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A strategy for differential 
abundance analysis of sparse 
microbiome data with group‑wise 
structured zeros
Fentaw Abegaz 1,2*, Davar Abedini 1, Fred White 1, Alessandra Guerrieri 1, Anouk Zancarini 3, 
Lemeng Dong 1, Johan A. Westerhuis 1, Fred van Eeuwijk 2, Harro Bouwmeester 1 & 
Age K. Smilde 1

Comparing the abundance of microbial communities between different groups or obtained under 
different experimental conditions using count sequence data is a challenging task due to various issues 
such as inflated zero counts, overdispersion, and non‑normality. Several methods and procedures 
based on counts, their transformation and compositionality have been proposed in the literature 
to detect differentially abundant species in datasets containing hundreds to thousands of microbial 
species. Despite efforts to address the large numbers of zeros present in microbiome datasets, even 
after careful data preprocessing, the performance of existing methods is impaired by the presence 
of inflated zero counts and group‑wise structured zeros (i.e. all zero counts in a group). We propose 
and validate using extensive simulations an approach combining two differential abundance testing 
methods, namely DESeq2‑ZINBWaVE and DESeq2, to address the issues of zero‑inflation and group‑
wise structured zeros, respectively. This combined approach was subsequently successfully applied to 
two plant microbiome datasets that revealed a number of taxa as interesting candidates for further 
experimental validation.

The plant and soil microbiomes, comprising a diverse community of beneficial and harmful microbes, play an 
important role in plant growth and  health1–3. To understand the mechanisms that govern plant-microbiome 
interactions, high-throughput sequencing methods have been dramatically  advanced4. Amplicon sequencing 
(e.g. 16S rRNA gene) and whole genome shotgun sequencing are the two major methods for the identification 
of microbial communities by utilizing sequence  data5,6. The resulting microbiome data consisting of counts and 
compositional data, are typically characterized by sparsity (zero-inflation), overdispersion (variance that is much 
higher than expected), high-dimensionality (number of taxa is much higher than the number of samples), non-
normality, and variable sequencing depth among samples. Such characteristics of the microbiome data make its 
analysis  challenging7. However, failure to consider these special characteristics of microbiome count data during 
statistical analysis can result in false positive results and irreproducible  relationships8.

One important aspect of microbiome data analysis that attracts significant scientific interest is the detection 
of differential abundance among microbial species across two or more conditions or treatments. However, micro-
biomes consist of hundreds to thousands of distinct taxa (a term used to refer to OTUs: operational taxonomic 
units or ASVs: amplicon sequencing variants), with just a small percentage likely to be differentially  abundant9. 
Several methods and procedures based on counts, compositionality, and transformation perspectives have been 
introduced in the literature for discovering differentially abundant species (see Refs.10,11 and references therein for 
a list of methods used in differential abundance analysis). Current practices for detecting differential abundance 
in microbiome data involve careful data pre-processing (filtering and normalization) and the use of suitable 
statistical tools that consider the special characteristics of the  data12,13. However, there is a continued debate over 
the appropriate approaches for assessing differential abundance in microbiome  data12.

Despite strict quality control and contaminant removal utilizing  QIIME14 and  DADA215 software, micro-
biome data still contain many rare and low-prevalence taxa and are thus highly zero-inflated16, which makes 
microbiome data analysis challenging. In microbiome data, typically between 80 and 95 percent of the counts 
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are  zero12, while the number of zeros varies significantly across taxa, ranging from none or a few to many zeros. 
Zero counts in the sample can simply reflect absence but also presence with low frequency that was not detected 
due to technical detection limits. In particular, zeros in sequence count data can be either biological zeros which 
indicate the true absence of taxa under specific environmental conditions, or non-biological zeros which can 
arise from various factors such as sequencing errors, limited sequencing depth, uneven sampling depth, and PCR 
amplification  bias14,17–20. Unfortunately, without prior biological knowledge or spike-in controls, distinguishing 
biological and non-biological zeros in sequence count data is  difficult17. In spite of this, reviews cited in Ref.10 
demonstrated that many rare taxa are a result of sequencing artifact contamination, and/or sequencing  errors14 
are not informative in the analysis and have no influence on the scientific conclusions. The inclusion of a filter-
ing step to remove potentially uninformative taxa before performing statistical tests can reduce the burden of 
adjusting for multiple tests, which considerably improves detecting differentially abundant  taxa11. Several ad 
hoc and principled filtering algorithms have been presented in this respect. The choice of filtering strategy will 
influence the results of the subsequent  analysis12.

While filtering reduces the complexity of microbiome data, the highly-inflated-zeros that remain even after 
filtering can result in significant reductions in statistical power if not adequately  modeled15. Several statistical 
tools have been introduced to properly deal with the analysis of zero-inflation, including zero-inflated  Gaussian16 
and zero-inflated negative-binomial21 models, as well as observation weights-based strategies for using popular 
RNA-seq tools such as DESeq2, edgeR, and limma-voom22. The inflated-zeros, on the other hand, directly con-
tribute to another statistical issue, the problem of perfect  separation23 or group-wise structured  zeros24, which 
arises when many non-zero counts are in one group and all zero counts in the other. When there is enough 
evidence to believe that biological factors caused the occurrence of taxa with group-wise structured zeros they 
can be identified as structural zeros and labelled as significant without further differential abundance testing 
because they are abundant in one group but not at all present in the other  group24. On the other hand, because it 
is difficult to identify biological from non-biological zeros in sequence count data, it would not be fair to relate 
group-wise structured zeros to only biological zeros. For instance, the presence of group-wise structured zeros is 
more likely to be noticeable in small samples but it is possible that group-wise structured zeros may not be present 
in the population as a whole or with more sampled data. In such circumstances, the occurrence of group-wise 
structured zeros needs to be explored to see if it is caused by an inherent biological factor or sampling variabil-
ity. To this end, implementing standard likelihood inference in the presence of taxa with perfect separation or 
group-wise structured zeros, hampers statistical inference. This is because it results in large or infinite parameter 
estimates of effects coupled with extremely inflated standard errors, causing such taxa to be  nonsignificant23.

In the statistical literature, a penalized likelihood strategy that provides finite parameter estimates has been 
suggested as a solution to the issues that perfect separation or group-wise structured zeros present when using 
maximum likelihood-based  techniques23,25. Furthermore, penalized likelihood ratio-based tests help in providing 
appropriate significance test results for perfectly separated  taxa23,25. However, no or little efforts have been made 
to include penalized likelihood inference into many of the existing differential abundance techniques. Among 
the differential abundance techniques, the estimation approach implemented in DESeq2 by combining ridge 
type penalized likelihood estimation with a likelihood ratio based  test26 has the potential to address the problem 
of perfect separation or group-wise structured zeros.

