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Abstract 

Intoduction: In systems biology, an organism is viewed as a system of intercon-
nected molecular entities. To understand the functioning of organisms it is essential 
to integrate information about the variations in the concentrations of those molecular 
entities. This information can be structured as a set of networks with interconnections 
and with some hierarchical relations between them. Few methods exist for the recon-
struction of integrative networks.

Objective: In this work, we propose an integrative network reconstruction method 
in which the network organization for a particular type of omics data is guided 
by the network structure of a related type of omics data upstream in the omic cas-
cade. The structure of these guiding data can be either already known or be estimated 
from the guiding data themselves.

Methods: The method consists of three steps. First a network structure for the guiding 
data should be provided. Next, responses in the target set are regressed on the full set 
of predictors in the guiding data with a Lasso penalty to reduce the number of predic-
tors and an L2 penalty on the differences between coefficients for predictors that share 
edges in the network for the guiding data. Finally, a network is reconstructed on the fit-
ted target responses as functions of the predictors in the guiding data. This way we 
condition the target network on the network of the guiding data.

Conclusions: We illustrate our approach on two examples in Arabidopsis. The method 
detects groups of metabolites that have a similar genetic or transcriptomic basis.

Keywords: Multi-omics, Network reconstruction, Network integration

Introduction
Advances in high-throughput technology have enabled the massive collective quantifica-
tion of molecular entities, such as messenger RNA, proteins, and metabolites. This age 
of omics has revolutionalized the field of systems biology, enabling biological systems to 
be studied using mathematical and computational modeling on high-dimensional omics 
data. In systems biology, an organism is viewed as a complex web of interacting molecu-
lar entities [19] studied in order to outline how cells, organs, and tissues behave at a 
molecular level [21].
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A commonly used tool for analyzing omics data is network analysis. In network analy-
sis, each omics level is assumed to have a network representation where complex asso-
ciations are visualized by graphical structures. SNPs, genes, metabolites, and/or traits 
are typically represented by nodes in a graph and their associations (physical, genetic, or 
functional) by edges connecting them. Extracted patterns are then used to help elucidate 
biological mechanisms underlying traits of interest.

Methods for omic data integration

A key question in systems biology is how to model omics data at a systems level (integra-
tive analysis), instead of each omics source separately [12]. Several approaches have been 
developed in the context of integrated analysis, see [5, 11]. One such approach for two 
sets of omics data is canonical correlation analysis (CCA) [8]. In order to solve CCA, the 
inverse of two covariance matrices needs to be computed which is problematic when the 
number of variables exceeds the number of samples, therefore penalization techniques 
can be implemented. Similarly, penalized partial least squares (PLS) regression [13] vari-
ants (sPLS; sparse Partial Least Squares) have been proposed in order to remove noisy 
variables resulting in variable selection for both sets of omics data [14].

An extension of sPLS is the sparse multi block partial least squares regression (sMB-
PLS) [16] in which several genomic data are measured on the same samples. One data-
set is considered the response data, while the rest acts as guiding sets. In an application 
using a dataset containing gene expression (response data), copy number variation, 
DNA methylation, and micro RNA expression, Li and et al. [16] identified combinations 
of multiple types of genomic markers that jointly impacted the expression of a set of 
genes. The covariance between the data blocks and the response block is maximized so 
that multidimensional modules are discovered associating the guiding with the response 
data.

Finally, network-based integration methods have also been proposed. The integration 
may be vertical (across omic-levels) or horizontal (one omic platform through time). 
The vertical approaches aim to provide a mechanistic understanding of molecular (de)
regulation across the omic cascade. An overview of such methods can be found in [1]. In 
this work, we propose an integrative network reconstruction method where the network 
topology of one type of omics data is conditioned on the network topology of another 
omics source that is upstream in the omics cascade [4].

Aim

The question answered in this work is how to integrate information across multiple 
omics levels. To answer and better understand relationships between different biological 
functional levels, we need to combine a systems view (requiring network modeling) and 
a multimodal view (requiring data integration).

