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Samenvatting

Waterrijke gebiedenwetland3 zijn periodiek of permanent nat door hun ligging
in het landschap. Deze periodieke of permanente nattesstatieert tal van che-
mische, fysische en biologische processen, die karatigdeizjn voor deze eco-
systemen, en waardevol voor de samenleving. Helaas word#ands vaak on-
behoorlijk beheerd, waardoor ze degraderen en verlorem daifgevolg worden
ze bij de meest bedreigde ecosystemen gerekend.

Dit proefschrift omvat een ecohydrologische studie varlamgls, met bijzon-
dere aandacht voor het bemonsteren en modelleren van dacitieetussen grond-
water, bodem en vegetatie. Het uiteindelijke doel van deméiesis om een instru-
ment te voorzien, dat kan ingezet worden bij het beheer véte Baosystemen,
doordat het de mogelijkheid biedt om de vegetatierespongagnderende mi-
lieucondities te voorspellen, of omgekeerd, doordat hehdgelijkheid biedt om
gerichte beheerstaken te formuleren om wetlandvegetatigsrstellen en te con-
serveren.

Vier waterrijke, alluviale gebieden werden door het Instit voor Natuur-
en Bosonderzoek bemonsterd met betrekking tot versct#lenilieuvariabelen
gerelateerd aan de grondwaterkwantiteit en -kwaliteildmo, en vegetatiebeheer.
Een ruimtelijke interpolatie resulteerde in een gridsgmesyi gebiedsdekkende
schatting van deze milieuvariabelen. Aanvullend werd oek Yoorkomen
van plantensoorten op dezelfde gridsgewijze, gebiedsdelék manier geinven-
tariseerd. Op basis hiervan werden vegetatietypes geelefthén afgebakend bin-
nen de studiegebieden, wat leidde tot een gebiedsdekkesgdgatiekaart. De
sterke interacties tussen het abiotisch milieu enerzgtdsde vegetatiedistribu-
tie anderzijds, bieden de mogelijkheid om de distributie weetlandvegetaties te
voorspellen op basis van de abiotische milieuconditie®orspellende vegetatie-
distributiemodellen.

In dit proefschrift werd eeensemble learningechniek random forestgeim-
plementeerd in een voorspellend vegetatiedistributieshwdor natte ecosyste-
men. Een logische opeenvolging van onderzoeksvraagsiukke betrekking tot
die implementatie werd beantwoord doorheen deze studie.

Vooreerst werd onderzocht of de random forest techniek lebriugkt wor-
den in een vegetatiedistributiemodel. Daartoe diendeaaside worden aan een
aantal vereisten met betrekking tot het gebruik van cometieni categorische mi-
lieuvariabelen, de interpretatie van modelresultateeafswaarschijnlijkheid van
voorkomen van de verschillende vegetatietypes, een abjectergelijking van
modelresultaten om te komen tot een finale vegetatievollirgpeen het invoe-
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ren van modelresultaten in een geografisch informatiesystdangezien de ran-
dom forest techniek voldeed aan al deze voorwaarden, wetdatimiek geim-

plementeerd in een distributiemodel, het random foredtildigiemodel, dat in

een volgende fase van het onderzoek geévalueerd werd oyonijapellende ca-
paciteit.

Daartoe werd een andere techniek, logistische regressielagteerd ter
vergelijking. Beide technieken werden geimplementeertiviee verschillende
distributiemodellen, respectievelijk het logistischgressiemodel en het random
forest model. Beide modellen werden gecalibreerd en gekalideerd. De voor-
spelde vegetatiedistributies werden vergeleken met desgewveerde vegetatiedis-
tributies. Het logistisch regressiemodel maakte voor @&van de gridcellen een
correcte voorspelling, terwijl het random forest modelne®.7% correct scoorde.
De McNemar test gaf een significant betere modelvoorsgetioor het random
forest model p < 0.001). Wanneer de modelvoorspellingen vergeleken werden
voor elk vegetatietype afzonderlijk, met behulp vanFdenaat, werd de signifi-
cant betere prestatie van het random forest model bevegtigd.003).

Wanneer de kans van voorkomen van elk vegetatietype pezxajrdrgeleken
werd, werd geconstateerd dat correcte voorspellingentindrgrale gedeelte van
homogene vegetatieclusters vaak gebaseerd waren op eervbogpelde kans
van voorkomen, terwijl deze afnamen naar de grenzen van gigzieden. Het
algemene besluit van dit onderzoeksdeel was dat het gelaniéle random forest
techniek tot betere distributiemodellen kan leiden.

Een goede wetenschappelijke kennis van wetlands is onerfitfkesoor het
definiéren van correcte en gerichte beheersmaatregelerbiHg kennis omtrent
vegetatiedistributies in relatie tot milieugradiénteg leelangrijk. Niet alle milieu-
gradiénten zijn echter even determinerend met betreklkihgegetatiedistribu-
ties. Sommige hebben enkel een indirect effect, andere ieect dysiologisch
effect. De milieugradiénten opgenomen in dit proefschsifiren grondwater-
kwantiteit en -kwaliteit, bodem en beheer gerelateerd, remexd verondersteld
dat deze gradiénten niet allemaal dezelfde invioed haddele wegetatiedistribu-
tie. Daartoe werd een onderzoeksdoelstelling geformdleer de belangrijkste
milieugradiénten te identificeren, gebruik makende vaemeontwikkelde meth-
odes, zoals een hiérarchische partitie van de modelrésultan het logistisch re-
gressiemodel en een maat voor de belangrijkheid van védeiablée in het random
forest algoritme is opgenomen. Uit een vergelijkende stbtkek dat de verschil-
lende methodes verschillende gradiénten identificeerdezijade belangrijk, wat
hun toepasbaarheid in vraag stelt. Niettegenstaande dkagkoming, werden
random forest modellen geconstueerd met afnemende coitgileloaarbij wer-
den modelvariabelen stapsgewijs geschrapt, te beginpeie biinst belangrijke,
zoals berekend door het random forest algoritme. De moelgtities waren niet
significant verschillend op het 0.05 significantieniveau=(0.016) wanneer het
model gebaseerd was op alle 17 of op slechts de 6 meest higtangilieuvari-
abelen, en alle modelcomplexiteiten daartussen. Daaramh @regeconcludeerd
dat het random forest distributie model afdoende presteearelfs bij een sterk
gereduceerd aantal milieuvariabelen.
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In een volgend deel werd een vegetatiedistributiemodeiggtcueerd voor één
van de studiegebieden, gebruik makende van alle miliealvalén. Voor elke grid-
cel werd de kans van voorkomen gemodelleerd, en beoordpéidtoroorkomen
van ruimtelijke trends. De gemodelleerde kans van voorkomas significant
lager voor gridcellen met minstens één ander aangrenzeyedatetype, wat re-
sulteerde in slechtere modelprestaties voor deze gréetcell

Hetzelfde model werd vervolgens toegepast op een zeekaglgig wetland,
om de algemene toepasbaarheid van het model op een ondifkagkbied te
kunnen inschatten. Met een correcte modelvoorspelling stexhts 19.8% van
de gridcellen, kon besloten worden dat het random foresteinuidt toepasbaar
was buiten het gebied waarop het geconstrueerd werd, onedgémalizeerde
niche van vegetatietypes zelden volledig overlapt, zeltsvee zeer gelijkaardige
gebieden. Om het model toepasbaarbaar te maken op grotezal,sdient de
volledige ecologische amplitude van de verschillende tagigtypes opgenomen
te worden.

Het laatste deel van dit proefschrift behandelt de onzeldeh gerelateerd
aan vegetatiedistributiemodellering. Onzekerheden kormort uit gegevens-
beperkingen, die kunnen veroorzaakt worden door meetfiowggstematische
afwijkingen in de meetapparatuur, het verwaarlozen varartgglike milieu-
gradiénten, of een ruimtelijk of temporeel tekort aan obsges om de lokale
variabiliteit te kunnen inschatten. Daarenboven intreguthet model zelf onze-
kerheid, door het onvermogen om de complexiteit van de gtstbe processen
die aan de basis liggen van de vegetatiedistributie valéglivatten. Tenslotte
is de modelevaluatie niet vrij van onzekerheid. Twee beigagbronnen van
onzekerheid werden hieruit gelicht, namelijk de onzekierlgemassocieerd met
ruimtelijke interpolatie van milieuvariabelen en de oredieid geassocieerd met
het groeperen van plantensoorten in vegetatietypes.

Een entropie-gebaseerde onzekerheidanalyse werd ugigkem de lokale on-
zekerheid geassocieerd met ruimtelijke interpolatie vantgegevens werd be-
groot gebruik makend van sequentiéle Gaussiaanse sigsilafle modelresul-
taten gaven duidelijk aan dat deze bron van onzekerheidvaontzet naar de
modelresultaten. Bemonsteringsprotocols voor natteyst@sen zouden gecon-
ditioneerd kunnen worden om deze bron van onzekerheid tdeween. Pseudo-
randomisaties werden uitgevoerd om het effect van een eneafbakening van
vegetatietypes te begroten. Modelresultaten gaven dikideh dat ook deze bron
van onzekerheid zich verderzet, waardoor het belang vaoc@egcte soortengroe-
pering benadrukt werd.

Tenslotte werden, op basis van de onderzoeksresultateditvaroefschrift,
onderzoeksperspectieven geformuleerd die kunnen lemtezen verdere verbe-
tering van distributiemodellen.






Summary

Wetlands are land areas that are periodically or permanest due to their lo-
cation in the landscape. The periodical or permanent poesehwet conditions
trigger chemical, physical and biological processes thatuaique for wetlands.
These characteristic processes resulted in the recografiovetlands as multi-
functional areas providing many commodities and valuesutddn society. Un-
fortunately, wetland management is frequently inappatprileading to wetland
degradation and loss. Consequently wetlands are rankedgathe most threat-
ened ecosystems worldwide.

This dissertation comprises an ecohydrological wetlandystwith empha-
sis on monitoring and modelling of the interaction betwessugdwater, soil and
vegetation. The ultimate goal is to provide a tool which carirbplemented for
wetland management by enabling the prediction of vegetaggsponses on en-
vironmental changes, and inversely, by enabling the detetion of appropriate
wetland management tasks to restore and conserve wetlgathtien.

Four alluvial wetlands were monitored by the Researchtirstifor Nature
and Forest on several abiotical environmental variablege® with groundwa-
ter quantity and quality, soil, and vegetation managem&gmiatial interpolation
resulted in area covering grid estimates of these envirotahgradients within
the study sites. Additionally, plant species occurrenceseewnapped using the
same grid, and clustered into discrete vegetation typeses @vering vegetation
maps. The strong linkages between the abiotical wetlani@mment and wetland
vegetation distributions, produce the ability to prediat tvetland vegetation dis-
tribution based on the distribution of environmental wetl@ariables in predictive
vegetation distribution modelling.

In this dissertation a recently developed ensemble legrt@ohnique called
‘random forest’ was implemented for wetland vegetatiorritistion modelling
based on hydrological, hydrochemical, soil and anthropmgeetland features. A
sequence of research questions associated with the implatioe of the random
forest distribution model was addressed throughout theediation.

Firstly, it was investigated whether the random forestmégphe could possibly
be used within a distribution modelling context. Therefaeveral requirements
should be satisfied, such as the ability to cope with contisuend categorical
environmental variables to model the vegetation distiilmg upon, the ability to
interpret the model output as a probability of occurrenaeskveral vegetation
types, the ability to compare the model output over diffevegetation types to get
an objective final prediction, and the ability to incorpertite final prediction into
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a geographical information system. Since the random faee$inique satisfied
these requirements, it was implemented in a distributiodehalescribed as the
random forest distribution model, in a subsequent resgatreke focusing on the
model’s predictive ability.

Another technique, multiple logistic regression, was celé for comparative
reasons. Both techniques were included in two separatancktlegetation distri-
bution models, the multiple logistic regression model drerandom forest model,
respectively. After model construction and calibratioottbmodels were applied
to an independent ecohydrological test data set, inclustiadially distributed in-
formation on several environmental variables related wigtland hydrology, hy-
drochemistry, soil, and management, using cross-vatidatvegetation distribu-
tions, as predicted by both models, were compared with fisewations. The
multiple logistic regression model made correct predicion 69.3% of all cases,
whereas the random forest distribution model in 76.7% otadles. A McNemar
test indicated a significant better performance of the remftarest distribution
model (p < 0.001). Comparison of the modelling results for each vegatdtipe
seperately by means of tfemeasure also revealed a significant better perfor-
mance of the random forest distribution modek 0.003).

Inspection of the probabilities of occurrence of the difervegetation types
for each grid cell demonstrated that correct predictionseintral areas of homo-
geneous vegetation sites were based on high probabilittesreas the confidence
decreased towards the margins of these areas. The ovanalusimn of the pre-
dictive ability assessment was that the inclusion of theloam forest technique
has the ability to lead to better distribution model perfanoes.

Wetland ecosystems are of primary concern for nature ceasen and
restoration. Adequate conservation and restorationegfieg emerge from a sci-
entific comprehension of wetland properties and procesbieseby, the under-
standing of vegetation distributions in relation to enmimental gradients is an
important issue. The multiple logistic regression and candorest modelling
approaches relate wetland vegetation distribution to oredsenvironmental gra-
dients statistically. However, not all environmental desudls have the same degree
of causality on vegetation distributions, some have arrégodimpact whereas oth-
ers have a direct physiological impact. The environmemnadlignts included in
this dissertation were groundwater quantity and qualipeasts, soil properties and
vegetation managementrelated, and it was hypothesizeddhall gradients were
constraining vegetation distributions equally. Therefa research objective was
formulated to identify the key environmental gradientsstaaining the vegetation,
using recently developed methodologies, hierarchicditmaring of the goodness-
of-fit of multiple logistic regression models with gradyaithcreasing complexity
and the variable importance measure within the random tfoneslel. Compari-
son of results indicated that different environmental grat$ were considered to
be important in constraining vegetation distributions liffedent methodologies,
limiting the applicability of these methodologies. Notiastanding this drawback,
a performance assessment of random forest distributioreleedth reduced com-
plexity was made based on the variable importance rankiradeViperformances
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were not significantly differentg= 0.016) at the 0.05 significance level for model
complexities ranging between the full model, based on akrivironmental vari-
ables, and the reduced model using only the 6 most impontairommental vari-
ables. This assessment allowed to conclude that, despigttendology dependent
variable importance ranking, the prediction of vegetatigges based on environ-
mental gradients was satisfactory even if a reduced nunftimadients were in-
cluded.

In the next part of the study, a wetland vegetation distidsutodel was con-
structed for one of the test sites using all environmentaatées. For each grid
cell included, a probability of occurrence value was maatblind assessed on spa-
tial trends. Significantly lower probability values werepalent for boundary grid
cells, i.e. grid cells for which at least one of the adjacerd gells has a distinct
vegetation type, and resulted in higher prediction errorstfese areas.

The same model was then applied to an ecologically similadaant wet-
land, to assess the generalization ability of the model ly fadependent sites.
From the 501 grid cells included in the independent test skettaonly 99 elements
were classified correctly (19.8%). The random forest digtion model could not
be applied beyond the local conditions upon which it was tonted, because
realized niches of vegetation types do seldom coincide) beéween apparently
similar sites, hence restricting the model’'s applicapillt was concluded that in
order to make the model operational on a larger scale maaydaild be needed,
ranging over the entire ecological amplitude of the modiellegetation types.

The last part of this dissertation covers uncertainty aspassociated with
wetland vegetation distribution modelling. Uncertaintigmates from input data
limitations, caused by measurement errors on observatias in measurement
equipment, neglecting key environmental variables, oraiapand temporal un-
derrepresentation of observations to capture local viditiab Furthermore, the
model itself introduces uncertainty due to its disabildycapture the entire com-
plexity of ecological processes in relation to vegetatigstributions. Finally,
model evaluation is also susceptible to uncertainty. Amihigyvariety of uncer-
tainty, focus was exclusively on two sources, namely, theetmainty associated
with the spatial interpolation of environmental variablesere predicted vegeta-
tion distributions are based upon and the uncertainty &ssacwith species clus-
tering into vegetation types.

An entropy-based uncertainty assessment was set up, alat#hencertainty
associated with spatial interpolation of environmentahpmeasurements was
guantified using sequential Gaussian simulation. Thiscsooifruncertainty clearly
propagated toward the random forest distribution modgltesults, conditioning
monitoring protocols to lower this source of uncertaintge®do-randomizations
were performed to quantify the uncertainty propagationeissed to species clus-
tering. A deterioration of the modelling results stresseditmportance of accurate
species clustering.

Finally, based on the results of the sequence of researph atidressed in
this dissertation, future perspectives aiming for the imwpment of distribution
models were formulated.






Introducing wetlands and
ecohydrology

Among the enormous variety of natural and human ecosystemstudy concen-
trates on wetlands. Wetlands are land areas that are peailydor permanently
wet due to their location in the landscape. They are freduérgnsitional be-

tween upland and aquatic ecosystems. The (periodically)camditions trigger

chemical, physical and biological processes that are eniquvetland ecosys-
tems. Many wetland commodities and wetland values arisa fteese wetland
processes, and they should therefore be covered by wettémtes and wetland
ecohydrological research.

Given the fact that wetlands exhibit characteristic prépsrand processes
which are fundamental to the objectives and outline of thésettation, a brief
introduction to wetlands and ecohydrology is given presitauthe problem defi-
nition and research objectives (Chapter 2) of this studypkasis is on the con-
struction of a conceptual framework in which wetlands areegally defined by
their predominant components, facilitating the interatien of the results pre-
sented throughout this dissertation.

1.1 Wetland definition

Wetland definitions often include three main components [1]

(1) Wetlands are distinguished by the presence of watbeeitt the surface or
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~ soil temperature . ~ microbes
~etc.
WETLAND

FIGURE 1.1- Conceptual model illustrating the three-component kafsasvetland (mod-
ified from [1]). The three components are not independeritatiecting each other.
Legend: Full arrows indicate direct effect, broken arroesdback from biota.

within the root zone.

(2) Wetlands often have unique soil conditions that diffeni adjacent upland
and aquatic systems.

(3) Wetlands support biota adapted to wet conditions anayexsely, are char-
acterized by an absence of flooding-intolerant biota.

This three-level definition is reflected in Fig 1.1. The eamimental determinants
climate and geomorphology define the degree to which wedlaad exist, but the
starting point ishydrology which, in turn, affects thg@hysicochemical environ-
ment which, in turn, determines together with the hydrology twdwad how much

biotainhabit the wetland. Biota, in turn, affect the hydrologygarhysicochemical

environment of the wetland.

1.1.1 Wetland hydrology

Wetlands are transitional areas between upland and aseatsystems (Fig. 1.2)
and form an aquatic boundary to many terrestrial plants amdals, and they also
form the terrestrial boundary of many aquatic plants anchats [1]. They are also
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FIGURE 1.2— Wetlands are transitional areas between between uplahapratic systems

(adapted from [2]).

transitional in the amount of water they store and process$jrmother ecological
processes that result from the hydrologic regime [1]. Wietlhydrologic regimes
have a high variability, since they result from water flowsl avater storage ca-
pacities, which are very variable as well. Water entersamet$ via streamflow,
runoff, groundwater discharge, tidal inflow and precipitat[2]. Wetlands lose
water via streamflow, groundwater recharge, tidal outfload/@mapotranspiration.
The balance between wetland water storage and inflows afidwsiis expressed

(in general units, volume per time, [V/T]) as

AV

AV _
Fer: = net precipitation duringt [V/T]

S = surface inflows, including streamflow and runoff durisig/V/T]
Gi = groundwater discharge duridg [V/T]

T; =tidal inflow duringAt [V/T]

ET = evapotranspiration durinfy [V/T]

S = surface outflow, including streamflow and runoff duriktgfV/T]

Go = groundwater recharge duridyg [V/T]

where

(1.1)

change in volume of water storag¥ during a time intervalit [V/T]
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T, = tidal outflow duringAt [V/T]

The inflows and outflows are extremely variable in time, andeare stochastic.
They are also variable in space, and differences betwedandetvater balances
result in an enormous diversity in wetland types, many afitbeing characterized
by their respective hydrologic regimes. Examplestatal wetlandsandnontidal
wetlands which can be subdivided further permanent wetlandwith relatively
stable hydrologic conditionseasonal wetlandwith high seasonal water level
fluctuations, orfluctuating wetlandsvith long term (several years) hydrologic
fluctuations [1, 3].

1.1.2 Wetland physicochemical environment

Wetlands are transitional in terms of physicochemicalrsgtbeing sources, sinks,
and transformers of nutrients and carbon [4]. Wetland mogiemistry is heav-
ily affected by wetland hydrology (Fig. 1.1), because d#f& sources of water
inflow have different physicochemical characteristi¢duxial wetlands receive
nutrient and sediment rich water from upland areas by serflagy, and are gen-
erally very productive.Pluvial wetlands receive water exclusively from precipi-
tation, and therefore rely on nutrients brought in from ttra@sphere, generally
in much lower concentrations, resulting in a low produtyivand phreatic wet-
lands receive water from groundwater inflow, and generadlyeha productivity
status somewhere in between the former two [4]. Furtherptioeeperiodically or
permanently submerged status of wetland soils results iariagical decline or
permanent low concentration of oxygen (oxygen diffusicsgdproximately 10000
times slower in submerged than in aerated soils [5]). Oxygéeine preferred ox-
idant in aerated soils, however, by its exclusion from wetlaoils, alternative
oxidants (e.g. organic substrate) must be used, thus iaffettte thermodynam-
ics and kinetics of reduction - oxidation (redox) reactionthe soil. The decline
in oxygen can be measured as an increasingly negativeielpotential (redox
potential, Eh [mV]) and is indicative for the oxidation ordrection potential of
the soil. In aerated soil (Eh > 300 mV) dissolved oxygen ivalent, but rapidly
after soil submergence the oxygen concentration and redtenpal decline. A
typical sequence of transformations involves: (1) nitrattuction (Eh = 250 mV),
(2) mangenese reduction (Eh = 225 mV), (3) iron reduction £k100 -100]
mV), (4) sulfate reduction (Eh = [-100 -200] mV), and (5) nmeatlogenesis (Eh <
-200 mV) [1, 2, 4]. Relative concentrations of chemical smimpounds change
accordingly through time (Fig. 1.3).
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FIGURE 1.3 — Time sequence of redox transformations after soil subemee (adapted
from [6]).

1.1.3 Wetland biota

Wetland environments are characterized by stresses tlithenéerrestrial nor
aquatic organisms are adapted for to cope with [1]. Teledstrganisms are
stressed by (periodic) flooding, whereas aquatic organa@mstressed by (pe-
riodic) drought. From the wide variety of biota inhabitingethands, major re-
search attention focusses on vascular plants. Soil sulemeggesults in a vari-
ety of stresses for plants [7], of which oxygen deficiencyfterthe underlying
factor [8,9]. In plant cells, oxygen participates in moranh200 different re-
actions [10,11]. This broad spectrum ranges from respiativhich draws on
over 95% of the cellular oxygen consumption to cover the getér needs of
the cell [12], to the introduction of a double bond in a fattylachain to con-
fer the appropriate fluidity to a given membrane [13]. Wheanjs are submitted
to water-saturated soil conditions, their undergrounéosgre facing a microen-
vironment that declines in oxygen concentration or eves gabxic for a period
of time. Under these conditions, the aerobic metabolisnoofs of non-adapted
plants shuts down and impairs the energy status of the egltsreduces nearly
all metabolically mediated activities such as cell extensind division and nutri-
ent uptake [1, 14]. In contrast, flood-tolerant plant speigdrophytespossess a
range of characteristic responses that appear to reduseplet of the stress [15]:
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— Life history adaptationsavoidance of adverse effects of submergence by
timing of important life cycle events, such as seed dispegeamination
and reproduction;

— Short-term metabolic adaptationglycolysis, ethanolic fermentation [16,
17], photosynthesis at a low GQevel [18];

— Long-term responses in the rooshift in anatomical and morphological
characteristics by the formation of aerenchyma [9, 19], firenation of
pneumatophores and adventitious roots [20] and radidb€s to facilitate
nutrient uptake [21];

— Long-term responses in the shoghoot elongation to restore contact with
the open air [22, 23], potentially stimulating flowering asekd production
[24].

Furthermore, wetland plants are not passive to their pbgbkiemical and hy-
drologic environment (Fig 1.1), they actively affect sinditions through a va-
riety of feedback mechanisms. Examples as peat building2[&l5 erosion re-
duction [27, 28], soil aeration [29], plant feedback on sondisture [30, 31] and
groundwater [32, 33] are well-documented in literature.

1.2 Wetland value and management

Wetlands provide many services and commodities to humdhjty Consump-
tive services include plant harvesting, livestock grazimenting and aquaculture.
Non-consumptive services include recreational oppoties)iwater purification by
retention of pollutants and sediments, flood mitigationyiteg recharge and biodi-
versity conservation [1,2,34,35]. Additionally, wetlamcbsystems are influencing
the global cycles of water, oxygen, nitrogen, sulfur, mathand carbon dioxide
at a much broader scale than the wetland itself [1, 35]. Frorarghropocentric
perspective, wetlands have certaaluesto the society because wetland functions
have proved to be useful [36]. Wetland management is moshafesigned to
(sustainably) exploit (some of) these in (multiple objeefimanagement strate-
gies. Taking the three-component conceptual model of Figad a reference, it is
clear that management activities can alter hydrology (dighing, draining and
levee building [37, 38]), the physicochemical environm@ng. fertilization [39])
and biota (e.g. plant harvesting [40—43]). Apart from dirgetland management,
wetlands are also susceptible to indirect anthropogestaidiances by processes
such as nitrogen deposition [44, 45].

The conceptual model (Fig 1.1) is extended to account fdirapbgenic dis-
turbances (including direct wetland management and ioditisturbances). Each
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Geo-
morphology
Hydrology Anthropogenic disturbance
~ water level ~ management
~ water flow ~ indirect disturbance
~ frequency
~ elc.
time
Physicochemical environment Biota
~ soil moisture ~ plants
~ nutrients ~ animals
~ soil temperature . ~ microbes
~etc.
WETLAND

FIGURE 1.4 — Conceptual model illustrating the three wetland comptaémydrology,
physicochemical environment and biota) affected by a foedmponent, anthropogenic
disturbances.

Legend: Full arrows indicate direct effect, broken arroesdback from biota.

of the three components of a wetland is affectedabyhropogenic disturbances
(Fig 1.4}

1.3 Pattern and scale

Wetlands, as all ecological systems, exhin#terogeneityon a broad range of
scales [46], where heterogeneity is defined as the compleritl variability of

a system property in space and time [47]. The descriptionoofidexity and
variability requires the determination s€ales and results in the detection péat-
terns i.e. a spatial or temporal structure that is significaniffiedent from random,
within the system [46]. Therefore the concepts of pattexhsoale are closely re-
lated. Once patterns are detected, the identification efraebants and processes
generating patterns results in predictive capacity [46ie Dasic idea is that there

11t could be argued to include anthropogenic disturbances desterminant, such as climate and
geomorphology, or even on a higher level since anthropoggieturbances may affect climate. In this
study, however, preference is given to include anthropiogeisturbances at a lower level, and thus
enhancing the workability of the wetland definition for teisidy.
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FIGURE 1.5—Wetland heterogeneity arises from the interplay betwgendhogy, physico-
chemical environment, anthropogenic disturbances arid biing on a hierarchy of spatial
scales.

are strong bidirectional linkages between pattern andystes processes [48].
But typically, patterns are observed at different scales tthose at which these
processes operate at [46], for example, a pattern in weplkard species distribu-
tions may be observed at the field scaleif], while the underlying process of
anaerobiosis plays at the plant root {£an] or even root cellular [10° m] scale.

In wetlands, both spatial and temporal heterogeneity magresent in each
of the four wetland components included in Fig 1.4. In faatfland heterogene-
ity arises from the interplay between hydrology, physi@fstry, anthropogenic
disturbances and biota, all of them acting on a hierarchywiporal and spatial
scales [49] (Fig. 1.5). Understanding of these complexattions, identifying
the underlying driving forces and the prediction of ecosgstesponses are highly
relevant research topics [49], and in this context, theyaimbf spatio-temporal
resource distributions in relation with the distributiohvascular plant species is
gaining a lot of research attention.
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1.4 Patterns in the geographical distribution of
species

Patterns in species distributions arise from abiotic atidjprocesses acting on
a hierarchy of spatial and temporal scales. The niche caifigpfacilitates in-
terpretation. Théundamental nichef a plant species is a hypervolume defined
by environmental dimensions in which every point corregjsoto a state of the
environment which would permit the species to exist andaépce. Due to com-
petition and other biotic interactions species generalupy only a reduced part
of this volume, therealized niche The fundamental niche is primarily a func-
tion of physiological performance and ecosystem condsathe realized niche
additionally includes intraspecific and interspecific lwanteractions and com-
petitive exclusion [51]. Interspecific differences in famdental and realized niche
result in species distribution patterns. Species didiobupatterns are dynamic,
showing variability in space and/or time resulting in temgrdy constant spa-
tially nonuniform patterns, or spatially constant tempilyanonuniform patterns,
or spatio-temporal mosaics [46]. Therefore, speciesidigton patterns typically
have non-equilibrium properties [52], and patterns in gaphical species distri-
butions are not static.

1.5 Ecohydrology: research at the interface between
ecology and hydrology

The strong linkage between ecological and hydrologicalamet characteristics
resulted in the emergence of an interdisciplinary reseatthe interface between
ecology and hydrologgcohydrologysometimes referred to as ‘hydroecology’, as
a synonym or, more frequently, when the emphasis is stramgleydrology). Han-
nah et al. [53] examined the evolution of the definition oftegirology throughout
time. The first clear definition appeared in Wassen and Ganst{1996, [54]) and
covered the unidirectional nature of hydrological proessdetermining the natu-
ral development in wet ecosystems. Problems associatédiivd@tunidirectional
nature of Wassen and Grootjans’ definition were recognizedaird and Wilby
(1999, [55]) who broadened the definition to include ecobialyical interactions
of biota, mainly plant species and vegetation on hydrolaigicocesses. Addition-
ally, Baird and Wilby argued that there is no reason why edobipgy should be
solely concerned with wetland ecosystems [55], as ecolygical relations are
important in all ecosystems. Hence, the ecohydrologicaresewas broadened to
a range of ecosystems, including wetlands, drylands, frkekes, etc.
Ecohydrology investigates how hydrological processescafflant growth and
vegetation dynamics, andice versg56-59]. These ecohydrological relations can
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be revealed at various scale levels. Among many others,rtatscope of eco-
hydrological research covers the following aspects in geaf ecosystems:

— the interpretation of present soil and vegetation pastéom a hydrological
point of view [60];

the relationship between vegetation, soil and water,cbasen understand-
ing of the physiological properties of plants [55];

the effect of hydrological regimes on vegetation sucoesi@1];

the development of realistic goals in ecosystem conservggo];

decision support in ecosystem restoration [60]; and

the sustainable development of water resources, in@usticio-economic
aspects [59].

Despite the recent emergence of ecohydrology as a reseeldlafithe inter-
face between the ecological and hydrological sciences [83search objective,
namely to understand the mutual interaction between etarsyand hydrology, is
not new [62]. Benchmarking work in the development of thelgvological the-
ory is the Penman-Monteith model [63] for evapotranspirafluxes. The model
acknowledges the role of vegetation on evapotranspiratiancorporating a veg-
etation specific parameter, stomatal resistance (or caadce). More recently, in
2001, a collection of publications by I. Rodriguez-lturée,Porporato, F. Laio,
L. Ridolfi and C. P. Fernandez-lllescas [64—67] in Advande@/ater Resources
presented soil moisture as the key variable for a quanatnderstanding of the
vegetation response to water stress. The quantitativeastic approach presented
in this work enhanced the understanding of the interplawéen soil properties,
climatic characteristics and vegetation water stressvargaa ecosystems. It was
also inspiring to many other ecohydrological investigasion other ecosystems in-
cluding wetlands, where not only root zone soil moistureaiyits are important,
but also fluctuations in the water table depth [68].

1.6 Summary

The interplay between hydrology, physicochemical envinent, anthropogenic
disturbances and biota at a hierarchy of spatial and terhgcaites define the het-
erogeneity of wetland ecosystems. Different toleranceltewf plant species to
this heterogeneity in wetland conditions result in a patierplant species dis-
tributions, and hypotheses addressing (parts of) formscrd®ion are typically

investigated in ecohydrological research.



Problem definition and research
objectives

2.1 Problem definition

Plant species distributirin wetlands result from mutual interactions with hy-
drology, the physicochemical environment and anthropimgéisturbances. The
study of these interactions in any wetland type at any siatitporal scale forms
part of ecohydrological research. Within this researchireng emphasis is on
the exploration of vegetation (i.e. plant species comnies)itdistributions in re-
lation to the wetland environment. With the continuous dewment of statistical
techniques, machine learning techniques and geographfoamation systems,
modelling of these vegetation distributions based on ttedation with environ-
mental constraints have become very popular. Besidesrilerance as research
tools, these models are important tools to assess the impéatd use, land use
changes and other environmental changes (e.g. climatitgelsy on the distribu-
tion of vegetation. As such, these models can be used as e@mead tools in
wetland conservation and restoration, with a wide rangepfieability.
Nevertheless, among the variety of distribution modeltechniques that have
been applied in literature, efforts to introduce enseméderiing into distribution
modelling remains limited until today. Ensemble learningiides techniques that

2Distributions may be random and non-random. The latterfesmed to as pattern. In accordance
with the use in literature, the term ‘distribution’ is useslasimplification of ‘pattern in distribution’
or ‘distribution pattern’ from this point on.
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compute a collection, or ensemble, of responses, ratharahgingle response.
This lack defines the research objectives of this dissertati

2.2 Research objectives

The development of distribution models to predict vegetadistributions based
on their relation with environmental conditions is an omgpresearch task. The
research objectives of this dissertation are:

— The introduction of ensemble learning by applying the alted ‘random
forest technique in vegetation distribution modelling throudie tdevelop-
ment of arandom forest distribution modébr the prediction of wetland
vegetation distributions based on environmental wetlamdliitions;

— The assessment of tipeedictive abilityof the random forest distribution
model;

— Theidentification of important environmental variabletermining the
wetland vegetation distribution by the random forest distion model;

— The assessment of tigeneralization abilityof the random forest distribu-
tion model; and

— The analysis of inputincertainty propagatiorthrough the random forest
distribution model.

To meet the research objectives, eight research questiontdsbe answered:
1. Which techniques are most frequently applied for distidm modelling?

2. Can the random forest technique be used for vegetatidrbdison mod-
elling?
(a) Are there any requirements concerning data format?

(b) Is the model output meaningful within a distribution nedishg con-
text?

(c) Canthe model output be introduced into geographicarinétion sys-
tems?

3. Is the predictive ability of the random forest model datitorily?

4. Can the random forest distribution model provide infaioraconcerning
the importance of environmental variables constrainirgwégetation dis-
tribution? If the answer to this question is affirmative:
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(a) Would other techniques identify the same environmeraghbles as
being important?

(b) Is it possible to construct accurate random forestidigion models
on areduced data set, only including the most importantenmiental
variables?

5. Is there a spatial trend in the random forest distributmmdelling results?

6. Does a random forest distribution model, constructed given wetland,
perform satisfactorily when tested on a similar but distaetiand?

7. Does the use of an ensemble modelling technique allowrfoeainty as-
sessment?

8. How does input uncertainty propagate throughout theaamfibrest distri-
bution model?

2.3 Outline

Throughout this dissertation, the eight research questiwa addressed and an-
swers are given.

Chapter 1 introduced wetland ecosystems, by formulatingttawd definition
in which the interplay between hydrology, physicochemé&ralironment, anthro-
pogenic disturbances and biota at a hierarchy of spatialtemgoral scales is
stressed. Based on this definition, the presence of patieregetation distribu-
tions in relation to environmental conditions can be expgdi

In order to model vegetation distributions based on enviremtal conditions,
four experimental wetland sites were selected, and aniehi@nd biotical char-
acterization of these test sites is given in Chapter 3. Data these sites are used
to answer all eight research questions.

2.3.1 Research question 1

The first research question is addressed in Chapter 4 whéaegaure review on
several statistical and machine learning techniques eghpi distribution mod-
elling highlights main properties as type and probabilitstribution of the re-
sponse variable and prediction type of these techniquesedan this review, the
selection of the random forest technique for distributioodelling is motivated.
Additionally, selection of a well-known and frequently dipp technique which
is used to build a reference distribution model for compariss based on this
literature review.
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2.3.2 Research question 2

Chapter 4 continues by answering the second research quésticonstructing

and calibrating a random forest distribution model for wetl vegetation based
on the data provided in Chapter 3. Special attention is drawthe input data

format, the computational effort, and a meaningful spdtigdrpretation of the

modelling results.

