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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• High spatial variation of carbon budgets 
using a network of automated chambers 

• Daily water table depth relates to 
nightly ecosystem respiration only down 
to 50 cm. 

• Year to year emission variation may 
result from soil moisture optimum of 
carbon loss. 

• TIER 1 and TIER 2 approaches may 
neglect regional drivers of CO2 peat 
emission.  
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A B S T R A C T   

Peatlands store vast amounts of carbon (C). However, land-use-driven drainage causes peat oxidation, resulting 
in CO2 emission. There is a growing need for ground-truthing CO2 emission and its potential drivers to better 
quantify long-term emission trends in peatlands. This will help improve National Inventory Reporting and ul-
timately aid the design and verification of mitigation measures. To investigate regional drivers of CO2 emission, 
we estimated C budgets using custom-made automated chamber systems measuring CO2 concentrations cor-
rected for carbon export and import. Chamber systems were rotated among thirteen degraded peatland pastures 
in Friesland (the Netherlands). These peatlands varied in water table depth (WTD), drainage-irrigation man-
agement (fixed regulated ditch water level (DWL), subsurface irrigation, furrow irrigation, or dynamic regulated 
DWL), and soil moisture. We investigated (1) whether drainage-irrigation management and related hydrological 
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drivers could explain variation in C budgets, (2) how nighttime ecosystem respiration (Rnight
eco ) related to hy-

drological drivers, and (3) how C budgets compared with estimates from Tier 1 and Tier 2 models regularly used 
in National Inventory Reporting. Deep-drained peatlands largely overlapped with C budgets from shallow- 
drained peatlands. The variation in C budgets could not be explained with drainage-irrigation measures or 
annual WTD, likely because of high variation between sites. Rnight

eco increased from 85 to 250 kg CO2 ha− 1 day− 1 as 
the WTD dropped from 0 to 50 cm across all sites. A deeper WTD had no apparent effect on Rnight

eco , which could be 
explained by the unimodal relationship we found between Rnight

eco and soil moisture. Finally, C budgets estimated 
by Tier 1 emission factors and Tier 2 national models mismatched the between-site and between-year variation 
found in chamber-based estimated NECBs. To conclude, our study showed that shallow WTDs greatly determine 
C budgets and that regional C budgets, which can be accurately measure with periodic automated chamber 
measurements, are instrumental for model validation.   

1. Introduction 

Peatlands have historically been an important carbon (C) sink 
(Joosten and Clarke, 2002) and store around 600 Gt of C, nearly 30 % of 
all global soil C stocks (Yu et al., 2010). Currently, around 10 % of 
peatlands worldwide have been drained (Joosten, 2010), which causes 
peat oxidation. This is one of the main causes of peat degradation, 
thereby contributing to a large part of peatland carbon dioxide (CO2) 
emissions, which add up to around 0.52Gt C per year (Leifeld and 
Menichetti, 2018). Draining peatlands allows for the optimization of 
large-scale agriculture, such as mechanized dairy farming. However, 
global climate policies advocate for C emission reductions from all 
sectors (IPCC, 2023). Suggested mitigation actions for agriculture on 
drained/degraded peat soils involve raising the groundwater table, as it 
is generally accepted that a higher groundwater table depth (WTD) leads 
to lower peatland CO2 emissions (Couwenberg, 2011; Drösler et al., 
2013; Evans et al., 2021; Joosten, 2010; Tiemeyer et al., 2020). In 
addition to the active regulation of ditch surface water level (DWL) 
relative to field height of Dutch peatlands, several drainage-irrigation 
measures are being tested to reduce CO2 emission. These include sub-
surface irrigation (SSI), in which subsurface drains connected to sur-
rounding ditches facilitate water infiltration; furrow irrigation (FI), in 
which DWL is raised to effectuate water infiltration through the furrows, 
and dynamic DWL, in which DWL is actively heightened when this is not 
expected to impact trafficability and grass yield. 