In this work, we study whether network reconstruction of a particular omics source 
can benefit from information from the network organization of another omics source. 
For example, is metabolite network reconstruction helped by using DNA information? 
Or does information on a gene expression network aid recovery of the metabolites’ 
network organization? Under our setting, for N samples, there are two sets of omics 
data; the P-dimensional target dataset (denoted by YN×P from hereon) for which the 
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underlying network organization needs to be recovered by using a Q-dimensional guid-
ing dataset (denoted by XN×Q from hereon) and information on its network structure 
which is represented by a Q × Q matrix.

For estimating the network organization of the target data using the guiding data set 
and its network organization, a guided network estimation approach is considered. First, 
the network organization of the guiding data is estimated. We then regress the target on 
the guiding data and keep the fitted values on which we estimate a network structure. 
Alternatively, a guiding network can be used that is available already.

Overview

The rest of the paper is organized as follows. In Sect. 2, we review some basic network 
concepts, and propose a guided approach for estimating the network organization of an 
omics source using information from another omic dataset. In Sect. 3, we demonstrate 
our approach on metabolite data coming from the Arabidopsis thaliana population.

In the first application, the metabolic network estimation is guided by utilizing SNP 
information. SNP data and their spatial organization are used as input (DNA structure 
can be seen as a linear network, with edge intensity analogous to the distance between 
the markers on the chromosome) [2]. We then identify and retain the part of metabolic 
variation related to SNP information and its structure and use it for estimating networks 
of metabolites. In the second data example, we guide the estimation of the metabolite 
networks by using information coming from gene-expression data and their network 
organization. Pairs of metabolites will share edges if they are associated to similar gene 
sets. Here, the data come from the Wageningen Seed Lab and contain SNP, transcrip-
tomic, and metabolic information [10]. We consider this to be a standard dataset and 
demonstrate our integrative network approach. Our aim is to understand the metabo-
lites from a SNP and gene level. Using network analysis we detect groups of metabolites 
having similar genetic or transcriptomic basis. We conclude the article with some dis-
cussion in Sect. 4.

Methods
Network analysis is a multivariate type of analysis aimed at recovering the underlying 
network structure of the data. We consider networks a representation of the pairwise 
(conditional) (in)dependencies between random variables. The nodes then represent 
metabolites or other molecular features and the edges represent pairwise depend-
ency. An undirected network is typically encoded into a symmetric matrix W  (intensity 
matrix). The element wij can be any type of association measure, e.g., the (absolute) par-
tial correlation or (absolute) marginal correlation coefficient. The row- or column-sum 
of W  is called strength and measures the total intensity of the connections of node i: 
s(X)i = j W (X)ij.

Graphical LASSO

A popular approach for obtaining the underlying structure of the data from a set of 
P correlated variables (measured in N samples) is the Graphical LASSO (GL). In GL, 
the observational vectors of the data ZN×P , where Z denotes a general dataset (either 
guiding or target data), are assumed to follow a P-dimensional multivariate normal 
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distribution with mean vector 0 and variance-covariance matrix � . GL is based on the 
conditional independence of pairwise relationships, meaning that the precision matrix 
( � = �−1 ) is estimated. When the element θij is equal to zero, variables i and j are con-
ditionally independent given all other variables. The penalized log likelihood using a 
LASSO penalty [6, 7] is:

where || • ||1 is the L1-norm and � is a non-negative tuning parameter governing the 
sparsity of the estimated precision matrix �̂ . The tuning parameter � can be chosen 
based on subsampling. Here, we use the Stability Approach to Regularization Selection 
(StARS) [17] to estimate a set of stable edges. When using StARS, sparse networks are 
estimated based on multiple overlapping subsamples of the data, for different � values on 
a grid. For an optimal � (resulting in a sparse and stable network under random subsam-
pling) selected by StARS, the absolute estimated precision matrix (similar to [26]) |�̂| 
will be used here as the intensity matrix Ŵ (Z).

Visual representation

To visually represent the sparse precision matrix as a network, the P variables are repre-
sented as a set of P nodes/vertices, which are connected by a set of edges, dictated by the 
non-zero entries of W (Z) . The intensity of the connections between variables can be vis-
ualized by edge thickness with wider edges representing stronger connections. By taking 
the optimal � selected by StARS as fixed, the intensity matrix Ŵ (Z)t = |�̂t | can be com-
puted based on different subsamples t = {1, . . . ,T } . The edge-wise standard deviation 
computed over all Ŵ (Z)t can be an indicator of the edge’s uncertainty. Since a network 
is a visual representation of an intensity matrix, we will be using both terms interchange-
ably and denote a network by its estimated intensity matrix Ŵ (Z).

