
Meijer et al. Journal of Cheminformatics (2024) 16:58
https://doi.org/10.1186/s13321-024-00851-y

SOFTWARE

CineMol: a programmatically accessible
direct-to-SVG 3D small molecule drawer
David Meijer1*, Marnix H. Medema1* and Justin J. J. van der Hooft1*

Abstract

Effective visualization of small molecules is paramount in conveying concepts and results in cheminformatics.
Scalable vector graphics (SVG) are preferred for creating such visualizations, as SVGs can be easily altered in post-
production and exported to other formats. A wide spectrum of software applications already exist that can visualize
molecules, and customize these visualizations, in many ways. However, software packages that can output projected
3D models onto a 2D canvas directly as SVG, while being programmatically accessible from Python, are lacking. Here,
we introduce CineMol, which can draw vectorized approximations of three-dimensional small molecule models
in seconds, without triangulation or ray tracing, resulting in files of around 50–300 kilobytes per molecule model
for compounds with up to 45 heavy atoms. The SVGs outputted by CineMol can be readily modified in popular vector
graphics editing software applications. CineMol is written in Python and can be incorporated into any existing Python
cheminformatics workflow, as it only depends on native Python libraries. CineMol also provides programmatic access
to all its internal states, allowing for per-atom and per-bond-based customization. CineMol’s capacity to program-
matically create molecular visualizations suitable for post-production offers researchers and scientists a powerful
tool for enhancing the clarity and visual impact of their scientific presentations and publications in cheminformatics,
metabolomics, and related scientific disciplines.

Scientific contribution
We introduce CineMol, a Python-based tool that provides a valuable solution for cheminformatics researchers by ena-
bling the direct generation of high-quality approximations of two-dimensional SVG visualizations from three-dimen-
sional small molecule models, all within a programmable Python framework. CineMol offers a unique combination
of speed, efficiency, and accessibility, making it an indispensable tool for researchers in cheminformatics, especially
when working with SVG visualizations.

Keywords Scalable vector graphics, Three-dimensional structure, Molecular drawing, Visualization

Introduction
Cheminformatics knowledge transfer primarily occurs
through presentations, published articles, tutorials, and
textbooks. In these contexts, three-dimensional molecu-
lar visualizations of small molecules play a crucial role in
facilitating the understanding of underlying concepts and
research outcomes while also adding layers of informa-
tive value. To illustrate this point, consider the scenario
where a methodology for generating molecular confor-
mations is presented, and its fidelity is assessed by com-
paring the root-mean-squared deviation of the atom

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

*Correspondence:
David Meijer
david.meijer@wur.nl
Marnix H. Medema
marnix.medema@wur.nl
Justin J. J. van der Hooft
justin.vanderhooft@wur.nl
1 Bioinformatics Group, Wageningen University & Research, Wageningen,
the Netherlands

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00851-y&domain=pdf

Page 2 of 8Meijer et al. Journal of Cheminformatics (2024) 16:58

positions to a validated experimental target. In this case,
the inclusion of visual representations displaying both
the generated conformation and the target conformation
serves as an immediate visual indicator of the quality of
the generated structure and allows for a visual aid in the
quality assessment. Another instance is the portrayal of
potential orientations of ligands within a binding pocket
of a protein and their spatial proximity to crucial active
site residues. A third example is that a researcher might
want to demonstrate how specific functional groups
within a molecule exhibit closer spatial proximity under
specific environmental conditions than would be inferred
solely from their skeletal structural formula. In all these
instances, graphical representations hold the potential to
convey information far more effectively and intuitively
than an extensive textual description. Fortunately, a mul-
titude of software applications are readily available to aid
scientists and researchers in crafting three-dimensional
visualizations of molecules. Among the noteworthy tools
in this domain are Jmol [1], 3Dmol.js [2], Blender [3],
PyMOL [4], and RDKit [5] each offering distinct capa-
bilities and features for the visualization and analysis of
molecular structures.

