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Samenvatting

Waterrijke gebieden (wetlands) zijn periodiek of permanent nat door hun ligging
in het landschap. Deze periodieke of permanente natte status initieert tal van che-
mische, fysische en biologische processen, die karakteristiek zijn voor deze eco-
systemen, en waardevol voor de samenleving. Helaas worden wetlands vaak on-
behoorlijk beheerd, waardoor ze degraderen en verloren gaan. Bijgevolg worden
ze bij de meest bedreigde ecosystemen gerekend.

Dit proefschrift omvat een ecohydrologische studie van wetlands, met bijzon-
dere aandacht voor het bemonsteren en modelleren van de interactie tussen grond-
water, bodem en vegetatie. Het uiteindelijke doel van deze studie is om een instru-
ment te voorzien, dat kan ingezet worden bij het beheer van natte ecosystemen,
doordat het de mogelijkheid biedt om de vegetatierespons opveranderende mi-
lieucondities te voorspellen, of omgekeerd, doordat het demogelijkheid biedt om
gerichte beheerstaken te formuleren om wetlandvegetatieste herstellen en te con-
serveren.

Vier waterrijke, alluviale gebieden werden door het Instituut voor Natuur-
en Bosonderzoek bemonsterd met betrekking tot verschillende milieuvariabelen
gerelateerd aan de grondwaterkwantiteit en -kwaliteit, bodem, en vegetatiebeheer.
Een ruimtelijke interpolatie resulteerde in een gridsgewijze, gebiedsdekkende
schatting van deze milieuvariabelen. Aanvullend werd ook het voorkomen
van plantensoorten op dezelfde gridsgewijze, gebiedsdekkende manier geïnven-
tariseerd. Op basis hiervan werden vegetatietypes gedefinieerd en afgebakend bin-
nen de studiegebieden, wat leidde tot een gebiedsdekkende vegetatiekaart. De
sterke interacties tussen het abiotisch milieu enerzijds,en de vegetatiedistribu-
tie anderzijds, bieden de mogelijkheid om de distributie van wetlandvegetaties te
voorspellen op basis van de abiotische milieucondities in voorspellende vegetatie-
distributiemodellen.

In dit proefschrift werd eenensemble learningtechniek,random forest, geïm-
plementeerd in een voorspellend vegetatiedistributiemodel voor natte ecosyste-
men. Een logische opeenvolging van onderzoeksvraagstukken met betrekking tot
die implementatie werd beantwoord doorheen deze studie.

Vooreerst werd onderzocht of de random forest techniek kon gebruikt wor-
den in een vegetatiedistributiemodel. Daartoe diende voldaan te worden aan een
aantal vereisten met betrekking tot het gebruik van continue en categorische mi-
lieuvariabelen, de interpretatie van modelresultaten alseen waarschijnlijkheid van
voorkomen van de verschillende vegetatietypes, een objectieve vergelijking van
modelresultaten om te komen tot een finale vegetatievoorspelling, en het invoe-
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ren van modelresultaten in een geografisch informatiesysteem. Aangezien de ran-
dom forest techniek voldeed aan al deze voorwaarden, werd detechniek geïm-
plementeerd in een distributiemodel, het random forest distributiemodel, dat in
een volgende fase van het onderzoek geëvalueerd werd op zijnvoorspellende ca-
paciteit.

Daartoe werd een andere techniek, logistische regressie, geselecteerd ter
vergelijking. Beide technieken werden geïmplementeerd intwee verschillende
distributiemodellen, respectievelijk het logistische regressiemodel en het random
forest model. Beide modellen werden gecalibreerd en gekruisvalideerd. De voor-
spelde vegetatiedistributies werden vergeleken met de geobserveerde vegetatiedis-
tributies. Het logistisch regressiemodel maakte voor 69.3% van de gridcellen een
correcte voorspelling, terwijl het random forest model voor 76.7% correct scoorde.
De McNemar test gaf een significant betere modelvoorspelling door het random
forest model (p < 0.001). Wanneer de modelvoorspellingen vergeleken werden
voor elk vegetatietype afzonderlijk, met behulp van deF-maat, werd de signifi-
cant betere prestatie van het random forest model bevestigd(p = 0.003).

Wanneer de kans van voorkomen van elk vegetatietype per gridcel vergeleken
werd, werd geconstateerd dat correcte voorspellingen in het centrale gedeelte van
homogene vegetatieclusters vaak gebaseerd waren op een hoge voorspelde kans
van voorkomen, terwijl deze afnamen naar de grenzen van dezegebieden. Het
algemene besluit van dit onderzoeksdeel was dat het gebruikvan de random forest
techniek tot betere distributiemodellen kan leiden.

Een goede wetenschappelijke kennis van wetlands is onontbeerlijk voor het
definiëren van correcte en gerichte beheersmaatregelen. Hierbij is kennis omtrent
vegetatiedistributies in relatie tot milieugradiënten erg belangrijk. Niet alle milieu-
gradiënten zijn echter even determinerend met betrekking tot vegetatiedistribu-
ties. Sommige hebben enkel een indirect effect, andere een direct fysiologisch
effect. De milieugradiënten opgenomen in dit proefschriftwaren grondwater-
kwantiteit en -kwaliteit, bodem en beheer gerelateerd, en er werd verondersteld
dat deze gradiënten niet allemaal dezelfde invloed hadden op de vegetatiedistribu-
tie. Daartoe werd een onderzoeksdoelstelling geformuleerd om de belangrijkste
milieugradiënten te identificeren, gebruik makende van recent ontwikkelde meth-
odes, zoals een hiërarchische partitie van de modelresultaten van het logistisch re-
gressiemodel en een maat voor de belangrijkheid van variabelen die in het random
forest algoritme is opgenomen. Uit een vergelijkende studie bleek dat de verschil-
lende methodes verschillende gradiënten identificeerden als zijnde belangrijk, wat
hun toepasbaarheid in vraag stelt. Niettegenstaande deze tekortkoming, werden
random forest modellen geconstueerd met afnemende complexiteit. Daarbij wer-
den modelvariabelen stapsgewijs geschrapt, te beginnen bij de minst belangrijke,
zoals berekend door het random forest algoritme. De modelprestaties waren niet
significant verschillend op het 0.05 significantieniveau (p = 0.016) wanneer het
model gebaseerd was op alle 17 of op slechts de 6 meest belangrijke milieuvari-
abelen, en alle modelcomplexiteiten daartussen. Daarom werd er geconcludeerd
dat het random forest distributie model afdoende presteerde, zelfs bij een sterk
gereduceerd aantal milieuvariabelen.
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In een volgend deel werd een vegetatiedistributiemodel geconstrueerd voor één
van de studiegebieden, gebruik makende van alle milieuvariabelen. Voor elke grid-
cel werd de kans van voorkomen gemodelleerd, en beoordeeld op het voorkomen
van ruimtelijke trends. De gemodelleerde kans van voorkomen was significant
lager voor gridcellen met minstens één ander aangrenzend vegetatietype, wat re-
sulteerde in slechtere modelprestaties voor deze gridcellen.

Hetzelfde model werd vervolgens toegepast op een zeer gelijkaardig wetland,
om de algemene toepasbaarheid van het model op een onafhankelijk gebied te
kunnen inschatten. Met een correcte modelvoorspelling voor slechts 19.8% van
de gridcellen, kon besloten worden dat het random forest model niet toepasbaar
was buiten het gebied waarop het geconstrueerd werd, omdat de gerealizeerde
niche van vegetatietypes zelden volledig overlapt, zelfs in twee zeer gelijkaardige
gebieden. Om het model toepasbaarbaar te maken op grotere schaal, dient de
volledige ecologische amplitude van de verschillende vegetatietypes opgenomen
te worden.

Het laatste deel van dit proefschrift behandelt de onzekerheden gerelateerd
aan vegetatiedistributiemodellering. Onzekerheden komen voort uit gegevens-
beperkingen, die kunnen veroorzaakt worden door meetfouten, systematische
afwijkingen in de meetapparatuur, het verwaarlozen van belangrijke milieu-
gradiënten, of een ruimtelijk of temporeel tekort aan observaties om de lokale
variabiliteit te kunnen inschatten. Daarenboven introduceert het model zelf onze-
kerheid, door het onvermogen om de complexiteit van de ecologische processen
die aan de basis liggen van de vegetatiedistributie volledig te vatten. Tenslotte
is de modelevaluatie niet vrij van onzekerheid. Twee belangrijke bronnen van
onzekerheid werden hieruit gelicht, namelijk de onzekerheid geassocieerd met
ruimtelijke interpolatie van milieuvariabelen en de onzekerheid geassocieerd met
het groeperen van plantensoorten in vegetatietypes.

Een entropie-gebaseerde onzekerheidanalyse werd uitgevoerd, en de lokale on-
zekerheid geassocieerd met ruimtelijke interpolatie van puntgegevens werd be-
groot gebruik makend van sequentiële Gaussiaanse simulaties. De modelresul-
taten gaven duidelijk aan dat deze bron van onzekerheid zichvoortzet naar de
modelresultaten. Bemonsteringsprotocols voor natte ecosystemen zouden gecon-
ditioneerd kunnen worden om deze bron van onzekerheid te verkleinen. Pseudo-
randomisaties werden uitgevoerd om het effect van een onzekere afbakening van
vegetatietypes te begroten. Modelresultaten gaven duidelijk aan dat ook deze bron
van onzekerheid zich verderzet, waardoor het belang van eencorrecte soortengroe-
pering benadrukt werd.

Tenslotte werden, op basis van de onderzoeksresultaten vandit proefschrift,
onderzoeksperspectieven geformuleerd die kunnen leiden tot een verdere verbe-
tering van distributiemodellen.





Summary

Wetlands are land areas that are periodically or permanently wet due to their lo-
cation in the landscape. The periodical or permanent presence of wet conditions
trigger chemical, physical and biological processes that are unique for wetlands.
These characteristic processes resulted in the recognition of wetlands as multi-
functional areas providing many commodities and values to human society. Un-
fortunately, wetland management is frequently inappropriate, leading to wetland
degradation and loss. Consequently wetlands are ranked among the most threat-
ened ecosystems worldwide.

This dissertation comprises an ecohydrological wetland study, with empha-
sis on monitoring and modelling of the interaction between groundwater, soil and
vegetation. The ultimate goal is to provide a tool which can be implemented for
wetland management by enabling the prediction of vegetation responses on en-
vironmental changes, and inversely, by enabling the determination of appropriate
wetland management tasks to restore and conserve wetland vegetation.

Four alluvial wetlands were monitored by the Research Institute for Nature
and Forest on several abiotical environmental variables related with groundwa-
ter quantity and quality, soil, and vegetation management.Spatial interpolation
resulted in area covering grid estimates of these environmental gradients within
the study sites. Additionally, plant species occurrences were mapped using the
same grid, and clustered into discrete vegetation types in area covering vegetation
maps. The strong linkages between the abiotical wetland environment and wetland
vegetation distributions, produce the ability to predict the wetland vegetation dis-
tribution based on the distribution of environmental wetland variables in predictive
vegetation distribution modelling.

In this dissertation a recently developed ensemble learning technique called
‘random forest’ was implemented for wetland vegetation distribution modelling
based on hydrological, hydrochemical, soil and anthropogenic wetland features. A
sequence of research questions associated with the implementation of the random
forest distribution model was addressed throughout the dissertation.

Firstly, it was investigated whether the random forest technique could possibly
be used within a distribution modelling context. Therefore, several requirements
should be satisfied, such as the ability to cope with continuous and categorical
environmental variables to model the vegetation distributions upon, the ability to
interpret the model output as a probability of occurrence for several vegetation
types, the ability to compare the model output over different vegetation types to get
an objective final prediction, and the ability to incorporate the final prediction into
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a geographical information system. Since the random foresttechnique satisfied
these requirements, it was implemented in a distribution model, described as the
random forest distribution model, in a subsequent researchphase focusing on the
model’s predictive ability.

Another technique, multiple logistic regression, was selected for comparative
reasons. Both techniques were included in two separate wetland vegetation distri-
bution models, the multiple logistic regression model and the random forest model,
respectively. After model construction and calibration, both models were applied
to an independent ecohydrological test data set, includingspatially distributed in-
formation on several environmental variables related withwetland hydrology, hy-
drochemistry, soil, and management, using cross-validation. Vegetation distribu-
tions, as predicted by both models, were compared with site observations. The
multiple logistic regression model made correct predictions in 69.3% of all cases,
whereas the random forest distribution model in 76.7% of allcases. A McNemar
test indicated a significant better performance of the random forest distribution
model (p < 0.001). Comparison of the modelling results for each vegetation type
seperately by means of theF-measure also revealed a significant better perfor-
mance of the random forest distribution model (p = 0.003).

Inspection of the probabilities of occurrence of the different vegetation types
for each grid cell demonstrated that correct predictions incentral areas of homo-
geneous vegetation sites were based on high probabilities,whereas the confidence
decreased towards the margins of these areas. The overall conclusion of the pre-
dictive ability assessment was that the inclusion of the random forest technique
has the ability to lead to better distribution model performances.

Wetland ecosystems are of primary concern for nature conservation and
restoration. Adequate conservation and restoration strategies emerge from a sci-
entific comprehension of wetland properties and processes.Hereby, the under-
standing of vegetation distributions in relation to environmental gradients is an
important issue. The multiple logistic regression and random forest modelling
approaches relate wetland vegetation distribution to measured environmental gra-
dients statistically. However, not all environmental gradients have the same degree
of causality on vegetation distributions, some have an indirect impact whereas oth-
ers have a direct physiological impact. The environmental gradients included in
this dissertation were groundwater quantity and quality aspects, soil properties and
vegetation management related, and it was hypothesized that not all gradients were
constraining vegetation distributions equally. Therefore, a research objective was
formulated to identify the key environmental gradients constraining the vegetation,
using recently developed methodologies, hierarchical partitioning of the goodness-
of-fit of multiple logistic regression models with gradually increasing complexity
and the variable importance measure within the random forest model. Compari-
son of results indicated that different environmental gradients were considered to
be important in constraining vegetation distributions by different methodologies,
limiting the applicability of these methodologies. Notwithstanding this drawback,
a performance assessment of random forest distribution models with reduced com-
plexity was made based on the variable importance ranking. Model performances
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were not significantly different (p= 0.016) at the 0.05 significance level for model
complexities ranging between the full model, based on all 17environmental vari-
ables, and the reduced model using only the 6 most important environmental vari-
ables. This assessment allowed to conclude that, despite a methodology dependent
variable importance ranking, the prediction of vegetationtypes based on environ-
mental gradients was satisfactory even if a reduced number of gradients were in-
cluded.

In the next part of the study, a wetland vegetation distribution model was con-
structed for one of the test sites using all environmental variables. For each grid
cell included, a probability of occurrence value was modelled and assessed on spa-
tial trends. Significantly lower probability values were prevalent for boundary grid
cells, i.e. grid cells for which at least one of the adjacent grid cells has a distinct
vegetation type, and resulted in higher prediction errors for these areas.

The same model was then applied to an ecologically similar but distant wet-
land, to assess the generalization ability of the model to fully independent sites.
From the 501 grid cells included in the independent test dataset, only 99 elements
were classified correctly (19.8%). The random forest distribution model could not
be applied beyond the local conditions upon which it was constructed, because
realized niches of vegetation types do seldom coincide, even between apparently
similar sites, hence restricting the model’s applicability. It was concluded that in
order to make the model operational on a larger scale many data would be needed,
ranging over the entire ecological amplitude of the modelled vegetation types.

The last part of this dissertation covers uncertainty aspects associated with
wetland vegetation distribution modelling. Uncertainty originates from input data
limitations, caused by measurement errors on observations, bias in measurement
equipment, neglecting key environmental variables, or a spatial and temporal un-
derrepresentation of observations to capture local variability. Furthermore, the
model itself introduces uncertainty due to its disability to capture the entire com-
plexity of ecological processes in relation to vegetation distributions. Finally,
model evaluation is also susceptible to uncertainty. Amongthis variety of uncer-
tainty, focus was exclusively on two sources, namely, the uncertainty associated
with the spatial interpolation of environmental variableswhere predicted vegeta-
tion distributions are based upon and the uncertainty associated with species clus-
tering into vegetation types.

An entropy-based uncertainty assessment was set up, and thelocal uncertainty
associated with spatial interpolation of environmental point measurements was
quantified using sequential Gaussian simulation. This source of uncertainty clearly
propagated toward the random forest distribution modelling results, conditioning
monitoring protocols to lower this source of uncertainty. Pseudo-randomizations
were performed to quantify the uncertainty propagation associated to species clus-
tering. A deterioration of the modelling results stressed the importance of accurate
species clustering.

Finally, based on the results of the sequence of research steps addressed in
this dissertation, future perspectives aiming for the improvement of distribution
models were formulated.





1
Introducing wetlands and

ecohydrology

Among the enormous variety of natural and human ecosystems,this study concen-
trates on wetlands. Wetlands are land areas that are periodically or permanently
wet due to their location in the landscape. They are frequently transitional be-
tween upland and aquatic ecosystems. The (periodically) wet conditions trigger
chemical, physical and biological processes that are unique to wetland ecosys-
tems. Many wetland commodities and wetland values arise from these wetland
processes, and they should therefore be covered by wetland sciences and wetland
ecohydrological research.

Given the fact that wetlands exhibit characteristic properties and processes
which are fundamental to the objectives and outline of this dissertation, a brief
introduction to wetlands and ecohydrology is given previous to the problem defi-
nition and research objectives (Chapter 2) of this study. Emphasis is on the con-
struction of a conceptual framework in which wetlands are generally defined by
their predominant components, facilitating the interpretation of the results pre-
sented throughout this dissertation.

1.1 Wetland definition

Wetland definitions often include three main components [1]:

(1) Wetlands are distinguished by the presence of water, either at the surface or
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FIGURE 1.1– Conceptual model illustrating the three-component basisof a wetland (mod-
ified from [1]). The three components are not independent, but affecting each other.
Legend: Full arrows indicate direct effect, broken arrows feedback from biota.

within the root zone.

(2) Wetlands often have unique soil conditions that differ from adjacent upland
and aquatic systems.

(3) Wetlands support biota adapted to wet conditions and, conversely, are char-
acterized by an absence of flooding-intolerant biota.

This three-level definition is reflected in Fig 1.1. The environmental determinants
climate and geomorphology define the degree to which wetlands can exist, but the
starting point ishydrology, which, in turn, affects thephysicochemical environ-
ment, which, in turn, determines together with the hydrology what and how much
biota inhabit the wetland. Biota, in turn, affect the hydrology and physicochemical
environment of the wetland.

1.1.1 Wetland hydrology

Wetlands are transitional areas between upland and aquaticecosystems (Fig. 1.2)
and form an aquatic boundary to many terrestrial plants and animals, and they also
form the terrestrial boundary of many aquatic plants and animals [1]. They are also
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FIGURE 1.2– Wetlands are transitional areas between between upland and aquatic systems
(adapted from [2]).

transitional in the amount of water they store and process, and in other ecological
processes that result from the hydrologic regime [1]. Wetland hydrologic regimes
have a high variability, since they result from water flows and water storage ca-
pacities, which are very variable as well. Water enters wetlands via streamflow,
runoff, groundwater discharge, tidal inflow and precipitation [2]. Wetlands lose
water via streamflow, groundwater recharge, tidal outflow and evapotranspiration.
The balance between wetland water storage and inflows and outflows is expressed
(in general units, volume per time, [V/T]) as

∆V
∆t

= Pn +Si +Gi +Ti −ET−So−Go−To (1.1)

where∆V
∆t = change in volume of water storage∆V during a time interval∆t [V/T]
Pn = net precipitation during∆t [V/T]
Si = surface inflows, including streamflow and runoff during∆t [V/T]
Gi = groundwater discharge during∆t [V/T]
Ti = tidal inflow during∆t [V/T]
ET = evapotranspiration during∆t [V/T]
So = surface outflow, including streamflow and runoff during∆t [V/T]
Go = groundwater recharge during∆t [V/T]
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To = tidal outflow during∆t [V/T]

The inflows and outflows are extremely variable in time, and some are stochastic.
They are also variable in space, and differences between wetland water balances
result in an enormous diversity in wetland types, many of them being characterized
by their respective hydrologic regimes. Examples aretidal wetlandsandnontidal
wetlands, which can be subdivided further aspermanent wetlandswith relatively
stable hydrologic conditions,seasonal wetlandswith high seasonal water level
fluctuations, orfluctuating wetlandswith long term (several years) hydrologic
fluctuations [1,3].

1.1.2 Wetland physicochemical environment

Wetlands are transitional in terms of physicochemical setting, being sources, sinks,
and transformers of nutrients and carbon [4]. Wetland physicochemistry is heav-
ily affected by wetland hydrology (Fig. 1.1), because different sources of water
inflow have different physicochemical characteristics.Fluxial wetlands receive
nutrient and sediment rich water from upland areas by surface flow, and are gen-
erally very productive.Pluvial wetlands receive water exclusively from precipi-
tation, and therefore rely on nutrients brought in from the atmosphere, generally
in much lower concentrations, resulting in a low productivity, andphreaticwet-
lands receive water from groundwater inflow, and generally have a productivity
status somewhere in between the former two [4]. Furthermore, the periodically or
permanently submerged status of wetland soils results in a periodical decline or
permanent low concentration of oxygen (oxygen diffusion isapproximately 10000
times slower in submerged than in aerated soils [5]). Oxygenis the preferred ox-
idant in aerated soils, however, by its exclusion from wetland soils, alternative
oxidants (e.g. organic substrate) must be used, thus affecting the thermodynam-
ics and kinetics of reduction - oxidation (redox) reactionsin the soil. The decline
in oxygen can be measured as an increasingly negative electric potential (redox
potential, Eh [mV]) and is indicative for the oxidation or reduction potential of
the soil. In aerated soil (Eh > 300 mV) dissolved oxygen is prevalent, but rapidly
after soil submergence the oxygen concentration and redox potential decline. A
typical sequence of transformations involves: (1) nitratereduction (Eh = 250 mV),
(2) mangenese reduction (Eh = 225 mV), (3) iron reduction (Eh= [+100 -100]
mV), (4) sulfate reduction (Eh = [-100 -200] mV), and (5) methanogenesis (Eh <
-200 mV) [1, 2, 4]. Relative concentrations of chemical soilcompounds change
accordingly through time (Fig. 1.3).



INTRODUCING WETLANDS AND ECOHYDROLOGY 1-5

FIGURE 1.3 – Time sequence of redox transformations after soil submergence (adapted
from [6]).

1.1.3 Wetland biota

Wetland environments are characterized by stresses that neither terrestrial nor
aquatic organisms are adapted for to cope with [1]. Terrestrial organisms are
stressed by (periodic) flooding, whereas aquatic organismsare stressed by (pe-
riodic) drought. From the wide variety of biota inhabiting wetlands, major re-
search attention focusses on vascular plants. Soil submergence results in a vari-
ety of stresses for plants [7], of which oxygen deficiency is often the underlying
factor [8, 9]. In plant cells, oxygen participates in more than 200 different re-
actions [10, 11]. This broad spectrum ranges from respiration, which draws on
over 95% of the cellular oxygen consumption to cover the energetic needs of
the cell [12], to the introduction of a double bond in a fatty acyl chain to con-
fer the appropriate fluidity to a given membrane [13]. When plants are submitted
to water-saturated soil conditions, their underground organs are facing a microen-
vironment that declines in oxygen concentration or even gets anoxic for a period
of time. Under these conditions, the aerobic metabolism of roots of non-adapted
plants shuts down and impairs the energy status of the cells,and reduces nearly
all metabolically mediated activities such as cell extension and division and nutri-
ent uptake [1,14]. In contrast, flood-tolerant plant species (hydrophytes) possess a
range of characteristic responses that appear to reduce theimpact of the stress [15]:
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– Life history adaptations: avoidance of adverse effects of submergence by
timing of important life cycle events, such as seed dispersal, germination
and reproduction;

– Short-term metabolic adaptations: glycolysis, ethanolic fermentation [16,
17], photosynthesis at a low CO2 level [18];

– Long-term responses in the root: shift in anatomical and morphological
characteristics by the formation of aerenchyma [9, 19], theformation of
pneumatophores and adventitious roots [20] and radial O2 loss to facilitate
nutrient uptake [21];

– Long-term responses in the shoot: shoot elongation to restore contact with
the open air [22, 23], potentially stimulating flowering andseed production
[24].

Furthermore, wetland plants are not passive to their physicochemical and hy-
drologic environment (Fig 1.1), they actively affect site conditions through a va-
riety of feedback mechanisms. Examples as peat building [25, 26], erosion re-
duction [27, 28], soil aeration [29], plant feedback on soilmoisture [30, 31] and
groundwater [32,33] are well-documented in literature.

1.2 Wetland value and management

Wetlands provide many services and commodities to humanity[1]. Consump-
tive services include plant harvesting, livestock grazing, hunting and aquaculture.
Non-consumptive services include recreational opportunities, water purification by
retention of pollutants and sediments, flood mitigation, aquifer recharge and biodi-
versity conservation [1,2,34,35]. Additionally, wetlandecosystems are influencing
the global cycles of water, oxygen, nitrogen, sulfur, methane and carbon dioxide
at a much broader scale than the wetland itself [1, 35]. From an anthropocentric
perspective, wetlands have certainvaluesto the society because wetland functions
have proved to be useful [36]. Wetland management is most often designed to
(sustainably) exploit (some of) these in (multiple objective) management strate-
gies. Taking the three-component conceptual model of Fig. 1.1 as a reference, it is
clear that management activities can alter hydrology (e.g.ditching, draining and
levee building [37, 38]), the physicochemical environment(e.g. fertilization [39])
and biota (e.g. plant harvesting [40–43]). Apart from direct wetland management,
wetlands are also susceptible to indirect anthropogenic disturbances by processes
such as nitrogen deposition [44,45].

The conceptual model (Fig 1.1) is extended to account for anthropogenic dis-
turbances (including direct wetland management and indirect disturbances). Each
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FIGURE 1.4 – Conceptual model illustrating the three wetland components (hydrology,
physicochemical environment and biota) affected by a fourth component, anthropogenic
disturbances.
Legend: Full arrows indicate direct effect, broken arrows feedback from biota.

of the three components of a wetland is affected byanthropogenic disturbances
(Fig 1.4)1.

1.3 Pattern and scale

Wetlands, as all ecological systems, exhibitheterogeneityon a broad range of
scales [46], where heterogeneity is defined as the complexity and variability of
a system property in space and time [47]. The description of complexity and
variability requires the determination ofscales, and results in the detection ofpat-
terns, i.e. a spatial or temporal structure that is significantly different from random,
within the system [46]. Therefore the concepts of pattern and scale are closely re-
lated. Once patterns are detected, the identification of determinants and processes
generating patterns results in predictive capacity [46]. The basic idea is that there

1It could be argued to include anthropogenic disturbances asa determinant, such as climate and
geomorphology, or even on a higher level since anthropogenic disturbances may affect climate. In this
study, however, preference is given to include anthropogenic disturbances at a lower level, and thus
enhancing the workability of the wetland definition for thisstudy.
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FIGURE 1.5– Wetland heterogeneity arises from the interplay between hydrology, physico-
chemical environment, anthropogenic disturbances and biota acting on a hierarchy of spatial
scales.

are strong bidirectional linkages between pattern and ecosystem processes [48].
But typically, patterns are observed at different scales than those at which these
processes operate at [46], for example, a pattern in wetlandplant species distribu-
tions may be observed at the field scale [102 m], while the underlying process of
anaerobiosis plays at the plant root [10−3 m] or even root cellular [10−6 m] scale.

In wetlands, both spatial and temporal heterogeneity may bepresent in each
of the four wetland components included in Fig 1.4. In fact, wetland heterogene-
ity arises from the interplay between hydrology, physicochemistry, anthropogenic
disturbances and biota, all of them acting on a hierarchy of temporal and spatial
scales [49] (Fig. 1.5). Understanding of these complex interactions, identifying
the underlying driving forces and the prediction of ecosystem responses are highly
relevant research topics [49], and in this context, the analysis of spatio-temporal
resource distributions in relation with the distribution of vascular plant species is
gaining a lot of research attention.
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1.4 Patterns in the geographical distribution of
species

Patterns in species distributions arise from abiotic and biotic processes acting on
a hierarchy of spatial and temporal scales. The niche concept [50] facilitates in-
terpretation. Thefundamental nicheof a plant species is a hypervolume defined
by environmental dimensions in which every point corresponds to a state of the
environment which would permit the species to exist and reproduce. Due to com-
petition and other biotic interactions species generally occupy only a reduced part
of this volume, therealized niche. The fundamental niche is primarily a func-
tion of physiological performance and ecosystem constraints, the realized niche
additionally includes intraspecific and interspecific biotic interactions and com-
petitive exclusion [51]. Interspecific differences in fundamental and realized niche
result in species distribution patterns. Species distribution patterns are dynamic,
showing variability in space and/or time resulting in temporarily constant spa-
tially nonuniform patterns, or spatially constant temporarily nonuniform patterns,
or spatio-temporal mosaics [46]. Therefore, species distribution patterns typically
have non-equilibrium properties [52], and patterns in geographical species distri-
butions are not static.

1.5 Ecohydrology: research at the interface between
ecology and hydrology

The strong linkage between ecological and hydrological wetland characteristics
resulted in the emergence of an interdisciplinary researchat the interface between
ecology and hydrology,ecohydrology(sometimes referred to as ‘hydroecology’, as
a synonym or, more frequently, when the emphasis is strongeron hydrology). Han-
nah et al. [53] examined the evolution of the definition of ecohydrology throughout
time. The first clear definition appeared in Wassen and Grootjans (1996, [54]) and
covered the unidirectional nature of hydrological processes determining the natu-
ral development in wet ecosystems. Problems associated with the unidirectional
nature of Wassen and Grootjans’ definition were recognized by Baird and Wilby
(1999, [55]) who broadened the definition to include ecohydrological interactions
of biota, mainly plant species and vegetation on hydrological processes. Addition-
ally, Baird and Wilby argued that there is no reason why ecohydrology should be
solely concerned with wetland ecosystems [55], as ecohydrological relations are
important in all ecosystems. Hence, the ecohydrologic research was broadened to
a range of ecosystems, including wetlands, drylands, forests, lakes, etc.

Ecohydrology investigates how hydrological processes affect plant growth and
vegetation dynamics, andvice versa[56–59]. These ecohydrological relations can
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be revealed at various scale levels. Among many others, the broad scope of eco-
hydrological research covers the following aspects in a range of ecosystems:

– the interpretation of present soil and vegetation patterns from a hydrological
point of view [60];

– the relationship between vegetation, soil and water, based on an understand-
ing of the physiological properties of plants [55];

– the effect of hydrological regimes on vegetation succession [61];

– the development of realistic goals in ecosystem conservation [60];

– decision support in ecosystem restoration [60]; and

– the sustainable development of water resources, including socio-economic
aspects [59].

Despite the recent emergence of ecohydrology as a research field at the inter-
face between the ecological and hydrological sciences [53], its research objective,
namely to understand the mutual interaction between ecosystem and hydrology, is
not new [62]. Benchmarking work in the development of the ecohydrological the-
ory is the Penman-Monteith model [63] for evapotranspiration fluxes. The model
acknowledges the role of vegetation on evapotranspirationby incorporating a veg-
etation specific parameter, stomatal resistance (or conductance). More recently, in
2001, a collection of publications by I. Rodriguez-Iturbe,A. Porporato, F. Laio,
L. Ridolfi and C. P. Fernandez-Illescas [64–67] in Advances of Water Resources
presented soil moisture as the key variable for a quantitative understanding of the
vegetation response to water stress. The quantitative stochastic approach presented
in this work enhanced the understanding of the interplay between soil properties,
climatic characteristics and vegetation water stress in savanna ecosystems. It was
also inspiring to many other ecohydrological investigations in other ecosystems in-
cluding wetlands, where not only root zone soil moisture dynamics are important,
but also fluctuations in the water table depth [68].

1.6 Summary

The interplay between hydrology, physicochemical environment, anthropogenic
disturbances and biota at a hierarchy of spatial and temporal scales define the het-
erogeneity of wetland ecosystems. Different tolerance levels of plant species to
this heterogeneity in wetland conditions result in a pattern in plant species dis-
tributions, and hypotheses addressing (parts of) former description are typically
investigated in ecohydrological research.



2
Problem definition and research

objectives

2.1 Problem definition

Plant species distribution2 in wetlands result from mutual interactions with hy-
drology, the physicochemical environment and anthropogenic disturbances. The
study of these interactions in any wetland type at any spatio-temporal scale forms
part of ecohydrological research. Within this research, a strong emphasis is on
the exploration of vegetation (i.e. plant species communities) distributions in re-
lation to the wetland environment. With the continuous development of statistical
techniques, machine learning techniques and geographicalinformation systems,
modelling of these vegetation distributions based on theirrelation with environ-
mental constraints have become very popular. Besides theirrelevance as research
tools, these models are important tools to assess the impactof land use, land use
changes and other environmental changes (e.g. climatic changes) on the distribu-
tion of vegetation. As such, these models can be used as management tools in
wetland conservation and restoration, with a wide range of applicability.

Nevertheless, among the variety of distribution modellingtechniques that have
been applied in literature, efforts to introduce ensemble learning into distribution
modelling remains limited until today. Ensemble learning includes techniques that

2Distributions may be random and non-random. The latter is referred to as pattern. In accordance
with the use in literature, the term ‘distribution’ is used as a simplification of ‘pattern in distribution’
or ‘distribution pattern’ from this point on.
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compute a collection, or ensemble, of responses, rather than a single response.
This lack defines the research objectives of this dissertation.

2.2 Research objectives

The development of distribution models to predict vegetation distributions based
on their relation with environmental conditions is an ongoing research task. The
research objectives of this dissertation are:

– The introduction of ensemble learning by applying the so-called ‘random
forest’ technique in vegetation distribution modelling through the develop-
ment of arandom forest distribution modelfor the prediction of wetland
vegetation distributions based on environmental wetland conditions;

– The assessment of thepredictive abilityof the random forest distribution
model;

– The identification of important environmental variablesdetermining the
wetland vegetation distribution by the random forest distribution model;

– The assessment of thegeneralization abilityof the random forest distribu-
tion model; and

– The analysis of inputuncertainty propagationthrough the random forest
distribution model.

To meet the research objectives, eight research questions should be answered:

1. Which techniques are most frequently applied for distribution modelling?

2. Can the random forest technique be used for vegetation distribution mod-
elling?

(a) Are there any requirements concerning data format?

(b) Is the model output meaningful within a distribution modelling con-
text?

(c) Can the model output be introduced into geographical information sys-
tems?

3. Is the predictive ability of the random forest model satisfactorily?

4. Can the random forest distribution model provide information concerning
the importance of environmental variables constraining the vegetation dis-
tribution? If the answer to this question is affirmative:
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(a) Would other techniques identify the same environmentalvariables as
being important?

(b) Is it possible to construct accurate random forest distribution models
on a reduced data set, only including the most important environmental
variables?

5. Is there a spatial trend in the random forest distributionmodelling results?

6. Does a random forest distribution model, constructed on agiven wetland,
perform satisfactorily when tested on a similar but distantwetland?

7. Does the use of an ensemble modelling technique allow for uncertainty as-
sessment?

8. How does input uncertainty propagate throughout the random forest distri-
bution model?

2.3 Outline

Throughout this dissertation, the eight research questions are addressed and an-
swers are given.

Chapter 1 introduced wetland ecosystems, by formulating a wetland definition
in which the interplay between hydrology, physicochemicalenvironment, anthro-
pogenic disturbances and biota at a hierarchy of spatial andtemporal scales is
stressed. Based on this definition, the presence of pattern in vegetation distribu-
tions in relation to environmental conditions can be explained.

In order to model vegetation distributions based on environmental conditions,
four experimental wetland sites were selected, and an abiotical and biotical char-
acterization of these test sites is given in Chapter 3. Data from these sites are used
to answer all eight research questions.

2.3.1 Research question 1

The first research question is addressed in Chapter 4 where a literature review on
several statistical and machine learning techniques applied in distribution mod-
elling highlights main properties as type and probability distribution of the re-
sponse variable and prediction type of these techniques. Based on this review, the
selection of the random forest technique for distribution modelling is motivated.
Additionally, selection of a well-known and frequently applied technique which
is used to build a reference distribution model for comparison is based on this
literature review.
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2.3.2 Research question 2

Chapter 4 continues by answering the second research question by constructing
and calibrating a random forest distribution model for wetland vegetation based
on the data provided in Chapter 3. Special attention is drawnon the input data
format, the computational effort, and a meaningful spatialinterpretation of the
modelling results.

2.3.3 Research question 3

The model evaluation in Chapter 4 assessed the predictive ability of the random
forest distribution model. Several statistical measures are used to compare obser-
vations with modelling results, and an explicit comparisonis made between the
random forest distribution modelling results and the results obtained by the refer-
ence model.