From guiding to target data

Let Y = {y1, . . . , yP} be the N × P target omics data matrix. Further, assume that 
X = {x1, . . . , xQ} is the N × Q guiding omics data matrix. If Y  contains the concentra-
tion levels of P metabolites on N samples, X could contain, for those same samples, data 
from Q SNPs or the expression levels of Q genes.

To incorporate information from the guiding omics data into the analysis of the tar-
get data we work in a regression framework. Prior to any type of multivariate analysis, 
e.g. network analysis, each of the P variables of Y  is regressed on all Q variables of X . 
Subsequently, the fitted values Ŷ (X) are obtained, e.g. using penalized regression [23]. 
Note that the OLS coefficient estimates cannot be obtained in the high dimensional case 
Q > N  . LASSO regression has some attractive properties by performing variable selec-
tion, i.e. leading to zero coefficients for some of the variables. On the other hand, no 
information on the dependencies between X variables ( Ŵ (X) ) is used.

This drawback can be alleviated by using network-constrained regularization (NCR), 
as proposed by [15], where the underlying network organization of X is explicitly mod-
eled when regressing each of the P variables of Y  on X [2].

(1)ℓ�(�) ∝ log |�| − tr(S�)− �||�||1,
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Network constrained regularization

We first assume that the data X have an underlying estimable network organization 
Ŵ (X) . For the pth response ( yp ), the estimated regression coefficients β̂p ∈ RQ×1 are 
obtained as:

where 
∑

i∼j denotes the sum over all adjacent unordered ij pairs, s(X)i , s(X)j are the 
strengths of nodes i and j, and the term �1|| • ||1 is a LASSO-type penalty inducing a 
sparse solution in which not all Q predictors enter the model. For selecting the penalty 
parameters, cross-validation (CV) can be used for estimating the prediction error for 
set values of �1 and �2 . The chosen penalties are the ones giving the lowest CV error (in 
our applications we used 5-fold CV). Note that (2) can be seen as a generalization of the 
elastic net [15].

The part accounting for the network structure of X when estimating β̂p in (2) is:

The regression coefficients βp are smoothed by penalizing the sum of weighted squares 
of the differences between βpi and βpj . Therefore, when nodes i and j share an edge with 
some weight ( w(X)ij  = 0 ) in the network of X , they will tend to have similar association 
to yp . This can be biologically justified since it is expected that connected nodes (in the 
case of SNPs/genes/metabolites) have similar function [15] and subsequently their coef-
ficients should be shrunken towards each other. In expression (3) it can be seen that the 
regression coefficients are scaled, since it is expected that nodes with higher strength are 
more important and therefore have larger coefficients.

The linear model using the NCR criterion, unlike LASSO, preserves the grouping 
property, meaning that groups of connected variables (predictors linked in Ŵ (X) ) will 
enter the model together. This result is shown in [15].

We then fit values of the target responses on the guiding predictors X:

for each p. These are used for network reconstruction on Ŷ .

Three‑step approach for network reconstruction

For recovering the network structure of the target omics data, i.e. Y  using a guiding 
omics source X , we thus have a general 3-step approach: 

1. Represent the guiding structure with an estimated or a priori known intensity matrix, 
i.e. Ŵ (X) using GL;

(2)

β̂p = arg min
βp

{

(yp − Xβp)
⊤(yp − Xβp)+ �1||βp||1 + �2

∑

i∼j

(

βpi√
s(X)i

−
βpj

√

s(X)j

)2

Ŵ (X)ij

}

,

(3)�2

∑

i∼j

(

βpi√
s(X)i

−
βpj

√

s(X)j

)2

Ŵ (X)ij .

(4)ŷp(X) = X β̂p,
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2. Evaluate expression (2) with Y  , X , and Ŵ (X)ij and retain the fitted data matrix Ŷ (X);
3. Use Ŷ (X) to reconstruct the target intensity matrix Ŵ (Ŷ (X)) using GL.

By using the proposed multi-step approach, the two omics sources are no longer treated 
independently. The resulting estimated network of the target data is conditioned on the 
network organization of the guiding data.

Application to data
We now use the proposed methods for estimating metabolite networks while using infor-
mation from other omics sources that have a network organization of their own.