The way these tools interface with users determines
their usability. Standalone desktop applications provide
a user-friendly graphical interface for visualizing mol-
ecules, but they lack programmatic accessibility, meaning
you cannot control them via scripts, and they cannot be
integrated directly into other software as libraries. Jmol
falls into this category. Web applications are interactive
as well but typically render models on the client side,
limiting them to JavaScript, which modern browsers sup-
port. Examples include 3Dmol.js and JSmol, the JavaS-
cript version of Jmol. Resources such as the Protein Data
Bank (https:// www. rcsb. org/) and PubChem (https://
pubch em. ncbi. nlm. nih. gov/) rely on such tools to dis-
play three-dimensional structures. Notably, 3Dmol.js can
also be programmatically utilized in Python through an
IPython interface called py3Dmol within Jupyter note-
books. Command line interfaces (CLIs) enable users to
interact with programs via the command line, although
some of these programs may also feature a graphical user
interface (GUI). Certain software applications offer mul-
tiple interaction methods, such as Blender and PyMOL.
Blender and PyMOL are desktop applications that pro-
vide both a command line interface and a Python appli-
cation programming interface (API). Regarding their
underlying technology, Jmol relies on a specialized Java-
based graphics engine, while 3Dmol.js is a JavaScript
library that utilizes WebGL, a JavaScript implementation
of the versatile graphics library known as OpenGL [6], for
rendering graphics. Blender and PyMOL have their cores
developed in C and also employ OpenGL for rendering.

Python is the language of choice for many researchers
in cheminformatics as well as other domains of science
that deal with molecular information, due to its versatility
and extensive libraries. Therefore, it is important to note
that the aforementioned tools are not inherently Python-
centric. Compiled languages like C and Java often offer
faster performance; however, when employed within a
Python-first environment, they may introduce additional
dependencies, which could be considered excessive when
the primary goal is to generate three-dimensional visuali-
zations of chemical compounds. Additionally, users will
not have direct access to all the internal states of objects
when they can solely interact with the library through
an API, although this might be desired by the user when
they would like to apply specific stylistic choices in a
programmatic way that are not supported by the API
directly. RDKit is a widely used cheminformatics toolkit
for cheminformaticians working in Python. RDKit can
draw three-dimensional conformations of molecular
structures and facilitates customization of these visuali-
zations. However, to our knowledge, it is not yet possible
to directly output these images as SVGs.

Creating visuals for compounds is typically just the
beginning of the process. More often than not, these
rendered images find their way into ensemble figures.
When creating visuals for this purpose, it is preferred to
output them as scalable vector graphics (SVGs). SVGs
describe geometries in a vectorized form using an exten-
sible markup language (XML) format, which format is
designed to be shareable. This makes SVG easily modi-
fiable either through a text editor or via a GUI within
illustration software such as Adobe Illustrator or Ink-
scape. However, it’s important to note that the graphics
rendering engines of the aforementioned molecular visu-
alization tools are not inherently designed for direct SVG
output. While plugins such as the render freestyle SVG
add-on for Blender [7] or stand-alone tools like gl2ps [8]
might extend this capability, creating SVGs from com-
plex three-dimensional models involves a more intricate
process.

Complex three-dimensional shapes are often con-
structed from simpler flat surface geometric shapes,
typically triangles. The description of a complex three-
dimensional shape involves connecting these triangles
through a process called triangulation. The level of
detail in the three-dimensional model depends on the
number of triangles used. These triangles are then pro-
jected into the two-dimensional SVG canvas. However,
merely sorting and rendering these two-dimensional
shapes is insufficient when two or more model meshes
intersect. To address this, algorithms are employed to
sort and subdivide the triangles into visible and invis-
ible parts. This recursive computational process is

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/

Page 3 of 8Meijer et al. Journal of Cheminformatics (2024) 16:58

resource intensive. If this process is not conducted with
sufficient detail, intersection lines appear jagged, par-
ticularly for models with a lot of curved surfaces—like
space-filling molecule models depicting overlapping
atom spheres. Additionally, when executed at a high
level of detail, SVG files may become exceedingly large,
reaching sizes in the tens or hundreds of megabytes,
even for relatively small models as every individual tri-
angle needs to be defined in the SVG. Another avenue
for outputting SVGs is to embed a PNG within an SVG
format. This is less desirable because these SVGs do not
provide true vector graphics and are no longer edit-
able as SVG files in post-production, thus limiting their
versatility.