2.3.3 Research question 3

The model evaluation in Chapter 4 assessed the predictility af the random
forest distribution model. Several statistical measuresiaed to compare obser-
vations with modelling results, and an explicit comparisdmade between the
random forest distribution modelling results and the rssoibtained by the refer-
ence model.

2.3.4 Research question 4

Research question 4 is addressed in Chapter 5 where digiribnodelling is ap-
proached from two different angles: (i) predictive modwejlwhere the predictive
performance of the model is of primary concern, and (ii) erpkory modelling
where the model is used to gain information on important etspguch as envi-
ronmental variable importance. Under explanatory moalgllseveral other tech-
nigues to identify important environmental variables ax@uded, and a compar-
ison of results is made. Finally, results of the variableamt@nce assessment are
used for model complexity reduction. Several random fodéstibution models
with varying model complexity are constructed and evaldate

2.3.5 Research questions 5-6

In chapter 6 a random forest distribution model is consedicand results are in-
terpreted with respect to the similarities between theedifiit vegetation types to
assess a possible spatial trend in modelling results toem®search question 5.
Furthermore, the model is tested on an independent, dpatiatant but ecologi-
cally similar test site to address research question 6.

2.3.6 Research questions 7-8

The random forest distribution model generates an enseafblesponses. The
possibility to use such an ensemble for uncertainty assassfresearch question
7) is investigated in Chapter 7 by looking into the discret@bability distribution

constituted of the response ensemble. Uncertainty inloliskon models originates
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from input data limitations, their disability to capturestentire complexity of in-

terrelated processes resulting in vegetation distributighin the model, and the
uncertainty associated with model evaluation. Among thisety of uncertainty

sources, two important sources of uncertainty propagdtioough the random
forest distribution model are selected to answer researehtipn 8: (i) the uncer-
tainty associated with the spatial interpolation of ermir@ntal variables, and (ii)
the uncertainty associated with plant species clustentgJegetation types. The
effects of this uncertainty on the random forest modellespits is investigated in
Chapter 7.






Description of test sites: monitoring
and ecohydrological review

3.1 Introduction

Four test sites are included in this study:
1. Doode Bemde;
2. Snoekengracht;
3. Vorsdonkbos-Turfputten;
4. Zwarte Beek.

All four sites are alluvial wetlands, situated in Fland@slgium (Fig. 3.1). They
are nature reserves with relatively undisturbed abiotat laintic conditions, with
long periods of constant management (at least 10 years)nankkd hydrologic
gradients. The sites are included in a long term ecohydicdébgonitoring pro-
gramme of the Research Institute for Nature and Forest (INB&up by W. Huy-
brechts and P. De Becker, and were the study sites of the RbsBeogramme
on Nature Development (projects VLINA 96/03 [70] and VLINA/6 [69]) of
the Flemish Government. Monitoring results of the sitesengaithered in four
ecohydrological atlases [71-74].

The climatic conditions at the sites are typically temperatith an average
yearly rainfall of ~800 mm distributed evenly over the year [75, 76], an aver-
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France

FIGURE 3.1- Location of the test sites in Flanders, Belgium (adaptechff69]).

age annual pan evaporation of 450 mm, and an average yeatgnmgierature of
9.8°C [77].

Doode Bemde is an alluvial floodplain mire in the valley of tineer Dijle,
situated at approximately 30 m above sea level. Its soiltexis mainly loam.
The area is fed by nutrient-rich groundwater (approxinys8ehm day* [78,79]).
Here, a complete vegetation mosaic is found, ranging frosotnephic alder carr
and reedbed$Phragmitetalig, over tall sedge swamp®@gnocaricior) and tall
herb fen, to fen meadow and somewhat dAethenatherion elatiorigrasslands
on the natural levees of the river [71, 78, 80, 81].

Snoekengracht, situated approximately 57 m above seg Is\silar to the
Doode Bemde site, except for a narrower valley and even mdr&nt-rich seep-
age water feeding the area [72, 78].

Vorsdonkbos-Turfputten is located at the southern frinfthe Demer river
valley, approximately 11 m above sea level. This site is akethseepage zone
fed by two distinct aquifers. The southern part is suppligth wutrient-poor
groundwater (20 mm day [78, 79]). Here, a zone with fragments of fen grass-
lands Caricion curto—nigraeandCirsio — Molinietun) and oligotrophic woodland
(Sphagno—Alnetujris found. In the central and northern part of Vorsdonkbos-
Turfputten, which is fed by nutrient-rich groundwater, tregetation changes to
tall herb fen Filipendulion) and mesotrophic alder cai€éricion elongatae — Al-
netum glutinosag 73, 78].

Zwarte Beek is situated at the western fringe of the Campipiateau. It com-
prises an 800 m long section through a narrow valley, sitbateapproximately
52-56 m above sea level. Zwarte Beek is known for its exceflamgrasslands
(mainly Caricion curto—nigrag. The soil consists of a 7 m thick peat layer, with
an abrupt conversion into sandy sediments at the fringeseofdlley. The area is
fed by nutrient-poor seepage water (ca. 16 mmddy8, 79]). The groundwater
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table is constant and close to the surface level througheutear [74, 78].

3.2 Monitoring of test sites

The monitoring setup of the four test sites was very simbath for abiotic and
biotic site characterization. The sites were subdivideggular and adjacent grid
cells of 20 mx 20 m for Doode Bemde, Vorsdonkbos-Turfputten and Zwarte
Beek, and 10 mx 10 m grid cells for Snoekengracht (Table 3.1), and a local
coordinate system was assigned to each test site basedsendhiedivisions by
which every monitoring location was referenced.

TABLE 3.1- Overview of the test sites: name, abbreviation (Abbrgatmn, area, grid
size and number of grid cells (Nr.).

Test site Abbr. Location Area Grid size Nr.
Doode Bemde DB Oud-Heverlee 20.76 ha 2xm20m 519
Snoekengracht SN Boutersem 6.69ha 18mOm 696
Vorsdonkbos-Turfputten VB Rillaar 12.80 ha 20420 m 320
Zwarte Beek ZB Beringen 6.80ha 20xm20m 170

3.2.1 Abiotic site characterization

Soil type was derived from hand drillings at grid cell inectons to a depth of 1
m, classified using a set of four major soil types: minerdlwith sandy texture,
mineral soil with loamy texture, mineral soil with clayextaere and organic peat
soil, and assigned to the neighbouring grid cells. Managerfioeused on veg-
etation, and was classified per grid cell into six categorfgsyearly mowing in
early summer; (ii) cyclic mowing, once every 5-10 years) (iull management
(no mowing or any other management regime for at least thellagears); (iv)
transition from yearly to cyclic mowing; (v) transition froyearly mowing to no
management; and (vi) transition from cyclic mowing to no agement.
Piezometer networks were installed on strategic locatiasisde and just out-
side the nature reserves from 1989 onwards, and extendmepthout the subse-
guent decade. The maximal number of piezometers differbddan test sites:
36 at Doode Bemde, 36 at Snoekengracht, 40 at Vorsdonkbdgtifien, and 42
at Zwarte Beek. Groundwater depths [m] were measured miginexgry fort-
night, at least during a two year period between 1991-199@th&rmore, all
piezometers were sampled on groundwater quality variadlemg four differ-
ent sampling campaigns in spring and autumn over two cotigegrears within
the period 1991-1999 and included groundwater pH, [fag L=1], Feaot [Mmg
LY, Mg?* [mg LY, C&* [mg L™, SO;F [mg LY, CI~ [mg L], NO5 -
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N [mg LY, NH;—N [mg L1], H,PO; [mg L~1] and the ionic ratio (IR =
100[1/2C&")/[1/2C&* + CI7)).

At Doode Bemde, samples for soil organic matter content ($@&termi-
nation were taken at 59 locations at a depth of 0.05-0.15 maaatysed using
thermal destruction at 600 in a muffle furnace. Soil organic matter content was
expressed as a percentage [%].

3.2.2 Biotic site characterization

During spring and early summer, in the period 1993-199htpecies occur-
rence (presence/absence) was mapped in the study sites sartte regular grid
as soil type and managementregime. Mapping was restrizedhortlist of about
75 mainly groundwater dependent speci@sréatophyteq82], see Appendix A,
adapted from [69]).

Species cover data were used to define vegetation typed &wdy sites sep-
arately using TWINSPAN [83]. Eleven clearly defined vegetatypes were re-
tained of which a short description is given in Table 3.2 amthatograph in Ap-
pendix B. All vegetation types are herbaceous, excepffoo — Padion Carici
elongetae — Alnetum glutinosaedSphagno — Alneturwhere a tree layer of Al-
nus glutinosa (L.) Gaertn. (Common Alder) among other tpEe®s is present.

In summary, topography and piezometer locations are detnaded in Fig. 3.2,
and the spatial distribution of vegetation types is giveRim 4.7.

3.3 Ecohydrological review of the test sites

As stated in the introduction of this chapter, the test sitere part of two Research
Programmes on Nature Development (projects VLINA 96/03 [itd VLINA
00/16 [69]) of the Flemish Government. Furthermore, thfdh@test sites (Doode
Bemde, Vorsdonkbos-Turfputten, Zwarte Beek) were theystwdas in the disser-
tation of O. Batelaan [79], while I. Joris focussed in hesdigation on the Doode
Bemde exclusively [84]. Based on these studies, an overvidhe main proper-
ties and processes in the alluvial wetlands under invdgtigas given.

3.3.1 Topography

The test sites are lowland meandering river floodplaing) witharacteristic to-
pography of natural levee and lower lying flood basin (Fig 3T3eir topography
results from numerous flood deposits that create sinuogesi@long the river
channels, sloping down toward the lower lying flood basin|.[8Ehe process of
lateral sediment fining results in a gradual decrease invsattiparticle sizes: the



TABLE 3.2— Summary of the vegetation types: number, name, shortigéearand area.

Nr. Name Short description area [ha]
(number of grid cells)
ZB VB DB SG
6.80 12.80 20.76 6.69
(170) (320) (519) (696)
1 Alno — Padion Moist forest type withQuercus roburl., Fraxinus excelsiot.., Carpinus betulus 1.47
L. and somelnus glutinosgL.) Gaertn. (147)
2 Arrhenatherion elatioris High yield potential pasture, characteristic speciesideArrhenatherum elatius 2.80 0.91
(L.) J.&C.Presl. Anthriscus sylvestri¢L.) Hoffm. and Leucanthemum vulgare (70) 91)
3 Calthion palustris g?)rgtl:(i'es—rich mesotrophic fen meadow dominated by spek&é€é&ltha palustris 4.24 0.95
L., swamp horsetalEquisetum fluvatile., and manyCarexspecies. (106) (95)
4 Carici elongatae — Alnetum glutinosae  Mesotrophic alder carr with dominance Afnus glutinosa(L.) Gaertn. and a 3.16 1.20 141
herblayer withCarex acutiformi€Ehrh.,Lycopus europaeus. andSolanum dul- (79) (30) (141)
5 Caricion curto—nigrae %%rr?sa Whﬁ smallCarexspecies a£arex paniced.., Carex rostrataStokes and 6.80 1.12
Carex nigra(L.) Reichard. (170) (28)
6 Cirsio — Molinietum Comparable withCaricion curto—nigraebut with higher proportion oPoaceae 1.12
and higher productivity. (28)
7 Filipendulion Tall herb fen withFilipendula ulmaria(L.) Maxim., Valeriana officinalisL. and 4.76 4.16 1.12
Alopecurus pratensis. (119) (104) (112)
8 Magnocaricion Sedge swamp with various tallarexspecies. 2.52
63
9 Magnocaricion with Phragmites Magnocariciamegetation withPhragmites australigCav.) Steud. :(37% 0.83
93 83
10 Phragmitetalia Highly fertile reedswamps, dominated Byiragmites australi¢Cav.) Steud. (2.%.2 (()2%
53 27
11 Sphagno — Alnetum Oligotrophic swamp forest witlBetula pubescenErhr. andAlnus glutinosae 2.64 3) @)
(L.) Gaertn., with a dense moss layer $hagnum palustre. and Sphagnum (66)

fimbriatumWilson.

ZB = Zwarte Beek, VB = Vorsdonkbos-Turfputten, DB = Doode BEmSG = Snoekengracht

S31IS 1S31 40 NOILdIdos3g

G-€



3-6 CHAPTER3

0 50 100 150 200

(@)

(b)

FIGURE 3.2- Topography and piezometeh\] locations (a) Doode Bemde, (b) Snoeken-
gracht, (c) Vorsdonkbos-Turfputten and (d) Zwarte Beelafaeld from [71-74]).
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FIGURE 3.2-continued..

natural levee consists of coarse sediments, while the flasthkzonsists of sed-
iments with smaller particle sizes. The underlying causani@brupt reduction
in flow velocity of the flooding water upon exiting the riverarimel, resulting in
an immediate deposition of the coarser sediments (nakwakldeposits). At dis-
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tant margins of the natural levees, the deposition of loathcday is predominant
(flood basin deposits) [85]. Consequently, the topograglgiadient (high levee —
low flood basin) is related to the textural gradient (coarsgodits — fine deposits)
in alluvial floodplains [86].

River Natural Flood Older
channel levee basin deposits

Coarse deposits

Lateral fining
Fine deposits

Wet period

I Groundwater table (wet period)
Groundwater table (dry period)

Amplitude

11 |
! ! I
/ Piezometer Piezometer Piezometer
1 2 3

FIGURE 3.3— Schematic cross-section of an alluvial floodplain. Thelignat in grayscale
intensity is illustrative for the textural gradient caudmsdlateral fining.

Under natural, or managed conditions allowing for overbfo&ding, the
levee and floodplain topography is variable in time and spheeause each in-
dividual flooding event invokes spatially distributed peeses of erosion, trans-
portation and sedimentation. The hydrologic managemeattices at the four
test sites, however, did not permit overbank flooding, amttbeheir topograph-
ical gradient resulting from historical flood deposits isdevariable in time and
space.

3.3.2 Groundwater

Hydrology is the predominant component in the wetland deédimi(see Sec-
tion 1.1) as it directly affects numerous wetland processese water balance
of a wetland is the total inflow subtracted by the total outflaith in- and out-
flow generated by different processes (see Eq. (1.1)). Sk@modelling) stud-
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ies [70, 79, 84] indicated the importance of groundwatecttisge and groundwa-
ter recharge@; andG, in Eq. (1.1)) at the test sites, which were consequently
described agroundwater dependent wetland®]. Therefore, a short description
dealing with two important groundwater related aspectsverg (i) the spatio-
temporal dynamics of groundwater quantity, and (ii) theugidwater quality, i.e.
the hydrochemical composition of the groundwater (in teofr@ant nutrients).

3.3.2.1 Groundwater quantity

Groundwater quantity is usually described by means of (@outsve) groundwater
depth measurements made from piezometers. Groundwatér ahe@surements
can be expressed relative to ground surface, or be transtbtmhydrolic head

by referencing to another reference level (e.g. mean sed) lewithin the cross-

section of an alluvial floodplain (Fig. 3.3), three piezoerstare shown at different
distances to the river channel: one at the natural leveedpieter 1), another at
the flood basin (piezometer 3) and a third one in between fotwee (piezometer

2). The depth of the groundwater table during a wet (wintag dry (summer)

period are indicated. Comparison of these depths indi@teEsasonal variation:
during the wet period, the groundwater depth is low (the gdwater table is

close or even above ground surface), while during the driogegroundwater

depth is high (the groundwater table is deep under grourfdce)r Therefore the
groundwater depth has a time variability. Additionallypasal variability can be

observed. At the topographically higher levee, groundnddpths are generally
higher (piezometer 1), decreasing gradually toward thedfloasin (piezometer
2—3) (see also further in Section 6.2).

Assume the groundwater depths in the piezometers duringvéfteand dry
period in Fig 3.3 to be hydrologic extremes, i.e. the lowest highest groundwa-
ter depths during a given period of time. These extremesalledcthe minimal
groundwater depth and the maximal groundwater depth, cisply. The differ-
ence between both is the amplitude of the groundwater dépthe study sites (as
in most alluvial floodplains) a gradient of decreasing mialigroundwater depth,
maximal groundwater depth and amplitude of the groundvwagpth is observed
from the levee toward the flood basin [71-74], and these ghoater variables
characterize the groundwater quantity and dynamics.

Furthermore, alluvial systems are frequently influencedabyupward seep-
age flux (upward groundwater discharge), generated by erdifte in hydraulic
head between the recharge and discharge area. At the stiedy seepage
fluxes are prevalent, ranging from approximately 3 mmddy8, 79] at Doode
Bemde to approximately 20 mm da¥y[78,79] at Vorsdonkbos-Turfputten, clearly
influencing groundwater dynamics [84]. In some areas withérfloodplain, seep-
age fluxes enter the root zone of plants, while in other ateasaepage water is
drained before entering the root zone. Apart from its effectvetland water bud-
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gets and dynamics, transport of hydrochemical compounde®yage water alters
the wetland water quality.

3.3.2.2 Groundwater quality

Groundwater quality is characterized by temperature,itgespecific weight, dis-
solved solids content, viscosity, surface tension, théoapacity, enthalpy, vapor
pressure and latent heat of vaporization [87]. The groumelnwguality aspect of
interest here is dissolved solids. Dissolved solids araunitips that occur because
of dissolution of rocks and soils and because of the solutf@O, from the atmo-
sphere [87]. Dissolved solid concentrations are usualyessed as mg1!, and
natural waters contain a mixture of cation and anions irow€&*, Mg+, Nat,
K*, Cl-,SG;,CO5,HCO, F~ and NG in excess of 1 mg L. Occasionally
minor constituents including Be, Fett, AIt, PG}, NH, and NQ, achieve con-
centrations higher than 1 mg & [87]. Hydrogen ions (H) are generally present
in smaller concentrations (usually expressed as wateepHog[H™]), but have
critical influence on water chemistry by affecting dissmaotand precipitation re-
actions.

Driven by a difference in hydraulic head, groundwater mofresn higher
recharge areas toward lower discharge areas. In this pgtidissolved solutes
are transported by a combination of advective and dispemiocesses. The hy-
drochemistry of discharging groundwater in a wetland is recfion of the wa-
ter origin, the geochemical processes (dissolution of migdnto groundwater,
precipitation of supersaturated dissolved solids, angation of the constituents
present in groundwater) in the feeding aquifer, the trawes tand the convergence
of flow paths [79]. Important reversible, pH mediated nettieams are the disso-
lution of the carbonate minerals calcite (Cagf@nd dolomite (CaMg(C®)2):

CaCQ +CO; + H0 = C&' + 2HCO; (3.1)
CaMg(COs), + 2H0+ 2CO, = Ca +Mg?" + 4HCO; (3.2)

The seepage areas where groundwater containing theséut@s@roducts dis-
charges are higher in pH (base-rich), and gradients in belseess have been
reported to influence vegetation distributions [54].

At Doode Bemde, Vorsdonkbos-Turfputten and Zwarte Bedierint ground-
water quality types of the discharging groundwater weremeined [70, 79], to-
gether with a hydrochemical characterization of the piigtipn and river water,
sampled near the sites. Following groundwater qualitygypere distinguished:

(1) groundwater with a high concentration of ions, predanily C&* and
SO

(2) groundwater with a very low concentration of ions, santio the concentra-
tions in precipitation water, except for €aand HCQ;
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(3) groundwater with a high concentration of ions, predamily C&* and
HCQO;; and

(4) groundwater with a very high concentration of ions, prethantly C&*
and HCQ but also SG and Fe.

Groundwater type 3 was the dominant groundwater type at Bdeinde.

In the each of the piezometers located within the central afghe flood basin,
this groundwater type was measured. At Vorsdonkbos-Ttt¢pua dominance of
groundwater type 1 was observed, which extended from theeegdstern part to
a significant part of the southern flood basin. Zwarte Beek elasacterized by
groundwater type 2, and measured groundwater concemisatiere lower com-
pared to the other two sites. For a more extensive discuasida spatial overview
of the groundwater quality at the three site, the readerfésned to the ecohydro-
logical atlases [71, 73, 74], and to Huybrechts et al. [7@] Batelaan [79].

3.3.3 Soil solution

Quantitative (e.g. soil water content) and qualitativg(@utrient concentrations)
aspects of the soil solution in the root zone are importarglémts (e.g. [30]).
They result from the interaction between and the relativeartance of different
water and nutrient input and outputs. The vertically avedagoil water balance
at a point in a wetland can be expressed as (modified from {i8i@], inflow and
outflow neglected)

2. % _ gjort). 4 - (o001 (33)

where8 [0-1 m® m—3] is volumetric soil water contenB(= V,,/Vs, with the total
soil volumeVs equal to the sum of the volumes of air, watdg)Yand mineral com-
ponents)Z; is the rooting depthd[B(t),t] andx[6(t),t] the soil water gains and
losses from the root zone, respectively. Water reachingdilecolumn includes
net precipitation®,(t), i.e. rainfall minus interception), surface inflo& [@(t),])
and groundwater discharg&;(0(t),t], e.g. vertical seepage fluxes and capillary
rise from the water table):

6[B(t),t] = Pn(t) + S[B(t),t] + Gi[6(t),1] - (3.4)

Water is lost from the soil column by evapotranspiratig[(t),t]) and ground-
water rechargeGo[6(t),t]):

X[6(t),t] = ET[O(t),t] + S[6(t),t] + Go[B(1),1] . (3.5)

The soil water balance is represented in Fig. 3.4. The sdiinco can be subdi-
vided in two separate zones: (i) the vadose, or unsaturateé,above the ground-
water table, and (ii) the phreatic, or saturated, zone uredgh the groundwater
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table. Water above the groundwater table is drawn upwardsigin continuous
soil pores by capillary suction in a process called capiliege. The soil volume in
which capillary rise is present is called the capillary §én and its height largely
depends on the soil porosity (generally smaller than 1 mmagaoils, and up to
2 m in loamy soils [88]).

P I ET P I ET
po A
S,%AZ, ro((i)(t’3 %g;le ﬁ 1 T zZ root §one ﬁ 75
. < DALY 5
] - opamge ¢
G G=0 S G oewt g T
et
& (¢}
2
(@) (b)

FIGURE 3.4— Water balance of a soil column where the root zone is disected from the
groundwater table (a), and connected with the water tapléftplanation of abbreviations:
P, net precipitationP precipitation| interceptionET evapotranspiratior§ andS, surface
inflow and outflow,G; and G, groundwater discharge and recharg%t—) change in volu-
metric water contentf) during a period of time, Z; depth of root zone, gwt groundwater
table.

A spatial variability in volumetric soil water content befen locations can be
described to differences in soil porosity and spatial emes in the extent and
relative importance oPy(t), S[6(t),t], Gi[6(t),t], ET[6(t),t] andG,[6(t),t]. For
example, differences in soil texture and groundwater talelgth between levee
(Fig. 3.4(a)) and flood basin (Fig. 3.4(b)) may result in a&dmection of the soil
water balance in the root zone from groundwater inputs afdhaer location.
A temporal variability in volumetric soil water content tats from the temporal
stochasticity of precipitation (Eq. (3.4)) and temporaiepes in the other terms of
Egs. (3.4) and (3.5). Therefore, the differences betwegn3-(a) and Fig. 3.4(b)
can be interpreted as a temporal difference at a given weltaration, where the
former refers to a dry period and and the latter to a wet period

Four important volumetric water contents are frequentliedained: (i) the
volumetric water content at soil saturatidi), (ii) the volumetric water content
at field capacity, i.e. 2—3 days after rainfall or irrigatif®), (iii) the volumet-
ric water content at which plants wilégp), and (iv) the residual volumetric soil
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water content€;). Plant growth and vegetation development in function esth
threshold values is often assessed in ecohydrologicad,agt horticultural stud-
ies (e.g. [64-67,89]).

The nutrient concentration of the soil solution in alluvgistems is deter-
mined to a large degree by the hydrochemical compositionewater inflow, the
groundwater depth and in situ soil processes [84]. The Gpamporal variation
in these forcing attributes and processes is thereforectefléen nutrient concen-
trations. Diurnal variations in nutrient concentrations eonfined to those com-
pounds which are strongly influenced by photosynthetic gsses, e.g. dissolved
oxygen [2]. Most nutrients, however, are not strongly lidkeor directly linked
with the solar cycle, and hence, do not display a diurnakmlity. Seasonal vari-
ations are more pronounced, and related to temperaturegdod, photoperiod
and plant growth status [2]. In general, the growing seasndd to deplete nutri-
ents, a winter (cold temperatures, short photoperiod) agtdseason tend to lower
nutrient concentrations by a slow anaerobic digestion géoic matter and dilu-
tion, respectively. A dry season can accentuate organiten@ddcomposition and
higher nutrient concentrations. It may be clear that theradtions between these
driving forces is site specific and year specific.

Spatial variation in nutrient concentrations is presentzomtally across the
wetland area, as well as vertically within the soil columnoridontal variation
is related to spatial differences in the hydrochemical cositpn of the water in-
flows and variations in their relative importance. Spatétgrns in vegetation type
and density, which are partly determined by former hydrmegetland variabil-
ity, in their turn result in spatial nutrient variations hih the wetland. Over the
life cycle of the plant species included in the differentetgion types, all plant
tissues are either consumed, exported, or recycled batletground as plant lit-
ter. Wetland plant tissues fall at variable rates dependimthe survival strategy
of the plant species. Therefore, litterfall and subsequaeatrient release through
decomposition processes are related to the spatial distibof vegetation types.
Nutrient concentrations also vary with depth in the vettcdl column. This verti-
cal spatial variation mainly related to vertical plant rdedtributions and a vertical
gradient in redox potential [2].

A comparison of nutrient concentrations at Doode Bemde sladifferences
in concentration between measurement locations and betweasurement times
(seasonal variation). By comparison of the hydrochemizatentration of the soil
solution along a transect, perpendicular to the river Dijihin the Doode Bemde
and another transect, also perpendicular to the river hjlé outside the reserve
on drained grounds, Joris [84] concluded that hydrochemarecentrations within
Doode Bemde were similar to those of groundwater, whileghmslarity was not
prevalent at the drained site. This horizontal spatialataon could be attributed
to the seepage water flux within the wetland area, which mtsvether sources
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of water to enter the soil column. A spatial variation in ¥goncentration was
also observed, with higher concentrations measured attiueal levee, and lower
concentration at the depression. A temporal variation ¢ffGand HCQ con-
centration was indicated by the same author [84]. At therahtavee, a higher
biological activity within the well-aerated soils led to mtreasing release of GO
with a subsequent increase ofCaand HCQ in the soil solution (due to an in-
creased dissolution of calcite, see reaction 3.1). At thadfleasin, the dynamics
of biological activity were overruled by the hydrologic dymics [84], and highest
Ca" and HCQ concentration were measured during winter when the walbés ta
was high. In summer, when the water table dropped, condentsadecreased.
The reason is a higher G@oncentration in the soil column during winter, forcing
the calcite dissolution reaction to the right. During summ, can escape to the
atmosphere, and the calcite dissolution rate lowers.

3.3.4 Soil organic matter

The organic matter of the soil arises from debris of plantamat (including litter-
fall), animal residues and excreta that are mixed to a veriaktent with the min-
eral soil. The dead organic matter is colonized by soil (oYmrganismswhich de-
rive energy for growth from oxidative decomposition [88Julihg decomposition,
essential inorganic elements are released from the orgsatier in mineralization
processes. There are several factors affecting the rategahiz matter decom-
position, and hence soil organic matter levels. Soil prigerand environmental
conditions as soil water contentpGupply, pH and temperature are identified as
key factors. The first two factors may counteract one anpttteen the soil water
contentis high @ gets excluded from the soil and decomposition rates lowtr wi
a possible build-up of soil organic matter. Conversely, wtree soil is dry, water
shortage but not @will limit biological decomposition [88]. pH has only an efft
by lowering decomposition rates below a pH value of 4, whetemperature has
a large effect, both by affecting plant growth, and henceffgcting litter return,
and by mediating the biological activity of soil (micro-yamisms.

As can be seen in Fig. 3.5, gradients in average groundwatghand soil
organic matter content exhibit an inverse trend at Doode dgen#t the natural
levee (western border), average groundwater depths aneahiysoil organic mat-
ter content low, whereas the average groundwater deptledlothd basin is low
and the soil organic matter content is high.

3.4 Summary

Four wetlands were selected as the study sites for thisrthésa. All four are
nature reserves with stable management for a considerabtemf time. Within
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(a) average groundwater depth [m] (b) soil organic matter [%]

0 200 400 600 800 Meters

FIGURE 3.5- Contour plot of the average groundwater depth [m belowsgiface] (a)
and soil organic matter content [%] (b) at Doode Bemde.

the sites, a similar monitoring protocol was set up in ordettaracterize the biotic
and abiotic conditions. Pronounced hydrologic and hydeodical gradients were
observed, and plant species and vegetation type distrimitivere inventoried.
Observations were gathered into ecological atlases [M7ith serve as unique
reference information on wetlands in Flanders.






Selection and comparison of different
vegetation distribution models

4.1 Introduction

Ecohydrology tries to describe the hydrological mechasifike water availabil-
ity and quality) that underlie ecological patterns and psses [56]. Within this
scientific discipline, distribution modelling is an impant issue. Several empiri-
cal models for the prediction of plant species and vegetdtipe occurrence in
relation to hydrological or hydrogeochemical habitat dtinds have been de-
veloped [90, 91]. Six empirical models, compared by VentefP0], differ in
scale level, habitat and ecosystem for which predictionwade, number of input
variables, expert knowledge and field measurements reqgeirs. However, the
empirical-statistical relationship between respons@bée (e.g. the occurrence of
species or vegetation types) and one or more explanatoigbl@s (e.g. ground-
water depth and groundwater quality variables) was gelyespécified by a re-
gression model [90, 92].

Ordinary multiple regression models and multiple logiségression models
within the frameworks of generalized linear models (GLM3])%and generalized
additive models (GAM, [94,95]) are very popular and aremfised for modelling
species distributions [51, 96—-100]. However, other pradicdistribution mod-

The content of this chapter is published as J. Peters, B. B&sBA. E. C. Verhoest, R. Samson, S.
Degroeve, P. De Becker and W. Huybrechieindom forests as a tool for ecohydrological distribution
modelling.Ecological Modelling, 207:304-318, 2007.
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els have been developed, based on a multitude of differedeliag techniques,
including neural networks (e.g. [101, 102]), ordinatiorg(ecanonical correspon-
dence analysis CCA, [103]) and classification methods @agsification and re-
gression trees; [104]), Bayesian models (e.g. [105])fieiel neural networks,
support vector machines, random forests, environmentalepes (e.g. [106]) or
even combinations of these modelling techniques [51].

The outline of this chapter is stipulated by the three redequestions
addressed (see Research questions 1-3 in Section 2.3):

1. Which techniques are most frequently used for distriloutinod-
elling?

2. Can the random forest technique be used for vegetatidrtdison
modelling?

3. Is the predictive ability of the random forest model Satitorily?

The most commonly used distribution modelling techniqueshagh-
lighted in a literature overview. Based on the literaturergiew, two
different statistical techniques are further evaluatedrirecohydrolog
ical distribution modelling context: (i) multiple logistiregression and
(i) random forest. Therefore, a spatially distributed kepdrological
data set is used where 14 predictive variables, describmghiotic en
vironment, are related with the occurrence (presencefek$ef veger
tation types. An extensive evaluation of the modelling lsszoncludes
this chapter.

4.2 Literature overview of distribution models

4.2.1 Conceptual considerations

The excellent review paper of Guisan and Zimmerman [51] liggts five core
conceptual considerations for distribution modelling. their aim to model the
distribution of species or vegetation, distribution madethibit great heterogene-
ity, which can be explained by these five conceptual conatiers.

Conceptual consideration: 1Guisan and Zimmerman argue that Levins’ classi-
fication of models [107] is useful in a conceptual contextdatribution mod-
elling [51]. Levins’ model classification involves the peiple that from the three
desirable model properties, generality, reality and jgieni only two properties
can be optimized simultaneously. The third property hastsdzrificed. Hence,
distribution models can be subdivided into three groupsaig distribution mod-
els that: (i) focus on generality and reality, (ii) focus aengrality and precision,
and (iii) focus on reality and precision. Such models aréedainechanistic (or
process-based), analytical (or theoretical) and empirieapectively (Fig. 4.1).
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The majority of distribution models categorize as emplrnadels, with a trade-

REALITY
empirical mechanistic
PRECISION l GENERALITY
analytical

FIGURE 4.1- A classification of models based on their intrinsic progsr(Adapted from
[107)).

off in generality. They provide a precise (including locatiability) and realistic
description of the ecosystem where they are constructeddfdrare limited in
targeting other ecosystems.

Conceptual consideration: 2To gain model generality, it is desirable to model
species or vegetation patterns based on the environmewoizdgses (translated
in model input variables) that are causal and have direcaatspon the species
or vegetation pattern [51,97]. This restrains environmlemionitoring to purely
scientific arguments, aiming to detect changes in time aadespf environmental
processes that are thought to be causal. However, momgteffiorts are frequently
bounded by practical arguments such as financial issuesuregaent tool limita-
tions and site accessibility as well, which all limit therfieer desire.

Conceptual consideration: 3Differentiating between fundamental and realized
niche [50] (see Section 1.4) distinguishes whether modélilgtributions are based
on theoretical physiological constraints rather than dd fidservations. Empiri-
cal field data include biotic interactions and thereforedistribution model will
predict realized niches [51]. Distribution models basedfuumdamental niches
should include additional rules on biotic interactions tedict realized species or
community patterns.

Conceptual consideration Notwithstanding the non-equilibrium state of ecosys-
tems (see Section 1.3), most distribution models are si@tjpassuming a state of
equilibrium between environment and biota. For ecosysteitiisa lower environ-
mental variability (e.g. permanent wetlands with reldsiv&able hydrologic con-
ditions, see Subsection 1.1.1), this assumption is le$satde, than for ecosys-
tems with higher variability (e.g. seasonal wetlands witasonal hydrologic fluc-
tuations) [51].
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Conceptual consideration B fifth consideration comes down to two approaches
having a long history in ecology: (i) clementsian discontins approach [108]
with easily definable communities, and (ii) gleasonian cantm approach [109]
with individualistic responses. Distribution models haween developed for
individual species (gleasonian approach) and communitiegegetation types
(clementsian approach).

4.2.2 Different distribution models

Research objectives stipulate the distribution modelattaristics with regard to
the previous five conceptual considerations, and hence e wveidety of distribu-
tion models have been described in literature which is tderesive to cope with
in this review. Therefore, this literature review excligwfocusses oempirical
distribution models (conceptual consideration 1) thattaeed orobserved data
(conceptual consideration 3) assumingeguilibrium stateof the ecosystem (con-
ceptual consideration 4). Such models can be conceptddlig. 4.2) reverting
to the wetland definition from Section 1.3.

The distribution model can be specified by various techrsqlibe most popu-
lar statistical techniques together with machine leartéaginiques, only recently
applied in distribution modelling, are highlighted.

Generalized linear models

A generalized linear model (GLM) provides a way of estimgténfunction of the
mean response (thak function g()) as a linear combination of some set of
predictive variables [93,110,111]:

p
9(E(Y]X)) = 9(k) = Bo+ ;Bm =n(x) (4.1)

whereE(Y |x) is the expected response giverg is the link function and)(x) the
linear predictor, a linear function of the predictive vél@sx with parameter§;.
Depending on the distribution of the response variablégifit link functions are
used (Table 4.1).

The GLM most frequently applied in distribution modellirya GLM setup
with the logit link function, the so-callebbgistic regressiormodels. In logistic
regression models, a binary response (taking only valuesl @ pis modelled by a
linear combination of predictive variables. Binary respes(i.e. presence/absence
of species) are prevalent in ecology. Logistic regressiadehpredictions take
values of 0 (absence), 1 (presence) and all values in betthesa extremes. Pre-
dicted values are interpreted as the probability of occwoeef a species, commu-
nity or vegetation type in distribution modelling.

If the response is not linear with any of the predictive Vlaliéax; included in
n(x), a transformed term of; can be included in the model [51]. Several trans-
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FIGURE 4.2 — Conceptualization of distribution models. The patterraliiotic wetland
conditions are used to model species and vegetation disoits assuming a state of equi-
librium.

formation functions with a strict parametric functionatifo[112] have been used
including second order polynomials [113, 114], third ordelynomials [113] 3-
functions [115, 116], a hierarchical series of models (HQ#eel, [117]) and a set
of n-transformed functions [118].

Since their development by Nelder and Wedderburn in 197Q][1ALMs have
been included in numerous ecological and ecohydrologiadies. An overview
of GLM applications in distribution modelling is given in Ok 4.2.