Differential abundance analysis is generally conducted using a single or combination of methods adopted 
from bulk RNA sequencing analysis, single-cell RNA sequencing analysis, or particularly developed for micro-
biome  data16. There have been a few large-scale benchmarking studies that look at the adequacy of using these 
 methods10,11,27. According to the benchmarking studies, the various differential abundance analysis methods are 
inadequate at controlling false discovery rates at nominal levels, and there was no consistency in the opinion 
of what the right approach  is21. Here we focus mainly on popular tools that take into consideration the count 
nature of the data, such as  edgeR28,  DESeq226, limma-voom29, as well as their weighted counterparts referred to 
as edgeR-ZINBWaVE, DESeq2-ZINBWaVE and limma-voom-ZINBWaVE22, which utilize a weighting mecha-
nism based on the ZINBWaVE  model30. Some of these and other approaches were evaluated on a vast variety of 
microbiome  datasets10. However, many of these techniques treat taxa with group-wise structured zeros differently 
in differential abundance testing. To ensure a fair comparison of these techniques, taxa with group-wise struc-
tured zeros were identified and excluded from the differential abundance testing in our simulated comparisons.

Another major challenge in analyzing microbiome datasets generated by high-throughput sequencing is 
compositionality, as the sequencing procedure generates a total sequence read count, also known as sequencing 
depth or library size, that varies between  samples24,31–34. Various strategies have been employed to deal with the 
compositional nature of microbiome data. One strategy is to use compositionally aware differential abundance 
tools that rely on log-ratio transformations such as  ALDEx235 and  ANCOM31. An alternative strategy, as used 
in this work, is to use normalization methods to mitigate the impact of compositionality on count-based dif-
ferential abundance  analysis36,37. Some examples of normalization include: trimmed mean of M-values (TMM) 
normalization used in  edgeR28, median-of-ratios method normalization used in  DESeq226. Interestingly, some 
normalization methods used in count-based differential abundance analysis, such as the median-of-ratios 
method, trimmed mean of M-values and  Wrench37 normalization, use similar mathematical expressions as a 
compositionally aware transformation, such as centered log-ratio, to determine size factors based on sequenc-
ing depth and a method-specific compositional scale factor derived from the ratio of  proportions37. However, 
the use of these normalization techniques, which involve log-ratio calculations in compositional methods and 
geometric means or ratios in count-based methods, is complicated by the presence of zeros in microbiome data. 
To address the problem with zeros in microbiome data normalizations, several approaches have been consid-
ered, including adding pseudo-counts (1, 0.5, or small fractions) to the abundance data, replacing zeros with 
multivariate  imputation36,38 and deep learning  methods38, using only non-zero counts in the  computations39 
and developing methods that specifically address zero-inflation such as geometric mean of pairwise  ratios40 
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and Wrench  normalizations37. The choice of normalization method can have a significant impact on the results; 
thus, it is important to carefully consider the purpose of data analysis, data characteristics, and the assumptions 
underlying each normalization  method38,41.

In this work, first, we considered a simulation strategy similar to Mallick et al.8 that mimics experimental 
plant microbiome data using the simulation model  SparseDOSSA6 with several performance metrics to compare 
weighted and unweighted differential abundance methods; second, we implemented a combination of differential 
abundance tools that include (i) DESeq2-ZINBWaVE: ZINBWaVE-weighted methods to address the problem 
of zero inflation and control false discovery rate and (ii) DESeq2: penalized likelihood ratio based method to 
properly address the analysis of taxa with perfect separation or group-wise structured zeros; third, we created a 
comprehensive pipeline for differential abundance analysis of microbiome data that includes data pre-processing 
and identification of differentially abundant taxa using the combined approach DESeq2-ZINBWaVE and DESeq2; 
finally, we applied the pipeline for detecting differential abundance on two experimentally obtained plant 
microbiome 16S rRNA gene sequencing datasets from the MiCRop (Microbial Imprinting for Crop Resilience; 
www. microp. org) project.

Methods and materials
Pipeline design
The combined approach, DESeq2-ZINBWaVE-DESeq2, is designed to perform a thorough assessment of micro-
bial abundance differences while accounting for zero-inflation and group-wise structured zeros. Figure 1 depicts 
the essential stages in the implementation of DESeq2-ZINBWaVE-DESeq2. The input data includes an abundance 
table, a taxonomy table, and a metadata table in any standard microbiome data format. The initial stages of data 
processing involve filtering and normalization. For the analysis of a single treatment with two factor levels, the 
data pre-processing step is readily followed by categorizing taxa as having group-wise structured zeros or not. 
Here we note that if there is sufficient evidence to assume that taxa with group-wise structured zeros are due to 
biological causes, they can be labelled as significant without further differential abundance  testing24. Otherwise, 
we will proceed as follows. For each category, differential abundance analysis is done independently (Analysis 
Part A and B). In Analysis Part A, DESeq2 likelihood ratio test (LRT) is used to perform differential abundance 
testing for taxa with group-wise structured zeros while in Analysis Part B, DESeq2-ZINBWaVE-based LRT is 
utilized for taxa without group-wise structured zeros. Finally, we collect significant taxa from both analyses for 
diagnostic purposes and biological interpretation. On the other hand, when the identification of group-wise 
structured zeros becomes more difficult, for example, in the presence of multiple categorical factors, the structural 
zero grouping step can be skipped. Without much loss of power, the entire filtered and normalized dataset can 
be analyzed using both DESeq2 (which is appropriate in detecting differential abundance for taxa with group-
wise structured zeros) and DESeq2-ZINBWaVE (which is more powerful in detecting differential abundance 
for taxa with no group-wise structured zeros) based LRTs. This is followed by collecting unique significant taxa 
from both analyses for diagnostic purposes and biological interpretation.

Data preparation
Following raw sequence read processing with DADA2 or QIIME, the sequencing data is typically presented in 
two table formats: an abundance table for counts and a taxonomy table for phylogenetic information. Differential 
abundance analysis generally requires the use of three input datasets: (i) Abundance data table: taxa count 

Figure 1.  Flowchart for the microbiome data differential abundance analysis pipeline. Data: the input 
microbiome data include the abundance table, taxonomy table, and metadata table. Pre-processing step: 
includes filtering and normalization. Grouping taxa by group-wise structured zeros for a single covariate with 
two factor levels. Differential abundance testing can be performed in two parts. Analysis Part A: differential 
abundance testing for taxa with group-wise structured zeros using DESeq2 likelihood ratio test (LRT). Analysis 
Part B: differential abundance testing for taxa without group-wise structured zeros using DESeq2-ZINBWaVE 
with LRT. Diagnostics: collect significant taxa from both analyses for diagnostic purposes and biological 
interpretation. When there are multiple covariates, skip the structural zero grouping step and apply both 
DESeq2 and DESeq2-ZINBWaVE on the whole filtered and normalized data (dashed arrows).

http://www.microp.org
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abundance across samples; (ii) Taxonomy data table: taxonomy information across taxa (required for higher 
hierarchical levels of analysis or interpretation of results); and (iii) Metadata table: information on treatments, 
phenotypes or covariates of interest across samples (Fig. 1). It is important to note that, as part of the data 
preparation step, we must examine the abundance and metadata tables for missing data values. We considered 
two template datasets differing in the level of zero-inflation for evaluating the performance of popular unweighted 
and weighted microbiome differential abundance tools (see details in the “Data analysis” section).

