0.5 (0.5–0.5) 0.3 (0.3–0.3) 1.3 (1.1–1.5) 7.6
0.4 (0.4–0.4) 0.4 (0.3–0.4) 3.5 (2.9–4.1) 9.2

.7) 0.1 (0.1–0.1) – 36.6 (12.8–106.5) 74.3
6.7) 2.5 (2.4–2.5) – 12.3 (10.5–14.6) 52.4
4.9) 22.5 (19.5 – 25.4) – – 71.5
.9) 0.9 (0.5–1.2) – 0.8 (0.7–0.9) 10.6
.2) 0.7 (0.5–1.0) – 4.0 (3.6–4.6) 12.3
.2) 3.1 (2.9–3.4) – 14.0 (12.0–17.1) 52.1
.4) 3.4 (3.3 – 3.5) – – 47.5
.0) 0.7 (0.6–0.9) – 0.7 (0.6–0.9) 6.6
.0) 0.6 (0.5–0.8) – 4.0 (3.7–4.8) 9.2

= Metabolisable energy requirements for growth; MERLo = Metabolisable energy
; MERLa = Metabolisable energy requirements for lactation
ot presented in table but included in total feed balance.
average to zero over the course of a year.
ult male cattle, horses and donkeys.
a Faso. Average over 365 days.
) zone and Cropping zone.
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MJ per animal per day and in the Sahel, requirements were 52.1 MJ
per animal per day. Requirements for maintenance were estimated
to be the highest component for all species and regions, except in
periurban locations. Periurban locations had high energy require-
ments for lactation, requiring 36.6 MJ per day. The requirements
for goat lactation were also higher than that of sheep due to the
higher estimated annual milk yield. The ME requirements are
available as maps in Supplementary Fig. S6.

As shown in Fig. 3, the adequacy of locally available metabolis-
able energy for ruminant livestock in Ethiopia was most con-
strained in highland mixed crop-livestock zones, closely followed
by midland mixed crop-livestock zones. Despite the limitations
of available feed resources in these zones, there was sufficient
metabolisable energy in the local landscape to meet over 89% of
all requirements for maintenance, growth, lactation, gestation,
locomotion and draught power in all years. This apparent deficit
may be attributable to our conservative estimate for draught
power, potentially overstating metabolisable energy requirements.
The apparent surplus of feed in lowland mixed crop-livestock
zones is most likely due to the relatively low human and livestock
populations in Gambella and Benishangul Gumuz Regions as a
result of high instances of malaria and tsetse fly infestation.

In 2019, the adequacy of locally available metabolisable energy
for ruminant livestock in Burkina Faso was most constrained in the
northern mixed crop-livestock zone (58% of requirements locally
available) and the Sahel (70% of requirements). The apparent defi-
cit in the northern mixed crop-livestock zone may be attributable
to uncertainty around cow milk yield – where the requirement is
almost three times that of the Sahel. The central zone, the southern
mixed crop-livestock zone and the cropping zone had sufficient
local feed resources to meet all estimated livestock requirements.

In both Ethiopia and Burkina Faso, the variability over time is
attributable to DM productivity of feed sources rather than live-
stock requirements – which increase linearly from the most recent
census estimates. In Ethiopia, there was an anomalous year in
(agro)pastoral zones in 2018, with increased grass DM production.
In Burkina Faso, there was a decrease in feed availability in the
Sahel in 2016 and 2017, bringing feed adequacy to 62% of require-
ments – meaning the region was below maintenance adequacy
from local resources. In the southern mixed crop-livestock zone,
feed availability increased in 2016 and 2017 based on an increase
Fig. 3. Energy balance of ruminant livestock from feeds over time by livelihood zone (J M
ME concentration and livestock parameters represented by grey bands. Dashed line a
locomotion, draught power, gestation and lactation) for the zone. The requirement side
camels. ME = Metabolisable energy.
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in grass and crop residue resources. In the observed period, there
was no discernible trend in either country, region or zone.

There was substantial uncertainty around feed balance esti-
mates. As noted by Wilkes et al. (2020), feed composition, feed
energy concentration and animal liveweight are the most uncer-
tain and influential variables in Ethiopia. In Ethiopia, lowland
mixed systems had the widest range of estimated values largely
due to uncertainties in browse, grass and crop residue metabolis-
able energy estimates. In the highlands and midlands, uncertainty
around crop residue and browse metabolisable energy availability
compounded with uncertainty of livestock parameters to increase
the range of likely adequacy values. In Burkina Faso, the uncer-
tainty of crop residue and grass metabolisable energy availability
were the most influential supply�side factors (Fig. 2) and milk
yield was the most influential demand�side factor quantified in
this study (Table 3).