2.3.4 Research question 4

Research question 4 is addressed in Chapter 5 where distribution modelling is ap-
proached from two different angles: (i) predictive modelling where the predictive
performance of the model is of primary concern, and (ii) explanatory modelling
where the model is used to gain information on important aspects such as envi-
ronmental variable importance. Under explanatory modelling, several other tech-
niques to identify important environmental variables are included, and a compar-
ison of results is made. Finally, results of the variable importance assessment are
used for model complexity reduction. Several random forestdistribution models
with varying model complexity are constructed and evaluated.

2.3.5 Research questions 5–6

In chapter 6 a random forest distribution model is constructed, and results are in-
terpreted with respect to the similarities between the different vegetation types to
assess a possible spatial trend in modelling results to answer research question 5.
Furthermore, the model is tested on an independent, spatially distant but ecologi-
cally similar test site to address research question 6.

2.3.6 Research questions 7–8

The random forest distribution model generates an ensembleof responses. The
possibility to use such an ensemble for uncertainty assessment (research question
7) is investigated in Chapter 7 by looking into the discrete probability distribution
constituted of the response ensemble. Uncertainty in distribution models originates
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from input data limitations, their disability to capture the entire complexity of in-
terrelated processes resulting in vegetation distribution within the model, and the
uncertainty associated with model evaluation. Among this variety of uncertainty
sources, two important sources of uncertainty propagationthrough the random
forest distribution model are selected to answer research question 8: (i) the uncer-
tainty associated with the spatial interpolation of environmental variables, and (ii)
the uncertainty associated with plant species clustering into vegetation types. The
effects of this uncertainty on the random forest modelling results is investigated in
Chapter 7.





3
Description of test sites: monitoring

and ecohydrological review

3.1 Introduction

Four test sites are included in this study:

1. Doode Bemde;

2. Snoekengracht;

3. Vorsdonkbos-Turfputten;

4. Zwarte Beek.

All four sites are alluvial wetlands, situated in Flanders,Belgium (Fig. 3.1). They
are nature reserves with relatively undisturbed abiotic and biotic conditions, with
long periods of constant management (at least 10 years), andmarked hydrologic
gradients. The sites are included in a long term ecohydrological monitoring pro-
gramme of the Research Institute for Nature and Forest (INBO), setup by W. Huy-
brechts and P. De Becker, and were the study sites of the Research Programme
on Nature Development (projects VLINA 96/03 [70] and VLINA 00/16 [69]) of
the Flemish Government. Monitoring results of the sites were gathered in four
ecohydrological atlases [71–74].

The climatic conditions at the sites are typically temperate, with an average
yearly rainfall of≈800 mm distributed evenly over the year [75, 76], an aver-
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FIGURE 3.1– Location of the test sites in Flanders, Belgium (adapted from [69]).

age annual pan evaporation of 450 mm, and an average yearly air temperature of
9.8◦C [77].

Doode Bemde is an alluvial floodplain mire in the valley of theriver Dijle,
situated at approximately 30 m above sea level. Its soil texture is mainly loam.
The area is fed by nutrient-rich groundwater (approximately 3 mm day−1 [78,79]).
Here, a complete vegetation mosaic is found, ranging from mesotrophic alder carr
and reedbeds (Phragmitetalia), over tall sedge swamps (Magnocaricion) and tall
herb fen, to fen meadow and somewhat drierArrhenatherion elatiorisgrasslands
on the natural levees of the river [71,78,80,81].

Snoekengracht, situated approximately 57 m above sea level, is similar to the
Doode Bemde site, except for a narrower valley and even more nutrient-rich seep-
age water feeding the area [72,78].

Vorsdonkbos-Turfputten is located at the southern fringe of the Demer river
valley, approximately 11 m above sea level. This site is a marked seepage zone
fed by two distinct aquifers. The southern part is supplied with nutrient-poor
groundwater (20 mm day−1 [78, 79]). Here, a zone with fragments of fen grass-
lands (Caricion curto–nigraeandCirsio – Molinietum) and oligotrophic woodland
(Sphagno–Alnetum) is found. In the central and northern part of Vorsdonkbos-
Turfputten, which is fed by nutrient-rich groundwater, thevegetation changes to
tall herb fen (Filipendulion) and mesotrophic alder carr (Caricion elongatae – Al-
netum glutinosae) [73,78].

Zwarte Beek is situated at the western fringe of the Campinian plateau. It com-
prises an 800 m long section through a narrow valley, situated at approximately
52–56 m above sea level. Zwarte Beek is known for its excellent fen grasslands
(mainly Caricion curto–nigrae). The soil consists of a 7 m thick peat layer, with
an abrupt conversion into sandy sediments at the fringes of the valley. The area is
fed by nutrient-poor seepage water (ca. 16 mm day−1 [78, 79]). The groundwater



DESCRIPTION OF TEST SITES 3-3

table is constant and close to the surface level throughout the year [74,78].

3.2 Monitoring of test sites

The monitoring setup of the four test sites was very similar,both for abiotic and
biotic site characterization. The sites were subdivided inregular and adjacent grid
cells of 20 m× 20 m for Doode Bemde, Vorsdonkbos-Turfputten and Zwarte
Beek, and 10 m× 10 m grid cells for Snoekengracht (Table 3.1), and a local
coordinate system was assigned to each test site based on these subdivisions by
which every monitoring location was referenced.

TABLE 3.1 – Overview of the test sites: name, abbreviation (Abbr.), location, area, grid
size and number of grid cells (Nr.).

Test site Abbr. Location Area Grid size Nr.
Doode Bemde DB Oud-Heverlee 20.76 ha 20 m× 20 m 519
Snoekengracht SN Boutersem 6.69 ha 10 m× 10 m 696
Vorsdonkbos-Turfputten VB Rillaar 12.80 ha 20 m× 20 m 320
Zwarte Beek ZB Beringen 6.80 ha 20 m× 20 m 170

3.2.1 Abiotic site characterization

Soil type was derived from hand drillings at grid cell intersections to a depth of 1
m, classified using a set of four major soil types: mineral soil with sandy texture,
mineral soil with loamy texture, mineral soil with clayey texture and organic peat
soil, and assigned to the neighbouring grid cells. Management focused on veg-
etation, and was classified per grid cell into six categories: (i) yearly mowing in
early summer; (ii) cyclic mowing, once every 5–10 years; (iii) null management
(no mowing or any other management regime for at least the last 10 years); (iv)
transition from yearly to cyclic mowing; (v) transition from yearly mowing to no
management; and (vi) transition from cyclic mowing to no management.

Piezometer networks were installed on strategic locationsinside and just out-
side the nature reserves from 1989 onwards, and extended throughout the subse-
quent decade. The maximal number of piezometers differed between test sites:
36 at Doode Bemde, 36 at Snoekengracht, 40 at Vorsdonkbos-Turfputten, and 42
at Zwarte Beek. Groundwater depths [m] were measured manually every fort-
night, at least during a two year period between 1991–1999. Furthermore, all
piezometers were sampled on groundwater quality variablesduring four differ-
ent sampling campaigns in spring and autumn over two consecutive years within
the period 1991–1999 and included groundwater pH, K+ [mg L−1], Fetot [mg
L−1], Mg2+ [mg L−1], Ca2+ [mg L−1], SO2+

4 [mg L−1], Cl− [mg L−1], NO−
3 –
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N [mg L−1], NH+
4 –N [mg L−1], H2PO−

4 [mg L−1] and the ionic ratio (IR =
100[1/2Ca2+]/[1/2Ca2+ + Cl−]).

At Doode Bemde, samples for soil organic matter content (SOM) determi-
nation were taken at 59 locations at a depth of 0.05–0.15 m andanalysed using
thermal destruction at 600◦C in a muffle furnace. Soil organic matter content was
expressed as a percentage [%].

3.2.2 Biotic site characterization

During spring and early summer, in the period 1993–1997, plant species occur-
rence (presence/absence) was mapped in the study sites on the same regular grid
as soil type and management regime. Mapping was restricted to a shortlist of about
75 mainly groundwater dependent species (phreatophytes, [82], see Appendix A,
adapted from [69]).

Species cover data were used to define vegetation types for all study sites sep-
arately using TWINSPAN [83]. Eleven clearly defined vegetation types were re-
tained of which a short description is given in Table 3.2 and aphotograph in Ap-
pendix B. All vegetation types are herbaceous, except forAlno – Padion, Carici
elongetae – Alnetum glutinosaeandSphagno – Alnetumwhere a tree layer of Al-
nus glutinosa (L.) Gaertn. (Common Alder) among other tree species is present.

In summary, topography and piezometer locations are demonstrated in Fig. 3.2,
and the spatial distribution of vegetation types is given inFig. 4.7.

3.3 Ecohydrological review of the test sites

As stated in the introduction of this chapter, the test siteswere part of two Research
Programmes on Nature Development (projects VLINA 96/03 [70] and VLINA
00/16 [69]) of the Flemish Government. Furthermore, three of the test sites (Doode
Bemde, Vorsdonkbos-Turfputten, Zwarte Beek) were the study areas in the disser-
tation of O. Batelaan [79], while I. Joris focussed in her dissertation on the Doode
Bemde exclusively [84]. Based on these studies, an overviewof the main proper-
ties and processes in the alluvial wetlands under investigation is given.

3.3.1 Topography

The test sites are lowland meandering river floodplains, with a characteristic to-
pography of natural levee and lower lying flood basin (Fig 3.3). Their topography
results from numerous flood deposits that create sinuous ridges along the river
channels, sloping down toward the lower lying flood basin [85]. The process of
lateral sediment fining results in a gradual decrease in sediment particle sizes: the
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TABLE 3.2– Summary of the vegetation types: number, name, short description and area.

Nr. Name Short description area [ha]
(number of grid cells)

ZB VB DB SG
6.80 12.80 20.76 6.69
(170) (320) (519) (696)

1 Alno – Padion Moist forest type withQuercus roburL., Fraxinus excelsiorL., Carpinus betulus
L. and someAlnus glutinosa(L.) Gaertn.

1.47
(147)

2 Arrhenatherion elatioris High yield potential pasture, characteristic species includeArrhenatherum elatius
(L.) J.&C.Presl.,Anthriscus sylvestris(L.) Hoffm. andLeucanthemum vulgare
Lamk.

2.80
(70)

0.91
(91)

3 Calthion palustris Species-rich mesotrophic fen meadow dominated by species like Caltha palustris
L., swamp horsetailEquisetum fluvatileL., and manyCarex-species.

4.24
(106)

0.95
(95)

4 Carici elongatae – Alnetum glutinosae Mesotrophic alder carr with dominance ofAlnus glutinosa(L.) Gaertn. and a
herblayer withCarex acutiformisEhrh.,Lycopus europaeusL. andSolanum dul-
camaraL.

3.16
(79)

1.20
(30)

1.41
(141)

5 Caricion curto–nigrae Fens with smallCarexspecies asCarex paniceaL., Carex rostrataStokes and
Carex nigra(L.) Reichard.

6.80
(170)

1.12
(28)

6 Cirsio – Molinietum Comparable withCaricion curto–nigraebut with higher proportion ofPoaceae
and higher productivity.

1.12
(28)

7 Filipendulion Tall herb fen withFilipendula ulmaria(L.) Maxim., Valeriana officinalisL. and
Alopecurus pratensisL.

4.76
(119)

4.16
(104)

1.12
(112)

8 Magnocaricion Sedge swamp with various tallCarexspecies. 2.52
(63)

9 Magnocaricion with Phragmites Magnocaricionvegetation withPhragmites australis(Cav.) Steud. 3.72
(93)

0.83
(83)

10 Phragmitetalia Highly fertile reedswamps, dominated byPhragmites australis(Cav.) Steud. 2.12
(53)

0.27
(27)

11 Sphagno – Alnetum Oligotrophic swamp forest withBetula pubescensErhr. andAlnus glutinosae
(L.) Gaertn., with a dense moss layer ofSphagnum palustreL. and Sphagnum
fimbriatumWilson.

2.64
(66)

ZB = Zwarte Beek, VB = Vorsdonkbos-Turfputten, DB = Doode Bemde, SG = Snoekengracht
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(a)

(b)

FIGURE 3.2 – Topography and piezometer (△) locations (a) Doode Bemde, (b) Snoeken-
gracht, (c) Vorsdonkbos-Turfputten and (d) Zwarte Beek (adapted from [71–74]).
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(c)

(d)

FIGURE 3.2 – continued. . .

natural levee consists of coarse sediments, while the flood basin consists of sed-
iments with smaller particle sizes. The underlying cause isan abrupt reduction
in flow velocity of the flooding water upon exiting the river channel, resulting in
an immediate deposition of the coarser sediments (natural levee deposits). At dis-
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tant margins of the natural levees, the deposition of loam and clay is predominant
(flood basin deposits) [85]. Consequently, the topographical gradient (high levee –
low flood basin) is related to the textural gradient (coarse deposits – fine deposits)
in alluvial floodplains [86].

FIGURE 3.3– Schematic cross-section of an alluvial floodplain. The gradient in grayscale
intensity is illustrative for the textural gradient causedby lateral fining.

Under natural, or managed conditions allowing for overbankflooding, the
levee and floodplain topography is variable in time and space, because each in-
dividual flooding event invokes spatially distributed processes of erosion, trans-
portation and sedimentation. The hydrologic management practices at the four
test sites, however, did not permit overbank flooding, and hence their topograph-
ical gradient resulting from historical flood deposits is less variable in time and
space.

3.3.2 Groundwater

Hydrology is the predominant component in the wetland definition (see Sec-
tion 1.1) as it directly affects numerous wetland processes. The water balance
of a wetland is the total inflow subtracted by the total outflow, with in- and out-
flow generated by different processes (see Eq. (1.1)). Several (modelling) stud-
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ies [70,79,84] indicated the importance of groundwater discharge and groundwa-
ter recharge (Gi andGo in Eq. (1.1)) at the test sites, which were consequently
described asgroundwater dependent wetlands[79]. Therefore, a short description
dealing with two important groundwater related aspects is given: (i) the spatio-
temporal dynamics of groundwater quantity, and (ii) the groundwater quality, i.e.
the hydrochemical composition of the groundwater (in termsof plant nutrients).

3.3.2.1 Groundwater quantity

Groundwater quantity is usually described by means of (consecutive) groundwater
depth measurements made from piezometers. Groundwater depth measurements
can be expressed relative to ground surface, or be transformed to hydrolic head
by referencing to another reference level (e.g. mean sea level). Within the cross-
section of an alluvial floodplain (Fig. 3.3), three piezometers are shown at different
distances to the river channel: one at the natural levee (piezometer 1), another at
the flood basin (piezometer 3) and a third one in between former two (piezometer
2). The depth of the groundwater table during a wet (winter) and dry (summer)
period are indicated. Comparison of these depths indicatesa seasonal variation:
during the wet period, the groundwater depth is low (the groundwater table is
close or even above ground surface), while during the dry period groundwater
depth is high (the groundwater table is deep under ground surface). Therefore the
groundwater depth has a time variability. Additionally, a spatial variability can be
observed. At the topographically higher levee, groundwater depths are generally
higher (piezometer 1), decreasing gradually toward the flood basin (piezometer
2→3) (see also further in Section 6.2).

Assume the groundwater depths in the piezometers during thewet and dry
period in Fig 3.3 to be hydrologic extremes, i.e. the lowest and highest groundwa-
ter depths during a given period of time. These extremes are called the minimal
groundwater depth and the maximal groundwater depth, respectively. The differ-
ence between both is the amplitude of the groundwater depth.At the study sites (as
in most alluvial floodplains) a gradient of decreasing minimal groundwater depth,
maximal groundwater depth and amplitude of the groundwaterdepth is observed
from the levee toward the flood basin [71–74], and these groundwater variables
characterize the groundwater quantity and dynamics.

Furthermore, alluvial systems are frequently influenced byan upward seep-
age flux (upward groundwater discharge), generated by a difference in hydraulic
head between the recharge and discharge area. At the study sites, seepage
fluxes are prevalent, ranging from approximately 3 mm day−1 [78, 79] at Doode
Bemde to approximately 20 mm day−1 [78,79] at Vorsdonkbos-Turfputten, clearly
influencing groundwater dynamics [84]. In some areas withinthe floodplain, seep-
age fluxes enter the root zone of plants, while in other areas the seepage water is
drained before entering the root zone. Apart from its effecton wetland water bud-
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gets and dynamics, transport of hydrochemical compounds byseepage water alters
the wetland water quality.

3.3.2.2 Groundwater quality

Groundwater quality is characterized by temperature, density, specific weight, dis-
solved solids content, viscosity, surface tension, thermal capacity, enthalpy, vapor
pressure and latent heat of vaporization [87]. The groundwater quality aspect of
interest here is dissolved solids. Dissolved solids are impurities that occur because
of dissolution of rocks and soils and because of the solutionof CO2 from the atmo-
sphere [87]. Dissolved solid concentrations are usually expressed as mg L−1, and
natural waters contain a mixture of cation and anions including Ca2+, Mg2+, Na+,
K+, Cl−, SO2−

4 , CO2−
3 , HCO2−

3 , F− and NO−3 in excess of 1 mg L−1. Occasionally
minor constituents including Fe2+, Fe3+, Al3+, PO3−

4 , NH+
4 and NO−2 achieve con-

centrations higher than 1 mg L−1 [87]. Hydrogen ions (H+) are generally present
in smaller concentrations (usually expressed as water pH= − log[H+]), but have
critical influence on water chemistry by affecting dissolution and precipitation re-
actions.

Driven by a difference in hydraulic head, groundwater movesfrom higher
recharge areas toward lower discharge areas. In this pathway, dissolved solutes
are transported by a combination of advective and dispersive processes. The hy-
drochemistry of discharging groundwater in a wetland is a function of the wa-
ter origin, the geochemical processes (dissolution of minerals into groundwater,
precipitation of supersaturated dissolved solids, and ionization of the constituents
present in groundwater) in the feeding aquifer, the travel time and the convergence
of flow paths [79]. Important reversible, pH mediated net reactions are the disso-
lution of the carbonate minerals calcite (CaCO3) and dolomite (CaMg(CO3)2):

CaCO3 +CO2 +H2O ⇋ Ca2+ +2HCO−
3 (3.1)

CaMg(CO3)2 +2H2O+2CO2 ⇋ Ca2+ +Mg2+ +4HCO−
3 (3.2)

The seepage areas where groundwater containing these dissolution products dis-
charges are higher in pH (base-rich), and gradients in base-richness have been
reported to influence vegetation distributions [54].

At Doode Bemde, Vorsdonkbos-Turfputtenand Zwarte Beek, different ground-
water quality types of the discharging groundwater were determined [70, 79], to-
gether with a hydrochemical characterization of the precipitation and river water,
sampled near the sites. Following groundwater quality types were distinguished:

(1) groundwater with a high concentration of ions, predominantly Ca2+ and
SO2−

4 ;

(2) groundwater with a very low concentration of ions, similar to the concentra-
tions in precipitation water, except for Ca2+ and HCO−3 ;
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(3) groundwater with a high concentration of ions, predominantly Ca2+ and
HCO−

3 ; and

(4) groundwater with a very high concentration of ions, predominantly Ca2+

and HCO−3 but also SO2−4 and Fetot.

Groundwater type 3 was the dominant groundwater type at Doode Bemde.
In the each of the piezometers located within the central area of the flood basin,
this groundwater type was measured. At Vorsdonkbos-Turfputten, a dominance of
groundwater type 1 was observed, which extended from the entire eastern part to
a significant part of the southern flood basin. Zwarte Beek wascharacterized by
groundwater type 2, and measured groundwater concentrations were lower com-
pared to the other two sites. For a more extensive discussionand a spatial overview
of the groundwater quality at the three site, the reader is referred to the ecohydro-
logical atlases [71,73,74], and to Huybrechts et al. [70] and Batelaan [79].

3.3.3 Soil solution

Quantitative (e.g. soil water content) and qualitative (e.g. nutrient concentrations)
aspects of the soil solution in the root zone are important toplants (e.g. [30]).
They result from the interaction between and the relative importance of different
water and nutrient input and outputs. The vertically averaged soil water balance
at a point in a wetland can be expressed as (modified from [30],tidal inflow and
outflow neglected)

Zr
dθ(t)

dt
= ϕ[θ(t),t]−χ[θ(t),t] (3.3)

whereθ [0–1 m3 m−3] is volumetric soil water content (θ = Vw/Vs, with the total
soil volumeVs equal to the sum of the volumes of air, water (Vw) and mineral com-
ponents),Zr is the rooting depth,ϕ[θ(t),t] andχ[θ(t),t] the soil water gains and
losses from the root zone, respectively. Water reaching thesoil column includes
net precipitation (Pn(t), i.e. rainfall minus interception), surface inflow (Si [θ(t),t])
and groundwater discharge (Gi[θ(t),t], e.g. vertical seepage fluxes and capillary
rise from the water table):

ϕ[θ(t), t] = Pn(t)+Si[θ(t),t]+Gi[θ(t),t] . (3.4)

Water is lost from the soil column by evapotranspiration (ET[θ(t),t]) and ground-
water recharge (Go[θ(t), t]):

χ[θ(t), t] = ET[θ(t),t]+So[θ(t),t]+Go[θ(t),t] . (3.5)

The soil water balance is represented in Fig. 3.4. The soil column can be subdi-
vided in two separate zones: (i) the vadose, or unsaturated,zone above the ground-
water table, and (ii) the phreatic, or saturated, zone underneath the groundwater
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table. Water above the groundwater table is drawn upwards through continuous
soil pores by capillary suction in a process called capillary rise. The soil volume in
which capillary rise is present is called the capillary fringe, and its height largely
depends on the soil porosity (generally smaller than 1 m in sandy soils, and up to
2 m in loamy soils [88]).

(a) (b)

FIGURE 3.4– Water balance of a soil column where the root zone is disconnected from the
groundwater table (a), and connected with the water table (b). Explanation of abbreviations:
Pn net precipitation,P precipitation,I interception,ET evapotranspiration,Si andSo surface

inflow and outflow,Gi andGo groundwater discharge and recharge,dθ(t)
dt change in volu-

metric water content (θ) during a period of timet, Zr depth of root zone, gwt groundwater
table.

A spatial variability in volumetric soil water content between locations can be
described to differences in soil porosity and spatial variations in the extent and
relative importance ofPn(t), Si[θ(t),t], Gi [θ(t),t], ET[θ(t),t] andGo[θ(t),t]. For
example, differences in soil texture and groundwater tabledepth between levee
(Fig. 3.4(a)) and flood basin (Fig. 3.4(b)) may result in a disconnection of the soil
water balance in the root zone from groundwater inputs at theformer location.
A temporal variability in volumetric soil water content results from the temporal
stochasticity of precipitation (Eq. (3.4)) and temporal changes in the other terms of
Eqs. (3.4) and (3.5). Therefore, the differences between Fig. 3.4(a) and Fig. 3.4(b)
can be interpreted as a temporal difference at a given wetland location, where the
former refers to a dry period and and the latter to a wet period.

Four important volumetric water contents are frequently determined: (i) the
volumetric water content at soil saturation (θs), (ii) the volumetric water content
at field capacity, i.e. 2–3 days after rainfall or irrigation(θ f c), (iii) the volumet-
ric water content at which plants wilt (θwp), and (iv) the residual volumetric soil
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water content (θr ). Plant growth and vegetation development in function of these
threshold values is often assessed in ecohydrological, agri- and horticultural stud-
ies (e.g. [64–67,89]).

The nutrient concentration of the soil solution in alluvialsystems is deter-
mined to a large degree by the hydrochemical composition of the water inflow, the
groundwater depth and in situ soil processes [84]. The spatio-temporal variation
in these forcing attributes and processes is therefore reflected in nutrient concen-
trations. Diurnal variations in nutrient concentrations are confined to those com-
pounds which are strongly influenced by photosynthetic processes, e.g. dissolved
oxygen [2]. Most nutrients, however, are not strongly linked nor directly linked
with the solar cycle, and hence, do not display a diurnal variability. Seasonal vari-
ations are more pronounced, and related to temperature, hydroperiod, photoperiod
and plant growth status [2]. In general, the growing season tends to deplete nutri-
ents, a winter (cold temperatures, short photoperiod) and wet season tend to lower
nutrient concentrations by a slow anaerobic digestion of organic matter and dilu-
tion, respectively. A dry season can accentuate organic matter decomposition and
higher nutrient concentrations. It may be clear that the interactions between these
driving forces is site specific and year specific.

Spatial variation in nutrient concentrations is present horizontally across the
wetland area, as well as vertically within the soil column. Horizontal variation
is related to spatial differences in the hydrochemical composition of the water in-
flows and variations in their relative importance. Spatial patterns in vegetation type
and density, which are partly determined by former hydrologic wetland variabil-
ity, in their turn result in spatial nutrient variations within the wetland. Over the
life cycle of the plant species included in the different vegetation types, all plant
tissues are either consumed, exported, or recycled back to the ground as plant lit-
ter. Wetland plant tissues fall at variable rates dependingon the survival strategy
of the plant species. Therefore, litterfall and subsequentnutrient release through
decomposition processes are related to the spatial distribution of vegetation types.
Nutrient concentrations also vary with depth in the vertical soil column. This verti-
cal spatial variation mainly related to vertical plant rootdistributions and a vertical
gradient in redox potential [2].

A comparison of nutrient concentrations at Doode Bemde showed differences
in concentration between measurement locations and between measurement times
(seasonal variation). By comparison of the hydrochemical concentration of the soil
solution along a transect, perpendicular to the river Dijle, within the Doode Bemde
and another transect, also perpendicular to the river Dijle, but outside the reserve
on drained grounds, Joris [84] concluded that hydrochemical concentrations within
Doode Bemde were similar to those of groundwater, while thissimilarity was not
prevalent at the drained site. This horizontal spatial variation could be attributed
to the seepage water flux within the wetland area, which prevents other sources
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of water to enter the soil column. A spatial variation in Mg2+ concentration was
also observed, with higher concentrations measured at the natural levee, and lower
concentration at the depression. A temporal variation of Ca2+ and HCO−3 con-
centration was indicated by the same author [84]. At the natural levee, a higher
biological activity within the well-aerated soils led to anincreasing release of CO2
with a subsequent increase of Ca2+ and HCO−3 in the soil solution (due to an in-
creased dissolution of calcite, see reaction 3.1). At the flood basin, the dynamics
of biological activity were overruled by the hydrologic dynamics [84], and highest
Ca2+ and HCO−3 concentration were measured during winter when the water table
was high. In summer, when the water table dropped, concentrations decreased.
The reason is a higher CO2 concentration in the soil column during winter, forcing
the calcite dissolution reaction to the right. During summer, CO2 can escape to the
atmosphere, and the calcite dissolution rate lowers.

3.3.4 Soil organic matter

The organic matter of the soil arises from debris of plant material (including litter-
fall), animal residues and excreta that are mixed to a variable extent with the min-
eral soil. The dead organic matter is colonized by soil (micro-)organismswhich de-
rive energy for growth from oxidative decomposition [88]. During decomposition,
essential inorganic elements are released from the organicmatter in mineralization
processes. There are several factors affecting the rate of organic matter decom-
position, and hence soil organic matter levels. Soil properties and environmental
conditions as soil water content, O2 supply, pH and temperature are identified as
key factors. The first two factors may counteract one another, when the soil water
content is high O2 gets excluded from the soil and decomposition rates lower with
a possible build-up of soil organic matter. Conversely, when the soil is dry, water
shortage but not O2 will limit biological decomposition [88]. pH has only an effect
by lowering decomposition rates below a pH value of 4, whereas temperature has
a large effect, both by affecting plant growth, and hence by affecting litter return,
and by mediating the biological activity of soil (micro-)organisms.

As can be seen in Fig. 3.5, gradients in average groundwater depth and soil
organic matter content exhibit an inverse trend at Doode Bemde. At the natural
levee (western border), average groundwater depths are high and soil organic mat-
ter content low, whereas the average groundwater depth at the flood basin is low
and the soil organic matter content is high.

3.4 Summary

Four wetlands were selected as the study sites for this dissertation. All four are
nature reserves with stable management for a considerable period of time. Within



DESCRIPTION OF TEST SITES 3-15

FIGURE 3.5 – Contour plot of the average groundwater depth [m below soilsurface] (a)
and soil organic matter content [%] (b) at Doode Bemde.

the sites, a similar monitoring protocol was set up in order to characterize the biotic
and abiotic conditions. Pronounced hydrologic and hydrochemical gradients were
observed, and plant species and vegetation type distributions were inventoried.
Observations were gathered into ecological atlases [71–74] which serve as unique
reference information on wetlands in Flanders.





4
Selection and comparison of different

vegetation distribution models

4.1 Introduction

Ecohydrology tries to describe the hydrological mechanisms (like water availabil-
ity and quality) that underlie ecological patterns and processes [56]. Within this
scientific discipline, distribution modelling is an important issue. Several empiri-
cal models for the prediction of plant species and vegetation type occurrence in
relation to hydrological or hydrogeochemical habitat conditions have been de-
veloped [90, 91]. Six empirical models, compared by Venterink [90], differ in
scale level, habitat and ecosystem for which prediction wasmade, number of input
variables, expert knowledge and field measurements requirements. However, the
empirical-statistical relationship between response variable (e.g. the occurrence of
species or vegetation types) and one or more explanatory variables (e.g. ground-
water depth and groundwater quality variables) was generally specified by a re-
gression model [90,92].

Ordinary multiple regression models and multiple logisticregression models
within the frameworks of generalized linear models (GLM, [93]) and generalized
additive models (GAM, [94,95]) are very popular and are often used for modelling
species distributions [51, 96–100]. However, other predictive distribution mod-

The content of this chapter is published as J. Peters, B. De Baets, N. E. C. Verhoest, R. Samson, S.
Degroeve, P. De Becker and W. Huybrechts.Random forests as a tool for ecohydrological distribution
modelling.Ecological Modelling, 207:304–318, 2007.
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els have been developed, based on a multitude of different modelling techniques,
including neural networks (e.g. [101, 102]), ordination (e.g. canonical correspon-
dence analysis CCA, [103]) and classification methods (e.g.classification and re-
gression trees; [104]), Bayesian models (e.g. [105]), artificial neural networks,
support vector machines, random forests, environmental envelopes (e.g. [106]) or
even combinations of these modelling techniques [51].

The outline of this chapter is stipulated by the three research questions
addressed (see Research questions 1–3 in Section 2.3):
1. Which techniques are most frequently used for distribution mod-
elling?
2. Can the random forest technique be used for vegetation distribution
modelling?
3. Is the predictive ability of the random forest model satisfactorily?

The most commonly used distribution modelling techniques are high-
lighted in a literature overview. Based on the literature overview, two
different statistical techniques are further evaluated inan ecohydrolog-
ical distribution modelling context: (i) multiple logistic regression and
(ii) random forest. Therefore, a spatially distributed ecohydrological
data set is used where 14 predictive variables, describing the abiotic en-
vironment, are related with the occurrence (presence/absence) of vege-
tation types. An extensive evaluation of the modelling results concludes
this chapter.

4.2 Literature overview of distribution models

4.2.1 Conceptual considerations

The excellent review paper of Guisan and Zimmerman [51] highlights five core
conceptual considerations for distribution modelling. Intheir aim to model the
distribution of species or vegetation, distribution models exhibit great heterogene-
ity, which can be explained by these five conceptual considerations.

Conceptual consideration 1: Guisan and Zimmerman argue that Levins’ classi-
fication of models [107] is useful in a conceptual context fordistribution mod-
elling [51]. Levins’ model classification involves the principle that from the three
desirable model properties, generality, reality and precision, only two properties
can be optimized simultaneously. The third property has to be sacrificed. Hence,
distribution models can be subdivided into three groups, namely distribution mod-
els that: (i) focus on generality and reality, (ii) focus on generality and precision,
and (iii) focus on reality and precision. Such models are called mechanistic (or
process-based), analytical (or theoretical) and empirical, respectively (Fig. 4.1).
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The majority of distribution models categorize as empirical models, with a trade-

FIGURE 4.1– A classification of models based on their intrinsic properties (Adapted from
[107]).

off in generality. They provide a precise (including local variability) and realistic
description of the ecosystem where they are constructed for, but are limited in
targeting other ecosystems.

Conceptual consideration 2: To gain model generality, it is desirable to model
species or vegetation patterns based on the environmental processes (translated
in model input variables) that are causal and have direct impacts on the species
or vegetation pattern [51, 97]. This restrains environmental monitoring to purely
scientific arguments, aiming to detect changes in time and space of environmental
processes that are thought to be causal. However, monitoring efforts are frequently
bounded by practical arguments such as financial issues, measurement tool limita-
tions and site accessibility as well, which all limit the former desire.

Conceptual consideration 3: Differentiating between fundamental and realized
niche [50] (see Section 1.4) distinguishes whether modelled distributions are based
on theoretical physiological constraints rather than on field observations. Empiri-
cal field data include biotic interactions and therefore thedistribution model will
predict realized niches [51]. Distribution models based onfundamental niches
should include additional rules on biotic interactions to predict realized species or
community patterns.

Conceptual consideration 4: Notwithstanding the non-equilibrium state of ecosys-
tems (see Section 1.3), most distribution models are stationary, assuming a state of
equilibrium between environment and biota. For ecosystemswith a lower environ-
mental variability (e.g. permanent wetlands with relatively stable hydrologic con-
ditions, see Subsection 1.1.1), this assumption is less restrictive, than for ecosys-
tems with higher variability (e.g. seasonal wetlands with seasonal hydrologic fluc-
tuations) [51].
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Conceptual consideration 5: A fifth consideration comes down to two approaches
having a long history in ecology: (i) clementsian discontinuous approach [108]
with easily definable communities, and (ii) gleasonian continuum approach [109]
with individualistic responses. Distribution models havebeen developed for
individual species (gleasonian approach) and communitiesor vegetation types
(clementsian approach).

4.2.2 Different distribution models

Research objectives stipulate the distribution model characteristics with regard to
the previous five conceptual considerations, and hence a wide variety of distribu-
tion models have been described in literature which is too extensive to cope with
in this review. Therefore, this literature review exclusively focusses onempirical
distribution models (conceptual consideration 1) that arebased onobserved data
(conceptual consideration 3) assuming anequilibrium stateof the ecosystem (con-
ceptual consideration 4). Such models can be conceptualized (Fig. 4.2) reverting
to the wetland definition from Section 1.3.

The distribution model can be specified by various techniques. The most popu-
lar statistical techniques together with machine learningtechniques, only recently
applied in distribution modelling, are highlighted.

Generalized linear models
A generalized linear model (GLM) provides a way of estimating a function of the
mean response (thelink function, g(µ)) as a linear combination of some set of
predictive variables [93,110,111]:

g(E(Y|x)) = g(µ) = β0 +
p

∑
i=1

βixi = η(x) (4.1)

whereE(Y|x) is the expected response givenx, g is the link function andη(x) the
linear predictor, a linear function of the predictive variablesxi with parametersβi .
Depending on the distribution of the response variable, different link functions are
used (Table 4.1).

The GLM most frequently applied in distribution modelling is a GLM setup
with the logit link function, the so-calledlogistic regressionmodels. In logistic
regression models, a binary response (taking only values 0 and 1) is modelled by a
linear combination of predictive variables. Binary responses (i.e. presence/absence
of species) are prevalent in ecology. Logistic regression model predictions take
values of 0 (absence), 1 (presence) and all values in betweenthese extremes. Pre-
dicted values are interpreted as the probability of occurrence of a species, commu-
nity or vegetation type in distribution modelling.

If the response is not linear with any of the predictive variablesxi included in
η(x), a transformed term ofxi can be included in the model [51]. Several trans-
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FIGURE 4.2 – Conceptualization of distribution models. The pattern inabiotic wetland
conditions are used to model species and vegetation distributions assuming a state of equi-
librium.

formation functions with a strict parametric functional form [112] have been used
including second order polynomials [113, 114], third orderpolynomials [113],β-
functions [115,116], a hierarchical series of models (HOF model, [117]) and a set
of n-transformed functions [118].

Since their development by Nelder and Wedderburn in 1972 [110], GLMs have
been included in numerous ecological and ecohydrological studies. An overview
of GLM applications in distribution modelling is given in Table 4.2.

Generalized additive models
In GLM the predictor is a linear function of the model parameters. The general-
ized additive model (GAM), which has been developed by Hastie and Tibshirani in
1990 [94], extends the generalized linear model by fitting nonparametric smooth-
ing functions to estimate relationships between the response and the predictive
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TABLE 4.1– Exampes of link functions for several distributions.