Generalized additive models

In GLM the predictor is a linear function of the model paraenst The general-
ized additive model (GAM), which has been developed by téastid Tibshiraniin

1990 [94], extends the generalized linear model by fittingpawametric smooth-
ing functions to estimate relationships between the resp@md the predictive
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TABLE 4.1- Exampes of link functions for several distributions.

Distribution link function )

Gaussian distribution identity link function
Exponential distribution inverse link function
Gamma distribution inverse link function
Inverse Gaussian distribution inverse squared link faamcti
Poisson distribution log link function

Binomial distribution logit link function
Multinomial distribution logit link function

variables. The form of a GAM is:
p
9(E(Y[X)) =g(W) =a+ Z fixi =n(x) (4.2)
1=

whereg is the link functiona a constant intercept, arfdthe nonparametric func-
tion describing the relationship between the transformedmresponsg(u) and
thei-th predictive variableg. n(x) is referred to as the additive predictor. The
nonparametric functions are estimated from the data usimapthing operations,
and they include running means, locally weighted regressiolocally weighted
density functions [51]. An overview of different GAMs andseastudies found in
literature are given in Table 4.2.

Tree-based techniques

Tree-based techniques partition the predictor space ,(eekgronmental space)
into parts, and then fit a simple model (like a constant) tdgreat [139]. Classi-
fication (categorical response) and regression (contisivesponse) trees (CART,
developed by Breiman et al., 1984 [104]) is a popular tealmmignd other tech-
nigues such as rule-based classification [140] and maxirkaiihood classifica-
tion [141] have been developed.

CART uses recursive binary partitioning to split the préaticpace. In a first
step, the predictor space is split into two regions choosipgedictive variableX;)
and cutpointf) to achieve the best fit. Then one or both regions are sptittind
more regions, and this process is iterated until a stoppilegs reached [139]. For
example, a two-dimensional predictor space (predictiviabbesX; andXy) is first
split atX; = tg, resulting in two region¥; < t; andX; > t;. ThenX; > t3 is split
into Xy < tp andXp > to, resulting in three regiori’;, Ry andRs (Fig. 4.3(a)). The
corresponding tree is shown in Fig. 4.3(b). Starting wittadsd the top node of the
tree foot), a rule for creating new branchesp(itting rule) recursively splits the
data in eaclnodeuntil a stopping rule is reached, and a terminal node of e tr
(leaf) is reached. Then a model is fitted to the leaf (e.g. leaf @esimregression



TABLE 4.2— Overview of generalized linear models (GLM) and geneealiadditive models (GAM) in distribution modelling with @rimation on

the response variable (type, probability distribution axemples), the model prediction and literature examplescaée studies found is indicated

by —.
Modelling technique  Response variable Prediction  Case studies in literature
Type Probability distribution ~ Example
GLM continuous  Gaussian percent cover probability [119312
species richness
biomass
GLM continuous  Poisson individual counts probability  [£224]
species richness
GLM continuous  Negative binomial individual counts probtiap [122]
GLM categorical  Binomial presence/absence probability 8,97,98,100,114,125-131]
relative abundance
GLM categorical  Multinomial vegetation type probability 9€]
plant community
GAM continuous  Gaussian percent cover probability —
species richness
biomass
GAM continuous  Poisson individual counts probability  [132
species richness
GAM continuous  Negative binomial individual counts probigp —
GAM categorical  Binomial relative abundance  probability 78][92,95,125,133-138]
relative abundance
GAM categorical  Multinomial vegetation type probability —

plant community

ONITT3IAON NOILNGId1SIad NOILVLIODIA
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FIGURE 4.3 - Recursive binary partitioning using CART. Partition ofweotdimensional
predictor space (a) and the corresponding tree (b).

trees, leaf majority vote in classification trees, amon@tiil42]). A selection of
tree-based distribution models in literature are givenahl& 4.3.

TABLE 4.3- Overview of distribution models using tree-based teahesg canonical cor-
respondence analysis (CCA), redundancy analysis (RDAye&an techniques, artificial
neural networks (ANN), support vector machines (SVM), aamtblom forest (RF).

Modelling technique Response variable Prediction Caghietu

Regression tree continuous response value [143-150]

Classification tree categorical class [113, 125, 130,
135, 145, 146,
150-161]

CCA continuous distribution [127,162-171]

RDA continuous distribution [162,172-174]

Bayesian continuous probability [175]

Bayesian categorical probability [176-178]

ANN continuous probability [125,175,179—
182

ANN categorical probability [12]5, 183-185]

SVM categorical class [186-188]

RF categorical probability [131,189-191]

Canonical ordination techniques

Canonical ordination techniques are designed to detetrpatin biotic variation
that can be explained best by the observed environmeniables [192]. Canon-
ical ordination includes canonical correspondence aia{3CA, [193]) devel-
oped in the mid-eighties, redundancy analysis (RDA, [195]ldeveloped by
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Rao in 1964, canonical correlation analysis [196,197] arbaical variate analy-
sis [197,198]. Most distribution models based on ordimatezhniques, however,
use CCA [51]. CCA relates biotic variation (e.g. variationspecies or vegeta-
tion occurrence) directly to environmental variation byntmning a multivariate

ordination of biotic data with a constrained regression imé&ng the correlation

between the ordination axes and selected environmeniables [97]. The biota

are assumed to have unimodal responses, with equal widilesafices) and am-
plitudes (maxima) to the underlying environmental gratieas specified by the
ordination axes, with modes distributed uniformly alongeawironmental gradi-

ent that is long compared with species tolerances [51, & 1199].

RDA assumes linear distributions along environmental igretd, which con-
strains the applicability of this technique to short enmireental gradients and lim-
its its use in distribution modelling. Examples of disttiiolmn models using CCA
and RDA are given in Table 4.3.

Bayesian techniques

Distribution models based on Bayes’ theorem modify anah{& priori) estimate
of the probability of encountering a species or vegetatygetin the landscape
by using the known preferences of a species or vegetatienftypenvironmental
characteristics and information concerning the distidubf these characteris-
tics in the landscape [51, 176]. These models effectivedyaugriori knowledge
(e.g. expert knowledge, literature knowledge) toagposterioriprediction of oc-
currence given known environmental characteristics. Tiodusion ofa priori
informations in these models may be advantageous restittiagnore efficient
scientific process. However, using inaccurate, invalidr@ppropriate priori in-
formation decreases Bayesian model performance drdgtji2@D]. Examples of
distribution models using Bayesian techniques are givaiabie 4.3.

Artificial neural networks

Artificial neural networks (ANN) encompass a group of leagnalgorithms that

linearly combine predictive variables to model a resporssa aonlinear function
of these predictive variables [139, 201]. They are desigita the functioning of

the human brain, and consist of an input layer, a (humberidfjem layers, and

an output layer. Artificial neural networks apply both to negsion (continuous
response) and classification (categorical response) [Ta8]e 4.3) and are useful
in distribution models when underlaying data relationstape unknown [201].

Support vector machines

Support vector machines (SVM, [202, 203]) are machine iegrtechniques that
aim to separate the predictor space maximally. Linear stp@ztor machines
achieve this by calculating optimal separating hyperm@anaximizing the margin

between the elements from the different classes. Suppoirmachines can be
used for classification and regression, but for distributisodelling only classi-
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fication examples were found (Table 4.3). Support vectormmas and artificial
neural networks were developed by the end of last centudytlagir application
into distribution modelling studies is only recent.

Random forest

Random forest (RF, developed by Breiman, 2001 [204]) is aemible learning
technigue which generates many unpruned classificatidgagoecal response) or
regression trees (continuous response), that are aggdagatompute the final re-
sult. The main differences with ordinary tree-based tephes (as described ear-
lier) lies in the generation of an ensemble of trees by thdwamforest technique,
whereas ordinary tree-besed techniques tend to condteistrigle best tree. The
construction of an ensemble of tree-based classifiers idorarforest, however,
results in a higher accuracy compared with individual tvased classifiers. The
application of random forest in distribution modelling é&stricted to classification
studies so far (Table 4.3).

Other techniques

The list of techniques described before is not exhaustivenukitude of other

distribution modelling techniques exist: environmentatedope (e.g. included in
BIOCLIM [205, 206]) and HABITAT [207] model, distance bastgthniques in-

cluded in DOMAIN [208] and LIVES [209] model, matrix regréss combined

to generalized linear modelling within a generalized digksirity modelling con-

text [209], multivariate adaptive regression splines, imasn entropy models and
boosted regression trees [209].

4.2.3 Selection of techniques

Two of the techniques shortly described above, were seldfioteevaluation in
this chapter: (i) multiple logistic regression, within tiramework of GLM (i.e. a
GLM using the logit link function), and (ii) random foresth@& choice for the mul-
tiple logistic regression technique was based on the nafihe response variable
(binomial for each individual vegetation type) and its eige use in distribu-
tion modelling studies on various ecosystems, includimgdist sites presented in
Chapter 3 [70, 78]. The second technique selected was rafatest, a recently
developed ensemble learning technique. The use of thisitpod proved to be
successful in several scientific areas, however, its agipdic in distribution mod-
elling was not tested. The novelty of the study presentedhig ¢hapter is the
introduction of random forest in distribution modellingn flact, the multiple lo-
gistic regression was used as a reference technique toa¢wdahe random forest
technique against.
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4.3 Material and methods

4.3.1 Study sites

The study sites included Doode Bemde, Snoekengracht, etk and Vors-

donkbos-Turfputten, covering an area of 47.05 ha, subed/id 1705 grid cells

(see Table 3.1). The abiotic and biotic site charactennadif the test sites is de-
scribed in Chapter 3. Abiotical monitoring included groumder depth, several
groundwater quality variables, soil type and managemerntidadl site charac-

terization resulted in a spatially distributed vegetatinap, as demonstrated in
Fig. 3.2.

4.3.2 The ecohydrological data set

For each of the four sites, an observation data set was coteth, including the av-
erage groundwater depth (AGD, [m]) derived from piezomgteundwater depth
measurements, the groundwater quality variables, inetudroundwater pH, K
[mg L], Fejoy [mg L1, Mg?* [mg L~1], C&* [mg L], SO [mg L], CI-
[mg L1, NO3-N [mg L1], NH;-N [mg L1], H,PO, [mg L~1] and the ionic
ratio (IR = 100[1/2C&")/[1/2C&*t + CI~]) measured from piezometer ground-
water samples, and the spatial coordinates of the piezothoeggions. A spatial
interpolation using block kriging (for details, see [70])A8as conducted in order
to obtain groundwater variable estimates for all 1705 geitsc Together with the
other abiotic (soil type and management regime) and bigégétation type) vari-
ables, groundwater variables were transferred to a data ketdata set contains
1705 measurement vectars= (X1, Xi2, - - -, Xi14) constituted of the values of 14
predictive variables (12 continuous and 2 categoricab¢dbing the abiotic envi-
ronmental conditions. Eleven different vegetation typges. ., c11 are considered
(Table 3.2). To each measurement ves@ unique vegetation tygdeis assigned.
This data set will be referred to as ‘ecohydrological datass®l is denoted as\
=1705):

L:{(Xl,ll),---,(XN,IN)}- (4.3)

4.3.3 Statistical model description

4.3.3.1 Multiple logistic regression

Multiple logistic regression describes the relationshétween a combination of
environmental variables and a binary response variable dgnsiof a link func-
tion, the logit transformation [210]. Consider a collectiof p independent pre-
dictive variables denoted by the vectot= (X1, X2, ...,Xp), and let the conditional
probability that the outcome is ‘present’ be denoted®y = 1|x) = 1(x), then
the logit transformation (logjitt(x)]) is used to relate the independent predictive
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variables with a binomial (0/1) distributed response. Tdgtllink functiong(x)
is given by [210]:

T(x)
1-—1(x)

g(x) = logit[r(x)] = In { } =Bo+PBxr+Poxo+...+BpXp, (4.4)

and the multiple logistic regression model is:

ed(x)

) = T e

. (4.5)

Eq. (4.5) results in a sigmoid curve with a low/high probigpthat the outcome is
present for a big range of low/higfix) values, and a steep increase in probability
in the middle section of the plot (Fig. 4.4).

-4 3 3 4 5

2 A 0 1 2
By + Byx, + .o+ Bpxp:g(x)

FIGURE 4.4— The relationship between a linear combination of the iedepnt variables
and the conditional probability that the outcome is pressniesponse variable.

If some of the predictive variables are categorical (e.d.tgpe and manage-
ment in the ecohydrological data set), it is inappropriaténtiude them in the
model as such. In that case a collection of design variabledummy variables)
is to be used. In general, if a categorical predictive vaeimlhask possible val-
ues,k — 1 design variables are needed. When, for example-thte predictive
variable is soil type with four possible classes, i.e. séman, clay or peat, three
design variables are necessary. A possible coding stratedpes use of Helmert
contrasts [211] (Table 4.4).

The link function for multiple logistic regression wigh environmental vari-
ables and thg—th predictive variable being categorical would be

kj—1
g(x) =Bo+Prxa+...+( le BiiDji) + ...+ Bpxp = logit[T(x)] (4.6)
1=
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TABLE 4.4 — Translation of a categorical predictive variable intoigesvariables using
Helmert contrasts.

Design variables

Dy D2 Dz -+ Dy
e 1T 1 1 1 1
—_ n
s 9 2 1 -1 -1 -1
S o 3 0 2 -1 -1
S 54 0 0 3 1
(@) X
o :
= :
O k O 0 0 k—1

whereDj are the values d{; — 1 design variables.

An estimatorg(x) for the logit function has to be found for each response
class (vegetation type) separately, in order to get an atitmof the probability
of occurrencefix), according to Eq. (4.5). The estimation is based on maxi-
mization of the likelihood function, yielding values foreglunknown parameters
B = (Bo,...,Bp) which maximize the probability of obtaining the observet se
of data under the multiple logistic regression model. Hasared Lemeshow
(2000) [210] derive and express the likelihood function @lfotvs. P(Y = 1|x)
denotes the conditional probability thét= 1 givenx, which can be determined
using Eqg. (4.5) and equatgx). Therefore, the quantity-1 1i(x) expresses the con-
ditional probability thal is equal to 0 givex, P(Y = 0|x). For those pairx;, Vi),
with x; € X andy; € Y, wherey; = 1, the contribution to the likelihood function
is T(x;), and for those pairs where whefie= 0, the contribution to the likelihood
function is 1— 11(x;). The likelihood function for paifx;,y;) is expressed as

X Y [ — T(x;) )2 (4.7)

The likelihood function I(B)) is obtained as the product of the terms given in
Eq. (4.7) over alN pairs:

N
)= [ =y . (4.8)

The estimates fd8 = (Bo, .. ., Bp) maximize the expression in Eq. (4.8). However,
the likelihood function is most commonly expressed as thelikelihood

N
L(B) =In[l(B)] = -Ziyi In[r(xi)] + (1= yi) In[1 —7(xi)] . (4.9)

for mathematical convenience.
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A full model, including first order terms and quadratic vateaterms (not in-
cluded in Egs. (4.4) and (4.6)), was fitted to the data usiadikelihood function.
Afterwards, stepwise insertion or deletion of variables(JPwas applied. A bi-
directional stepwise model selection procedure was udadjrng with the full
model and alternately omitting and re-introducing one nh@denponent at each
step. Selection stopped when no predictive variable ilmgedr deletion caused
a lower Akaike Information Criterion value (AIC, [212]),selting in the model
with the lowest AIC value. Akaike'’s Information Criterioralculates a trade-off
value between the model goodness-of-fit and the model codityale

AIC =2 x k—2L(P)

with kthe number of estimated model parameterslaifid the log-likelihood func-
tion.

Model goodness-of-fitis assessed by the deviabDgdikelihood ratio G) and
Pearson chi-square statistics. The deviance statistipams observed values of
the response variable with predicted values obtained framtodel. Hosmer and
Lemeshow [210] propose to think of an observed response e @ realization of
a fully saturated logistic regression model, i.e. a modéhwes many parameters
as there are data points. The comparison of observed tocpeddialues is based
on the likelihood function:

likelihood of the fitted model

D= _Zln[likelihood of the saturated mocJéI (4.10)
Substituting Eqg. (4.9) into Eq. (4.10) results in
S i T 1—Tixi)
D=-2 iIn[——=]4+ (1—vVi)In[———=]. 4.11
i;YI [ y J+ (@ =y)In[ Ty ] ( )

When the response variable has a binary distribution witheg0 and 1, as is the
case in this study, the likelihood of the saturated modebakqil, simplifying the
deviance statistic to

D = —2In(likelihood of the fitted model (4.12)

The smaller the difference between the log-likelihood & fitted and saturated
model, the smaller is the deviance and the closer is the fittedel to the per-
fectly fitting, saturated model. A larger deviance indisaeoorer model fit. The
deviance of null models (intercept only) is given by, the deviance of fitted
models by residual devianced{sig). If Dresig is sSmaller than the corresponding
chi-square valuex?(1— a, Df)), the logistic regression model is concluded to be
appropriate, providing an adequate fit.

The likelihood ratio @) is used when the significance of an independent vari-
able is assesseds compares the deviance of a model without and a model with
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TABLE 4.5- Instances with equal measurement vectors are groupedeiordee Pearson
residuals and Pearson goodness-of-fit.

number of groups 1 2 3 4 J

number of positive responses  f; fo f3 fa fj
predicted response it ™ ™ Tu 11|
number of group members m mp ms my my

the independent variable of interest as:
G = D(model without the variable- D(model with the variable ~ (4.13)

or the null model (intercept only) with the residual modelttwparameters
B1,B2,...,Bp, to test the null hypothesidy : Bi =0 (i =1,...,p). G follows
approximately a chi-square distribution with degree oéffem corresponding to
the difference in degree of freedom for the two models in carispn.

The Pearson chi-square goodness-of-fit equals the sumuafas of the Pear-
son residuals. The calculation of Pearson residuals $tartsgrouping instances
(i.e. grid cells) with equal measurement vectarsif J denotes the number of
distinct measurement vectors within the observed dateosgaimingN instances,
thanJ < N if some instances have equal measurement vectors. Grongtagces
having equal measurement vectors together resulighoups, where each group
j consist ofm; instances (= 1,2,3,...,J). It holds thaty m; = N. The observed
number of positive responseg & 1) among then; instances is denoted by. An
overview of the grouping procedure is given in Table 4.5. €kmated number
of positive responses for groydj = 1,2,3,...,J), ﬂ is

R R e9(x;)
j=mTg = mjm7

whereg(x;) is the estimated logit. The Pearson residual for a partigraup is
defined as follows:

(4.14)

. fi—mifo
r(fJJTj):—( i M) (4.15)
AURLTERL)
The sum-of-squares of these residuals is the Pearson ghiesgtatistic
2 S A \2
Xp:ZI’(fJ‘,T[j) . (4.16)
=1

Pearson residuals can be used to identify outlying ins&ande this study,
where 12 continuous predictive variables are used, a reh®expectation is that
J =~ N. Therefore, Pearson residuals are calculated for (alneestly instance.
Instances with high residual values indicate a pronoundésteince between ob-
served and expected response, and can therefore be ebohiinain the data set.
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The assumption that the Pearson goodness-of-fit statasie lchi-square distribu-
tion with J— (p+ 1) degrees of freedom, however, is incorrect wiea N. To
avoid this problem, a limited number of groups has to be ddf(eeg. number of
groups = ceiling(2 N2/3), [213]), for which observed and expected frequencies
are calculated.

4.3.3.2 Random forests

The random forest technique [204] is an ensemble learnaimique which gener-
ates many classification trees [104] that are aggregatemhtpate a classification.

A necessary and sufficient condition for an ensemble of ifieason trees to be
more accurate than any of its individual members, is thatrtbenbers of the en-
semble perform better than random and are diverse [214d&arforests increase
diversity among the classification trees by resampling tita @ith replacement,
and by randomly changing the predictive variables sets theedifferent tree in-
duction processes. Each classification tree is grown usiathar bootstrap subset
X; of the original data seX and the nodes are split using the best split variable
among a subset ah randomly selected predictive variables [215]. This is ino
trast with standard classification tree building, wherehaaade is split using the
best split among all predictive variables. The number @gri) and the number

of variables to split the nodesnf are two user-defined parameters. The number
of trees k) equals the number of bootstrap subsets used to consteicatidlom
forest, since one classification tree is constructed basezhe bootstrap subset.
Predictive variables may be continuous or categoricatuonventing the need to
translate the latter into design variables. The algoritemgrowing a random
forest ofk classification trees is given in Algorithm 1. Additionalgn unbiased
estimate of the generalization error (the so called outagf-error, oob error [204])

is obtained during the construction of a random forest (Athm 2).

Breiman [204] proved that random forests produce a limitialgie of the gen-
eralization error. As the number of trees increases, thergdimation error always
converges. The number of tredg (ieeds to be set sufficiently high to allow for
this convergence. Consequently random forests do not tvéuii upper bound
of the generalization error can be derived in terms of twapeaters that mea-
sure how accurate the individual classification trees adetanv diverse different
classification trees are [204]: (i) ttrengthof each individual tree in the forest;
and (ii) thecorrelation between any two trees in the forest. A classification tree
with a low error is a strong classifier. Strength and coriefedre not user-defined
parameters. However, reducing the number of randomly eelqaredictive vari-
ables to split the nodesnj decreases both strength and correlation. Decreasing
the strength of the individual trees increases the forest.eWhereas decreasing
the correlation decreases the forest error. Therefgrevhich is a user-defined
parameter, has to be optimized in order to get a minimal narfdoest error.
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Algorithm 1 : The construction of a random forest.

Data: training data seX
Result random forest consisting &fclassifiers

define parameters andk;
fori=1tokdo

draw a bootstrap subskt containing approximately 2/3 of the elements
of the original data seX;

useX; to grow an unpruned classification tree to the maximum depth,
with the following modification compared with standard sléisation
tree building;

(x) at each nodd, rather than choosing the best split among all
variables, randomly selent of the p predictive variables;

forj=1tomdo

if j is continuoughen
find the best cutpoirty among all possible cutpoints for
‘ predictive variablg;
else ifj is categoricalthen
find the best categorical cutpoiptamong all classes for
‘ predictive variablg;
end

end

select predictive variablgwith the lowest impurity at its best cutpoint
tj to define the splitting rule of nod

if j is continuoughen
‘ send elements witkj < t; to the left descendant, and elements with

Xj > tj to the right descendant;

else ifj is categoricalthen
‘ send elements witkj = t; to the left descendant, and elements with

Xj # tj to the right descendant;
end

repeat from+£) on all descendant nodes to grow a classification tree to
the maximal depth;

end

For random forest model development, Random Forests Vebsio[216] was
used. The randomForest package within the statisticavaodtR 2.2.1 [215] can
also be used.
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Algorithm 2 : Computing the out-of-bag error (oob error).

Data: training data seX
Result out-of-bag error of the random forest

define parameters andk;

fori=1tokdo
each classification tree is constructed using a differeatsdtiap sample
X; from the original data seX. X; consists of about 2/3 of the elements
of the original data set. The elements not includex;ircalled
out-of-bag elements, are not used in the construction of-tietree;

these out-of-bag elements are classified by the finalizéxtree;

end
calculate the out-of-bag (oob) error as the proportion cfataissifications

[%] over all out-of-bag elements.

4.3.4 Training versus test data sets

The lack of an independent data set for model evaluatioretbto apply cross-
validation (Algorithm 3). Here, in 2-fold cross-validatipeach of two disjoint

Algorithm 3 : Model construction and testing usiqgfold cross-validation.

Data: data set.
Result g-fold cross-validated model

defineq;
randomly and uniformly split the ecohydrological data set
L={(xg,l1),...,(Xn,In)} into q disjoint test data selsest (i =1,...,0);
fori=1toqdo
uselaini = L — Liest as training data set to construct the model;
apply the model to test data d&fs;;

end

parts is once used as training set and once as test set:

Ltrainl = Ltestz Of SIZG 853 (417)

Ltrain2 = Ltest1 Of size 852 (4.18)

Consequently, each elemeix,|;) of the ecohydrological data set was once
used as a training instance and once as a test instance.
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4.4 Model construction, calibration and results

4.4.1 Multiple logistic regression model

The need to split the data set into two parts in order to cvafidate the results
resulted in the construction of two multiple logistic regg®mn models MLR1 and
MLR2, constructed omyain1 and Liainz respectively. Additionally, the need to
have a binomial response (0/1) for each vegetation typefbi@redesign training
and test data sets with multinomial (eleven vegetationdypesponse into eleven
data sets with binomial response. Therefore, each of theskelsn (MLR1 and
MLR2) consisted of eleven submodels, i.e. estimated lagitfinctionsg{x), one
for each vegetation type. The submodels were construcpedtately in two steps:
(i) submodel construction using all 14 variables as firseotdrms and quadratic
model terms, and (ii) bi-directional model term selectinmistepwise fashion us-
ing the AIC criterion. Casewise Pearson residual values (£45), [210]) were
used to identify anomalous elements in the training sen{efdgs with a Pear-
son residuab- 15). These elements were excluded from the training setland t
submodel building was repeated on the remaining trainiemehts ({;;,; = 811
training elements, arid, ;,, = 812 training elements). Algorithm 4 gives the algo-
rithm for the construction of MLR1; MLR2 was constructed sarly using train-
ing data setan2. Indications on model goodness-of-fit are given in Table 4.6
Null model deviances (intercept only), residual devianéikslihood ratio tesiG
and Pearson chi-square are tabulated for MLR1 and MLR2.eSimese statisti-
cal measures follow g?—distribution, this distribution is used to test upon. The
residual deviances were all smaller than null deviances tiaerefore, the resid-
ual multiple logistic regression models were concludedttbditer than the null
models. In order to statistically determine the degree gfroviement, the likeli-
hood ratio test statistiG was applied, which indicated that all multiple logistic
regression models including significant predictive vaealfas determined by the
AIC criterion) fitted the observed vegetation type disttibn better than the null
models (intercept only) at the 0.01 significance level. Te@@hce goodness-of-
fit (Dresig) and Pearson chi-square statisl)'(gx showed a significant fit between
observations and fitted values at the 0.01 significancedevel

After model construction, MLR1 was appliedlt@st;, and MLR2 toLiest2. The
joint output of MLR1 and MLR2 included the probability of agrencefi(x) for
all eleven vegetation types for each measurement vedtot. and thus for each
grid cell of the study area. The probabilities of occurrefite) for the eleven

31t is important, however, to note that observations are-aoteelated. This implies that the ob-
servations are not entirely independent [217], while thi ceviance, residual deviance and Pearson
chi-square statistic assume independence. The tabuletedes$ of freedom (Df) for these statistics are
therefore too high, ang-values and significance testing should therefore be irgtag with caution.
The same comment should be made for Subsection 5.3.3.1ewWeesame statistics were applied, and
for Section 5.3.1, where correlations between environalemtriables are tested on significance.
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Algorithm 4 ;: Construction of the multiple logistic regression model RIL

Data: training data sett yain1
Result calibrated model MLR1

fori=1tol1lldo

make multinomial response bf,in1 binomial for each vegetation type;
train1i = Ltrain1 With binomial response;

end
fori=1tol1lldo

construct submodel mlon training data st;
select model terms stepwise using AIC;
calculateDpyjij, Dresidi andGi;

count number of elements I ;,,; and assign to;

rainli’

forj=1tondo
calculate Pearson residyal

if Pearson residugl> 15 then

excludej from Lyainq 3

go back to construct submodel mbn training data selt;
end
end
end

rainli’

group submodels mir...,miry; into MLR1;

different vegetation types do not necessarily sum up to fpérell, because the
logit link functionsd(x) were calculated separately for the eleven vegetation types
Based on a simpléecision rulei.e.for each grid cell, the vegetation type with the
highest probability of occurrence is the predicted vegetatype spatially dis-
tributed predictions of vegetation type occurrences weadear(Fig. 4.7(a)). Out
of the 1705 grid cells, 1182 (69.3%) were predicted corye&?4 (30.7%) in-
correctly. Visual inspection of the results (Fig. 4.7(aXl ko the conclusion that:
(i) predictions were good for sites with little vegetatigrpé diversity (Zwarte
Beek); (ii) considerable numbers of predictions did noincale with observa-
tions for the other, more diverse sites; and (iii) within theerse sites, predic-
tions were much better for large homogeneous vegetatiagterki(e.g. northern
area of Vorsdonkbos-Turfputten). However, for small adeited patches and for
boundary grid cells between neighbouring vegetation typesdictions were less
accurate.



TABLE 4.6— Model goodness-of-fit.

Vegetation type Dnull Df Dresid Df G =Dpull — Dresig  Df X5 Df

MLR1
Alno—Padion 472.01 810 107.15 789 364.86 21 130.68 789
Arrhenatherion elatioris 548.49 810 173.10 791 375.39 19 403.18 791
Calthion palustris 548.49 810 150.02 793 398.47 17 262.20 793
Carici elongatae — Alnetum glutinosae 665.72 810 354.11 799 311.61 21 364.39 799
Caricion curto—nigrae 581.79 810 0 790 581.79 20 o 790
Cirsio — Molinietum 124.92 810 0 798 124.92 12 (0} 798
Filipendulion 813.87 810 165.94 794 647.93 16 385.33 794
Phragmitetalia 282.24 810 95.07 803 187.17 7 89.3T 803
Magnocaricionwith Phragmites 539.91 810 133.25 795 406.66 15 176.49 795
Magnocaricion 300.75 810 69.06 795 231.69 15 92.14 795
Sphagno — Alnetum glutinosae 256.70 810 88.15 800 168.55 10 95.42 800

MLR2
Alno—Padion 513.73 811 134.01 789 379.72 22 122.98 789
Arrhenatherion elatioris 452,92 811 184.44 788 268.48 23 235.94 788
Calthion palustris 617.69 811 166.77 796 450.92 15 256.74 796
Carici elongatae — Alnetum glutinosae 683.70 811 388.31 795 295.39 16 384.82 795
Caricion curto—nigrae 609.93 811 13.62 791 596.31 20 15.18 791
Cirsio — Molinietum 141.45 811 22.30 790 119.15 21 25.3t 790
Filipendulion 788.81 811 259.70 791 529.11 20 387.42 791
Phragmitetalia 236.89 811 69.49 795 167.4 16 84.85 795
Magnocaricionwith Phragmites 222.39 811 133.25 793 89.14 18 254.34 793
Magnocaricion 318.85 811 84.48 795 234.37 16 109.50 795
Sphagno — Alnetum glutinosae 282.33 811 92.21 789 190.12 22 90.10 789

Dy = deviance of the null model (intercept only model); Df = dsgg of freedomD,esiq = residual deviances = the likelihood ratio test),(é
= Pearson chi-square goodness-of-fit. Significance at @ifelével () are indicated for the residual deviance, likelihood ratial the Pearson

chi-square goodness-of-fit tests.

ONITT3IAON NOILNGId1SIad NOILVLIODIA
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4.4.2 Random forest model

A schematic overview of random forest model constructiodhtaisting is given in
Fig. 4.5. For a more detailed overview of the random foresti@hgonstruction,
the reader is referred to Algorithms 1 and 2. The random fdezhnique has
two important user-defined parameters: the number of tidesnd the number
of randomly selected variables to split the nodes. (These parameters should
be optimized in order to minimize the generalization ervanjch is a machine
learning function used to investigate the machine learmilggrithm (here, the
random forest algorithm) performance through iteratiorihef learning process
(here, the calculation of additional classifiers (increiask) and the increase of
variebles to split the nodes).

Breiman [204] proved that random forests do not overfit. Atlimgy value of
the generalization error is obtained as more trees are adidea random forest
submodels RF1 and RF2 consisting of 10000 trees were catestranLajn1 and
Lirain2 respectively, both with two randomly selected variablespbit the nodes
(m=2). Fig. 4.6 presents the error in function of the numbereds$r Two distinct
forms of curves are distinguishable: (i) oob error and @gttset error. RF1 oob
error and RF2 oob error represent the oob error, which wasepro be a good es-
timator of the generalization error [204], in function oéthumber of trees. From
approximately 100 trees onwards, the oob error convergedaat 20% for RF1,
and to about 25% for RF2. Adding more trees did not decreaseaease the
oob error. The two other curves represent the test set erfanction of the num-
ber of trees. Test set error values for different numbersegfst were computed by
applying RF1 and RF2 tbiest1 and Liestz respectively, during the random forest
building process, and represent the proportion of incdlyrgecedicted test set el-
ements. Test set error values for both test sets were ar@¥2the end of the
random forests construction. Similarly as for the oob etios test set error con-
verged from 100 trees onward. The conclusions that couldderdfrom Fig. 4.6
are: (i) the oob error is a suitable estimator to detect ezomvergence, (ii) in
accordance with Breiman [204] the random forest algorittoesdnot overfit: a
limiting value for both oob error and test set error is pragtliand (iii) 1000 trees
can be concluded to be an appropriate size for both randastfon this study.

As stated in the random forest description, an additionatioan factor is
included in the random forest algorithm compared with uslassification tree
building: at each node a random subsatgiredictive variables has to be specified
and the best splitting variable among thosés used to split the node. The value
of mis constant during the forest growing. It affects both theeations between
the trees and the strength of the individual trees. Redutingduces correlation
and strength, increasingincreases both. Two random forests RF1 and RF2 were
constructed for different values of. Error values are tabulated in Table 4.7. Both
the oob error for RF1 and RF2 constructedlggini andLain2 respectively, and
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1. Training and test data sets

I—train 1 Ltest1
X1 X1

I
X2 X2
X3 X3
X4 X4
X5 |5 X5
X6 . X6
X7 |7 X7
I
[

X8 X8
X9 X9

Xv . x\:N .:

2. Construction of the random forest (RF1) consisting ok classification trees

(2a) takei (i = 1,...,K) bootstrap subsamples fromgaini

bootstrap sample oob sample

1 bootstrap ooby = Lyain1—bootstrap
2 bootstrap 00lp = Lirain1—bootstrap
k bootstrap ooy = Lyain1—bootstrap

(2b) use thék bootstrap samples to constrikatlassification trees

 ETR=I =TS
J.J.ﬁjl.l.ﬁjﬁj ﬁii

classification tree 1 classification tree 2 classification tree &
constructed on bootstrap, constructed on bootstrap, constructed on bootstrap,

FIGURE 4.5— Schematic overview of the construction of the random farexdel, and its
application on a test data set (example of RF1, the congiruand testing setup of RF2 is
identical).
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(2c) apply classification treéo ooh (i = 1,...,k)

TS~
. » ﬁj . . ﬁj ﬁj ﬁi .

classification tree 1 classification tree 2 eoe classification tree &

3. Apply the random forest (RF1) to the test data set est1

L L

~

-

testl testl

—
[l oL

classification tree 1 classification tree 2 eoo classification tree &

=
&

.

FIGURE 4.5- continued..

test set errors for RF1 and RF2 applied.tg;;1 andLesi2 respectively, are given.

The oob error showed minimal values of 19.91% for RF1 and&4.®r RF2,
both whenm = 3. The test set error for RF1 applied ltgst: ranged between a
minimum of 22.74% fom = 5 variables and a maximum of 25.32% for= 14
variables. For Rfapplied toLestoSimilar error values were found for the different
myvalues. A minimum of 23.42% was found for= 3 and a maximum of 25.17%
for m= 14. Overall, low oob error and test set error values were rebsdefor
m = 3. Therefore the oob error proved to be a good tool for opimgim. In
general little difference in error was found fare {2,3,4,5,8}. The optimal
range ofmwas concluded to be quite wide (in accordance with BreimarCartler
[218]). Nevertheless, it was decided to construct RF1 an? &k m= 3.

Based on the above findings (i.e. 1000 is a suitable numbeees andn= 3
results in a minimal error), the random forest algorithm wasonL,in1 to create
RF1 consisting of 1000 classification trees with three ramgoedictive variables
to split the nodesni= 3). The same was done &gain2 to create RF2. Next, both
random forests were applied to test data sets: RAL&n and RF2 o et
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100 T T T

error [%)]

101 b

number of trees (log scale)

FIGURE 4.6— Out-of-bag (oob) error and test set error converge wheie inees are added
to the random forestLain1 00b error and_y4n2 00b error are the oob errors calculated
during the construction of RF1 and RF2 respectivelysy error andLiestoerror are the test
set error of RF1 and RF2 applied to their respective testsktta

TABLE 4.7 — Oob error values for RF1 and RF2 built &gajn1 and Lyaino respectively.
Test set error values for RF1 and RF2 appliet#gi1 andLespo respectively.

m=1 m=2 m=3 m=4 m=5 m=8 m=11 m=14
2RF1 21.78 20.26 19.91 20.37 20.61 20.02 20.37 21.19
aRF2 26.73 24.62 24.38 24.85 24.62 24.38 24.62  24.38
bl—testl 24.62 23.33 23.33 23.33 _ 22.74 23.68 24.38 25.32
bLtestz 25.06 23.77 23.42 23.77 2424 24.36 24.71 25.17
a = oob errorP = test set error. Minimal values are underlined.