Data filtering
Because microbiome data sets are usually sparse, it is necessary to filter the data set by removing low-quality or 
uninformative taxa to improve downstream statistical analysis. Several filtering approaches are implemented 
in R/Bioconductor packages that include filter_taxa in  phyloseq39, filterByExpr in  edgeR28, and simultaneous 
or permutation based statistical filtering in  PERFect12. The edgeR filterByExpr function allows filtering based 
on replications or treatment groups. Unless indicated, our filtering to retain a taxon for differential abundance 
analysis is based on a minimum of two counts in at least two samples per treatment group. However, depending 
on the nature of the count data, the minimum thresholds can be set at a higher value. Setting the threshold as 
low as two may help to ensure that important taxa, including relevant rare taxa with low counts, remain in the 
dataset, but it will increase the number of zeros and low counts, which has an impact on statistical analysis. The 
proposed analysis strategy in this work addresses excess zeros and low expected  counts22.

Taxa grouping
Following the filtering stage, taxa are grouped based on whether they have group-wise structured zeros or not. 
Taxa with group-wise structured zeros have zero counts in all samples of one of the groups.

Data normalization
Normalization is another important step in microbiome sequencing data analysis that is used to remove any 
bias caused by compositional effect or differences in sequencing depths or library sizes between samples. For 
microbiome studies, several forms of normalization have been  used41: rarefying,  scaling9,42, log- transformation, 
zero-inflation based normalization and compositionally aware normalization. Rarefying is subsampling to equal 
sequencing depth without  replacement9. We did not use rarefying-based normalization since its application in 
differential abundance analysis is  debatable11,43. Scaling based normalization: this is to acquire a scaling factor 
that can be used to adjust the read counts to produce normalized counts or to produce normalized library  sizes40. 
Normalized library sizes are used as offsets in count-based regression models such as DESeq2 and edgeR and their 
weighted counterparts to remove biases caused by uneven sequencing depths in differential abundance  analysis40. 
Some commonly used scaling-based normalization procedures adopted from RNA-Seq data include Cumulative-
Sum Scaling (CSS) implemented in  metagenomeSeq16, median-of-ratios method in  DESeq226, Upper Quartile 
(UQ) in limma-voom29, and Trimmed Mean of M-values (TMM) in  edgeR28. These normalization procedures 
were developed primarily for RNA-Seq data that do not contain a large number of zeros. To address zero-inflation 
in normalization, geometric mean of pairwise ratios (GMPR)40, Wrench  normalization37, geometric mean of 
positive counts (poscounts) and  deconvolution44 methods were introduced; however, normalization methods for 
zero-inflated microbiome data are still under development. The compositionally aware normalizations that are in 
common use include centered log-ratio transformation (CLR) in  ALDEx235 and additive log-ratio transformation 
in  ANCOM31. Log-transformation based normalization is used in  MaAsLin28.

The use of log-ratio or log-transformation normalization in compositional methods (like CLR), as well as 
the use of geometric mean and ratios in count-based approaches (such as median-of-ratios method and TMM), 
presents difficulties when dealing with zeros. Several strategies have been used to address the zero problem in 
normalizations, including the addition of pseudo-counts (1, 0.5, or small fractions) and the replacement of zeros 
using multivariate  imputation36,38 (used in the R packages  zCompositions45 and  robCompositions46), as well as 
deep learning  methods38. A detailed comparison of these replacement strategies in compositional methods has 
been provided, with a recommendation for an appropriate method based on the purpose of the analysis, data 
characteristics (such as dimension and extent of zero inflation), and time constraints to do the zero  replacement38. 
Similarly, in count-based approaches, normalization such as TMM in edgeR and median-of-ratios method 
in DESeq2 ignore zeros or add pseudo count of 1 to the abundance data when calculating pairwise ratios or 
geometric means to deal with the problem of zeros in microbiome data. However, the arbitrary choice of pseudo 
counts for zero replacement or the removal of features with zero counts in normalizing microbiome data has an 
impact on downstream  analysis40,42.

As a solution, new strategies such as GMPR and Wrench normalizations have been developed specifically 
to handle zeros more effectively in normalizing zero-inflated sequencing data, such as microbiome sequencing 
data. GMPR is calculated by utilizing pairwise samples that share many features, allowing for the use of more 
information than other normalization methods that exclude features with zero values. GMPR first computes the 
median of all pairwise ratios of nonzero counts between any two samples and then uses the geometric mean of the 
median values to calculate the normalizing factor of a sample. While GMPR addresses some of the shortcomings 
of existing normalization methods, its dependence on pairwise comparison may limit its applicability. Wrench 
normalization is a reference-based compositional correction method for sparse count data that employs an 
empirical Bayes approach to borrow information from multiple features and samples when modeling taxon-wise 
ratios of abundance proportion using a hurdle log-normal model. Wrench normalization avoids the problem of 
zeros in ratio computation by using the averaged relative abundances (proportions) of each feature across the 
dataset as the reference.
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Finding differentially abundant features is significantly impacted by the different normalization strategies and 
statistical tests, as demonstrated in several  studies10,27,40. Normalization methods are most effective at control-
ling FDR and increasing statistical power with their underlying statistical models or tests and specific datasets; 
however, they are not as successful when used with other statistical models, tests, or  datasets41. As a result, in 
our analysis, we used TMM, the default normalization in edgeR and limma-voom, as well as poscounts (geomet-
ric mean of positive counts), a  recommended22,39 normalization for analysing sparse data with  DESeq226. The 
poscounts normalization is implemented in the DESeq2 estimateSizeFactors function with option type = “pos-
counts”. To deal with the problem of zero values, TMM computes pairwise log ratios using a trimmed set of 
features for each sample without including features with zero counts for that sample, while poscounts calculates 
the geometric mean for each feature using only its positive counts. Notably, both TMM and poscounts allow 
features with zero counts to contribute to normalization based on their non-zero counts. These normalizations, 
moreover, have been shown to reduce the effect of compositionality on differential abundance analysis  results37. 
We employed the same normalizations on the ZINB-WaVE weighted counterparts. We also used GMPR, which 
was developed specifically for zero-inflated microbiome data and has been shown to improve power and false 
positive control in differential abundance  analysis40. Furthermore, MaAsLin2, metagenomeSeq, and ANCOM-
BC use log-transformed abundance as the default, with a pseudo count of 1 added to the abundance table to 
account for zero values.