Distribution link function (g)
Gaussian distribution identity link function
Exponential distribution inverse link function
Gamma distribution inverse link function
Inverse Gaussian distribution inverse squared link function
Poisson distribution log link function
Binomial distribution logit link function
Multinomial distribution logit link function

variables. The form of a GAM is:

g(E(Y|x)) = g(µ) = α+
p

∑
i=1

fixi = η(x) (4.2)

whereg is the link function,α a constant intercept, andfi the nonparametric func-
tion describing the relationship between the transformed mean responseg(µ) and
the i-th predictive variablexi . η(x) is referred to as the additive predictor. The
nonparametric functions are estimated from the data using smoothing operations,
and they include running means, locally weighted regression, or locally weighted
density functions [51]. An overview of different GAMs and case studies found in
literature are given in Table 4.2.

Tree-based techniques
Tree-based techniques partition the predictor space (here, environmental space)
into parts, and then fit a simple model (like a constant) to each part [139]. Classi-
fication (categorical response) and regression (continuous response) trees (CART,
developed by Breiman et al., 1984 [104]) is a popular technique, and other tech-
niques such as rule-based classification [140] and maximum likelihood classifica-
tion [141] have been developed.

CART uses recursive binary partitioning to split the predictor space. In a first
step, the predictor space is split into two regions choosinga predictive variable (Xi)
and cutpoint (ti) to achieve the best fit. Then one or both regions are split into two
more regions, and this process is iterated until a stopping rule is reached [139]. For
example, a two-dimensional predictor space (predictive variablesX1 andX2) is first
split atX1 = t1, resulting in two regionsX1 < t1 andX1 ≥ t1. ThenX1 ≥ t1 is split
into X2 < t2 andX2 ≥ t2, resulting in three regionsR1, R2 andR3 (Fig. 4.3(a)). The
corresponding tree is shown in Fig. 4.3(b). Starting with data at the top node of the
tree (root), a rule for creating new branches (splitting rule) recursively splits the
data in eachnodeuntil a stopping rule is reached, and a terminal node of the tree
(leaf) is reached. Then a model is fitted to the leaf (e.g. leaf average in regression
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TABLE 4.2 – Overview of generalized linear models (GLM) and generalized additive models (GAM) in distribution modelling with information on
the response variable (type, probability distribution andexamples), the model prediction and literature examples. No case studies found is indicated
by —.

Modelling technique Response variable Prediction Case studies in literature
Type Probability distribution Example

GLM continuous Gaussian percent cover probability [119–121]
species richness
biomass

GLM continuous Poisson individual counts probability [122–124]
species richness

GLM continuous Negative binomial individual counts probability [122]
GLM categorical Binomial presence/absence probability [78,97,98,100,114,125–131]

relative abundance
GLM categorical Multinomial vegetation type probability [96]

plant community
GAM continuous Gaussian percent cover probability —

species richness
biomass

GAM continuous Poisson individual counts probability [132]
species richness

GAM continuous Negative binomial individual counts probability —
GAM categorical Binomial relative abundance probability [78,92,95,125,133–138]

relative abundance
GAM categorical Multinomial vegetation type probability —

plant community
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(a) (b)

FIGURE 4.3 – Recursive binary partitioning using CART. Partition of a two-dimensional
predictor space (a) and the corresponding tree (b).

trees, leaf majority vote in classification trees, among others [142]). A selection of
tree-based distribution models in literature are given in Table 4.3.

TABLE 4.3 – Overview of distribution models using tree-based techniques, canonical cor-
respondence analysis (CCA), redundancy analysis (RDA), Bayesian techniques, artificial
neural networks (ANN), support vector machines (SVM), and random forest (RF).

Modelling technique Response variable Prediction Case studies
Regression tree continuous response value [143–150]
Classification tree categorical class [113, 125, 130,

135, 145, 146,
150–161]

CCA continuous distribution [127,162–171]
RDA continuous distribution [162,172–174]
Bayesian continuous probability [175]
Bayesian categorical probability [176–178]
ANN continuous probability [125, 175, 179–

182]
ANN categorical probability [125,183–185]
SVM categorical class [186–188]
RF categorical probability [131,189–191]

Canonical ordination techniques
Canonical ordination techniques are designed to detect patterns in biotic variation
that can be explained best by the observed environmental variables [192]. Canon-
ical ordination includes canonical correspondence analysis (CCA, [193]) devel-
oped in the mid-eighties, redundancy analysis (RDA, [194, 195]) developed by
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Rao in 1964, canonical correlation analysis [196,197] and canonical variate analy-
sis [197,198]. Most distribution models based on ordination techniques, however,
use CCA [51]. CCA relates biotic variation (e.g. variation in species or vegeta-
tion occurrence) directly to environmental variation by combining a multivariate
ordination of biotic data with a constrained regression maximizing the correlation
between the ordination axes and selected environmental variables [97]. The biota
are assumed to have unimodal responses, with equal widths (tolerances) and am-
plitudes (maxima) to the underlying environmental gradients as specified by the
ordination axes, with modes distributed uniformly along anenvironmental gradi-
ent that is long compared with species tolerances [51,97,193,199].

RDA assumes linear distributions along environmental gradients, which con-
strains the applicability of this technique to short environmental gradients and lim-
its its use in distribution modelling. Examples of distribution models using CCA
and RDA are given in Table 4.3.

Bayesian techniques
Distribution models based on Bayes’ theorem modify an initial (a priori) estimate
of the probability of encountering a species or vegetation type in the landscape
by using the known preferences of a species or vegetation type for environmental
characteristics and information concerning the distribution of these characteris-
tics in the landscape [51, 176]. These models effectively use a priori knowledge
(e.g. expert knowledge, literature knowledge) to ana posterioriprediction of oc-
currence given known environmental characteristics. The inclusion ofa priori
informations in these models may be advantageous resultingin a more efficient
scientific process. However, using inaccurate, invalid or unappropriatea priori in-
formation decreases Bayesian model performance drastically [200]. Examples of
distribution models using Bayesian techniques are given inTable 4.3.

Artificial neural networks
Artificial neural networks (ANN) encompass a group of learning algorithms that
linearly combine predictive variables to model a response as a nonlinear function
of these predictive variables [139,201]. They are designedafter the functioning of
the human brain, and consist of an input layer, a (number of) hidden layers, and
an output layer. Artificial neural networks apply both to regression (continuous
response) and classification (categorical response) [139](Table 4.3) and are useful
in distribution models when underlaying data relationships are unknown [201].

Support vector machines
Support vector machines (SVM, [202, 203]) are machine learning techniques that
aim to separate the predictor space maximally. Linear support vector machines
achieve this by calculating optimal separating hyperplanes maximizing the margin
between the elements from the different classes. Support vector machines can be
used for classification and regression, but for distribution modelling only classi-
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fication examples were found (Table 4.3). Support vector machines and artificial
neural networks were developed by the end of last century, and their application
into distribution modelling studies is only recent.

Random forest
Random forest (RF, developed by Breiman, 2001 [204]) is an ensemble learning
technique which generates many unpruned classification (categorical response) or
regression trees (continuous response), that are aggregated to compute the final re-
sult. The main differences with ordinary tree-based techniques (as described ear-
lier) lies in the generation of an ensemble of trees by the random forest technique,
whereas ordinary tree-besed techniques tend to construct the single best tree. The
construction of an ensemble of tree-based classifiers in random forest, however,
results in a higher accuracy compared with individual tree-based classifiers. The
application of random forest in distribution modelling is restricted to classification
studies so far (Table 4.3).

Other techniques
The list of techniques described before is not exhaustive. Amultitude of other
distribution modelling techniques exist: environmental envelope (e.g. included in
BIOCLIM [205, 206]) and HABITAT [207] model, distance basedtechniques in-
cluded in DOMAIN [208] and LIVES [209] model, matrix regression combined
to generalized linear modelling within a generalized dissimilarity modelling con-
text [209], multivariate adaptive regression splines, maximum entropy models and
boosted regression trees [209].

4.2.3 Selection of techniques

Two of the techniques shortly described above, were selected for evaluation in
this chapter: (i) multiple logistic regression, within theframework of GLM (i.e. a
GLM using the logit link function), and (ii) random forest. The choice for the mul-
tiple logistic regression technique was based on the natureof the response variable
(binomial for each individual vegetation type) and its extensive use in distribu-
tion modelling studies on various ecosystems, including the test sites presented in
Chapter 3 [70, 78]. The second technique selected was randomforest, a recently
developed ensemble learning technique. The use of this technique proved to be
successful in several scientific areas, however, its application in distribution mod-
elling was not tested. The novelty of the study presented in this chapter is the
introduction of random forest in distribution modelling. In fact, the multiple lo-
gistic regression was used as a reference technique to evaluate the random forest
technique against.
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4.3 Material and methods

4.3.1 Study sites

The study sites included Doode Bemde, Snoekengracht, Zwarte Beek and Vors-
donkbos-Turfputten, covering an area of 47.05 ha, subdivided in 1705 grid cells
(see Table 3.1). The abiotic and biotic site characterization of the test sites is de-
scribed in Chapter 3. Abiotical monitoring included groundwater depth, several
groundwater quality variables, soil type and management. Biotical site charac-
terization resulted in a spatially distributed vegetationmap, as demonstrated in
Fig. 3.2.

4.3.2 The ecohydrological data set

For each of the four sites, an observation data set was constructed, including the av-
erage groundwater depth (AGD, [m]) derived from piezometergroundwater depth
measurements, the groundwater quality variables, including groundwater pH, K+

[mg L−1], Fe(tot) [mg L−1], Mg2+ [mg L−1], Ca2+ [mg L−1], SO2+
4 [mg L−1], Cl−

[mg L−1], NO−
3 –N [mg L−1], NH+

4 –N [mg L−1], H2PO−
4 [mg L−1] and the ionic

ratio (IR = 100[1/2Ca2+]/[1/2Ca2+ + Cl−]) measured from piezometer ground-
water samples, and the spatial coordinates of the piezometer locations. A spatial
interpolation using block kriging (for details, see [70,78]) was conducted in order
to obtain groundwater variable estimates for all 1705 grid cells. Together with the
other abiotic (soil type and management regime) and biotic (vegetation type) vari-
ables, groundwater variables were transferred to a data set. The data set contains
1705 measurement vectorsxi = (xi1,xi2, . . . ,xi14) constituted of the values of 14
predictive variables (12 continuous and 2 categorical), describing the abiotic envi-
ronmental conditions. Eleven different vegetation typesc1, . . . ,c11 are considered
(Table 3.2). To each measurement vectorxi a unique vegetation typel i is assigned.
This data set will be referred to as ‘ecohydrological data set’ and is denoted as (N
= 1705):

L = {(x1, l1), . . . ,(xN, lN)} . (4.3)

4.3.3 Statistical model description

4.3.3.1 Multiple logistic regression

Multiple logistic regression describes the relationship between a combination of
environmental variables and a binary response variable by means of a link func-
tion, the logit transformation [210]. Consider a collection of p independent pre-
dictive variables denoted by the vectorx = (x1,x2, . . . ,xp), and let the conditional
probability that the outcome is ‘present’ be denoted byP(Y = 1|x) = π(x), then
the logit transformation (logit[π(x)]) is used to relate the independent predictive
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variables with a binomial (0/1) distributed response. The logit link functiong(x)

is given by [210]:

g(x) = logit[π(x)] = ln

{

π(x)

1−π(x)

}

= β0 + β1x1 + β2x2 + . . .+ βpxp , (4.4)

and the multiple logistic regression model is:

π(x) =
eg(x)

1+eg(x)
. (4.5)

Eq. (4.5) results in a sigmoid curve with a low/high probability that the outcome is
present for a big range of low/highg(x) values, and a steep increase in probability
in the middle section of the plot (Fig. 4.4).

FIGURE 4.4– The relationship between a linear combination of the independent variables
and the conditional probability that the outcome is presentas response variable.

If some of the predictive variables are categorical (e.g. soil type and manage-
ment in the ecohydrological data set), it is inappropriate to include them in the
model as such. In that case a collection of design variables (or dummy variables)
is to be used. In general, if a categorical predictive variables hask possible val-
ues,k− 1 design variables are needed. When, for example, thej–th predictive
variable is soil type with four possible classes, i.e. sand,loam, clay or peat, three
design variables are necessary. A possible coding strategymakes use of Helmert
contrasts [211] (Table 4.4).

The link function for multiple logistic regression withp environmental vari-
ables and thej–th predictive variable being categorical would be

g(x) = β0 + β1x1 + . . .+(
kj−1

∑
l=1

β jl D jl )+ . . .+ βpxp = logit[π(x)] (4.6)
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TABLE 4.4 – Translation of a categorical predictive variable into design variables using
Helmert contrasts.

Design variables
D1 D2 D3 · · · Dk−1

C
at

eg
o

ri
ca

lp
re

d
.

k
cl

as
se

s

1 -1 -1 -1 -1
2 1 -1 -1 -1
3 0 2 -1 -1
4 0 0 3 -1
...
k 0 0 0 k−1

whereD jl are the values ofk j −1 design variables.
An estimator ˆg(x) for the logit function has to be found for each response

class (vegetation type) separately, in order to get an estimation of the probability
of occurrence,̂π(x), according to Eq. (4.5). The estimation is based on maxi-
mization of the likelihood function, yielding values for the unknown parameters
β = (β0, . . . ,βp) which maximize the probability of obtaining the observed set
of data under the multiple logistic regression model. Hosmer and Lemeshow
(2000) [210] derive and express the likelihood function as follows. P(Y = 1|x)

denotes the conditional probability thatY = 1 givenx, which can be determined
using Eq. (4.5) and equalsπ(x). Therefore, the quantity 1−π(x) expresses the con-
ditional probability thatY is equal to 0 givenx, P(Y = 0|x). For those pairs(xi ,yi),
with xi ∈ X andyi ∈ Y, whereyi = 1, the contribution to the likelihood function
is π(xi), and for those pairs where whereyi = 0, the contribution to the likelihood
function is 1−π(xi). The likelihood function for pair(xi ,yi) is expressed as

π(xi)
yi [1−π(xi)]

1−yi . (4.7)

The likelihood function (l(β)) is obtained as the product of the terms given in
Eq. (4.7) over allN pairs:

l(β) =
N

∏
i=1

π(xi)
yi [1−π(xi)]

1−yi . (4.8)

The estimates forβ = (β0, . . . ,βp) maximize the expression in Eq. (4.8). However,
the likelihood function is most commonly expressed as the log-likelihood

L(β) = ln[l(β)] =
N

∑
i=1

yi ln[π(xi)]+ (1−yi) ln[1−π(xi)] . (4.9)

for mathematical convenience.
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A full model, including first order terms and quadratic variable terms (not in-
cluded in Eqs. (4.4) and (4.6)), was fitted to the data using the likelihood function.
Afterwards, stepwise insertion or deletion of variables [210] was applied. A bi-
directional stepwise model selection procedure was used, starting with the full
model and alternately omitting and re-introducing one model component at each
step. Selection stopped when no predictive variable insertion or deletion caused
a lower Akaike Information Criterion value (AIC, [212]), resulting in the model
with the lowest AIC value. Akaike’s Information Criterion calculates a trade-off
value between the model goodness-of-fit and the model complexity:

AIC = 2×k−2L(β)

with k the number of estimated model parameters andL(β) the log-likelihood func-
tion.

Model goodness-of-fit is assessed by the deviance (D), likelihood ratio (G) and
Pearson chi-square statistics. The deviance statistic compares observed values of
the response variable with predicted values obtained from the model. Hosmer and
Lemeshow [210] propose to think of an observed response value as a realization of
a fully saturated logistic regression model, i.e. a model with as many parameters
as there are data points. The comparison of observed to predicted values is based
on the likelihood function:

D = −2ln[
likelihood of the fitted model

likelihood of the saturated model
] . (4.10)

Substituting Eq. (4.9) into Eq. (4.10) results in

D = −2
N

∑
i=1

yi ln[
π̂(xi)

yi
]+ (1−yi) ln[

1− π̂(xi)

1−yi
] . (4.11)

When the response variable has a binary distribution with values 0 and 1, as is the
case in this study, the likelihood of the saturated model equals 1, simplifying the
deviance statistic to

D = −2ln(likelihood of the fitted model) . (4.12)

The smaller the difference between the log-likelihood of the fitted and saturated
model, the smaller is the deviance and the closer is the fittedmodel to the per-
fectly fitting, saturated model. A larger deviance indicates a poorer model fit. The
deviance of null models (intercept only) is given byDnull, the deviance of fitted
models by residual deviances (Dresid). If Dresid is smaller than the corresponding
chi-square value (χ2(1−α,Df)), the logistic regression model is concluded to be
appropriate, providing an adequate fit.

The likelihood ratio (G) is used when the significance of an independent vari-
able is assessed.G compares the deviance of a model without and a model with
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TABLE 4.5– Instances with equal measurement vectors are grouped to determine Pearson
residuals and Pearson goodness-of-fit.

number of groups 1 2 3 4 . . . J
number of positive responses f1 f2 f3 f4 . . . fJ
predicted response π̂1 π̂2 π̂3 π̂4 . . . π̂J

number of group members m1 m2 m3 m4 . . . mJ

the independent variable of interest as:

G = D(model without the variable)−D(model with the variable) (4.13)

or the null model (intercept only) with the residual model with parameters
β1,β2, . . . ,βp, to test the null hypothesisH0 : βi = 0 (i = 1, . . . , p). G follows
approximately a chi-square distribution with degree of freedom corresponding to
the difference in degree of freedom for the two models in comparison.

The Pearson chi-square goodness-of-fit equals the sum-of-squares of the Pear-
son residuals. The calculation of Pearson residuals startsfrom grouping instances
(i.e. grid cells) with equal measurement vectorsx. If J denotes the number of
distinct measurement vectors within the observed data set containingN instances,
thanJ < N if some instances have equal measurement vectors. Groupinginstances
having equal measurement vectors together results inJ groups, where each group
j consist ofmj instances (j = 1,2,3, . . . ,J). It holds that∑mj = N. The observed
number of positive responses (y j = 1) among themj instances is denoted byf j . An
overview of the grouping procedure is given in Table 4.5. Theestimated number
of positive responses for groupj ( j = 1,2,3, . . . ,J), f̂ j , is

f̂ j = mj π̂ j = mj
eĝ(x j )

1+eĝ(x j )
, (4.14)

whereĝ(x j) is the estimated logit. The Pearson residual for a particular group is
defined as follows:

r( f j , π̂ j) =
( f j −mj π̂ j)

√

mj π̂ j(1− π̂ j)
. (4.15)

The sum-of-squares of these residuals is the Pearson chi-square statistic

X2
p =

J

∑
j=1

r( f j , π̂ j)
2 . (4.16)

Pearson residuals can be used to identify outlying instances. In this study,
where 12 continuous predictive variables are used, a reasonable expectation is that
J ≈ N. Therefore, Pearson residuals are calculated for (almost)every instance.
Instances with high residual values indicate a pronounced difference between ob-
served and expected response, and can therefore be eliminated from the data set.
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The assumption that the Pearson goodness-of-fit statistic has a chi-square distribu-
tion with J− (p+ 1) degrees of freedom, however, is incorrect whenJ ≈ N. To
avoid this problem, a limited number of groups has to be defined (e.g. number of
groups = ceiling(2×N2/5), [213]), for which observed and expected frequencies
are calculated.

4.3.3.2 Random forests

The random forest technique [204] is an ensemble learning technique which gener-
ates many classification trees [104] that are aggregated to compute a classification.
A necessary and sufficient condition for an ensemble of classification trees to be
more accurate than any of its individual members, is that themembers of the en-
semble perform better than random and are diverse [214]. Random forests increase
diversity among the classification trees by resampling the data with replacement,
and by randomly changing the predictive variables sets overthe different tree in-
duction processes. Each classification tree is grown using another bootstrap subset
Xi of the original data setX and the nodes are split using the best split variable
among a subset ofm randomly selected predictive variables [215]. This is in con-
trast with standard classification tree building, where each node is split using the
best split among all predictive variables. The number of trees (k) and the number
of variables to split the nodes (m) are two user-defined parameters. The number
of trees (k) equals the number of bootstrap subsets used to construct the random
forest, since one classification tree is constructed based on one bootstrap subset.
Predictive variables may be continuous or categorical, circumventing the need to
translate the latter into design variables. The algorithm for growing a random
forest ofk classification trees is given in Algorithm 1. Additionally,an unbiased
estimate of the generalization error (the so called out-of-bag error, oob error [204])
is obtained during the construction of a random forest (Algorithm 2).

Breiman [204] proved that random forests produce a limitingvalue of the gen-
eralization error. As the number of trees increases, the generalization error always
converges. The number of trees (k) needs to be set sufficiently high to allow for
this convergence. Consequently random forests do not overfit. An upper bound
of the generalization error can be derived in terms of two parameters that mea-
sure how accurate the individual classification trees are and how diverse different
classification trees are [204]: (i) thestrengthof each individual tree in the forest;
and (ii) thecorrelationbetween any two trees in the forest. A classification tree
with a low error is a strong classifier. Strength and correlation are not user-defined
parameters. However, reducing the number of randomly selected predictive vari-
ables to split the nodes (m) decreases both strength and correlation. Decreasing
the strength of the individual trees increases the forest error. Whereas decreasing
the correlation decreases the forest error. Thereforem, which is a user-defined
parameter, has to be optimized in order to get a minimal random forest error.
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Algorithm 1 : The construction of a random forest.
Data: training data setX
Result: random forest consisting ofk classifiers

define parametersm andk;
for i = 1 to k do

draw a bootstrap subsetXi containing approximately 2/3 of the elements
of the original data setX;

useXi to grow an unpruned classification tree to the maximum depth,
with the following modification compared with standard classification
tree building;

(⋆) at each noded, rather than choosing the best split among all
variables, randomly selectm of the p predictive variables;

for j = 1 to m do

if j is continuousthen
find the best cutpointt j among all possible cutpoints for
predictive variablej;

else if j is categoricalthen
find the best categorical cutpointt j among all classes for
predictive variablej;

end
end

select predictive variablej with the lowest impurity at its best cutpoint
t j to define the splitting rule of noded;

if j is continuousthen
send elements withx j < t j to the left descendant, and elements with
x j ≥ t j to the right descendant;

else if j is categoricalthen
send elements withx j = t j to the left descendant, and elements with
x j 6= t j to the right descendant;

end

repeat from (⋆) on all descendant nodes to grow a classification tree to
the maximal depth;

end

For random forest model development, Random Forests Version 5.1 [216] was
used. The randomForest package within the statistical software R 2.2.1 [215] can
also be used.
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Algorithm 2 : Computing the out-of-bag error (oob error).
Data: training data setX
Result: out-of-bag error of the random forest

define parametersm andk;
for i = 1 to k do

each classification tree is constructed using a different bootstrap sample
Xi from the original data setX. Xi consists of about 2/3 of the elements
of the original data set. The elements not included inXi , called
out-of-bag elements, are not used in the construction of thei–th tree;

these out-of-bag elements are classified by the finalizedi–th tree;

end
calculate the out-of-bag (oob) error as the proportion of misclassifications
[%] over all out-of-bag elements.

4.3.4 Training versus test data sets

The lack of an independent data set for model evaluation forced to apply cross-
validation (Algorithm 3). Here, in 2-fold cross-validation, each of two disjoint

Algorithm 3 : Model construction and testing usingq-fold cross-validation.
Data: data setL
Result: q-fold cross-validated model

defineq;
randomly and uniformly split the ecohydrological data set
L = {(x1, l1), . . . ,(xN, lN)} into q disjoint test data setsLtesti (i = 1, . . . ,q);
for i=1 to q do

useLtraini = L−Ltesti as training data set to construct the model;
apply the model to test data setLtesti ;

end

parts is once used as training set and once as test set:

Ltrain1 = Ltest2 of size 853, (4.17)

Ltrain2 = Ltest1 of size 852. (4.18)

Consequently, each element(xi , l i) of the ecohydrological data set was once
used as a training instance and once as a test instance.
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4.4 Model construction, calibration and results

4.4.1 Multiple logistic regression model

The need to split the data set into two parts in order to cross-validate the results
resulted in the construction of two multiple logistic regression models MLR1 and
MLR2, constructed onLtrain1 andLtrain2 respectively. Additionally, the need to
have a binomial response (0/1) for each vegetation type forced to redesign training
and test data sets with multinomial (eleven vegetation types) response into eleven
data sets with binomial response. Therefore, each of these models (MLR1 and
MLR2) consisted of eleven submodels, i.e. estimated logit link functionsĝ(x), one
for each vegetation type. The submodels were constructed separately in two steps:
(i) submodel construction using all 14 variables as first order terms and quadratic
model terms, and (ii) bi-directional model term selection in a stepwise fashion us-
ing the AIC criterion. Casewise Pearson residual values (Eq. (4.15), [210]) were
used to identify anomalous elements in the training set (elements with a Pear-
son residual> 15). These elements were excluded from the training set and the
submodel building was repeated on the remaining training elements (L′

train1 = 811
training elements, andL′

train2= 812 training elements). Algorithm 4 gives the algo-
rithm for the construction of MLR1; MLR2 was constructed similarly using train-
ing data setLtrain2. Indications on model goodness-of-fit are given in Table 4.6.
Null model deviances (intercept only), residual deviances, likelihood ratio testG
and Pearson chi-square are tabulated for MLR1 and MLR2. Since these statisti-
cal measures follow aχ2–distribution, this distribution is used to test upon. The
residual deviances were all smaller than null deviances, and therefore, the resid-
ual multiple logistic regression models were concluded to fit better than the null
models. In order to statistically determine the degree of improvement, the likeli-
hood ratio test statisticG was applied, which indicated that all multiple logistic
regression models including significant predictive variables (as determined by the
AIC criterion) fitted the observed vegetation type distribution better than the null
models (intercept only) at the 0.01 significance level. The deviance goodness-of-
fit (Dresid) and Pearson chi-square statistic (X2

p) showed a significant fit between
observations and fitted values at the 0.01 significance level3.

After model construction, MLR1 was applied toLtest1, and MLR2 toLtest2. The
joint output of MLR1 and MLR2 included the probability of occurrenceπ̂(x) for
all eleven vegetation types for each measurement vectorx in L and thus for each
grid cell of the study area. The probabilities of occurrenceπ̂(x) for the eleven

3It is important, however, to note that observations are auto-correlated. This implies that the ob-
servations are not entirely independent [217], while the null deviance, residual deviance and Pearson
chi-square statistic assume independence. The tabulated degrees of freedom (Df) for these statistics are
therefore too high, andp-values and significance testing should therefore be interpreted with caution.
The same comment should be made for Subsection 5.3.3.1, where the same statistics were applied, and
for Section 5.3.1, where correlations between environmental variables are tested on significance.



4-20 CHAPTER4

Algorithm 4 : Construction of the multiple logistic regression model MLR1.
Data: training data setLtrain1

Result: calibrated model MLR1

for i = 1 to 11 do
make multinomial response ofLtrain1 binomial for each vegetation type;
L′

train1,i = Ltrain1 with binomial response;
end

for i = 1 to 11 do

construct submodel mlri on training data setL′
train1,i ;

select model terms stepwise using AIC;
calculateDnull,i , Dresid,i andGi ;
count number of elements inL′

train1,i and assign ton;

for j = 1 to n do

calculate Pearson residualj ;

if Pearson residualj > 15 then

excludej from L′
train1,i ;

go back to construct submodel mlri on training data setL′
train1,i ;

end
end

end

group submodels mlr1, . . . ,mlr11 into MLR1;

different vegetation types do not necessarily sum up to 1 pergrid cell, because the
logit link functionsĝ(x) were calculated separately for the eleven vegetation types.
Based on a simpledecision rule, i.e. for each grid cell, the vegetation type with the
highest probability of occurrence is the predicted vegetation type, spatially dis-
tributed predictions of vegetation type occurrences were made (Fig. 4.7(a)). Out
of the 1705 grid cells, 1182 (69.3%) were predicted correctly, 524 (30.7%) in-
correctly. Visual inspection of the results (Fig. 4.7(a)) led to the conclusion that:
(i) predictions were good for sites with little vegetation type diversity (Zwarte
Beek); (ii) considerable numbers of predictions did not coincide with observa-
tions for the other, more diverse sites; and (iii) within thediverse sites, predic-
tions were much better for large homogeneous vegetation clusters (e.g. northern
area of Vorsdonkbos-Turfputten). However, for small and isolated patches and for
boundary grid cells between neighbouring vegetation types, predictions were less
accurate.
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TABLE 4.6– Model goodness-of-fit.

Vegetation type Dnull Df Dresid Df G = Dnull −Dresid Df X2
p Df

MLR1
Alno–Padion 472.01 810 107.15∗ 789 364.86∗ 21 130.68∗ 789
Arrhenatherion elatioris 548.49 810 173.10∗ 791 375.39∗ 19 403.18∗ 791
Calthion palustris 548.49 810 150.02∗ 793 398.47∗ 17 262.20∗ 793
Carici elongatae – Alnetum glutinosae 665.72 810 354.11∗ 799 311.61∗ 21 364.39∗ 799
Caricion curto–nigrae 581.79 810 0∗ 790 581.79∗ 20 0∗ 790
Cirsio – Molinietum 124.92 810 0∗ 798 124.92∗ 12 0∗ 798
Filipendulion 813.87 810 165.94∗ 794 647.93∗ 16 385.33∗ 794
Phragmitetalia 282.24 810 95.07∗ 803 187.17∗ 7 89.31∗ 803
Magnocaricionwith Phragmites 539.91 810 133.25∗ 795 406.66∗ 15 176.49∗ 795
Magnocaricion 300.75 810 69.06∗ 795 231.69∗ 15 92.14∗ 795
Sphagno – Alnetum glutinosae 256.70 810 88.15∗ 800 168.55∗ 10 95.42∗ 800

MLR2
Alno–Padion 513.73 811 134.01∗ 789 379.72∗ 22 122.98∗ 789
Arrhenatherion elatioris 452.92 811 184.44∗ 788 268.48∗ 23 235.94∗ 788
Calthion palustris 617.69 811 166.77∗ 796 450.92∗ 15 256.74∗ 796
Carici elongatae – Alnetum glutinosae 683.70 811 388.31∗ 795 295.39∗ 16 384.82∗ 795
Caricion curto–nigrae 609.93 811 13.62∗ 791 596.31∗ 20 15.18∗ 791
Cirsio – Molinietum 141.45 811 22.30∗ 790 119.15∗ 21 25.31∗ 790
Filipendulion 788.81 811 259.70∗ 791 529.11∗ 20 387.42∗ 791
Phragmitetalia 236.89 811 69.49∗ 795 167.4∗ 16 84.85∗ 795
Magnocaricionwith Phragmites 222.39 811 133.25∗ 793 89.14∗ 18 254.34∗ 793
Magnocaricion 318.85 811 84.48∗ 795 234.37∗ 16 109.50∗ 795
Sphagno – Alnetum glutinosae 282.33 811 92.21∗ 789 190.12∗ 22 90.10∗ 789

Dnull = deviance of the null model (intercept only model); Df = degrees of freedom;Dresid= residual deviance;G = the likelihood ratio test;X2
p

= Pearson chi-square goodness-of-fit. Significance at the 0.01 level (∗) are indicated for the residual deviance, likelihood ratioand the Pearson
chi-square goodness-of-fit tests.
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4.4.2 Random forest model

A schematic overview of random forest model construction and testing is given in
Fig. 4.5. For a more detailed overview of the random forest model construction,
the reader is referred to Algorithms 1 and 2. The random forest technique has
two important user-defined parameters: the number of trees (k) and the number
of randomly selected variables to split the nodes (m). These parameters should
be optimized in order to minimize the generalization error,which is a machine
learning function used to investigate the machine learningalgorithm (here, the
random forest algorithm) performance through iteration ofthe learning process
(here, the calculation of additional classifiers (increasein k) and the increase of
variebles to split the nodes (m)).

Breiman [204] proved that random forests do not overfit. A limiting value of
the generalization error is obtained as more trees are added. Two random forest
submodels RF1 and RF2 consisting of 10000 trees were constructed onLtrain1 and
Ltrain2 respectively, both with two randomly selected variables tosplit the nodes
(m= 2). Fig. 4.6 presents the error in function of the number of trees. Two distinct
forms of curves are distinguishable: (i) oob error and (ii) test set error. RF1 oob
error and RF2 oob error represent the oob error, which was proven to be a good es-
timator of the generalization error [204], in function of the number of trees. From
approximately 100 trees onwards, the oob error converged toabout 20% for RF1,
and to about 25% for RF2. Adding more trees did not decrease nor increase the
oob error. The two other curves represent the test set error in function of the num-
ber of trees. Test set error values for different numbers of trees were computed by
applying RF1 and RF2 toLtest1 andLtest2 respectively, during the random forest
building process, and represent the proportion of incorrectly predicted test set el-
ements. Test set error values for both test sets were around 23% at the end of the
random forests construction. Similarly as for the oob error, the test set error con-
verged from 100 trees onward. The conclusions that could be drawn from Fig. 4.6
are: (i) the oob error is a suitable estimator to detect errorconvergence, (ii) in
accordance with Breiman [204] the random forest algorithm does not overfit: a
limiting value for both oob error and test set error is produced, and (iii) 1000 trees
can be concluded to be an appropriate size for both random forests in this study.

As stated in the random forest description, an additional random factor is
included in the random forest algorithm compared with usualclassification tree
building: at each node a random subset ofmpredictive variables has to be specified
and the best splitting variable among thosem is used to split the node. The value
of m is constant during the forest growing. It affects both the correlations between
the trees and the strength of the individual trees. Reducingm reduces correlation
and strength, increasingm increases both. Two random forests RF1 and RF2 were
constructed for different values ofm. Error values are tabulated in Table 4.7. Both
the oob error for RF1 and RF2 constructed onLtrain1 andLtrain2 respectively, and
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1. Training and test data sets

Ltrain1 Ltest1

x1 l1 x1 l1
x2 l2 x2 l2
x3 l3 x3 l3
x4 l4 x4 l4
x5 l5 x5 l5
x6 l6 x6 l6
x7 l7 x7 l7
x8 l8 x8 l8
x9 l9 x9 l9
...

...
...

...
xV lV xW lW

2. Construction of the random forest (RF1) consisting ofk classification trees

(2a) takei (i = 1, . . . ,k) bootstrap subsamples fromLtrain1

bootstrap sample oob sample
1 bootstrap1 oob1 = Ltrain1−bootstrap1
2 bootstrap2 oob2 = Ltrain1−bootstrap2
...

...
...

k bootstrapk oobk = Ltrain1−bootstrapk

(2b) use thek bootstrap samples to constructk classification trees

FIGURE 4.5– Schematic overview of the construction of the random forest model, and its
application on a test data set (example of RF1, the construction and testing setup of RF2 is
identical).
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(2c) apply classification treei to oobi (i = 1, . . . ,k)

3. Apply the random forest (RF1) to the test data setLtest1

FIGURE 4.5 – continued. . .

test set errors for RF1 and RF2 applied toLtest1andLtest2respectively, are given.

The oob error showed minimal values of 19.91% for RF1 and 24.38% for RF2,
both whenm = 3. The test set error for RF1 applied toLtest1 ranged between a
minimum of 22.74% form= 5 variables and a maximum of 25.32% form= 14
variables. For RF2 applied toLtest2similar error values were found for the different
mvalues. A minimum of 23.42% was found form= 3 and a maximum of 25.17%
for m = 14. Overall, low oob error and test set error values were observed for
m = 3. Therefore the oob error proved to be a good tool for optimizing m. In
general little difference in error was found form∈ {2,3,4,5,8}. The optimal
range ofmwas concluded to be quite wide (in accordance with Breiman and Cutler
[218]). Nevertheless, it was decided to construct RF1 and RF2 with m= 3.

Based on the above findings (i.e. 1000 is a suitable number of trees andm= 3
results in a minimal error), the random forest algorithm wasrun onLtrain1 to create
RF1 consisting of 1000 classification trees with three random predictive variables
to split the nodes (m= 3). The same was done onLtrain2 to create RF2. Next, both
random forests were applied to test data sets: RF1 onLtest1and RF2 onLtest2.
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FIGURE 4.6– Out-of-bag (oob) error and test set error converge when more trees are added
to the random forest.Ltrain1 oob error andLtrain2 oob error are the oob errors calculated
during the construction of RF1 and RF2 respectively.Ltest1error andLtest2error are the test
set error of RF1 and RF2 applied to their respective test datasets.

TABLE 4.7 – Oob error values for RF1 and RF2 built onLtrain1 andLtrain2 respectively.
Test set error values for RF1 and RF2 applied toLtest1andLtest2respectively.

m= 1 m= 2 m= 3 m= 4 m= 5 m= 8 m= 11 m= 14
aRF1 21.78 20.26 19.91 20.37 20.61 20.02 20.37 21.19
aRF2 26.73 24.62 24.38 24.85 24.62 24.38 24.62 24.38
bLtest1 24.62 23.33 23.33 23.33 22.74 23.68 24.38 25.32
bLtest2 25.06 23.77 23.42 23.77 24.24 24.36 24.71 25.17
a = oob error,b = test set error. Minimal values are underlined.