To tackle these specific challenges, we introduce
CineMol—a Python-centric, dependency-free solution
for generating true SVG representations of three-dimen-
sional models of small molecules. CineMol employs
a straightforward algorithm to rapidly and accurately
approximate two-dimensional projections of three-
dimensional scenes. It excels in producing compact SVG
files, often just hundreds of kilobytes in size, making
them highly practical for sharing, drawing molecules, and
enabling extensive customization during post-produc-
tion. CineMol offers users a user-friendly Python library
along with a command-line tool, simplifying the process
of creating SVG approximations of three-dimensional
molecular scenes. Furthermore, we have developed a
demo web page where prospective users can effortlessly
generate SVG models from SDF files (https:// molto ols.

bioin forma tics. nl/ cinem ol), providing a hands-on experi-
ence with our tool’s capabilities.

Implementation
CineMol approximates the two-dimensional projections
of a three-dimensional scene of atoms and bonds on an
SVG canvas without computationally expensive meshes
or ray tracing. To ensure that CineMol effectively rep-
resents intersections while maintaining the high per-
formance that allows it to generate SVGs in a matter of
seconds, various methods were employed to limit the
number of calculations.

First, a three-dimensional scene is created by assem-
bling the in CineMol available sphere, cylinder, and
wireframe geometries and their styling. This can be
done by the user directly when they want full control
over the scene and its styling, or by creating Atom and
Bond objects and feeding it into the draw_molecule API,
together with a global style. The CineMol algorithm
will then start by mapping three-dimensional points on
the surfaces of the scene items (Fig. 1a). The number of
points generated (N) for each geometry is based on the
resolution parameter.

For a sphere, we generate N points on the surface based
on ɸ azimuthal angles (= resolution + 1) times θ polar
angles (= resolution + 1). For a cylinder, we first generate
N points (= resolution + 1) uniformly distributed points
between a start position vector and an end position vec-
tor. These points form the centers of circles that outline
the body of the cylinder. For every circle, we generate N

Fig. 1 The six steps of CineMol’s algorithm for creating a two-dimensional polygonal projection of a three-dimensional scene. a Points are
generated on the surfaces of the geometric items in the scene. The number of points generated is based on the resolution parameter. b The scene
items are filtered on the z-coordinate of their centroid and points invisible from the point-of-view of CineMol are discarded. c The three-dimensional
points are projected based on the focal length of the scene. d The z-coordinate is discarded to make the scene two-dimensional. e CineMol’s
convex hull algorithm calculates the convex shape around each item’s two-dimensional point cloud to create polygonal outlines. f Polygons are
drawn in their previously sorted order and a fill style is applied. Matplotlib (v3.8.2) was used to create this figure [12]

https://moltools.bioinformatics.nl/cinemol
https://moltools.bioinformatics.nl/cinemol

Page 4 of 8Meijer et al. Journal of Cheminformatics (2024) 16:58

points (= resolution) on the circumference. We cap the
cylinder with either no cap or a round cap. The round
cap is created by generating points for half a sphere on
either end of the cylinder. The resolution parameter has
no impact on a wireframe geometry.

After generating points on the surface of our three-
dimensional scene items, the algorithm filters points
based on their visibility from CineMol’s fixed viewpoint
(Fig. 1b). CineMol has a fixed view direction towards
the origin along the positive z-axis. To speed up the
algorithm, we sort scene items from farthest to nearest
to the viewpoint based on the z-coordinate of their cen-
troid. As SVG draws polygons in chronological fashion,
we only assess intersections for each item between ear-
lier drawn items. For quick intersection checks, we check
if the centers of spheres and the central line of cylinders
are within each other’s vicinity, considering that covalent
bonds mainly intersect at their ends with other atoms
(i.e., spheres) and bonds (i.e., cylinders). Wireframes are
only sorted based on their centroid before drawing. For
the remaining points, the algorithm projects their x and
y coordinates using a provided focal length (Fig. 1c) and
then disposes of the z-coordinate to create a two-dimen-
sional projection (Fig. 1d).