Data exploratory analysis
Evaluating the extent of zero inflation. One of the primary challenges in microbiome differential abundance 
analyses is the presence of excessively inflated zero  counts14. We used a graphical depiction of the biological 
coefficient of  variation22, which is the square root of the estimated negative binomial dispersion parameter, to 
examine the extent of inflated-zeros and how they influence downstream differential abundance analyses. Taxa 
with few counts or many zeros result in very high dispersion estimates, which appear as striped patterns on the 
biological coefficient of variation plot. The increased dispersion due to inflated zeros hampered the capacity to 
detect differential abundance using negative binomial based models such as edgeR and  DESeq222, which do not 
account for excess zeros.

Type I error control
Another way to assess the suitability of a differential abundance method is to evaluate its type I error rate control 
using mock or model-based simulated data. On the one hand, we generated mock samples from real null data that 
did not include taxa whose abundance differed between two groups (i.e. no differentially abundant taxa between 
two groups), by randomly assigning the two groups to each taxon. On the other hand, we generated 100 datasets 
using the SparseDOSSA model with an effect size of zero, i.e. under the null hypothesis of no differentially 
abundant taxa between two groups. Filtering, grouping by group-wise structured zeros, and normalization 
were applied to the mock and simulated datasets. Taxa containing group-wise structured zeros were removed 
from differential abundance testing in the simulation studies. Then, using several methods, we conducted a 
differential abundance analysis between two groups of the covariate and obtained the p-values. The proportion 
of p-values less than the commonly used nominal 5% level is used to calculate the observed type I error rates. 
For each differential abundance approach, the average observed type I error rates across mock or model-based 
simulated datasets were computed.

Differential abundance testing
Many methods for analyzing differential abundance in microbiome data are adapted from methods developed 
for analyzing bulk RNA-Seq or single cell RNA-Seq  data10. Differential abundance approaches tailored to the 
study of microbiome data have also been developed. In our comparative study, we looked at a few common 
approaches for detecting differential abundance that have previously been tested using multiple real microbiome 
 datasets10,11,47 and synthetic abundance  data6. We considered microbiome differential abundance analysis 
approaches adapted from RNA-Seq analysis techniques, such as edgeR, DESeq2, and limma-voom as well as 
their weighted counterparts: DESeq2-Zimbwave, edgeR-ZINBWaVE, and limma-voom-ZINBWaVE, respectively, 
recently introduced for single-cell RNA-Seq, which employ weights generated using the ZINBWaVE  model10,22 
(Text S1). We also included ANCOM-BC from the compositional approach and MaAsLin2 and metagenomeSeq 
from transformation-based microbiome data analysis approaches (see details in Text S1).

Plant microbiome experimental datasets
In this work, we used plant microbiome datasets with varying degrees of zero-inflation and count pattern 
obtained from two experimental studies to assess several differential abundance techniques. The collection 
of plant material complies with University of Amsterdam, The Netherlands, and international guidelines and 
legislation. This study protocol also complies with the IUCN Policy Statement on Research Involving Species at 
Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.

Plant material and DNA extraction
In the N-P starvation experiment, the impact of nitrogen (N) and phosphate (P) starvation on the bacterial 
composition in tomato (Solanum Iycopersicum) roots was investigated. S. lycopersicum cv. Moneymaker (SS687) 
seeds were obtained by UvA greenhouse (University of Amsterdam, The Netherlands) and surface sterilized 
using 70% EtOH (2 min), 20% bleach (20 min), 10 mM HCl (10 min) and milli-Q water (5 times), respectively. 
The seeds were then pregerminated in a climate room at 24 °C in the dark on sterilized and moisturized filter 
paper for 3 days. The germinated seeds were transferred to soil-filled baskets in the greenhouse at 22 °C under an 
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8/16 h dark/light regime. Ten days after germination, the baskets were transferred to a custom-made aeroponics 
system, in which the roots were sprayed with 1/4 strength Hoagland solution for 15 s every 10-min. For the N 
starvation treatment, NH4NO3 was removed from the solution. For the P starvation treatment, K2HPO4 was 
replaced with 0.8 M KCL, which compensated for the loss of K. The roots were collected immediately, transferred 
to liquid nitrogen and stored at − 80 °C for further analysis.

In the Forest-Potting soil experiment, the effect of different soil types on the bacterial community of tomato 
roots was investigated. To this end, tomato (S. lycopersicum cv. Moneymaker) seeds were surface-sterilized as 
described above and then sown in different soils with or without the addition of 10% forest soil. After four weeks, 
the roots were collected and used for microbial DNA extraction.

Bacterial DNA isolation, 16S rDNA sequencing and preprocessing
The frozen root tissues were ground into a fine powder using liquid nitrogen and a mortar and a pestle. 200 mg 
of the powdered tissue was used to extract microbial DNA using PowerSoil DNA Isolation following the 
manufacturer’s instructions. The quality and quantity of the isolated DNA were assessed using a Qubit 2·0 
Fluorimeter (ds DNA high-sensitivity assays kit; Invitrogen). The metabarcoding analysis was conducted at 
BaseClear B.V. (Leiden, The Netherlands), utilizing an Illumina NovaSeq6000 SP platform with the 2 × 250 bp 
paired-end sequencing approach for samples from the N-P experiment. For the amplification of bacterial 16S 
rDNA, the V3 and V4 regions were targeted using the 341F (5′- CNTAC GGG NGGC WGC AG-3′) and 805R (5′- 
GAC TAC HVGGG TWT CTA ATC C-3′) primers. The sequencing reads were obtained as demultiplexed reads 
and after quality check, the primers were trimmed from the reads using cutadapt (v.1.9.1). For samples from the 
Forest_Potting soil experiment, the metabarcoding analysis was conducted on Illumina MiSeq PE250 platform 
at Génome Québec Innovation Centre (Montréal, QC, Canada). The sequencing data were processed using the 
DADA2 package and the plugin Quantitative Insights Into Microbial Ecology version 2 (QIIME2) to generate 
an OTU count table. The reads were filtered to maintain 220 bp and 200 bp for the forward and reverse reads, 
respectively. After merging denoised pair-end sequences, the chimeric sequences were removed from the reads. 
The obtained Operational Taxonomic Units (OTUs) were taxonomically assigned based on the SILVA database 
(v138), and an OTU count table was created for each dataset.

Datasets
The N-P starvation dataset consisted of 15 samples and 2945 taxa with at least one count per treatment group. 
There were three treatment groups: N-starvation, P-starvation and control, each with 5 samples. We filtered out 
low abundance taxa using the criteria of at least two counts in at least two samples per treatment group, which 
resulted in 829 taxa for differential abundance analysis. The percentage of zero counts was around 55% after 
filtering. The Forest-Potting soils dataset included a total of 28 samples with 1796 taxa that had at least one count 
from each of the two soil types: Forest and Potting soils. There were 16 and 12 observations for forest and potting 
soils, respectively. The Forest soil type includes different soils with the addition of at least 10% forest soil. We 
filtered out low abundance taxa, leaving 244 with a minimum of two counts in at least two samples of each soil 
type for differential abundance analysis. Even after filtering, the fraction of zero counts remained high (84%), 
indicating that the Forest-Potting soils dataset is considerably zero-inflated as compared to the N-P starvation 
dataset. Moreover, very low taxa counts in the Forest-Potting soils dataset were another feature that distinguishes 
it from the N-P starvation dataset.