Each measurement vectorxi of the test sets was classified by each of thek trees
in the ensemble as a unique vegetation typec j ∈ {c1, . . . ,c11}. Consequently, each
measurement vectorxi of the test sets is classified 1000 times and the proportion
of votes over all 1000 trees for a vegetation type is interpreted as the probability of
occurrence of that vegetation type:

P(c j) = Ncj /Ntot , (4.19)

with P(c j) is the probability of occurrence of vegetation typec j , Ncj the number of
trees classifying the vegetation type as vegetation type cj , andNtot (= k) the total
number of classification trees in the random forest (hereNtot = 1000).

This probability of occurrence was calculated for the eleven different vegeta-
tion types for each grid cell in the four study sites. The samedecision ruleas in
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multiple logistic regression modelling was used:for each grid cell the vegetation
type with the highest probability of occurrence is the predicted vegetation type.
Predictions were correct in the central area of all vegetation types (Fig. 4.7(b)).
Predictions for grid cells at the boundary between different vegetation types and
isolated cells were less accurate. Nonetheless, with 1307 (76.7%) correct pre-
dictions and 398 (23.3%) wrong predictions, the overall prediction accuracy was
better than the prediction accuracy of the multiple logistic regression model which
made 1182 (69.3%) correct predictions and 524 (30.7%) incorrect predictions.
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FIGURE 4.7 – Predicted vegetation types with the multiple logistic regression model (a)
and with the random forest model (b). The observed vegetation distribution (�) is overlaid
with the predicted vegetation distribution (◦). For each grid cell, the vegetation type with the
highest probability of occurrence, as modelled with the multiple logistic regression model
(a) and with the random forest model (b), is the predicted vegetation type.
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FIGURE 4.5 – continued. . .
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4.5 Model evaluation

4.5.1 Observed versus predicted

The multiple logistic regression model and the random forest model consisted of
two submodels: MLR1 and MLR2, and RF1 and RF2 respectively. This split
resulted from 2–fold cross-validation. Vegetation type occurrences were predicted
by applying MLR1 toLtest1, MLR2 to Ltest2and RF1 toLtest1, RF2 toLtest2. From
this point on, the joined predictions of the two parts of eachmodel will be referred
to as predictions made by the multiple logistic regression model and the predictions
made by the random forest model. The performance of both models is discussed
in this model evaluation section using different techniques.

Cohen’s kappa test
Despite its weaknesses [219], the Cohen’sκ test [220] was used to evaluate differ-
ences between observations and predictions. A confusion matrix was constructed
in which observed and predicted vegetation types are given for each grid cell using
the multiple logistic regression model (Table 4.8(a)) and the random forest model
(Table 4.8(b)). For each of the confusion matrices (Table 4.8) the Cohen’s kappa
was calculated as [220]:

κ =
Po−Pe

1−Pe
(4.20)

wherePo is the proportional observed agreement, andPe the proportional agree-
ment expected by chance.Po andPe are calculated as

Po =
c

∑
i=1

Pii =
c

∑
i=1

nii/N (here withc = 11 vegetation classes)

Pe =
c

∑
i=1

P·i ·Pi· =
c

∑
i=1

[n·i ·ni·]/N (here withc = 11 vegetation classes)

whereN is the total number of elements (here, 1705 grid cells),nii the number
of elements in the diagonal cellii , n·i andni· are the totals of columni and row
i, respectively.κ values are negative when the agreement between observations
and predictions is worse than expected by chance, and reaches 1 in case of per-
fect agreement. Aκ value of 0.651 was found for the multiple logistic regres-
sion model: there is a substantial agreement between observations and predictions
(p < 0.001). A κ value of 0.734 was found for the random forest model: there is
a substantial agreement between observations and predictions (p < 0.001). Thisκ
value is higher than the one found for the multiple logistic regression model.

McNemar test
ForL = Ltest1∪Ltest2(1705 elements spatially covering the whole study area) 1182
correct predictions were made by the multiple logistic regression model. The
random forest model made 1307 correct predictions. Based onthe conclusions



4-30 CHAPTER4

TABLE 4.8 – Model performances represented by confusion matrices in which observed
vegetation types are compared with predicted vegetation types using the multiple logistic
regression model (a) and the random forest model (b).

(a) Multiple logistic regression model

observed
AP Ar Cp Ce Cc CM Fi Ma MP Ph SA

predicted AP 111 7 0 33 0 0 3 0 0 4 0
Ar 6 89 11 18 0 0 22 0 12 1 0
Cp 0 19 156 2 0 0 13 7 14 0 0
Ce 28 5 3 136 2 0 5 3 13 13 30
Cc 0 1 3 2 181 5 2 0 0 0 5
CM 0 0 0 5 11 21 2 0 0 0 2
Fi 0 37 6 10 1 0 272 3 19 1 1
Ma 0 0 10 3 0 0 6 29 8 2 0
MP 1 3 6 6 0 0 9 16 105 5 0
Ph 1 0 6 10 0 0 1 5 5 54 0
SA 0 0 0 25 3 2 0 0 0 0 28

(b) Random forest model

observed
AP Ar Cp Ce Cc CM Fi Ma MP Ph SA

predicted AP 113 7 0 27 0 0 2 0 0 5 0
Ar 3 102 11 2 0 0 18 0 11 0 0
Cp 0 11 154 1 0 0 9 5 12 1 0
Ce 28 5 3 189 1 1 3 0 7 15 29
Cc 0 0 0 2 189 4 0 0 0 0 4
CM 0 0 0 0 6 23 0 0 0 0 0
Fi 0 29 4 2 0 0 286 9 5 1 1
Ma 0 0 14 2 0 0 5 34 8 0 0
MP 1 7 13 5 0 0 11 13 132 5 0
Ph 2 0 2 6 0 0 1 2 1 53 0
SA 0 0 0 14 2 0 0 0 0 0 32

of [221], the McNemar test [222] was selected to compare the performances of the
multiple logistic regression model and the random forest model. Predictions made
by both models for all cases ofL (as presented in Fig. 4.7) were compared with
the observations and used to construct the following contingency table (Table 4.9)
whereN = n00 + n01 + n10 + n11 is the total number of elements in the ecohy-
drological data set (Table 4.9). Under the null hypothesis,the two models should
have the same error rate, which means thatn01 = n10. McNemar’s test is based on a
χ2–test for goodness-of-fit that compares the distribution ofcounts under the null
hypothesis to the observed counts. The following statisticis χ2–distributed with 1
degree of freedom:

M =
(|n01−n10|−1)2

n01+n10
. (4.21)
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TABLE 4.9– Contingency table for the McNemar test.

number of grid cells misclassified
by both MLR and RF

number of grid cells misclassified
by MLR but not by RF

n00 n01

number of grid cells misclassified
by RF but not by MLR

number of grid cells misclassified
neither by MLR nor by RF

n10 n11

If the null hypothesis is correct, then the probability thatthis quantity is greater
thanχ2

0.95,1 = 3.84 is less than 0.05. Over the entire study arean01 = 216 and
n10 = 91. The value of the test statisticM was 50.1 (p < 0.001). The two models
had significantly different performances at the 0.001 significance level. Inspecting
then01 andn10 values led to the conclusion that this significant difference in per-
formance was due to a better performance of the random forestmodel compared
with the multiple logistic regression model.

Evaluation statistics for each vegetation type separately
To assess and compare model performances for each individual vegetation type,
different test statistics were used. First, the McNemar test was used to identify
differences in performance of both models for each vegetation type separately.
Furthermore, predicted vegetation types by the two models were compared with
observed vegetation types for the eleven vegetation types separately using a con-
fusion matrix (see also further in Table 6.2, e.g. [223,224]):

TABLE 4.10– Confusion matrix. TP stands for True Positive, FP for FalsePositive, FN for
False Negative and TN for True negative.

observed
present absent

predicted present TP FP
absent FN TN

In such a confusion matrix, observations are compared with model predictions
for each vegetation type separately. Given a test instance (grid cell from cross-
validation test data set), there are four possibilities with respect to the vegetation
type of interest: (i) if the observed and modelled vegetation type of a test instance
coincide, and this vegetation type is the one of interest, the test instance is counted
for as true positive (TP), (ii) if the observed and predictedvegetation type of a test
instance do not coincide, and the predicted vegetation typeis the one of interest, the
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test instance is counted for as false positive (FP), (iii) ifthe observed and predicted
vegetation type of a test instance do not coincide, and the observed vegetation type
is the one of interest, the test instance is counted for as false negative (FN), and
(iv) if the observed and predicted vegetation type of a test instance coincide, but
this vegetation type is not the one of interest, the test instance is counted for as true
negative (TN).

Using these four possible outcomes (TP, FP, FN, TN), severalstandard terms
have been defined for a confusion matrix [223,224] of which following were used
because of our main interest in correctly predicting presences:

(i) Precision, p (=positive predictive power): the proportion of predicted pres-
ences that are observed to be present rather than absent, TP/(TP + FP);

(ii) Recall, r (=sensitivity, =true positive rate): the proportion of observed pres-
ences that were predicted correctly, TP/(TP + FN)

Precision and recall were combined by means of the ‘F-measure’ [225]. A
weighted version of theF-measure was used:

Fβ(p, r) =
(β2 +1)pr

β2p+ r
, (4.22)

whereβ ∈ ]0,+∞[ is a weighing factor that controls the relative importance of pre-
cision versus recall. Forβ = 1, theF-measure is balanced, and precision and recall
have equal importance. TheF-measures used wereF0.5 (precision twice as impor-
tant as recall),F1 (equal weights) andF2 (recall twice as important as precision).
The magnitude ofF varies from 0, when all observed presences are predicted in-
correctly, to 1, when predictions and observations perfectly match. MoreoverF
is strongly oriented towards the lower of the two values p andr; therefore this
measure can only be high when both p and r are high.

Results of the McNemar test and values for precision, recalland theF-measure
are summarized in Table 4.11 for the individual vegetation types. TheF-measures
for the two models over all vegetation types were analysed using two test statis-
tics: (i) a simple ranking and (ii) the Wilcoxon signed rank test. Simple ranking
assigned performance scores per vegetation type: 2 for the best performing model
and 1 for the worst and 1.5 in case of a tie. After adding up those values for each
of theF-measures, the highest scoring model was concluded to perform best. The
Wilcoxon signed rank test [226] is a non-parametric pairwise comparison test. It
allows to test whether the median values of the differentF-measures over the dif-
ferent vegetation types are identical for the two models.

The McNemar test showed a significant difference in performance between the
multiple logistic regression model and the random forest model at the 0.05 signif-
icance level for the vegetation typesArrhenatherion elatioris, Carici elongetae
– Alnetum glutinosae, Caricion curto–nigrae, Filipendulion andMagnocaricion
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TABLE 4.11– McNemar test for comparison of MLR and RF model performances for each
vegetation type individually. Precision, recall, and three F-measures (F0.5, F1, F2) for MLR
and RF modelling results are given for each vegetation type separately as well.
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McNemar test n y n y y n y n y n n
n01 9 22 12 69 10 3 28 11 38 5 9
n10 7 9 14 16 2 1 14 6 11 6 5

M
L

R

precision 0.70 0.56 0.74 0.57 0.91 0.51 0.78 0.50 0.69 0.66 0.48
recall 0.76 0.55 0.78 0.54 0.91 0.75 0.81 0.46 0.60 0.68 0.42
F0.5 0.71 0.56 0.75 0.57 0.91 0.55 0.78 0.49 0.67 0.66 0.47
F1 0.73 0.56 0.76 0.56 0.91 0.61 0.79 0.48 0.64 0.67 0.45
F2 0.74 0.55 0.77 0.55 0.91 0.69 0.80 0.47 0.61 0.67 0.43

R
F

precision 0.73 0.69 0.80 0.67 0.95 0.79 0.85 0.54 0.70 0.79 0.67
recall 0.77 0.63 0.77 0.75 0.95 0.82 0.85 0.54 0.75 0.66 0.48
F0.5 0.74 0.68 0.79 0.69 0.95 0.80 0.85 0.54 0.71 0.76 0.62
F1 0.75 0.66 0.78 0.71 0.95 0.81 0.85 0.54 0.73 0.72 0.56
F2 0.76 0.64 0.77 0.74 0.95 0.82 0.85 0.54 0.74 0.68 0.51

McNemar test: y = significant difference in performance between the MLR model and the RF model, n = no
significant difference, both at the 0.05 significance level.n01 andn10 are error rates of the MLR model and the
RF model respectively to calculate the McNemar test statistic M, see Eq. (4.21).

with Phragmites. These differences resulted from a better performance of the ran-
dom forest model as can be seen from then01 andn10 values in Table 4.11. The
absence of significant differences between both models for the remaining vegeta-
tion types reflects comparable performances for both modelsdue to a spatial distri-
bution in large homogeneous areas for which predictions by both models are good
(e.g.Calthion palustris, Phragmitetea) or due to spatial limitations of the vegeta-
tion type (e.g.Alno–PadionandMagnocaricionare only found at Snoekengracht
and Doode Bemde respectively).

For precision and recall the same tendencies were noticeable for the two mod-
els. Precision forSphagno–Alnetum glutinosaeandMagnocaricionwere low for
both models, meaning that many cells with other vegetation types — mainlyCarici
elongetae – Alnetum glutinosae— were predicted to beSpagno–Alnetum gluti-
nosaeand many cells — mainlyMagnocaricionwith PhragmitesandCalthion
palustris— were predicted to beMagnocaricion(Fig. 4.7 and Table 4.8). This
is somewhat understandable as these are spatially adjacent, comparable vegetation
types with dominance ofAlnus glutinosa(L.) Gaertn. in bothSphagno–Alnetum
glutinosaeandCarici elongetae – Alnetum glutinosae, and the higher abundance
of Phragmites australisas main difference betweenMagnocaricionandMagno-
caricion with Phragmites(see Section 3.2.2 and Table 3.2). Recall was lowest
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for Sphagno–Alnetum glutinosaeandMagnocaricionfor the multiple logistic re-
gression and the random forest model. In Fig. 4.7 the large number of wrong
predictions forSphagno–Alnetum glutinosaeandMagnocaricionin Vorsdonkbos-
Turfputten and Doode Beemde are clearly noticeable. A similar explanation as for
precision might be given. Many grid cells with observedSphagno–Alnetum gluti-
nosaeandMagnocaricionvegetation were predicted to be the related vegetation
typeCarici elongetae – Alnetum glutinosaeandMagnocaricionwith Phragmites,
respectively. Both models had high precision and recall forCaricion curto–nigrae
probably resulting from well-defined differences of the environmental conditions,
as concentrations of Mg2+, Ca2+ and Cl− are markedly lower at Zwarte Beek
where this vegetation type was predominantly found (see Section 3.3.2.2).

The stated findings for precision and recall were reflected intheF-measures.
F1-values ranged between 0.45 and 0.91 for the multiple logistic regression model
and between 0.56 and 0.95 for the random forest model. One-by-one comparison
showed a better performance of the random forest model for all threeF-measures
for each of the eleven vegetation types. Based on the simple ranking statistic, all
threeF-measures were found to be better for the random forest model(11 for the
multiple logistic regression model versus 22 for the randomforest model). The
Wilcoxon signed rank test statistic indicated significantly better performances for
all threeF-measures for the random forest model compared to the multiple logistic
regression model at the 0.01 significance level (p = 0.003).

4.5.2 Prediction probabilities

Threshold dependent evaluation
The multiple logistic regression model and the random forest model computed the
probabilities of occurrence for each individual vegetation type for each spatially
distributed grid cell. Probability distributions for correct predictions and incorrect
predictions gave an indication of the strength of the predictions (Fig. 4.8). Cor-
rect predictions were made with high probability, especially for the MLR model:
half of the correct MLR model predictions had probabilitieshigher than 0.9, while
one-third of the correct RF model predictions had probabilities higher than 0.9. A
visual inspection of the probabilities underlying each prediction (not shown) in-
dicated that correct predictions with high probabilities were found in the central
areas of homogeneous vegetation clusters. Probabilities decreased toward the mar-
gins of those areas. Incorrect prediction probabilities tended to be rather high for
the MLR model, with almost 20% of the incorrect predictions having higher prob-
abilities than 0.9. Incorrect RF model prediction probabilities showed a maximum
in the ]0.4,0.5] interval indicating that incorrect predictions are mainly made for
grid cells with several vegetation types with comparable, low to moderate prob-
abilities. Only 2% of the incorrect predictions had probabilities higher than 0.9.
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Spatial identification of these grid cells indicated them asisolated vegetation types,
surrounded by other vegetation types.

Threshold independent evaluation
Receiver operating characteristic (ROC) curves are frequently used for the eval-
uation of classification accuracy [210, 227]. This curve, originating from signal
detection theory, is widely used in clinical sciences, but recently also in earth sci-
ences [51, 228–231]. ROC graphs are two-dimensional graphsin which the true
positive rate (=recall), tpr, is plotted on the Y-axis, and the false positive rate, fpr,
on the X-axis, with

tpr =
observed positives correctly classified

total observed positives
=

TP
TP + FN

(4.23)

fpr =
observed negatives incorrectly classified

total observed negatives
=

FP
FP + TN

. (4.24)

The true positive rate measures the fraction of observed presences (vegetation type
present in grid cells) that are predicted correctly. The false positive rate measures
the fraction of observed absences (vegetation type absent in grid cells) that are
incorrectly predicted as present.

The multiple logistic regression model and the random forest model computed
the probabilities of occurrence of eleven vegetation types. Earlier we used the
decision rule that the most probable vegetation type (amongthe eleven possible
vegetation types) is the predicted one. Here, in order to construct ROC curves for
each vegetation type separately, the modelled probabilities of occurrence are used
to construct several confusion matrices, one for each possible cutpoint. A cutpoint
represents a threshold probability above which the vegetation type is modelled to
be present. The curve generated by plotting the tpr versus the fpr for all possible
cutpoints is the ROC curve. A simple example of how a ROC curveis generated
is given in Fig. 4.9.

The area under the ROC curve (AUC), which ranges from zero to one, provides
a measure of the ability of the model to discriminate betweengrid cells where
the vegetation type of interest is present versus absent [210]. AUC describes the
likelihood that the observed vegetation type for a grid cellhas a higher modelled
probability of occurrence in comparison with grid cells where the vegetation type
is absent, and when the AUC value is higher than 0.5 the model does better than
random guessing. Both models had high AUC–values, reflecting their excellent
discrimination abilities (Table 4.12).Alno – Padionfor example, has an AUC–
value of 0.967 under the multiple logistic regression model, strongly indicating
that grid cells in the study area where theAlno – Padionvegetation is present
have a higher modelled probability ofAlno – Padionoccurrence than grid cells
whereAlno – Padionis absent. Nevertheless, the comparison of AUC–values over
all vegetation types using Wilcoxon signed rank statistic indicated a significantly
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(a) Multiple logistic regression model

(b) Random forest model

FIGURE 4.8 – Probability distributions of predictions made with the multiple logistic re-
gression model (a) and the random forest model (b) (N = 1705).



VEGETATION DISTRIBUTION MODELLING 4-37

nr. observed modelled probability(P(c j)) A B C
1 present 0.8 present present absent
2 absent 0.7 present present absent
3 absent 0.1 present absent absent
4 present 0.6 present present absent
5 absent 0.3 present absent absent
6 present 0.9 present present absent
7 present 0.9 present present absent
8 present 0.4 present absent absent
9 absent 0.1 present absent absent
10 present 0.5 present absent absent

A
P(c j) = 0
6 4
0 0
tpr=6/6=1
fpr=4/4=1

B
P(c j) = 0.5
4 1
2 3
tpr=4/6=2/3
fpr=1/4

C
P(c j) = 1
0 0
6 4
tpr=0/6=0
fpr=0/4=0

FIGURE 4.9 – Example of how a ROC graph is created. Ten test instances of which the
presence/absence of a vegetation type is observed and the probability of occurrence is mod-
elled (P(c j)), are used to calculate the true positive rate (tpr) and false positive rate (fpr)
of confusion matrices constructed by applying three different threshold probabilities: (A)
P(c j) = 0, (B) P(c j) = 0.5, and (C)P(c j ) = 1. The ROC curve generated when all possible
threshold probabilities are used is presented, and the three (fpr,tpr) pairs calculated are indi-
cated (×). The dashed diagonal line (fpr = tpr) represents the ROC curve when vegetation
types are classified by random guessing. The shaded area under ROC curve (AUC) has an
area of 0.875, the AUC under the dashed ROC curve equals 0.5.

higher median AUC–values for the random forest model at the 0.01 significance
level.
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TABLE 4.12– Area under ROC curves for the MLR and the RF model.

Vegetation type MLR model RF model
Alno – Padion 0.967∗ 0.983∗

Arrhenatherion elatioris 0.920∗ 0.950∗

Calthion palustris 0.927∗ 0.981∗

Carici elongatae – Alnetum glutinosae 0.880∗ 0.949∗

Caricion curto–nigrae 0.969∗ 0.999∗

Cirsio – Molinietum 0.758∗ 0.886∗

Filipendulion 0.923∗ 0.977∗

Phragmitetalia 0.904∗ 0.963∗

Magnocaricionwith Phragmites 0.910∗ 0.969∗

Magnocaricion 0.968∗ 0.983∗

Sphagno – Alnetum glutinosae 0.950∗ 0.982∗
∗ using the model for predicting vegetation type occurrence is better than ran-
dom guessing at the 0.001 significance level.

4.6 Discussion and conclusions

4.6.1 Statistical model comparison

This study presented an application of two different predictive ecohydrological
distribution models. The first model used the widely appliedmultiple logistic re-
gression technique, and the second model a recently developed ensemble learn-
ing technique called random forest. Both models calculatedthe probability of
occurrence of eleven different vegetation types, on which the prediction of the
spatial vegetation distribution was based. An ecohydrological data set with hy-
drogeochemical variables and related vegetation types forFlemish lowland valley
ecosystems was randomly and uniformly split into two training data sets for 2–
fold cross-validation of both models. After model construction and calibration,
the prediction accuracy of both models was assessed and compared. Following
conclusions could be drawn:

1. The multiple logistic regression model made 69.3% correct predictions and
the random forest model 76.7%. The McNemar test statistic indicated a
difference in performance between the models at the 0.001 significance level
(p < 0.001). Inspection of the results assigned this difference toa better
performance of the random forest model compared to the multiple regression
model.

2. The overall better performance of the random forest modelcould be as-
signed to significantly higher proportion of correct predictions forArrhen-
atherion elatioris, Carici elongetae – Alnetum glutinosae, Caricion curto–
nigrae, FilipendulionandMagnocaricionwith Phragmites(see Table 4.11).



VEGETATION DISTRIBUTION MODELLING 4-39

3. TheF-measures, which combines precision and recall, were significantly
better for the random forest model (p = 0.003).

4. The multiple logistic regression model made correct predictions with higher
probabilities than the random forest model (Fig. 4.8). Unfortunately, the
incorrect predictions were also made with high probabilities. The random
forest model made incorrect predictions with lower probabilities, which in-
dicated that the model misclassified grid cells where several vegetation types
were expected, all with comparable, moderately low probabilities. Both
models predicted central areas of homogeneous areas correctly with high
probabilities, and isolated grid cells incorrectly with high probabilities.

5. Model accuracy was assessed by means of ROC curves for the vegetation
types separately. The area under the curves (AUC) was high for both mod-
els, they were both much better for predicting vegetation occurrence than
random guessing (p < 0.001). Although both models performed well, the
random forest model was found to have higher discriminativepower than
the multiple logistic regression model at the 0.01 significance level.

The overall conclusion of this chapter is that the random forest modelling tech-
nique has the ability to lead to better predictive ecohydrological distribution mod-
els.

4.6.2 Putting the random forest model in a broader perspective

Major applications of the random forest classifier are foundin bio-informatics
and genetics (e.g. [232, 233]) and within the earth sciencesin remote sensing
(e.g. [234–236]). At the time this study was conducted, no example of the use
of the random forest technique in ecological distribution modelling was found,
and therefore comparison possibilities with literature were few. However, in two
recent publications, Garzon et al. (2006, [190]) developeda random forest model
to predict habitat suitability for Scots pine on the IberianPeninsula, and Prasad et
al. (2006, [189]) used the random forest technique to model future distributions
of Loblolly pine, Sugar maple, American beech and White oak in North America
under a climate change scenario. Both studies found superior distribution mod-
elling performances of the random forest model compared with other techniques.
Therefore the conclusion of this chapter can be generalized: the random forest
modelling technique has the ability to lead to better distribution models for a vari-
ety of species and vegetation types in a variety of environments.

Nevertheless, general remarks on the random forest model should put its imple-
mentation within a broader perspective. As the random forest models statistically
relate the occurrence of vegetation types to their present environment, the incorpo-
ration of functional relationships between environmentalgradients and vegetation
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type distribution is not straightforward, and only partly possible in these empir-
ical modelling approaches (this holds for the multiple logistic regression model
as well). A first tendency towards more mechanistic modelling can be achieved
by selecting causal variables (with direct physiological impact) as environmental
variables. Austin [97] distinguished different classes ofenvironmental gradients:
(i) indirect gradients with no physiological effect on plant growth or competition
(e.g. latitude or longitude); (ii) direct gradients with a direct physiological influ-
ence on growth without being consumed by plants (e.g. temperature and pH); and
(iii) resource gradients including light, water and nutrients. The position of an en-
vironmental gradient in the chain of processes that link thegradient to its impact
on the plant is either proximal or distal [97]. The most proximal gradient will be
the causal variable determining the plant response. When proximal resources and
direct gradients are used as environmental variables in modelling, the model will
gain robustness and extend its range of applicability.

However, even if only proximal gradients were used in this modelling exercise,
predictions would not completely fit the observations sinceecological processes
such as competition, predation and dispersal and other spatially autocorrelated
features were not included. These processes tend to be hard to introduce into pre-
dictive models [237] because the actual vegetation type distribution is a result of
both environmental conditions and ecological processes and their relative impor-
tance is hard to capture. Consequently, predictions made bythe presented models
are rather to be interpreted as habitat suitability maps forthe different vegetation
types [135].

In order to gain functionality of the random forest model, further research
should focus on its modelling ability with smaller data subsets (see Chapter 5,
comprising (most likely) uncorrelated proximal predictive variables. There are
several reasons to do so [238]: (i) the model will gain robustness, with higher
confidence on future predictions, (ii) some causal relationships can possibly be
indicated and (iii) the utilization of the model would become less costly. Further-
more, model generality should be tested on a spatially independent data set since
the use of accuracy estimates based on 2-fold cross-validation data and on spatially
independent evaluation data tend to differ [151] (see Chapter 6).



5
Identification of important

environmental variables in eco-
hydrological distribution modelling

5.1 Introduction

Exploring the distribution of plant species and vegetationtypes is a central goal
in ecology. Numerous studies have examined environmental gradients in rela-
tion to plant species or vegetation type distributions in various ecosystems (e.g.
[81, 239–241]). Most modelling approaches developed for assessing species or
vegetation type distributions have their roots in quantifying species-environment
or vegetation-environment relationships [237]. Distribution models are mostly em-
pirical models relating field observations to environmental variables based on sta-
tistically or theoretically derived responses [51]. Austin [97] distinguished differ-
ent classes of environmental variables: (i) indirect variables with no physiological
effect on plant growth or competition (e.g. latitude or longitude); (ii) direct vari-
ables with a direct physiological influence on growth without being consumed by
the plant; and (iii) resource variables including light, water and nutrients. The
position of an environmental variable in the chain of processes that link the vari-
able to its impact on plants is either proximal or distal [97]. The most proximal

The content of this chapter is submitted as J. Peters, N. E. C.Verhoest, B. De Baets, R. Sam-
son and P. Boeckx.Wetland vegetation distribution modelling for the identification of constraining
environmental variablesLandscape Ecology, accepted, 2008 (DOI : 10.1007/s10980-008-9261-4).
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variables will causally determine plant responses.

A common feature of many species distribution models is thatthere are often
many candidate predictive variables [99]. Additionally, variables are frequently
significantly intercorrelated (multicollinearity) so that identifying the causal vari-
ables is problematic [242]. This large number of variables may result in overfitting
with resulting models performing well in the context of the data set used to create
them but not robust when applied elsewhere [99]. However, selecting the most
influential variables in the model is not an easy task.

Multiple logistic regression within the framework of generalized linear models
(GLM, [93]) is very popular and often used for modelling vegetation type distri-
butions (Chapter 4 and e.g. [51, 100]). Within these modelling strategies stepwise
selection procedures have been used for selecting the most influential variables.
However, serious shortcomings have been reported [243] andnew approaches have
been proposed, such as hierarchical partitioning [242,244,245]. Another technique
which has been applied in distribution modelling is random forests [204] (Chap-
ter 4 and [131]). Within the random forest technique, the ‘variable importance’
measure is incorporated to determine the most influential variables.

As can be seen, a dichotomy in distribution modelling approach is prevalent:
predictive modellingversusexplanatory modelling.Predictive modelling aims at
the development of distribution models while the focus is onthe goodness-of-fit
of the models. These models are typically ‘black-box’ models. The relative im-
portance of the variables and the nature of their relationship with the vegetation
distribution is of minor importance. Contrarily, explanatory modelling encom-
passes the exploration of measured environmental variables, with the intention to
identify the most influential ones in explaining the vegetation distribution.

Based on these two approaches, a reduced distribution modelusing only the
most important environmental variables can be constructedand evaluated on per-
formance. This link between predictive and explanatory modelling is a priority
for applied ecologists. The most influential variables, defined under explanatory
modelling, can lead toward readily understandable distribution models while main-
taining quantitative rigour with minimal resources [219].
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This chapter formulates an answer to the research question:
Can the random forest distribution model provide information concern-
ing environmental variable importance?

Additionally, two sub-questions are addressed:

a. Would other techniques identify the same variables as being
important?
b. Is it possible to construct accurate random forest distribution
models on a reduced data set, only including the most important
environmental variables?

This chapter has a dichotomous structure, including (i) predictive mod-
elling, and (ii) explanatory modelling. Predictive modelling is applied
using multiple logistic regression and random forest distribution mod-
els. Explanatory modelling comprises the identification ofimportant
environmental variables, and is applied using three techniques: ordina-
tion, hierarchical partitioning of the multiple logistic regression models
and the ‘variable importance’ measure within the random forest algo-
rithm. Results from explanatory modelling are used to construct re-
duced models, and modelling results are compared with results from
predictive modelling.

5.2 Material and methods

5.2.1 Test site and data set

From this chapter onwards, focus is exclusively on the DoodeBemde test site. A
description of the area, together with the monitoring scheme of the site is given in
Chapter 3. Groundwater depth measurements were used to calculate four ground-
water quantity variables: average groundwater depth (AGD,[m]), maximal (Max)
groundwater depth [m], minimal (Min) groundwater depth [m], and the amplitude
(Ampli) of the groundwater depth [m]. Values of these variables, together with the
groundwater quality variables, were assigned to each grid cell by spatial interpo-
lation of measurement data over the entire area using block kriging (for details,
see [78]). Mean values and standard deviations of the continuous environmental
variables are summarized in Table 5.1.

The spatially explicit variables were structured into a data set. The data set
containsN = 519 measurement vectorsxi = (xi1,xi2, . . . ,xip) consisting of the val-
ues ofp = 17 predictive variables describing the abiotic environment:

– Groundwater quantity: average groundwater depth, maximal groundwater
depth, minimal groundwater depth, and the amplitude of the groundwater
depth. All these variables are continuous;
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TABLE 5.1 – Summary of the quantitative environmental variables as measured at the
Doode Bemde. All values in [mg L−1] except for average groundwater depth (AGD) [m],
maximal groundwater depth (Max) [m], minimal groundwater depth (Min) [m], amplitude
(Ampli) [m], pH [-] and soil organic matter content (SOM) [%]. The categorical vari-
ables soil type (loam, peat) and management (yearly, transition from yearly to cyclic (Y/C),
cyclic, no management (no man.)) have no mean and no standarddeviation [/]. Kendall
correlation coefficients (τ) of the first two DCA and CCA axes are included. Four environ-
mental variables were excluded from the CCA due to multicollinearity problems [–].

Mean Standard Deviation τ with DCA axes τ with CCA axes
Axis 1 Axis 2 Axis 1 Axis 2

AGD -0.45 0.49 -0.429 -0.204 -0.449 -0.265
Max -1.07 0.60 -0.541 -0.234 – –
Min -0.11 0.38 -0.260 -0.096 – –
Ampli 0.96 0.36 0.506 0.291 0.547 0.157
pH 6.76 0.14 0.024 0.328 0.032 0.186
Cl− 21.21 5.18 -0.378 0.105 -0.376 0.110
Ca2+ 99.99 24.58 -0.091 0.243 -0.087 0.346
Fetot 20.28 13.37 -0.181 -0.256 -0.198 -0.075
K+ 1.22 0.97 -0.195 -0.192 -0.236 -0.049
Mg2+ 6.75 1.25 0.094 0.233 0.101 0.141
NO−

3 –N 0.69 0.74 0.082 0.133 0.102 -0.022
NH+

4 –N 0.77 1.20 0.326 0.090 0.336 0.130
H2PO−

4 0.27 0.13 -0.060 -0.174 -0.078 -0.322
SO2−

4 22.33 8.69 -0.414 -0.134 -0.434 -0.023
SOM 21.19 15.05 -0.587 -0.201 -0.599 -0.081
Loam / / 0.426 0.301 0.444 0.298
Peat / / -0.426 -0.301 – –
Yearly / / 0.540 -0.201 0.516 -0.156
Y/C / / 0.054 -0.023 0.053 -0.109
Cyclic / / -0.337 0.299 -0.282 0.147
No man. / / 0.114 -0.281 – –

– Groundwater quality: pH, Cl−, Ca2+, Fetot, K+, Mg2+, NO−
3 –N, NH+

4 –N,
H2PO−

4 and SO2−
4 . All these variables are continuous;

– Soil: soil type (loam/peat, categorical), and soil organic matter content (con-
tinuous);

– Management: yearly mowing, cyclic mowing, transition from yearly to
cyclic mowing, no management (categorical).

Seven different vegetation typesc1, . . . ,c7 are considered:Arrhenatherion ela-
tioris, Calthion palustris, Carici elongetae – Alnetum glutinosae, Filipendulion,
Phragmitetalia, Magnocaricionwith PhragmitesandMagnocaricion, of which a
short description is given in Chapter 3. To each measurementvectorxi a unique
vegetation typel i ∈ {c1, . . . ,c7} is assigned. The data set will be denoted as:

L = {(x1, l1), . . . ,(xN, lN)} . (5.1)
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5.2.2 Detrended correspondence analysis (DCA) and canonical
correspondence analysis (CCA)

DCA [246] and CCA [193] were used for studying environmentalgradients in re-
lation to vegetation distributions at the Doode Bemde. DCA first ordinates species
or vegetation data in an ordination diagram, which is then interpreted in the light
of explicit environmental data [192]. This two-step approach is an indirect gradi-
ent analysis in the sense of Whittaker [247]. By contrast, CCA relates variation in
species or vegetation to environmental variation directly, enabling the significant
relationships between environmental variables and species or vegetation type dis-
tributions to be determined. The results obtained from bothordination techniques
were compared as recommended by ter Braak [193] using the coefficient of de-
termination (r2) which is proportion of variability accounted for by a statistical
model (here, ordination technique).r2 takes values between 0 and 1, and equals
0 when no variability is accounted for, and 1 when all variability is accounted for.
A largerr2 value appears when more variability is accounted for. DCA and CCA
were performed using PC–ORD Version 4 software, with downweighing of rare
species and rescaling of the axes as selected options for theDCA.

5.2.3 Multiple logistic regression

Recalling the multiple logistic regression model description (see
Eqs. (4.4) and (4.5)), an estimator ˆg(x) for the logit function has to be found
for each vegetation type. However, there are two difficulties [238]: (i) multiple
regression is plagued by collinear relationships among predictive variables and
(ii) any regression is designed to produce a function that insome way minimizes
the overall difference between the observed and ‘predicted’ response values (here
vegetation types), which does not necessarily imply causaldependence [248]. As
Mac Nally [238] stated, the quest is to selectq independent predictive variables
from a set ofp predictive variables (subset selection), subject to the problem of
multicollinearity, because: (i) it is always possible to produce a better fit to the
data by using more terms, and when there are as many predictive variables as
there are cases, the fit will be perfect; (ii) the confidence offuture predictions
is lessened with more terms in the model; (iii) a minimal model provides some
indication on the causal relationships of the included predictive variables in
determining the response; (iv) monitoring costs will be reduced by measuring less
environmental variables.