Now, each item comprises a two-dimensional point
cloud, representing projected surface points visible from
CineMol’s viewpoint, considering that items will be
drawn based on their initial z-axis distance to CineMol’s
point of view. To establish the smallest encapsulating
polygon outlining each point cloud, the quickhull (a two-
dimensional algorithm to find a convex hull [9]) is applied
(Fig. 1e). The polygons are then drawn from the furthest
away to most nearby to CineMol’s point of view, and the
supplied fill is applied as styling (Fig. 1f). This fill can be
either solid, for a cartoon style, or a gradient for a glossy
look (i.e., radial-gradient for spheres and a linear gradi-
ent for cylinders). Wireframes can only be styled based
on the provided stroke color.

The draw_molecule API is wrapped around the Scene
object and applies a uniform style to all atoms and bonds
given to it. The draw_molecule API uses the Corey–
Pauly–Koltung (CPK) scheme for determining atom
and bond colors [10]. The atom radii are sourced from
the atomic radii values in the periodic table of elements
from PubChem [11]. The draw_molecule API is wrapped
around a Scene object. The Scene object is the engine
behind the draw_molecule API and describes a lower-
level abstraction of the scene to draw in terms of sphere,
cylinder, and wire geometries. When users would like to
fully customize their model instead of using a general
style from the draw_molecule API they can opt for using
the Scene object directly and give each geometry their
personalized style, if desired.

Results & discussion
In the following section, we present a series of examples
to illustrate the versatility and effectiveness of CineMol,
our Python-based three-dimensional molecular visuali-
zation tool. These examples serve to showcase the type
of depictions and the range of applications that CineMol
can accommodate. We will also demonstrate CineMol’s
ability to swiftly compute a scene within seconds, show-
casing its linear computational scalability, with respect
to the number of atoms to draw, when tested on a series
of molecular conformers, all while generating compact
file sizes. All images in this results section were gener-
ated on a MacBook Pro with an Apple M2 chip and 8 GB
memory.

CineMol: a versatile three‑dimensional small molecule
drawer
CineMol has a versatile Scene object that empowers users
to create a wide array of scenes composed of spheres,
cylinders, and wireframes, catering to diverse visualiza-
tion needs. In addition to this, CineMol’s draw_molecule
API (wrapped around the Scene object) provides a user-
friendly solution right out of the box, offering four dis-
tinct depiction types: space-filling (Fig. 2a), ball-and-stick
(Fig. 2b), tube (Fig. 2c), and wireframe (Fig. 2d), along
with two unique rendering styles: cartoon (Fig. 2 top
row) and glossy (Fig. 2 bottom row). The cartoon render-
ing style assigns a solid color fill and stroke to each poly-
gon, while the glossy rendering style replicates specular
and shadow effects. If the polygons were composed of tri-
angles instead (for example, from the result of triangula-
tion), each surface could have been individually styled to
realistically generate specular and shadow effects. Unfor-
tunately, this is not achievable in SVG when the surface is
a single polygon.

The draw_molecule API has multiple parameters,
which are outlined comprehensively in Table 1, provid-
ing users with an intuitive and flexible tool for generating
molecular visualizations tailored to their specific require-
ments. Each atom and bond given to the draw_molecule
API can have its color, radius, and opacity set manually to
override the defaults. The draw_molecule API can, after
installing CineMol with pip, be used directly by import-
ing it in a Python project.