Simulation studies
We looked at both model-based8 data simulation and creating  mock10 datasets by permuting the samples.

Model‑based simulation studies
To evaluate the performance of our method and others on differential abundance detection for microbiome data, 
we used the  SparseDOSSA6 model to generate synthetic microbiome  data6 similar to Mallick et al.8 which mimics 
experimental plant microbiome data. This model has the benefit of generating realistic simulated data based on 
parameterizing real-world template microbial datasets targeting the main characteristics of microbiome data 
such as counts, compositionality, zero-inflation, and over-dispersion6. SparseDOSSA uses a Bayesian hierarchical 
model to estimate taxa-specific parameters from a template dataset, which are then used to generate synthetic 
taxa from a zero-inflated, truncated log-normal distribution. The Forest-Potting soils and N-P starvation datasets 
were used as template datasets for the simulation.

Simulating null synthetic taxa abundance data
In the model-based simulation scenario, we first generated null abundance data for taxa with no true differential 
abundance using  sparseDOSSA26 package. This was done independently of metadata features, using data 
templates from plant microbial communities for both the Forest-Potting soils and N-P starvation experimental 
datasets. Along with the template sequence count datasets, additional simulation parameters were defined as 
follows. The sample sizes varied from small to large (10, 20, 50, 100, 200) and were equal in both groups. The 
number of simulated taxa was determined by the size of the less strict filtered Forest-Potting soils and N-P 
starvation template datasets, which were 303 and 928, respectively. In addition, average (median) sequencing 
depths of 1883 and 215,356 from Forest-Potting soils and N-P starvation were used to generate realistic variation 
in library size in both datasets. With this simulation scenario, we generated 100 null synthetic taxa abundance 
datasets that were used to evaluate the performance of differential abundance methods in controlling type I 
error rates.
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Simulating synthetic metadata
For synthetic metadata generation, we used a single factor with two groups (control and treatment) in an 
experimental design setting, with a focus on microbial differential abundance analysis. The metadata was 
generated by randomly assigning a value of 1 to half of the samples (treatment group) and a value of 0 to the 
other half (control group).

Simulating spike‑in taxa to describe synthetic taxa‑metadata relationships
To introduce differences in abundance between the two groups (control and treatment) for spike-in microbial 
taxa, varying effect sizes or log-fold changes were used in a generalized linear model setting based on the single 
factor covariate with two  levels6. Specifically, using the template data as a basis, we generated synthetic data with 
spike-in taxa as follows. First, we selected about 10% (30 and 100) of the taxa from the Forest-Potting soils and 
N-P starvation template datasets, which included 303 and 928 taxa, respectively, with a relative abundance of at 
least 20% to be spiked-in or differentially abundant between the two groups in the metadata, with known effect 
sizes or log-fold differences. The effect sizes were varied, with half of the spiked features at (0.5, 1, 2) indicating 
an increase in abundance under the treated condition and the other half at (− 0.5, − 1, − 2) indicating a decrease 
in abundance under the treated condition. The sample and library sizes were as specified above. Then, the 
sparseDOSSA2 R/Bioconductor package was used to generate 100 simulated abundance datasets for each effect 
and sample size combination, which included about 10% spiked-in (“true” positives) taxa based on their effect 
sizes and the remaining 90% null taxa that were not differentially abundant (“true” negatives). These synthetic 
datasets with "true" or known effect sizes were used to evaluate the effectiveness of microbiome analysis methods 
in detecting differentially abundant taxa.

Mock dataset‑based studies
To evaluate how the differential abundance method controls Type I error rate, we conducted mock group 
comparisons by permuting samples from the plant microbiome datasets. For the Forest-Potting Soils dataset, 
each sample was randomly assigned to one of two experimental groups: potting or forest soil, and the process 
was repeated 1000 times to produce 1000 mock datasets. Similarly, 1000 mock datasets were generated for the 
N-P starvation dataset, with each sample from the N-starvation and control groups assigned randomly to one 
of these groups. Because samples are assigned at random, no true differential abundance  exists10; therefore, all 
differential abundance discoveries should be considered  false27, which can be used to assess type I error rates.

Performance evaluation
Mainly, two performance indicators are used for evaluation: statistical power or sensitivity and false discovery 
rate (FDR), which are computed based on false positives (FPs): taxa not spiked-in but found significant, true 
positives (TPs): taxa spiked-in and found significant, true negatives (TNs): taxa not spiked-in and not found 
significant), and false negatives (FNs): taxa spiked-in but not found significant.

Pipeline implementation
The pipeline (Fig. 1) provides a comprehensive differential abundance analysis of microbiome data, including 
data preparation, filtering, normalization, differential abundance testing and diagnostic plots. The entire pipeline 
is written in R. Several R and Bioconductor packages are used in the pipeline to analyze and visualize differential 
abundance detection using DESeq2, edgeR, limma-VOOM, and their ZINBWaVE weighted counterparts: 
DESeq2-Zimbwave, edgeR-ZINBWaVE, and limma-voom-ZINBWaVE.

In the pipeline, following the test of significance of all filtered taxa for differential abundance using one of 
the methods listed; log-fold changes, p-values, and adjusted p-values that are corrected for multiple hypothesis 
testing using Benjamini–Hochberg are provided in a summary table. Plots depicting statistically significant 
differential abundant taxa are also generated. A variety of summary and diagnostic plots are also provided to 
visualize significant results in the pipeline: (i) plots of significant taxa vs. log fold change; (ii) plots of log fold 
change vs. average log CPM (counts per million) for all taxa; (iii) count plots to evaluate significant taxa; and 
(iv) heatmap plots for significant taxa with relative abundances.