5.2.3.1 Predictive multiple logistic regression model

A predictive multiple logistic regression model was constructed similarly to the
multiple logistic regression model constructed in Chapter4, and the description
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is therefore kept short. A bi-directional stepwise model selection procedure was
used [210], starting with the full model and alternately omitting and re-introducing
one model component at each step. Selection stopped when no variable insertion or
deletion caused a lower Akaike Information Criterion value(AIC, [212]), resulting
in the model with the lowest AIC value. This methodology prevented the multiple
logistic regression model from overfitting [185, 238, 249].The residual deviance
(see Eq. (4.12)), aχ2–distributed statistic, was used to test the goodness-of-fit of
the model. Models are concluded to perform satisfactorily at the α significance
level if the deviance values smaller than or equal toχ2(1−α,Df), with Df the
degrees of freedom.

5.2.3.2 Hierarchical partitioning

For the identification of important predictive variables within the multiple logis-
tic regression context, a technique called hierarchical partitioning [238, 242, 244]
was used. Hierarchical partitioning is likely to alleviatemulticollinearity prob-
lems that are ignored by one-model approaches [242]. Hierarchical partitioning
considers all 2p (which is the total number of possible models usingp predictive
variables, including design variables) multiple logisticregression models jointly to
identify the most important predictive variables. The log-likelihood (see Eq 4.9),
a goodness-of-fit measure for logistic regression, is computed for each of the 2p

models. These values are partitioned so that the total independent contribution of
a given predictive variable is estimated. By these means, hierarchical partition-
ing allows to distinguish environmental variables whose independent effect on the
response variable are important, from environmental variables that have little inde-
pendent effect on the response variable. More precisely, hierarchical partitioning
involves the calculation of incremental improvement (increased goodness-of-fit) in
models by inclusion of a given predictive variable, and these are averaged over all
models in which the considered predictive variable occurs.These effects are segre-
gated into independent effects,I (which are of interest for this study), and effects
that cannot be unambiguously associated with that single predictive variable but
are due to joint effects with other predictive variables,J. The output of a hierar-
chical partitioning analysis is a list of all predictive variables and their independent
(I ) and joint (J) influences on the response variable. The explicit mathematical de-
scription of hierarchical partitioning is given in Chevan and Sutherland [244]. The
hier.part package [250] in R Version 2.2.1 was extended to deal with more predic-
tive variables, and was used for this analysis.

5.2.4 Random forests

Random forests [204] is described in detail in Chapter 4, where attention was
drawn on the calibration of the user-defined parametersk (number of classifica-
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tion trees in the random forest) andm (number of randomly taken variables to
spit nodes). Algorithms 1 and 2 (see Chapter 4) explain how a random forest
is constructed, and how the built-in out-of-bag error is computed, respectively.
Additionally, the random forest algorithm can estimate theimportance of each
environmental variable by using the ‘variable importance’(defined byvarimp in
code [216], as a synonym for ‘predictive variable importance’) measure. Defining
predictive variable importances is done by looking at how much the oob error (see
Algorithm 2 in Chapter 4) increases when oob data are permuted for one predictive
variable while left unchanged for all others. This is done for all predictive vari-
ables. The calculation procedure for a random forest consisting of k classification
trees constructed on a training data set withp predictive variables is visualized in
Fig. 5.1 and given in Algorithm 5.

5.2.5 Data considerations

The data setL (Eq. (5.1)) had to be slightly adapted to support both modelling
techniques.

For multiple logistic regression models (Section 5.3.3), the dependent vari-
able (here, vegetation type, consisting of seven classes) should be binomial (0/1 =
absent/present). Therefore, seven additional columns replaced the original multi-
nomial response ofL in order to include this binomial translation. The resulting
data set is referred to asL⋆. For the best predictive multiple logistic regression
model (Subsection 5.3.3.1), the data setL⋆ was randomly and uniformly split into
three partsL⋆

1, L⋆
2 andL⋆

3. In 3–fold cross-validation (see Chapter 4, Algorithm 3,
k = 3), two subsets were combined as training set, while the third was used as test
set. The following abbreviations are used further on:

– MLR12 = MLR model constructed with training setL⋆
1∪L⋆

2(= L⋆
12),

– MLR13 = MLR model constructed with training setL⋆
1∪L⋆

3(= L⋆
13),

– MLR23 = MLR model constructed with training setL⋆
2∪L⋆

3(= L⋆
23).

Model evaluation was done on the remaining independent datasubset (e.g. the
model MLR12 is evaluated onL⋆

3). For explanatory modelling using hierarchical
partitioning (Subsection 5.3.3.2), the entire data setL⋆ was used. Since its objec-
tive was the identification of important variables rather than the optimization of
prediction accuracy, no evaluation data set was needed.

For random forest models (Section 5.3.4), a translation to abinomial response
was not necessary, and the original data setL was used. For predictive random
forest modelling (Subsection 5.3.4.1), the entire data setL was split into three
partsL1, L2 andL3 (same partitions as above). In 3–fold cross-validation, two
subsets were combined as training set, while the third was used as test set. The
following abbreviations are used further on:
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Algorithm 5 : Calculating variable importance within random forests.
Data: training data setX, with p predictive variables
Result: importance (mean importance andz-score) of each predictive

variable

for i = 1 to k do

construct classification treei (Algorithm 1);
apply treei to then oob elements and count the number of correct
classifications over then oob elements (Ci,untouched);

for j = 1 to p do

take then untouched oob elements;
randomly permute the values of variablej in then oob elements;
apply treei to all the j permuted oob elements;
count the number of correct classifications (Ci, j−permuted);
subtract the number of correct classifications of the
variable-j-permuted oob elements from the number of correct
classifications of the untouched oob elements and divide by the
number of oob elements (∆Ci, j = (Ci,untouched−Ci, j−permuted)/n);

end
end
for j = 1 to p do

calculate the mean∆Ci, j over allk trees (∆Cj = ∑k
i=1 ∆Ci, j/k);

refer to∆Cj ×100 as the ‘mean importance score’ of predictive variable
j [the value is positive whenCi,untouched> Ci, j−permutedand negative
whenCi,untouched< Ci, j−permuted; mean importance scores have high
values when the classification error increases by permutingthe values of
predictive variablej];
divide∆Cj by the standard error (se) to obtain az–score for predictive
variable j, and assign a significance level assuming normality [since
correlations of the∆Ci, j scores are generally low within thej = 1 to p
groups, standard errors can be calculated for each of thej groups ofk
∆Ci, j scores] ;

end
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1. Training and test data sets

Ltrain Ltest

x1 l1 x1 l1
x2 l2 x2 l2
x3 l3 x3 l3
x4 l4 x4 l4
x5 l5 x5 l5
x6 l6 x6 l6
x7 l7 x7 l7
x8 l8 x8 l8
x9 l9 x9 l9
...

...
...

...
xV lV xW lW

2. Construction of the random forest consisting ofk classification trees

(2a) takei (i = 1, . . . ,k) bootstrap subsamples fromLtrain

bootstrap sample oob sample
1 bootstrap1 oob1 = Ltrain−bootstrap1
2 bootstrap2 oob2 = Ltrain−bootstrap2
...

...
...

k bootstrapk oobk = Ltrain−bootstrapk

(2b) use thek bootstrap samples to constructk classification trees

FIGURE 5.1– Schematic overview of the construction of the random forest model and the
determination of important variables.
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(2c) apply classification treei to oobi (i = 1, . . . ,k), and calculate oob error
(oobuntouched)

3. calculate the variable importance of variablek (j=1, . . . ,p)

(3a) permute the values of variablej in all oob samples (oobj−permuted)
(3b) apply classification treei to oobi (i = 1, . . . ,k)

(3c) calculate oobj−permutederror

4. compare the oobj-permuted error with the oobuntouched error to assess
variable importance

FIGURE 5.1 – continued. . .

– RF12 = random forest constructed with training setL1∪L2(= L12),

– RF13 = random forest constructed with training setL1∪L3(= L13),

– RF23 = random forest constructed with training setL2∪L3(= L23).

For the identification of important variables (Subsection 5.3.4.2), however, bothL
andL⋆ were used, the latter to allow for identification of important variables for
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the seven vegetation types independently and to allow for comparison with results
from hierarchical partitioning.

5.2.6 Model evaluation statistics

Correlations were calculated by means of the non-parametric Kendall rank corre-
lation (Kendall’s tau,τ) provided in most statistical software packages. Kendall’s
τ takes values between−1 and+1, with a positive correlation indicating that the
ranks of both variables increase together, while a negativecorrelation indicates
that as the rank of one variable increases, the other one decreases.

Model performances were evaluated in two ways. Cohen’sκ test ([220], see
Eq. (4.20)) was used to evaluate differences between observations and predictions
for all N instances. The McNemar test [222] was used to compare error rates of
two models, and is described in Section 4.5 (Eq. (4.21)).

5.3 Results

5.3.1 Data inspection

Intercorrelation amongst quantitative variables has beenreported to weaken analy-
sis using different techniques including regression [238]and ordination [193]. All
15 continuous variables were tested on normality. None was normally distributed,
therefore a non-parametric correlation analysis was performed using Kendall’sτ.
The majority of variable pairs showed significant correlation at the 0.01 signif-
icance level (Table 5.2). Particularly high positive correlations (τ > 0.5) were
observed for the variable pairs: AGD – Max, AGD – Min, Max – SOMand
pH – Mg2+. The interpretation of the first two variable pairs is straightforward.
The higher the maximal and minimal groundwater depth, the higher the average
groundwater depth will be (see Fig. 3.3). Furthermore, the organic matter content
is high for grid cells with high maximal groundwater depths (shallow groundwater
table) due to reduced decomposition rates (see Subsection 3.3.4). Strong negative
correlations (τ < 0.5) were observed between Max – Ampli and Ampli – SOM.
Grid cells with high maximum groundwater depth have small groundwater depth
amplitudes, and the soil of grid cells with small groundwater depth amplitudes are
high in organic matter content.

5.3.2 Ordinations

DCA ordination was performed, and summary statistics are given in Table 5.3.
The length of gradient (expressed as standard deviation), which is a measure of
how unimodal the species response is along an ordination axes, exceeds 2, approv-
ing the use of unimodal ordination models [192]. Eigenvalues of the three first
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TABLE 5.2– Kendallτ correlations between quantitative variables.

AGD Max Min Ampli pH Cl− Ca2+ Fetot

AGD 1.000
Max 0.737∗∗ 1.000
Min 0.715∗∗ 0.481∗∗ 1.000
Ampli -0.359∗∗ -0.609∗∗ -0.090∗∗ 1.000∗∗

pH 0.036 -0.050 0.095∗∗ 0.166∗∗ 1.000
Cl− 0.197∗∗ 0.188∗∗ 0.218∗∗ -0.092∗∗ 0.234∗∗ 1.000
Ca2+ -0.055 -0.053 -0.049 0.076∗∗ 0.400∗∗ 0.233∗∗ 1.000
Fetot 0.058∗ 0.194∗∗ -0.135∗∗ -0.373∗∗ -0.342∗∗ -0.264∗∗ -0.061∗ 1.000
K+ 0.162∗∗ 0.325∗ 0.013 -0.423∗∗ -0.063∗∗ -0.011 -0.110∗∗ 0.018
Mg2+ -0.020 -0.067∗∗ -0.027 0.105∗∗ 0.630∗∗ -0.061∗ 0.374∗∗ -0.071∗

NO−
3 –N -0.003 -0.046 0.150∗∗ 0.145∗∗ 0.046 0.093 -0.114∗∗ -0.375∗∗

NH+
4 –N -0.339∗∗ -0.338∗∗ -0.328∗∗ 0.215∗∗ -0.007∗∗ -0.356∗∗ 0.169∗∗ 0.185∗∗

H2PO−
4 0.244∗∗ 0.222∗ 0.163∗∗ -0.210∗∗ 0.063∗ 0.014 -0.273∗ -0.041

SO2−
4 0.234∗∗ 0.280∗∗ 0.205∗∗ -0.253∗∗ -0.172 0.433∗∗ 0.032 -0.013

SOM 0.387∗∗ 0.517∗∗ 0.164∗∗ -0.577∗∗ -0.042 0.188∗∗ 0.017 0.340∗∗

continued. . .
K+ Mg2+ NO−

3 –N NH+
4 –N H2PO−

4 SO2−
4 SOM

K+ 1.000
Mg2+ -0.018 1.000
NO−

3 –N -0.043 -0.212∗∗ 1.000
NH+

4 –N -0.314∗∗ 0.132∗∗ -0.099∗∗ 1.000
H2PO−

4 0.063∗ 0.109∗∗ -0.097∗∗ -0.165∗∗ 1.000
SO2−

4 0.174∗∗ -0.410∗∗ 0.138 -0.410∗∗ -0.130∗∗ 1.000
SOM 0.254∗∗ -0.021 -0.167∗∗ -0.160∗∗ 0.155∗∗ 0.201∗∗ 1.000

∗ correlation is significant at the 0.05 level;∗∗ correlation is significant at the 0.01 level.

DCA ordination axes (Table 5.3) cannot be interpreted as proportions of variance
explained since the process of rescaling and detrending destroys the correspon-
dence between the eigenvalues and the structure along the axes. Therefore, the
variance explained was investigated by apost hoccalculation of the coefficient of
determination (r2) between distances in the ordination space and distances inthe
original space. The Euclidean distance was used as distancemeasure of the ordina-
tion space, while the relative Euclidean distance was selected as distance measure
of the original space (Table 5.3). High and moderate correlations between the
original and ordination space were found for the first two axes, 0.476 and 0.198,
respectively. Along the third axis, correlations were negligible.

Fig. 5.2 jointly plots the plant species and vegetation types positioned in the
DCA ordination space, together with the environmental variables (labels of K+,
NO−

3 –N and no management are deleted for clearness). Kendall correlations (τ) of
the environmental variables with ordination axes were calculated, and given for the
two main ordinations axes in Table 5.1. The first axis was highly correlated with
groundwater quantity and dynamics, predominantly averagegroundwater depth,
maximal groundwater depth and amplitude of the groundwaterdepth, soil type and
soil organic matter content, and the management variables,predominatly yearly
mowing. As can be concluded from Fig. 5.2 and Table 5.1: theArrhenatherion ela-
tioris grassland community thrives on the drier, loam soils with low organic matter
content of the Doode Bemde with a yearly mowing management. These conditions
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TABLE 5.3– Summary statistics for the DCA and CCA ordinations.

Axis 1 Axis 2 Axis 3
DCA
Length of gradient 5.99 5.55 3.57
Eigenvalue 0.557 0.339 0.174
r2 0.476 0.198 0.060
Cumulativer2 0.476 0.673 0.733
CCA
Eigenvalue 0.501 0.270 0.208
Variance explained [%] 10.6 5.7 4.4
Cumulative variance explained [%] 10.6 16.3 20.7
r2 0.451 0.111 -0.023
Cumulativer2 0.451 0.562 0.585

r2 is the coefficient of determination.

are typically situated on the southwestern levee.FilipendulionandCalthion palus-
tris are found in the transitional zone between levee and floodplain depression (see
Fig. 3.2). Both vegetation types are clearly distinguishable along the second axis,
with Calthion palustrisoccurring in the somewhat wetter, more peaty areas. The
groundwater table in theFilipendulionareas shows higher fluctuations. Another
difference between these vegetation types is the mowing frequency. The majority
of theCalthion palustrissites are yearly mown, while most of theFilipendulion
sites are cyclically mown. Still further toward the floodplain depressionCarici
elongetae – Alnetum glutinosaeand the tall sedge vegetationMagnocaricionap-
pear on wet, peaty soils. Sedges are gradually replaced byPhragmites australis
and theMagnocaricionvegetation type changes inMagnocaricionwith Phrag-
mitesin the central part of the floodplain. On the wettest part of the eastern ri-
parian zone, aPhragmiteteavegetation belt occurs. The most important chemical
groundwater variables are SO2−

4 , Cl−, NH+
4 –N, and Fetot, with high concentrations

of SO2−
4 and Fetot in the wetter areas, where groundwater seepage and capillary

rise increase the supply of these hydro-chemical compounds(see Subsection re-
fgwqual), and high Cl− concentrations in the moderately wet northeastern areas.
High concentrations of NH+4 –N typically occur in the dryer, loamy areas withAr-
rhenatherion elatioris, and can possibly be attributed to a higher rate of biological
mineralization of organic nitrogen (e.g. in plant litter) within this dryer area [2].

Several variables were deleted for the CCA due to multicollinearity prob-
lems. The only variables related to groundwater quantity retained were average
groundwater depth and amplitude of the groundwater depth (maximal and mini-
mal groundwater depth were deleted based on their high correlations with average
and amplitude of the groundwater depth, see Table 5.2). The categorical variables
‘no management’ and the soil type ‘peat’ were deleted without loss of informa-
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FIGURE 5.2 – Graph of the detrended correspondence analysis (DCA) showing the ordi-
nation of plant species and vegetation types along the first two ordination axes in relation to
the environmental variables.
Legend: Species are abbreviated using the first four lettersof the genus and species names
(as given in Appendix A), vegetation types are abbreviated according to the List of Ab-
breviations and Acronyms, and abbreviations of the environmental variables: SOM = soil
organic matter content, y/c = transition from yearly to cyclic mowing, chemical ions are
given without charge.

tion on management regime and soil type. The CCA eigenvalues(Table 5.3) were
a little lower than the DCA eigenvalues. The first two axes explained a limited
16.0% of the variance in data. In analogy with DCA, correlation between dis-
tances in the ordination space and distances in the originalspace were determined.
Once again, the relative Euclidean distance was used as distance measure in the
original space.r2 for CCA and the effectiveness of the CCA were considerably
lower than what was obtained for DCA. Nevertheless, the Kendall correlation (τ)
between the species scores on the DCA and CCA axes equaled 0.881 (p < 0.01)
and 0.534 (p < 0.01) for the first and second axis, respectively. There is a strong
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positive correlation between the first axes of both ordination methods. The CCA
ordination is shown in Fig. 5.3, and Table 5.1 gives Kendall’s correlation values
for the environmental variables with the two main CCA axes. In accordance with
the DCA ordination, average groundwater depth, soil type, organic matter content,
mowing management regime and the chemical variables NH+

4 –N, SO2−
4 and Cl−

did explain most variance along the first CCA axis. Importantvariables along the
second CCA axis included Ca2+ and H2PO−

4 .

FIGURE 5.3 – Graph of the canonical correspondence analysis showing the position of
plant species and vegetation types in relation to the environmental variables.
Legend: Species are abbreviated using the first four lettersof the genus and species names
(as given in Appendix A), vegetation types are abbreviated according to the List of Ab-
breviations and Acronyms, and abbreviations of the environmental variables: SOM = soil
organic matter content, y/c = transition from yearly to cyclic mowing, chemical ions are
given without charge.

In accordance with De Becker et al. [81] the ordinations indicated the ground-
water describing variables, soil type and organic matter content and the yearly
mowing management regime as the most important variables atthe Doode Bemde.
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Together with the groundwater quality variables SO2−
4 , Cl− and NH+

4 –N these
were the environmental variables explaining most of the spatial variance of plant
species and vegetation type occurrences at the Doode Bemde.NO−

3 –N, K+, Mg2+

and the transition from yearly to cyclic mowing management are concluded to be
less important based on both ordinations.

5.3.3 Multiple logistic regression model

5.3.3.1 Predictive multiple logistic regression model

In order to use 3–fold cross-validation, three models (MLR12, MLR13, MLR23)
had to be constructed on the three training sets L⋆

12, L⋆
13 and L⋆

23. Additionally,
logistic regression required to model the seven vegetationtypes separately (seven
models). Consequently, a total of 21 multiple logistic regression models were con-
structed, one on each of the three training data sets for eachof the seven vegetation
types. Since high correlations between average groundwater depth and maximal
and minimal groundwater depth tended to weaken the multipleregression models,
it was decided to include only the average groundwater depthand amplitude of the
groundwater table as groundwater quantity variables. The goodness-of-fit of all
21 models was summarized by the residual deviance (Dresid, Eq. (4.12)). Based
on the results reported in Table 5.4, it can be concluded thatall multiple logistic
regression models do fit satisfactorily at the 0.01 significance level. Nevertheless,
the models used forPhragmitetaliaandArrhenatherion elatioris(lower residual
deviance values) are better than those forCalthion palustris(higher residual de-
viance values).

The models were applied to their corresponding independenttest data setL⋆
1,

L⋆
2 or L⋆

3. Each 20 m by 20 m grid cell at the Doode Bemde was assigned seven
probabilities, representing the probability of occurrence of the seven different veg-
etation types. The vegetation type with the highest probability of occurrence was
concluded to be the predicted vegetation type for the grid cell under considera-
tion. Results are visualized in Fig. 5.4(a). There were 359 cells correctly predicted
(69.2%), on a total of 519 grid cells. Cohen’sκ test was used to evaluate differ-
ences between observations and predictions. Aκ value of 0.633 was found: there
is a substantial agreement between observations and predictions (p < 0.001).

5.3.3.2 Explanatory modelling with hierarchical partitioning

Each predictive variable explains a certain amount of the spatial vegetation pattern
at the Doode Bemde. For each vegetation type separately, a logistic regression
model was constructed, and the model goodness-of-fit was assessed, together with
the independent contributionI of each predictive variable to the explanation of the
spatial distribution of that vegetation type.I–values are graphically presented in
Fig. 5.5. For some vegetation types, a clear distinction between the most important
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TABLE 5.4– Goodness-of-fit of the multiple logistic models. Residualdeviances (Dresid.)
and Akaike’s information criterion (AIC) for the differentvegetation types.

Vegetation type Df Dresid AIC
MLR12

Arrhenatherion elatioris 334 34.7∗ 59.0
Calthion palustris 334 193.8∗ 218.0
Carici elongetae – Alnetum glutinosae 337 80.2∗ 98.2
Filipendulion 335 134.2∗ 156.2
Phragmitetalia 332 38.1∗ 67.4
Magnocaricionwith Phragmites 335 132.6∗ 154.6
Magnocaricion 333 154.9∗ 180.9

MLR13

Arrhenatherion elatioris 339 51.4∗ 56.4
Calthion palustris 334 168.8∗ 192.8
Carici elongetae – Alnetum glutinosae 336 67.5∗ 87.8
Filipendulion 338 122.3∗ 138.3
Phragmitetalia 337 29.6∗ 47.6
Magnocaricionwith Phragmites 335 120.2∗ 142.2
Magnocaricion 332 142.5∗ 170.5

MLR23

Arrhenatherion elatioris 338 66.3∗ 82.7
Calthion palustris 334 190.9∗ 214.9
Carici elongetae – Alnetum glutinosae 334 60.9∗ 84.9
Filipendulion 333 142.8∗ 168.8
Phragmitetalia 334 33.2∗ 57.7
Magnocaricionwith Phragmites 328 131.6∗ 178.7
Magnocaricion 339 138.9∗ 152.9
Df = degrees of freedom,Dresid= residual deviance, AIC = Akaike’s informa-
tion criterion. All models showed a significant goodness-of-fit at the 0.01 level
(∗).

predictive variable and the other ones can be observed (e.g.management regime
for Calthion palustris), while for other vegetation types a group of important pre-
dictive variables is determined (e.g. average groundwaterdepth, management, pH
and Fetot for Magnocaricion). The variables, ranked according to their indepen-
dent contribution to the distribution model, do differ between the seven vegetation
types.
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(a) MLR model (b) RF model

FIGURE 5.4 – Spatially distributed vegetation types at Doode Bemde. Observations over-
laid by predictions made by the logistic regression models (a). Observations overlaid by
predictions made by the random forest models (b).

5.3.4 Random forest model

5.3.4.1 Construction and evaluation of the best predictiverandom forest
model

The random forest technique has two important user-defined parameters that
should be optimized for accurate model results: the number of trees (k) and the
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FIGURE 5.5– Independent individual contributions (I–values, [%]) ofthe variables as de-
termined with hierarchical partitioning. Lower values indicate lower independent impor-
tance.
Legend: The numbers on the x–axis correspond to variables: average groundwater depth
(1), minimal groundwater depth (2), maximal groundwater depth (3), amplitude of the
groundwater depth (4), pH (5), Cl− (6), Ca2+ (7), Fetot (8), K+ (9), Mg2+ (10), NO−

3 –
N (11), NH+

4 –N (12), H2PO−
4 (13), SO2−

4 (14), soil organic matter content (15), soil type
(16) and management regime (17).

number of randomly selected predictive variables to split the nodes (m) (see Sub-
section 4.4.2). Oob error, which was proven to be an unbiasedestimator of the
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TABLE 5.5 – Out-of-bag (oob) error values and test set error values forRF12, RF13 and
RF23 constructed with several values ofm (m is the number of randomly sampled variables
to split the nodes).

m= 1 m= 2 m= 3 m= 4 m= 5 m= 15
aRF12 35.84 23.41 24.57 23.99 23.41 25.43
bL3 32.95 21.97 22.54 23.12 23.70 23.12
aRF13 30.35 21.10 20.23 19.36 19.94 21.39
bL2 34.10 28.32 24.28 26.59 26.01 27.75
aRF23 40.17 23.70 22.54 22.54 24.28 23.99
bL1 45.09 22.54 21.39 22.54 21.39 23.70

a = oob error,b = test set error.L1, L2 andL3 are cross-validation test data sets.
Minimal error values are underlined.

classification error [204], was used to determine an adequate number of trees. A
clear convergence of oob error was found (not shown here, butsimilar to Fig-
ure 4.6), andk = 1000 was used for the construction of all the random forest
submodels. Breiman and Cutler [218] state that the range of optimal values ofm is
usually quite wide, and often

√
number of predictive variables is used as value for

m. According to this rule of thumb, in this study, where 17 variables were used,
the optimal value ofmshould be around 4. Three random forest models were con-
structed for different values ofm. Two error measures were used for optimalm
definition: (i) oob error, and (ii) test set error, representing the proportion of incor-
rect classifications, which is computed by applying the random forest models to
their respective test data sets during the random forest building process. Resulting
oob error values and test set error values are tabulated in Table 5.5. The values did
not differ greatly, but minimal values could be observed fordifferent values ofm.
Since an accurate classification of the test elements was thegoal, it was decided to
use the values ofm for which the test set error was minimal and to takem= 2 for
the construction of RF12, andm= 3 for RF13 and RF23. These values are lower
than 4, which was determined by the rule of thumb.

Based on the optimal values for the user-defined model parametersk andm,
RF12, RF13 and RF23 were constructed. Cross-validation resulted in an indepen-
dent prediction for each of the 519 grid cells at the Doode Bemde. Results are
visualized in Fig. 5.4(b). On a total of 519 grid cells, the model made 402 cor-
rect classifications (77.5%) and 117 misclassifications (22.5%). Misclassifications
were mostly made on the transition zone between adjacent vegetation types as well
as for small vegetation patches (e.g. one grid cell surrounded by a different vege-
tation type). Aκ value of 0.731 was found and indicated a substantial agreement
between observations and predictions (p < 0.001).
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5.3.4.2 Explanatory modelling using the ‘variable importance’ measure

To allow for comparison of the important variables as assessed with hierarchical
partitioning and the ‘variable importance’ measure, sevennew random forest mod-
els were constructed based on the data setL⋆, one random forest model for each
vegetation type. The user-defined parameterm was set to 17, so that the random
forest had to choose the best predictive variable to split the nodes amongst all 17
possibilities. However, by doing so, the only random process during model con-
struction was the use of random bootstrap samples, and therefore the correlations
between the different classifiers in the random forest are likely to increase. Re-
sulting mean importance scores (∆Cj × 100) andz–scores (∆Cj/se, with se the
standard error) from the ‘variable importance’ measure used during the construc-
tion of these models are plotted in Fig. 5.6. Variables are ranked from high to
low mean importance scores,z–scores are overlaid. Mean importance scores and
z–scores generally showed (more or less) the same tendency. However, since cor-
relations between the classifiers in the random forest were likely to be significant
(m was set to its maximal value 17 to exclude randomness from predictive vari-
able selection), preference was given to the mean importance scores to determine
important predictive variables for spatial distribution modelling. Differences in
importance scores could be observed between the different vegetation types, and
post hocdata inspection was needed to determine whether high or low values of
important variables were associated with vegetation type occurrences. As an ex-
ample, the distribution ofCalthion palustrisin the study area is clearly related
with management regime, which management regime had to be elucidated by a
posterior data inspection. In this caseCalthion palustrisis associated with yearly
mowing.

Based on data setL, the variables were ranked according to their mean impor-
tance for all vegetation types together (Fig. 5.6). The amplitude of the ground-
water table is the most important variable for the vegetation type distribution at
the Doode Bemde, followed by Cl−, soil organic matter content and management
regime. Soil type and several chemical groundwater variables (H2PO−

4 , NO−
3 –N

and NH+
4 –N) are clearly the least important variables for vegetation type distribu-

tion modelling with the random forest model at the Doode Bemde.

5.3.5 Predictive random forest modelling on reduced data sub-
sets

5.3.5.1 Leave-one-variable-out

It was believed that important predictive variables would have major influences
on classification accuracy. Exclusion of a predictive variable would consequently
result in an increase in oob error, proportional to predictive variable importance.
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FIGURE 5.6 – Mean importance scores (bars) andz–scores (lines) for all 17 variables, for
each vegetation type separately and all vegetation types together, as determined with the
random forests ‘variable importance’ measure. Lower values indicate lower importance.
Legend: The numbers on the x–axis correspond to variables: average groundwater depth
(1), minimal groundwater depth (2), maximal groundwater depth (3), amplitude of the
groundwater depth (4), pH (5), Cl− (6), Ca2+ (7), Fetot (8), K+ (9), Mg2+ (10), NO−

3 –
N (11), NH+

4 –N (12), H2PO−
4 (13), SO2−

4 (14), soil organic matter content (15), soil type
(16) and management regime (17). Notice different scales for subplot 6 and 8.

Therefore data setL was redesigned into 17 new data sets containing all but one
predictive variable (16 predictive variables in total). 17random forest models were
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constructed using these data sets. An increase in oob error proportional with the
predictive variable importances was expected. However, nosuch increase was ob-
served. A mean oob error value of 21.20%, within the range 20.23% – 22.35%,
was found. 20.04% of the oob cases were misclassified when soil type or minimal
water table depth were excluded from the data set, and 22.35%if Mg2+ was ex-
cluded. The random forest technique was concluded to be a strong classifier, able
to construct models with comparable accuracy levels when only one predictive
variable, irrespective of its importance, was excluded.

5.3.5.2 Gradually decreasing model complexity

Results from explanatory modelling using the ‘variable importance’ measure were
used to construct data sets with a gradually decreasing number of predictive vari-
ables. 17 random forest models were constructed using backward elimination of
the least important predictive variables (the ranking of the predictive variables can
be seen in the lower right panel of Fig. 5.6) of data setL. The oob error was used
to get an estimation of the model classification error. As canbe seen in Fig. 5.7,
the oob error ranged around 22% for the random forest models constructed on all
17 predictive variables, for the model containing 6 predictive variables, and for all
models with a complexity in between. The models containing less than the 6 most
important predictive variables, however, showed a sharp increase in oob error. Re-
markably high oob values were found for the models with only the three, two and
one (oob error≈ 72%) most important predictive variables included. This allows
to conclude that at least 6 important predictive variables are needed for accurate
vegetation distribution modelling in this study. These predictive variables are am-
plitude of the groundwater depth, Cl−, organic matter content, management, pH
and minimal groundwater depth.

5.3.5.3 Predictive modelling using the selected subset

Three reduced predictive random forest models were constructed on the data
subset containing the six most important predictive variables: amplitude, Cl−,
organic matter content, management, pH and minimal groundwater depth. 3–fold
cross-validation resulted in independent vegetation typepredictions for each of
the 519 grid cells at the Doode Bemde. 384 predictions were correct (74%),
135 wrong (26%). A Cohen’sκ value of 0.691 was found: there is a substantial
agreement between observations and predictions (p < 0.001).
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FIGURE 5.7– Out-of-bag (oob) error of models with decreasing number ofpredictive vari-
ables. The order of deletion is taken from results for all vegetation types, as presented in
subplot 8 of Fig. 5.6.
Legend: The numbers on the X-axis correspond to the number ofpredictive variables in-
cluded in the model e.g. 1= only the most important predictive variable (amplitude) in-
cluded; 2= two most important predictive variables (amplitude and Cl− included), etc.

5.4 Statistical model evaluation and discussion

5.4.1 Predictive modelling

The performance of the predictive logistic regression model was compared with
that of the predictive random forest model. The McNemar testwas used to test
the following null hypothesis: the two models have the same classification error
rate. The value of the McNemar test statistic was 24.2 and thenull hypothesis
could be rejected (p < 0.001). Classification error was significantly lower for the
random forest model. In accordance with Chapter 4 and [131],the random forest
model could be concluded to be more accurate than the multiple logistic regression
model.
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TABLE 5.6– Kendallτ correlations between results of hierarchical partitioning (I–values)
and ‘variable importance’ (mean importance scores).

Vegetation type τ value
Arrhenatherion elatioris 0.303
Calthion palustris 0.441∗

Carici elongetae – Alnetum glutinosae0.544∗∗

Filipendulion 0.221
Phragmitetalia 0.471∗∗

Magnocaricionwith Phragmites -0.221
Magnocaricion -0.074
∗ correlation is significant at the 0.05 level;
∗∗ correlation is significant at the 0.01 level.

5.4.2 Explanatory modelling

The logistic regression and random forest modelling approach made use of differ-
ent techniques to identify important environmental variables, i.e. hierarchical par-
titioning [238, 242, 244] and ‘variable importance’ [204],respectively. Both tech-
niques indicated the same predictive variable as the most important one for five out
of seven different vegetation types in distribution modelling. However, to allow for
comparison of the results of both techniques, the non-parametric Kendall’sτ was
used. For the seven different vegetation types separately,the I–values (as deter-
mined by hierarchical partitioning) and mean importance scores (as determined
by the ‘variable importance’ measure) of all predictive variables were ranked.
Kendall τ correlations were calculated for these ranked predictive variables, and
tested for significance (Table 5.6). ForCalthion palustris, Carici elongetae – Al-
netum glutinosaeandPhragmitetaliathe predictive variable importance ranking as
determined with hierarchical partitioning showed significant similarities with the
ranking as determined by ‘variable importance’ at the 0.05 significance level. But
for the other vegetation types ranked predictive variableswere not significantly
correlated. These statistics show that different predictive variables have different
effects on the goodness-of-fit of distribution models for most of the vegetation
types depending on whether logistic regression or the random forest technique is
used.

Major advantages of the random forest ‘variable importance’ measure were
computation time and memory requirements. Hierarchical partitioning of 219 =

524288 multiple logistic regression models took approximately 8 hours (on a SGI
Origin 300), while random forest modelling finished within half a minute. Fur-
thermore, the use of categorical variables, which are frequently used in applied
ecology to simplify data collection [251], is more complicated using hierarchical
partitioning since translation to dummy variables is needed. Thirdly, the neces-
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sity to calculate predictive variable importances for all vegetation types separately
using hierarchical partitioning was experienced as a shortcoming, since general
descriptions about the major environmental gradients and related vegetation type
distributions in the entire study area could not be made.

A comparison of the DCA ordination (Fig. 5.2) and the random forest vari-
able importances was made. In general, most of the importantvariables coin-
cided for both methodologies. Spatial differences in average groundwater depth
and amplitude, management, soil organic matter content andpH, Cl− and SO2−

4
concentrations explained most of the spatial vegetation distribution according to
both methodologies. However, unlike ordination, the ‘variable importance’ mea-
sure has no direction nor sense. The ecological position of the vegetation types
on the environmental gradients could be seen directly. A numerical or visualpost
hocdetermination was therefore needed. Additionally, the NH+

4 –N concentration,
which is an important gradient along the first DCA-axis and isassociated with
the distributionArrhenatherion elatiorisat the Doode Bemde, was not found to
be important in random forest modelling of the entire data set. Nevertheless, the
random forest distribution model forArrhenatherion elatiorisindicated NH+

4 –N
as the most important variable.

Furthermore, the categorical variable soil type (peat, loam) was identified as an
important environmental variable by the ordination analysis. In the random forest
models, however, this variable was of very little importance. The explanation lies
in the categorical nature of this variable. Since there are only two soil type classes
(loam and peat), the probability that an oob element belongsto the same soil type
before and after permutation is rather large. This probability is even higher with
prevailing classes within a categorical variable (as observed for soil type at the
Doode Bemde: 191 grid cells have loam soils, 328 grid cells have peat soils). This
effect is likely to diminish when a categorical variable consists of more classes
with similar numbers of elements. It is reasonable to conclude that the ‘variable
importance’ measure is not suitable for handling categorical variables with a small
number of categories.