The link between WTD and CO2 emission is also used to determine 
annual CO2 budgets in models for National Inventory Reporting (NIR). 
The annual budgets estimated by the more basic Tier 1 IPCC emission 
factors (Drösler et al., 2013) are based on annual WTD, dividing peat-
land sites according to their drainage i.e. shallow-drained (<30 cm 
annual WTD) or deep-drained (> 30 cm annual WTD). The more 
advanced Tier 2 models for the Netherlands have DWL as an important 
input variable, which relates to WTD (Haahti et al., 2012). These models 
are the GLG model (which can also use annualWTD, van den Akker et al., 
2008), which incorporates peat characteristics and is based on estimated 
carbon losses from land subsidence, and the recently developed SOM-
ERS (Erkens et al., 2022), which is a combination of numerical models 
that incorporate the different processes involved in peatland CO2 
emission. However, drainage-irrigation management such as subsurface 
irrigation (SSI) has given mixed results (Tiemeyer et al., 2024; Aben 
et al., 2024; Boonman et al., 2022; Kruijt et al., 2023; Tiemeyer et al., 
2021; Weideveld et al., 2021) and the nature of the relationship between 
water table and CO2 emission is debated (Aben et al., 2024; Campbell 
et al., 2021; Couwenberg, 2011; Evans et al., 2021; Karki et al., 2019; 
Tiemeyer et al., 2020). 

First, there are contrasting results regarding the linearity of such a 
relationship, with some studies showing a linear (Aben et al., 2024; 
Jurasinski et al., 2016; Evans et al., 2021; Fritz et al., 2017) and others a 
non-linear (Mäkiranta et al., 2009; Tiemeyer et al., 2020) association 
between CO2 emission and WTD. While the existence of a relationship 
between CO2 emission and WTDs between 0 and 50 cm is generally 
accepted, studies vary on whether deeper WTDs lead to further increases 

in emissions (Couwenberg, 2011; Tiemeyer et al., 2020). This is 
important to know, since the various drainage-irrigation mitigation 
measures usually raise the summer WTD outside of the 0 to 50 cm range. 

Second, it is unclear how WTD affects soil moisture in deeply drained 
peatlands and how this affects CO2 fluxes. It is likely that the highest CO2 
emission occurs at optimum soil moisture content (Mäkiranta et al., 
2009; Moyano et al., 2013; Säurich et al., 2019; Byun et al., 2021), 
meaning high enough to avoid drought stress of microbes and low 
enough to facilitate soil gas transport (including supply of oxygen), 
indicating that the relationship between WTD and CO2 emission is in-
direct and would show an optimum at a certain WTD. Possibly, at very 
low WTD, the soil—particularly the topsoil—can become very dry which 
is not optimal for soil organic matter oxidation (Mäkiranta et al., 2009; 
Fenner and Freeman, 2011; Byun et al., 2021), and on the other end, at a 
high WTD or fully submerged peat, soil organic matter cannot be 
oxidized due to the lack of oxygen. Management measures such as SSI, 
where drains can regularly rewet the peat (Weideveld et al., 2021), 
could also affect this relationship. 

An important reason for these debates about the WTD-CO2 flux 
relation is that the nature of CO2 emissions from peatlands, which are 
highly variable and therefore require intensive measurements at every 
site, can lead to limitations in terms of design or methods. Many studies 
include relatively few sites (e.g., Campbell et al., 2021; Karki et al., 
2019) which makes statistical analysis difficult. Also, Evans et al. (2021) 
show increased CO2 emissions with decreased WTD. However, the 
dominant land-use type in this study changed along the WTD gradient, 
which complicates separating land-use effects from WTD effects. Finally, 
many studies are based on a limited number of light and dark mea-
surements with manual chambers during the daytime (e.g., Tiemeyer 
et al., 2016; Weideveld et al., 2021), which are extrapolated using 
models for gross primary production (GPP) and ecosystem respiration 
(Reco) to quantify the sites annual net ecosystem CO2 exchange (NEE). 
This leads to large data gaps and raises the question of whether daytime 
dark measurements accurately represent Reco as true Reco may be lower 
during the night due to lower plant respiration (Fan et al., 2024). Still, 
major treatment effects will likely be found independent of the methods 
used for measuring CO2 flux and gap-filling (Liu et al., 2022). 