Results
Zero‑inflation and perfect separation or group‑wise structured zeros
Popular differential abundance tools handle perfect separation or group‑wise structured zeros differently
In order to investigate how group-wise structured zeros are handled and how they impact differential abundance 
detection, we analyzed the N-P starvation plant microbiome dataset using DESeq2 and ZINBWaVE-weighted 
DESeq2. Following data filtering, poscounts normalization and identification of taxa with group-wise structured 
zeros based on observed zero counts (see the “Methods and materials” section), first we performed differential 
abundance testing using DESeq2 and DESeq2-ZINBWaVE on the entire set of taxa. We observed a substantial 
variation in the number and type of significantly differentially abundant taxa identified by DESeq2 and DESeq2-
ZINBWaVE (Fig. 2). Figure 2, highlights taxa depending on their statistical significance and whether or not they 
are involved in perfect separation or group-wise structured zeros. Results from DESeq2 (Fig. 2A) show that many 
taxa with group-wise structured zeros were found significant with substantial log-fold changes by lying on the 
boundary of the plot (cyan dots in Fig. 2A). Using DESeq2-ZINBWaVE which down-weights excess zeros, in 
contrast, no or a few taxa with group-wise structured zeros were found to be significant for the N-P starvation 
data as displayed in Fig. 2B. This is not necessarily the case using DESeq2-ZINBWaVE, since we found many 
taxa with group-wise structured zeros to be significant after reanalyzing the Arctic-soil data, which contains a 
large number of samples investigated in Ref.8 (Fig. S1B).
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Because there was a large difference in the number of significant taxa, which was mostly attributed to taxa with 
group-wise structured zeros in this case, we reanalyzed the data using DESeq2 and DESeq2-ZINBWaVE after 
excluding taxa with group-wise structured zeros. The findings shown in Fig. 2C and D demonstrate that DESeq2 
and DESeq2-ZINBWaVE detect a comparable number of taxa (red and blue dots), which may occur when zero-
inflation is not a serious  concern22. As a result, comparative benchmarking studies on microbiome differential 
abundance analysis tools that do not account for group-wise structured zeros could lead to unsatisfactory 
comparative conclusions.

Type I error control
We assessed the type I error rate using mock samples and model-based synthetic data derived from the two 
real template datasets under the null hypothesis of no differentially abundant taxa between two groups (see the 
“Methods and materials” section).

In the model-based simulation with SparseDOSSA2 under the null hypothesis, we used a log-fold change of 
zero, implying that no taxa were differentially abundant between the two groups. We then performed differential 
abundance analysis and recorded the p-values for several methods under consideration. The observed type I 
error rates were calculated based on the fraction of p-values smaller than the nominal 5% level. The resulting 
plots shown in Fig. 3 for model based simulations and Fig S2 for the mock samples, reveal how each method 
controls type I error under the null hypothesis of no differentially abundant taxa. Simulation results based on the 
N-P starvation template dataset with moderately inflated-zeros (Fig. 3A), DESeq2, edgeR, MaAslin2, DESeq2-
ZINBWaVE (for moderate and large samples), edgeR-ZINBWaVE (for small samples) and limma-voom (for small 
samples) demonstrated effective control of the type I error rate at the nominal level. DESeq2-ZINBWaVE (for 
small samples) and edgeR-ZINBWaVE (for large samples), on the other hand, had slightly higher observed type 

Figure 2.  Comparing differential abundance detection tools in the presence of perfect separation or group-wise 
structured zeros for the N-P starvation dataset comparing Nitrogen starvation to control. SigDown: significant 
taxa with negative log-fold change, SigUp: significant with a positive log-fold change, NotSig: not significant, 
StrZeroSig: significant for taxa with group-wise structured zeros, StrZeroNotSig: not significant for taxa with 
group-wise structured zeros. (A) Analysis with DESeq2, taxa with group-wise structured zeros found to be 
significant having relatively large log-fold changes and located on the boundary of the plot (cyan); (B) Analysis 
with DESeq2-ZINBWaVE, taxa with group-wise structured zeros found not to be significant (purple) because 
of down weighting excess zeros. The number of significant taxa identified by DESeq2 and DESeq2-ZINBWaVE 
differed considerably due to the presence of taxa with group-wise structured zeros. (C) Analysis with DESeq2 
after excluding taxa with group-wise structured zeros; (D) Analysis with DESeq2-ZINBWaVE after excluding 
taxa with group-wise structured zeros.
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I error rates. In contrast, simulation findings using the Forest-Potting soils template dataset with highly inflated-
zeros (Fig. 3B) demonstrated that DeSeq2-ZINBWaVE, edgeR-ZINBWaVE and MaAsLin2 controlled type I 
error rate at the nominal level. On the other hand, DESeq2 and edgeR were conservative tests with extremely 
small observed type I error rates, which might impede true discoveries. In comparison to the other methods, the 
observed type I error rate for limma-voom-ZINBWaVE was much higher, showing poor performance in terms 
of controlling the type I error rate on both synthetic datasets. The performance of DESeq2-ZINBWaVE (for 
small samples) and edgeR-ZINBWaVE (for large samples) in controlling type I error rate improved on average 
as zero-inflation was increased.

Similar results were observed based on 1000 mock datasets generated from N-P starvation and Forest-
Potting soils datasets (Fig S2). On the other hand, the observed type I error rates for limma-voom-ZINBWaVE, 
ANCOM-BC, and metagenomeSeq were high on both mock datasets, potentially leading to a large number of 
false discoveries (Fig S2A and B). As a result, ANCOM-BC and metagenomeSeq were not included in the model-
based simulation results presented above. Moreover, using GMPR instead of poscounts and TMM normalizations 
had a comparable impact on controlling type I error rate.

Differential abundance methods benchmarking using synthetic data
We utilized synthetic count data with spiked-in taxa between two defined groups of samples to evaluate the 
performance of differential abundance analysis tools (see the “Methods and materials” section). We simulated 
100 datasets, each with a single treatment with two factor levels and a fixed number of true differential features 
selected based on at least 20% of differentially abundant taxa for varying effect sizes (0.5, 1.0, 2.0) and total sample 
sizes (10, 20, 50, 100, 200). The biological coefficient of variation plots computed from the template real data and 
simulated data are shown in Fig. S3 to demonstrate how the data generating process resembles the structure of 
the N-P starvation template real dataset.

We then used false discovery rate (FDR) and power (sensitivity) as performance indicators to assess the ability 
of different microbiome differential abundance analysis approaches to recover the relationship between spike-in 
taxa and a two-factor treatment. In the simulation analysis, following filtering, normalization and removing taxa 
with group-wise structured zeros (to place methods in comparable context), tests of differential abundance were 
performed for each of the 100 datasets using each of the methods under consideration. Based on the adjusted 
p-values (Benjamini-Hochberg), we identified true positives (TP), false positives (FP), true negatives (TN) and 
false negatives (FN) and computed the measures of performance such as power and FDR. For each method, the 
power and FDR are displayed in Figs. 4 and 5.