Our estimates resulted in fewer instances of sub-maintenance
level scenarios in comparison to previous studies of Ethiopia and
Burkina Faso. There was greater alignment in linear association
and rank order of administrative zones when compared to a previ-
ously published remotely sensed estimate for Burkina Faso
(q = 0.88) than there was for bottom-up estimates from Ethiopia
(q = 0.43) and Burkina Faso (q = 0.50). These differences are attri-
butable to supply�side factors such as the estimation of crop after-
math and browse feed resources. These comparisons are visualised
in Supplementary Fig. S3.
Discussion

The availability of biomass for feed is constrained in a number
of livestock�producing regions of Ethiopia and Burkina Faso. This
study identifies where these constraints are most pressing and
where there is an ‘‘excess” of biomass. Importantly, we found that
both countries exhibited notable differences in the composition of
biomass in different zones (Table 2), which has implications for the
feasibility of potential interventions for improving ration
digestibility and mitigating greenhouse gas emissions. Stemming
from these results, there are a number of socio-economic, policy
and methodological considerations that warrant discussion.
E available / J ME required/year). (a) Ethiopia. (b) Burkina Faso. Uncertainty due to
t 1 where feed is sufficient for all estimated requirements (maintenance, growth,
of the balance is inclusive of cattle, sheep, goats, horses, donkeys and, for Ethiopia,
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Feed futures

Croplands and grazing lands cover over 30% of Earth’s ice-free
land area (estimates ranging between 30 and 57% in Grogan
et al., 2022; Piipponen et al., 2022). Globally since 2000, cropland
area has increased, grazing land area has decreased and the pro-
ductivity of both land uses has been intensifying (Godde et al.,
2018; Potapov et al., 2022). The dynamics across SSA are more vari-
able, where, for example, in semi-arid zones, croplands and grazing
lands have been expanding and intensification has been limited.
These changes in land use contribute to the complexity of estimat-
ing livestock feed availability.

Demand for feed is expected to increase substantially, concomi-
tant with increases in livestock populations as well as improve-
ments in productivity per animal. These changes will occur in the
context of a more variable climate and elevated levels of CO2. In
Ethiopia, populations of all livestock species would need to almost
double by 2050 to meet growing demand where gains in produc-
tivity are expected to be most notable in beef and dairy enterprises
(FAO, 2018c). In Burkina Faso, demand for milk and meat is fore-
cast to more than triple leading to increased demand for feed pro-
duction and food imports (FAO, 2020).

There are several interacting factors that will influence the sus-
tainability of meeting future feed demands. Factors that have neg-
ative implications for feed futures include rates of land
degradation, crop area expansion, extreme weather events,
drought and demand for bioenergy. Factors that have positive
implications for feed futures include novel protein innovations that
convert other sources of biomass more cost-effectively (e.g. insects,
single-cell algae or bacteria for feed or food; Thornton et al., 2023)
and productivity improvements for food and fibre production. In a
future of increased demand and ongoing threats to sustainability,
biomass resources need to be actively monitored for effective
management.

Feed scarcity hotspots

Biomass resources in Ethiopia and Burkina Faso are vast
(Table 2). Grass is the most abundant feed source in most locations
and crop residues dominate the Ethiopian highlands (in agreement
with FAO, 2018a; FAO, 2018b). These resources sustain large live-
stock populations with varying potential for expansion and inten-
sification. The highland mixed crop-livestock zone is the most
feed�constrained in Ethiopia, where local resources are sufficient
for livestock requirements with limited scope for increasing pro-
ductive output or herd/flock expansion; the scope for feed imports
in this region is also limited due to economic and logistical factors.
The potential to expand feed trade with the western lowland
region of Ethiopia is constrained, where the apparent abundance
of feed is attributable to i) low human and livestock populations
due to disease risk and ii) the dominant local forage species –
Hyparrhenia rufa (Nees)– maturing rapidly and is unpalatable for
much of the year.

Feed scarcity is most pressing in Burkina Faso where the north-
ern mixed crop-livestock zone and the Sahelian agro-ecological
zone do not have sufficient local feed resources to meet livestock
energy requirements. Apparent deficits do not necessarily equate
to negative energy balances in livestock but may rather indicate
either an overestimate of requirements or an underestimation of
available feed resources. In contrast, there appears to be scope to
develop markets for inter-regional feed exports or herd/flock
expansion in southern regions of Burkina Faso where there is an
apparent excess of suitable biomass.