This conclusion was compared with literature, and could be extended since
Strobl et al. [252] proved that the ‘variable importance’ measure is not only af-
fected by the number of categories of categorical predictive variables, but also by
the scale of measurement of continuous predictive variables, which are both no
direct indicators of importance. The reasons why the randomforest ‘variable im-
portance’ measure is biased is twofold: (i) there is bias in variable selection in
the individual classification trees, and (ii) there is bias induced by bootstrap sam-
pling [232, 252, 253]. Bias in variable selection for node splitting in individual
trees results from the systematic preference for predictive variables with a higher
number of possible cutpoints. More possible cutpoints means a higher likelihood
to produce a good split. Categorical predictive variables with more categories and
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continuous predictive variables with a wider value range comprise more possible
cutpoints. Therefore these predictive variables are selected more frequently to split
the nodes and the nodes they split tend to be situated closer to the root of each clas-
sification tree [252]. Predictive variables that appear more frequently and that are
situated closer to the root of each classification trees within the random forest affect
the prediction accuracy of a larger subset of out-of-bag elements, while predictive
variables that appear less frequently and more toward the leafs of the classification
tree within the random forest affect smaller subsets of out-of-bag elements, result-
ing in a biased predictive variable importance estimation.Additionally, bootstrap
sampling with replacement (see Algorithm 1, Chapter 4) introduced bias into the
variable importance estimate. Strobl et al. [252] explain this source of bias by
consideringp-values ofχ2-tests computed from 1000 simulated data sets. They
generated four artificial categorical, independent variables with a multinomial dis-
tribution with values in{0, . . . ,k−1}, wherek is 2, 4, 10 and 20, for the four data
sets, respectively. The values{0, . . . ,k−1} had equal probabilities. The response
variable was sampled from a binomial distribution, and independent from the inde-
pendent variables. Under the null hypothesis of independence, a range ofp-values
of theχ2-tests from 0 to 1 were calculated, with a medianp-value of 0.5 (as ex-
pected). However, when the same analysis was made on bootstrap samples from
the four variables, the medianp-value differed significantly from 0.5, as a clear
shift toward ap-value of 0 was observed. The bootstrap sampling artificially in-
duced an association between independent and dependent variable. Furthermore,
the association was more pronounced for independent variables with more cate-
gories, which showed a higher deviation from the null hypothesis. The apparent
association affects the ‘variable importance’ because thehigher association for in-
dependent variables with more categories results in a higher selection frequency,
and again, a selection closer to the root of the individual trees.

Finally, attention should be drawn to the fact that important variables, as de-
termined by ordination, hierarchical partitioning and ‘variable importance’, are
defined for the specific conditions at the Doode Bemde (withinthe limitations of
the data set). Since the data set consists of measurement vectors assigned to a cer-
tain vegetation type as observed in the field, only realized niches (the part of all
suitable habitats where species and vegetation types are not excluded due to biotic
interactions [237], see Section 1.4) are included. Conclusions with regard to the
fundamental ecological niche of the different vegetation types are consequently
hard to make. The identification of causal environmental variables may be valid
within the study area, but is only a part of the story beyond that spatial limitation.
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5.4.3 Reduced random forest model

The most important variables as determined with the ‘variable importance’ mea-
sure were used to construct and cross-validate a random forest model based on a
reduced variable subset. A sharp increase in oob error indicated six to be the min-
imal number of variables to include. The classification error was 3.5% higher for
the reduced model (26.0%) compared to the full model (22.5%). The McNemar
test was used to statistically compare classification accuracy between the reduced
random forest model and the full random forest model constructed on the entire
data set. No significant difference in model performance wasfound at the 0.05 sig-
nificance level (p= 0.016), however at the 0.01 significance level the difference in
model performance was significant in favor of the full randomforest model. The
same test statistic was used to compare classification accuracy between the reduced
random forest model and the multiple logistic regression model, and a significant
better performance of the reduced random forest model was found (p = 0.002).

Apart from the higher generalization potential of the reduced random forest
model (reduced number of degrees of freedom), the inclusionof limited numbers
of variables and hence monitoring efforts, has clear benefits from an economical
point of view. In the particular case of the Doode Bemde, for example, a costly
soil type inventory could be omitted. Moreover, in most ecohydrological mod-
elling exercises, temporal variability is averaged out, making monitoring of highly
dynamic variables in time somewhat irrelevant (due to the significance of the sam-
pling date). Based on the identification of important variables at the Doode Bemde,
less of such variables have to be monitored for constructingadequate vegetation
distribution models for comparable groundwater dependentvalley ecosystems in
Flanders.

5.5 Conclusions

Together with the high level of biodiversity [78,81,254], lowland river valleys are
playing an important role in the context of integrated watermanagement including
flood control and sediment transport reduction [255,256]. The key environmental
variables of these ecosystems are of primary importance forassessing the feasibil-
ity of ecosystem restoration [257].

A dichotomous structure was prevalent in this chapter: (i) the evaluation of pre-
dictive distribution models using different modelling techniques (predictive mod-
elling), and (ii) the assessment of the possibility to identify the key environmental
variables at the Doode Bemde (explanatory modelling), and the linkage between
both modelling approaches, namely to evaluate the predictive ability of a reduced
distribution model based on these key variables only. The following conclusions
could be drawn:
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1. Predictive models were constructed using multiple logistic regression and
the random forest technique. An accuracy evaluation of the cross-validated
data proved that random forest models do perform significantly better (in
accordance with results of Chapter 4).

2. Important variables could be identified using hierarchical partitioning of the
logistic regression models and ‘variable importance’ within the random for-
est models. Groundwater dynamics and to a lower extent management prac-
tices were the predominant variables constraining the spatial vegetation dis-
tribution. However, for certain vegetation types other environmental vari-
ables seemed important, but an ecological interpretation of these results is
difficult to make.

3. A bias in estimated variable importance using random forest’s ‘variable im-
portance’ was found for categorical variables, and similarobservations were
found in literature.

4. Nevertheless, the ‘variable importance’ measure could be used for subset
selection. The reduced predictive random forest model, resulting from a data
set only containing the six most important variables, was tested on prediction
accuracy and compared with the best predictive random forest model. The
accuracy of the reduced model and the full model did not differ at the 0.05
significance level. Furthermore, the reduced random forestmodel performed
significantly more accurately at the 0.01 significance levelthan the multiple
logistic regression model.





6
Independent model testing

6.1 Introduction

Wetland ecosystems are complex, evolving structures whosecharacteristics and
dynamic properties depend on many interrelated links between hydrology, the
physicochemical environment, anthropogenic disturbances and vegetation, and
their environmental determinants (climate, geomorphology) (see Fig. 1.4). The
direct effect of site hydrology on physicochemical site properties, such as soil
moisture content, oxygen and nutrient availability determines the productivity and
species composition of the wetland vegetation [258, 259]. Vegetation, however, is
not passive to the abiotical setting, but affects site hydrology and physicochemi-
cal properties through feedback processes of which transpiration [32], soil aera-
tion [29] and alterations in nutrient loadings [260, 261] are just some examples.
These localized direct and feedback processes result in spatial and temporal dis-
tributions of the abiotical variables [49]. Together with intraspecific, interspecific
and anthropogenic interactions these distributed abiotical variables constrain plant
species occurrences, resulting in vegetation patterns.

Chapter 4 introduced the random forest technique for modelling these vege-
tation patterns based on abiotical predictive variables, and Chapter 5 assessed the
possibility to determine the most important environmentalvariables within this
distribution modelling context. This chapter further builds on previously presented

The content of this chapter are published as J. Peters, B. De Baets, R. Samson and N. E. C.
Verhoest.Modelling groundwater-dependent vegetation patterns using ensemble learning.Hydrology
and Earth System Sciences, 12:603–613, 2008.



6-2 CHAPTER6

results, but focusses on model evaluation.

The two research questions under investigation in this chapter are:
1. Is there a spatial trend in the random forest distributionmodelling
results?
2. Does a random forest distribution model, constructed on agiven
wetland, perform satisfactorily when tested on a similar but distant
wetland?

Therefore, a spatially explicit evaluation of the random forest distri-
bution model predictions is made, followed by an assessmentof the
possibility to apply the random forest distribution model to a spatially
distinct but similar ecosystem in independent model testing.

6.2 Ecohydrology of the Doode Bemde

During the summer of 1993 and the spring of 1994, plant species occurrences were
mapped in the study area (Chapter 3). The total area of 21.08 ha was subdivided
in 519 regular and adjacent 20 m by 20 m grid cells. Mapping wasrestricted
to a selection of 56 plant species of which 45 were phreatophytes and 11 were
differential species for several vegetation types at the Doode Bemde. Based on
these species cover data, De Becker et al. [81] applied TWINSPAN [83] in order
to define vegetation types. Seven different types were distinguished, and their
spatial distribution can be seen in Figs. 4.7 and 6.1(a). Allvegetation types are
herbaceous, except forCarici elongetae – Alnetum glutinosaewhere a tree layer
of Common Alder is present.

The similarity in species composition between grid cells was compared using
the Jaccard index of similarity

JS=
c

(a+b+c)
(6.1)

wherec is the number of species shared by both cells, anda andb are the numbers
of species unique to each of the cells [262]. The Jaccard similarity of two grid
cells expresses their ecological resemblance concerning species composition, and
ranges between 0 (when both cells have unique species) and 1 (when both cells
have equal species composition). AveragedJSvalues are given in Table 6.1 for
the seven different vegetation types. The values of the diagonal elements in Ta-
ble 6.1 are a measure of similarity between grid cells of the same vegetation type.
Based on these values, patches ofPhragmitetalia, Magnocaricionwith Phrag-
mitesandMagnocaricioncould be concluded to be more homogeneous in species
composition compared to the other vegetation types which had lower values. Be-
tween the different vegetation types, marked differences in similarity could be
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observed.Magnocaricionwith Phragmiteshad high similarities withPhragmite-
talia andMagnocaricion. Between the other vegetation types, similarities were
generally lower, but nevertheless differences could be observed. Arrhenatherion
elatioris for example, had twice as much species in common withFilipendulion
than withMagnocaricion.

TABLE 6.1– Jaccard index of similarity between the vegetation types in the Doode Bemde.
Vegetation types are abbreviated accordingly the List of Abbreviations and Acronyms.

Ar Cp Ce Fi Ph MP Ma
Ar 0.40
Cp 0.18 0.37
Ce 0.11 0.17 0.46
Fi 0.24 0.21 0.20 0.39
Ph 0.09 0.19 0.35 0.22 0.55
MP 0.10 0.19 0.30 0.23 0.44 0.51
Ma 0.11 0.24 0.30 0.33 0.38 0.42 0.54

A groundwater monitoring network consisting of 25 piezometers was installed
in 1989. Groundwater depths were measured every fortnight during the period
1/1/1991 – 31/12/1993. Time series of linearly interpolated groundwater depths
measured at several piezometers (A–E, locations can be seenin Fig. 3.2) along a to-
pographical transect are plotted in Fig. 6.1(b). A yearly pattern of larger depths in
summer and more shallow groundwater in winter was observed at all piezometers.
Based on these time series, hydrological duration lines expressing the probability
[%] that a groundwater depth is exceeded were calculated (Fig. 6.1(c)). Groundwa-
ter depths corresponding to a probability of exceedance of 50% are yearly median
groundwater depths. They differed considerably along the transect (Fig. 6.1(c)).
At the levee near the river a median value of 1.27 m was measured (piezome-
ter A), which decreased gradually moving further down toward the depression
(piezometer B→C→D), with a minimal yearly median groundwater depth of 0.05
m measured at piezometer D in the center of the depression. Fig. 6.1(c) also shows
different periods of superficial groundwater depths (< 0.3 m) in all piezometers,
ranging from 75% of the year in piezometer C to 35% of the year in piezometers B
and D. Groundwater depths measured in piezometer A were never smaller than 0.3
m. Additional to the monitoring of groundwater dynamics, all 25 piezometers were
sampled on several groundwater quality variables during a sampling campaign in
September 1993 with respect to pH, Cl−, Ca2+, Fetot, K+, Mg2+, NO−

3 –N, NH+
4 –

N, H2PO−
4 and SO2−

4 . All values are in mg L−1 except for pH [-]. A soil type
map was made based on 59 drillings to a depth of 1 m, evenly distributed over the
study area. Management regime was assessed for each grid cell separately. Four
different regimes could be distinguished (see Subsection 5.2.1).
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(a)

(b)

(c)

FIGURE 6.1 – Vegetation distribution at Doode Bemde with piezometers (◦) A–E along a
topographical gradient (a) (see also Fig. 3.2). Time seriesof the groundwater depth, as mon-
itored by piezometers A–E (b). Hydrological duration linesexpressing the probability that
measured groundwater depths are exceeded. The line colourscorrespond to the vegetation
types wherein these piezometers were installed (c).
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6.2.1 Data set

Groundwater depth measurements were used to calculate the average groundwater
depth (AGD) below surface [m]. Values of this variable, together with the ground-
water quality variables, were assigned to each grid cell by spatial interpolation of
measurement data over the entire area using block kriging ([78,263]).

The spatially explicit variables were structured into a data set. The data set
containsN = 519 measurement vectorsxi = (xi1,xi2, . . . ,xip) consisting of the val-
ues ofp = 13 variables describing the abiotic environment:

– Groundwater quantity: average groundwater depth (continuous variable);

– Groundwater quality: pH, Cl−, Ca2+, Fetot, K+, Mg2+, NO−
3 –N, NH+

4 –N,
H2PO−

4 and SO2−
4 . All these variables are continuous;

– Soil: soil type (silt/peat, categorical);

– Management: yearly mowing, cyclic mowing, transition from yearly to
cyclic mowing, no management (categorical).

Seven different vegetation typesc1, . . . ,c7 are considered. To each measurement
vectorxi a unique vegetation typel i ∈ {c1, . . . ,c7} is assigned. The data set will
be denoted as:

L = {(x1, l1), . . . ,(xN, lN)} . (6.2)

6.2.2 Independent evaluation data set

A spatially independent ecohydrological data setLev was constructed for a similar
valley ecosystem, ‘Snoekengracht’. The Snoekengracht is an alluvial floodplain of
the river Velp, situated approximately 15 km from the Doode Bemde. The climatic
setting of both nature reserves is very much alike, and localenvironmental condi-
tions and floral composition are very similar [78] (see Chapter 3). The monitoring
scheme was largely the same as in the Doode Bemde ( [72] and Chapter 3), and
a grid-based (with a grid size of 10 m by 10 m) data set consisting of M = 501
elements was constructed, which will be denoted as:

Lev = {(xev,1, lev,1), . . . ,(yev,M, lev,M)} , (6.3)

wherelev,i is the vegetation type assigned to measurement vectoryev,i . Most vege-
tation types coincide with those found at Doode Bemde, except for Magnocaricion
which was not found at Snoekengracht (see Table 3.2). The reason why not all 696
grid cells described for Snoekengracht were included in thedata setLev came from
the selection criteria used: only grid cells with a vegetation type that is present at
Doode Bemde were included (grid cells withAlno – Padionexcluded), and the
management regimes present in the measurement vectors ofLev should be one of
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the four management regimes applied at Doode Bemde (grid cells with transitional
management from yearly mowing to no management and from cyclic mowing to
no management were excluded). It could be argued to do the same for the continu-
ous predictive variables, only to include values within thevariable ranges found at
Doode Bemde. This was not done here to guarantee a high degreeof independence
between training and test data set.

6.3 Modelling vegetation distributions

6.3.1 Model construction and results

First the data setL was randomly split into 3 data subsets for 3-fold cross-
validation (following Algorithm 3 in Chapter 4, withk = 3). A random forest
distribution model was constructed. User-defined parameters m, the number of
randomly selected predictive variables to split the nodes,and k, the number of
trees within the random forest, were optimized using the ooberror, and suitable
parameter values werem= 3 andk = 1000. The results include an ensemble ofk
(1000) predictions, one made by each classifier, which were aggregated based on
majority votes into a final classification. A confusion matrix summarizing the final
classification is given in Table 6.2, and results are shown inFig. 6.2(a).

TABLE 6.2– Confusion matrix of the classification made by the random forest distribution
model. Predicted vegetation types are compared with the observations at the Doode Bemde.

Observed
Ar Cp Ce Fi Ma MP Ph

Predicted Ar 55 4 0 4 0 0 0
Cp 6 89 0 7 4 5 0
Ce 0 1 19 0 4 4 1
Fi 9 2 0 82 7 0 1
Ma 0 6 1 4 37 12 2
MP 0 2 3 1 9 68 4
Ph 0 2 7 1 2 4 45

6.3.2 Model evaluation

6.3.2.1 Classification accuracy

Out of the 519 grid cells of Doode Bemde included in the study,the model clas-
sified 395 (76.1%) correctly, and 124 (23.9%) incorrectly (Table 6.2). Aκ [220]
value of 0.716 was calculated, indicating a substantial agreement between observa-
tions and predictions. A threshold-independentevaluation using receiver operating
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PredictionsObservations

LEGEND (a)

(a) (b)

LEGEND (b)

Probability class

FIGURE 6.2– Observed vegetation types overlaid by the classification made by the random
forest distribution model (a). Modelled probabilities (P(c)max) on which the classification
is based (b).
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characteristic (ROC) curves was performed ([210] and Chapter 4). Recall that the
area under the ROC curve (AUC) is a scalar value between 0 and 1representing
the classifier performance [227]. For multi-class ROC graphs, which should be
applied here since 7 vegetation types are considered, a methodology described by
Fawcett [227] is used. For each class a different ROC curve was produced, with
ROC curvej plotting the classification performance using vegetation classc j as
positive and all other classes as negative. For each ROC curve, the AUC was cal-
culated and averaged over the different classes using classweights based on class
prevalences in the test data [264]:

AUCtotal =
7

∑
j=1

AUC(c j) ·w(c j) (6.4)

where AUC(c j ) is the area under the class reference ROC curve forc j , andw(c j ) a
weighing factor. Weighing factors are obtained from Table 3.2. Fig. 6.3 visualizes
the ROC curves for each vegetation type. The AUCtotal value equaled 0.96 and the
random forest distribution model was concluded to perform well.

6.3.2.2 Spatially explicit evaluation

For each grid cell, the ensemble ofk (=1000) classification results is aggregated
by calculating probabilities of occurrenceP(c j) for all j vegetation types of which
the vegetation type with the highestP(c j) value (P(c)max) is the predicted one.
As seen in Fig. 6.4, this decision rule led to an increasing number of correct clas-
sifications with increasingP(c)max values. Indeed, 252 elements were correctly
classified with a probability higher than 0.7, whereas only 2elements were cor-
rectly classified with a probability lower than 0.3. 50% of the correctly classified
elements were based on probabilities> 0.78. The incorrect classifications show
a maximum in the [0.4,0.5[ interval, with 1 element incorrectly classified with a
probability lower than 0.3, and 28 elements incorrectly classified with probabil-
ities higher than 0.7. 50% of the incorrectly classified elements were based on
probabilities> 0.55.

Fig. 6.2(b) shows the spatial distribution ofP(c)max values at the study site in
graduated colours. Correctly classified grid cells with high P(c)max values were
situated within the central areas of homogeneous vegetation clusters, andP(c)max

values tended to decrease toward the boundaries of these areas (Fig. 6.2(a)). In-
correctly classified grid cell are mainly found where two adjacent vegetation types
meet, and were based on lowP(c)max values at the central depression and the
north-eastern side of the study site. The vegetation types found in these areas
areCarici elongetae - Alnetum glutinosae, Phragmitetalia, Magnocaricionwith
PhragmitesandMagnocaricion. A Jaccard similarity matrix was constructed for
the boundary grid cells only (Table 6.3). TheJSvalues in Table 6.3 express av-
eraged resemblances in species composition of each boundary grid cell with its
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FIGURE 6.3– Receiver operating characteristic (ROC) curves visualizing the classification
performances of the 3-fold cross-validated random forest distribution model for the 7 veg-
etation types (full curves). The AUCtotal equals 0.96. Model performances for boundary
cells only are summarized by the dashed ROC curves, yieldingan AUCtotal value of 0.92.

neighbouring grid cells (maximal 8 neighbouring grid cells). Boundary grid cells
of Phragmitetalia, Magnocaricionwith PhragmitesandMagnocaricioncould be
concluded to share a large proportion of their species withJSvalues higher than
0.5. This is reflected in the modelling results,P(c)max values for these grid cells
were generally low because comparable numbers of thek = 1000 classifiers clas-
sify these grid cells asPhragmitetalia, Magnocaricionwith PhragmitesandMag-
nocaricion. Another conclusion should be drawn for isolated grid cellsand small
isolated vegetation clusters surrounded by another vegetation type (e.g. as occurs
along the western border of the study area, see Fig. 6.2a). These grid cells were
frequently incorrectly classified with highP(c)max values, and are a weak point
of the random forest distribution model. The worse performance of the model on
boundary grid cells could also be seen in Fig. 6.3, where ROC curves of classifica-
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FIGURE 6.4 – Probability distribution of correct and incorrect classified grid cells of the
Doode Bemde (N = 519).

tion results computed for boundary grid cells only were lower than those computed
for the entire data set. The corresponding AUCtotal value for model performances
in boundary areas equaled 0.92, while being 0.96 for the entire study area.

6.3.2.3 Performance on independent test data

The use of independent test data allows to assess the model generalization abil-
ities. Edwards et al. [151] pointed out that cross-validated model accuracies are
frequently different from accuracies assessed with truly independent data. It is
easy to conclude that the random forest vegetation distribution model, which was
trained on the data setL did not classify data setLev satisfactory. From the 501
elements included inLev, only 99 elements were classified correctly (19.8%). Two
causes can attribute to this low level of model accuracy. A first cause can be best
explained by the niche concept ([50], see Section 1.4). The fundamental niche of
a plant species, and by extension a vegetation type, is defined as ann-dimensional
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TABLE 6.3 – Jaccard index of similarity for boundary grid cells between two vegetation
types at the Doode Bemde. Non-adjacent vegetation types areindicated by a dash.

Ar Cp Ce Fi Ph MP Ma
Ar 0.59
Cp 0.38 0.60
Ce – 0.45 0.66
Fi 0.34 0.21 – 0.54
Ph – 0.18 0.52 0.27 0.67
MP – 0.30 0.36 0.19 0.57 0.65
Ma – 0.34 0.39 0.57 0.59 0.53 0.66

hypervolume [50] in which every point corresponds to a stateof the environment
which would permit the species to exist and reproduce. Due tointerspecific in-
teractions species generally occupy only an elementary part of this volume, the
realized niche. The niches realized by each of the vegetation types found at the
Doode Bemde differ from those realised by the same vegetation types at Snoeken-
gracht and similar results were observed for all vegetationtypes. The example of
Calthion palustrisis given in Fig. 6.5. Since 13 environmental variables are used
in this study, a principle component analysis (PCA) was performed to reduce di-
mensions and make results visible. Fig. 6.5 graphs the component scores of grid
cells whereCalthion palustriswas observed on the first two principle component
axes (cumulatively explaining 70% of variance). Although partly intersecting, two
different realized niches can be distinguished. Obviously, a random forest disti-
bution model that is trained on the vegetation distributions at the Doode Bemde
and which uses explicit environmental thresholds to compute a classification, can-
not perform well on such an independent test data set of an apparantely similar
ecosystem.

A second cause of the low accuracy level of the independent modelling re-
sults lies in the model evaluation itself. Vegetation typeswere determined by
species clustering by means of the TWINSPAN algorithm [83] for both sites in-
dependently. As can be seen in Table 6.1, grid cells of the same vegetation type
do differ within the Doode Bemde (otherwise the diagonal elements of Table 6.1
would equal 1). This difference is even more pronounced for grid cells of the
same vegetation type located in the two different study areas, Doode Bemde and
Snoekengracht. Jaccard similarity values of 0.18, 0.35, 0.20, 0.19, 0.26, 0.25 and –
(no value) were calculated forArrhenatherion elatioris, Calthion palustris, Carici
elongatae – Alnetum glutinosae, Filipendulion, Phragmitetalia, Magnocaricion
with PhragmitesandMagnocaricion(not found at Snoekengracht), respectively.
These differences cannot be accounted for during the supervised model training
(performed exclusively on Doode Bemde) but deteriorate themodel performances
on an independent data set.



6-12 CHAPTER6

FIGURE 6.5 – Conceptual representation of realised niches ofCalthion palustrisat the
Doode Beemde and Snoekengracht. The fundamental niche ofCalthion palustrisranges
over all environmental states which would permit toCalthion palustristo exist indefinitely
[50].

6.4 Conclusions

Vegetation patterns arise from the interplay between intraspecific and interspe-
cific biotic interactions and from different abiotic constraints and interacting driv-
ing forces and distributions [49]. In this chapter, a vegetation distribution model
was constructed based on spatially distributed environmental variables which were
linked with the occurrence of a certain vegetation type. Biotic interactions were
only included indirectly, i.e. their effect was included through the observed veg-
etation distribution pattern, not directly as independentvariables underlaying the
vegetation distribution. Following conclusions could be drawn:

1. As far as classification accuracy of the random forest is concerned, results
were satisfactory (AUCtotal = 0.96).

2. Model errors were located in boundary areas (AUCboundaryarea= 0.92) be-
tween adjacent vegetation types. A proportion of these errors could be at-
tributed to high similarities between neighbouring grid cells. These incor-
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rect predictions were generally based on low probabilitiesof occurrence of
several similar vegetation types.

3. The random forest distribution model could not be appliedbeyond the lo-
cal conditions upon which it was constructed, because realized niches of
species/vegetation types do seldom coincide, even betweenapparently sim-
ilar sites. This restricts the model’s applicability. In order to make it opera-
tional on a larger scale many data would be needed, ranging over the entire
ecological amplitude of the modelled vegetation types.





7
Assessing uncertainty propagation

in the random forest distribution model

7.1 Introduction

Modelling of vegetation distributions across the landscape based on the relation-
ship between the spatial distribution of environmental variables and vegetation is
important for a range of management activities. Examples include management
of threatened species and communities, risk assessment of non-native species in
new environments, and the estimation of the magnitude of biological responses to
environmental changes [265, 266]. In their attempt to summarize complex distri-
butional patterns, however, distribution modelling results will inevitably contain
some degree of uncertainty [266], and uncertainty assessment is gaining more and
more attention in ecological modelling studies (e.g. [267–270]).

Uncertainty in vegetation distribution models originatesfrom input data limita-
tions, caused by spatial and temporal underrepresentationof observations to cap-
ture local variability, measurement errors on observations, systematic errors due
to bias in the measurement equipment, missing of key environmental variables
constraining the vegetation distribution, and subjectivejudgments, e.g. judgment
on the type of environmental variables vegetation is sensible to, and their rela-
tive importance to classify vegetation types [266, 271]. Furthermore, distribution

The content of this chapter is submitted as J. Peters, N. E. C.Verhoest, R. Samson, M. Van Meir-
venne, L. Cockx, Z. Vekerdy and B. De Baets.Uncertainty propagation in vegetation distribution
models based on ensemble learning.Ecological Modelling, submitted, 2008.
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modelling techniques introduce uncertainty by their disability to capture the entire
complexity of ecological processes in relation to vegetation distributions. Distri-
bution models are a simplified representation of the real world, and physical and
biological processes are related frequently on empirical,statistical grounds. Fi-
nally, the model evaluation is susceptible to uncertainties.

Among this variety of sources of error and uncertainty, thischapter exclu-
sively investigates two important sources of uncertainty propagating in vegetation
distribution models: (i) the uncertainty associated with the spatial interpolation of
environmental variables, and (ii) the uncertainty associated with species clustering
into vegetation types. Other sources of error and uncertainty are not studied.

The two research questions under investigation in this chapter are:
1. Does the use of an ensemble modelling technique allow for uncer-
tainty assessment?
2. How does input uncertainty propagate through the random forest
distribution model?

Therefore, the potential of the random forest classifier ensemble for un-
certainty assessment is investigated, followed by an uncertainty assess-
ment associated with uncertain model input.

After the description of material and methods (Section 7.2), this chapter has a
dichotomous structure imposed by the two different sourcesof uncertainty con-
sidered, and a conceptual difference in investigating their propagation through the
distribution model. Firstly, attention was on the uncertainty associated with the
spatial interpolation of environmental variables. A methodology (sequential Gaus-
sian simulation) was applied to get an estimate of the local uncertainty associated
with the spatial interpolation of environmental variables. A random forest distribu-
tion model was constructed on a training data set including the median simulated
value for each environmental variable for each grid cell, together with its vegeta-
tion type, as originally determined. By calling this distribution model theoriginal
random forest model, the assessment strategy for uncertainty propagation due to
uncertainty in environmental gradients is represented graphically in Fig. 7.1(a).

Secondly, for the propagation assessment of uncertainty associated with
species clustering into vegetation types, a similar strategy could be followed
(Fig. 7.1(b1)), i.e. the application of an uncertain vegetation distribution to the
original random forest distribution model. This was not performed, however, since
the model performs classification based on environmental variables exclusively,
which means that response labels (the vegetation types of test instances) are not
taken into account. Therefore, the model performance couldbe determined to
a large extend beforehand. Assume a random forest distribution model gaining
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(a) Uncertainty associated with the spatial interpolationof environmental
variables.

(b) Uncertainty associated with species clustering into vegetation types.
(b1) Uncertain vegetation distribution applied to the original RF model.

(b2) Uncertain vegetation distribution in model construction and application.

FIGURE 7.1 – Assessment strategy for uncertainty propagation due to uncertainty asso-
ciated with the spatial interpolation of environmental variables (a), and associated with
species clustering into vegetation types (b). The latter was investigated by strategy (b2),
(b1) was not applied.
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a perfect fit, than the application of uncertain test data would propagate linearly
through to model, resulting in model performances that are directly proportional
to the test data uncertainty. Such a trivial exercise would not gain the required
insight on uncertainty propagation due to species clustering.

To meet that objective, another strategy was followed. Starting from the veg-
etation distribution which has been used throughout this dissertation (and which
might include clustering errors as well), a known degree of uncertainty was intro-
duced into the vegetation distribution by pseudo-randomizations. Then, a random
forest distribution model was constructed on this uncertain response, and cross-
validated against its independent and uncertain test data set (Fig. 7.1(b2)).

7.2 Material and methods

7.2.1 Study area and data set

Doode Bemde (see Chapter 3) was selected as the study area in this chapter. How-
ever, the environmental variables used in this chapter is a subset of the ones pre-
viously used. Chapter 5 indicated that random distributionmodels constructed on
a reduced number of predictive variables did perform satisfactorily when≥ 6 pre-
dictive variables were included. In this chapter, it was decided to use the seven
most important predictive variables (in order to gain a satisfying goodness-of-fit
of the reduced distribution model), based on the ranking determined by the ‘vari-
able importance measure’ in Chapter 5 (Fig. 5.6). However, one alteration was
made: minimal groundwater depth was replaced by average groundwater depth.
This change may be justified by (i) the high correlation between both variables
(τ = 0.715, Table 5.1), (ii) the identification of average groundwater depth as the
eighth most important predictive variable. The reason why it was decided to use
average groundwater depth instead of minimal groundwater depth, arises from the
frequent use of average variable values in ecohydrologicaldistribution modelling,
and in that sense, the introduction of uncertainty by averaging is an interesting
research topic.

The observations used in this chapter were derived from a groundwater moni-
toring network consisting of 24 piezometers, of which 21 piezometers were located
within the borders of the Doode Bemde, and 3 were installed onselected locations
just outside the nature reserve. Groundwater depths [m] were measured every fort-
night during the period 1/1/1991 – 31/12/1993. Furthermore, all 24 piezometers
were sampled on several groundwater quality variables during two different sam-
pling campaigns in 1993 with respect to pH [-], Cl− [mg L−1] and SO2−

4 [mg L−1].
Topsoil samples were taken once at 59 locations, and the organic matter content
of the samples was determined (Chapter 3). Management regime was assessed for
each grid cell separately (Chapter 3), and four different regimes could be distin-
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guished (Chapter 5–6). Plant species mapping (presence/absence) was done for
each of the 519 grid cells, and restricted to a short list of species (Chapter 3 and
part of Appendix A).

7.2.2 Variation partitioning in species data

Spatial autocorrelation is a very general property of ecological variables [217].
Spatial structures observed in ecological communities arise from two independent
processes [217, 272]: (i) environmental variables that influence species distribu-
tions are usually spatially distributed, and (ii) ecological communities at any given
locality are most often influenced by the community structure at surrounding lo-
calities, because of biotic processes such as growth, reproduction, mortality and
migration. Variation partitioning [273–275] can be used toassess the importance
of these two sources of spatial structure. Variation partitioning starts with coding
of the spatial information using the principle coordinatesof neighbour matrices
(PCNM) approach, which is based on a principle coordinate analysis (PCoA, a.k.a.
classical multidimensional scaling [276]) of a truncated matrix of geographic dis-
tances, and described in detail by Borcard and Legendre [274] and presented
graphically in Fig. 7.2. Eigenvectors of the positive eigenvalues of the decom-
posed distance matrix are then used as spatial variables in adirect gradient analysis
such as partial canonical ordination (e.g. redundancy analysis, RDA [194, 195] or
canonical correspondence analysis, CCA [193]). Partial canonical analysis allows
to partition the total variation in the species data into thefollowing four parts [273]:

(a) The non-spatial environmental variation in the speciesdata, which is the
fraction of the species variation that can be explained by the environmental
variables independently of any spatial structure;

(b) The spatial structuring in the species data that is shared by the environmental
data;

(c) The spatial patterns in the data that are not shared by theenvironmental data
included in the analysis;

(d) The fraction of species variation explained neither by spatial nor by envi-
ronmental variables;

and can be represented graphically (Fig. 7.3).

7.2.3 Spatial interpolation using sequential Gaussian simula-
tion

Point observations of environmental variables were spatially modelled using se-
quential Gaussian simulation (sGs, [277]), mainly becauseof its ability to model
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FIGURE 7.2 – The construction of spatial variables starts from spatialinformation (X and
Y coordinates) which is used to calculate Euclidean distances. Principle coordinate analysis
of the truncated distance matrix (with a given maximal distance (max)) results in a number
of positive eigenvaulues which are used as spatial variables in a direct gradient analysis
(adapted from [274]).

local uncertainty. Additionally, sGs preserves the characteristic roughness in the
data, not producing a smoothed estimate but a reproduction of the real variabil-
ity [278]. The sGs algorithm for the simulation of a single continuous random
variableZ at N grid nodesu j ( j = 1, . . . ,N) conditional to the observations of
that variable{z(vα),α = 1, . . . ,n} amounts to modelling the conditional cumu-
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FIGURE 7.3– Variation partitioning showing the 4 different fractions(adapted from [273]).

lative distribution function (ccdf) of that variableFu j (z|l) = P(Z(u j) ≤ z|l). To
ensure reproduction of thez-semivariogram model, each ccdf is made conditional
to local information (|l ) not only including the observations but also to values
simulated at previously visited locations. The sGs algorithm is well described by
Bourennane et al. ( [279], modified in Algorithm 6) and Fagrout and Van Meir-
venne [280] provided a flow-chart (adapted in Fig. 7.4). The sGs algorithm is
available in the public domain [281].

The knowledge of the ccdfFu j (z|l) allows for local uncertainty assessment. If
validationz-observations are available atNV test locations

{

z(u j ), j = 1, . . . ,NV
}

,
comparison of the median simulated valueF−1

u j
(0.5) and the observed validation

valuez(u j) at the test locations allows for the examination of the bias and accu-
racy of the sGs algorithm is made. This examination is done bymeans of scatter
diagrams of observed versus median simulated values at eachtest location, and
by calculating error measurements, such as linear correlation coefficient (r), mean
absolute error (MAE), and root mean square error (RMSE). Additionally, [282]
developed a methodology to assess local model uncertainty visually. For a set of
validationz-observations atNV test locationsu j together with their correspond-
ing, independently derived ccdfsFu j (z|l), j = 1, . . . ,NV , the fraction of true values
falling into the symmetricp-probability interval (PI) bounded by the(1− p)/2 and
(1+ p)/2 quantiles of their corresponding ccdf can be computed as:

ξ(p) =
1

NV

NV

∑
j=1

ξ j(p) (7.1)

for anyp∈ [0,1], with:

ξ j(p) =

{

1, if F−1
u j

((1− p)/2) < z(u j ) ≤ F−1
u j

((1+ p)/2),

0, otherwise.
(7.2)

The accuracy plot, which is a scatter diagram of the estimated (ξ(p)) versus ex-
pected fractions (p), reflects the model accuracy: the model is accurate when the
scatter points fall on or above the 1:1 line, and inaccurate when the points fall be-
low the 1:1 line. In addition to model accuracy, one wants to know more about the
model precision. Therefore, a precision plot has been proposed [282] in which, for
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FIGURE 7.4 – Flowchart of sequential Gaussian simulations for groundwater depth at
Doode Bemde (adapted from [280]). sGs are made for the nodes of a simulation grid,
having equal size and orientation as the original grid, withsimulation nodes located in the
centre of the original grid cells.
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Algorithm 6 : The sequential Gaussian simulation (sGs) algorithm.