Each measurement vectgrof the test sets was classified by each ofktrees
in the ensemble as a unique vegetation type {ci,...,c11}. Consequently, each
measurement vectar of the test sets is classified 1000 times and the proportion
of votes over all 1000 trees for a vegetation type is integatas the probability of
occurrence of that vegetation type:

P(cj) = Ng; /Neot (4.19)

with P(c;j) is the probability of occurrence of vegetation tygeNc; the number of
trees classifying the vegetation type as vegetation typar@N: (= K) the total
number of classification trees in the random forest (INgge= 1000).

This probability of occurrence was calculated for the etesigferent vegeta-
tion types for each grid cell in the four study sites. The sa®esion ruleas in



4-26 CHAPTER4

multiple logistic regression modelling was uséadr each grid cell the vegetation
type with the highest probability of occurrence is the pegelil vegetation type
Predictions were correct in the central area of all vegetatypes (Fig. 4.7(b)).
Predictions for grid cells at the boundary between differayetation types and
isolated cells were less accurate. Nonetheless, with 136.7%) correct pre-
dictions and 398 (23.3%) wrong predictions, the overaltifron accuracy was
better than the prediction accuracy of the multiple logistigression model which
made 1182 (69.3%) correct predictions and 524 (30.7%) recopredictions.
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(a) MLR Model (b) RF Model
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FIGURE 4.7 — Predicted vegetation types with the multiple logisticresgion model (a)
and with the random forest model (b). The observed vegetdigtribution (J) is overlaid
with the predicted vegetation distributios) ( For each grid cell, the vegetation type with the
highest probability of occurrence, as modelled with thetipld logistic regression model
(a) and with the random forest model (b), is the predictecttagepn type.
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(a) MLR Model (b) RF Model
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[@ Filipendulion Sphagno-Alnetum glutinosae
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[ nodata

FIGURE 4.5-continued..
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4.5 Model evaluation

4.5.1 Observed versus predicted

The multiple logistic regression model and the random fomesdel consisted of
two submodels: MLR1 and MLR2, and RF1 and RF2 respectivellis Bplit
resulted from 2—fold cross-validation. Vegetation typewcences were predicted
by applying MLR1 toLest1, MLR2 t0 Liestpand RF1 td_tests, RF2 tOLtest2 From
this point on, the joined predictions of the two parts of eadidel will be referred
to as predictions made by the multiple logistic regressiodehand the predictions
made by the random forest model. The performance of both magidiscussed
in this model evaluation section using different technigjue

Cohen’s kappa test

Despite its weaknesses [219], the Cohasitest [220] was used to evaluate differ-
ences between observations and predictions. A confusidmxmaas constructed
in which observed and predicted vegetation types are giveseich grid cell using
the multiple logistic regression model (Table 4.8(a)) dmltandom forest model
(Table 4.8(b)). For each of the confusion matrices (Tal#¢ the Cohen’s kappa

was calculated as [220]:
PP

K=

1-P
whereP, is the proportional observed agreement, &dhe proportional agree-
ment expected by chandg, andP. are calculated as

(4.20)

C C
P, = Z\P“ = zinii /N (here withc = 11 vegetation classes)
A .
C [
P = le'i -B. = Z[n.i -ni.]/N  (here withc = 11 vegetation classes)
i= i=

whereN is the total number of elements (here, 1705 grid ceflig)the number

of elements in the diagonal ceil n; andn;. are the totals of columnand row

i, respectively.k values are negative when the agreement between obsesration
and predictions is worse than expected by chance, and redcimecase of per-
fect agreement. A value of 0.651 was found for the multiple logistic regres-
sion model: there is a substantial agreement between aligery and predictions

(p < 0.001). Ak value of 0.734 was found for the random forest model: there is
a substantial agreement between observations and poedi@ti < 0.001). Thisk
value is higher than the one found for the multiple logiséignession model.

McNemar test

ForL = Liest1U Ltest2 (1705 elements spatially covering the whole study area2118
correct predictions were made by the multiple logistic esgion model. The
random forest model made 1307 correct predictions. Baseth@conclusions
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TABLE 4.8 — Model performances represented by confusion matriceshiohaobserved
vegetation types are compared with predicted vegetatipestyising the multiple logistic
regression model (a) and the random forest model (b).

(a) Multiple logistic regression model

observed
AP Ar Cp Ce Cc CM Fi Ma MP Ph SA
predicted | AP 111 7 0 33 0 0 3 0 0 4 0
Ar 6 89 11 18 0 0 22 0 12 1 0
Cp 0 19 156 2 0 0 13 7 14 0 0
Ce 28 5 3 136 2 0 5 3 13 13 3
Cc 0 1 3 2 181 5 2 0 0 0 5
CM 0 0 0 5 11 21 2 0 0 0 2
Fi 0 37 6 10 1 0 272 3 19 1 1
Ma 0 0 10 3 0 0 6 29 8 2 0
MP 1 3 6 6 0 0 9 16 105 5 0
Ph 1 0 6 10 0 0 1 5 5 54 0
SA 0 0 0 25 3 2 0 0 0 0 28
(b) Random forest model
observed
AP Ar Cp Ce Cc CM Fi Ma MP Ph SA
predicted | AP | 113 7 0 27 0 0 2 0 0 5 0
Ar 3 102 11 2 0 0 18 0 11 0 0
Cp 0 11 154 1 0 0 9 5 12 1 0
Ce 28 5 3 189 1 1 3 0 7 15 29
Cc 0 0 0 2 189 4 0 0 0 0 4
CM 0 0 0 0 6 23 0 0 0 0 0
Fi 0 29 4 2 0 0 286 9 5 1 1
Ma 0 0 14 2 0 0 5 34 8 0 0
MP 1 7 13 5 0 0 11 13 132 5 0
Ph 2 0 2 6 0 0 1 2 1 53 0
SA 0 0 0 14 2 0 0 0 0 0 32

of [221], the McNemar test [222] was selected to compare émfopmances of the
multiple logistic regression model and the random forestiehoPredictions made
by both models for all cases &f (as presented in Fig. 4.7) were compared with
the observations and used to construct the following cgeticy table (Table 4.9)
whereN = ngg + np1 + N1 + 11 is the total number of elements in the ecohy-
drological data set (Table 4.9). Under the null hypothehis two models should
have the same error rate, which means tigat nig. McNemar's test is based on a
x°—test for goodness-of-fit that compares the distributiooaaints under the null
hypothesis to the observed counts. The following statisti?—distributed with 1
degree of freedom:

(Inoz — 1ol —1)°

M=r——— 7 (4.22)
No1-+ N1o
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TABLE 4.9- Contingency table for the McNemar test.

number of grid cells misclassified number of grid cells misclassified
by both MLR and RF by MLR but not by RF
Noo No1

number of grid cells misclassified number of grid cells misclassified
by RF but not by MLR neither by MLR nor by RF
N10 Ni1

If the null hypothesis is correct, then the probability thais quantity is greater
thanXZ ¢, = 3.84 is less than 0.05. Over the entire study avga= 216 and
n1o = 91. The value of the test statistit was 50.1 p < 0.001). The two models
had significantly different performances at the 0.001 siggunce level. Inspecting
theng; andnyg values led to the conclusion that this significant diffeesimcper-
formance was due to a better performance of the random foredel compared
with the multiple logistic regression model.

Evaluation statistics for each vegetation type separately

To assess and compare model performances for each indiviegetation type,
different test statistics were used. First, the McNematrwes used to identify
differences in performance of both models for each vegmtdiipe separately.
Furthermore, predicted vegetation types by the two modelewompared with
observed vegetation types for the eleven vegetation tygesrately using a con-
fusion matrix (see also further in Table 6.2, e.g. [223, 224]

TABLE 4.10- Confusion matrix. TP stands for True Positive, FP for FRIssitive, FN for
False Negative and TN for True negative.

observed
present| absent
predicted| present| TP FP
absent FN TN

In such a confusion matrix, observations are compared withehpredictions
for each vegetation type separately. Given a test instagri@ ¢ell from cross-
validation test data set), there are four possibilitiehwitspect to the vegetation
type of interest: (i) if the observed and modelled vegetetype of a test instance
coincide, and this vegetation type is the one of interesttabt instance is counted
for as true positive (TP), (ii) if the observed and prediotedetation type of a test
instance do not coincide, and the predicted vegetationigjghe one of interest, the
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test instance is counted for as false positive (FP), (ithé& observed and predicted
vegetation type of a test instance do not coincide, and teerobd vegetation type
is the one of interest, the test instance is counted for ae fa¢gative (FN), and
(iv) if the observed and predicted vegetation type of a testaince coincide, but
this vegetation type is not the one of interest, the tesaimst is counted for as true
negative (TN).

Using these four possible outcomes (TP, FP, FN, TN), sestaadard terms
have been defined for a confusion matrix [223, 224] of whidlofang were used
because of our main interest in correctly predicting pressn

(i) Precision p (=positive predictive power): the proportion of predittpres-
ences that are observed to be present rather than abseftPFPFP);

(i) Recall r (=sensitivity, =true positive rate): the proportion dfserved pres-
ences that were predicted correctly, TP/(TP + FN)

Precision and recall were combined by means of thenfeasure’ [225]. A
weighted version of th& -measure was used:

(B -+ Lpr
B2p+r
wherep €]0, +oo[ is a weighing factor that controls the relative importantpre-
cision versus recall. F@ = 1, theF-measure is balanced, and precision and recall
have equal importance. Tifemeasures used wekg s (precision twice as impor-
tant as recall)F; (equal weights) ané (recall twice as important as precision).
The magnitude oF varies from 0, when all observed presences are predicted in-
correctly, to 1, when predictions and observations pdsfentatch. Moreoveir
is strongly oriented towards the lower of the two values p gnitherefore this
measure can only be high when both p and r are high.

Results of the McNemar test and values for precision, recaltheF-measure
are summarized in Table 4.11 for the individual vegetatypes. Thd--measures
for the two models over all vegetation types were analys@tjusvo test statis-
tics: (i) a simple ranking and (ii) the Wilcoxon signed ramistt Simple ranking
assigned performance scores per vegetation type: 2 forestglerforming model
and 1 for the worst and 1.5 in case of a tie. After adding upeh@dues for each
of theF-measures, the highest scoring model was concluded torpelfest. The
Wilcoxon signed rank test [226] is a non-parametric paiendgemparison test. It
allows to test whether the median values of the diffeFeimieasures over the dif-
ferent vegetation types are identical for the two models.

The McNemar test showed a significant difference in perforcedetween the
multiple logistic regression model and the random forestiehat the 0.05 signif-
icance level for the vegetation typ@srhenatherion elatioris Carici elongetae
— Alnetum glutinosgeCaricion curto—nigrae Filipendulion and Magnocaricion

Fo(p.1) = 7 (4.22)
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TABLE 4.11— McNemar test for comparison of MLR and RF model performariceeach
vegetation type individually. Precision, recall, and thfemeasured s, F1, F») for MLR
and RF modelling results are given for each vegetation tgparsitely as well.

Vegetation type o
1S 0
=] o
@ £
2 =
E g 3
| I
2 <] ? g %] g
§ & £ ¢ & 5§ 5& o 2
5 3 = =) S £ § © ©E & %
] =1 = s & ° 2 = 5] a8 2 &
& T n =4 [OIRY] =3 = S o o = £ c
c=  Q .~ O K] | c <] oF 5 )
& 25 = S © 2 g =} s g g
< E8 ® TS ® = = o) 82 <© S
< <o O O™ O (@] i = =2 o 0
McNemartest n y n y y n y n y n n
n1 9 22 12 69 10 3 28 11 38 5 9
No 7 9 14 16 2 1 14 6 11 6 5
precision 0.70 0.56 0.74 0.57 0.91 0.51 0.78 0.50 0.69 0.6648 0.
x recall 0.76 0.55 0.78 0.54 0.91 0.75 0.81 0.46 0.60 0.68 0.42
5‘ Fos 0.71 0.56 0.75 0.57 0.91 0.55 0.78 0.49 0.67 0.66 0.47
F1 073 056 0.76 0.56 091 061 079 048 0.64 0.67 0.45
F 074 055 077 0.5 091 069 080 047 061 0.67 0.43
precision 073 069 0.80 0.67 095 079 085 054 0.70 0.7967 0.
W recall 0.77 063 077 0.75 095 082 085 054 075 0.66 0.48
4 Fos 0.74 0.68 0.79 0.69 0.95 0.80 0.85 0.54 0.71 0.76 0.62
F1 0.75 0.66 0.78 0.71 0.95 0.81 0.85 0.54 0.73 0.72 0.56
F 076 064 077 0.74 095 082 085 054 0.74 0.68 0.51

McNemar test: y = significant difference in performance keswthe MLR model and the RF model, n = no
significant difference, both at the 0.05 significance lewmg].andn; are error rates of the MLR model and the
RF model respectively to calculate the McNemar test stafidt see Eq. (4.21).

with Phragmites These differences resulted from a better performanceafath-
dom forest model as can be seen fromigeandn;g values in Table 4.11. The
absence of significant differences between both modelfiorémaining vegeta-
tion types reflects comparable performances for both malielso a spatial distri-
bution in large homogeneous areas for which predictionsdbly models are good
(e.g.Calthion palustris Phragmiteteaor due to spatial limitations of the vegeta-
tion type (e.gAlno—Padionand Magnocaricionare only found at Snoekengracht
and Doode Bemde respectively).

For precision and recall the same tendencies were notieéatithe two mod-
els. Precision foSphagno—Alnetum glutinosaed Magnocaricionwere low for
both models, meaning that many cells with other vegetagiped — mainlyCarici
elongetae — Alnetum glutinosae were predicted to b&pagno—Alnetum gluti-
nosaeand many cells — mainljMagnocaricionwith Phragmitesand Calthion
palustris— were predicted to b&agnocaricion(Fig. 4.7 and Table 4.8). This
is somewhat understandable as these are spatially adjacemarable vegetation
types with dominance oAlnus glutinosgL.) Gaertn. in bothiSphagno—Alnetum
glutinosaeandCarici elongetae — Alnetum glutinosaand the higher abundance
of Phragmites australigs main difference betweéviagnocaricionand Magno-
caricion with Phragmites(see Section 3.2.2 and Table 3.2). Recall was lowest
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for Sphagno—Alnetum glutinosaed Magnocaricionfor the multiple logistic re-
gression and the random forest model. In Fig. 4.7 the largebeu of wrong
predictions foiSphagno—Alnetum glutinosaedMagnocaricionin Vorsdonkbos-
Turfputten and Doode Beemde are clearly noticeable. A aimeikplanation as for
precision might be given. Many grid cells with obseng&ghagno—Alnetum gluti-
nosaeand Magnocaricionvegetation were predicted to be the related vegetation
type Carici elongetae — Alnetum glutinosaeadMagnocaricionwith Phragmites
respectively. Both models had high precision and recalCfaricion curto—nigrae
probably resulting from well-defined differences of theiemwmental conditions,
as concentrations of Mg, C&" and CI- are markedly lower at Zwarte Beek
where this vegetation type was predominantly found (se&@®e8.3.2.2).

The stated findings for precision and recall were reflectatié--measures.
F1-values ranged between 0.45 and 0.91 for the multiple legisjression model
and between 0.56 and 0.95 for the random forest model. Or@mbyomparison
showed a better performance of the random forest modelftirake F-measures
for each of the eleven vegetation types. Based on the sirapldrg statistic, all
threeF-measures were found to be better for the random forest ngbdi¢br the
multiple logistic regression model versus 22 for the randorast model). The
Wilcoxon signed rank test statistic indicated significamttter performances for
all threeF-measures for the random forest model compared to the reulbigistic
regression model at the 0.01 significance leye-(0.003).

4.5.2 Prediction probabilities

Threshold dependent evaluation

The multiple logistic regression model and the random farexiel computed the
probabilities of occurrence for each individual vegetatigpe for each spatially
distributed grid cell. Probability distributions for cet predictions and incorrect
predictions gave an indication of the strength of the ptamhs (Fig. 4.8). Cor-
rect predictions were made with high probability, espégir the MLR model:
half of the correct MLR model predictions had probabilitégher than 0.9, while
one-third of the correct RF model predictions had probaddihigher than 0.9. A
visual inspection of the probabilities underlying eachdicgon (not shown) in-
dicated that correct predictions with high probabilitiesr&/found in the central
areas of homogeneous vegetation clusters. Probabilg&edsed toward the mar-
gins of those areas. Incorrect prediction probabilitiesles to be rather high for
the MLR model, with almost 20% of the incorrect predictiomasimg higher prob-
abilities than 0.9. Incorrect RF model prediction probiéibg showed a maximum
in the ]0.4,0.5] interval indicating that incorrect pretibois are mainly made for
grid cells with several vegetation types with comparalde; to moderate prob-
abilities. Only 2% of the incorrect predictions had proliéibs higher than 0.9.
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Spatial identification of these grid cells indicated therisakated vegetation types,
surrounded by other vegetation types.

Threshold independent evaluation

Receiver operating characteristic (ROC) curves are fretljpyesed for the eval-
uation of classification accuracy [210,227]. This curvegioating from signal

detection theory, is widely used in clinical sciences, legently also in earth sci-
ences [51,228-231]. ROC graphs are two-dimensional griaplkich the true

positive rate (=recall), tpr, is plotted on the Y-axis, ahd false positive rate, fpr,
on the X-axis, with

_ observed positives correctly classified TP

tpr = _ = 4.23

pr total observed positives TP + FN ( )

for — observed negatives incorrecltly classifigd FP . (4.24)
total observed negatives FP+TN

The true positive rate measures the fraction of observesbpoes (vegetation type
present in grid cells) that are predicted correctly. Thedalositive rate measures
the fraction of observed absences (vegetation type abseagrid cells) that are
incorrectly predicted as present.

The multiple logistic regression model and the random taresdel computed
the probabilities of occurrence of eleven vegetation typEarlier we used the
decision rule that the most probable vegetation type (antbegleven possible
vegetation types) is the predicted one. Here, in order tetcoat ROC curves for
each vegetation type separately, the modelled probasilitf occurrence are used
to construct several confusion matrices, one for each plessitpoint. A cutpoint
represents a threshold probability above which the veigetatpe is modelled to
be present. The curve generated by plotting the tpr versufpttfor all possible
cutpoints is the ROC curve. A simple example of how a ROC cis\generated
is given in Fig. 4.9.

The area under the ROC curve (AUC), which ranges from zeragg@rovides
a measure of the ability of the model to discriminate betwged cells where
the vegetation type of interest is present versus absef}.[ZUC describes the
likelihood that the observed vegetation type for a grid hak a higher modelled
probability of occurrence in comparison with grid cells whéhe vegetation type
is absent, and when the AUC value is higher than 0.5 the mazksd better than
random guessing. Both models had high AUC-values, reflgttiair excellent
discrimination abilities (Table 4.12)AIno — Padionfor example, has an AUC—
value of 0.967 under the multiple logistic regression mpd#bngly indicating
that grid cells in the study area where tAto — Padionvegetation is present
have a higher modelled probability &éino — Padionoccurrence than grid cells
whereAlno — Padions absent. Nevertheless, the comparison of AUC—values over
all vegetation types using Wilcoxon signed rank statistai¢ated a significantly
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(a) Multiple logistic regression model
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- correct predictions
600 l:l incorrect predictions A
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[0,0.1] 10.1,0.2] 10.2,0.3] 10.30.4] ]0.4,05] 10.50.6] 10.6,0.7] 10.7,0.8] 10.8,0.9] 10.9,1]
probability class

(b) Random forest model
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l:l incorrect predictions

350~

250

number

200

150

Il Il s
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probability class

FIGURE 4.8— Probability distributions of predictions made with theltiple logistic re-
gression model (a) and the random forest modelNb¥(1705).
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nr. observed modelled probabilit(cj)) A B Cc
1 present 0.8 present present absent
2 absent 0.7 present present absent
3 absent 0.1 present absent  absent
4 present 0.6 present present absent
5 absent 0.3 present absent  absent
6 present 0.9 present present absent
7 present 0.9 present present absent
8 present 0.4 present absent  absent
9 absent 0.1 present absent  absent
10 present 0.5 present absent  absent

A

P(Cj) =0

6 4

0 0 ! threshold P(c,) = 0.~

tpr=6/6=1 0.9t (R

fpr=4/4=1 08}

5 0.7+ threshold P(c)) = 0.5

B < (1/4,2/3)

P(cj) =05 T 067

4 1 % 0.5

2 3 8

tpr=4/6=213 g ¢

fpr=1/4 03

0.2

P(cj) =1 o1 th.,rr?Sho(lod,(g(c’)*l AUC = 0.875

0 0 0 0.2 0.4 0.6 0.8 1

6 4 false positive rate (fpr)

tpr=0/6=0

fpr=0/4=0

FIGURE 4.9 - Example of how a ROC graph is created. Ten test instancesichvthe
presence/absence of a vegetation type is observed andtbejity of occurrence is mod-
elled (P(cj)), are used to calculate the true positive rate (tpr) anc fatsitive rate (fpr)

of confusion matrices constructed by applying three diffiethreshold probabilities: (A)
P(cj) =0, (B)P(cj) = 0.5, and (C)P(cj) = 1. The ROC curve generated when all possible
threshold probabilities are used is presented, and the {fpetpr) pairs calculated are indi-
cated (). The dashed diagonal line (fpr = tpr) represents the RO@ecwihen vegetation
types are classified by random guessing. The shaded areaR@®@xcurve (AUC) has an
area of 0.875, the AUC under the dashed ROC curve equals 0.5.

higher median AUC—-values for the random forest model at tBé& Significance

level.
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TABLE 4.12- Area under ROC curves for the MLR and the RF model.

Vegetation type MLR model RF model
Alno — Padion 0.967 0.983
Arrhenatherion elatioris 0.920 0.950
Calthion palustris 0.927 0.981
Carici elongatae — Alnetum glutinosae  0.880° 0.949
Caricion curto—nigrae 0.969 0.999
Cirsio — Molinietum 0.758 0.886
Filipendulion 0.923 0.977
Phragmitetalia 0.904 0.963
Magnocaricionwith Phragmites 0.910 0.969
Magnocaricion 0.968 0.983
Sphagno — Alnetum glutinosae 0.950 0.982

* using the model for predicting vegetation type occurresdeetter than ran-
dom guessing at the 0.001 significance level.

4.6 Discussion and conclusions

4.6.1 Statistical model comparison

This study presented an application of two different priéagicecohydrological
distribution models. The first model used the widely appliadtiple logistic re-
gression technique, and the second model a recently dedepsemble learn-
ing technique called random forest. Both models calcul#tedprobability of
occurrence of eleven different vegetation types, on whighgrediction of the
spatial vegetation distribution was based. An ecohydioldglata set with hy-
drogeochemical variables and related vegetation typeslémnish lowland valley
ecosystems was randomly and uniformly split into two tragndata sets for 2—
fold cross-validation of both models. After model constime and calibration,
the prediction accuracy of both models was assessed andacedpFollowing
conclusions could be drawn:

1. The multiple logistic regression model made 69.3% caopeadictions and
the random forest model 76.7%. The McNemar test statistcated a
difference in performance between the models at the 0.@®dfisiance level
(p < 0.001). Inspection of the results assigned this differenca better
performance of the random forest model compared to the phailiegression
model.

2. The overall better performance of the random forest modald be as-
signed to significantly higher proportion of correct préidias for Arrhen-
atherion elatioris Carici elongetae — Alnetum glutinosa@aricion curto—
nigrae FilipendulionandMagnocaricionwith Phragmitegsee Table 4.11).
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3. TheF-measures, which combines precision and recall, werefgigntly
better for the random forest moded £ 0.003).

4. The multiple logistic regression model made correct jotexhs with higher
probabilities than the random forest model (Fig. 4.8). Unfoately, the
incorrect predictions were also made with high probabk#iti The random
forest model made incorrect predictions with lower prob&és, which in-
dicated that the model misclassified grid cells where sévegetation types
were expected, all with comparable, moderately low prdiiss. Both
models predicted central areas of homogeneous areas thpméh high
probabilities, and isolated grid cells incorrectly witlghiprobabilities.

5. Model accuracy was assessed by means of ROC curves foegfetation
types separately. The area under the curves (AUC) was highoth mod-
els, they were both much better for predicting vegetatiocuaence than
random guessingp(< 0.001). Although both models performed well, the
random forest model was found to have higher discrimingtiveer than
the multiple logistic regression model at the 0.01 signifezlevel.

The overall conclusion of this chapter is that the randonegsbmodelling tech-
nigue has the ability to lead to better predictive ecohyafymlal distribution mod-
els.

4.6.2 Putting the random forest model in a broader perspectie

Major applications of the random forest classifier are foimdio-informatics
and genetics (e.g. [232, 233]) and within the earth scietaemote sensing
(e.g. [234-236]). At the time this study was conducted, nangxe of the use
of the random forest technique in ecological distributioad®lling was found,
and therefore comparison possibilities with literatureeview. However, in two
recent publications, Garzon et al. (2006, [190]) develapeahdom forest model
to predict habitat suitability for Scots pine on the Iberiaminsula, and Prasad et
al. (2006, [189]) used the random forest technique to madekré distributions
of Loblolly pine, Sugar maple, American beech and White ealorth America
under a climate change scenario. Both studies found supgistsibution mod-
elling performances of the random forest model comparel ather techniques.
Therefore the conclusion of this chapter can be generaliteal random forest
modelling technique has the ability to lead to better disttion models for a vari-
ety of species and vegetation types in a variety of enviranime

Nevertheless, general remarks on the random forest moaieldsput its imple-
mentation within a broader perspective. As the random foneslels statistically
relate the occurrence of vegetation types to their presesitasament, the incorpo-
ration of functional relationships between environmegtalients and vegetation
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type distribution is not straightforward, and only partlgssible in these empir-
ical modelling approaches (this holds for the multiple &bigi regression model
as well). A first tendency towards more mechanistic modgléan be achieved
by selecting causal variables (with direct physiologicapact) as environmental
variables. Austin [97] distinguished different classeg¥ironmental gradients:
(i) indirect gradients with no physiological effect on plamowth or competition
(e.g. latitude or longitude); (ii) direct gradients with meatt physiological influ-
ence on growth without being consumed by plants (e.g. teatper and pH); and
(iii) resource gradients including light, water and nuttge The position of an en-
vironmental gradient in the chain of processes that linkgiteglient to its impact
on the plant is either proximal or distal [97]. The most proal gradient will be
the causal variable determining the plant response. Whexirpal resources and
direct gradients are used as environmental variables ireftiiogl, the model will
gain robustness and extend its range of applicability.

However, even if only proximal gradients were used in thigleiling exercise,
predictions would not completely fit the observations siacelogical processes
such as competition, predation and dispersal and otheialipatutocorrelated
features were not included. These processes tend to bechatdaduce into pre-
dictive models [237] because the actual vegetation typeitaligion is a result of
both environmental conditions and ecological processdstagir relative impor-
tance is hard to capture. Consequently, predictions madeebyresented models
are rather to be interpreted as habitat suitability mapshfedifferent vegetation
types [135].

In order to gain functionality of the random forest modelsttier research
should focus on its modelling ability with smaller data setiss(see Chapter 5,
comprising (most likely) uncorrelated proximal predietivariables. There are
several reasons to do so [238]: (i) the model will gain robess, with higher
confidence on future predictions, (ii) some causal relatigrs can possibly be
indicated and (iii) the utilization of the model would becetess costly. Further-
more, model generality should be tested on a spatially iadeéent data set since
the use of accuracy estimates based on 2-fold cross-vialid#dta and on spatially
independent evaluation data tend to differ [151] (see Glrafjt



|dentification of important
environmental variables in eco-
hydrological distribution modelling

5.1 Introduction

Exploring the distribution of plant species and vegetatigres is a central goal
in ecology. Numerous studies have examined environmendalients in rela-
tion to plant species or vegetation type distributions inows ecosystems (e.g.
[81, 239-241]). Most modelling approaches developed feessing species or
vegetation type distributions have their roots in quainiiyspecies-environment
or vegetation-environmentrelationships [237]. Disttibn models are mostly em-
pirical models relating field observations to environméwaaiables based on sta-
tistically or theoretically derived responses [51]. Ang®7] distinguished differ-
ent classes of environmental variables: (i) indirect \@aa with no physiological
effect on plant growth or competition (e.g. latitude or l@gade); (ii) direct vari-
ables with a direct physiological influence on growth withbaing consumed by
the plant; and (iii) resource variables including light,teraand nutrients. The
position of an environmental variable in the chain of preessthat link the vari-
able to its impact on plants is either proximal or distal [9The most proximal

The content of this chapter is submitted as J. Peters, N. Eefoest, B. De Baets, R. Sam-
son and P. BoeckxWetland vegetation distribution modelling for the idenéfion of constraining
environmental variablekandscape Ecology, accepted, 2008 (DOI : 10.1007/s1098e9Q61-4).
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variables will causally determine plant responses.

A common feature of many species distribution models isttiete are often
many candidate predictive variables [99]. Additionallgriables are frequently
significantly intercorrelated (multicollinearity) so thdentifying the causal vari-
ables is problematic [242]. This large number of variableg mesult in overfitting
with resulting models performing well in the context of thetal set used to create
them but not robust when applied elsewhere [99]. HowevédecErg the most
influential variables in the model is not an easy task.

Multiple logistic regression within the framework of geakzed linear models
(GLM, [93]) is very popular and often used for modelling veg®n type distri-
butions (Chapter 4 and e.g. [51, 100]). Within these modgHitrategies stepwise
selection procedures have been used for selecting the nfastntial variables.
However, serious shortcomings have been reported [24}@ncpproaches have
been proposed, such as hierarchical partitioning [242 248}. Another technique
which has been applied in distribution modelling is randames$ts [204] (Chap-
ter 4 and [131]). Within the random forest technique, theialale importance’
measure is incorporated to determine the most influentié@bies.

As can be seen, a dichotomy in distribution modelling appinda prevalent:
predictive modellingzersusexplanatory modellingPredictive modelling aims at
the development of distribution models while the focus isttoe goodness-of-fit
of the models. These models are typically ‘black-box’ medéihe relative im-
portance of the variables and the nature of their relatipnafith the vegetation
distribution is of minor importance. Contrarily, explaogt modelling encom-
passes the exploration of measured environmental vasialith the intention to
identify the most influential ones in explaining the vegetatistribution.

Based on these two approaches, a reduced distribution meuhg) only the
most important environmental variables can be construmtedevaluated on per-
formance. This link between predictive and explanatory etloty is a priority
for applied ecologists. The most influential variables, i under explanatory
modelling, can lead toward readily understandable digtidim models while main-
taining quantitative rigour with minimal resources [219].
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This chapter formulates an answer to the research question:
Can the random forest distribution model provide inforraatconcern
ing environmental variable importance?

Additionally, two sub-questions are addressed:

a. Would other techniques identify the same variables agpei
important?

b. Is it possible to construct accurate random forest disttion
models on a reduced data set, only including the most impbrta
environmental variables?

This chapter has a dichotomous structure, including (ijliste’e mod-|
elling, and (ii) explanatory modelling. Predictive mod®dj is applied
using multiple logistic regression and random forest tigtion mod-
els. Explanatory modelling comprises the identificatioriroportant
environmental variables, and is applied using three tephes: ordinat
tion, hierarchical partitioning of the multiple logistiegression mode|s
and the ‘variable importance’ measure within the randonesbalgo
rithm. Results from explanatory modelling are used to aocstre-
duced models, and modelling results are compared with teefoim
predictive modelling.

5.2 Material and methods

5.2.1 Test site and data set

From this chapter onwards, focus is exclusively on the Dddelade test site. A
description of the area, together with the monitoring soheifthe site is given in
Chapter 3. Groundwater depth measurements were used tdataltour ground-
water quantity variables: average groundwater depth (AG1), maximal (Max)
groundwater depth [m], minimal (Min) groundwater depth [anrjd the amplitude
(Ampli) of the groundwater depth [m]. Values of these valeéabtogether with the
groundwater quality variables, were assigned to each @iy spatial interpo-
lation of measurement data over the entire area using bldgikng (for details,
see [78]). Mean values and standard deviations of the asmti®m environmental
variables are summarized in Table 5.1.

The spatially explicit variables were structured into aadsgt. The data set
containsN = 519 measurement vectofs= (X1, %2, . .., Xip) consisting of the val-
ues ofp = 17 predictive variables describing the abiotic environtnen

— Groundwater quantity: average groundwater depth, maxgmaundwater
depth, minimal groundwater depth, and the amplitude of tieeirgdwater
depth. All these variables are continuous;
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TABLE 5.1 — Summary of the quantitative environmental variables aasmed at the
Doode Bemde. All values in [mg1!] except for average groundwater depth (AGD) [m],
maximal groundwater depth (Max) [m], minimal groundwatepth (Min) [m], amplitude
(Ampli) [m], pH [-] and soil organic matter content (SOM) [%]The categorical vari-
ables soil type (loam, peat) and management (yearly, transiom yearly to cyclic (Y/C),
cyclic, no management (no man.)) have no mean and no staddsiation [/]. Kendall
correlation coefficientst] of the first two DCA and CCA axes are included. Four environ-
mental variables were excluded from the CCA due to multicedirity problems [-].

Mean Standard Deviation T with DCA axes T with CCA axes
Axis 1 Axis 2 Axis 1 Axis 2
AGD -0.45 0.49 -0.429 -0.204 -0.449 -0.265
Max -1.07 0.60 -0.541 -0.234 - -
Min -0.11 0.38 -0.260 -0.096 - -
Ampli 0.96 0.36 0.506 0.291 0.547 0.157
pH 6.76 0.14 0.024 0.328 0.032 0.186
Cl~ 21.21 5.18 -0.378 0.105 -0.376 0.110
cat 99.99 24.58 -0.091 0.243 -0.087 0.346
Feot 20.28 13.37 -0.181 -0.256 -0.198 -0.075
K+ 1.22 0.97 -0.195 -0.192 -0.236 -0.049
Mngr 6.75 1.25 0.094 0.233 0.101 0.141
NO;-N 0.69 0.74 0.082 0.133 0.102 -0.022
NHI—N 0.77 1.20 0.326 0.090 0.336 0.130
HLPO, 0.27 0.13 -0.060 -0.174 -0.078 -0.322
SOE’ 22.33 8.69 -0.414 -0.134 -0.434 -0.023
SOM 21.19 15.05 -0.587 -0.201 -0.599 -0.081
Loam / / 0.426 0.301 0.444 0.298
Peat / / -0.426 -0.301 - -
Yearly / / 0.540 -0.201 0.516 -0.156
Y/C / / 0.054 -0.023 0.053 -0.109
Cyclic / / -0.337 0.299 -0.282 0.147
No man / / 0.114 -0.281 - -

— Groundwater quality: pH, Cl, C&*, Fao, K*, Mg?", NO;—N, NH; -N,
H,PO, and S . All these variables are continuous;

— Soil: soil type (loam/peat, categorical), and soil organatter content (con-
tinuous);

— Management: yearly mowing, cyclic mowing, transitionnfroyearly to
cyclic mowing, no management (categorical).

Seven different vegetation types,...,c; are consideredArrhenatherion ela-
tioris, Calthion palustris Carici elongetae — Alnetum glutinosa@lipendulion,
Phragmitetaliag Magnocaricionwith PhragmitesandMagnocaricion of which a
short description is given in Chapter 3. To each measurereatbrx; a unique
vegetation typé € {cs,...,c7} is assigned. The data set will be denoted as:

L:{(X1,|1),...,(XN,|N)}. (5.1)
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5.2.2 Detrended correspondence analysis (DCA) and canoaic
correspondence analysis (CCA)

DCA [246] and CCA [193] were used for studying environmegtadients in re-
lation to vegetation distributions at the Doode Bemde. DC#t firdinates species
or vegetation data in an ordination diagram, which is théerpreted in the light
of explicit environmental data [192]. This two-step apmio# an indirect gradi-
ent analysis in the sense of Whittaker [247]. By contrastAC€lates variation in
species or vegetation to environmental variation direethabling the significant
relationships between environmental variables and specigegetation type dis-
tributions to be determined. The results obtained from lbotlination techniques
were compared as recommended by ter Braak [193] using tHéobest of de-
termination ¢2) which is proportion of variability accounted for by a sstitial
model (here, ordination technique). takes values between 0 and 1, and equals
0 when no variability is accounted for, and 1 when all vatigbis accounted for.
A largerr? value appears when more variability is accounted for. DCA @EA
were performed using PC-ORD Version 4 software, with dowghiag of rare
species and rescaling of the axes as selected options fBiGhAe

5.2.3 Multiple logistic regression

Recalling the multiple logistic regression model desaipt (see
Egs. (4.4) and (4.5)), an estimatgfx) for the logit function has to be found
for each vegetation type. However, there are two difficslf@38]: (i) multiple
regression is plagued by collinear relationships amondiptige variables and
(ii) any regression is designed to produce a function thabime way minimizes
the overall difference between the observed and ‘predicésponse values (here
vegetation types), which does not necessarily imply cadspéndence [248]. As
Mac Nally [238] stated, the quest is to selecindependent predictive variables
from a set ofp predictive variables (subset selection), subject to tloblem of
multicollinearity, because: (i) it is always possible tmguce a better fit to the
data by using more terms, and when there are as many predicivables as
there are cases, the fit will be perfect; (ii) the confidencéutdire predictions
is lessened with more terms in the model; (iii) a minimal mMagutevides some
indication on the causal relationships of the included jota@ variables in
determining the response; (iv) monitoring costs will beugst by measuring less
environmental variables.