The demand side of feed scarcity hotspots may be systemati-
cally overestimated due to milk yield and population input data,
as well as digestive passage limitations due to protein and water
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availability. Feed requirements may also be overestimated due to
the lack of seasonality in livestock population estimates, where
the census statistics represent the maximum annual count and real
populations are more dynamic (Fetzel et al., 2017). In comparison,
uncertainty due to liveweight gain, locomotion and gestation were
relatively low (Table 3). These findings highlight the importance of
greater regional disaggregation of milk yield estimates and the use
of more accurate and temporally disaggregated livestock popula-
tion estimates in quantifying the demand side of feed scarcity
hotspots.

The supply side of feed scarcity hotspots may be influenced by
several factors. Factors quantified in this study relate to the estima-
tion of metabolisable energy, which is represented as error bands
around feed balance estimates (Fig. 3). Given the width of these
error bands, we argue that there is a need to improve input data
availability on utilisation and metabolisable energy concentration
in specific locations. Despite including high�resolution data on
tree cover, browse resources are highly uncertain. This uncertainty
is due to limitations in our understanding of utilisation and energy
concentration. The uncertainty of browse resources has a substan-
tial impact on the estimates of feed availability in Ethiopia in mid-
land and lowland mixed crop-livestock zones. Grassland utilisation
and energy concentration are also highly uncertain, particularly in
lowland locations; these estimates could be improved by better
modelling plant-livestock interactions (Herrero et al., 1998;
Sircely et al., 2019) and by reducing the uncertainty in seasonal
metabolisable energy estimates. Crop residue metabolisable
energy estimates were most uncertain in the Ethiopian highland
and midland zones. The uncertainty of crop residue metabolisable
energy will be mitigated as more geo-located feed samples become
available which can then be linked with cultivar, soil, climatic and
management factors for more accurate prediction (Reddy et al.,
2003). Crop residue utilisation is also uncertain as there is some
degree of spatial heterogeneity (Duncan et al., 2016). The impor-
tance of these crop residues in Ethiopia will only increase as crop-
lands expand to meet demand for cereals (Assefa et al., 2022).

On the supply side, there are also factors not quantified in this
study which may have resulted in a systematic underestimation,
including cross-border transhumance, purchased feed, imported
feed, over grazing and the influence of the spatial distribution of
water-points. Firstly, pastoralist communities in the Sahel are
known to migrate into Mali and Niger and further south to coastal
countries such Benin, Ghana, Côte d’Ivoire and Togo in times of
scarcity which may explain the apparent deficit in that region. Sec-
ondly, regions that are close to processing facilities and markets
will be more able to purchase feed to supplement deficits when
compared with other regions (e.g. Amprako et al., 2020). Feed
imported from other countries is not included in this analysis;
depending on the quality of import statistics, these data could be
incorporated in future analyses. Thirdly, there is anecdotal evi-
dence that overgrazing is common practice (exceeding the pas-
ture’s ability to regenerate, leading to medium- to long-term loss
in production) which may result in higher short-term utilisation,
particularly in years of lower production like 2016 and 2017 in
the Sahel and the historic El Niño drought year in 2015 in Ethiopia.
Finally, in arid and semi-arid lands, access to water points influ-
ences the risk of energy deficits due to drought (Accatino et al.,
2017).

Feed scarcity hotspots are most prominently located in the
Ethiopian highlands and the Sahelian agro-ecological zone of Burk-
ina Faso. However, uncertainties around these estimates necessi-
tate caution when used for decision�making. In addition to the
unquantified uncertainties described in the paragraphs above,
the role of military conflict will be an important consideration
for both Ethiopia (war in 2020–2022/ongoing conflict) and Burkina
Faso (extremist-insurgent attacks from 2015-ongoing; two coups
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d’etat in 2022). Despite limitations, it is evident that the ranking of
these hotspots is consistent with previous assessments, demon-
strating more realistic non-starvation estimates (Supplementary
Fig. S3). Given the rank order consistency between estimates, these
hotspot locations represent priority locations for monitoring and
intervention. Extending this analysis to identify hotspots in other
SSA countries would be limited by data availability on feed items
and livestock parameters. Similarly, intra-annual analyses would
require monthly or seasonal data on feed energy concentration
and livestock populations, which is not available for any SSA
nation.

Policy and investment implications

Ethiopia and Burkina Faso’s livestock sectors benefit from policy
and investment initiatives that have been designed to meet multi-
ple development objectives (detailed by Shapiro et al., 2015 for
Ethiopia and Ashley, 2020 for Burkina Faso). These initiatives are
extensive in scope; however, their objectives have only been
attained in part. In this section, we consider how improved feed
balance monitoring programs can inform the implementation of
policy and investment initiatives for a sustainable livestock sector.
We focus on initiatives that would influence the demand and/or
supply of local feed resources.