We use a Recombinant Inbred Line (RIL) population of a cross between two Arabidopsis 
accessions, i.e. Bayreuth (Bay-0) and Shahdara (Sha). In this population we want to study 
the metabolite similarities subject to variation coming from lower leveled omics sources 
(SNPs or Genes). In our first example we utilize SNP data and their spatial relationship to 
estimate metabolite networks. Metabolites will be connected if they have the same genetic 
basis (similar QTLs). In the second example, we use gene expression data and their under-
lying network organization information when we estimate metabolite networks. Therefore, 
we identify metabolites with similar transcriptomic basis.

Data

Seeds from 164 lines of the Arabidopsis Bay-0×Sha RIL population were divided into four 
sub-populations (41 lines each) representing four important developmental stages of seed 
germination; (1) freshly harvested primary dormant dry seeds (PD), (2) after-ripened non-
dormant dry seeds, (3) seeds imbibed for 6 h (6 H), and (4) seeds at radical protrusion (RP).

For determining the metabolite concentrations, all 164 lines were subjected to gas 
chromatography time of flight mass spectrometry giving 7537 peaks, representing 161 
metabolites based on retention time and correlation structure [10, 24]. In total, P = 64 
metabolites were annotated and were further used in our analysis. Gene expression analysis 
was performed using the Affymetrix AtSNPtile microarray on the same sub-populations 
and developmental stages as the metabolites, where the expression levels of 29304 genes 
were extracted. The top 10% most varying genes ( Q1 = 2931 genes) were retained for fur-
ther analysis. Concentration levels of the metabolites and gene expression levels were log 
transformed and adjusted for the four developmental seed stages by subtracting the mean 
levels from each group. Finally, information on Q2 = 1059 markers (5 chromosomes) was 
available. More information on the study design and data can be found in [10] and [9]. For 
the rest of the paper, since metabolites will be the target dataset, we will denote their N × P 
data matrix as Y = {y1, . . . , yP} . The N × Q1 gene expression data and the N × Q2 SNP 
data matrix will be used as guiding dataset and will be denoted as XG = {xG1 , . . . , xGQ1} and 
XS = {xS1, . . . , xSQ2} , respectively.

From SNPs to metabolites

Step 1: The SNP network representation

By having map information known, we represent the SNP data as the simplest type 
of network, i.e. a one-dimensional linear ’network’. We represent with α(1), . . . ,α(p) 
the ordered (in ascending order) genetic/physical position of the markers on the 
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chromosome. The intensity of the connections between neighboring nodes is the relative 
(genetic/physical) marker proximity is calculated as:

where Ŵ (XS)ij = 0 for all other cases and for markers belonging to different 
chromosomes.

Step 2: Estimating the metabolite part related to genetic variation

In order to use XS , and W (XS) for estimating YM(XS) , we work with the NCR as 
described in Sect.  2.3. Sets of SNPs that relate to each metabolite are identified. For 
metabolite p, the vector of coefficients βS

p is estimated and used for obtaining the metab-
olite fitted values as:

Step 3: Estimating metabolite network related to genetic variation

By using GL coupled with StARS on Ŷ
M
(XS) , the metabolite network using SNP infor-

mation Ŵ (Ŷ
M
(XS)) was estimated and is visualized in Fig. 1. The optimal regularization 

parameter �S equalled 0.651, resulting in 98 edges between the metabolites. In the same 
figure, the network using the original metabolite values ( YM ), i.e. Ŵ (YM) is depicted. In 
order to compare the two networks, we controlled the sparsity of Ŵ (YM) : select the reg-
ularization parameter giving the same number of edges (98 out of 2016 possible edges 
resulting in sparsity of 0.049). Therefore, the tuning parameter governing the network 
sparsity in Ŵ (YM) was selected to be 0.554.

Results and comparison

By examining Fig. 1, we first see that the uncertainty of the edges is lower in Ŵ (Ŷ
M
(XS)) 

compared to Ŵ (YM) . The top connected (hub-nodes) metabolites in Ŵ (YM) are Pro-
line, Valine, Threonine, Xylose, and Serine with 16, 13, 12, 12, and 10 edges respectively. 
On the other hand, when we see the network of metabolites with respect to SNP varia-
tion, the top connected metabolites are Serine, (2-Hydroxyethyl)-methanamine, Isoleu-
cine, and Proline with 10, 9, 9, and 7 edges, respectively.