5.2.3.1 Predictive multiple logistic regression model

A predictive multiple logistic regression model was cousted similarly to the
multiple logistic regression model constructed in Chagteand the description
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is therefore kept short. A bi-directional stepwise modétation procedure was
used [210], starting with the full model and alternately tiimg and re-introducing
one model component at each step. Selection stopped whemiable insertion or
deletion caused a lower Akaike Information Criterion val&&C, [212]), resulting
in the model with the lowest AIC value. This methodology @eted the multiple
logistic regression model from overfitting [185, 238, 24%Bhe residual deviance
(see Eq. (4.12)), g°distributed statistic, was used to test the goodnesg-of-fi
the model. Models are concluded to perform satisfactotiltha o significance
level if the deviance values smaller than or equakt6l — a, Df), with Df the
degrees of freedom.

5.2.3.2 Hierarchical partitioning

For the identification of important predictive variableghim the multiple logis-
tic regression context, a technique called hierarchiceltfpming [238, 242, 244]
was used. Hierarchical partitioning is likely to alleviataulticollinearity prob-
lems that are ignored by one-model approaches [242]. Hieical partitioning
considers all 2 (which is the total number of possible models uspgredictive
variables, including design variables) multiple logisggression models jointly to
identify the most important predictive variables. The ldglihood (see Eq 4.9),
a goodness-of-fit measure for logistic regression, is cdatpfor each of the 2
models. These values are partitioned so that the total amgmt contribution of
a given predictive variable is estimated. By these meamsatthical partition-
ing allows to distinguish environmental variables whosiejpendent effect on the
response variable are important, from environmental éagathat have little inde-
pendent effect on the response variable. More precisayatthical partitioning
involves the calculation of incremental improvement (@aged goodness-of-fit) in
models by inclusion of a given predictive variable, and ¢ha® averaged over all
models in which the considered predictive variable occlingse effects are segre-
gated into independent effects(which are of interest for this study), and effects
that cannot be unambiguously associated with that singldigtive variable but
are due to joint effects with other predictive variablés;The output of a hierar-
chical partitioning analysis is a list of all predictive iatvles and their independent
(I and joint () influences on the response variable. The explicit matheaiate-
scription of hierarchical partitioning is given in ChevardeSutherland [244]. The
hier.part package [250] in R Version 2.2.1 was extended abwith more predic-
tive variables, and was used for this analysis.

5.2.4 Random forests

Random forests [204] is described in detail in Chapter 4, reststention was
drawn on the calibration of the user-defined parametgraumber of classifica-
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tion trees in the random forest) ama (number of randomly taken variables to
spit nodes). Algorithms 1 and 2 (see Chapter 4) explain hoanaam forest
is constructed, and how the built-in out-of-bag error is poted, respectively.
Additionally, the random forest algorithm can estimate itn@ortance of each
environmental variable by using the ‘variable importan@&fined byvari np in
code [216], as a synonym for ‘predictive variable impor&hmeasure. Defining
predictive variable importances is done by looking at hovemthe oob error (see
Algorithm 2 in Chapter 4) increases when oob data are pehiat@ne predictive
variable while left unchanged for all others. This is donedth predictive vari-
ables. The calculation procedure for a random forest ctingisf k classification
trees constructed on a training data set vatbredictive variables is visualized in
Fig. 5.1 and given in Algorithm 5.

5.2.5 Data considerations

The data set. (Eq. (5.1)) had to be slightly adapted to support both mautgll
techniques.

For multiple logistic regression models (Section 5.3.8g tependent vari-
able (here, vegetation type, consisting of seven claskes)&be binomial (0/1 =
absent/present). Therefore, seven additional columnaaeg the original multi-
nomial response df in order to include this binomial translation. The resugtin
data set is referred to ds. For the best predictive multiple logistic regression
model (Subsection 5.3.3.1), the datalsetvas randomly and uniformly split into
three partd j, L; andL3. In 3—fold cross-validation (see Chapter 4, Algorithm 3,
k = 3), two subsets were combined as training set, while thd thiés used as test
set. The following abbreviations are used further on:

— MLR12 = MLR model constructed with training sef UL5(= L7,),
— MLR13 = MLR model constructed with training sef UL3(= Li3),
— MLR23 = MLR model constructed with training sef UL5(= L55).

Model evaluation was done on the remaining independent sldiaet (e.g. the
model MLRy» is evaluated orv3). For explanatory modelling using hierarchical
partitioning (Subsection 5.3.3.2), the entire datalsewas used. Since its objec-
tive was the identification of important variables rathearttthe optimization of
prediction accuracy, no evaluation data set was needed.

For random forest models (Section 5.3.4), a translationdimamial response
was not necessary, and the original datalsetas used. For predictive random
forest modelling (Subsection 5.3.4.1), the entire dataLseis split into three
partsLi, L, andLs (same partitions as above). In 3—fold cross-validatiorg tw
subsets were combined as training set, while the third wed as test set. The
following abbreviations are used further on:
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Algorithm 5 : Calculating variable importance within random forests.
Data: training data seX, with p predictive variables
Result importance (mean importance andcore) of each predictive
variable

fori=1tokdo

construct classification tragAlgorithm 1);
apply treei to then oob elements and count the number of correct
classifications over the oob elementsQ; untouched;

forj=1topdo

take then untouched oob elements;

randomly permute the values of variajlen then oob elements;
apply treei to all the j permuted oob elements;

count the number of correct classificatio@s( permuted;

subtract the number of correct classifications of the
variablej-permuted oob elements from the number of correct
classifications of the untouched oob elements and dividaéy t
number of oob elementACi j = (Ci untouched— Ci.j— permuted /N);

end

end

forj=1topdo

calculate the meafC; j over allk trees AC] = YK AGi | /K);

refer toAC; x 100 as the ‘mean importance score’ of predictive variable
j [the value is positive whe@; untouched™> Ci,j— permuted@nd negative
whenG; untouched< Gi,j— permuted M€@nN importance scores have high
values when the classification error increases by permthimgalues of
predictive variablg];

divide AC;j by the standard error (se) to obtaiz-acore for predictive
variable, and assign a significance level assuming normality [since
correlations of théC; ; scores are generally low within tHe= 1 to p
groups, standard errors can be calculated for each dfgineups ofk
AG; j scores] ;

end
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1. Training and test data sets

Lirain Ltest
X1 x1
X2 X2
X3 I3 X3
X4 . X4
Xs s Xs s
X6 X6
X7 X7 I
Xg X8 |8
X9 X9 .

« B v

2. Construction of the random forest consisting ok classification trees

(2a) takei (i = 1,...,k) bootstrap subsamples framain

bootstrap sample oob sample

1 bootstrap ooby = Lyain—bootstrap
2 bootstrap o0oly = Lyain—bootstrap
k bootstrap oohy = Liain—bootstrag

(2b) use the& bootstrap samples to constrikatlassification trees

S
. J'.HE | Lhﬁ ﬁlﬁi I

classification tree 1 classification tree 2 classification tree k
constructed on bootstrap, constructed on bootstrap, constructed on bootstrap,

FIGURE 5.1- Schematic overview of the construction of the random farexdel and the
determination of important variables.
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(2c) apply classification treéo ooh (i = 1,...,k), and calculate oob error
(0ohyntouched

oob, 00b, 0ob,

——
*%ﬁf“hﬁ ﬁﬁau

classification tree 1 classification tree 2 classification tree k

3. calculate the variable importance of variablek (j=1,...,p)

(3a) permute the values of varialjlén all oob samples (0gb permuted
(3b) apply classification treéo ooh (i =1,...,K)

oob 1, jopermuted OObz, jpermuted oob, J-permuted

N
Lﬁh_ﬁhéxﬁjﬁ ﬁii

classification tree 1 classification tree 2 eoo classification tree &

«—

(3c) calculate 00p_permuted€rror

4. compare the 00Rpermuted €101 With the 00b yntouched €I170r to assess
variable importance

FIGURE 5.1-continued..

— RF2 = random forest constructed with training §etJ Lo(= L12),
— RFi3 = random forest constructed with training §etJ L3(= L13),
— RF3 = random forest constructed with training et Lz(= Lp3).

For the identification of important variables (Subsecticq4.2), however, both
andL* were used, the latter to allow for identification of impott&ariables for
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the seven vegetation types independently and to allow fiarpesison with results
from hierarchical partitioning.

5.2.6 Model evaluation statistics

Correlations were calculated by means of the non-paracrtédmdall rank corre-
lation (Kendall's tauy) provided in most statistical software packages. Kerslall’
T takes values betweenl and+1, with a positive correlation indicating that the
ranks of both variables increase together, while a negativeelation indicates
that as the rank of one variable increases, the other oneatezs.

Model performances were evaluated in two ways. Coherést ([220], see
Eq. (4.20)) was used to evaluate differences between oditsamg and predictions
for all N instances. The McNemar test [222] was used to compare extes of
two models, and is described in Section 4.5 (Eqg. (4.21)).

5.3 Results

5.3.1 Data inspection

Intercorrelation amongst quantitative variables has beparted to weaken analy-
sis using different techniques including regression [288] ordination [193]. All
15 continuous variables were tested on normality. None wamally distributed,
therefore a non-parametric correlation analysis was ped using Kendall's.
The majority of variable pairs showed significant correlatat the 0.01 signif-
icance level (Table 5.2). Particularly high positive ctatiens ¢ > 0.5) were
observed for the variable pairs: AGD — Max, AGD — Min, Max — SGivid
pH — Mg?". The interpretation of the first two variable pairs is strafgrward.
The higher the maximal and minimal groundwater depth, tighdr the average
groundwater depth will be (see Fig. 3.3). Furthermore, tigaioic matter content
is high for grid cells with high maximal groundwater depthisdllow groundwater
table) due to reduced decomposition rates (see Subsec8at).3Strong negative
correlations { < 0.5) were observed between Max — Ampli and Ampli — SOM.
Grid cells with high maximum groundwater depth have smalugidwater depth
amplitudes, and the soil of grid cells with small groundwalepth amplitudes are
high in organic matter content.

5.3.2 Ordinations

DCA ordination was performed, and summary statistics avergin Table 5.3.
The length of gradient (expressed as standard deviatidmihws a measure of
how unimodal the species response is along an ordinatia) exeeeds 2, approv-
ing the use of unimodal ordination models [192]. Eigenvalagthe three first
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TABLE 5.2— Kendallt correlations between quantitative variables.

AGD Max Min Ampli pH Cl- car Faot
AGD 1.000
Max 0.737* 1.000
Min 0.715* 0.481* 1.000
Ampli -0.359* -0.609* -0.090* 1.000*
pH 0.036 -0.050 0.095 0.166* 1.000
Cl- 0.197* 0.188* 0.218* -0.092* 0.234* 1.000
cat -0.055 -0.053 -0.049 0.076 0.400* 0.233* 1.000
Feaot 0.058 0.194* -0.135* -0.373* -0.342* -0.264* -0.061 1.000
K+ 0.162* 0.325 0.013 -0.428" -0.063* -0.011 -0.110° 0.018
Mg?* -0.020 -0.067 -0.027 0.105° 0.630* -0.061 0.374* -0.07%
NO;-N -0.003 -0.046 0.150 0.145* 0.046 0.093 -0.114 -0.375*
NHI—N -0.339* -0.338* -0.328* 0.215* -0.007* -0.356* 0.169* 0.185*
H2PO, 0.244* 0.222 0.163* -0.210* 0.063 0.014 -0.273 -0.041
SO%’ 0.234* 0.280* 0.205* -0.253* -0.172 0.43% 0.032 -0.013
SOM 0.387* 0.517* 0.164* -0.577 -0.042 0.188° 0.017 0.340°

continued. .

K+ Mg?* NO;-N  NHf-N  H,PQ;  SC~ SOM
K+ 1.000
Mg2+ -0.018 1.000
NO;-N -0.043 -0.212 1.000
NHZ—N -0.314* 0.132* -0.099* 1.000
H2PO, 0.063 0.109* -0.097* -0.165* 1.000
SO%’ 0.174* -0.410* 0.138 -0.410 -0.130* 1.000
SOM 0.254* -0.021 -0.167 -0.160* 0.155* 0.201* 1.000

* correlation is significant at the 0.05 levél;correlation is significant at the 0.01 level.

DCA ordination axes (Table 5.3) cannot be interpreted apgtmns of variance
explained since the process of rescaling and detrendingogieshe correspon-
dence between the eigenvalues and the structure along #ise kerefore, the
variance explained was investigated byast hoacalculation of the coefficient of
determinationi®) between distances in the ordination space and distandas in
original space. The Euclidean distance was used as distaeasure of the ordina-
tion space, while the relative Euclidean distance was slexs distance measure
of the original space (Table 5.3). High and moderate caiozia between the
original and ordination space were found for the first twosaxe476 and 0.198,
respectively. Along the third axis, correlations were iggble.

Fig. 5.2 jointly plots the plant species and vegetation $ypesitioned in the
DCA ordination space, together with the environmentalakags (labels of K,
NO3 —-N and no management are deleted for clearness). Kendadlations t) of
the environmental variables with ordination axes wereudated, and given for the
two main ordinations axes in Table 5.1. The first axis was lgigbrrelated with
groundwater quantity and dynamics, predominantly avegagandwater depth,
maximal groundwater depth and amplitude of the groundvekgpth, soil type and
soil organic matter content, and the management variapteslominatly yearly
mowing. As can be concluded from Fig. 5.2 and Table 5.1Atfkenatherion ela-
tioris grassland community thrives on the drier, loam soils with é@mganic matter
content of the Doode Bemde with a yearly mowing managemdrgsd conditions
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TABLE 5.3— Summary statistics for the DCA and CCA ordinations.

Axis 1 AXxis 2 Axis 3

DCA

Length of gradient 5.99 5.55 3.57
Eigenvalue 0.557 0.339 0.174
r? 0.476 0.198 0.060
Cumulativer? 0.476 0.673 0.733
CCA

Eigenvalue 0.501 0.270 0.208
Variance explained [%] 10.6 5.7 4.4
Cumulative variance explained [%0] 10.6 16.3 20.7
r 0.451 0.111 -0.023
Cumulativer? 0.451 0.562 0.585

r2 is the coefficient of determination.

are typically situated on the southwestern lev@ipendulionandCalthion palus-
tris are found in the transitional zone between levee and floadgépression (see
Fig. 3.2). Both vegetation types are clearly distinguiddaliong the second axis,
with Calthion palustrisoccurring in the somewhat wetter, more peaty areas. The
groundwater table in thEilipendulionareas shows higher fluctuations. Another
difference between these vegetation types is the mowirggiénecy. The majority
of the Calthion palustrissites are yearly mown, while most of ti@ipendulion
sites are cyclically mown. Still further toward the floodplalepressiorCarici
elongetae — Alnetum glutinosa@ad the tall sedge vegetatidfagnocaricionap-
pear on wet, peaty soils. Sedges are gradually replacéthbygmites australis
and theMagnocaricionvegetation type changes Magnocaricionwith Phrag-
mitesin the central part of the floodplain. On the wettest part ef ¢astern ri-
parian zone, &hragmiteteavegetation belt occurs. The most important chemical
groundwater variables are 30 Cl—, NHI—N, and Fey, with high concentrations
of sof; and Fey in the wetter areas, where groundwater seepage and cgpillar
rise increase the supply of these hydro-chemical compo(saisSubsection re-
fgwqual), and high Cl concentrations in the moderately wet northeastern areas.
High concentrations of Nj#N typically occur in the dryer, loamy areas wit-
rhenatherion elatiorisand can possibly be attributed to a higher rate of bioldgica
mineralization of organic nitrogen (e.g. in plant litteritfn this dryer area [2].
Several variables were deleted for the CCA due to multicedrity prob-
lems. The only variables related to groundwater quantitgimed were average
groundwater depth and amplitude of the groundwater depéxifmal and mini-
mal groundwater depth were deleted based on their highlatimes with average
and amplitude of the groundwater depth, see Table 5.2). @tegorical variables
‘no management’ and the soil type ‘peat’ were deleted withoss of informa-
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FIGURE 5.2 — Graph of the detrended correspondence analysis (DCA)isgawe ordi-
nation of plant species and vegetation types along theicsbtdination axes in relation to
the environmental variables.

Legend: Species are abbreviated using the first four letfdfsee genus and species names
(as given in Appendix A), vegetation types are abbreviatsmbing to the List of Ab-
breviations and Acronyms, and abbreviations of the enwviremtal variables: SOM = soil
organic matter content, y/c = transition from yearly to aychowing, chemical ions are
given without charge.

tion on management regime and soil type. The CCA eigenvéliadde 5.3) were

a little lower than the DCA eigenvalues. The first two axeslaxed a limited
16.0% of the variance in data. In analogy with DCA, correlatbetween dis-
tances in the ordination space and distances in the origjizae were determined.
Once again, the relative Euclidean distance was used adémeasure in the
original space.r? for CCA and the effectiveness of the CCA were considerably
lower than what was obtained for DCA. Nevertheless, the ldérdrrelation €)
between the species scores on the DCA and CCA axes equ8gt @ < 0.01)
and 0.534 p < 0.01) for the first and second axis, respectively. There isangtr
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positive correlation between the first axes of both ordorathethods. The CCA
ordination is shown in Fig. 5.3, and Table 5.1 gives KendalBrrelation values
for the environmental variables with the two main CCA axesadcordance with
the DCA ordination, average groundwater depth, soil typganic matter content,
mowing management regime and the chemical variableg-NH SO}( and CI
did explain most variance along the first CCA axis. Importetables along the
second CCA axis included €aand HPO, .
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FIGURE 5.3 — Graph of the canonical correspondence analysis showmgadkition of
plant species and vegetation types in relation to the emwiental variables.

Legend: Species are abbreviated using the first four letfefsee genus and species names
(as given in Appendix A), vegetation types are abbreviatsmbing to the List of Ab-
breviations and Acronyms, and abbreviations of the enviremtal variables: SOM = soil
organic matter content, y/c = transition from yearly to aychowing, chemical ions are
given without charge.

In accordance with De Becker et al. [81] the ordinationsdatikd the ground-
water describing variables, soil type and organic matterterdt and the yearly
mowing management regime as the most important variabtes &toode Bemde.
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Together with the groundwater quality variablesﬁSOCI* and NH;-N these
were the environmental variables explaining most of theiapeariance of plant
species and vegetation type occurrences at the Doode Bétije-N, K™, Mg+
and the transition from yearly to cyclic mowing managemeatcancluded to be
less important based on both ordinations.

5.3.3 Multiple logistic regression model
5.3.3.1 Predictive multiple logistic regression model

In order to use 3—fold cross-validation, three models (M4,RMLR13, MLR23)
had to be constructed on the three training sgts Li; and ;5. Additionally,
logistic regression required to model the seven veget#yioes separately (seven
models). Consequently, a total of 21 multiple logistic e=gion models were con-
structed, one on each of the three training data sets forafdh seven vegetation
types. Since high correlations between average grounddaj#h and maximal
and minimal groundwater depth tended to weaken the multggeession models,
it was decided to include only the average groundwater depdramplitude of the
groundwater table as groundwater quantity variables. Tduelgess-of-fit of all
21 models was summarized by the residual deviabggdy EQ. (4.12)). Based
on the results reported in Table 5.4, it can be concludedathatultiple logistic
regression models do fit satisfactorily at the 0.01 signifteelevel. Nevertheless,
the models used fdPhragmitetaliaand Arrhenatherion elatioriglower residual
deviance values) are better than thoseQGaithion palustris(higher residual de-
viance values).

The models were applied to their corresponding indeperndéshtiata selt?,
L5 or L5. Each 20 m by 20 m grid cell at the Doode Bemde was assigned seve
probabilities, representing the probability of occurren€the seven different veg-
etation types. The vegetation type with the highest prditalbif occurrence was
concluded to be the predicted vegetation type for the gridureler considera-
tion. Results are visualized in Fig. 5.4(a). There were 388 correctly predicted
(69.2%), on a total of 519 grid cells. Cohemw's¢est was used to evaluate differ-
ences between observations and predictions.value of 0.633 was found: there
is a substantial agreement between observations and poedip < 0.001).

5.3.3.2 Explanatory modelling with hierarchical partitioning

Each predictive variable explains a certain amount of tla¢iaglvegetation pattern
at the Doode Bemde. For each vegetation type separatelgistitoregression
model was constructed, and the model goodness-of-fit wassed, together with
the independent contributidrof each predictive variable to the explanation of the
spatial distribution of that vegetation type-values are graphically presented in
Fig. 5.5. For some vegetation types, a clear distinctioween the most important
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TABLE 5.4- Goodness-of-fit of the multiple logistic models. Residi@liancesDqgjq)
and Akaike’s information criterion (AIC) for the differeregetation types.

Vegetation type Df Dresid AIC
MLR12
Arrhenatherion elatioris 334 34.7 59.0
Calthion palustris 334 193.8 218.0
Carici elongetae — Alnetum glutinosae 337 80.2 98.2
Filipendulion 335 134.2 156.2
Phragmitetalia 332 38.1 67.4
Magnocaricionwith Phragmites 335 132.6 154.6
Magnocaricion 333 154.9 180.9
MLR13
Arrhenatherion elatioris 339 51.4 56.4
Calthion palustris 334 168.8 192.8
Carici elongetae — Alnetum glutinosae 336 67.5 87.8
Filipendulion 338 122.3 138.3
Phragmitetalia 337 29.6 47.6
Magnocaricionwith Phragmites 335 120.2 142.2
Magnocaricion 332 142.5 170.5
MLR 23
Arrhenatherion elatioris 338 66.3 82.7
Calthion palustris 334 190.9 214.9
Carici elongetae — Alnetum glutinosae 334 60.9 84.9
Filipendulion 333 142.8 168.8
Phragmitetalia 334 33.2 57.7
Magnocaricionwith Phragmites 328 131.6 178.7
Magnocaricion 339 138.9 152.9

Df = degrees of freedon),¢5jq= residual deviance, AIC = Akaike’s informa-
tion criterion. All models showed a significant goodnessiadt the 0.01 level

).

predictive variable and the other ones can be observedrieigagement regime
for Calthion palustri$, while for other vegetation types a group of important pre-
dictive variables is determined (e.g. average groundvespth, management, pH
and Fey for Magnocaricior). The variables, ranked according to their indepen-
dent contribution to the distribution model, do differ bem the seven vegetation

types.
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(a) MLR model (b) RF model
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FIGURE 5.4 - Spatially distributed vegetation types at Doode Bemdese®@lations over-
laid by predictions made by the logistic regression moda)s Observations overlaid by
predictions made by the random forest models (b).

5.3.4 Random forest model

5.3.4.1 Construction and evaluation of the best predictiveaandom forest
model

The random forest technique has two important user-defiregenpeters that
should be optimized for accurate model results: the numbeees k) and the
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FIGURE 5.5- Independent individual contributions (I-values, [%]}tloé variables as de-
termined with hierarchical partitioning. Lower values icete lower independent impor-
tance.

Legend: The numbers on the x—axis correspond to variablesage groundwater depth
(1), minimal groundwater depth (2), maximal groundwateptie(3), amplitude of the
groundwater depth (4), pH (5), CI(6), C&* (7), Faot (8), KT (9), Mg?* (10), NG5 -

N (11), NI—E{—N (12), PO, (13), S(j’ (14), soil organic matter content (15), soil type
(16) and management regime (17).

number of randomly selected predictive variables to spétriodesrf) (see Sub-
section 4.4.2). Oob error, which was proven to be an unbiasgthator of the
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TABLE 5.5— Out-of-bag (oob) error values and test set error valuefRfap, RF3 and
RF,3 constructed with several valuesmf(mis the number of randomly sampled variables
to split the nodes).

m=1 m=2 m=3 m=4 m=>5 m=15

aRFp2 35.84 23.41 24.57 23.99 23.41 25.43
by 32.95 21.97 22.54 23.12 23.70 23.12
aRFi3 30.35 21.10 20.23 _19.36 19.94 21.39
b, 34.10 28.32 _24.28 26.59 26.01 27.75
aRF3 40.17 23.70 _22.54 2254 24.28 23.99
oLy 45.09 22.54 _21.39 22.54 21.39 23.70

a = oob error? = test set erroiLy, L, andLs are cross-validation test data sets.
Minimal error values are underlined.

classification error [204], was used to determine an adequanber of trees. A
clear convergence of oob error was found (not shown heresimitar to Fig-

ure 4.6), andk = 1000 was used for the construction of all the random forest
submodels. Breiman and Cutler [218] state that the rangptohal values ofnis
usually quite wide, and oftegynumber of predictive variables is used as value for
m. According to this rule of thumb, in this study, where 17 ahies were used,
the optimal value o should be around 4. Three random forest models were con-
structed for different values ah. Two error measures were used for optimal
definition: (i) oob error, and (ii) test set error, repregamthe proportion of incor-
rect classifications, which is computed by applying the cemdorest models to
their respective test data sets during the random foreltibgiprocess. Resulting
oob error values and test set error values are tabulatedir %b. The values did
not differ greatly, but minimal values could be observeddifferent values ofn.
Since an accurate classification of the test elements wagotieit was decided to
use the values ah for which the test set error was minimal and to take- 2 for

the construction of R, andm = 3 for RR3 and Rks. These values are lower
than 4, which was determined by the rule of thumb.

Based on the optimal values for the user-defined model pdeaskeandm,
RF12, RF3 and RR3 were constructed. Cross-validation resulted in an indepen
dent prediction for each of the 519 grid cells at the Doode @@mResults are
visualized in Fig. 5.4(b). On a total of 519 grid cells, thedabmade 402 cor-
rect classifications (77.5%) and 117 misclassifications5@3. Misclassifications
were mostly made on the transition zone between adjacentation types as well
as for small vegetation patches (e.g. one grid cell surredy a different vege-
tation type). Ak value of 0.731 was found and indicated a substantial agneeme
between observations and predictiops{0.001).
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5.3.4.2 Explanatory modelling using the ‘variable importaxce’ measure

To allow for comparison of the important variables as asxkggath hierarchical
partitioning and the ‘variable importance’ measure, sew@m random forest mod-
els were constructed based on the datd_sebne random forest model for each
vegetation type. The user-defined parametevas set to 17, so that the random
forest had to choose the best predictive variable to smitnides amongst all 17
possibilities. However, by doing so, the only random preasing model con-
struction was the use of random bootstrap samples, anddhetee correlations
between the different classifiers in the random forest &ehlito increase. Re-
sulting mean importance score8Qj x 100) andz-scores £C;j/se, with se the
standard error) from the ‘variable importance’ measurel ukeing the construc-
tion of these models are plotted in Fig. 5.6. Variables ardked from high to
low mean importance scores;scores are overlaid. Mean importance scores and
z-scores generally showed (more or less) the same tendeoaewvdr, since cor-
relations between the classifiers in the random forest vilezgy/ Ito be significant
(mwas set to its maximal value 17 to exclude randomness frowligiinee vari-
able selection), preference was given to the mean impatscmres to determine
important predictive variables for spatial distributiorodelling. Differences in
importance scores could be observed between the diffeeggtation types, and
post hocdata inspection was needed to determine whether high or &wes of
important variables were associated with vegetation tyqmeiwences. As an ex-
ample, the distribution o€althion palustrisin the study area is clearly related
with management regime, which management regime had touc@&lated by a
posterior data inspection. In this caSalthion palustrisis associated with yearly
mowing.

Based on data sét the variables were ranked according to their mean impor-
tance for all vegetation types together (Fig. 5.6). The #@omé of the ground-
water table is the most important variable for the vegetatype distribution at
the Doode Bemde, followed by C] soil organic matter content and management
regime. Soil type and several chemical groundwater vagagtbPO, , NO;—N
and NH;—N) are clearly the least important variables for vegetatype distribu-
tion modelling with the random forest model at the Doode Bemd

5.3.5 Predictive random forest modelling on reduced data dut
sets

5.3.5.1 Leave-one-variable-out

It was believed that important predictive variables wouéédr major influences
on classification accuracy. Exclusion of a predictive d@gavould consequently
result in an increase in oob error, proportional to predéctiariable importance.
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FIGURE 5.6— Mean importance scores (bars) andcores (lines) for all 17 variables, for
each vegetation type separately and all vegetation tygestter, as determined with the
random forests ‘variable importance’ measure. Lower \alandicate lower importance.
Legend: The numbers on the x—axis correspond to variablesage groundwater depth
(1), minimal groundwater depth (2), maximal groundwateptie(3), amplitude of the
groundwater depth (4), pH (5), CI(6), C&* (7), Faot (8), KT (9), Mg?* (10), NG5 -

N (11), NI—E{—N (12), PO, (13), S(j’ (14), soil organic matter content (15), soil type
(16) and management regime (17). Notice different scalesiufoplot 6 and 8.

Therefore data sdt was redesigned into 17 new data sets containing all but one
predictive variable (16 predictive variables in total).random forest models were
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constructed using these data sets. An increase in oob eopoional with the
predictive variable importances was expected. Howevesuch increase was ob-
served. A mean oob error value of 21.20%, within the rang238.— 22.35%,
was found. 20.04% of the oob cases were misclassified whetygeior minimal
water table depth were excluded from the data set, and 22i38R°" was ex-
cluded. The random forest technique was concluded to beagstlassifier, able
to construct models with comparable accuracy levels wheéy ome predictive
variable, irrespective of its importance, was excluded.

5.3.5.2 Gradually decreasing model complexity

Results from explanatory modelling using the ‘variable artpnce’ measure were
used to construct data sets with a gradually decreasing euafipredictive vari-
ables. 17 random forest models were constructed using ladkelimination of
the least important predictive variables (the ranking efgiredictive variables can
be seen in the lower right panel of Fig. 5.6) of datalseThe oob error was used
to get an estimation of the model classification error. Asleaiseen in Fig. 5.7,
the oob error ranged around 22% for the random forest modelstizicted on all
17 predictive variables, for the model containing 6 pradéctariables, and for all
models with a complexity in between. The models containgsg than the 6 most
important predictive variables, however, showed a shangase in oob error. Re-
markably high oob values were found for the models with ohg/three, two and
one (oob errore 72%) most important predictive variables included. Thievas
to conclude that at least 6 important predictive variablesreeeded for accurate
vegetation distribution modelling in this study. Thesedictve variables are am-
plitude of the groundwater depth, Clorganic matter content, management, pH
and minimal groundwater depth.

5.3.5.3 Predictive modelling using the selected subset

Three reduced predictive random forest models were cartsttuon the data
subset containing the six most important predictive vaeistb amplitude, Ci,
organic matter content, management, pH and minimal groatehdepth. 3—fold
cross-validation resulted in independent vegetation tyqelictions for each of
the 519 grid cells at the Doode Bemde. 384 predictions wereecb(74%),
135 wrong (26%). A Cohen’s value of 0.691 was found: there is a substantial
agreement between observations and predictiprs@.001).



5-24 CHAPTERS

[o]
o

B [9)] D ~
o o o o
T T T T

| | | |

oob error [%]

w
o
T

L

2

o
T
L

1

o
T
L

o

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
number of variables included in the model

FIGURE 5.7—- Out-of-bag (oob) error of models with decreasing numberedictive vari-
ables. The order of deletion is taken from results for alletation types, as presented in
subplot 8 of Fig. 5.6.

Legend: The numbers on the X-axis correspond to the numbgredlictive variables in-
cluded in the model e.g. 1= only the most important predictrariable (amplitude) in-
cluded; 2= two most important predictive variables (anojplé& and Cf included), etc.

5.4 Statistical model evaluation and discussion

5.4.1 Predictive modelling

The performance of the predictive logistic regression nhages compared with
that of the predictive random forest model. The McNemar west used to test
the following null hypothesis: the two models have the satassification error
rate. The value of the McNemar test statistic was 24.2 andthlehypothesis
could be rejectedd < 0.001). Classification error was significantly lower for the
random forest model. In accordance with Chapter 4 and [XB&]random forest
model could be concluded to be more accurate than the naultigistic regression
model.
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TABLE 5.6— Kendallt correlations between results of hierarchical partitigniin-values)
and ‘variable importance’ (mean importance scores).

Vegetation type T value
Arrhenatherion elatioris 0.303
Calthion palustris 0.441
Carici elongetae — Alnetum glutinosae0.544*
Filipendulion 0.221
Phragmitetalia 0.471*
Magnocaricionwith Phragmites -0.221
Magnocaricion -0.074

* correlation is significant at the 0.05 level,
** correlation is significant at the 0.01 level.

5.4.2 Explanatory modelling

The logistic regression and random forest modelling apgreaade use of differ-
ent techniques to identify important environmental valgabi.e. hierarchical par-
titioning [238, 242, 244] and ‘variable importance’ [204¢spectively. Both tech-
nigues indicated the same predictive variable as the mgsdritant one for five out
of seven different vegetation types in distribution moidgll However, to allow for
comparison of the results of both techniques, the non-petrécyKendall'st was
used. For the seven different vegetation types separ#tely;-values (as deter-
mined by hierarchical partitioning) and mean importancaras (as determined
by the ‘variable importance’ measure) of all predictiveigbles were ranked.
Kendallt correlations were calculated for these ranked predictar@ables, and
tested for significance (Table 5.6). FBalthion palustris Carici elongetae — Al-
netum glutinosaandPhragmitetaliathe predictive variable importance ranking as
determined with hierarchical partitioning showed sigmifit similarities with the
ranking as determined by ‘variable importance’ at the Oi§bicance level. But
for the other vegetation types ranked predictive variablese not significantly
correlated. These statistics show that different predictariables have different
effects on the goodness-of-fit of distribution models forsinof the vegetation
types depending on whether logistic regression or the mrarfdoest technique is
used.

Major advantages of the random forest ‘variable importanoeasure were
computation time and memory requirements. Hierarchicitfmming of 21° =
524288 multiple logistic regression models took approxetye8 hours (on a SGI
Origin 300), while random forest modelling finished withialha minute. Fur-
thermore, the use of categorical variables, which are fratjy used in applied
ecology to simplify data collection [251], is more comptied using hierarchical
partitioning since translation to dummy variables is need€hirdly, the neces-
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sity to calculate predictive variable importances for &lyjetation types separately
using hierarchical partitioning was experienced as a sboring, since general

descriptions about the major environmental gradients ataded vegetation type

distributions in the entire study area could not be made.

A comparison of the DCA ordination (Fig. 5.2) and the randarest vari-
able importances was made. In general, most of the impovaEbles coin-
cided for both methodologies. Spatial differences in ayergroundwater depth
and amplitude, management, soil organic matter contenpahdCl~ and Sij
concentrations explained most of the spatial vegetatistridution according to
both methodologies. However, unlike ordination, the ‘ahté importance’ mea-
sure has no direction nor sense. The ecological positioheegetation types
on the environmental gradients could be seen directly. Aarigal or visuabost
hocdetermination was therefore needed. Additionally, the/NN concentration,
which is an important gradient along the first DCA-axis anéssociated with
the distributionArrhenatherion elatiorisat the Doode Bemde, was not found to
be important in random forest modelling of the entire data Bkevertheless, the
random forest distribution model faxrrhenatherion elatiorisndicated NH —N
as the most important variable.

Furthermore, the categorical variable soil type (peatmlpaas identified as an
important environmental variable by the ordination anialyk the random forest
models, however, this variable was of very little importanthe explanation lies
in the categorical nature of this variable. Since there ahg two soil type classes
(loam and peat), the probability that an oob element beltmgfse same soil type
before and after permutation is rather large. This profigihé even higher with
prevailing classes within a categorical variable (as olesfor soil type at the
Doode Bemde: 191 grid cells have loam soils, 328 grid cele Ipgat soils). This
effect is likely to diminish when a categorical variable sistis of more classes
with similar numbers of elements. It is reasonable to caeliinat the ‘variable
importance’ measure is not suitable for handling categbviariables with a small
number of categories.