We have developed two user-friendly interfaces that
enable users to swiftly start utilizing CineMol. A GUI
built on top of the draw_molecule API is available at
https:// molto ols. bioin forma tics. nl/ cinem ol. Addition-
ally, the installation of CineMol ships with a CLI wrapped
around the draw_molecule API as well, which contains
much of the same functionality. Currently, molecules
in the form of structure-data format (SDF) files can be

https://moltools.bioinformatics.nl/cinemol

Page 5 of 8Meijer et al. Journal of Cheminformatics (2024) 16:58

Fig. 2 The four depiction types and two fill styles supported by CineMol’s draw_molecule API. a Space-filling. b Ball-and-stick. c Tube. d Wireframe.
The wireframe depiction only supports stroke color and stroke opacity changes and has no separate glossy style. A resolution of 100 and a scale
factor of 10.0 was used to generate these images. Algorithm runtimes (cartoon/glossy): space-filling = 1.5 s/1.5 s; ball-and-stick = 1.9 s/1.9 s;
tube = 3.4 s/3.4 s; wireframe = 1 ms/1 ms. File sizes (cartoon/glossy): space-filling = 65 kb/74 kb; ball-and-stick: 176 kb/206 kb; tube = 75 kb/93 kb;
wireframe = 14 kb/14 kb. The SDF containing the penicillin G conformer used to generate these images was retrieved from PubChem [13]. Adobe
Illustrator 2024 was used to compile the SVGs and generate the figure in PNG format

Table 1 CineMol’s draw_molecule API

Parameter Type Description

atoms Atom list An Atom object takes a unique integer as an index, an atom symbol string, and three-dimensional coordinates
of its position (x, y, z). Radius (float), color (RGB tuple of integers), and opacity (float) are optional. This is a required
parameter

bonds Bond list A Bond object takes a start and end index corresponding to atoms in atoms and an integer for bond order. Radius
(float), color (RGB tuple of integers), and opacity are optional. The bond color is set by the nearest atom by default.
This is a required parameter

style Style enum Either SpaceFilling, BallAndStick, Tube, or Wireframe. This is a requirement parameter

look Look enum Either Cartoon or Glossy. This is a required parameter

resolution int Determines the quality of the polygonal approximation of the visible part of every geometric shape. A resolution
between 50 and 100 is suggested to be sufficient for most applications. A resolution above 200 only provides mar-
ginal improvements. This is a required parameter

window float tuple Explicitly set the width and height of the SVG. Width and height are not set by default. This is an optional parameter

view_box float tuple Explicitly set the view box of the SVG. The view box is calculated by the Scene object by default. This is an optional
parameter

rotation_over_x_axis float Rotation angle in radians for the model over the x-axis. The rotation over the x-axis is 0.0 by default. This
is an optional parameter

rotation_over_y_axis float Rotation angle in radians for the model over the y-axis. The rotation over the y-axis is 0.0 by default. This
is an optional parameter

rotation_over_z_axis float Rotation angle in radians for the model over the z-axis. The rotation over the z-axis is 0.0 by default. This
is an optional parameter

scale float Scales the coordinates of the model by this ratio. By default, the scale is set to 1.0. This is an optional parameter

focal_length float A smaller focal length makes the size difference between items nearer to the point-of-view appear larger
and the items further away from the point-of-view appear smaller. By default, the focal length is set to None
and has no effect on the drawn depiction

exclude_atoms str list List atoms to filter from the model. This will also filter out the bonds connected to these atoms. By default, no atoms
are filtered out

verbosity bool Set logger level to control verbosity. By default, the logger level is info

Page 6 of 8Meijer et al. Journal of Cheminformatics (2024) 16:58

supplied to the GUI and CLI. CineMol places its primary
emphasis on visualization rather than parsing various file
formats. As a deliberate design choice, we have refrained
from incorporating third-party libraries for file parsing.
This decision allows users the freedom to select their pre-
ferred cheminformatics toolkit for this specific purpose,
providing flexibility and compatibility with a wide range
of data sources.

Furthermore, CineMol does not contain any function-
ality for generating three-dimensional conformations of
compound structures. Consistent with its approach of
avoiding dependencies for file parsing, we provide users
with the flexibility to select their preferred software for
conformer generation, rather than bundling such func-
tionalities. For example, the widely used cheminformat-
ics toolkit RDKit can be used to generate conformers for
compounds. This is further highlighted in the section
titled “CineMol allows full customization of models for
experienced users”.