Here, we highlight the major differences between the networks by comparing them. 
Differences between the networks are visualized in Fig. 2. Edges are colored with green 
if they only appear in Ŵ (Ŷ

M
(XS)) , red if they only appear in Ŵ (YM) , and grey if they 

appear in both.
Interestingly, the metabolite losing the most edges by conditioning on SNP informa-

tion (12) is Xylose, showing that the similarity with other metabolites was due to the 
non-genetic variation. Other metabolites losing multiple edges when we use SNP infor-
mation are: Proline (11), Valine (11), Asparagine (7), and Glucose (7).

On the other hand, the metabolites that gained multiple edges by conditioning on SNP 
information are Glutarate (with 7) and 2-Oxoglutarate, Benzoate, Digalactosylglycerol, 

(5)Ŵ (XS)ij = Ŵ (XS)ji = 1− α(j) − α(i)

α(p) − α(1)
, where i = 1, . . . , p− 1 and j = i + 1,

ŷMp (XS) = XSβ̂
S

p.
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D-Xylofuranose, Fumarate, Glucuronate, Phosphoric acid, and Tyrosine (with 5 edges 
each), showing that their genetic similarity with other metabolites was stronger but it 
was concealed by their non-genetic variation part.

Finally, the top metabolites retaining many edges are: Isoleucine (8), Serine (6), Threo-
nine (6), (2-Hydroxyethyl)-methanamine (5), and Proline (5) showing that their genetic 
similarity with other metabolites was stronger than the non-genetic.

Connection between QTLs and metabolite network

The vector of estimated SNP coefficients can also be used to detect QTLs. Regions where 
we find SNPs with non-zero coefficients should be highlighted as possible QTL regions. 
In Figs. 3, 4, 5 and 6 we provide some results of the correspondence between Composite 
Interval Mapping (CIM; qtl R-package) [27] and QTL detection using NCR while in the 

Fig. 1 Estimated metabolite networks when: (a) using the original metabolite data ( W(YM) ), and (b) using 

information on SNPs and their network structure ( W(Ŷ
M
(XS)) ). Edges’ width denotes the intensity of the 

connection between two nodes, while edges’ opacity indicates the uncertainty as measured by the edges’ 
standard deviation
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Fig. 2 Difference between network based on the original metabolite values ( W(YM) ) and network 

reconstructed when SNP information is used ( W(Ŷ
M
(XS)) ). Green edges denote the unique edges that 

appear in W(Ŷ
M
(XS)) . Red denote the unique edges appearing in W(YM) . Grey edges are the common 

edges between W(Ŷ
M
(XS)) and W(YM) . The width of the edges denotes the difference between the 

connections’ intensity of W(Ŷ
M
(XS)) and W(YM)

Fig. 3 QTL detection for GABA (a) and Maltose (b) using CIM and NCR when the guiding dataset is SNP 

data. GABA and Maltose share an edge in both W(Ŷ
M
(XS)) and Ŵ(YM) which can be justified by their QTL 

profile. The − log10 p-value score for every marker is plotted when CIM is used. The red dotted vertical lines 
are plotted as a visual separation between the 5 chromosomes and the chromosome number is indicated 
on the x-axis below each segment. The dotted horizontal blue line marks the − log10 p-value score of 3. Red 
dots on the x-axis are placed on marker positions for which NCR estimated non-zero coefficients. The color 
transparency indicates the magnitude of the regularized estimated coefficient. The correspondence between 
CIM and NCR can be seen by noticing that red dots on the x-axis are in most areas where the − log10 p-value 
score has high values
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Additional file 1 we present all metabolites. By closely inspecting Figs. 3, 4, 5 and 6, it is 
evident that by using NCR we find positions on the chromosome with high CIM test sta-
tistic and subsequently possible QTL regions.

The GABA/Maltose pair (Fig. 3) clearly had similar QTLs and thus share an edge. The 
Serine/Aspartate (Fig. 4) and the GABA/Glucose-6-phosphate (Figs. 3, 5) pairs had an 
overlap in their QTL profiles but share no edge, which might indicate that the non com-
mon potentially identified QTLs are responsible for a big part of the metabolic variation. 
Finally, the Fructose/Glucose-6-phosphate (Fig. 5) and GABA-Glycolate (Figs. 3, 6) pairs 

do not have overlap in QTLs justifying why there are no edges in Ŵ (Ŷ
M
(XS)).