This conclusion was compared with literature, and could xtersled since
Strobl et al. [252] proved that the ‘variable importance’asere is not only af-
fected by the number of categories of categorical predictariables, but also by
the scale of measurement of continuous predictive vagabidich are both no
direct indicators of importance. The reasons why the ranfibwest ‘variable im-
portance’ measure is biased is twofold: (i) there is biasariable selection in
the individual classification trees, and (ii) there is biaduiced by bootstrap sam-
pling [232, 252, 253]. Bias in variable selection for nodditspg in individual
trees results from the systematic preference for predictariables with a higher
number of possible cutpoints. More possible cutpoints reealmigher likelihood
to produce a good split. Categorical predictive variablék more categories and
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continuous predictive variables with a wider value rangegase more possible
cutpoints. Therefore these predictive variables are tadenore frequently to split
the nodes and the nodes they split tend to be situated ctoer toot of each clas-
sification tree [252]. Predictive variables that appearerfoequently and that are
situated closer to the root of each classification treesmitie random forest affect
the prediction accuracy of a larger subset of out-of-bageles, while predictive
variables that appear less frequently and more toward #ig & the classification
tree within the random forest affect smaller subsets ofadtliag elements, result-
ing in a biased predictive variable importance estimatiddditionally, bootstrap
sampling with replacement (see Algorithm 1, Chapter 4)ititiced bias into the
variable importance estimate. Strobl et al. [252] explais source of bias by
consideringp-values ofy?-tests computed from 1000 simulated data sets. They
generated four artificial categorical, independent vdemtvith a multinomial dis-
tribution with values in{0, ..., k— 1}, wherek is 2, 4, 10 and 20, for the four data
sets, respectively. The valué8, ..., k— 1} had equal probabilities. The response
variable was sampled from a binomial distribution, and petedent from the inde-
pendent variables. Under the null hypothesis of indepetelenrange op-values
of the x2-tests from 0 to 1 were calculated, with a medf@malue of 0.5 (as ex-
pected). However, when the same analysis was made on lagosstmples from
the four variables, the medigmvalue differed significantly from 0.5, as a clear
shift toward ap-value of 0 was observed. The bootstrap sampling artificial
duced an association between independent and dependefti@aiFurthermore,
the association was more pronounced for independent Vesiabth more cate-
gories, which showed a higher deviation from the null hypsth. The apparent
association affects the ‘variable importance’ becausitieer association for in-
dependent variables with more categories results in a higgiection frequency,
and again, a selection closer to the root of the individuesdgr

Finally, attention should be drawn to the fact that impadrtariables, as de-
termined by ordination, hierarchical partitioning andriedle importance’, are
defined for the specific conditions at the Doode Bemde (witthénlimitations of
the data set). Since the data set consists of measuremémitsvassigned to a cer-
tain vegetation type as observed in the field, only realizetles (the part of all
suitable habitats where species and vegetation types texcladed due to biotic
interactions [237], see Section 1.4) are included. Commhsswith regard to the
fundamental ecological niche of the different vegetatigpes are consequently
hard to make. The identification of causal environmentabtdes may be valid
within the study area, but is only a part of the story beyorad gpatial limitation.
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5.4.3 Reduced random forest model

The most important variables as determined with the ‘végiabportance’ mea-
sure were used to construct and cross-validate a randoist foiedel based on a
reduced variable subset. A sharp increase in oob errorateticsix to be the min-
imal number of variables to include. The classification ewas 3.5% higher for
the reduced model (26.0%) compared to the full model (22.5Phe McNemar
test was used to statistically compare classification aoyupbetween the reduced
random forest model and the full random forest model conttion the entire
data set. No significant difference in model performancefaasd at the 0.05 sig-
nificance level p = 0.016), however at the 0.01 significance level the differencei
model performance was significant in favor of the full randmmest model. The
same test statistic was used to compare classificationamchetween the reduced
random forest model and the multiple logistic regressionehcand a significant
better performance of the reduced random forest model waslf@p = 0.002).

Apart from the higher generalization potential of the reztlicandom forest
model (reduced number of degrees of freedom), the inclusfidimited numbers
of variables and hence monitoring efforts, has clear benfgéim an economical
point of view. In the particular case of the Doode Bemde, $amaple, a costly
soil type inventory could be omitted. Moreover, in most gariological mod-
elling exercises, temporal variability is averaged outkimg monitoring of highly
dynamic variables in time somewhat irrelevant (due to theiécance of the sam-
pling date). Based on the identification of important vaealat the Doode Bemde,
less of such variables have to be monitored for constructadeguate vegetation
distribution models for comparable groundwater dependaltey ecosystems in
Flanders.

5.5 Conclusions

Together with the high level of biodiversity [78, 81, 254wlland river valleys are
playing an important role in the context of integrated wat@nagement including
flood control and sediment transport reduction [255, 256 Key environmental
variables of these ecosystems are of primary importancestessing the feasibil-
ity of ecosystem restoration [257].

A dichotomous structure was prevalentin this chapterh@)dvaluation of pre-
dictive distribution models using different modelling beiques (predictive mod-
elling), and (ii) the assessment of the possibility to idfgrihe key environmental
variables at the Doode Bemde (explanatory modelling), aedibkage between
both modelling approaches, namely to evaluate the prediatiility of a reduced
distribution model based on these key variables only. THewfing conclusions
could be drawn:
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1. Predictive models were constructed using multiple lgiggression and
the random forest technique. An accuracy evaluation of thesevalidated
data proved that random forest models do perform signifigdogtter (in
accordance with results of Chapter 4).

2. Important variables could be identified using hierarahpartitioning of the
logistic regression models and ‘variable importance’ witthhe random for-
est models. Groundwater dynamics and to a lower extent neanegt prac-
tices were the predominant variables constraining theapeggetation dis-
tribution. However, for certain vegetation types otherissivmental vari-
ables seemed important, but an ecological interpretatidhese results is
difficult to make.

3. Abias in estimated variable importance using randonstrévariable im-
portance’ was found for categorical variables, and sinuitzservations were
found in literature.

4. Nevertheless, the ‘variable importance’ measure coaldised for subset
selection. The reduced predictive random forest model|tieg from a data
set only containing the six mostimportant variables, watetton prediction
accuracy and compared with the best predictive randomtfaredel. The
accuracy of the reduced model and the full model did not défehe 0.05
significance level. Furthermore, the reduced random fonesiel performed
significantly more accurately at the 0.01 significance I&vah the multiple
logistic regression model.






Independent model testing

6.1 Introduction

Wetland ecosystems are complex, evolving structures wbbagacteristics and
dynamic properties depend on many interrelated links betweydrology, the
physicochemical environment, anthropogenic disturbaraed vegetation, and
their environmental determinants (climate, geomorphgldgee Fig. 1.4). The
direct effect of site hydrology on physicochemical site pedies, such as soil
moisture content, oxygen and nutrient availability defees the productivity and
species composition of the wetland vegetation [258, 258getation, however, is
not passive to the abiotical setting, but affects site higdypand physicochemi-
cal properties through feedback processes of which treat&m [32], soil aera-
tion [29] and alterations in nutrient loadings [260, 2614 gust some examples.
These localized direct and feedback processes result traspad temporal dis-
tributions of the abiotical variables [49]. Together witliraspecific, interspecific
and anthropogenic interactions these distributed algibtariables constrain plant
species occurrences, resulting in vegetation patterns.

Chapter 4 introduced the random forest technique for miodethese vege-
tation patterns based on abiotical predictive variabled,@hapter 5 assessed the
possibility to determine the most important environmentaiables within this
distribution modelling context. This chapter further ligibbn previously presented

The content of this chapter are published as J. Peters, B.d2¢sBR. Samson and N. E. C.
Verhoest.Modelling groundwater-dependent vegetation patternagiensemble learningdydrology
and Earth System Sciences, 12:603-613, 2008.
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results, but focusses on model evaluation.

The two research questions under investigation in thistenape:

1. Is there a spatial trend in the random forest distributimodelling
results?

2. Does a random forest distribution model, constructed agiven
wetland, perform satisfactorily when tested on a similat Bistant
wetland?

Therefore, a spatially explicit evaluation of the randomef distri-|
bution model predictions is made, followed by an assessrokttie
possibility to apply the random forest distribution modwkt spatially
distinct but similar ecosystem in independent model tgstin

6.2 Ecohydrology of the Doode Bemde

During the summer of 1993 and the spring of 1994, plant spexieurrences were
mapped in the study area (Chapter 3). The total area of 2 @&l subdivided
in 519 regular and adjacent 20 m by 20 m grid cells. Mapping weatricted
to a selection of 56 plant species of which 45 were phreatgshgnd 11 were
differential species for several vegetation types at thedeoBemde. Based on
these species cover data, De Becker et al. [81] applied TWMNS[83] in order
to define vegetation types. Seven different types werendisished, and their
spatial distribution can be seen in Figs. 4.7 and 6.1(a).védetation types are
herbaceous, except f@arici elongetae — Alnetum glutinosaéere a tree layer
of Common Alder is present.

The similarity in species composition between grid cells wampared using
the Jaccard index of similarity

c
IS= (a+b+c) (6.1)
wherec is the number of species shared by both cells,aaddb are the numbers
of species unique to each of the cells [262]. The Jaccardasityiof two grid
cells expresses their ecological resemblance concerp#xjes composition, and
ranges between 0 (when both cells have unique species) amteh (both cells
have equal species composition). Averag&dalues are given in Table 6.1 for
the seven different vegetation types. The values of theothialgelements in Ta-
ble 6.1 are a measure of similarity between grid cells of Hmesvegetation type.
Based on these values, patchesPtiragmitetalia Magnocaricionwith Phrag-

mitesandMagnocaricioncould be concluded to be more homogeneous in species

composition compared to the other vegetation types whichidwaer values. Be-
tween the different vegetation types, marked differencesimilarity could be
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observed Magnocaricionwith Phragmiteshad high similarities witiPhragmite-
talia andMagnocaricion Between the other vegetation types, similarities were
generally lower, but nevertheless differences could bemesl. Arrhenatherion
elatioris for example, had twice as much species in common Wilipendulion
than withMagnocaricion

TABLE 6.1-Jaccard index of similarity between the vegetation typékeé Doode Bemde.
Vegetation types are abbreviated accordingly the List dir&biations and Acronyms.

Ar Cp Ce Fi Ph  MP Ma
Ar 0.40
Cp 0.18 0.37
Ce 0.11 0.17 0.46
Fi 024 021 0.20 0.39
Ph 0.09 0.19 0.35 0.22 0.55
MP 0.10 0.19 030 0.23 044 0.1
Ma 0.11 0.24 0.30 0.33 0.38 042 054

A groundwater monitoring network consisting of 25 piezoengtvas installed
in 1989. Groundwater depths were measured every fortnighihg the period
1/1/1991 — 31/12/1993. Time series of linearly interpalageoundwater depths
measured at several piezometers (A—E, locations can bé&sEign 3.2) along a to-
pographical transect are plotted in Fig. 6.1(b). A yearligra of larger depths in
summer and more shallow groundwater in winter was obsenvaitigiezometers.
Based on these time series, hydrological duration linesesging the probability
[%] that a groundwater depth is exceeded were calculatgd§Fi(c)). Groundwa-
ter depths corresponding to a probability of exceedanc@%f &re yearly median
groundwater depths. They differed considerably along ithesect (Fig. 6.1(c)).
At the levee near the river a median value of 1.27 m was medgpiezome-
ter A), which decreased gradually moving further down tavdre depression
(piezometer B-C—D), with a minimal yearly median groundwater depth of 0.05
m measured at piezometer D in the center of the depressigné Bic) also shows
different periods of superficial groundwater deptks((3 m) in all piezometers,
ranging from 75% of the year in piezometer C to 35% of the yepiézometers B
and D. Groundwater depths measured in piezometer A were sealer than (B
m. Additional to the monitoring of groundwater dynamic$2al piezometers were
sampled on several groundwater quality variables durirenapéing campaign in
September 1993 with respect to pH; CC&*, Fao, K+, Mg?t, NO;—N, NH; -
N, H.PO, and Scjf. All values are in mg L except for pH [-]. A soil type
map was made based on 59 drillings to a depth of 1 m, evenlytiittd over the
study area. Management regime was assessed for each ¢ségatately. Four
different regimes could be distinguished (see Subsect®ip



6-4 CHAPTERG

0 100 200 Meters
]

LEGEND

Observations
Arrhenaterion
Calthion palustris
[ Carici elongetae - Alnetum glutinosae
ilipendulion
Phragmitetalia

[__] Magnocaricion with Phragmites
( a) I Magnocaricion
0.5
E
e
a
2 .
el
o)
T
=
e}
=
3
<]
5
2 I I —
01/01/91 01/01/92 01/01/93 31/12/93
(b) time
~—— A B C D E
0.5 T T
E
<
a
5}
el
o)
©
2
e}
=
=3
o
(=)}
2 I I I I
0 20 40 60 80 100
(C) probability to exceed groundwater depths [%)]

FIGURE 6.1 - Vegetation distribution at Doode Bemde with piezometeyACE along a
topographical gradient (a) (see also Fig. 3.2). Time sefid® groundwater depth, as mon-
itored by piezometers A—E (b). Hydrological duration lireegressing the probability that
measured groundwater depths are exceeded. The line calmuespond to the vegetation
types wherein these piezometers were installed (c).
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6.2.1 Data set

Groundwater depth measurements were used to calculatedtega groundwater
depth (AGD) below surface [m]. Values of this variable, tihge with the ground-
water quality variables, were assigned to each grid celldayial interpolation of
measurement data over the entire area using block krigit&) 263]).

The spatially explicit variables were structured into aadsgt. The data set
containsN = 519 measurement vectofs= (X1, %2, . .., Xip) consisting of the val-
ues ofp = 13 variables describing the abiotic environment:

— Groundwater quantity: average groundwater depth (coatia variable);

— Groundwater quality: pH, Cl, C&*, Fao, K*, Mg?", NO;—N, NH; -N,
H,PO, and S@ . All these variables are continuous;

— Soil: soil type (silt/peat, categorical);

— Management: yearly mowing, cyclic mowing, transitionnfroyearly to
cyclic mowing, no management (categorical).

Seven different vegetation types, ..., c7 are considered. To each measurement
vectorx; a unique vegetation typee {ci,...,c7} is assigned. The data set will
be denoted as:

L:{(Xl,ll),---,(XN,IN)}- (6.2)

6.2.2 Independent evaluation data set

A spatially independent ecohydrological datalsgtwas constructed for a similar
valley ecosystem, ‘Snoekengracht’. The Snoekengrachtadiavial floodplain of
the river Velp, situated approximately 15 km from the Doo@e8le. The climatic
setting of both nature reserves is very much alike, and lewaronmental condi-
tions and floral composition are very similar [78] (see Ckaf). The monitoring
scheme was largely the same as in the Doode Bemde ([72] aruteCt®), and
a grid-based (with a grid size of 10 m by 10 m) data set congjsif M = 501
elements was constructed, which will be denoted as:

Lev = {(Xev1;lev1),-- -, (Yeum,levm) } (6.3)

whereley; is the vegetation type assigned to measurement vggtprMost vege-
tation types coincide with those found at Doode Bemde, edfoeplagnocaricion
which was not found at Snoekengracht (see Table 3.2). Tisemeahy not all 696
grid cells described for Snoekengracht were included itia set.e, came from
the selection criteria used: only grid cells with a vegetatype that is present at
Doode Bemde were included (grid cells wigtino — Padionexcluded), and the
management regimes present in the measurement vectiogg stiould be one of
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the four managementregimes applied at Doode Bemde (gitveith transitional
management from yearly mowing to no management and fronicoymwing to
no management were excluded). It could be argued to do the fearthe continu-
ous predictive variables, only to include values within theiable ranges found at
Doode Bemde. This was not done here to guarantee a high degnelependence
between training and test data set.

6.3 Modelling vegetation distributions

6.3.1 Model construction and results

First the data set. was randomly split into 3 data subsets for 3-fold cross-
validation (following Algorithm 3 in Chapter 4, witk = 3). A random forest
distribution model was constructed. User-defined parammetethe number of
randomly selected predictive variables to split the nodeslk, the number of
trees within the random forest, were optimized using the @wbr, and suitable
parameter values wera= 3 andk = 1000. The results include an ensemblé of
(1000) predictions, one made by each classifier, which wggeegated based on
majority votes into a final classification. A confusion magsummarizing the final
classification is given in Table 6.2, and results are showFign6.2(a).

TABLE 6.2— Confusion matrix of the classification made by the randorasidistribution
model. Predicted vegetation types are compared with therediions at the Doode Bemde.

Observed

Ar Cp Ce F Ma MP Ph

Predicted| Ar | 55 4 0 4 0 0 0
Ch| 6 8 0 7 4 5 0

Ce | O 1 19 O 4 4 1

Fi 9 2 0 82 7 0 1

Ma | O 6 1 4 37 12 2

MP | O 2 3 1 9 68 4

Ph | O 2 7 1 2 4 45

6.3.2 Model evaluation

6.3.2.1 Classification accuracy

Out of the 519 grid cells of Doode Bemde included in the sttigy, model clas-
sified 395 (76.1%) correctly, and 124 (23.9%) incorrectlg{[€ 6.2). Ak [220]
value of 0.716 was calculated, indicating a substanti@eagent between observa-
tions and predictions. A threshold-independent evalnaiging receiver operating
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Il Carici elongetae - Alnetum glutinosae e Carici elongetae - Alnetum glutinosae
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I [09-1]

FIGURE 6.2— Observed vegetation types overlaid by the classificatiatdetby the random
forest distribution model (a). Modelled probabilitie?(€)max) on which the classification
is based (b).
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characteristic (ROC) curves was performed ([210] and Ghap)t Recall that the
area under the ROC curve (AUC) is a scalar value between 0 aegdrésenting
the classifier performance [227]. For multi-class ROC gsapthich should be
applied here since 7 vegetation types are considered, aodwtgy described by
Fawcett [227] is used. For each class a different ROC cunsepraduced, with
ROC curvej plotting the classification performance using vegetatiassc; as
positive and all other classes as negative. For each RO@ cilm AUC was cal-
culated and averaged over the different classes usingwkights based on class
prevalences in the test data [264]:

7
AUCiora = Y AUC(c;) - w(cj) (6.4)
total j; j j

where AUCE;) is the area under the class reference ROC curve fandw(c;) a
weighing factor. Weighing factors are obtained from Tab ¥ig. 6.3 visualizes
the ROC curves for each vegetation type. The AldQvalue equaled 0.96 and the
random forest distribution model was concluded to perforei.w

6.3.2.2 Spatially explicit evaluation

For each grid cell, the ensemble lof=1000) classification results is aggregated
by calculating probabilities of occurrenBéc;) for all j vegetation types of which
the vegetation type with the higheBfc;) value P(C)may) is the predicted one.
As seen in Fig. 6.4, this decision rule led to an increasinglmer of correct clas-
sifications with increasin(c)max values. Indeed, 252 elements were correctly
classified with a probability higher than 0.7, whereas onBléments were cor-
rectly classified with a probability lower than 0.3. 50% oé ttorrectly classified
elements were based on probabilitie®.78. The incorrect classifications show
a maximum in the [0.4,0.5[ interval, with 1 element incothgclassified with a
probability lower than 0.3, and 28 elements incorrecthssified with probabil-
ities higher than 0.7. 50% of the incorrectly classified edats were based on
probabilities> 0.55.

Fig. 6.2(b) shows the spatial distribution®fc)max values at the study site in
graduated colours. Correctly classified grid cells withhhiRfc)max values were
situated within the central areas of homogeneous vegatatirsters, ant®(c)max
values tended to decrease toward the boundaries of these (#ig. 6.2(a)). In-
correctly classified grid cell are mainly found where twozsadjnt vegetation types
meet, and were based on Id¥(c)max values at the central depression and the
north-eastern side of the study site. The vegetation typesd in these areas
are Carici elongetae - Alnetum glutinosaBhragmitetalia Magnocaricionwith
Phragmitesand Magnocaricion A Jaccard similarity matrix was constructed for
the boundary grid cells only (Table 6.3). Tl8values in Table 6.3 express av-
eraged resemblances in species composition of each bgugddrcell with its
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FIGURE 6.3— Receiver operating characteristic (ROC) curves visinglithe classification
performances of the 3-fold cross-validated random foresstidution model for the 7 veg-
etation types (full curves). The AUg, equals 0.96. Model performances for boundary
cells only are summarized by the dashed ROC curves, yielhngUGgtg value of 0.92.

neighbouring grid cells (maximal 8 neighbouring grid celBoundary grid cells
of Phragmitetalia Magnocaricionwith PhragmitesandMagnocaricioncould be
concluded to share a large proportion of their species Wtialues higher than
0.5. This is reflected in the modelling resulc)max values for these grid cells
were generally low because comparable numbers of tha.000 classifiers clas-
sify these grid cells aBhragmitetaliag Magnocaricionwith PhragmitesandMag-
nocaricion Another conclusion should be drawn for isolated grid catfid small
isolated vegetation clusters surrounded by another vegetgpe (e.g. as occurs
along the western border of the study area, see Fig. 6.2a&@seTgrid cells were
frequently incorrectly classified with high(c)max values, and are a weak point
of the random forest distribution model. The worse perfarogeof the model on
boundary grid cells could also be seen in Fig. 6.3, where R@@es of classifica-
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FIGURE 6.4 — Probability distribution of correct and incorrect cldigsd grid cells of the
Doode BemdeN = 519).

tion results computed for boundary grid cells only were Ipthen those computed
for the entire data set. The corresponding Asievalue for model performances
in boundary areas equaled 0.92, while being 0.96 for theeesttiidy area.

6.3.2.3 Performance on independent test data

The use of independent test data allows to assess the matsladjeation abil-
ities. Edwards et al. [151] pointed out that cross-validatedel accuracies are
frequently different from accuracies assessed with trnlependent data. It is
easy to conclude that the random forest vegetation disimibunodel, which was
trained on the data sétdid not classify data sdte, satisfactory. From the 501
elements included ibey, only 99 elements were classified correctly (19.8%). Two
causes can attribute to this low level of model accuracy. %t fause can be best
explained by the niche concept ([50], see Section 1.4). Thddmental niche of

a plant species, and by extension a vegetation type, is deimam-dimensional
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TABLE 6.3 — Jaccard index of similarity for boundary grid cells betwé®o vegetation
types at the Doode Bemde. Non-adjacent vegetation typesdicated by a dash.

Ar Cp Ce Fi Ph  MP Ma

Ar 0.59

Cp 0.38 0.60

Ce - 045 0.66

Fi 034 021 - 054

Ph - 018 0.52 0.27 0.67

MP - 030 036 0.19 057 0.65

Ma - 034 039 057 059 053 0.66

hypervolume [50] in which every point corresponds to a stdititie environment
which would permit the species to exist and reproduce. Duatéyspecific in-
teractions species generally occupy only an elementatygbdhis volume, the
realized niche. The niches realized by each of the vegetagjpes found at the
Doode Bemde differ from those realised by the same vegatgties at Snoeken-
gracht and similar results were observed for all vegetdtipaes. The example of
Calthion palustrisis given in Fig. 6.5. Since 13 environmental variables artlus
in this study, a principle component analysis (PCA) wasgrented to reduce di-
mensions and make results visible. Fig. 6.5 graphs the coeniscores of grid
cells whereCalthion palustriswas observed on the first two principle component
axes (cumulatively explaining 70% of variance). Althougntly intersecting, two
different realized niches can be distinguished. Obviguslsandom forest disti-
bution model that is trained on the vegetation distribitiahthe Doode Bemde
and which uses explicit environmental thresholds to computlassification, can-
not perform well on such an independent test data set of aarapgly similar
ecosystem.

A second cause of the low accuracy level of the independeudiitiog re-
sults lies in the model evaluation itself. Vegetation typesre determined by
species clustering by means of the TWINSPAN algorithm [&8]Hoth sites in-
dependently. As can be seen in Table 6.1, grid cells of theesagetation type
do differ within the Doode Bemde (otherwise the diagonaialats of Table 6.1
would equal 1). This difference is even more pronounced fat gells of the
same vegetation type located in the two different studysarBaode Bemde and
Snoekengracht. Jaccard similarity values of 0.18, 0.Z2%,®.19, 0.26, 0.25 and —
(no value) were calculated féwrhenatherion elatiorisCalthion palustris Carici
elongatae — Alnetum glutinosaEilipendulion, Phragmitetalia Magnocaricion
with Phragmitesand Magnocaricion(not found at Snoekengracht), respectively.
These differences cannot be accounted for during the sisgermodel training
(performed exclusively on Doode Bemde) but deteriorateribdel performances
on an independent data set.
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FIGURE 6.5 — Conceptual representation of realised niche€althion palustrisat the
Doode Beemde and Snoekengracht. The fundamental nicBaltfion palustrisranges
over all environmental states which would permiQGalthion palustristo exist indefinitely
[50].

6.4 Conclusions

Vegetation patterns arise from the interplay between speaific and interspe-
cific biotic interactions and from different abiotic coratrts and interacting driv-
ing forces and distributions [49]. In this chapter, a vetietedistribution model
was constructed based on spatially distributed environaheariables which were
linked with the occurrence of a certain vegetation type.tiBimteractions were
only included indirectly, i.e. their effect was includeddhgh the observed veg-
etation distribution pattern, not directly as independeamiables underlaying the
vegetation distribution. Following conclusions could lvawin:

1. As far as classification accuracy of the random forest icemed, results
were satisfactory (AUfgia = 0.96).

2. Model errors were located in boundary areas (Blfdaryare= 0.92) be-
tween adjacent vegetation types. A proportion of thesergirould be at-
tributed to high similarities between neighbouring gridlceThese incor-
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rect predictions were generally based on low probabilitiesccurrence of
several similar vegetation types.

3. The random forest distribution model could not be appliedond the lo-
cal conditions upon which it was constructed, becausezelhiches of
species/vegetation types do seldom coincide, even betamgarently sim-
ilar sites. This restricts the model’s applicability. Irder to make it opera-
tional on a larger scale many data would be needed, rangegtbg entire
ecological amplitude of the modelled vegetation types.






Assessing uncertainty propagation
In the random forest distribution model

7.1 Introduction

Modelling of vegetation distributions across the landschpsed on the relation-
ship between the spatial distribution of environmentalaldes and vegetation is
important for a range of management activities. Exampleide management
of threatened species and communities, risk assessmepnheaiative species in
new environments, and the estimation of the magnitude dbgical responses to
environmental changes [265, 266]. In their attempt to surrra@omplex distri-
butional patterns, however, distribution modelling réswill inevitably contain
some degree of uncertainty [266], and uncertainty asseggmgaining more and
more attention in ecological modelling studies (e.g. [257/3]).

Uncertainty in vegetation distribution models origindtesn input data limita-
tions, caused by spatial and temporal underrepresentitioipservations to cap-
ture local variability, measurement errors on observatigystematic errors due
to bias in the measurement equipment, missing of key enviemtal variables
constraining the vegetation distribution, and subjedingments, e.g. judgment
on the type of environmental variables vegetation is sénsdy and their rela-
tive importance to classify vegetation types [266, 271]ctliermore, distribution

The content of this chapter is submitted as J. Peters, N. Beboest, R. Samson, M. Van Meir-
venne, L. Cockx, Z. Vekerdy and B. De Baettincertainty propagation in vegetation distribution
models based on ensemble learnikgological Modelling, submitted, 2008.
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modelling techniques introduce uncertainty by their diligtio capture the entire
complexity of ecological processes in relation to vegetadistributions. Distri-
bution models are a simplified representation of the realdyand physical and
biological processes are related frequently on empirstakjstical grounds. Fi-
nally, the model evaluation is susceptible to uncertasntie

Among this variety of sources of error and uncertainty, thapter exclu-
sively investigates two important sources of uncertaimgppgating in vegetation
distribution models: (i) the uncertainty associated whté $patial interpolation of
environmental variables, and (ii) the uncertainty asgediwith species clustering
into vegetation types. Other sources of error and unceytaire not studied.

The two research questions under investigation in thistenape:

1. Does the use of an ensemble modelling technique allowrfogr
tainty assessment?

2. How does input uncertainty propagate through the randorast
distribution model?

Therefore, the potential of the random forest classifieesride for un-
certainty assessment is investigated, followed by an taiogy assess
ment associated with uncertain model input.

After the description of material and methods (Section, 7t chapter has a
dichotomous structure imposed by the two different souofascertainty con-
sidered, and a conceptual difference in investigating {hr@pagation through the
distribution model. Firstly, attention was on the uncertpiassociated with the
spatial interpolation of environmental variables. A metblogy (sequential Gaus-
sian simulation) was applied to get an estimate of the logeaéttainty associated
with the spatial interpolation of environmental variabldgandom forest distribu-
tion model was constructed on a training data set includiegrtedian simulated
value for each environmental variable for each grid cetietber with its vegeta-
tion type, as originally determined. By calling this dibtrtion model theriginal
random forest modethe assessment strategy for uncertainty propagationaue t
uncertainty in environmental gradients is representephgcally in Fig. 7.1(a).
Secondly, for the propagation assessment of uncertairggceged with
species clustering into vegetation types, a similar gsateould be followed
(Fig. 7.1(b1)), i.e. the application of an uncertain vetietadistribution to the
original random forest distribution model. This was notfpened, however, since
the model performs classification based on environmentabias exclusively,
which means that response labels (the vegetation typestinttances) are not
taken into account. Therefore, the model performance cbaldetermined to
a large extend beforehand. Assume a random forest distnibatodel gaining
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(a) Uncertainty associated with the spatial interpolatibanvironmental
variables.

Observation Environmental Vegetation

gradients distribution
Model construction

Original RF
model
Model application Uncertain Probability of Predicted
environmental vegetation > vegetation
gradients occurrence distribution

Model evaluation

(b) Uncertainty associated with species clustering intgetation types.
(b1) Uncertain vegetation distribution applied to the ovéd RF model.

Observation Environmental Vegetation

gradients distribution
Model construction

Original RF
model

Model application Uncertain Probability of Predicted

vegetation vegetation 5 vegetation

distribution occurrence distribution

Model evaluation

(b2) Uncertain vegetation distribution in model constimttand application.

Environmental Uncertain
gradients vegetation
distribution

Observation

Model construction

Uncertain RF
model
Model application Uncertain Probability of Predicted
vegetation vegetation > vegetation
distribution occurrence distribution

Model evaluation

FIGURE 7.1 - Assessment strategy for uncertainty propagation due c¢ertainty asso-
ciated with the spatial interpolation of environmentalizbles (a), and associated with
species clustering into vegetation types (b). The lattes ingestigated by strategy (b2),

(b1) was not applied.
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a perfect fit, than the application of uncertain test datald/puopagate linearly
through to model, resulting in model performances that &extly proportional
to the test data uncertainty. Such a trivial exercise wowdgain the required
insight on uncertainty propagation due to species cluggeri

To meet that objective, another strategy was followed.ti&tafrom the veg-
etation distribution which has been used throughout trgsettation (and which
might include clustering errors as well), a known degreermfautainty was intro-
duced into the vegetation distribution by pseudo-randations. Then, a random
forest distribution model was constructed on this uncentasponse, and cross-
validated against its independent and uncertain test da&ig. 7.1(b2)).

7.2 Material and methods

7.2.1 Study area and data set

Doode Bemde (see Chapter 3) was selected as the study anésadhapter. How-
ever, the environmental variables used in this chapter ishaet of the ones pre-
viously used. Chapter 5 indicated that random distributimdels constructed on
a reduced number of predictive variables did perform sattsfily when> 6 pre-
dictive variables were included. In this chapter, it wasided to use the seven
most important predictive variables (in order to gain asgitig goodness-of-fit
of the reduced distribution model), based on the rankingrd@hed by the ‘vari-
able importance measure’ in Chapter 5 (Fig. 5.6). Howewvee, ateration was
made: minimal groundwater depth was replaced by averagendweater depth.
This change may be justified by (i) the high correlation betwboth variables
(t =0.715, Table 5.1), (ii) the identification of average grountbwaepth as the
eighth most important predictive variable. The reason vhyais decided to use
average groundwater depth instead of minimal groundwatethd arises from the
frequent use of average variable values in ecohydrolodisaibution modelling,
and in that sense, the introduction of uncertainty by avatag an interesting
research topic.

The observations used in this chapter were derived from anghoater moni-
toring network consisting of 24 piezometers, of which 2 zpmeters were located
within the borders of the Doode Bemde, and 3 were installesbtected locations
just outside the nature reserve. Groundwater depths [ng measured every fort-
night during the period 1/1/1991 — 31/12/1993. Furthermale24 piezometers
were sampled on several groundwater quality variablesiduwo different sam-
pling campaigns in 1993 with respect to pH [-],ding L] and SG~ [mg L1].
Topsoil samples were taken once at 59 locations, and theigrgaatter content
of the samples was determined (Chapter 3). Managementeegas assessed for
each grid cell separately (Chapter 3), and four differegimes could be distin-
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guished (Chapter 5-6). Plant species mapping (presersesied) was done for
each of the 519 grid cells, and restricted to a short list etgs (Chapter 3 and
part of Appendix A).

7.2.2 Variation partitioning in species data

Spatial autocorrelation is a very general property of egickl variables [217].
Spatial structures observed in ecological communitiesedrom two independent
processes [217,272]: (i) environmental variables that@rfte species distribu-
tions are usually spatially distributed, and (ii) ecol@jicommunities at any given
locality are most often influenced by the community struetar surrounding lo-
calities, because of biotic processes such as growth, daption, mortality and
migration. Variation partitioning [273-275] can be usedssess the importance
of these two sources of spatial structure. Variation parihg starts with coding
of the spatial information using the principle coordinatéseighbour matrices
(PCNM) approach, which is based on a principle coordinatgyais (PCoA, a.k.a.
classical multidimensional scaling [276]) of a truncateatrmx of geographic dis-
tances, and described in detail by Borcard and Legendre] [27d presented
graphically in Fig. 7.2. Eigenvectors of the positive eiggnes of the decom-
posed distance matrix are then used as spatial variablefiriaa gradient analysis
such as partial canonical ordination (e.g. redundancyyaisalRDA [194,195] or
canonical correspondence analysis, CCA [193]). Partiaboecal analysis allows
to partition the total variation in the species data intofttlewing four parts [273]:

(&) The non-spatial environmental variation in the sped&ts, which is the
fraction of the species variation that can be explained byetivironmental
variables independently of any spatial structure;

(b) The spatial structuring in the species data that is shay¢he environmental
data;

(c) The spatial patterns in the data that are not shared bgrvieonmental data
included in the analysis;

(d) The fraction of species variation explained neither pgtgl nor by envi-
ronmental variables;

and can be represented graphically (Fig. 7.3).
7.2.3 Spatial interpolation using sequential Gaussian siala-
tion

Point observations of environmental variables were sihatiaodelled using se-
quential Gaussian simulation (sGs, [277]), mainly becanists ability to model
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FIGURE 7.2— The construction of spatial variables starts from spatiarmation (X and
Y coordinates) which is used to calculate Euclidean digtanPrinciple coordinate analysis
of the truncated distance matrix (with a given maximal disea(max)) results in a number
of positive eigenvaulues which are used as spatial vasable direct gradient analysis
(adapted from [274]).

local uncertainty. Additionally, sGs preserves the chiamstic roughness in the
data, not producing a smoothed estimate but a reproductitreaeal variabil-
ity [278]. The sGs algorithm for the simulation of a singlentauous random
variableZ at N grid nodesu; (j = 1,...,N) conditional to the observations of
that variable{z(vy),a = 1,...,n} amounts to modelling the conditional cumu-
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(a) (b) (©) (d)
‘ Environmental variance ~ Unexplained
Spatial variance variance

FIGURE 7.3— Variation partitioning showing the 4 different fractiofaglapted from [273]).

lative distribution function (ccdf) of that variabl,; (z|l) = P(Z(uj) < Z|l). To
ensure reproduction of thesemivariogram model, each ccdf is made conditional
to local information (1) not only including the observations but also to values
simulated at previously visited locations. The sGs alparmits well described by
Bourennane et al. ([279], modified in Algorithm 6) and Fadrand Van Meir-
venne [280] provided a flow-chart (adapted in Fig. 7.4). T@s slgorithm is
available in the public domain [281].