Data: set of observations{z(vα),α = 1, . . . ,n} at locationsvα
(α = 1, . . . ,n) of random variableZ

Result: simulation of a single continuous random variableZ atN grid nodes

define the number of realizations (r) ask;
for r = 1 to k do

transform the observation data set{z(vα),α = 1, . . . ,n} into normal
scores{y(vα),α = 1, . . . ,n} using the normal score transform:

y(vα) = G−1[F̂vα(z)], α =,1. . . ,n

whereG−1(·) is the inverse Gaussian cumulative distribution function,
andF̂ is the sample cumulative distribution ofz;

compute and model the semivariogram of the normal scores (γ̂(h));

define a random path along the nodesu j ( j = 1, . . . ,N), visiting each
node once;

for j = 1 to N do

(1) determine mean and variance of the Gaussian ccdfGu j (y|(c))
using simple kriging with the normal score semivariogram model
γ̂(h). The conditional informationc consists of the normal score
data{y(vα),α = 1, . . . ,n} and values simulated at previously visited
grid nodesy(r)(ua), with a = 1, . . . , j ;

(2) draw a simulated valuey(r)(u j) from that ccdf ;

(3) add the simulated value to the conditioning data set ;
end

back transform the simulated normal scores
{

y(r)(u j),α = 1, . . . ,N
}

into simulated values of the original variable
{

z(r)(u j),α = 1, . . . ,N
}

by applying the inverse normal score transform to the simulated normal
scores:

z(r)(u j ) = F̂−1[(G(y(r)(u j))], j = 1, . . . ,N

end

a series of probabilitiesp, the average width of the PIs that include the observed
values are plotted. The average widthW(p) is computed as:

W(p) =
1

NVξ(p)

NV

∑
j=i

ξ j(p) · [F−1
u j

((1+ p)/2)−F−1
u j

((1− p)/2)] (7.3)

and should be as small as possible for precise interpolations.
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7.2.4 Species clustering

Cluster analysis of ecological data is an explicit way of identifying groups in data
to find structures [192]. There are several clustering methods and a major distinc-
tion can be made between divisive and agglomerative methods. Divisive methods
start with one group which is subsequently divided into smaller groups until a
‘stopping rule’ is satisfied. Agglomerative methods start with the individual ob-
jects which are combined into groups by collection of objects and groups into
larger groups. In order to cluster species cover data into vegetation types, the
TWINSPAN [83] program (divisive clustering) is frequentlyused in community
ecology [192]. TWINSPAN produces a clustering of sites and species, by gener-
ating a two-way ordered table from a sites-by-species matrix. Within the two-way
ordered table, the relative cluster similarity is given by ahierarchy of integer lev-
els [283], and sites are clustered based on their species composition, and species
are clustered into different vegetation types.

Additionally, a posterior analysis of the TWINSPAN site clustering results can
be performed using the Jaccard index of similarityJS= c/(a+ b+ c) wherec is
the number of species shared by both sites, anda andb are the numbers of species
unique to each of the sites ([262] and Chapter 6). The Jaccardsimilarity of two
sites expresses their ecological resemblance concerning species composition, and
ranges between 0 (when both sites have unique species) and 1 (when both sites
have equal species composition).

7.2.5 The random forest distribution model

The random forest model constructs an ensemble ofk classification trees during
model training. A unique class is assigned to a given data point by each of thek
classification trees. The proportion of votes for a certain classc j ∈C= {c1, . . . ,cn}
over allk trees is interpreted as the probability of occurrence of that class:

P(c j) = Ncj /Ntot , (7.4)

with Ncj the number of trees classifying the data point into classc j , andNtot (= k)
the total number of classification trees in the random forest. Thus, the random
forest model output is a discrete probability distributionover all classesc j ∈ C.
The final classification is obtained by majority voting: the class with the highest
probability of occurrence (P(c)max) is the predicted one. The uniformity of the
discrete probability distribution allows to gain some information on model output
uncertainty. Therefore, the Shannon entropy measure (H, [284, 285]), which has
been applied in other ecological modelling studies (e.g. [286,287]), can be used:

H = − 1
log2n

n

∑
j=1

P(c j) log2 P(c j) , (7.5)
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with n the number of classes.
The value ofH ranges between:

(i) 0 : when an identical class results from the classification of a given data
point by every member of the random forest ensemble, i.e. themodel output
consists of probability valuesP(c j) = 1, with j ∈ {1, . . . ,n} andP(ck) = 0,
with k = 1, . . . ,n andk 6= j; theP(c)max value equals 1;

(ii) 1 : when the classification of a given data point results in any of then dif-
ferent possible classes by equal numbers of members of the random forest
ensemble, i.e. the model output consists of the following probability values
P(c j) = 1/n, with j = 1, . . . ,n; theP(c)max value equals 1/n;.

Within the context of vegetation distribution modelling, avalue ofH close to 0
indicates that, based on the environmental conditions of location i described in
measurement vectorxi , the random forest distribution model provides a strong ex-
pectation of a certain vegetation type. On the contrary, a value close to 1 indicates
that, based on the environmental conditions, the random forest distribution model
is not able to distinguish between the different vegetationtypes.

It should be stressed that the random forest distribution model generates an en-
semble of classifiers. The discrete probability distribution over all classes resulting
from classification by this ensemble suits for uncertainty assessment of the model
output, an assessment that could not be made if a single classifier distribution
model (or more generally, any distribution model computinga single response)
was applied.

7.2.6 Evaluation of distribution modelling results

In this chapter, 3-fold cross-validation (see Chapter 4, Algorithm 3) was applied.
Measures to evaluate the distribution modelling results are previously described.
They include the oob error (see Chapter 4, Algorithm 2), which is defined as
(1−accuracy of the classification of oob elements)×100 [%] and the test set er-
ror, which is defined as (1−accuracy of the classification of cross-validation test
elements)×100 [%], where accuracy is the number of correctly classifiedinstances
divided by the total number of instances. Further, Cohen’sκ test ([220] and Sec-
tion 4.5) was used to evaluate differences between observations and predictions.
The value ofκ is negative if the agreement between observations and predictions
is worse than expected by chance, and reaches 1 in case of perfect agreement.

A threshold-independent evaluation using receiver operating characteristic -
(ROC) graphs was also performed [210] for visualizing classifier performance.
For each ROC curve, the area under the curve (AUC) was calculated and averaged
over the different classes using class weights based on class prevalences in the test
data to obtain AUCtotal ([264] and Eq. (6.4)).
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7.3 Uncertainty assessment related to uncertainty in
environmental variables

As stated in the introduction, this chapter has a dichotomous structure. Under
this section, an uncertainty assessment will be performed which is exclusively re-
lated to the uncertainty in environmental variables. The structure of this chapter
is straightforward. The starting point are the field measurements (as made by the
monitoring scheme described in Chapter 3). These measurements include envi-
ronmental point measurements and area covering information on management and
plant species distributions. The environmental point measurements are spatially
interpolated, and the uncertainty associated with this interpolation is quantified.
After model construction, an assessment is made of this source of uncertainty
propagating through the model (as conceptualized in Fig. 7.1(a)).

7.3.1 From field observations to a spatially distributed data set

Field observations concerning the environmental site conditions were made at dif-
ferent ecosystem compartments: (i) groundwater (dynamicsand quality), (ii) soil,
and (iii) vegetation. Groundwater dynamics were describedby a time series of
groundwater depth measurements, while groundwater quality was described by
means of concentration measurements of chemical groundwater compounds. Soil
monitoring comprised the measurement of soil organic matter, and the direct an-
thropogenic impact on the vegetation compartment was assessed by identification
of the different vegetation management regimes. The spatio-temporal density of
field observations differed (Table 7.1), e.g. management regime was described for
every grid cell of the study area (N = 519) on a single occasion, while ground-
water depth observations were made 26 times each year (everyfortnight) in 24
piezometers (n = 24) scattered over the area.

Based on these observations, seven different environmental variables were cal-
culated, including average groundwater depth (AGD), amplitude of the ground-
water depth (Ampli), pH, chloride concentration (Cl−), sulphate concentration
(SO2−

4 ), soil organic matter content (SOM) and management regime (see Sec-
tion 7.2.1). The former six variables are continuous, whereas the latter one is
categorical with 4 possible management classes. Short summary statistics (mean,
range, variance) of the environmental variables (Table 7.1) indicated marked hy-
drological differences within the study area, with averagegroundwater depths and
groundwater amplitudes differences of more than 1.3 m between piezometers. Fur-
thermore, groundwater quality as well as soil organic matter showed a high vari-
ability, and the study area could be concluded to comprise a high variability in
environmental conditions. In addition to the environmental site observations, a
species inventory, covering the entire study area, was made, i.e. for each of the
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TABLE 7.1 – Spatio-temporal resolution of field observations made within different ecosystem compartments. Derived variables,abbreviations and
summary statistics are included.
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groundwater depth 24 26 average groundwater depth AGD [m] -0.45 [-1.35 -0.03] 0.12
groundwater depth 24 26 amplitude of groundwater depth Ampli [m] 1.06 [0.39 1.73] 0.11
groundwater quality 24 2 pH pH [-] 6.4 [5.7 6.7] 0.05
groundwater quality 24 2 chloride concentration Cl− [mg L−1] 24.1 [1.5 68.0] 223.1
groundwater quality 24 2 sulphate concentration SO2−

4 [mg L−1] 53.5 [0.5 272.0] 3438.5
soil 59 1 soil organic matter content SOM [%] 20.7 [5.3 76.1] 290.1
vegetation 519 1 management regime / / / / /
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519 grid cells presence/absence records were made for all 56plant species on the
checklist (part of Appendix A). As stated in the introduction, all these field obser-
vations were assumed to be error free.

7.3.1.1 Variation partitioning in species cover data

To quantify the spatial component of ecological variation at the Doode Bemde,
variation partitioning [273–275] was applied to 21 grid cells within the study area,
i.e. those grid cells wherein field observations of groundwater dynamics and qual-
ity were made directly from a piezometer (from the 24 piezometers, 3 are located
just outside the boundaries of the Doode Bemde). Three data sets (species, envi-
ronmental and spatial, containing a grid-species matrix, environmental conditions
and spatial information, respectively) were constructed (Fig. 7.2). The species
data set consisted of inventory results of species occurrences (presence/absence)
within each of the 21 grid cells. The environmental data set contained observa-
tions of AGD, Ampli, pH, Cl− and SO2−

4 made from a piezometer within each of
these 21 grid cells. Soil organic matter content of the nearest observation point,
and management regime were added to the environmental data set. The spatial
data set contained the 16 eigenvectors of the positive eigenvalues of the decom-
posed distance matrix. The species showed unimodal responses to the gradients in
the study area (see Table 5.3, length of gradient> 2), and therefore the analysis
was made using partial CCA. The whole variation of the species data set could
be partitioned into the following parts: (i) non-spatiallystructured environmen-
tal variation, 20.8%; (ii) spatially structured environmental variation, 37.6%; (iii)
spatial species variation that is not shared by the environmental data, 41.8%; and
(iv) unexplained variation, 0.0%. Unexplained variance of0.0% results from the
high number of environmental and spatial variables where the species variation is
explained upon.

The environmental variables explained 58.4% (37.6% + 20.8%) of the species
variation, of which approximately two-thirds was explained by a similar spatial
distribution of species and environmental variables, resulting partly from the same
response of species and environmental variables to some common underlying
causes. One-third of the explained species variation couldbe related to the en-
vironmental variables as such, and involved the local effect of these variables on
plant species, without any spatial trend. 41.8% of the species variation was as-
sessable by the spatial data set, and could not be related to any of the measured
environmental variables. This means that unmeasured, but important environmen-
tal variables and processes, e.g. biotic processes of competition, predation and
dispersal, were synthetically captured within the spatialdata.

Variation partitioning indicated that the species distribution at the study area
results from spatial distributions of both measured and unmeasured features. This
result stresses the importance of an accurate spatial interpolation when species oc-



UNCERTAINTY ASSESSMENT 7-15

TABLE 7.2– Summary of semivariogram models.

Variable n Model∗ Nugget Sill Range [m]
(C0) (C0 +C1) (a)

AGD 24 sph 0.14 0.94 320
Ampli 24 exp 0.2 1 329
pH 24 sph 0.2 0.93 330
Cl− 24 sph 0.1 0.95 348
SO2−

4 24 exp 0.14 1.11 319
SOM 59 sph 0.17 1.08 297
∗Models (γ(0) = 0)
Spherical (sph): γ(h) = C0 +C1[3/2(|h|/a)−1/2(|h|/a)3] if 0 < |h| ≤ a

γ(h) = C0 +C1 if |h| > a
Exponential (exp): γ(h) = C0 +C1[1−exp(−3|h|/a)] if |h| > 0

currence in relation with environmental conditions is under investigation. Further-
more, it indicates that there is uncertainty on the causality of the vegetation distri-
bution, which makes the interpretation of the distributionmodelling results harder.
Finally, based on the variation partitioning result, the vegetation distribution model
would probably benefit from the incorporation of spatial dependence [288], which
was beyond the study objectives.

7.3.1.2 Uncertainty on spatial interpolation of environmental variables

The sGs algorithm was applied to the observation data set of each of the continuous
environmental variablesz (AGD, Ampli, pH, Cl−, SO2−

4 and SOM) containing
point measurements made atn locationsvα, z(vα),α = 1, . . . ,n. The normal score
transformedzdata were used to construct and model experimental omnidirectional
semivariogramŝγ(h), with h the lag distance, using Variowin 2.2 software. Model
parameters of the different semivariogram models are givenin Table 7.2.

The simulations resulted in 500 back-transformed realizations for each vari-
able for each of the 519 grid cells included in this study, based on which empirical
non-parametric ccdfs were calculated (Fig. 7.5, example ofgroundwater depth).
Median values (̂F(0.5)) and conditional variances of these ccdfs were calculated.
The conditional variance equaled 0 for grid cells where observations were made
(F̂−1(·) = observed value). For other grid cells, values higher than 0were cal-
culated, and differences in values could be attributed to two main sources: (i) a
spatial underrepresentation of nearby observations in theconditioning data set,
and (ii) the presence of strong gradients in the conditioning data set, both result-
ing in highly variable estimates within the simulation algorithm. With respect to
average groundwater depth, a spatial pattern could be observed in the conditional
variance (Fig. 7.5). In the vicinity of the grid cells where observations were made,
variance was generally low. Nevertheless, high variance values on the western
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levee with high average groundwater depths and in the central depression with su-
perficial groundwater depths could be observed even in grid cells adjacent to the
ones where observations were made, probably due to a lack of observation points
within these areas. Similar variance patterns were found for the other continuous
variables (not shown).

The lack of an independent validation data set forced the application of jack-
knifing to assess local uncertainty. Jackknife data sets (containing all but one
observation) of the continuous variables AGD, Ampli, pH, Cl−, SO2−

4 and SOM
were applied to the sGs algorithm resulting in 500 realizations for each of then j

jackknifed elements. The local uncertainty of the simulation results was investi-
gated by means of scatter diagrams of observed versus mediansimulated values
(Fig. 7.6). The error measurements indicated poor simulation results for most of
the variables (AGD, Ampli, Cl− and SO2−

4 ), to moderate and good results for pH
and SOM, respectively. Similar conclusions could be drawn from the accuracy
plots. Scatter points were (partly) on or above the 1:1 line for pH and SOM, indi-
cating accurate simulation results. The precision of the simulation results for these
variables was also good. The width of the 0.5 probability interval was 0.22 units
[-] and 13.84 [% org], for pH and SOM, respectively. The high local uncertainty
of the simulation results of the other environmental variables could be attributed
to the limited spatial coverage of observations.

For each grid celli, the median value over all 500 realizations computed by the
sGs simulation algorithm on the entire observation data set(n= 24 for all environ-
mental variables, apart from SOM wheren = 59) was taken for each continuous
variable, and by adding management type which was identifiedfor each of the grid
cells separately, 519 measurement vectorsxi = (xi1,xi2, . . . ,xi7) constituted of the
values of the seven spatially distributed environmental variables AGD, Ampli, pH,
Cl−, SO2−

4 , SOM and management type were constructed. To each measurement
vectorxi , a unique vegetation typel i ∈ {c1, . . . ,c7} was assigned to construct the
data setL = {(x1, l1), . . . ,(xN, lN)} with N = 519. The data setL will be used as a
reference data set throughout this chapter.

Furthermore, for each grid celli, 100 samples were drawn from the sGs
simulation results for the continuous variables using Latin hypercube sampling
[289, 290]. Latin hypercube sampling is a stratified random procedure that pro-
vides an efficient way of sampling variables from their distributions, by covering
the full range of each variable [291]. Linked with the categorical variable man-
agement type and the observed vegetation type, 100 data setswere constructed
(LHS1, . . . , LHS100), in which the entire variable distributions are captured.

Where the Latin hypercube sampling resulted in data sets covering the entire
probability ranges of the continuous variables, another, more systematic method-
ology was followed to construct data sets with varying degrees of deviation from
the median simulation results. For each grid celli, the median value and standard
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FIGURE 7.5 – Groundwater depths were monitored by piezometers (black dots, n = 24)
scattered in and around the study area (a). Sequential Gaussian simulation using these ob-
servations resulted in 500 equiprobable groundwater depthrealizations for each grid cell
(N = 519). Empirical non-parametric conditional cumulative distribution functions (ccdfs)
were computed from these realizations (b). Median (c) and variance (d) values were calcu-
lated based on the unique ccdf of each grid cell.
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FIGURE 7.6– Scatter diagram (1), accuracy plot (2) and precision plot (3) for the simula-
tion results of the jackknifed elements of AGD (a), Ampli (b), pH (c), Cl− (d), SO2−

4 (e),
SOM (f).

deviations over all 500 realizations computed by the sGs simulation algorithm of
the six continuous environmental variables were calculated. Data sets were cre-
ated by adding a proportiona of the standard deviations to the median values,
Lm+a×stdev, and by subtracting a proportiona of the standard deviations from the
median values,Lm−a×stdev, wherea∈ {0,0.01,0.05,0.1,0.5,1,2}, resulting in 13
mutually exclusive data sets. Whena = 0, the data setsLm±0 equal the reference
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FIGURE 7.6 – continued. . .

data setL.

7.3.2 Model construction, calibration and evaluation

As indicated in the previous chapters (see Chapters 4–6), the number of trees (k)
and the number of predictive variables used to split the nodes (m) are two user-
defined parameters required to grow a random forest, which have to be calibrated
to minimize model error. Parameter calibration can be done using the built-in out-
of-bag error testing or using the test set error in cross-validation (see Chapter 4). In
3-fold cross-validation using different values ofm, oob error and test set error were
averaged over the three random forest models. Fig. 7.7 showed convergence of the
random forest models constructed with different numbers ofm (m= 1 (minimal
value),m= 3 (optimal value), andm= 7 (maximal value)) when more trees are
added (i.e.k increases). The values 1000 and 3 were used for the two user-defined
parametersk andm, respectively.

Using these parameter values, a random forest distributionmodel was con-
structed (Algorithm 7) which made a classification of the 519grid cells included
in this study, of which 359 (69.17%) grid cells were classified correctly, and 160
(30.83%) grid cells incorrectly. A value ofκ [220] of 0.633 was calculated, indi-
cating a substantial agreement between observations and predictions. A threshold-
independent evaluation using receiver operating characteristic (ROC) graphs was
performed ([264] and Eq. (6.4)). For each class a different ROC curve was pro-
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FIGURE 7.7 – Out-of-bag (oob) error and test set error converge when more trees are
added to the random forest (whenk increases). The numbers of variables (m) used to split
the nodes arem= 1, m= 3 andm= 7. Average error values of the 3-fold cross-validated
random forest model are plotted.

duced, with ROC curvej plotting the classification performance using vegetation
classc j as positive and all other classes as negative. For each ROC curve, the
AUC was calculated and averaged over the different classes using class weights
based on class prevalences in the dataset. The AUCtotal value equaled 0.943 and
the random forest distribution model was concluded to perform well.

The random forest model output for each grid cell is a discrete probability dis-
tribution over the seven vegetation classes (see Eq. (7.4)). Looking into this prob-
ability distribution by means of Shannon’s entropy measureH (Eq. (7.5)) allowed
to gain some information on model output uncertainty.H values range between the
maximal value 1 and minimal value 0. Other importantH values are 0.356, 0.565,
0.712, 0.827 and 0.921, values obtained when the classification results includej
dominant vegetation types with probabilities of occurrence 1/ j, wherej = 2, . . . ,6,
respectively. When frequency counts were plotted against values ofH computed
for every grid cell in the study site (Fig. 7.8(a)), a decrease in frequency counts
could be seen with increasingH values. This means that the random forest model
output distribution was generally quite narrow, with a clear dominance of one, two
or — to a lower extent — three different vegetation types.
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Algorithm 7 : Pseudo-code for random forest distribution model construc-
tion and testing using 3-fold cross–validation.

Data: L
Result: P(c j) values and test statisticsκ, AUCtotal andH

partition the data setL into 3 disjoint test data setsT1,T2 andT3;
for i = 1 : 3 do

useSi = L−Ti to construct random forest model RFi ;
calculate the out-of-bag-error;
save model;
apply the saved random forest model RFi to test data setTi ;
calculate the test set error;
saveP(c j) = Ncj /Ntot (Eq. (7.4)) for all elements ofTi ;

end

calculate test statisticsκ, AUCtotal andH;

7.3.3 Uncertainty on spatial interpolation of environmental
variables propagating to the modelling results

A random forest distribution model was constructed on the reference data setL,
using calibrated parametersk = 1000 andm= 3 (Section 7.3.2). In 3-fold cross-
validation, the model was then applied to two test data sets with quantified data
uncertainty associated with the spatial interpolation of environmental variables:
(1) the Latin hypercube test data sets, and (2) the deviationfrom median data sets.

7.3.3.1 Latin hypercube test data sets

The random forest distribution model applied to the Latin hypercube data sets
(LHS1, . . . , LHS100) using 3-fold cross-validation (Algorithm 8) resulted in proba-
bility of occurrence values for all seven vegetation types for each grid cell in the
study area, and this for each of the 100 Latin hypercube test data sets. Modelling
results were not accurate (Table 7.3); from the 100 test datasets containing 519 el-
ements, on average only 229.7 elements (47.37%) were classified correctly (com-
pared to 69.17% during model calibration), and aκ value of 0.367 and AUCtotal

value of 0.828 were obtained (Table 7.3). Therefore it couldbe concluded that
the model did not perform satisfactorily when the entire probability ranges of the
continuous environmental variables are considered. A moredetailed investiga-
tion of these modelling results was made by a grid-wise comparison of variances
(Fig. 7.9). It was hypothesised that grid cells with low variances in simulation re-
sults for the continuous environmental variables (i.e. grid cells where observations
are made, and simulated values equal the observed value,F̂−1(·) = observed value,
as an extreme example) have a low variance in modelled probability of occurrence
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FIGURE 7.8 – Histogram of frequency counts of the Shannon entropy (H) values of the
entire study site (N = 519) for the random forest distribution model cross-validated onL (a),
and tested on the Latin hypercube samples (averaged) (b), and the deviation from median
test data setsLm+a×stdevwith a = 0.01,a = 0.1, anda = 1 (c).
Legend:j* indicates the values ofH obtained when a grid cell is classified asj vegetation
types with equal probability of occurrence (P(cj ) = 1/j ).

values. Therefore six scatter plots were constructed, plotting the variances in simu-
lation results of the continuous variables against the variance inP(c)max for the 100
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Algorithm 8 : Pseudo-code for model testing with Latin hypercube test data
sets.

Data: LHSk, k = 1, . . . ,100
Result: Pk(c j) values and test statisticsκk, AUCtotal,k andHk

for k = 1:100do

use the partitioning of Algorithm 7 to partition the data setLSHk into 3
disjoint test data setsTk,1,Tk,2 andTk,3;
for i = 1 : 3do

apply the saved random forest model RFi to test data setTk,i ;
calculate the test set error;
savePk(c j) = Nk,cj /Ntot (Eq. (7.4)) for all elements ofTk,i ;

end

calculate test statisticsκk, AUCtotal,k andHk;
end

Latin hypercube model testing runs for each grid cell. Four different groups were
created within each plot based on model accuracy for each grid cell (N = 519):
(1) a grid cell correctly classified in≤ 25 on a total of 100 Latin hypercube test
runs, (2) a grid cell classified correctly in≤ 50 and> 25 model testing runs, (3)
a grid cell classified correctly in≤ 75 and> 50 model testing runs, and (4) a
grid cell classified correctly in≤ 100 and> 75 model testing runs. By applying
Spearman’s (rs), correlations between variances were calculated from each of the
four groups seperately. Significant positive correlationsat the 0.05 significance
level were found for grid cells that were classified correctly in >75 of the 100 test
model runs. These include 19 grid cells where observations were made (located
in the origin of the scatter plots). For the other groups, no significant correlations
were found.

Calculation of the entropy of the random forest model outputH for all grid
cells i, averaged over all 100 Latin hypercube test runs, resulted in a histogram
of frequency counts (Fig. 7.8(b)) showing a maximum betweenH = 0.565 and
H = 0.712. Grid cells were mostly classified as three or four different vegeta-
tion types with similar probabilities of occurrence. Zero grid cells were classified
with a H value< 0.356. In comparison with the histogram based on the cross-
validated results of the reference random forest distribution model, a clear shift
toward higherH values was observed, indicating that uncertainties on the spatial
interpolation are propagated to the distribution modelling results.
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TABLE 7.3 – Uncertainty on environmental variables propagating to the random forest
distribution modelling results.

Data set oob error [%] test set error [%] Cohen’sκ AUCtotal averageH
L 28.03 30.83 0.633 0.943 0.420
LHS 27.55 52.63 0.367 0.828 0.661
Lm+a×stdev a = 0 28.03 30.83 0.633 0.943 0.420

a = 0.01 28.03 29.67 0.646 0.941 0.435
a = 0.05 28.03 31.02 0.631 0.938 0.461
a = 0.1 28.03 33.53 0.600 0.931 0.491
a = 0.5 28.03 45.47 0.457 0.877 0.658
a = 1 28.03 53.76 0.363 0.829 0.768
a = 2 28.03 68.59 0.207 0.759 0.831

Lm−a×stdev a = 0 28.03 30.83 0.633 0.943 0.420
a = 0.01 28.03 30.44 0.637 0.943 0.421
a = 0.05 28.03 31.41 0.624 0.935 0.433
a = 0.1 28.03 32.95 0.605 0.927 0.459
a = 0.5 28.03 53.18 0.347 0.860 0.615
a = 1 28.03 65.70 0.181 0.757 0.629
a = 2 28.03 70.91 0.123 0.678 0.623

7.3.3.2 Deviation from median test data sets

Another approach to assess uncertainty propagation to the modelling results made
use of test data setsLm±a×stdev. In 3-fold cross-validation random forest distribu-
tion models were constructed on the reference data setsL12,L13 andL23 and tested
on according test data sets in which the values of the continuous variables differed
in degree of deviation of the median simulated value, and forwhich the factora is
indicative (as it represents the proportion of the standarddeviation that was added
to and subtracted from the median values) (Algorithm 9).

Algorithm 9 : Pseudo-code for model testing with deviation from median
test data sets.

Data: Lm+a×stdev, with
a∈ {−2,−1,−0.5,−0.1,−0.05,−0.01,0,0.01,0.05,0.1,0.5,1,2}

Result: Pa(c j) values and test statisticsκa, AUCtotal,a andHa

for a∈ {−2,−1,−0.5,−0.1,−0.05,−0.01,0,0.01,0.05,0.1,0.5,1,2} do

use the partitioning of Algorithm 7 to partition the data setLb
p into 3

disjoint test data setsTb,1,Tb,2 andTb,3;
for i = 1 : 3do

apply the saved random forest model RFi to test data setTa,i ;
calculate the test set error;
savePa(c j) = Na,cj /Ntot (Eq. (7.4)) for all elements ofTa,i ;

end

calculate test statisticsκa, AUCtotal,a andHa;
end
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FIGURE 7.9 – Variable variance versus variance in modelled probability of occurrence
of the predicted vegetation type (P(c)max) when the random forest distribution model is
applied to 100 Latin hypercube test data sets. Different colours group the scatter points
(N = 519) based on classification accuracy: a turquoise× is a grid cell classified correctly
in ≤ 25 Latin hypercube model testing runs (out of 100), a green× is a grid cell classified
correctly in> 25 and≤ 50 model testing runs, a blue× is a grid cell classified correctly
in > 50 and≤ 75 model testing runs, and a black× is a grid cell classified correctly in
> 75 and≤ 100 model testing runs. Spearman’s rank correlations (rs) and significance at
the 0.05 significance level (*) are indicated for each group separately.

Results indicated increasing test set errors when|a| increased, and decreasing
κ and AUCtotal values when|a| increased (Table 7.3). However, the increase in test
set error and decrease inκ and AUCtotal values was limited when−0.1≤ a≤ 0.1,
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and much more pronounced when this threshold was exceeded. Based on this
result it could be concluded that the random forest model performed well for test
elements with low margins of deviation from training values. If a certain deviation
threshold was exceeded, model errors increased drastically. The histogram with
frequency counts ofH values indicated a clear shift to higher values when test
data deviated more from training data (Fig. 7.8(c)).

7.3.3.3 Implications for empirical distribution modelling

Distribution modelling on both Latin hypercube and deviation from median test
data sets emphasized that environmental variables with lowuncertainty are pri-
mordial for accurate distribution modelling. At the site scale, this amounts to
increasing the monitoring density allowing accurate and precise spatial interpo-
lation. The inclusion of stable environmental variables with limited spatial and
temporal variability would lower the uncertainty on spatial interpolation as well,
and could therefore be justified within an empirical distribution modelling con-
text. The ability to explain vegetation patterns by such environmental variables,
however, is questionable.

7.4 Uncertainty assessment related to uncertainty in
vegetation distribution

As described in Chapter 3, vegetation types were determinedon a spatial plant
species inventory. Inevitably, species clustering introduces uncertainty in the veg-
etation distribution. This section assesses the propagation of such uncertainty to
the distribution modelling results (as conceptualized in Fig. 7.1(b2)).

7.4.1 Uncertainty on species clustering

Based on the species cover data, TWINSPAN [83] was applied inorder to de-
fine vegetation types (see Chapter 3 and Chapters 5–6). Sevendifferent vegeta-
tion types were distinguished at the study site. A simplifiedrepresentation of the
TWINSPAN dendrogram is given (Fig. 7.10), and the spatial distribution of the
seven different vegetation types can be seen in Fig. 3.2. A more detailed descrip-
tion of these vegetation types is included in Chapter 3, Table 3.2.

Uncertainty concerning the species clustering results from the many hard, ar-
bitrary choices that had to be made. First of all, which clustering strategy is to be
used: an agglomerative strategy or a divisive strategy? Andif an agglomerative
method is chosen, which (dis)similarity measure is to be used to base the clustering
upon? Furthermore, what is the appropriate number of clusters? All these choices
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FIGURE 7.10– Cluster dendrogram.

have to be made and influence the solution [292]. Additionally, the stability of the
TWINSPAN solution is often of concern [292–294].

A posterior analysis of the TWINSPAN grid cell clustering was performed
using the Jaccard index of similarity (JS). AveragedJSvalues are given in Table 6.1
for the seven different vegetation types, and as discussed in Chapter 6 marked
differences in similarity between the different vegetation types is present.

Based on this analysis, 6 new data sets were constructed by pseudo-randomi-
zation of the response variable (vegetation type) of 1%, 5%,10%, 20%, 50% and
100% of theN elements to assess the effect of uncertainty on the responsevari-
able. Pseudo-randomizations were based on the Jaccard similarity between grid
cells of the seven different vegetation types (Table 6.1). This stategy reflects the
likelihood of erroneous clustering of a grid cell based on its species composition.
An Arrhenatherion elatiorisgrid cell for example, had on average approximately
twice as much species in common withFilipendulion than withMagnocaricion;
their respectiveJSvalues were 0.24 and 0.11. Therefore the likelihood is higher to
classify the vegetation type of this grid cell asFilipendulion than asMagnocari-
cion. This difference was (linearly) taken into account during response pseudo-
randomizations. The new data sets are referred to asLb

p where subscriptp refers to
pseudo-randomization and superscriptb to the percentage of pseudo-randomized
elements.

7.4.2 Uncertainty on species clustering propagating to themod-
elling results

The data sets with pseudo-randomizations in the response variable (Lb
p) were used

for model construction and testing (Algorithm 10). The reason why the calibrated
model constructed on reference data setL was not used here, is that the random
forest algorithm constructs its classifiers taking response variables into account
(supervised learning), and hence uncertainty related to species clustering should
be taken into account during model construction as well.
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Algorithm 10 : Pseudo-code for model testing with uncertainty on species
clustering.

Data: Lb
p, with b∈ {0,1,5,10,20,50,100}

Result: Pb(c j) values and test statisticsκb, AUCtotal,b andHb

for b∈ {1%,5%,10%,20%,50%,100%} do

use the partitioning of Algorithm 7 to partition the data setLb
p into 3

disjoint test data setsTb,1,Tb,2 andTb,3;
for i = 1 : 3do

useSi = Lb
p−Tb,i to construct random forest model RFi ;

calculate the out-of-bag-error;
apply RFi to test data setTb,i;
calculate the test set error;
savePb(c j) = Nb,cj /Ntot (Eq. (7.4)) for all elements ofTb,i ;

end

calculate test statisticsκb, AUCtotal,b andHb;
end

TABLE 7.4 – Uncertainty on species clustering propagating to the random forest distribu-
tion modelling results.

Data set oob error [%] test set error [%] Cohen’sκ AUCtotal averageH
L 28.03 30.83 0.633 0.943 0.420
Lb

p b = 1% 29.48 29.29 0.652 0.942 0.417
b = 5% 30.83 32.56 0.613 0.919 0.456
b = 10% 37.96 37.76 0.551 0.860 0.523
b = 20% 49.04 49.71 0.413 0.791 0.626
b = 50% 76.40 74.76 0.123 0.580 0.785
b = 100% 83.62 85.55 -0.006 0.518 0.822

Models constructed on data sets with an increasing proportion of elements
pseudo-randomized in the response variable, showed increasing oob errors (Ta-
ble 7.4): an increase of 1.45%, 9.93% and 55.59%, with 1%, 10%and 100% of
the elements pseudo-randomized, respectively. The test set error values revealed
that model performances did deteriorate gradually with increasing percentages of
the elements pseudo-randomized. For the other evaluation statistics, similar con-
clusions hold. This result stresses the importance of accurate species mapping
and vegetation type determination. The better model performances with 1% of
the elements pseudo-randomized indicate that vegetation clustering uncertainty is
prevalent in the reference data.

A possible way to get rid of the uncertainty associated with species clustering
is to use a selection of dominant species instead of vegetation types for distribu-
tion modelling [51]. However, since vegetation types are frequently used in nature
conservation, management and legislation (e.g. [295–298]), the application of veg-
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etation distribution models will remain important.

7.5 Conclusions

Vegetation distribution models tend to describe vegetation patterns based on envi-
ronmental variables. A variety of uncertainty sources can affect vegetation distri-
bution modelling results. We investigated two of them; namely the uncertainties
associated with (i) the spatial interpolation of environmental variables, and with
(ii) species clustering into vegetation types. The following conclusions could be
drawn from this investigation:

1. Variation partitioning is a useful methodology to assessimportance and rel-
evance of environmental variables and their spatial structuring to vegeta-
tion distributions. In this study, variation partitioningof the observed data
(species, environmental and spatial) stressed the importance to include the
important environmental variables constraining the vegetation distribution,
as well as their spatial variability within the study area, for distribution mod-
elling.

2. The sequential Gaussian simulation algorithm (which preserves data rough-
ness and allows for local uncertainty assessment) is appropriate to simulate
the spatial distributions of environmental variables based on point observa-
tions. Its ability to quantify local uncertainty is advantageous for the inter-
pretation of distribution modelling results. In this study, simulation results
were not accurate for most of the environmental variables, and conditional
cumulative density functions showed a high variability formost grid cells.

3. The random forest distribution model generates an ensemble of classifiers,
allowing for model output uncertainty assessment which could be quantified
using Shannon’s entropy measure.

4. The uncertainty associated with spatial interpolation of environmental vari-
ables propagated clearly through the distribution model and resulted in de-
teriorating model performances (higher error andH values, lowerκ and
AUCtotal values). Environmental variables with low uncertainty areprimor-
dial for adequate distribution modelling.

5. Pseudo-randomization tests are appropriate for uncertainty assessment asso-
ciated with species clustering into vegetation types. Model performances on
pseudo-randomized test sets emphasized the importance of accurate species
clustering.
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7.6 Additional remark on the use of time series

Ecological distribution modelling studies frequently rely on a limited number of
model input variables to describe environmental space. Furthermore, the environ-
mental gradients described by these variables are frequently changing throughout
time (non-equilibrium situation, Chapter 1). Nevertheless, these dynamics are of-
ten ignored –mostly because of the costly and time-consuming monitoring work
which is required to capture them– and environmental input data rely on a single
measurement, or they are approximated by averages based on alimited number of
observations. Obviously, uncertainty is introduced by such practice.