Summarizing, when two metabolites are connected, we usually observe a similarity in 
QTLs. On the other hand, when metabolites do not share an edge, this is generally due 
to dissimilar QTLs. Still, there can be situations where metabolites with similar QTLs 
are not connected, because of either measurement noise, or because non-overlapping 
QTLs account for a big part of the metabolic variation.

Multigraph representation

An informative representation can be obtained by visualizing a network that combines 

all data used here. In Fig. 7, Ŵ (Ŷ
M
(XS)) and all markers have been visualized; the nodes 

have been colored so that visual inspection is easier. The 5 chromosomes have been 

Fig. 4 QTL detection for Serine (a) and Aspartate (b) using CIM and NCR when the guiding dataset is SNP 

data. They only share an edge in W(YM) , but do not share an edge in W(Ŷ
M
(XS)) , which can indicate that 

the unique QTLs (for a pair of metabolites) can neutralize correlation induced by common QTLs. In this case 
unique QTLs are responsible for a bigger part of the metabolic variation. The − log10 p-value score for every 
marker is plotted when CIM is used. The red dotted vertical lines are plotted as a visual separation between 
the 5 chromosomes and the chromosome number is indicated on the x-axis below each segment. The 
dotted horizontal blue line marks the − log10 p-value score of 3. Red dots on the x-axis are placed on marker 
positions for which NCR estimated non-zero coefficients. The color transparency indicates the magnitude of 
the regularized estimated coefficient. The correspondence between CIM and NCR can be seen by noticing 
that red dots on the x-axis are in most areas where the − log10 p-value score has high values
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depicted as circular with the start and end being at the topmost point (one moves clock-
wise from start to end). Edges between a metabolite p and SNPs denote the non-zero 

estimated coefficients β̂
S

p.
By looking at Figs. 2 and 7 we identify three interesting metabolite groups. The first 

consists of: Nicotinate, GABA, Benzoate, Glutarate, Tyrosine, Digalactosyglycerol, 
Valine, Trehalose, and Maltose. In Fig. 2, the edges between the metabolites are green 
meaning that they are grouped together after using SNP information. Some of them are 

Fig. 5 Fructose (a) and Glucose-6-phosphate (b) do not have similar QTLs and therefore do not share 

an edge in W(Ŷ
M
(XS)) . The − log10 p-value score for every marker is plotted when CIM is used. The red 

dotted vertical lines are plotted as a visual separation between the 5 chromosomes and the chromosome 
number is indicated on the x-axis below each segment. The dotted horizontal blue line marks the − log10 
p-value score of 3. Red dots on the x-axis are placed on marker positions for which NCR estimated non-zero 
coefficients. The color transparency indicates the magnitude of the regularized estimated coefficient. The 
correspondence between CIM and NCR can be seen by noticing that red dots on the x-axis are in most areas 
where the − log10 p-value score has high values

Fig. 6 Glycolate’s QTL profile using CIM and NCR. The − log10 p-value score for every marker is plotted when 
CIM is used. The red dotted vertical lines are plotted as a visual separation between the 5 chromosomes and 
the chromosome number is indicated on the x-axis below each segment. The dotted horizontal blue line 
marks the − log10 p-value score of 3. Red dots on the x-axis are placed on marker positions for which NCR 
estimated non-zero coefficients. The color transparency indicates the magnitude of the regularized estimated 
coefficient. The correspondence between CIM and NCR can be seen by noticing that red dots on the x-axis 
are in most areas where the − log10 p-value score has high values
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connected to the biosynthesis of alkaloids derived from shikimate pathway. In Fig. 7 they 
have been represented as the dark green colored cluster sharing many edges with chro-
mosome 5.

The second interesting metabolite group consists of: Allantoin, Gluconate, Fructose, 
Glucuronate, Mannose, Glucopyranose, and Glucose-6-phosphate and has been colored 
as ciel blue in Fig. 7. These metabolites did not share any connections with any metabo-
lites in Ŵ (YM) but formed a cluster when SNP information was used ( Ŵ (Ŷ

M
(XS)) ). 