CineMol allows full customization of models
for experienced users
Experienced Python users may desire additional custom-
ization options for their molecular models, and CineMol
offers the flexibility to achieve this. To do so, users can
leverage the underlying Scene object and supply it with
model nodes. These nodes come in three distinct shapes:
spherical, cylindrical, or wire, allowing for tailored
molecular representations. Each model node is accom-
panied by its styling. Three examples are shown in Fig. 3,
and the exact implementations of these examples can
be found in the CineMol GitHub at https:// github. com/
molto ols/ CineM ol/ tree/ main/ examp les.

Figure 3a shows a generated three-dimensional con-
formation of the non-ribosomal peptide daptomycin
that was generated with the wrapper draw_molecule API
with a resolution of 50. Every different color highlights

a distinct monomer in the molecule. The conforma-
tion generation and the substructure searches were per-
formed with RDKit v2023.9.6 [5]. Figure 3b shows three
RDKit-generated conformations of o-benzylphenol
superimposed on each other. To accurately visualize
the intersecting spheres and bonds, the resolution was
increased to 150 and we instructed the algorithm to not
filter nodes for intersecting. By default, the algorithm fil-
ters nodes for intersection. This means that a quick check
is performed to estimate if two nodes intersect before
calculating the exact intersection. Turning off this quick
check slows down the calculation but makes sure that
every intersection is accurately visualized in this particu-
lar case. The Scene API allows users to set or include spe-
cific calculations to create their own trade-off between
accuracy and speed. Figure 3c shows a wireframe of the
lysozyme 9LYZ with a space-filling model of the bound
bacterial cell wall trisaccharide NAM-NAG-NAM [14].
The opacity of the protein wireframe was set to 0.75,
and the model was manually rotated to show the bound
ligand more clearly. The PDB file was parsed with the
bioinformatics toolkit biopython v1.83 [15].

CineMol generates SVG drawings with small file sizes
in a matter of seconds
Figure 4 illustrates the runtime performance and result-
ing file sizes when generating models for 4548 protein-
bound ligand conformations from the Platinum dataset
v2017_01 [16]. These results were obtained using the
draw_molecule API with a resolution of 50 and excluding
hydrogen atoms.

Several key observations can be made from the data.
First, all atoms in the dataset contain between 10 and 45
heavy atoms and between 10 and 50 bonds, as depicted
in Fig. 4a. This demonstrates the applicability of CineMol
for molecules of these sizes. It is important to note that

Fig. 3 Examples of custom figures created programmatically direct-to-SVG with CineMol. a A daptomycin conformer with its monomers
highlighted. b Three superimposed conformations of o-benzylphenol. c The lysozyme 9LYZ with bound bacterial cell wall trisaccharide
NAM-NAG-NAM. Algorithm runtimes: 3a = 1.8 s; 3b = 3 min; 3c = 2.3 s. File sizes: 3a = 123 kb; 3b: 211 kb; 3c = 135b. Adobe Illustrator 2024 was used
to compile the SVGs and generate the figure in PNG format

https://github.com/moltools/CineMol/tree/main/examples
https://github.com/moltools/CineMol/tree/main/examples

Page 7 of 8Meijer et al. Journal of Cheminformatics (2024) 16:58

a resolution of 50 was used and only heavy atoms were
considered for this analysis.

The data reveals general trends among space-filling,
tube, and ball-and-stick models. Runtime and file size
show a linear relationship (as denoted by Fig. 4b). Tube
models exhibit double the runtime of space-filling and
ball-and-stick models due to the computationally inten-
sive nature of calculating cylinder-cylinder intersections,
since cylinders tend to have more generated points than
spheres after filtering. The algorithm does not calculate
cylinder-cylinder intersections for ball-and-stick models,
as they are typically not visible given the smaller radii of
bonds compared to atoms in molecular models. If bond
radii were larger than atom radii, a tube model would
be more appropriate to generate anyway. Users can cus-
tomize the behavior regarding which geometries require
intersection calculations by directly accessing the Scene
object.

Furthermore, file sizes for ball-and-stick models are
approximately twice as large as those for space-filling and
tube models (Fig. 4c). This is expected because ball-and-
stick models typically entail about twice as many poly-
gons to describe in the SVG file. The runtime difference
between glossy and cartoon styles remains minimal since
only the fill step (as shown in Fig. 1f) differs and is not
computationally intensive. File sizes for SVG models with
a glossy style are a factor bigger than SVG models with a
cartoon style (Fig. 4c). This can be explained by the fact
that gradients, which are used to create the glossy look,
take more characters to describe than a solid fill, which is
used to create the cartoon look.