Demand�side policy and investment initiatives can influence
herd sizes, nutritional requirements and herd mobility. Both coun-
tries are implementing initiatives on livestock genetics, product
quality, livestock migration and disaster risk preparedness. Live-
stock genetic and product quality initiatives may lead to intensifi-
cation in high�potential locations which in turn is expected to
reduce the growth in herd sizes and increase demand for
higher�quality feeds. In Ethiopia, this will take place in the high-
lands and midlands, where feed is most scarce and the base diet
is dependent on crop residues with limited processing to improve
quality. In Burkina Faso, the northern mixed crop-livestock and
central zones will be of most concern where local feed resources
are already limited. Livestock migration and disaster risk prepared-
ness will influence feed demand in pastoral regions by facilitating
freedom of movement and incentivising destocking to pre-empt
severe shortages. In Burkina Faso, outward migration and destock-
ing may have been an advisable strategy in 2016 and 2017 given
the reduced levels of feed, while in other years inward migration
for neighbouring countries could have been directed to specific
locations.

Supply�side policy and investment initiatives can contribute to
securing existing feed resources, developing new sources of feed
and incentivising trade in feed resources. Both countries are imple-
menting initiatives on feed conservation, specialised zoning for
fodder cultivation and improved adoption of forage species. Burk-
ina Faso is also implementing initiatives on agro-silvopastoralism.
To address supply�side limitations, there are also opportunities to
develop markets for inter-regional and international trade,
informed by feed balance estimates – which is lacking from current
strategy documents. Facilitating international trade would require
feed balance estimates to be carried out in neighbouring countries
(e.g. Burkina Faso’s neighbouring countries Benin, Côte d’Ivoire and
Togo where there are surplus feedable resources).

As shown from feed market studies in some African countries,
there is a clear disconnect in the expected relationship between
price and nutritional quality (Ayantunde et al., 2014, 2022, 2023;
Melesse et al., 2023) which is an indication of the absence of qual-
ity standardisation. Feed market quality standardisation is impor-
tant to ensure that consumers pay a premium for quality
products. Establishment of nutritional databases of major feed
resources for different regions is essential for the establishment
of nutritive value-based pricing.
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Initiatives on feed conservation and cultivated forage adoption
are expected to maintain or improve feed availability and quality
in the context of a changing climate and expanding cropland
extents. Existing initiatives focus on promoting new forage species
and practices. This focus may underestimate the latent value of
existing biomass resources. For instance, in the Ethiopian high-
lands and midlands and cropping regions of Burkina Faso, there
is an opportunity to focus initiatives on crop residues; crop residue
storage and treatment methods could be combined with dual-
purpose plant breeding strategies to maximise quantity and qual-
ity (Blümmel et al., 2020). Neglecting investments in crop residue
improvement would undermine intensification strategies and
eventually see a greater share of biomass used for other purposes
such as bioenergy.

As proposed by current supply�side initiatives, (agro)pastoral
regions and Burkina Faso more broadly would benefit from the
introduction of drought�tolerant grass species. Decision makers
in these regions would also benefit from an improved understand-
ing of available browse resources. We can now pinpoint locations
impacted most severely by drought or of importance for managing
browse resources. Such spatially explicit information could lower
the cost of planning, implementation and monitoring of such ini-
tiatives (Rich et al., 2020).

Effectively managing the demand and supply of feed will have
implications for biogenic emissions of methane –a potent short-
�lived climate pollutant. Feed adequacy and feed quality influence
the amount of energy lost as CH4. The proportion of energy lost as
methane reduces as (in)adequacy improves from sub-maintenance
to an excess of requirements (Goopy et al., 2020; Hales, 2019). The
quality of the ration –influenced by species, variety, management
and treatment– also reduces methane emission intensity
(McAllister et al., 1996). These relationships are non-linear which
means that small improvements upon feed constraints can reduce
emission intensity substantially.
Conclusions

Achieving an increase in the benefits of livestock keeping while
meeting environmental objectives –sustainable livestock intensifi-
cation– will require targeted policies and investments informed by
a robust spatially and temporally relevant evidence base
(McDermott et al., 2010). The growth in earth observation capabil-
ities has provided a means to implement wide-scale feed balance
assessments, which are a critical component of the required evi-
dence base. This development avoids the need for expensive data
collection across entire countries and improves consistency
between countries. In this study, we have developed a model to
estimate feed supply and demand at a moderate resolution
(0.3 km for supply and 10 km for demand). Our study has high-
lighted key development and policy issues, as well as areas for
methodological improvement. This emerging evidence base can
support decision�makers in attaining the threefold benefit of opti-
mising livestock productivity, minimising exposure to climatic
shocks and minimising greenhouse gas emission intensity.
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