Those metabolites are involved in sucrose metabolism, glycolysis and are either sugars or 
closely related to sugars.

Finally, the most interesting metabolite group contains: Phenylalanine, Proline, Isoleu-
cine, Aspartate, N-Acetylglutamate, Glutamate, (2-Hydroxyethyl)-methanamine, Glycine, 
Serine, and Threonine. This metabolite group is the one with most grey edges in Fig. 2, 
showing that it retained most of its edges when we include non-genetic SNP variation. 
All metabolites in this group are contained in the biosynthesis of amino-acids. They have 
been colored red in Fig. 7 and show strong association with chromosomes 1, 4, and 5.

From genes to metabolites

In the first example we used SNP data, where the network structure was simple. Never-
theless, in many applications, e.g. gene expression data, the underlying network structure 
is far more complicated than a linear distance-based network and not known a priori. In 
this second example we recover metabolite networks by utilizing gene information.

Fig. 7 Combined network of metabolites and SNPs. W(Ŷ
M
(XS)) is visualized together with the five 

chromosomes which have been folded to be represented by five circular structures. The start and end of 
each chromosome is at the topmost part (moving clockwise for proceeding from start to end). Non-zero 
SNP coefficients for every individual model have been visualized as edges connecting metabolites and SNPs. 
Metabolites have been colored to ease visual inspection
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Step 1: Reconstruction of the gene expression network

In order to reconstruct the gene expression network, we use GL coupled with StARS 
on XG . The selected regularization parameter based on subsampling was equal to 
0.82, resulting in 3347 edges (sparsity of 0.00078). Our strict selection was based on 
the intention to minimize edges between metabolites due to false positives in gene 
expression data. The sparse gene expression intensity matrix Ŵ (XG) contains the 
absolute values of the resulting inverse covariance matrix.

Step 2: Estimating the metabolite part related to transcriptional variation

We use expression (2) with YM as response and the gene expression data XG as predic-
tors, having an estimated network structure Ŵ (XG) . The p-th metabolite is regressed 

on all genes. The vector of estimated coefficients β̂
G

p  related to the Q1 genes is used for 
recovering the fitted metabolite values related to transcriptional variation ( ̂Y

M
(XG) ) as:

Step 3: Metabolite networks related to gene variation

To estimate metabolite networks, we use GL on the fitted metabolite values related 
to transcriptional variation, i.e. Ŷ

M
(XG) . For comparing with Ŵ (YM) , the regulariza-

tion parameter �G was selected equal to 0.69, resulting in 98 edges for the metabo-
lite network related to gene variation ( Ŵ (Ŷ

M
(XG)) ). The resulting network has been 

visualized in Fig. 8 together with Ŵ (YM) . The edges’ width in both figures, denotes 
the intensity of the connection between the metabolites. The opacity represents the 
uncertainty for the edge intensity and has been computed based on resampling as in 

example 1. In Fig. 8, we see that the uncertainty of the edges is lower in Ŵ (Ŷ
M
(XG)) 

compared to Ŵ (YM) . By examining Ŵ (Ŷ
M
(XG)) , we see that the top connected 

metabolites are Arabinose, Xylose, Glucose, Raffinose, Fructose-6-phosphate, and Mon-
omethylphosphate with 13, 13, 12, 12, 11, and 11 edges, respectively.

Metabolites are mainly connected because they are associated to similar (or con-
nected) genes. On the other hand, metabolites that are not connected are usually 
associated with different sets of genes.

Network of differences between W(Ŷ
M

(XG)) and Ŵ(YM)

To highlight the major differences between the networks we visualize their differences 
in Fig. 9. Edges are colored with green if they only appear in Ŵ (Ŷ

M
(XG)) , red if they 

only appear in Ŵ (YM) , and grey if they appear in both. By examining the differences 
between the networks, we make the following observations.

The metabolites losing most of their edges are Proline (13) and Valine (12) show-
ing that their similarity with other metabolites is not due to the transcriptional part 
of variation. Those metabolites lost many edges in the SNP example as well, show-
ing that their correlation with other metabolites is driven by other sources of varia-
tion. Other metabolites losing multiple edges when we use only gene information are: 
Aspartate (7), Threonine(7), and Glutamate (6).