Wireframe models present distinct trends compared to
other style types. In wireframe models, no intersections
are calculated; instead, only the sorting of individual
wires is performed. This process is not computation-
ally demanding, resulting in consistently small runtimes
(Fig. 4b). Wireframe model SVG files are also magnitudes
smaller than the SVG files generated for other model

styles. Line segments in wireframe models are defined by
start and end positions, while single polygons consist of
numerous individual line segments (Fig. 4c).

In summary, for this set of ligands, the runtime ranges
from 1 to 1200 ms, indicating that CineMol can effi-
ciently render similarly sized ligands in seconds with a
reasonable resolution of 50. The runtime of CineMol typ-
ically scales quadratically with the resolution. For exam-
ple, drawing a space-filling model of penicillin G, which
has 23 heavy atoms, without hydrogen atoms, takes
approximately 200 ms for a resolution of 50, approxi-
mately 800 ms for a resolution of 100, and approximately
3.2 s for a resolution of 200. A resolution of 100 is suf-
ficient for most applications. Any resolution higher than
200 tends not to lead to visible improvements for most
applications. File sizes remain in the range of tens to hun-
dreds of kilobytes across all style combinations.

Conclusions
In conclusion, CineMol addresses a specific need in
cheminformatics by providing a Python-first software
package capable of producing precise SVG represen-
tations of small molecule models. This tool facilitates
enhanced visualization options for three-dimensional
molecular structures with a focus on customization and
the ability for post-production editing. CineMol’s effi-
cient performance and accessibility make it a valuable
tool for researchers and scientists in the field of chemis-
try and beyond.

Acknowledgements
Not applicable.

Author contributions
DM conducted research and wrote the code for CineMol and drafted the
original manuscript. MHM and JJJvdH provided extensive feedback on the
research process and the written manuscript.

Funding
European Research Council (Project DECIPHER; grant agreement ID: 948770).

Fig. 4 Runtime and file size performance metrics for generating SVG models for 4548 protein-bound ligands from the Platinum dataset. a Number
of heavy atoms and bonds per ligand in the Platinum dataset. wireframe model SVG files magnitudes smaller than the SVG files for the other model
styles. b Runtime performance. c File sizes. The fill lines indicate one standard deviation. Matplotlib (v3.8.2) was used to create this figure [12]

Page 8 of 8Meijer et al. Journal of Cheminformatics (2024) 16:58

Availability of data and materials
CineMol v1.0.0 is available for Python versions 3.10 and up, has no third-party
dependencies, and is released to PyPI (https:// pypi. org/ proje ct/ cinem ol/). The
source code of CineMol is freely available on GitHub at https:// github. com/
molto ols/ cinem ol under the MIT license, together with the code to generate
any figure present in this article. We have followed the reproducibility and
reusability guidelines as described by Hoyt et al. [17], using the cookiecutter-
snekpack template (https:// github. com/ cthoyt/ cooki ecutt er- snekp ack). A
web-based demo version of CineMol is available at https:// molto ols. bioin
forma tics. nl/ cinem ol. We have archived the version of CineMol’s repository
used to generate results for this publication with Zenodo (https:// doi. org/ 10.
5281/ zenodo. 11242 217).

Declarations

Competing interests
JJJvdH is currently member of the Scientific Advisory Board of NAICONS Srl.,
Milano, Italy, and consults for Corteva Agriscience, Indianapolis, IN, USA. MHM
is a member of the scientific advisory board of Hexagon Bio. The other author
declares to have no competing interests.