The knowledge of the ccdf; (z]l) allows for local uncertainty assessment. If
validationz-observations are available sy test Iocations{z(uj), i=1..., Nv},
comparison of the median simulated vaEgﬁ.\l(O.S) and the observed validation
valuez(u;) at the test locations allows for the examination of the bras accu-
racy of the sGs algorithm is made. This examination is donmbgns of scatter
diagrams of observed versus median simulated values attesiclocation, and
by calculating error measurements, such as linear coioelapefficient (), mean
absolute error (MAE), and root mean square error (RMSE).itkadhlly, [282]
developed a methodology to assess local model uncertasuglly. For a set of
validationz-observations ahly test locationsu; together with their correspond-
ing, independently derived ccdfg; (Z]l), j =1,...,Ny, the fraction of true values
falling into the symmetrig-probability interval (P1) bounded by tHé — p) /2 and
(14 p)/2 quantiles of their corresponding ccdf can be computed as:

Z

- 1
&(p) = WJ 1Ej(p> (7.1)

for any p € [0, 1], with:

£i(p) — {1, i Fa (1= p)/2) < 2u) <F ML+ p)/2),
i(p) =

. (7.2)
0, otherwise

)

The accuracy plot, which is a scatter diagram of the estim&_t@)) Versus ex-
pected fractionsy), reflects the model accuracy: the model is accurate when the
scatter points fall on or above the 1:1 line, and inaccurditerwthe points fall be-
low the 1:1 line. In addition to model accuracy, one wantsrtovik more about the
model precision. Therefore, a precision plot has been m@h{282] in which, for
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FIGURE 7.4 — Flowchart of sequential Gaussian simulations for growatdwdepth at
Doode Bemde (adapted from [280]). sGs are made for the nddassionulation grid,
having equal size and orientation as the original grid, withulation nodes located in the
centre of the original grid cells.
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Algorithm 6 : The sequential Gaussian simulation (sGs) algorithm.

Data: set of observation&z(vq), 0 = 1,...,n} at locationsvqy
(a =1,...,n) of random variabl&
Result simulation of a single continuous random variablat N grid nodes

define the number of realizationg @sk;
forr=1tokdo

transform the observation data §etvy),a = 1,...,n} into normal
scores{y(vq),a = 1,...,n} using the normal score transform:

Y(Va) =G [Re (2], a=,1...,n
wherAeG*1(-) is the inverse Gaussian cumulative distribution function,
andF is the sample cumulative distribution nf
compute and model the semivariogram of the normal sc§ta¥)(

define a random path along the nodgsj = 1,...,N), visiting each
node once;

forj=1toN do

(1) determine mean and variance of the Gaussian@gdfy|(c))

using simple kriging with the normal score semivariograntdelo
y(h). The conditional informatior consists of the normal score
data{y(vq),0 =1,...,n} and values simulated at previously visited
grid nodes/") (uy), witha=1,...,j ;

(2) draw a simulated valug") (u;) from that ccdf ;

(3) add the simulated value to the conditioning data set ;
end

back transform the simulated normal sco{q@(u,—),a =1,..., N}

into simulated values of the original variabﬁe“)(uj),cx =1,....N

by applying the inverse normal score transform to the sitedlaormal
scores:
27(u) =F Gy (u)), i=1...,N

end

a series of probabilitiep, the average width of the Pls that include the observed
values are plotted. The average witittip) is computed as:

— 1 < ) E-L -1 _
W(p) = Nvg(p);&(p) Ry, ((1+p)/2) —F,; 7 ((1-p)/2)] (7.3)

and should be as small as possible for precise interpoation
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7.2.4 Species clustering

Cluster analysis of ecological data is an explicit way ofidfging groups in data
to find structures [192]. There are several clustering nmotlamd a major distinc-
tion can be made between divisive and agglomerative methaidisive methods
start with one group which is subsequently divided into $emajroups until a
‘stopping rule’ is satisfied. Agglomerative methods staithwhe individual ob-
jects which are combined into groups by collection of olgesnd groups into
larger groups. In order to cluster species cover data ingetation types, the
TWINSPAN [83] program (divisive clustering) is frequentiged in community
ecology [192]. TWINSPAN produces a clustering of sites apekcges, by gener-
ating a two-way ordered table from a sites-by-species matithin the two-way
ordered table, the relative cluster similarity is given blyierarchy of integer lev-
els [283], and sites are clustered based on their speciepasition, and species
are clustered into different vegetation types.

Additionally, a posterior analysis of the TWINSPAN site gliering results can
be performed using the Jaccard index of similadi~= c/(a+ b+ c) wherec is
the number of species shared by both sites,aaddb are the numbers of species
unigue to each of the sites ([262] and Chapter 6). The Jatanithrity of two
sites expresses their ecological resemblance concemp@ujes composition, and
ranges between 0 (when both sites have unique species) amldeh poth sites
have equal species compaosition).

7.2.5 The random forest distribution model

The random forest model constructs an ensemble a@éssification trees during
model training. A unique class is assigned to a given datatinyi each of thek
classification trees. The proportion of votes for a certiinsej e C= {c1,...,Cn}
over allk trees is interpreted as the probability of occurrence dfdless:

P(cj) = N¢; /Niot, (7.4)

with N¢; the number of trees classifying the data point into cigsandN (= k)
the total number of classification trees in the random fordstus, the random
forest model output is a discrete probability distributmver all classes; < C.
The final classification is obtained by majority voting: tHass with the highest
probability of occurrenceR(c)max) is the predicted one. The uniformity of the
discrete probability distribution allows to gain some imfation on model output
uncertainty. Therefore, the Shannon entropy meagtir¢284, 285]), which has
been applied in other ecological modelling studies (e.§6[287]), can be used:
1 n

"= " logyn J'le(cj) 1092 P(61). (7.5)
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with n the number of classes.
The value oH ranges between:

(i) 0 : when an identical class results from the classificatié a given data
point by every member of the random forest ensemble, i.emtbael output
consists of probability value3(c;) = 1, with j € {1,...,n} andP(cx) =0,
with k=1,...,nandk # j; theP(c)max value equals 1;

(ii) 1: when the classification of a given data point resuftainy of then dif-
ferent possible classes by equal numbers of members of tldemaforest
ensemble, i.e. the model output consists of the followirgppbility values
P(cj) =1/n,with j = 1,...,n; theP(C)max value equals An;.

Within the context of vegetation distribution modellingyalue ofH close to 0
indicates that, based on the environmental conditions adtloni described in
measurement vectar, the random forest distribution model provides a strong ex-
pectation of a certain vegetation type. On the contrary)@evelose to 1 indicates
that, based on the environmental conditions, the randoesfalistribution model
is not able to distinguish between the different vegetatjypes.

It should be stressed that the random forest distributiodehgenerates an en-
semble of classifiers. The discrete probability distribatver all classes resulting
from classification by this ensemble suits for uncertaisgessment of the model
output, an assessment that could not be made if a singlefidashstribution
model (or more generally, any distribution model computngingle response)
was applied.

7.2.6 Evaluation of distribution modelling results

In this chapter, 3-fold cross-validation (see Chapter 4ofithm 3) was applied.
Measures to evaluate the distribution modelling resukspaieviously described.
They include the oob error (see Chapter 4, Algorithm 2), Whi defined as
(1—accuracy of the classification of oob elemertsD0 [%] and the test set er-
ror, which is defined as (daccuracy of the classification of cross-validation test
elements) 100 [%], where accuracy is the number of correctly classifisthnces
divided by the total number of instances. Further, Coherissst ([220] and Sec-
tion 4.5) was used to evaluate differences between obgemgadnd predictions.
The value ofk is negative if the agreement between observations andqpicts
is worse than expected by chance, and reaches 1 in case ef{mgfeement.

A threshold-independent evaluation using receiver opegatharacteristic -
(ROC) graphs was also performed [210] for visualizing dfassperformance.
For each ROC curve, the area under the curve (AUC) was cédcldend averaged
over the different classes using class weights based os\gtagalences in the test
data to obtain AUGy4 ([264] and Eq. (6.4)).
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7.3 Uncertainty assessment related to uncertainty in
environmental variables

As stated in the introduction, this chapter has a dichot@rsitucture. Under
this section, an uncertainty assessment will be perfornmtedhns exclusively re-

lated to the uncertainty in environmental variables. Thecstire of this chapter
is straightforward. The starting point are the field measanets (as made by the
monitoring scheme described in Chapter 3). These measutsnimelude envi-

ronmental point measurements and area covering informationanagement and
plant species distributions. The environmental point messents are spatially
interpolated, and the uncertainty associated with thisrpdlation is quantified.

After model construction, an assessment is made of thisceonir uncertainty

propagating through the model (as conceptualized in Figa}).

7.3.1 From field observations to a spatially distributed da& set

Field observations concerning the environmental site itimms$ were made at dif-
ferent ecosystem compartments: (i) groundwater (dynaamdsquality), (i) soil,
and (iii) vegetation. Groundwater dynamics were descrimga@ time series of
groundwater depth measurements, while groundwater guaéis described by
means of concentration measurements of chemical grourde@tinpounds. Soil
monitoring comprised the measurement of soil organic madted the direct an-
thropogenic impact on the vegetation compartment was seddyy identification
of the different vegetation management regimes. The spatiporal density of
field observations differed (Table 7.1), e.g. managemejitre was described for
every grid cell of the study are&(= 519) on a single occasion, while ground-
water depth observations were made 26 times each year (Bwémght) in 24
piezometersr(= 24) scattered over the area.

Based on these observations, seven different environinemiables were cal-
culated, including average groundwater depth (AGD), atugd of the ground-
water depth (Ampli), pH, chloride concentration (¢| sulphate concentration
(SOE(), soil organic matter content (SOM) and management regsae Sec-
tion 7.2.1). The former six variables are continuous, wasrihe latter one is
categorical with 4 possible management classes. Short anyrstatistics (mean,
range, variance) of the environmental variables (Tablg indicated marked hy-
drological differences within the study area, with averggmindwater depths and
groundwater amplitudes differences of more than 1.3 m batwézometers. Fur-
thermore, groundwater quality as well as soil organic mattewed a high vari-
ability, and the study area could be concluded to comprisigla Variability in
environmental conditions. In addition to the environméstee observations, a
species inventory, covering the entire study area, was maddor each of the



TABLE 7.1- Spatio-temporal resolution of field observations madaiwitlifferent ecosystem compartments. Derived varialabbreviations and
summary statistics are included.

Ecosystem compartment
Measurement locationgs)
Measurement times per yeay (
Variable

Abbreviation

Unit

Summary statistics

mean range variance

groundwater depth 24 26  average groundwater depth AGD [m] .45-0 [-1.35-0.03] 0.12
groundwater depth 24 26  amplitude of groundwater depth ~ Amplm] 1.06 [0.391.73] 0.11
groundwater quality 24 2 pH pH [-] 6.4 [5.76.7] 0.05
groundwater quality 24 2 chloride concentration “Cl  [mgL] 24.1 [1.568.0] 223.1
groundwater quality 24 2 sulphate concentration iSO [mg L] 53.5 [0.5272.0] 3438.5
Soil 59 1 soil organic matter content SOM [%] 20.7 [5.376.1] 904
vegetation 519 1 management regime / / / / /

LININSSISSVY ALNIVLIIIONN
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519 grid cells presence/absence records were made for plaB6species on the
checklist (part of Appendix A). As stated in the introductjall these field obser-
vations were assumed to be error free.

7.3.1.1 \Variation partitioning in species cover data

To quantify the spatial component of ecological variatioribee Doode Bemde,
variation partitioning [273—-275] was applied to 21 gridiselithin the study area,
i.e. those grid cells wherein field observations of grountéwdynamics and qual-
ity were made directly from a piezometer (from the 24 pieztars 3 are located
just outside the boundaries of the Doode Bemde). Three dédgspecies, envi-
ronmental and spatial, containing a grid-species matrnixirenmental conditions
and spatial information, respectively) were constructéid.(7.2). The species
data set consisted of inventory results of species occcere(presence/absence)
within each of the 21 grid cells. The environmental data setained observa-
tions of AGD, Ampli, pH, CI" and scﬁ* made from a piezometer within each of
these 21 grid cells. Soil organic matter content of the retarBservation point,
and management regime were added to the environmental elatd lse spatial
data set contained the 16 eigenvectors of the positive eddiees of the decom-
posed distance matrix. The species showed unimodal resptmthe gradients in
the study area (see Table 5.3, length of gradier®), and therefore the analysis
was made using partial CCA. The whole variation of the sedia set could
be partitioned into the following parts: (i) non-spatiafiiructured environmen-
tal variation, 20.8%; (ii) spatially structured environmal variation, 37.6%; (iii)
spatial species variation that is not shared by the enviemtah data, 41.8%; and
(iv) unexplained variation, 0.0%. Unexplained varianc® %o results from the
high number of environmental and spatial variables whegesfiecies variation is
explained upon.

The environmental variables explained 58.4% (37.6% + 2D @%he species
variation, of which approximately two-thirds was explaingy a similar spatial
distribution of species and environmental variables, Itegppartly from the same
response of species and environmental variables to somenoconunderlying
causes. One-third of the explained species variation coelcelated to the en-
vironmental variables as such, and involved the local efiéthese variables on
plant species, without any spatial trend. 41.8% of the gsecariation was as-
sessable by the spatial data set, and could not be relatet tof dhe measured
environmental variables. This means that unmeasuredypdrtant environmen-
tal variables and processes, e.g. biotic processes of ddimpepredation and
dispersal, were synthetically captured within the spalzdh.

Variation partitioning indicated that the species disttibn at the study area
results from spatial distributions of both measured andeasured features. This
result stresses the importance of an accurate spatigboiédion when species oc-
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TABLE 7.2- Summary of semivariogram models.

Variable n Model*  Nugget Sill Range [m]
(o) G+C) (@

AGD 24 sph 0.14 0.94 320
Ampli 24 exp 0.2 1 329
pH 24 sph 0.2 0.93 330
Cl- 24 sph 0.1 0.95 348
S{orn 24 exp 0.14 1.11 319
SOM 59 sph 0.17 1.08 297

*Models §(0) =0)

Spherical (sph):  y(h) = Co+Cy1[3/2(|h| /a) — 1/2(|h| /a)%] if0 < |h|<a
y(h)=Co+C1 if |h >a

Exponential (exp): y(h) =Co+Cy1[1—exp(—3|h|/a)] if >0

currence in relation with environmental conditions is unideestigation. Further-
more, it indicates that there is uncertainty on the caysafithe vegetation distri-
bution, which makes the interpretation of the distributioodelling results harder.
Finally, based on the variation partitioning result, thgeftion distribution model
would probably benefit from the incorporation of spatial elegpence [288], which
was beyond the study objectives.

7.3.1.2 Uncertainty on spatial interpolation of environmetal variables

The sGs algorithm was applied to the observation data seitfef the continuous
environmental variables (AGD, Ampli, pH, CI-, SOE( and SOM) containing
point measurements maderdbcationsvg, z(Vq),a = 1,...,n. The normal score
transformed data were used to construct and model experimental omaottirel
semivariogram§(h), with h the lag distance, using Variowin 2.2 software. Model
parameters of the different semivariogram models are giv@able 7.2.

The simulations resulted in 500 back-transformed reatinatfor each vari-
able for each of the 519 grid cells included in this studygllasn which empirical
non-parametric ccdfs were calculated (Fig. 7.5, examplgrofindwater depth).
Median vaIuesIf(O.S)) and conditional variances of these ccdfs were calculated.
The conditional variance equaled 0 for grid cells where pla®ns were made
(ﬁ*l(-) = observed value). For other grid cells, values higher thavefe cal-
culated, and differences in values could be attributed trvain sources: (i) a
spatial underrepresentation of nearby observations ircéimglitioning data set,
and (ii) the presence of strong gradients in the conditiguiata set, both result-
ing in highly variable estimates within the simulation aigfom. With respect to
average groundwater depth, a spatial pattern could beaabar the conditional
variance (Fig. 7.5). In the vicinity of the grid cells whergservations were made,
variance was generally low. Nevertheless, high varianteegaon the western
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levee with high average groundwater depths and in the delgpaession with su-
perficial groundwater depths could be observed even in glid adjacent to the
ones where observations were made, probably due to a ladksefation points
within these areas. Similar variance patterns were founthiother continuous
variables (not shown).

The lack of an independent validation data set forced thécgtipn of jack-
knifing to assess local uncertainty. Jackknife data setstéaung all but one
observation) of the continuous variables AGD, Ampli, pHTCSOffand SOM
were applied to the sGs algorithm resulting in 500 realeifor each of the;
jackknifed elements. The local uncertainty of the simolatiesults was investi-
gated by means of scatter diagrams of observed versus m&diatated values
(Fig. 7.6). The error measurements indicated poor sinafatsults for most of
the variables (AGD, Ampli, Cl and scﬁ*), to moderate and good results for pH
and SOM, respectively. Similar conclusions could be drasmfthe accuracy
plots. Scatter points were (partly) on or above the 1:1 lovgpH and SOM, indi-
cating accurate simulation results. The precision of theikition results for these
variables was also good. The width of the 0.5 probabilitgiwnal was 0.22 units
[-] and 13.84 [% org], for pH and SOM, respectively. The highdl uncertainty
of the simulation results of the other environmental vdgatrould be attributed
to the limited spatial coverage of observations.

For each grid celil, the median value over all 500 realizations computed by the
sGs simulation algorithm on the entire observation datéset24 for all environ-
mental variables, apart from SOM wharte= 59) was taken for each continuous
variable, and by adding management type which was idenfiiegach of the grid
cells separately, 519 measurement veckprs (X1, Xi2, . . ., Xi7) constituted of the
values of the seven spatially distributed environmentabies AGD, Ampli, pH,
Cl—, SO}(, SOM and management type were constructed. To each measutrem
vectorx;, a unigue vegetation tygee {cs,...,c7} was assigned to construct the
data set = {(x1,l1),...,(Xn,In)} with N =519. The data sét will be used as a
reference data set throughout this chapter.

Furthermore, for each grid cell 100 samples were drawn from the sGs
simulation results for the continuous variables using i &ypercube sampling
[289,290]. Latin hypercube sampling is a stratified randaotedure that pro-
vides an efficient way of sampling variables from their digttions, by covering
the full range of each variable [291]. Linked with the categal variable man-
agement type and the observed vegetation type, 100 datavestsconstructed
(LHS, ..., LHS100), in which the entire variable distributions are captured.

Where the Latin hypercube sampling resulted in data setsrocmythe entire
probability ranges of the continuous variables, anotherensystematic method-
ology was followed to construct data sets with varying degref deviation from
the median simulation results. For each grid cethe median value and standard
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FIGURE 7.5— Groundwater depths were monitored by piezometers (blatk d = 24)
scattered in and around the study area (a). Sequential @awssulation using these ob-
servations resulted in 500 equiprobable groundwater degatlizations for each grid cell
(N = 519). Empirical non-parametric conditional cumulativetdbution functions (ccdfs)
were computed from these realizations (b). Median (c) amidwee (d) values were calcu-
lated based on the unique ccdf of each grid cell.
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FIGURE 7.6— Scatter diagram (1), accuracy plot (2) and precision @pfdr the simula-
tion results of the jackknifed elements of AGD (a), Ampli,(pH (c), CI™ (d), Sd{ (e),
SOM (f).

deviations over all 500 realizations computed by the sGsilsition algorithm of
the six continuous environmental variables were calcdlafeata sets were cre-
ated by adding a proportioa of the standard deviations to the median values,
Lm:axstdew @and by subtracting a proporti@of the standard deviations from the
median values, m_axstdew Wherea € {0,0.01,0.05,0.1,0.5,1,2}, resulting in 13
mutually exclusive data sets. Whan= 0, the data setsyo0 equal the reference
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FIGURE 7.6—continued..

data set..

7.3.2 Model construction, calibration and evaluation

As indicated in the previous chapters (see Chapters 4-&yumber of treesk]
and the number of predictive variables used to split the sdak are two user-
defined parameters required to grow a random forest, whicé twebe calibrated
to minimize model error. Parameter calibration can be daiegthe built-in out-
of-bag error testing or using the test set error in crosgtatibn (see Chapter 4). In
3-fold cross-validation using different valuesmfoob error and test set error were
averaged over the three random forest models. Fig. 7.7 shomresergence of the
random forest models constructed with different numbenmmdi = 1 (minimal
value),m = 3 (optimal value), anan = 7 (maximal value)) when more trees are
added (i.ekincreases). The values 1000 and 3 were used for the two efieed
parameter& andm, respectively.

Using these parameter values, a random forest distribuiodel was con-
structed (Algorithm 7) which made a classification of the §tié cells included
in this study, of which 359 (69.17%) grid cells were classift@rrectly, and 160
(30.83%) grid cells incorrectly. A value @&f[220] of 0.633 was calculated, indi-
cating a substantial agreement between observations editfions. A threshold-
independent evaluation using receiver operating chaistite(ROC) graphs was
performed ([264] and Eq. (6.4)). For each class a differéD€CRurve was pro-
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FIGURE 7.7 — Out-of-bag (oob) error and test set error converge wherernrees are
added to the random forest (whkincreases). The numbers of variabley (ised to split
the nodes aren= 1, m= 3 andm= 7. Average error values of the 3-fold cross-validated
random forest model are plotted.

duced, with ROC curvg plotting the classification performance using vegetation
classc; as positive and all other classes as negative. For each RG@,dhe
AUC was calculated and averaged over the different classieg glass weights
based on class prevalences in the dataset. ThedJ@lue equaled 0.943 and
the random forest distribution model was concluded to perfwell.

The random forest model output for each grid cell is a digcpebbability dis-
tribution over the seven vegetation classes (see Eq. (T.ddking into this prob-
ability distribution by means of Shannon’s entropy meastif&qg. (7.5)) allowed
to gain some information on model output uncertaiftywalues range between the
maximal value 1 and minimal value 0. Other importeintalues are 0.356, 0.565,
0.712, 0.827 and 0.921, values obtained when the clas®ficagsults includg
dominant vegetation types with probabilities of occureehgj, wherej =2, ... .6,
respectively. When frequency counts were plotted agamisieg ofH computed
for every grid cell in the study site (Fig. 7.8(a)), a deceeasfrequency counts
could be seen with increasityvalues. This means that the random forest model
output distribution was generally quite narrow, with a cléaminance of one, two
or — to a lower extent — three different vegetation types.
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Algorithm 7 Pseudo-code for random forest distribution model cogstru
tion and testing using 3-fold cross—validation.

Data: L

Result P(c;) values and test statistiés AUCiota andH

partition the data sdt into 3 disjoint test data sefig, T, andTs;
fori=1:3do

useS = L — T to construct random forest model RF
calculate the out-of-bag-error;

save model;

apply the saved random forest model; Ri-test data s€k;
calculate the test set error;

saveP(cj) = Ne; /Niot (EQ. (7.4)) for all elements oF;

end

calculate test statistias AUCiotq andH;

7.3.3 Uncertainty on spatial interpolation of environmengl
variables propagating to the modelling results

A random forest distribution model was constructed on tlieremce data s,

using calibrated parametédts= 1000 andm = 3 (Section 7.3.2). In 3-fold cross-
validation, the model was then applied to two test data séts quantified data
uncertainty associated with the spatial interpolation mfinmental variables:
(1) the Latin hypercube test data sets, and (2) the devi&tiommedian data sets.

7.3.3.1 Latin hypercube test data sets

The random forest distribution model applied to the Latipéngube data sets
(LHS;, ..., LHS1og) using 3-fold cross-validation (Algorithm 8) resulted iropa-
bility of occurrence values for all seven vegetation typmsefach grid cell in the
study area, and this for each of the 100 Latin hypercube tgatgkts. Modelling
results were not accurate (Table 7.3); from the 100 teststdsacontaining 519 el-
ements, on average only 229.7 elements (47.37%) weref@assorrectly (com-
pared to 69.17% during model calibration), and galue of 0.367 and AU
value of 0.828 were obtained (Table 7.3). Therefore it cdaddconcluded that
the model did not perform satisfactorily when the entirebataility ranges of the
continuous environmental variables are considered. A rdetailed investiga-
tion of these modelling results was made by a grid-wise coispa of variances
(Fig. 7.9). It was hypothesised that grid cells with low @ages in simulation re-
sults for the continuous environmental variables (i.ed gells where observations
are made, and simulated values equal the observed ¥alté) = observed value,
as an extreme example) have a low variance in modelled pilapaib occurrence
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FIGURE 7.8 — Histogram of frequency counts of the Shannon entrdpyvalues of the
entire study siteN = 519) for the random forest distribution model cross-vakdaonL (a),
and tested on the Latin hypercube samples (averaged) @}hardeviation from median
test data setSyaxstdevWith @a=0.01,a= 0.1, anda= 1 (c).

Legend:j* indicates the values d¢f obtained when a grid cell is classifiedjagegetation
types with equal probability of occurrende(€;) = 1/j).

values. Therefore six scatter plots were constructedjpipthe variances in simu-
lation results of the continuous variables against theavae inP(c)max for the 100
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Algorithm 8 : Pseudo-code for model testing with Latin hypercube tett da
sets.
Data: LHS,, k=1,...,100
Result B(cj) values and test statisti&g, AUCiotalk andHy
for k =1:100do
use the partitioning of Algorithm 7 to partition the data k8H into 3
disjoint test data sefk 1, T2 andTy 3;
fori=1:3do
apply the saved random forest model; R¥-test data sely;
calculate the test set error;
saveR(cj) = Nkc; /Nt (Eq. (7.4)) for all elements ofi;;
end

calculate test statistiag,, AUCqotaix @andHy;
end

Latin hypercube model testing runs for each grid cell. Faffent groups were
created within each plot based on model accuracy for eachcgii (N = 519):
(1) a grid cell correctly classified ir 25 on a total of 100 Latin hypercube test
runs, (2) a grid cell classified correctly #8150 and> 25 model testing runs, (3)
a grid cell classified correctly irc 75 and> 50 model testing runs, and (4) a
grid cell classified correctly irc 100 and> 75 model testing runs. By applying
Spearman’srg), correlations between variances were calculated frorh efithe
four groups seperately. Significant positive correlatiahshe 0.05 significance
level were found for grid cells that were classified cornettl>75 of the 100 test
model runs. These include 19 grid cells where observati@re wade (located
in the origin of the scatter plots). For the other groups,igaificant correlations

were found.

Calculation of the entropy of the random forest model outpuor all grid
cellsi, averaged over all 100 Latin hypercube test runs, resuftedhistogram
of frequency counts (Fig. 7.8(b)) showing a maximum betwides 0.565 and
H = 0.712. Grid cells were mostly classified as three or four déffervegeta-
tion types with similar probabilities of occurrence. Zeridgells were classified
with aH value < 0.356. In comparison with the histogram based on the cross-
validated results of the reference random forest disidbuiodel, a clear shift
toward higheH values was observed, indicating that uncertainties onhéas
interpolation are propagated to the distribution modglhiesults.
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TABLE 7.3 — Uncertainty on environmental variables propagating to rdndom forest
distribution modelling results.

Data set oob error [%] test set error [%] Cohex’'s  AUCiotal averageH
L 28.03 30.83 0.633 0.943 0.420
LHS 27.55 52.63 0.367 0.828 0.661
Linsaxstdev a=0 28.03 30.83 0.633 0.943 0.420
a=0.01 28.03 29.67 0.646 0.941 0.435
a=0.05 28.03 31.02 0.631 0.938 0.461
a=01 28.03 33.53 0.600 0.931 0.491
a=05 28.03 45.47 0.457 0.877 0.658
a=1 28.03 53.76 0.363 0.829 0.768
a=2 28.03 68.59 0.207 0.759 0.831
Lm-axstdev a=0 28.03 30.83 0.633 0.943 0.420
a=0.01 28.03 30.44 0.637 0.943 0.421
a=0.05 28.03 31.41 0.624 0.935 0.433
a=0.1 28.03 32.95 0.605 0.927 0.459
a=05 28.03 53.18 0.347 0.860 0.615
a=1 28.03 65.70 0.181 0.757 0.629
a=2 28.03 70.91 0.123 0.678 0.623

7.3.3.2 Deviation from median test data sets

Another approach to assess uncertainty propagation to dldelting results made
use of test data selsnraxstdev |N 3-fold cross-validation random forest distribu-
tion models were constructed on the reference datd_sgtis;3 andL,3 and tested
on according test data sets in which the values of the camtisuariables differed
in degree of deviation of the median simulated value, anevfach the factor is
indicative (as it represents the proportion of the standaxdation that was added
to and subtracted from the median values) (Algorithm 9).

Algorithm 9: Pseudo-code for model testing with deviation from median
test data sets.
Data Lm+a><stdev Wlth
ae{-2,-1,-0.5,-0.1,-0.05,-0.01,0,0.01,0.05,0.1,0.5,1,2}
Result Py(c;) values and test statistis, AUCiota,a andHa
forae {—2,—1,-0.5,-0.1,-0.05,—0.01,0,0.01,0.05,0.1,0.5,1,2} do
use the partitioning of Algorithm 7 to partition the data ts%tinto 3
disjoint test data setg, 1, Tp2 and Ty 3;
fori=1:3do
apply the saved random forest model; Ri-test data sely ;
calculate the test set error;
savePs(cj) = Nag; /Nt (Eq. (7.4)) for all elements OF;
end

calculate test statistiog,, AUCiota,a andHa;
end
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FIGURE 7.9 — Variable variance versus variance in modelled probabdft occurrence
of the predicted vegetation typ@(c)max) When the random forest distribution model is
applied to 100 Latin hypercube test data sets. Differembuasl group the scatter points
(N =519) based on classification accuracy: a turqueiss a grid cell classified correctly
in < 25 Latin hypercube model testing runs (out of 100), a greés a grid cell classified
correctly in> 25 and< 50 model testing runs, a blue is a grid cell classified correctly
in > 50 and< 75 model testing runs, and a blaskis a grid cell classified correctly in
> 75 and< 100 model testing runs. Spearman’s rank correlatiog)safnd significance at
the 0.05 significance level (*) are indicated for each groejpesately.

Results indicated increasing test set errors wjaeimcreased, and decreasing
K and AUGy4 Values whena| increased (Table 7.3). However, the increase in test
set error and decreasekrand AUGgtg Values was limited wher0.1 < a< 0.1,
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and much more pronounced when this threshold was exceedasedBon this
result it could be concluded that the random forest moddbpmied well for test
elements with low margins of deviation from training valués certain deviation
threshold was exceeded, model errors increased dragtiddie histogram with
frequency counts of values indicated a clear shift to higher values when test
data deviated more from training data (Fig. 7.8(c)).

7.3.3.3 Implications for empirical distribution modelling

Distribution modelling on both Latin hypercube and dewatfrom median test
data sets emphasized that environmental variables withulovertainty are pri-
mordial for accurate distribution modelling. At the siteaks this amounts to
increasing the monitoring density allowing accurate argtise spatial interpo-
lation. The inclusion of stable environmental variablethwimited spatial and
temporal variability would lower the uncertainty on sphtierpolation as well,
and could therefore be justified within an empirical disitibn modelling con-
text. The ability to explain vegetation patterns by suchiremmental variables,
however, is questionable.

7.4 Uncertainty assessment related to uncertainty in
vegetation distribution

As described in Chapter 3, vegetation types were deternonea spatial plant
species inventory. Inevitably, species clustering intices uncertainty in the veg-
etation distribution. This section assesses the propamgafisuch uncertainty to
the distribution modelling results (as conceptualizedig F.1(b2)).

7.4.1 Uncertainty on species clustering

Based on the species cover data, TWINSPAN [83] was applieztder to de-
fine vegetation types (see Chapter 3 and Chapters 5-6). Sélement vegeta-
tion types were distinguished at the study site. A simplifiggresentation of the
TWINSPAN dendrogram is given (Fig. 7.10), and the spatiatritiution of the
seven different vegetation types can be seen in Fig. 3.2. femetailed descrip-
tion of these vegetation types is included in Chapter 3,88112.

Uncertainty concerning the species clustering results fitee many hard, ar-
bitrary choices that had to be made. First of all, which @tisg strategy is to be
used: an agglomerative strategy or a divisive strategy? iRad agglomerative
method is chosen, which (dis)similarity measure is to bé tebase the clustering
upon? Furthermore, what is the appropriate number of e¢ktall these choices
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FIGURE 7.10- Cluster dendrogram.

have to be made and influence the solution [292]. Additign#ik stability of the
TWINSPAN solution is often of concern [292—-294].

A posterior analysis of the TWINSPAN grid cell clustering svperformed
using the Jaccard index of similarity9). AveragedlSvalues are givenin Table 6.1
for the seven different vegetation types, and as discussé&hapter 6 marked
differences in similarity between the different vegetatigpes is present.

Based on this analysis, 6 new data sets were constructecebg@sandomi-
zation of the response variable (vegetation type) of 1%, B3%, 20%, 50% and
100% of theN elements to assess the effect of uncertainty on the respanise
able. Pseudo-randomizations were based on the Jaccatdriyrivetween grid
cells of the seven different vegetation types (Table 6.1)is Btategy reflects the
likelihood of erroneous clustering of a grid cell based @rsppecies composition.
An Arrhenatherion elatiorigrid cell for example, had on average approximately
twice as much species in common wHkfipendulionthan withMagnocaricion
their respectivdSvalues were 0.24 and 0.11. Therefore the likelihood is higihe
classify the vegetation type of this grid cell B¥ipendulionthan asMagnocari-
cion. This difference was (linearly) taken into account duriegponse pseudo-
randomizations. The new data sets are referred t@ ashere subscripp refers to
pseudo-randomization and superschifgb the percentage of pseudo-randomized
elements.

7.4.2 Uncertainty on species clustering propagating to themod-
elling results

The data sets with pseudo-randomizations in the respom'ﬁadalﬂaq_%) were used
for model construction and testing (Algorithm 10). The mawhy the calibrated
model constructed on reference datalsetas not used here, is that the random
forest algorithm constructs its classifiers taking respoveriables into account
(supervised learning), and hence uncertainty related éoisp clustering should
be taken into account during model construction as well.
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Algorithm 10: Pseudo-code for model testing with uncertainty on species
clustering.

Data: Lg, with b € {0,1,5,10,20,50,100}

Result Py(c;) values and test statistis, AUCotalp andHp

for b € {1%,5%,10% 20% 50% 100%} do

use the partitioning of Algorithm 7 to partition the data ls%linto 3

disjoint test data setk, 1, Tp2 and Ty 3;
fori=1:3do

uses§ = L% — Tp, to construct random forest model RF

calculate the out-of-bag-error;

apply RF to test data s€ly ;

calculate the test set error;

saveP,(cj) = Np; /Niot (EQ. (7.4)) for all elements Oy ;
end

calculate test statistiag,, AUCotalp andHp;
end

TABLE 7.4— Uncertainty on species clustering propagating to theaanfibrest distribu-
tion modelling results.

Data set oob error [%] test set error [%)] Cohew’'s  AUCqptal averageH

L 28.03 30.83 0.633 0.943 0.420

Lg b=1% 29.48 29.29 0.652 0.942 0.417
b=5% 30.83 32.56 0.613 0.919 0.456
b=10% 37.96 37.76 0.551 0.860 0.523
b=20% 49.04 49.71 0.413 0.791 0.626
b =50% 76.40 74.76 0.123 0.580 0.785
b =100% 83.62 85.55 -0.006 0.518 0.822

Models constructed on data sets with an increasing prapodf elements
pseudo-randomized in the response variable, showed siogeaob errors (Ta-
ble 7.4): an increase of 1.45%, 9.93% and 55.59%, with 1%, &4686100% of
the elements pseudo-randomized, respectively. The testree values revealed
that model performances did deteriorate gradually witlhd@asing percentages of
the elements pseudo-randomized. For the other evaludatistis, similar con-
clusions hold. This result stresses the importance of atewspecies mapping
and vegetation type determination. The better model pmdoces with 1% of
the elements pseudo-randomized indicate that vegetdtistecng uncertainty is
prevalent in the reference data.

A possible way to get rid of the uncertainty associated withcges clustering
is to use a selection of dominant species instead of vegatitpes for distribu-
tion modelling [51]. However, since vegetation types aegfrently used in nature
conservation, management and legislation (e.g. [295)29&] application of veg-
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etation distribution models will remain important.

7.5 Conclusions

Vegetation distribution models tend to describe vegetgti@miterns based on envi-
ronmental variables. A variety of uncertainty sources déacavegetation distri-
bution modelling results. We investigated two of them; ngntiee uncertainties
associated with (i) the spatial interpolation of enviromtaé variables, and with
(ii) species clustering into vegetation types. The follogvconclusions could be
drawn from this investigation:

1. Variation partitioning is a useful methodology to asseg®ortance and rel-
evance of environmental variables and their spatial siringy to vegeta-
tion distributions. In this study, variation partitionimg the observed data
(species, environmental and spatial) stressed the impe@t® include the
important environmental variables constraining the vaiimb distribution,
as well as their spatial variability within the study area,distribution mod-
elling.

2. The sequential Gaussian simulation algorithm (whicls@nees data rough-
ness and allows for local uncertainty assessment) is apptepo simulate
the spatial distributions of environmental variables lbase point observa-
tions. Its ability to quantify local uncertainty is advagémus for the inter-
pretation of distribution modelling results. In this studimulation results
were not accurate for most of the environmental variabled,c@nditional
cumulative density functions showed a high variability fieost grid cells.

3. The random forest distribution model generates an enseoflelassifiers,
allowing for model output uncertainty assessment whichatba quantified
using Shannon'’s entropy measure.