(6)ŷMp (XG) = XGβ̂
G

p
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On the other hand, the metabolites gaining edges when gene variation is used are 
Monomethylphosphate (11), Arabinose (10), Glutarate (10), Raffinose (10), and Galac-
tinol (8). Finally, the metabolites keeping most of their edges are: Xylose (9), Serine 
(6), Fructose-6-phosphate (5), Glucose (5), and Threonine (5).

Another finding standing out when looking at Fig. 9 is the two metabolite clusters. 
One consists of the following amino-acids: Proline, Phenylalanine, t  Threonine, Iso-
leucine, Valine, Glycine and Serine. Lastly, the cluster containing many green edges is 
composed of several metabolites that are related to abiotic stress responses in plants 
like those related to the Raffinose family of oligosaccharides [22].

Fig. 8 Estimated metabolite networks when: (a) using the original metabolite data ( W(YM) ), and (b) using 

information on SNPs and their network structure ( W(Ŷ
M
(XG)) ). Edges’ width denotes the intensity of the 

association between two nodes, while edges’ opacity indicates the uncertainty as measured by the edges’ 
standard deviation
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Discussion
In this work, we studied whether estimating the network structure of a particular 
omics level can be supported by using information coming from the network organi-
zation of another omics level. We proposed a three-step approach (Sect.  2.5) based 
on regularized regression that was demonstrated in two applications. Using this 
approach, in both applications the recovered networks contained edges with lower 
uncertainty compared to the original data.

For addressing missingness within guiding and target datasets, an expectation-
maximization (EM) algorithm adapted for penalized network estimation offers a the-
oretical solution, but may escalate computational complexity. Alternatively, matrix 
completion techniques provide a pragmatic preprocessing step to impute missing 
data (e.g., [18]), thereby preparing the dataset for our network-based approach.

A natural extension of our three-step method is by using more than two datasets, 
e.g. SNPs, genes, and metabolites. To estimate such networks, we work sequentially 
from one omics source to the next. We start from SNP data and their linear structure 
and work our way to estimate gene expression data subject to SNP variation. Then 
we use the fitted gene expression values and their estimated network organization to 
estimate metabolite networks. Even though the rationale of such application is intui-
tive (propagate information from one omics level to the next), the interpretation is 
challenging.

By taking a step forward, since metabolites determine many quality traits (nutri-
tional value, drought tolerance, etc) [25] and are closely related to the phenotypes 
[3], we could also study phenotypic associations using network analysis. By using 
our three-step approach for modeling phenotypic associations, we would be able to 
identify metabolites, genes, and DNA regions responsible for these traits. Using this 

Fig. 9 Difference between network based on the original metabolite values ( W(YM) ) and network 

reconstructed when gene expression is used ( W(Ŷ
M
(XG)) ). Green edges denote the unique edges that 

appear in W(Ŷ
M
(XG)) . Red denote the unique edges appearing in W(YM) . Grey edges are the common 

edges between W(Ŷ
M
(XG)) and W(YM) . The width of the edges denotes the difference between the 

connections’ intensity of W(Ŷ
M
(XG)) and W(YM)
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approach, in plant genetics, plant breeders and physiologists can improve adaptation 
to environmental stress, food quality, and crop yield [20].

Finally, an interesting point of discussion is the choice of NCR in step 2 over other 
candidate methods, e.g., the LASSO or elastic net. In [15], these three methods have 
been compared in different scenarios with respect to sensitivity (true positives), speci-
ficity (true negatives) and prediction mean squared error (PMSE). The NCR procedure 
resulted in better PMSE making it a principal candidate for our multi-step approach. 
Another alternative candidate method to relate the guiding and the target datasets 
would be to use L2 regularization instead of L1 in (2) making it a Ridge-NCR proce-
dure. The solution of the Ridge-NCR problem with application in genomic prediction 
may be more interesting, as the L1 regularization tends to drop collinear variables from 
the model that can potentially carry relevant information. We have presented the results 
of a Ridge-NCR analysis elsewhere [2]. Lastly, a hybrid between L1 and L2 penalties, aka 
elastic net-NCR can also be considered. Similar to LASSO, this alternative can produce 
reduced models by estimating zero-valued coefficients. In addition, not all collinear vari-
ables are eliminated, potentially retaining relevant information (similar to Ridge).
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