In this study, the environmental space was described by means of several vari-
ables related with groundwater quantity and dynamics, groundwater quality, soil
and management. The temporal resolution of the observations differed for the dif-
ferent variables: groundwater dynamics were monitored every two weeks during
the monitoring period, groundwater quality observations were only made twice,
soil samples were only taken once and the different management regimes were
delineated once (Table 7.1). Groundwater quantity, groundwater quality and soil
measurements were used to derive the observational data sets{z(vα),α = 1, . . . ,n}
of the continuous environmental variables from which the spatial interpolation
started.

Up to three different sources of uncertainty could be attributed to the different
steps in the derivation of these observational data sets. The first source of uncer-
tainty is the uncertainty associated with the individual measurements in the field
(measurement error) of an environmental variableZ on time stepi, u(zi). Based on
these (uncertain) observations, a time seriesẑ= (z1, . . . ,zt ), with t the total number
of time steps on which observations were made, was constructed. A second source
of uncertainty is introduced by averaging the time seriesẑ. The uncertainty of
the average valueu(ẑ), assuming unbiased measurements and value independent
measurement errors, can be expressed in a discrete way as [299]:

u(ẑ) =

√

∑t
i=1u2(zi)

t
, (7.6)

whereu(zi) is the uncertainty on an individual measurementzi , which is an ele-
ment of the time serieŝz with a total of t measurements of variableZ. A third
source of uncertainty is the uncertainty due to incomplete time coverage. This un-
certainty is strongly affected by the frequency distribution of field measurements
and the temporal occurrence of data gaps in the time series. Asimplistic approach
to assess the uncertainty on the average value due to incomplete time coverage,
uTC(ẑ) assumes a random distribution of missing values throughoutthe time pe-
riod considered, and is given by [299]:

uTC(ẑ) = σ(z)

√

1− t/T
t

, (7.7)
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wheret is the number time steps on which observations in the incomplete time
series (̂z) were made andT the number number time steps on which observations
should be made to construct an complete time series (z) covering the same pe-
riod. σ(z) is the standard deviation associated with the entire data set, and can be
calculated as:

σ(z) =

√

√

√

√

1
T −1

T

∑
j=1

(z j −µ(z))2 . (7.8)

In this study, these three types of uncertainty are clearly present. The deter-
mination of groundwater quantity variables, average groundwater depth and am-
plitude of the groundwater depth is based on groundwater depth measurements.
Uncertainty in the individual measurements of groundwaterdepth can be caused,
for example, by a coarse or incorrect determination of the ground surface, or by
erroneous recordings due malfunctioning of the monitoringdevice. Furthermore,
time series of groundwater depth measurements are averagedto obtain the aver-
age groundwater depth. A final source of uncertainty is related to an incomplete
time coverage of the groundwater depth measurements which were made every
fortnight.

Assume a constant uncertainty of the individual groundwater depth measure-
ments (u(zi), with zi a groundwater depth measurement) of 0.02 m, then the uncer-
tainty related with the averaging of the time series of groundwater depth measure-
ments (u(ẑ)) equals 0.02 m (Eq. (7.6)). The uncertainty resulting from incomplete
time coverage was calculated for each piezometer separately, since it is propor-
tional to the standard deviation of the –not measured– entire time seriesσ(z).
Based on the incomplete time series measured at the study area σ(ẑ) was used
as an estimation of the standard deviation, which ranged between 0.1 m and 0.6
m. Time series recorded at piezometers installed in terrainwith heavily fluctuat-
ing groundwater depths had higher standard deviations. These sites were situated
on the levee of the river Dijle (western border of the study area), and fluctuations
gradually decreased toward the central depression, to be followed by a slight in-
crease at the eastern border. Fig. 7.11 visualizes the decline ofuTC(ẑ) in function
of percentage of time covered (t/T ×100) forσ(ẑ) values of 0.1 m, 0.3 m and 0.6
m.

The uncertainty associated with incomplete time coverage ranged from 0 when
t/T = 1 (complete time coverage) to∞ whent/T = 0 (fully incomplete time cov-
erage). The effect of the standard deviation onuTC(ẑ) could clearly be seen. For
piezometers where groundwater depth measurements did not change a lot through-
out the year uncertainties are small compared to those wherehigh fluctuations
occurred. The interpretation is straightforward; time-incomplete measurements
made at sites with limited groundwater dynamics are able to capture a bigger pro-
portion of information compared with incomplete measurements made on highly



7-32 CHAPTER7

FIGURE 7.11– The uncertainty of the individual groundwater depth measurements (u(zi))
and uncertainty in function of incomplete time coverage forsites with different groundwater
depth dynamics (represented by standard deviationsσ(ẑ)).

dynamic sites. Therefore, the dynamics of the measured variable has a major in-
fluence on the uncertainty related with its incomplete measurement.

In this study where groundwater depth recordings were takenevery two weeks
during a 3 year period (t = 26 in 1991, 1992 and 1993), on an ideal measurement
frequency of once per day (T = 365 in 1991 and 1993, andT = 366 in 1992),
uTC(ẑ) values have to be read accordingt/T×100= 7 (Fig. 7.11), and they range
between 0.019 m forσ(ẑ) = 0.1 and 0.11 m forσ(ẑ) = 0.6. Uncertainties due to
incomplete time coverage are almost equal to uncertaintiesrelated with the indi-
vidual measurements at sites with low groundwater dynamics, while they are more
than 5 times as large in highly dynamical sites.

For the amplitude of the groundwater depth, a similar uncertainty decompo-
sition holds, with as only difference that there is no uncertainty due to averag-
ing. The amplitude is calculated as the difference between minimal and maxi-
mal groundwater depths, and uncertainties associated withthe individual measure-
ments of these dates equal 0.02 m. The uncertainty on the groundwater amplitude
caused by measurement uncertainty is therefore 0.028 m (=

√

(0.02)2+(0.02)2).
The determination of the amplitude of the groundwater depthis based on the same
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groundwater depth measurements as above, and uncertainty values at the different
piezometers due to incomplete time coverage of the groundwater depth measure-
ments are therefore the same.

The groundwater quality was assessed by concentration measurements of sev-
eral hydrochemical groundwater compounds, which were onlysampled twice, in
spring and autumn of 1993, giving the wrong impression that they would be rel-
atively static. This is not the case, as reported in numerousstudies for various
groundwater nutrients (e.g. [300–304]) and Fig. 1.3 where changes in nutrient
concentrations are given after soil submergence. Unfortunately, a reasonable esti-
mation of the uncertainties associated with groundwater quality variables was not
feasible here; the uncertainty on the individual measurements would be highly in-
fluenced by the accuracy of the analyzing methods, but other elements like sample
transport and treatment can be important as well, but are hard to capture quanti-
tatively in terms of uncertainty. Additionally, the very incomplete time coverage
did not allow to make acceptable estimations of the standarddeviations of the
fluctuation in groundwater nutrient concentrations, and therefore the uncertainty
associated with incomplete time coverage could not be determined.

This remark on the use of time series in ecohydrological studies, adds to one
of the main findings of this chapter. The uncertainty associated with spatial in-
terpolation of environmental variables propagates through the distribution model,
but additionally, the uncertainty associated with the use of (error containing and
incomplete) time series to characterize dynamical ecosystem properties will also
influence the model predictions.





8
Conclusions and recommendations

8.1 Starting point of this dissertation

Wetlands can be ranked amongst the most highly threatened ecosystems on the
planet [305]. Unfortunately the degradation and loss of wetlands are continuing,
mainly due to drainage for agriculture, settlements and urbanization, and pollution.
Although no accurate record of worldwide wetland losses have been kept [1], an
estimated global loss of 50% since 1900 is reported frequently [305,306]. During
the first half of the previous century, this mostly occurred in the northern temperate
zones, however since the 1950s, tropical and sub-tropical wetlands have also been
disappearing rapidly [305].

However, a growing awareness of wetland functions and a recognition of its
values resulted gradually in wetland protection. At first instance by means of na-
tional laws and agreements, and more recently, after recognizing cross-boundary
wetland values, by means of international cooperation in wetland protection.
The most significant intergovernmental cooperation on wetland conservation is
the Convention on Wetlands of International Importance especially as Waterfowl
Habitat, held in Ramsar, Iran, in 1971 [307]. The Ramsar Convention provides the
framework for national action and international cooperation for the conservation
and wise use of wetlands and their resources. The treaty adopted by the contracting
parties states

"the conservation and wise use of all wetlands through local, regional
and national actions and international cooperation, as a contribution
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towards achieving sustainable development throughout theworld"

and comprehends four commitments [307]:

– to designate at least one wetland at the time of accession for inclusion in
the List of Wetlands of International Importance and to promote its conser-
vation, and in addition to continue to designate suitable wetlands within its
territory for the List of Wetlands of International Importance (Article 2.1);

– to include wetland conservation considerations in their national land-use
planning. Member parties have committed themselves to formulate and im-
plement this planning so as to promote, as far as possible, the wise use of
wetlands in their territory (Article 3.1);

– contracting parties shall establish nature reserves at wetlands (Article 4);
and

– contracting parties have also agreed to consult with othercontracting parties
about implementation of the Convention, especially in regard to transbound-
ary wetlands, shared water systems, and shared species (Article 5).

This international framework on wetland conservation and their wise use
through the implementation of actions at local up to international scale, stimulates
wetland research. One important research topic entails themodelling of vegetation
patterns based on abiotical environmental conditions in distribution modelling.
This is highly relevant for wetland management and conservation by ultimately
enabling the prediction of vegetation response on environmental changes and the
definition of environmental conditions to obtain certain goal ecosystems. The ap-
plication of ecohydrological distribution models has beenthe starting point of this
dissertation, on which the research objectives were defined.

8.2 Answers to the research questions

The research objectives of this dissertation were (Chapter2):

– The introduction of ensemble learning by applying the so called ‘random
forest’ technique in vegetation distribution modelling by development of a
random forest distribution modelfor the prediction of wetland vegetation
distributions based on environmental wetland conditions;

– The assessment of thepredictive abilityof the random forest distribution
model;

– The identification of important environmental variablesdetermining the
wetland vegetation distribution by the random forest distribution model;



CONCLUSIONS AND RECOMMENDATIONS 8-3

– The assessment of thegeneralization abilityof the random forest distribu-
tion model; and

– The analysis of inputuncertainty propagationthrough the random forest
distribution model.

Eight research questions have been asked to meet the research objectives. Answers
to these questions were given throughout this dissertationand reformulated here
in a comprehensive way.

1. Which techniques are most frequently applied in distribution modelling?
The conceptual considerations given in Chapter 4 summarized different distribu-
tion modelling approaches. The majority of distribution models, however, are
based on field observations which are used for empirical distribution modelling
assuming an equilibrium state. A literature overview of techniques used in these
models indicated generalized linear models and tree-basedtechniques as the most
frequently applied.

2. Can the random forest technique be used for vegetation distribution modelling?
This research question covers different aspects. Therefore it was split in several
subquestions:

(a) Are there requirements concerning data format?A common data format in
distribution modelling is a combination of continuous and categorical vari-
ables describing the environment as independent variablesand a binomial
or multinomial response. As learnt from Chapter 4, the random forest tech-
nique can readily be applied on these data.

(b) Is the model output meaningful within a distribution modelling context?The
probability of occurrence is generated as model output. Probability values
range between 0 and 1, and could be interpreted as habitat suitability values
within a vegetation distribution modelling context.

(c) Can the model output be introduced into geographical information systems?
Based on spatially explicit environmental gradients the model generates spa-
tially explicit maps indicating the probability of occurrence for one or more
vegetation types. These maps are interpreted as habitat suitability maps.

The positive answer to previous subquestions allows to conclude that the random
forest technique is suitable to be applied in distribution modelling.

3. Is the predictive ability of the random forest model satisfactorily?
In Chapter 4 a random forest distribution model was constructed on the ecohydro-
logical data set. Modelling results were compared with those of a logistic regres-
sion model constructed on the same data set. A variety of evaluation statistics were
used and indicated significantly better model performancesof the random forest
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model. Furthermore, a random forest distribution model with reduced complex-
ity outperformed the logistic regression model (Chapter 5). Therefore the answer
to this research question is affirmative, and the random forest technique could be
concluded to lead to better predictive ecohydrological distribution models.

4. Can the random forest distribution model provide information concerning the
importance of environmental variables constraining the vegetation distribution?
The random forest algorithm provides an estimator for variable importances. This
measure was used in Chapter 5 to rank environmental variables constraining the
wetland vegetation according to their importance on vegetation distributions. Two
subquestions were asked to further assess the possibilities of this estimator:

(a) Would other techniques identify the same environmentalvariables as being
important? In comparison with ordination results, similar rankings were
formulated. Nevertheless, a bias in the importance value ofcategorical vari-
ables was prevalent and the variable importance estimates should thus be
used with care. Variable rankings for the individual vegetation types only
showed a significant similarity for three out of seven vegetation types when
rankings formulated by hierarchical partitioning of logistic regression mod-
els and by the variable importance measure within random forests were com-
pared.

(b) Is it possible to construct accurate random forest distribution models on
a reduced data set, only including the most important environmental vari-
ables?Random forest distribution models with decreasing complexity were
constructed in Chapter 5. Stable model performances were observed for
models using more than five important predictive variables,and a sharp in-
crease in error was observed when complexity further decreased. For the
case study presented, a minimum of six predictive variableshad to be in-
cluded in order to gain an accurate fit. This model was more accurate than a
logistic regression model using almost three times as many predictive vari-
ables!

5. Is there a spatial trend in the random forest distributionmodelling results?
Chapter 6 revealed decreasing probability values toward the boundary areas be-
tween adjacent vegetation types. An inverse proportionality between predicted
probabilities and the species similarity of vegetation types was attributed to the
classification performances of the individual classifiers within the random forest
model. Grid cells within the boundary area between similar vegetation types (high
similarity) were classified as similar, but different vegetation types by comparable
numbers of classifiers (low maximal probability value). In addition, species clus-
tering for vegetation type determination of boundary grid cells, is likely to contain
a higher uncertainty, which may be reflected in the modellingresults (Chapter 7).
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Furthermore, isolated grid cells and small areas surrounded by another vegetation
type were frequently incorrectly classified and consideredto be a weakness of the
random forest distribution model concerning prediction accuracy. Based on results
of Chapter 7, it may be concluded that a smoothening of the environmental gra-
dients, due to, for example, an insufficient monitoring density or an inappropriate
interpolation technique not fully capturing the local variability, could cause the
inferior model performances for isolated grid cells and small areas.

6. Does a random forest distribution model, constructed on agiven wetland, per-
form satisfactorily when tested on a similar but distant wetland?
A random forest constructed on data of one site was applied todata of a distant,
though ecologically similar site in Chapter 6. Model evaluation proved an un-
satisfactorily model performance and stressed a confinement consequential to the
empirical nature of the distribution model.

7. Does the use of an ensemble modelling technique allow for uncertainty assess-
ment?
The random forest model output is a discrete probability distribution over all re-
sponse vegetation types. The uniformity of the discrete probability distribution
allows to gain information on model output uncertainty, forexample by means of
an entropy measure as implemented in Chapter 7. An uncertainty assessment of
this kind could not be made for single classifier distribution models.

8. How does input uncertainty propagate through the random forest distribution
model?
A propagation of input uncertainty to modelling results wasobvious from the as-
sessment performed in Chapter 7. The discrete probability distribution over all
response vegetation classes flattened and the model did not find good evidence to
classify a grid cell as a certain vegetation type when input uncertainty was preva-
lent. Therefore, the use of variables with limited uncertainty was concluded to be
primordial for adequate distribution modelling.

8.3 Contribution of this dissertation

The main contribution of this dissertation to ecohydrological research is the in-
troduction of a new technique for vegetation distribution modelling based on en-
vironmental conditions leading toward better model performances. Additionally,
the assessment of model complexity reduction only to include the most important
environmental gradients constraining wetland vegetationdistributions, and the de-
velopment of a framework for uncertainty assessment adds tothe practical appli-
cability and enhances the interpretation of the modelling results.
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8.4 Future perspectives

Although a new modelling technique was introduced, the conceptual modelling
approach remained unchanged and the random forest distribution model predicted
vegetation type distributions empirically, based on field observations assuming an
equilibrium state. As a consequence, the model described a real wetland situation
with a high precision, but sacrificed generality (Fig. 4.1) which made a successful
model implementation impossible beyond the local conditions where it was con-
structed upon (conclusion of Chapter 6). This limitation defines important future
research perspectives.

8.4.1 Compilation of data sets

The compilation of an extensive data set prospects an enhanced generality. Recall-
ing Fig. 6.5, in which a conceptual representation is made ofthe realized niches
of Calthion palustrisat Doode Bemde and Snoekengracht. Merging both areas
would define a larger proportion of the fundamental niche. Adding more sites
would increase this proportion further, until the (hypothetical) survey in which all
sites withCalthion palustrisare included. The realized niche delimited as such,
would include all environmental conditions in which the vegetation type under
consideration flourishes. However, it should be kept in mindthat intraspecific and
interspecific interactions are artificially (not explicitly) included in this survey. A
distribution model constructed on this data set would have higher generality. Nev-
ertheless, vegetation occurrence predictions following,for example, environmen-
tal changes will contain errors due to an inexplicit incorporation of biotic processes
in the model.

Despite this drawback, empirical distribution modelling seems to be the most
successful option today. The scientific understanding of wetland processes in rela-
tion to vegetation type occurrences is too limited for a moremechanistic modelling
approach. Hence, the compilation of an extensive data set isof general interest for
high quality modelling, which should be addressed in futureresearch.

Based on this dissertation, recommendations are made concerning data gath-
ering in wetlands. A first recommendation emerges from the fact that accurate
random forest models could be constructed on a limited number of environmen-
tal gradients. Consequently, data gathering through the monitoring of wetlands
should only encompass a limited number of environmental gradients, preferably
those with a more causal effect on vegetation occurrences (see Chapter 5), that are
measured at a satisfying spatio-temporal resolution. As such, model input uncer-
tainties can be reduced and model output would have a higher reliability. A second
recommendation regards the modelled entity. In this dissertation, vegetation types
were used, other studies used plant species. The advantage of vegetation distri-
bution models is that the model outcome can be thought of as a (more or less)
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discrete spatial entity with a certain species composition. The disadvantages, on
the other hand, are that it is not the vegetation as such, but the individuals compos-
ing the vegetation that are related to the environmental conditions. Environmental
changes will affect the individual species in the first place, with subsequent veg-
etation alterations. Additionally, as demonstrated in Chapter 6, species clustering
into vegetation types may induce additional uncertainty that is propagated to the
modelling results. A potential strategy to overcome these disadvantages is to use a
selection of dominant plant species (e.g. based on coverage, biomass, phytosocio-
logical aspects) upon which the modelling is based.

8.4.2 Time dependence

The majority of distribution models are stationary (e.g. [78, 97, 98, 100, 114,125–
131]), assuming a state of equilibrium, notwithstanding their ultimate goal to pre-
dict vegetation responses on environmental changes. A simple example is pre-
sented for clarification (Fig. 8.1). Consider a unimodal response of probability of
occurrence of two given vegetation types (or species) in relation to an environ-
mental gradient. A current (t0) environmental state (A) at a particular location
within a wetland results in a probability of occurrence value, PA,1 andPA,2, for
both vegetation types, respectively. However, a given anthropogenic disturbance
alters the current environmental state (A) to another state(B) during a time interval
(t1− t0), and a random forest distribution model is used to determine the probabil-
ity of occurrence of the given vegetation types under these new conditions. The
stationary model will predict a probability of occurrence (PB,1 andPB,2) for both
vegetation types, under the assumption of ecosystem equilibrium. The vegetation
type with the highest probability of occurrence will be the predicted one. The
dotted line in Fig. 8.1 represents the equal probability line (PC,1 = PC,2), which is
modelled based on an environmental state C, and the application of the decision
rule leads to the prediction of vegetation type 1 when the environmental gradient
has a value lower than C, and vegetation type 2 when than valueis higher than C.
Consequently, the modelled vegetation response is entirely dependent on the en-
vironmental changes (no time lag between environmental change and vegetation
response since an equilibrium is assumed at all time), and information on the dura-
tion of the establishment of the new vegetation type is lacking. As seen in Fig. 8.1,
different trajectories to reach the new equilibrium are possible: (tr1) a fast response
of the vegetation where the new equilibrium is reached att1, (tr2) a gradual change
in vegetation lagging behind the environmental change and reaching equilibrium
at t3, and (tr3) no response untilt2 whereupon a change in vegetation is observed
to reach equilibrium att3.

The inclusion of time into distribution models is a challenging future research
perspective, which would increase their value for conservation and restoration ap-
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FIGURE 8.1– Conceptual representation of the time dependence of vegetation responses to
environmental changes. Two vegetation types have unimodalresponses to an environmental
gradient, showing an optimum, however, at different environmental states. An environmen-
tal state shift from A to B results in a decrease of the modelled probability of occurrence
for vegetation type 1 (PA,1 → PB,1), while it increases for vegetation type 2 (PA,2 → PB,2).
Predictions of a stationary model (crosses in right panel) do not give any information about
the time-scale on which vegetation changes are occurring inresponse to change in environ-
mental change. Different trajectories are possible (tr1, tr2 and tr3, indicated by the green
dashed line).

plications drastically. An empirical approach might justify the use of Markov mod-
els to simulate the transition dynamics of vegetation amongdifferent discrete veg-
etation types [308–310] (Clementsian approach). Stationary Markov models are
based on a transition matrix containing probabilities of vegetation changes from
one type to another over time. A stationary Markov model is entirely defined by
the vegetation distribution at a given moment in time, and the transition probabil-
ity between the different vegetation types. This seeminglysimple model, however,
becomes more complex when other processes such as immigration and extinction
of (native and invasive) species [311] and spatial interactions [312] and gradi-
ents [313] have to be incorporated. Non-stationarity of thetransition probabilities,
which has been reported for natural ecosystems after major environmental per-
turbations [314], led to an extension of stationary Markov models to Markov-set
models, using transition probability intervals [315], andhidden Markov models,
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accounting for additional processes overlaying the Markovprocess [316].
Nevertheless, the random forest distribution model does not include informa-

tion on the transition between vegetation types. A possiblemethodology to over-
come this shortcoming, is by applying coupled modelling (Subsection 8.4.3) in
which the random forest distribution model is coupled to a transient model for the
environmental setting, and defines another future researchperspective.

8.4.3 Coupled modelling

The idea behind a coupled modelling approach is to get time dependent and spa-
tially distributed estimations for a range of environmental variables (with special
attention for groundwater dynamics) by implementation of ahydrologic and/or hy-
drochemical model, on which the random forest vegetation distribution model is
applied at several discrete time steps. Once again, the ability for vegetation dis-
tribution modelling based on a limited number of environmental variables (con-
clusion of Chapter 5) is advantageous since a decreased number of environmental
variables are to be included, possibly decreasing the overall uncertainty on the
environmental estimations at a given time, which is primordial for distribution
modelling with a satisfactory accuracy level (conclusion of Chapter 7). A hydro-
logic and/or hydrochemical model for coupled modelling should satisfy following
requirements:

1. the environmental estimations should be of appropriate time and spatial res-
olution;

2. the environmental estimations should be spatially distributed over the mod-
elled area;

3. the model should account for all water fluxes to provide good estimates of
quantitative and qualitative groundwater aspects.

A hydrologic modelling approach satisfying stated requirements could be the
iterative modelling approach developed by Batelaan [79, 317], in which a spa-
tially distributed water balance model (WetSpass, [318]) is connected to a regional
groundwater model (MODFLOW, SEEPAGE [319] and DRAIN [320] packages)
providing groundwater depth estimates. Input data for the WetSpass model are re-
lated to meteorology (precipitation, evapotranspiration, windspeed, temperature),
land cover, slope, soil texture and groundwater depth to model the water balance
of grids cells with high spatial resolution. Based on these environmental estima-
tions, a random forest distribution model would be able to predict the probability
of occurrence of several vegetation types at a given time, assuming a sufficiently
wide environmental coverage in the data set where the distribution model was con-
structed upon (Fig. 8.2). The distribution model outcome should be interpreted as
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FIGURE 8.2– Framework for coupled modelling.
Legend: HM = hydrologic or hydrochemical model, RF = random forest distribution model,
and VDM = vegetation dynamics model.

an indicator for habitat suitability. For each vegetation type included, a spatially
distributed suitability map shows the site potential givena set of modelled environ-
mental constraints. Whether the vegetation type would appear following the en-
vironmental changes depends on localized immigration and extinction processes.
Local immigration and extinction processes refer to individual-by-individual mor-
tality and colonization, processes which are highly determined by the interaction
with their neighbourhood. An additional model on vegetation or species dynamics
actually accounting for neighbourhood interaction (e.g. spatial auto-correlation)
could provide additional information on actual vegetationoccurrences.

Additionally, hydrologic models may benefit as well from a coupled modelling
approach. As the random forest distribution model predicts(potential) changes
in vegetation distributions, associated physiological and structural changes of the
vegetation and its dominant species might be taken into account. For example,
in wetlands, where strong feedback from vegetation on site hydrology are imma-
nent (see Fig 1.4), an important physiological alteration is related to the (local)
immigration or extinction of phreatophytes at a given location. As demonstrated
in numerous studies, phreatophytes consume water directlyfrom the groundwater,
resulting in a daily pattern of groundwater depth fluctuations [32,321], while non-
phreatophytes are restricted to the soil water in the vadosezone. Hence, the soil
water balance (see Fig. 3.4) will differ when phreatophytesimmigrate/extinct from
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a given wetland location. Similarly, the inclusion of structural vegetation changes
may lead to better hydrologic modelling performances, by generating additional
information for the calculation of water balances at a givenlocation at a given
time. Leaf area, for example, differs greatly among vegetation types [321]. Leaf
area is proportional to the vegetation transpiration rates[322–324], and affects
the energy and mass balance at the soil surface by shading [325, 326]. Therefore,
feedback information from the random forest distribution model to the hydrologic
model may effect improvement of the latter model.

A remark, however, should be made about the scale level on which the coupled
modelling is performed, and its relative benefits. For modelling studies addressing
hydrological balances at the local scale, coupled modelling would allow to gain
more detailed insights by accounting for vegetation development and changes. For
catchment modelling at the regional scale, however, a coupled modelling approach
might be too elaborative and too data-demanding. Consider aforested catchment
of a river with alluvial wetlands in its floodplain, as an example for clarification. A
change from forest to agricultural land is foreseen, and theecohydrological impli-
cations are under concern. For modelling the wetland area exclusively, a coupled
modelling approach accounting for the hydrological and vegetation changes at the
local scale would improve results. For modelling the entirecatchment, however,
vegetation changes within the wetland are of minor importance compared to the
change from forest to agricultural land, and thus, a coupledmodelling approach ac-
counting for vegetation changes within the wetland would needlessly complicate
the study.

In summary, a coupled modelling approach has potential for more detailed
distribution modelling by taking response times on environmental changes (dis-
cretely) into account. However, future efforts regarding distribution model im-
provement should act commonly with additional high qualitydata acquisition since
quality of data will eventually determine model performances and applicability.

8.5 Recommendations for potential users

Future perspectives (Section 8.4) were formulated from a theoretical point of view.
However, the results of this dissertation allow to provide some practical recom-
mendations for potential users of the random forest distribution model, with re-
spect to monitoring and data acquisition, data preparationand the modelling itself.

Monitoring and data acquisition:

– Try to identify the environmental gradients that are constraining species or
vegetation distributions mostly. Rather than monitoring amultitude of envi-
ronmental variables on a low quality level, concentrate on alimited number
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of important ones (see Chapter 5).

– Some environmental gradients are easier to be described bycategorical vari-
ables. Categorical variables are appropriate for random forest distribution
modelling, a translation to dummy variables is unnecessary(see Chapter 4).

– The data quality of environmental variables and subsequent model perfor-
mances are heavily influenced by the spatial and temporal monitoring res-
olution (see Chapter 7). Therefore, monitoring resolutions should be de-
termined by the spatial and/or temporal dynamics of the variables under
concern.

– If possible, focus on representative plant species ratherthan vegetation
types. By doing so, the uncertainty introduced into the databy the clus-
tering of species into vegetation types can be avoided (see Chapter 7). Rep-
resentative plant species should be sufficiently specific tothe environmental
conditions. Rare species, however, may not be the best option since their
presence/absence is determined to a relatively greater extent by other pro-
cesses such as migration.

– In order to validate model performance, validation data should be acquired.
Cross-validation is one possibility in which all data are used for both model
construction and validation (see Chapter 4). Another possibility is the use
of independent validation data. However, if the environmental gradients
described by the validation data are not within the range of the data where
the model was constructed upon, one can not expect satisfying modelling
results (see Chapter 6). Therefore it is recommended to acquire independent
validation data in the vicinity of the training data set.

Data preparation:

– Most likely a spatial interpolation of the acquired environmental variables
has to be performed to get area covering estimates. Several geostatistical
techniques are at one’s disposal to perform this interpolation. The appli-
cation of sequential Gaussian simulations (sGs), however,is recommended
based on the results of chapter 5 because sGs preserves the characteristic
roughness in the data, and has the ability to determine localuncertainty.
Information on local uncertainty improves the interpretation of the random
forest modelling results (e.g. are unsatisfactory modelling results at a certain
locality related to uncertain environmental estimations?).

– The data were not normalized in this dissertation. It can beargued that data
normalization could decrease the bias in the ‘variable importance’ measure
(see Chapter 5) and improve model performances on independent data (see
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chapter 6) because the environmental gradients of data would have a com-
parable range. Although independent modelling results arenot expected to
improve drastically, data normalization may be considered.

The random forest model:

– Based on chapter 7, a recommendation to look into the discrete probability
distribution of the random forest model output, e.g. by means of Shannon’s
entropy, to get estimates on the uncertainty of the results is formulated. Do-
ing so enhances the interpretation of the results a lot.
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A
Shortlist of plant species

PHREATOPHYTES

Achillea ptarmicaL.
Carex canescensL.
Carex nigra(L.) Reichard
Equisetum telmateiaEhrh.
Filipendula ulmaria(L.) Maxim.
Lythrum salicariaL.
Myrica galeL.
Osmunda regalisL.
Ribes nigrumL.
Scirpus sylvaticusL.
Scutellaria galericulataL.
Thalictrum flavumL.
Angelica sylvestrisL.
Calamagrostis canescens(Weber) Roth
Circaea lutetianaL.
Dactylorhiza fistulosa(Moench) H. Baumann et Künkele
Deschampsia cespitosa(L.) Beauv.
Lotus pedunculatusCav.
Luzula multiflora(Ehrh.) Lej.

Adapted from W. Huybrechts, E. De Bie, P. De Becker, M. Wassen, and A. Bio. Ontwikkeling
van een hydro-ecologisch model voor vallei-ecosystemen inVlaanderen, ITORS-VL (VLINA 00/16).
Instituut voor Natuurbehoud, Brussel, 2002. (In Dutch)
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Lysimachia vulgarisL.
Phalaris arundinaceaL.
Pulicaria dysenterica(L.) Bernh.
Saxifraga granulataL.
Alopecurus pratensisL.
Barbarea intermediaBoreau
Carex sylvaticaHuds.
Lamium galeobdolon(L.) L.
Molinia caerulea(L.) Moench
Rhinanthus angustifoliusC.C. Gmel.
Rhinanthus minorL
Alisma plantago-aquaticaL.
Berula erecta(Huds.) Coville
Calla palustrisL.
Caltha palustrisL.
Carex acutaL.
Carex acutiformisEhrhr.
Carex distichaHuds.
Carex echinataMurray
Carex elongataL.
Carex paniculataL.
Carex pseudocyperusL.
Carex rostrataStokes
Cirsium oleraceum(L.) Scop.
Comarum palustreL.
Eleocharis palustris(L.) Roem. et Schult.
Equisetum fluviatileL.
Equisetum palustreL.
Eriophorum polystachionL.
Galium palustreL.
Galium uliginosumL.
Glyceria maxima(Hartm.) Holmberg
Juncus acutiflorusEhrh. ex Hoffmann
Juncus filiformisL.
Menyanthes trifoliataL.
Peucedanum palustre(L.) Moench
Phragmites australis(Cav.) Steud.
Ranunculus flammulaL.
Rumex hydrolapathumHuds.
Viola palustrisL.
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NON-PHREATOPHYTES

Anthriscus sylvestris(L.) Hoffmann
Arrhenatherum elatius(L.) Beauv. Ex J. et C. Presl
Brachypodium sylvaticumBoreau
Carex hirtaL.
Crepis biennisL.
Dactylorhiza maculata(L.) Soó
Deschampsia flexuosa(L.) Trin.
Digitalis purpureaL.
Equisetum arvenseL.
Geum urbanumL.
Oxalis fontanaBunge
Polygonatum multiflorum(L.) All.
Potentilla sterilis(L.) Garcke
Pteridium aquilinum(L.) Kuhn
Teucrium scorodoniaL.
Vaccinium myrtillusL.





B
Photograph of the different vegetation

types

ALNO - PADION , Elzen - Vogelkers verbond, [elzen - vogelkers bos]

FIGURE B.1 – The forest typeAlno - Padionis present at Snoekengracht (April 2008).
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ARRHENATHERION ELATIORIS , Glanshaver verbond, [glanshaverhooiland]

FIGURE B.2 – Arrhenatherion elatioriswith several grass species, as observed at
Bourgoyen-Ossemeersen, Gent.
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CALTHION PALUSTRIS , Dotterbloem verbond, [dottergrasland]

FIGURE B.3– Caltha palustrisis a diagnostic species for theCalthion palustrisvegetation
type. The blueish aspect of the water on the soil surface is characteristic for seepage water.
(Copied with permission from [?]).
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CARICI ELONGATAE – ALNETUM GLUTINOSAE , Elzenzegge - Elzenbroek as-
sociatie, [mesotroof elzenbroek]

FIGURE B.4 – Carici elongatae – Alnetum glutinosaeat Snoekengracht (April 2008). An
Alnus glutinosatree layer is undergrown by a herblayer withCarex acutiformis, as can be
seen on the foreground of this photograph.
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CARICION CURTO -NIGRAE , Zomp -en zwarte zegge verbond, [kleine zeggeveg-
etatie]

FIGURE B.5 – Caricion curto-nigraewith flowering Lychnis flos-cuculiat Zwarte Beek
has a high species similarity withCalthion palustris. (Copied with permission from [?]).
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CIRSIO – MOLINIETUM , Associatie van Kale Jonker en Pijpestrootje, [blauw-
grasland]

FIGURE B.6 – Two adjacent vegetation types at Vorsdonkbos-Turfputten: the herbaceous
Cirsio – Molinietumon the foreground andSphagno – Alnetum, the woody vegetation type
on the background. (Copied with permission from [?]).
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FILIPENDULION , Moerasspirrea verbond, [moerasspirearuigte]

FIGURE B.7 – Filipendula ulmariais a diagnostic species for theFilipendulionvegetation
type.
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M AGNOCARICION , verbond van de grote zegge soorten, [grote zeggevegetatie]

FIGURE B.8 – Magnocaricionvegetation type, with detail of a floweringCarexspecies.
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M AGNOCARICION WITH PHRAGMITES , verbond van de grote zegge soorten
met riet, [rietruigte]

FIGURE B.9 – Magnocaricion with Phragmitesat Snoekengracht (foreground, April
2008).
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PHRAGMITETALIA , Riet orde, [rietland]

FIGURE B.10 – The brownPhragmitetaliavegetation belt (winter aspect) at Snoeken-
gracht (April 2008).

SPHAGNO – ALNETUM , [oligotroof elzen - berkenbos]
(See Fig. B.6)
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ecohysrological modelling. International Symposium on Wetland Pollutant
Dynamics and Control, Belgium, September 4–8, 2005, p. 137–138. (oral
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gium, September 4–8, 2005, p. 283–284. (poster presentation)

V. Wieme, J. Peters, N. E. C. Verhoest, R. Samson, and P. Boeckx, P.Ecohdro-
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(Ghent, Belgium). International Symposium on Wetland Pollutant Dynamics
and Control, Belgium, September 4–8, 2005, p. 294–295. (poster presenta-
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J. Peters, N. E. C. Verhoest, B. De Baets, R. Samson, and P. Boeckx. ‘Ran-
dom forests’ as a distribution modelling technique in ecohydrology. Hy-



droEco’2006, International Conference on Hydrology and Ecology: The
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tional intelligence and technological developments in water science applica-
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keynote presentation)

Deelname (passief) aan conferenties en workshops
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