Received: 1 February 2024 Accepted: 8 May 2024

References
 1. Jmol: an open-source Java viewer for chemical structures in 3D. http://

www. jmol. org/. Accessed 7 Jan 2024.
 2. Rego N, Koes D (2015) 3Dmol.js molecular visualization with WebGL. Bio-

informatics 31:1322–1324. https:// doi. org/ 10. 1093/ bioin forma tics/ btu829
 3. Blender Foundation. https:// www. blend er. org/. Accessed 7 Jan 2024.
 4. PyMOL. https:// pymol. org/2/. Accessed 7 Jan 2024
 5. RDKit: Open-source cheminformatics. https:// www. rdkit. org/. Accessed

Jan 7 2024
 6. OpenGL. https:// www. opengl. org/. Accessed 7 Jan 2024
 7. Blender manual: Freestyle SVG exporter. https:// docs. blend er. org/

manual/ en/ latest/ addons/ render/ render_ frees tyle_ svg. html. Accessed 7
Jan 2024

 8. GL2PS: an OpenGL to PostScript printing library. https:// www. geuz. org/
gl2ps/. Accessed 7 Jan 2024.

 9. Greenfield JS (1990) A proof for a quickhull algorithm. Electrical Engineer-
ing and Computer Science-Technical Reports

 10. Koltun WL (1965) Space filling atomic units and connectors for molecular
models. US Patent. 3170246

 11. National Center for Biotechnology and Information (2024) Atomic Radius
in the Periodic Table of Elements. https:// pubch em. ncbi. nlm. nih. gov/
perio dic- table/ atomic- radius. Accessed Jan 7 2024

 12. Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng
9:90–95

 13. National Center for Biotechnology and Information (2024) PubChem
compound summary for CID 5904, Penicillin G. https:// pubch em. ncbi.
nlm. nih. gov/ compo und/ Penic illin-G. Accessed Jan 7 2024

 14. Kelly JA, Sielecki AR, Sykes BD, James MNG, Phillips DC (1979) X-ray
crystallography of the binding of the bacterial cell wall trisaccharide
NAM-NAG-NAM to lysozyme. Nature 282:875–878

 15. Hamelryck T, Manderick B (2003) PDB file parser and structure class imple-
mented in Python. Bioinformatics 19(17):2308–2310

 16. Friedrich N-O, Meyder A, de Bruyn KC, Sommer K, Flachsenberg F, Rarey
M, Kirchmair J (2017) High-Quality dataset of protein-bound ligand
conformations and its application to benchmarking conformer ensemble
generators. J Chem Inf Model 57:529–539

 17. Hoyt CT, Zdrazil RB, Guha R, Jeliazkova N, Martinez-Mayorga K, Nittinger
E (2023) Improving reproducibility and reusability in the Journal of Chem-
informatics. J Cheminf 15:62

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://pypi.org/project/cinemol/
https://github.com/moltools/cinemol
https://github.com/moltools/cinemol
https://github.com/cthoyt/cookiecutter-snekpack
https://moltools.bioinformatics.nl/cinemol
https://moltools.bioinformatics.nl/cinemol
https://doi.org/10.5281/zenodo.11242217
https://doi.org/10.5281/zenodo.11242217
http://www.jmol.org/
http://www.jmol.org/
https://doi.org/10.1093/bioinformatics/btu829
https://www.blender.org/
https://pymol.org/2/
https://www.rdkit.org/
https://www.opengl.org/
https://docs.blender.org/manual/en/latest/addons/render/render_freestyle_svg.html
https://docs.blender.org/manual/en/latest/addons/render/render_freestyle_svg.html
https://www.geuz.org/gl2ps/
https://www.geuz.org/gl2ps/
https://pubchem.ncbi.nlm.nih.gov/periodic-table/atomic-radius
https://pubchem.ncbi.nlm.nih.gov/periodic-table/atomic-radius
https://pubchem.ncbi.nlm.nih.gov/compound/Penicillin-G
https://pubchem.ncbi.nlm.nih.gov/compound/Penicillin-G

	CineMol: a programmatically accessible direct-to-SVG 3D small molecule drawer
	Abstract
	Introduction
	Implementation
	Results & discussion
	CineMol: a versatile three-dimensional small molecule drawer
	CineMol allows full customization of models for experienced users
	CineMol generates SVG drawings with small file sizes in a matter of seconds

	Conclusions
	Acknowledgements
	References