Figure 3.  Model-based simulations: controlling type I error rates using several differential abundance tools. 
Unweighted and weighted differential abundance methods were evaluated for type I error control based on 
synthetic plant microbiome data with varying zero-inflation rates and sample sizes. Boxplots of observed 
type I error rates are colored by total sample size. (A) N-P starvation template dataset with 55% zeros. (B) 
Forest-Potting soils template dataset with 84% zeros. Weighted approaches to differential abundance, with the 
exception of limma-voom-ZINBWaVE, demonstrated acceptable control type I error rates for moderately and 
highly zero-inflated datasets.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12433  | https://doi.org/10.1038/s41598-024-62437-w

www.nature.com/scientificreports/

Weighted methods outperform in highly zero‑inflated data
For the highly zero-inflated Forest-Potting soils synthetic datasets, the simulation performance of differential 
abundance approaches using FDR and statistical power is shown in Fig. 4. Except for limma-voom-ZINBWaVE, 
DESeq2-ZINBWaVE and edgeR-ZINBWaVE all methods evaluated had very poor statistical power (a very few 
or no true positives found significant) for small sample sizes across all effect sizes. Moreover, even with large 
sample and effect sizes, DESeq2, edgeR and limma-voom exhibited low power. In general, the power of all 
methods increased with increasing sample and effect sizes. The FDR values of DESeq2 and edgeR were mainly 
either 0 (no false positives were found) or 1 (all significant results were false positives). DESeq2-ZINBWaVE, on 
the other hand, resulted FDRs that were close to the nominal 5% on average except for small samples and small 
effect sizes. However, the FDR of DESeq2-ZINBWaVE decreased with increasing sample and effect sizes. For 
modest sample sizes, edgeR-ZINBWaVE demonstrated FDR values on average close to the nominal level, with 
a tendency to rise with sample size. Limma-voom-ZINBWaVE, on the other hand, demonstrated high power 
even in small sample sizes. However, in all sample and effect size settings, the FDR of limma-voom-ZINBWaVE 
exceeds the nominal threshold by a wide margin. That is, with a nominal FDR of 5%, on average, more than 
60% of the features identified as significant by limma-voom-ZINBWaVE were false positives (Fig. 4). Across 
all samples and effect sizes, DESeq2-ZINBWaVE outperformed the other approaches in terms of power while 
maintaining a reasonable FDR control.

Better power of weighted methods even in moderately zero‑inflated data
We also examined the FDR controlling and power behavior of different differential abundance detection methods 
for moderately zero-inflated N-P starvation synthetic datasets. Except limma-voom, limma-voom-ZINBWaVE 
and MaAslin2, the FDR in all other methods were close to the nominal 5% level (Fig. 5) for large effect and 
sample sizes. The FDR of unweighted methods was on average slightly lower than their weighted counterparts, 
but this was at a slight expense on power. DESeq2-ZINBWaVE showed a relatively better power performance 
than edgeR-ZINBWaVE in small sample sizes. For large samples, on the other hand, edgeR-ZINBWaVE had 
better power than DESeq2-ZINBWaVE but this was at the expense of increased FDR.

The potential of utilizing DESeq2‑ZINBWaVE‑DESeq2 approach for differential abundance analysis
To assess the performance of the combined approach DESeq2-ZINBWaVE-DESeq2, we reanalyzed the 
metagenome shotgun sequencing data from the Human Microbiome Project (HMP-2012), which included 5 
supragingival and 5 subgingival plaque samples from the oral  cavity10,48 (see details in Text S1). Using enrichment 

Figure 4.  FDR and statistical power (sensitivity) for weighted and unweighted differential abundance detection 
methods evaluated on a highly zero-inflated Forest-Potting soils template plant microbiome data. Boxplots of 
FDR (A–C) and power (D–F) with effect sizes of 0.5 (A,D), 1 (B,E) and 2 (C,F) are colored by total sample size. 
DESeq2-ZINBWaVE demonstrated a FDR close to the nominal 5% level while maintaining power at reasonably 
high level except in a very small sample case. The power of limma-voom-ZINBWaVE was high but at the 
expense of a very high FDR. The performance of the unweighted methods DESeq2, edgeR and limma-voom was 
very poor for highly zero-inflated data.
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analysis, DESeq2-ZINBWaVE-DESeq2 discovered many accurate enrichments when compared to the other 
differential abundance tools (Fig. S5).

Analysis of experimental datasets
Forest‑potting soils microbiome analysis
Out of 244 filtered taxa occurring in at least two replicates from one of the two soil types and with a minimum of 
two counts per taxon, 135 had group-wise structured zeros and 109 did not. DESeq2-ZINBWaVE-DESeq2 was 
applied to detect differentially abundant taxa between forest and potting soils. We used DESeq2 on 135 taxa that 
had group-wise structured zeros and DESeq2-ZINBWaVE on 109 taxa that did not have group-wise structured 
zeros. Figures 6 and S4 depict the taxa identified as differentially abundant between potting and forest soils 
(adjusted p-value < 0.05). In Fig. 6, the relative abundances are colored, with higher relative abundances repre-
sented by dark red. The figures show that mainly specific Massilia and Streptomyces ASVs were more abundant 
in potting and forest soils, respectively.

N‑P starvation microbiome analysis
We also applied the combined DESeq2-ZINBWaVE-DESeq2 approach to detect differentially abundant microbes 
in tomato growing under nitrogen (N) and phosphate (P) deficiency compared to a control with complete 
Hoagland solution (C). To utilize the likelihood ratio test in DESeq2 and DESeq2-ZINBWaVE for multicategori-
cal variables, we modified the design matrix so that the generated dummy variables could be easily included into 
the full and reduced model structures, comparable to the likelihood ratio implementation in edgeR-ZINBWaVE30. 
As a result, the full model structure contains the intercept, N versus C, and P versus C, but the reduced model 
can include the intercept and either N versus C or P versus C. In comparing N versus C, we had 451 taxa with 
group-wise structured zeros and 320 without. Similarly, for P versus C, there were 385 taxa with group-wise 
structured zeros and 444 without. Figure 7 depicts the taxa identified as differentially abundant comparing N 
versus C and Fig. 8 comparing P versus C using the methods DESeq2 for taxa with group-wise structured zeros 
and DESeq2-ZINBWaVE for taxa without group-wise structured zeros (adjusted pvalue < 0.05). Under N-starva-
tion taxa belonging to the families: Mycobacteriaceae, Caulobacteraceae, Comamonadaceae, Bdellovibrionaceae, 
Rhizobiaceae, Streptomycetaceae, Reyranellaceae, Hyphomonadaceae, Candidatus_Kaiserbacteria and Candida‑
tus_Nomurabacteria were more abundant while taxa belonging to the families: Acetobacteraceae, Acidobacte‑
riaceae, Microbacteriaceae, Burkholderiaceae and Rhodanobacteraceae were less abundant. Under P-starvation 
taxa belonging to the families: Sphingomonadaceae, Acetobacteriaceae, Bdellovibrionaceae, Caulobacteraceae 

Figure 5.  FDR and statistical power for weighted and unweighted differential abundance detection methods 
evaluated on moderately zero-inflated synthetic N-P starvation plant microbiome data. Boxplots of FDR (A–C) 
and power (D–F) with effect sizes of 0.5 (A,D), 1 (B,E) and 2 (C,F) are colored by total sample size. Unweighted 
methods demonstrated comparable performance with their weighted counterparts.The FDR of unweighted 
methods was on average slightly lower than their weighted counterparts but this was at a slight expense on their 
power. The comparable power of limma-voom and limma-voomZINBWaVE was overshadowed by a very high 
FDR.
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and Candidatus_Kaiserbacteria were more abundant while taxa belonging to the families: Microbacteriaceae, 
Intrasporangiaceae, Xanthobacteracea andRhizobiales were less abundant.