4. The uncertainty associated with spatial interpolatibernvironmental vari-
ables propagated clearly through the distribution moddlrasulted in de-
teriorating model performances (higher error dtdvalues, lowerk and
AUCo1q values). Environmental variables with low uncertainty pirienor-
dial for adequate distribution modelling.

5. Pseudo-randomization tests are appropriate for uniegressessment asso-
ciated with species clustering into vegetation types. Mpdegormances on
pseudo-randomized test sets emphasized the importancewbse species
clustering.
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7.6 Additional remark on the use of time series

Ecological distribution modelling studies frequentlyyr@n a limited number of
model input variables to describe environmental spacehEtmore, the environ-
mental gradients described by these variables are frelgugranging throughout
time (non-equilibrium situation, Chapter 1). Neverths|ghese dynamics are of-
ten ignored —mostly because of the costly and time-consgimionitoring work
which is required to capture them— and environmental inpité dely on a single
measurement, or they are approximated by averages basdihoted number of
observations. Obviously, uncertainty is introduced byhgoi@actice.

In this study, the environmental space was described by snafeseveral vari-
ables related with groundwater quantity and dynamics, muiauater quality, soil
and management. The temporal resolution of the obsengadiffiered for the dif-
ferent variables: groundwater dynamics were monitoredyetveo weeks during
the monitoring period, groundwater quality observatiorsevonly made twice,
soil samples were only taken once and the different manageragimes were
delineated once (Table 7.1). Groundwater quantity, grauater quality and soil
measurements were used to derive the observational dafa&et),a =1,...,n}
of the continuous environmental variables from which thatisp interpolation
started.

Up to three different sources of uncertainty could be aited to the different
steps in the derivation of these observational data sets.fildt source of uncer-
tainty is the uncertainty associated with the individualsi@ements in the field
(measurement error) of an environmental variabém time step, u(z). Based on
these (uncertain) observations, a time setiegz,...,z), witht the total number
of time steps on which observations were made, was consttudtsecond source
of uncertainty is introduced by averaging the time sefiesThe uncertainty of
the average value(z), assuming unbiased measurements and value independent
measurement errors, can be expressed in a discrete way3s [29

Zlefz(zi) ’ (7.6)
whereu(z) is the uncertainty on an individual measurementvhich is an ele-
ment of the time serieg with a total oft measurements of variable A third
source of uncertainty is the uncertainty due to incompiete toverage. This un-
certainty is strongly affected by the frequency distribotof field measurements
and the temporal occurrence of data gaps in the time serisgnplistic approach
to assess the uncertainty on the average value due to inetentphe coverage,
urc(2) assumes a random distribution of missing values througtheutime pe-
riod considered, and is given by [299]:

uiz) =

1—t/T
t )

urc(z) = 0(2) (7.7)
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wheret is the number time steps on which observations in the incetagime
series ) were made and the number number time steps on which observations
should be made to construct an complete time serpsdvering the same pe-
riod. o(z) is the standard deviation associated with the entire dataise can be
calculated as:

1 T
o(z) = T-1 Zl(zj —W(2))2. (7.8)
=

In this study, these three types of uncertainty are cleaigent. The deter-
mination of groundwater quantity variables, average gdeater depth and am-
plitude of the groundwater depth is based on groundwatethdepasurements.
Uncertainty in the individual measurements of groundwdggath can be caused,
for example, by a coarse or incorrect determination of tlweigd surface, or by
erroneous recordings due malfunctioning of the monitodagice. Furthermore,
time series of groundwater depth measurements are avetagédain the aver-
age groundwater depth. A final source of uncertainty is eela an incomplete
time coverage of the groundwater depth measurements wrech made every
fortnight.

Assume a constant uncertainty of the individual groundnaépth measure-
ments ((z), with z a groundwater depth measurement) of 0.02 m, then the uncer-
tainty related with the averaging of the time series of grbwater depth measure-
ments (1(2)) equals 0.02 m (Eq. (7.6)). The uncertainty resulting frasomplete
time coverage was calculated for each piezometer sepgraiete it is propor-
tional to the standard deviation of the —not measured—eetitine seriex(z).
Based on the incomplete time series measured at the studyérpwas used
as an estimation of the standard deviation, which rangeadsst 0.1 m and 0.6
m. Time series recorded at piezometers installed in tewém heavily fluctuat-
ing groundwater depths had higher standard deviationsselsiges were situated
on the levee of the river Dijle (western border of the studgadrand fluctuations
gradually decreased toward the central depression, tolloevédl by a slight in-
crease at the eastern border. Fig. 7.11 visualizes thengeaflirc(2) in function
of percentage of time covereg/T x 100) foro(2) values of 0.1 m, 0.3 m and 0.6
m.

The uncertainty associated with incomplete time coveragged from 0 when
t/T =1 (complete time coverage) towhent/T = 0 (fully incomplete time cov-
erage). The effect of the standard deviationups(z) could clearly be seen. For
piezometers where groundwater depth measurements ditdaoge a lot through-
out the year uncertainties are small compared to those wiighefluctuations
occurred. The interpretation is straightforward; timeamplete measurements
made at sites with limited groundwater dynamics are ablepdure a bigger pro-
portion of information compared with incomplete measuretaenade on highly
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FIGURE 7.11- The uncertainty of the individual groundwater depth measents ((z))
and uncertainty in function of incomplete time coveragesftes with different groundwater
depth dynamics (represented by standard deviatiy.

dynamic sites. Therefore, the dynamics of the measuredblarhas a major in-
fluence on the uncertainty related with its incomplete mesasent.

In this study where groundwater depth recordings were takery two weeks
during a 3 year period & 26 in 1991, 1992 and 1993), on an ideal measurement
frequency of once per dayl (= 365 in 1991 and 1993, anfl = 366 in 1992),
urc(2) values have to be read accordin@ x 100= 7 (Fig. 7.11), and they range
between 0.019 m fos(2) = 0.1 and 0.11 m foo(2) = 0.6. Uncertainties due to
incomplete time coverage are almost equal to uncertairgiaged with the indi-
vidual measurements at sites with low groundwater dynamilge they are more
than 5 times as large in highly dynamical sites.

For the amplitude of the groundwater depth, a similar uader decompo-
sition holds, with as only difference that there is no uraety due to averag-
ing. The amplitude is calculated as the difference betwegrinml and maxi-
mal groundwater depths, and uncertainties associatedivatindividual measure-
ments of these dates equal 0.02 m. The uncertainty on thedwater amplitude
caused by measurement uncertainty is therefore 0.028{@92)2 + (0.02)2).
The determination of the amplitude of the groundwater depllased on the same
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groundwater depth measurements as above, and uncertaings\at the different
piezometers due to incomplete time coverage of the groutedhwlapth measure-
ments are therefore the same.

The groundwater quality was assessed by concentratiorumegasnts of sev-
eral hydrochemical groundwater compounds, which were satgpled twice, in
spring and autumn of 1993, giving the wrong impression thay tvould be rel-
atively static. This is not the case, as reported in numestudies for various
groundwater nutrients (e.g. [300—-304]) and Fig. 1.3 whdranges in nutrient
concentrations are given after soil submergence. Unfat&ly, a reasonable esti-
mation of the uncertainties associated with groundwatalitywariables was not
feasible here; the uncertainty on the individual measurgsngould be highly in-
fluenced by the accuracy of the analyzing methods, but otberants like sample
transport and treatment can be important as well, but are toacapture quanti-
tatively in terms of uncertainty. Additionally, the verycdomplete time coverage
did not allow to make acceptable estimations of the standaxdations of the
fluctuation in groundwater nutrient concentrations, aretdfore the uncertainty
associated with incomplete time coverage could not be hixted.

This remark on the use of time series in ecohydrologicalisgjddds to one
of the main findings of this chapter. The uncertainty assediavith spatial in-
terpolation of environmental variables propagates thinahe distribution model,
but additionally, the uncertainty associated with the us@or containing and
incomplete) time series to characterize dynamical ecesygiroperties will also
influence the model predictions.






Conclusions and recommendations

8.1 Starting point of this dissertation

Wetlands can be ranked amongst the most highly threateresysiems on the
planet [305]. Unfortunately the degradation and loss oflamets are continuing,
mainly due to drainage for agriculture, settlements andnigation, and pollution.
Although no accurate record of worldwide wetland losseshzsen kept [1], an
estimated global loss of 50% since 1900 is reported fredug305, 306]. During
the first half of the previous century, this mostly occurmethie northern temperate
zones, however since the 1950s, tropical and sub-tropiegémnds have also been
disappearing rapidly [305].

However, a growing awareness of wetland functions and agréton of its
values resulted gradually in wetland protection. At firgttamce by means of na-
tional laws and agreements, and more recently, after réziogncross-boundary
wetland values, by means of international cooperation itland protection.
The most significant intergovernmental cooperation on anetlconservation is
the Convention on Wetlands of International Importanceseisly as Waterfowl
Habitat, held in Ramsar, Iran, in 1971 [307]. The Ramsar @ation provides the
framework for national action and international coopemafior the conservation
and wise use of wetlands and their resources. The treatyedibp the contracting
parties states

"the conservation and wise use of all wetlands through loegjional
and national actions and international cooperation, as atcitbution
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towards achieving sustainable development throughouivibréd"
and comprehends four commitments [307]:

— to designate at least one wetland at the time of accessiandiusion in
the List of Wetlands of International Importance and to poterits conser-
vation, and in addition to continue to designate suitabl#amels within its
territory for the List of Wetlands of International Imponize (Article 2.1);

— to include wetland conservation considerations in thatiomal land-use
planning. Member parties have committed themselves todtata and im-
plement this planning so as to promote, as far as possitdeyibe use of
wetlands in their territory (Article 3.1);

— contracting parties shall establish nature reserves tamnes (Article 4);
and

— contracting parties have also agreed to consult with atbietracting parties
about implementation of the Convention, especially in régatransbound-
ary wetlands, shared water systems, and shared speciaddAit

This international framework on wetland conservation ahelirt wise use
through the implementation of actions at local up to intéomal scale, stimulates
wetland research. One important research topic entailmtitelling of vegetation
patterns based on abiotical environmental conditions &tribution modelling.
This is highly relevant for wetland management and consienvdoy ultimately
enabling the prediction of vegetation response on enviertal changes and the
definition of environmental conditions to obtain certairabecosystems. The ap-
plication of ecohydrological distribution models has bé&®nstarting point of this
dissertation, on which the research objectives were defined

8.2 Answers to the research questions

The research objectives of this dissertation were (Chapter

— The introduction of ensemble learning by applying the dteddrandom
forest technique in vegetation distribution modelling by deva@izent of a
random forest distribution modédobr the prediction of wetland vegetation
distributions based on environmental wetland conditions;

— The assessment of tipeedictive abilityof the random forest distribution
model;

— Theidentification of important environmental variableetermining the
wetland vegetation distribution by the random forest distion model;
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— The assessment of tigeneralization abilityof the random forest distribu-
tion model; and

— The analysis of inputincertainty propagatiorthrough the random forest
distribution model.

Eight research questions have been asked to meet the tesbfctives. Answers
to these questions were given throughout this dissertatimhreformulated here
in a comprehensive way.

1. Which techniques are most frequently applied in distitsumodelling?

The conceptual considerations given in Chapter 4 sumnthdiféerent distribu-
tion modelling approaches. The majority of distribution dets, however, are
based on field observations which are used for empiricatildigion modelling
assuming an equilibrium state. A literature overview oht@ques used in these
models indicated generalized linear models and tree-ldasbdiques as the most
frequently applied.

2. Can the random forest technique be used for vegetatidriaison modelling?
This research question covers different aspects. Theréfovas split in several
subquestions:

(a) Are there requirements concerning data formateommon data format in
distribution modelling is a combination of continuous amdegorical vari-
ables describing the environment as independent variallés binomial
or multinomial response. As learnt from Chapter 4, the ramftarest tech-
nigque can readily be applied on these data.

(b) Is the model output meaningful within a distribution rathdg context?The
probability of occurrence is generated as model outputb#hibity values
range between 0 and 1, and could be interpreted as habitzbiity values
within a vegetation distribution modelling context.

(c) Canthe model output be introduced into geographicalimiation systems?
Based on spatially explicit environmental gradients theleigenerates spa-
tially explicit maps indicating the probability of occurree for one or more
vegetation types. These maps are interpreted as habitabiity maps.

The positive answer to previous subquestions allows toladecahat the random
forest technique is suitable to be applied in distributicrdeiling.

3. Is the predictive ability of the random forest model gatitorily?

In Chapter 4 a random forest distribution model was congdrlion the ecohydro-
logical data set. Modelling results were compared with ¢hafsa logistic regres-
sion model constructed on the same data set. A variety afiatiah statistics were
used and indicated significantly better model performanédése random forest
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model. Furthermore, a random forest distribution modehw#duced complex-
ity outperformed the logistic regression model (Chapterfjerefore the answer
to this research question is affirmative, and the randonstdeshnique could be
concluded to lead to better predictive ecohydrologicatitligtion models.

4. Can the random forest distribution model provide infotima concerning the
importance of environmental variables constraining thgetation distribution?
The random forest algorithm provides an estimator for \@eigmportances. This
measure was used in Chapter 5 to rank environmental vasiablestraining the
wetland vegetation according to their importance on vegetalistributions. Two
subquestions were asked to further assess the possihilftthis estimator:

(a) Would other techniques identify the same environmefatidgbles as being
important? In comparison with ordination results, similar rankingsreve
formulated. Nevertheless, a bias in the importance valwatfgorical vari-
ables was prevalent and the variable importance estimhtaddsthus be
used with care. Variable rankings for the individual vegjetatypes only
showed a significant similarity for three out of seven vetjetetypes when
rankings formulated by hierarchical partitioning of lagggegression mod-
els and by the variable importance measure within randoestemwere com-
pared.

(b) Is it possible to construct accurate random forest disttion models on
a reduced data set, only including the most important envirental vari-
ables?Random forest distribution models with decreasing coniplaxere
constructed in Chapter 5. Stable model performances weseredd for
models using more than five important predictive variakdesl a sharp in-
crease in error was observed when complexity further deeceaFor the
case study presented, a minimum of six predictive variabhégsto be in-
cluded in order to gain an accurate fit. This model was morerate than a
logistic regression model using almost three times as masWigtive vari-
ables!

5. Is there a spatial trend in the random forest distributimodelling results?

Chapter 6 revealed decreasing probability values towagdtiundary areas be-
tween adjacent vegetation types. An inverse proportignbktween predicted
probabilities and the species similarity of vegetationetypvas attributed to the
classification performances of the individual classifierhin the random forest
model. Grid cells within the boundary area between simitgyetation types (high
similarity) were classified as similar, but different veaein types by comparable
numbers of classifiers (low maximal probability value). tdéion, species clus-
tering for vegetation type determination of boundary gets; is likely to contain

a higher uncertainty, which may be reflected in the modeliemylts (Chapter 7).
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Furthermore, isolated grid cells and small areas surradibgi@nother vegetation
type were frequently incorrectly classified and considéodae a weakness of the
random forest distribution model concerning predictiocLaacy. Based on results
of Chapter 7, it may be concluded that a smoothening of the@mwental gra-
dients, due to, for example, an insufficient monitoring dgrer an inappropriate
interpolation technique not fully capturing the local aduility, could cause the
inferior model performances for isolated grid cells and baraas.

6. Does a random forest distribution model, constructed givan wetland, per-
form satisfactorily when tested on a similar but distantlesd?

A random forest constructed on data of one site was applieldt® of a distant,
though ecologically similar site in Chapter 6. Model evéilia proved an un-
satisfactorily model performance and stressed a confinecomsequential to the
empirical nature of the distribution model.

7. Does the use of an ensemble modelling technique allowniertainty assess-
ment?

The random forest model output is a discrete probabilitirithistion over all re-
sponse vegetation types. The uniformity of the discretégbdity distribution
allows to gain information on model output uncertainty, égample by means of
an entropy measure as implemented in Chapter 7. An uncerigsessment of
this kind could not be made for single classifier distribntiodels.

8. How does input uncertainty propagate through the randorast distribution
model?

A propagation of input uncertainty to modelling results wasious from the as-
sessment performed in Chapter 7. The discrete probabiktyilaltion over all
response vegetation classes flattened and the model dichdadod evidence to
classify a grid cell as a certain vegetation type when inmgeutainty was preva-
lent. Therefore, the use of variables with limited uncetgivas concluded to be
primordial for adequate distribution modelling.

8.3 Contribution of this dissertation

The main contribution of this dissertation to ecohydrotadiresearch is the in-
troduction of a new technique for vegetation distributioadelling based on en-
vironmental conditions leading toward better model perfances. Additionally,
the assessment of model complexity reduction only to irelind most important
environmental gradients constraining wetland vegetatistnibutions, and the de-
velopment of a framework for uncertainty assessment adttsetpractical appli-
cability and enhances the interpretation of the modellesults.
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8.4 Future perspectives

Although a new modelling technique was introduced, the epiwal modelling
approach remained unchanged and the random forest digiribnodel predicted
vegetation type distributions empirically, based on fididervations assuming an
equilibrium state. As a consequence, the model describedl avetland situation
with a high precision, but sacrificed generality (Fig. 4.hielr made a successful
model implementation impossible beyond the local cond#iehere it was con-
structed upon (conclusion of Chapter 6). This limitatiofirtes important future
research perspectives.

8.4.1 Compilation of data sets

The compilation of an extensive data set prospects an eaHasnerality. Recall-
ing Fig. 6.5, in which a conceptual representation is madi@fealized niches
of Calthion palustrisat Doode Bemde and Snoekengracht. Merging both areas
would define a larger proportion of the fundamental niche.diAd more sites
would increase this proportion further, until the (hypdiba) survey in which all
sites withCalthion palustrisare included. The realized niche delimited as such,
would include all environmental conditions in which the g&gfion type under
consideration flourishes. However, it should be kept in ntivad intraspecific and
interspecific interactions are artificially (not expligitincluded in this survey. A
distribution model constructed on this data set would hagkdr generality. Nev-
ertheless, vegetation occurrence predictions followiagexample, environmen-
tal changes will contain errors due to an inexplicit incogimn of biotic processes
in the model.

Despite this drawback, empirical distribution modellirgems to be the most
successful option today. The scientific understanding afiand processes in rela-
tion to vegetation type occurrences s too limited for a meehanistic modelling
approach. Hence, the compilation of an extensive data ségeneral interest for
high quality modelling, which should be addressed in futesearch.

Based on this dissertation, recommendations are made rcong&lata gath-
ering in wetlands. A first recommendation emerges from tloe tfaat accurate
random forest models could be constructed on a limited numbenvironmen-
tal gradients. Consequently, data gathering through theitoring of wetlands
should only encompass a limited number of environmentaligras, preferably
those with a more causal effect on vegetation occurreneesthapter 5), that are
measured at a satisfying spatio-temporal resolution. Ak,smodel input uncer-
tainties can be reduced and model output would have a highability. A second
recommendation regards the modelled entity. In this dia8en, vegetation types
were used, other studies used plant species. The advarftaggedation distri-
bution models is that the model outcome can be thought of asoae(or less)
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discrete spatial entity with a certain species compositibme disadvantages, on
the other hand, are that it is not the vegetation as suchhbundividuals compos-
ing the vegetation that are related to the environmentalitions. Environmental
changes will affect the individual species in the first plaggh subsequent veg-
etation alterations. Additionally, as demonstrated in@&a6, species clustering
into vegetation types may induce additional uncertaingt th propagated to the
modelling results. A potential strategy to overcome thésadvantages is to use a
selection of dominant plant species (e.g. based on covdrammass, phytosocio-
logical aspects) upon which the modelling is based.

8.4.2 Time dependence

The majority of distribution models are stationary (e.@®,[97,98, 100,114, 125-
131]), assuming a state of equilibrium, notwithstandirgjrthltimate goal to pre-
dict vegetation responses on environmental changes. Alsiexample is pre-
sented for clarification (Fig. 8.1). Consider a unimodapmesse of probability of
occurrence of two given vegetation types (or species) iatiod to an environ-
mental gradient. A currentyd) environmental state (A) at a particular location
within a wetland results in a probability of occurrence lBa 1 andPa 2, for
both vegetation types, respectively. However, a givenraptbgenic disturbance
alters the current environmental state (A) to another §Bjtduring a time interval
(t1 —to), and a random forest distribution model is used to detegritia probabil-
ity of occurrence of the given vegetation types under these conditions. The
stationary model will predict a probability of occurrend® ( andPg ) for both
vegetation types, under the assumption of ecosystem lequiti. The vegetation
type with the highest probability of occurrence will be theeglicted one. The
dotted line in Fig. 8.1 represents the equal probabilitg [iR- 1 = Pc2), which is
modelled based on an environmental state C, and the appticaftthe decision
rule leads to the prediction of vegetation type 1 when thérenmental gradient
has a value lower than C, and vegetation type 2 when than isahigher than C.
Consequently, the modelled vegetation response is gntisglendent on the en-
vironmental changes (no time lag between environmentaighand vegetation
response since an equilibrium is assumed at all time), dochiration on the dura-
tion of the establishment of the new vegetation type is lagkAs seen in Fig. 8.1,
different trajectories to reach the new equilibrium aresils: (tr) a fast response
of the vegetation where the new equilibrium is reacheg, §tr,) a gradual change
in vegetation lagging behind the environmental change eadhing equilibrium
atts, and (tg) no response untth whereupon a change in vegetation is observed
to reach equilibrium at.

The inclusion of time into distribution models is a challamgfuture research
perspective, which would increase their value for cong@mand restoration ap-
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vegetation type 2

Py, P, Py

—> B Environmental gradient
—> B Environmental gradient

\
e P Pa Time ¢, ’ ‘, ‘,
Probability of occurrence

vegetation type 1

FIGURE 8.1- Conceptual representation of the time dependence ofattyetesponses to
environmental changes. Two vegetation types have unintedpbnses to an environmental
gradient, showing an optimum, however, at different envinental states. An environmen-
tal state shift from A to B results in a decrease of the modgbiebability of occurrence
for vegetation type 1Hx 1 — Pg 1), While it increases for vegetation type Ba(> — Pg2).
Predictions of a stationary model (crosses in right panehat give any information about
the time-scale on which vegetation changes are occurringsiponse to change in environ-
mental change. Different trajectories are possiblg (tp and tg, indicated by the green
dashed line).

plications drastically. An empirical approach might jésthe use of Markov mod-
els to simulate the transition dynamics of vegetation andifigrent discrete veg-
etation types [308-310] (Clementsian approach). Statjohtarkov models are
based on a transition matrix containing probabilities ajetation changes from
one type to another over time. A stationary Markov model igrely defined by

the vegetation distribution at a given moment in time, aredttansition probabil-
ity between the different vegetation types. This seemisghple model, however,
becomes more complex when other processes such as immigaaiil extinction

of (native and invasive) species [311] and spatial intévast[312] and gradi-
ents [313] have to be incorporated. Non-stationarity ofttaesition probabilities,
which has been reported for natural ecosystems after majorommental per-

turbations [314], led to an extension of stationary Markaydels to Markov-set
models, using transition probability intervals [315], amdden Markov models,
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accounting for additional processes overlaying the Magrocess [316].
Nevertheless, the random forest distribution model dog¢$netude informa-
tion on the transition between vegetation types. A possit#éhodology to over-
come this shortcoming, is by applying coupled modellingh{&ction 8.4.3) in
which the random forest distribution model is coupled tcamsient model for the
environmental setting, and defines another future resqemdpective.

8.4.3 Coupled modelling

The idea behind a coupled modelling approach is to get tinpemigent and spa-
tially distributed estimations for a range of environméwrtaiables (with special
attention for groundwater dynamics) by implementationloydrologic and/or hy-
drochemical model, on which the random forest vegetatistridution model is
applied at several discrete time steps. Once again, thigydbil vegetation dis-
tribution modelling based on a limited number of environtaérariables (con-
clusion of Chapter 5) is advantageous since a decreasedemwidnvironmental
variables are to be included, possibly decreasing the buareertainty on the
environmental estimations at a given time, which is prinmrébr distribution
modelling with a satisfactory accuracy level (conclusiéiCbapter 7). A hydro-
logic and/or hydrochemical model for coupled modellingudaatisfy following
requirements:

1. the environmental estimations should be of appropriiate &nd spatial res-
olution;

2. the environmental estimations should be spatially ibisted over the mod-
elled area;

3. the model should account for all water fluxes to providedhestimates of
guantitative and qualitative groundwater aspects.

A hydrologic modelling approach satisfying stated requieats could be the
iterative modelling approach developed by Batelaan [79],3th which a spa-
tially distributed water balance model (WetSpass, [318fdnnected to a regional
groundwater model (MODFLOW, SEEPAGE [319] and DRAIN [32@ckages)
providing groundwater depth estimates. Input data for tle¢Sfyfass model are re-
lated to meteorology (precipitation, evapotranspiratisindspeed, temperature),
land cover, slope, soil texture and groundwater depth toehihe water balance
of grids cells with high spatial resolution. Based on thesarenmental estima-
tions, a random forest distribution model would be able &djmt the probability
of occurrence of several vegetation types at a given tingyramg a sufficiently
wide environmental coverage in the data set where theldisiton model was con-
structed upon (Fig. 8.2). The distribution model outcomauith be interpreted as
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FIGURE 8.2— Framework for coupled modelling.
Legend: HM = hydrologic or hydrochemical model, RF = randane$t distribution model,
and VDM = vegetation dynamics model.

an indicator for habitat suitability. For each vegetatigpe included, a spatially
distributed suitability map shows the site potential giaeset of modelled environ-
mental constraints. Whether the vegetation type would apfodlowing the en-

vironmental changes depends on localized immigration atidation processes.
Local immigration and extinction processes refer to indlivl-by-individual mor-

tality and colonization, processes which are highly deteeah by the interaction
with their neighbourhood. An additional model on vegetatio species dynamics
actually accounting for neighbourhood interaction (epat®l auto-correlation)
could provide additional information on actual vegetat@ceurrences.

Additionally, hydrologic models may benefit as well from aipted modelling
approach. As the random forest distribution model predjotéential) changes
in vegetation distributions, associated physiologica stnuctural changes of the
vegetation and its dominant species might be taken intowatcd~or example,
in wetlands, where strong feedback from vegetation on sitkdiogy are imma-
nent (see Fig 1.4), an important physiological alterat®melated to the (local)
immigration or extinction of phreatophytes at a given lamat As demonstrated
in numerous studies, phreatophytes consume water diffeatfythe groundwater,
resulting in a daily pattern of groundwater depth fluctuadi§32, 321], while non-
phreatophytes are restricted to the soil water in the vadose. Hence, the soil
water balance (see Fig. 3.4) will differ when phreatophytenigrate/extinct from
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a given wetland location. Similarly, the inclusion of sttwral vegetation changes
may lead to better hydrologic modelling performances, byegating additional
information for the calculation of water balances at a gil@sation at a given
time. Leaf area, for example, differs greatly among vegmtaypes [321]. Leaf
area is proportional to the vegetation transpiration r§3@2—-324], and affects
the energy and mass balance at the soil surface by shadiBg33@]. Therefore,
feedback information from the random forest distributioodal to the hydrologic
model may effect improvement of the latter model.

A remark, however, should be made about the scale level ochvthé coupled
modelling is performed, and its relative benefits. For miaigktudies addressing
hydrological balances at the local scale, coupled modgikould allow to gain
more detailed insights by accounting for vegetation dgualent and changes. For
catchment modelling at the regional scale, however, a eauplodelling approach
might be too elaborative and too data-demanding. Consiftaneated catchment
of a river with alluvial wetlands in its floodplain, as an exalmfor clarification. A
change from forest to agricultural land is foreseen, anatidydrological impli-
cations are under concern. For modelling the wetland arelagixely, a coupled
modelling approach accounting for the hydrological andetation changes at the
local scale would improve results. For modelling the entmechment, however,
vegetation changes within the wetland are of minor impagacompared to the
change from forest to agricultural land, and thus, a coupledelling approach ac-
counting for vegetation changes within the wetland woulddiessly complicate
the study.

In summary, a coupled modelling approach has potential forentetailed
distribution modelling by taking response times on enuvinental changes (dis-
cretely) into account. However, future efforts regardingtribution model im-
provement should act commonly with additional high qualiya acquisition since
quality of data will eventually determine model performasand applicability.

8.5 Recommendations for potential users

Future perspectives (Section 8.4) were formulated fronearttical point of view.
However, the results of this dissertation allow to providens practical recom-
mendations for potential users of the random forest digtion model, with re-
spect to monitoring and data acquisition, data preparatiaithe modelling itself.

Monitoring and data acquisition:

— Try to identify the environmental gradients that are caising species or
vegetation distributions mostly. Rather than monitorimgwtitude of envi-
ronmental variables on a low quality level, concentrate tmaed number
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of important ones (see Chapter 5).

Some environmental gradients are easier to be describeatégorical vari-
ables. Categorical variables are appropriate for randaestaistribution
modelling, a translation to dummy variables is unnecessay Chapter 4).

The data quality of environmental variables and subsequedel| perfor-
mances are heavily influenced by the spatial and temporaitanomg res-
olution (see Chapter 7). Therefore, monitoring resolgishould be de-
termined by the spatial and/or temporal dynamics of theabées under
concern.

If possible, focus on representative plant species ratien vegetation
types. By doing so, the uncertainty introduced into the dgtdhe clus-
tering of species into vegetation types can be avoided (kept€r 7). Rep-
resentative plant species should be sufficiently specificg@nvironmental
conditions. Rare species, however, may not be the bestrogiiee their
presence/absence is determined to a relatively greatentesy other pro-
cesses such as migration.

In order to validate model performance, validation datzusthbe acquired.
Cross-validation is one possibility in which all data aredior both model
construction and validation (see Chapter 4). Another pdggiis the use

of independent validation data. However, if the environtabgradients
described by the validation data are not within the rangéefdata where
the model was constructed upon, one can not expect satisfigodelling

results (see Chapter 6). Therefore it is recommended tar@aqdependent
validation data in the vicinity of the training data set.

Data preparation:

Most likely a spatial interpolation of the acquired enwingental variables
has to be performed to get area covering estimates. Sewsatagistical

techniques are at one’s disposal to perform this interolatThe appli-

cation of sequential Gaussian simulations (sGs), howeeecommended
based on the results of chapter 5 because sGs preservesatiaetehistic

roughness in the data, and has the ability to determine locedrtainty.

Information on local uncertainty improves the interprietatof the random

forest modelling results (e.g. are unsatisfactory modghesults at a certain
locality related to uncertain environmental estimations?

The data were not normalized in this dissertation. It caargaed that data
normalization could decrease the bias in the ‘variable ifgmze’ measure
(see Chapter 5) and improve model performances on indepeddi (see
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chapter 6) because the environmental gradients of datadvitavle a com-
parable range. Although independent modelling resultsat@expected to
improve drastically, data normalization may be considered

The random forest model:

— Based on chapter 7, a recommendation to look into the désprebability
distribution of the random forest model output, e.g. by nseafriShannon’s
entropy, to get estimates on the uncertainty of the resuftrmulated. Do-
ing so enhances the interpretation of the results a lot.
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Shortlist of plant species

PHREATOPHYTES

Achillea ptarmical.

Carex canesceris.

Carex nigra(L.) Reichard

Equisetum telmateig&hrh.

Filipendula ulmaria(L.) Maxim.
Lythrum salicarial.

Myrica galeL.

Osmunda regali&.

Ribes nigruri.

Scirpus sylvaticuk.

Scutellaria galericulatd..

Thalictrum flavurdi.

Angelica sylvestris.

Calamagrostis canescefid/eber) Roth
Circaea lutetiana..

Dactylorhiza fistulosgMoench) H. Baumann et Kiinkele
Deschampsia cespitogh.) Beauv.
Lotus pedunculatuSav.

Luzula multiflora(Ehrh.) Lej.

Adapted from W. Huybrechts, E. De Bie, P. De Becker, M. Wassed A. Bio. Ontwikkeling
van een hydro-ecologisch model voor vallei-ecosysteméfiaanderen, ITORS-VL (VLINA 00/16).
Instituut voor Natuurbehoud, Brussel, 2002. (In Dutch)
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APPENDIXA

Lysimachia vulgarig..
Phalaris arundinaced..
Pulicaria dysentericdL.) Bernh.
Saxifraga granulata..
Alopecurus pratensis.
Barbarea intermedidoreau
Carex sylvaticaHuds.
Lamium galeobdolofL.) L.
Molinia caerulea(L.) Moench
Rhinanthus angustifolius.C. Gmel.
Rhinanthus minok

Alisma plantago-aquatich.
Berula erectaHuds.) Coville
Calla palustrisL.

Caltha palustrid_.

Carex acuta..

Carex acutiformi€hrhr.
Carex distichaHuds.

Carex echinataMurray

Carex elongatd..

Carex paniculatd..

Carex pseudocyperus
Carex rostrataStokes
Cirsium oleraceun(L.) Scop.
Comarum palustré.

Eleocharis palustrigL.) Roem. et Schult.

Equisetum fluviatile..
Equisetum palustre.
Eriophorum polystachioh.
Galium palustrel..

Galium uliginosuri.

Glyceria maximgHartm.) Holmberg
Juncus acutiflorug€hrh. ex Hoffmann

Juncus filiformid_.

Menyanthes trifoliatd..
Peucedanum palustft.) Moench
Phragmites australi¢Cav.) Steud.
Ranunculus flammulia.

Rumex hydrolapathutduds.
Viola palustrisL.
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NON-PHREATOPHYTES

Anthriscus sylvestrif_.) Hoffmann
Arrhenatherum elatiugl..) Beauv. Ex J. et C. Presl|
Brachypodium sylvaticufBoreau
Carex hirtaL.

Crepis biennid..

Dactylorhiza maculatdl.) So6
Deschampsia flexuoga.) Trin.
Digitalis purpureal.

Equisetum arvense.

Geum urbanunt.

Oxalis fontanaBunge
Polygonatum multiflorunL.) All.
Potentilla sterilis(L.) Garcke
Pteridium aquilinum(L.) Kuhn
Teucrium scorodonid.

Vaccinium myrtillud_.






Photograph of the different vegetation
types

ALNO - PADION, Elzen - Vogelkers verbonfelzen - vogelkers bos]

FIGURE B.1- The forest typ&no - Padionis present at Snoekengracht (April 2008).
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ARRHENATHERION ELATIORIS , Glanshaver verbondglanshaverhooiland]

FIGURE B.2 — Arrhenatherion elatioriswith several grass species, as observed at
Bourgoyen-Ossemeersen, Gent.
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CALTHION PALUSTRIS , Dotterbloem verbonddottergrasland]

FIGURE B.3—Caltha palustriss a diagnostic species for ti@althion palustrisvegetation
type. The blueish aspect of the water on the soil surfacedsacheristic for seepage water.
(Copied with permission from [?]).
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CARICI ELONGATAE — ALNETUM GLUTINOSAE , Elzenzegge - Elzenbroek as-
sociatie [mesotroof elzenbroek]

FIGURE B.4 — Carici elongatae — Alnetum glutinosa Snoekengracht (April 2008). An
Alnus glutinosdree layer is undergrown by a herblayer wilarex acutiformisas can be
seen on the foreground of this photograph.
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CARICION CURTO -NIGRAE, Zomp -en zwarte zegge verboikleine zeggeveg-
etatie]

FIGURE B.5 — Caricion curto-nigraewith flowering Lychnis flos-cuculat Zwarte Beek
has a high species similarity witbalthion palustris (Copied with permission from [?]).
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CIRSIO — MOLINIETUM , Associatie van Kale Jonker en Pijpestroofjelauw-
grasland]

FIGURE B.6 — Two adjacent vegetation types at Vorsdonkbos-Turfputtiee herbaceous
Cirsio — Molinietumon the foreground an8phagno — Alnetunthe woody vegetation type
on the background. (Copied with permission from [?]).
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FILIPENDULION , Moerasspirrea verbondmoerasspirearuigte]

FIGURE B.7 —Filipendula ulmariais a diagnostic species for ti@ipendulionvegetation
type.
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MAGNOCARICION , verbond van de grote zegge soortfrote zeggevegetatie]

FIGURE B.8—Magnocaricionvegetation type, with detail of a flowerir@arexspecies.
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MAGNOCARICION WITH PHRAGMITES , verbond van de grote zegge soorten
met riet [rietruigte]

FIGURE B.9 — Magnocaricionwith Phragmitesat Snoekengracht (foreground, April
2008).
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PHRAGMITETALIA , Riet orde [rietland]

FIGURE B.10 - The brownPhragmitetaliavegetation belt (winter aspect) at Snoeken-
gracht (April 2008).

SPHAGNO — ALNETUM , [oligotroof elzen - berkenbos]
(See Fig. B.6)
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