Discussion and conclusion
This study aimed to contribute to the search for the best count-based differential abundance practices for 
microbiome data. In microbiome research, experimental datasets usually only have small to moderate number 
of replicates or total sample size. Moreover, in addition to inflated zeros, the microbiome count data may contain 
many taxa with group-wise structured zeros. The causes of group-wise structured zeros might be biological or 
non-biological factors, but identifying them in sequence count data is difficult. As a result, applying differential 
abundance methods in the presence of taxa with group-wise structured zeros makes statistical inference 
problematic due to extremely inflated standard errors, leaving many taxa nonsignificant. We included a pre-
processing step to distinguish taxa with and without group-wise structured zeros as much as possible and 
analyze them separately. We implemented the DESeq2-ZINBWaVE-DESeq2 approach, which is a combination of 
differential abundance tools that include DESeq2-ZINBWaVE for analyzing taxa without group-wise structured 
zeros and DESeq2 for analyzing taxa with group-wise structured zeros.

With the zero-inflated microbiome data, we found a considerable difference in the number and type of 
significantly differentially abundant taxa using unweighted (DESeq2, edgeR, limma-voom-ZINBWaVE) and 
weighted (DESeq2-ZINBWaVE, edgeR-ZINBWaVE, limma-voom) differential abundance analysis techniques. 
In this regard, the handling of taxa with group-wise structured zeros in the various tools had a significant 
influence. The likelihood ratio-based tests in the unweighted methods produced many significant taxa with 
group-wise structured zeros, but the weighted counterparts produced none or a few, which may be attributed 
to down-weighting the excess zeros that might have distorted the contribution of zeros to perfect separation. In 
either the weighted or unweighted approaches considered, no or little attention was given to directly address the 
issue of group-wise structured zeros. As a result, comparative benchmarking studies on microbiome differential 
abundance analysis tools that do not account for group-wise structured zeros may yield incorrect results.

Figure 6.  Heatmap of differentially abundant taxa between potting and forest soils. Higher relative abundances 
represented by darker red.
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We next investigated the impact of zero-inflation on the power and FDR control performance of weighted and 
unweighted approaches in microbiome differential abundance analysis using mock samples and model-based 
synthetic datasets. Instead of being dependent on the underlying distributional assumptions of the methodologies 
under consideration, the model-based simulation experiments were designed to mimic real microbiome data 
using the SparseDOSSA model. We used two experimental plant microbiome datasets with moderately and 
highly inflated zeros. Noting the inconsistencies in how the various tools handled taxa with group-wise structured 
zeros (all zero counts in one of the groups) and to create a common platform for comparison, in the simulation 
analysis, taxa with group-wise structured zeros were excluded from the differential abundance testing. In our 
simulation study, we mainly compared frequently used differential abundance methods such as DESeq2, edgeR, 
and limma-voom to their ZINBWaVE weighted counterparts, DESeq2-ZINBWaVE, edgeR-ZINBWaVE, and 
limma-voom-  ZINBWaVE10,22. ANCOM-BC24,  metagenomeSeq16, and  MaAsLin28 were also examined to some 
extent. We investigated the finite-sample properties of these methods, focusing on their performance on false 
discovery and detection power. A range of sample and effect sizes were taken into account.

According to our simulation assessment, ZINBWaVE weighted DESeq2 or edgeR demonstrated reasonable 
power for detecting differential abundance in substantially zero-inflated microbiome data with moderate to 
large sample and effect sizes. Thus, utilizing weights to downweight excess zeros with the popular RNAseq 
methods is a useful strategy for analyzing microbiome data. However, like the other differential abundance tools, 
ZINBWaVE weighted approaches had low power in detecting spike-in taxa with small effects and small sample 
sizes. This highlights the need for conducting power analysis when planning microbiome investigations, which 
helps in determining sample sizes while keeping the required power in  mind8,10. Moreover, inaccurate estimates 
of weights might have a negative impact on differential abundance detection. Here we considered ZINBWaWE-
based weighting, which uses a zero-inflated negative binomial model, but alternative weighting schemes could 
be considered.

On the other hand, consistent with findings in previous studies, (i) type I error control was satisfactory 
under the null hypothesis of no differential abundance using the mock samples as well as the model-based 
simulated datasets when inflated zeros were properly accounted for; (ii) the FDR in all the methods we considered 
to identify spiked-in taxa were on average higher than the nominal level in the analysis of the zero-inflated 
microbiome  data8. In this regard, while our simulation findings showed that employing weighted techniques 
to discover differential abundance is a step forward, controlling FDR remains a challenge in microbiome data 
analysis, necessitating continued refining of existing methods or the development of new ones.

Furthermore, the simulation experiments demonstrated that increasing sample size increased FDR in some 
of the differential abundance analysis methods evaluated. In particular, FDR control of edgeR-based methods 

Figure 7.  Differentially abundant taxa in comparing N-starvation with the control.
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were not improved by increasing sample size combined with large effect sizes. This could be a result of the bias 
involved in the estimated effects, which increases with sample  size24. To this end, the implementation of methods 
based on penalized likelihood inference in model parameter estimation could help to alleviate the problem of 
inflated FDR control.

Another possible solution for reducing the inflated FDR would be proper exploitation of the hierarchical 
nature of microbiome data. Recent findings in the literature offer several strategies for leveraging hierarchical 
structure to boost the identification of differentially abundant species. In this regard, methods were introduced 
using smoothing p-values according to the  phylogeny13 or correlation  tree5 and using hierarchically adjusted 
p-values5,49,50. However, the inclusion of phylogenetic information in microbiome differential abundance analysis 
generated inconsistent results in terms of detection power and FDR  control5,13 necessitating the development 
of novel tools.

The performance of the combined approach was assessed using enrichment analysis. In comparison to the 
independent analyses performed by DESeq2-ZINBWaVE and edgeR-ZINBWaVE, the combined technique 
DESeq2-ZINBWaVE-DESeq2 discovered many correct enrichments.

Finally, DESeq2-ZINBWaVE-DESeq2 was applied to investigate the two plant microbiome datasets utilized 
as templates for the data simulation. Our new approach identified many potentially important taxa that might 
be further explored in terms of effect sizes and abundance in order to prioritize them for biological validation. 
In conclusion, the combined method DESeq2-ZINBWaVE-DESeq2 described in this study provides a promising 
development in the analysis of microbiome datasets displaying zero-inflation and group-wise structured zeros.

Data availability
All data sets generated and analyzed in the current study and the R-code used to analyze the data are available 
in GitHub public repository https:// github. com/ fenab/ Micro bDifAb. git.
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