Here, we estimated the carbon (C) budgets for 2021 and 2022 from 
thirteen drained peatlands used as pastures in Friesland, the 
Netherlands, estimated from two and a half years of periodic, multi-day 
measurements of CO2 concentrations with custom-made automated 
transparent chambers. The peatlands vary in annual field water table 
depth (WTD), drainage-irrigation management (fixed regulated DWL 
[control], SSI, FI, or dynamic DWL), and soil moisture. We ask the 
following questions:  

(1) To what extent can drainage-irrigation management and related 
hydrological parameters explain variation in C budgets? We hy-
pothesize that shallow-drained sites with higher regulated DWL 
emit less CO2 than deep-drained sites, and that SSI, FI, and dy-
namic DWL lower CO2 emission. Furthermore, based on the 
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results found by Evans et al., 2021 & Tiemeyer et al., 2016, we 
expect that deeper annual WTD leads to higher CO2 emission.  

(2) What is the relationship between nighttime ecosystem respiration 
(Rnight

eco ) and hydrological drivers of soil respiration in peatlands? 
Rnight

eco was chosen because there is no photosynthesis during the 
night. We hypothesize that Rnight

eco increases with deeper WTD, and 
that there is an optimum relationship between soil moisture and 
Rnight

eco .  
(3) How do the C budgets compare to Tier 1 and Tier 2 models used 

for NIR? We expect the average C budget of shallow-drained and 
deep-drained peatlands to approximate values of Tier 1 IPCC 
emission factors, and that NECBs estimated Tier 2 GLG and 
SOMERS correlate well with chamber-based C budgets. 

2. Methods 

2.1. Study area 

The experiment took place in the province of Friesland, the 
Netherlands, which has a large area of peatland (89,000 ha, Provincie 
Fryslân, 2021). Friesland is known for relatively deep drainage and 
frequent occurrence of a clay layer on top of the peat compared to the 
rest of the Netherlands. The average annual air temperature is 10.1 ◦C 
and the average annual precipitation is 840 mm (KNMI, reference period 
1999–2018). Approximately 62 % of the Frisian peatland is used as 
grassland (drained peatlands) for dairy farming (59,000 ha), generally 
with high grass and milk productivity. To achieve this high productivity, 
fixed ditch water levels in these drained peatlands are generally low 

leading to deep DWL (up to 120 cm below soil surface of the parcels), 
combined with intensive fertilization (>230 kg N ha− 1 yr− 1), leading to 
high peat oxidation (Weideveld et al., 2021). The peat layer is between 
80 and 200 cm thick, of which the top 30 cm is strongly humified (Von 
Post humidification scale: H8-H10), and which is often covered by a 
(carbon-rich) clay layer of 20–40 cm (Weideveld et al., 2021). The 
deeper peat (70–80 cm) is only moderately decomposed (Von Post hu-
mification scale H5-H7). 

2.2. Experimental sites 

Thirteen sites were set up at dairy farms across Friesland (Fig. 1), 
with the aim of having a representative overview of annual budgets of 
regional CO2 emissions. The sites varied in land use intensity (extensive 
vs. highly intensive), thickness of the peat layer (between 80 and 200 
cm), fixed ditch water level (DWL) as controlled by the water authorities 
(between 10 and 120 cm below soil surface), and drainage-irrigation 
management (Table 1). The sites include six control locations (no 
drainage-irrigation measures applied), three locations with subsurface 
irrigation (SSI) as described in Weideveld et al. (2021), three locations 
with furrow irrigation (FI), in which the ditch water level (DWL) was 
raised to bring about water infiltration via furrows, and one location 
with dynamic DWL, in which water levels of surrounding ditches are 
actively raised when this is not expected to negatively impact traffic-
ability and grass yield. Locations 1, 2, 3, 5 and 8 had paired sites (Fig. 1, 
Table 1).Locations with paired sites include both a control site and a 
nearby site where a drainage-irrigation management measure was 
applied. 

Fig. 1. Map showing measurement locations in Friesland, within the Netherlands. The blue color indicates peat areas, red dots indicate the locations and the black 
lines the provincial borders. Numbers and letters indicate the different locations. 
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2.3. Experimental setup 

At every location, we set up a 3 by 3 m measurement plot in which 
we regularly deployed automated cylinder-shaped chambers (height 
and inner diameter of 51 and 38.4 cm, respectively) for estimating net 
ecosystem exchange (NEE). We measured a combination of environ-
mental parameters (supplementary fig. S.1) from June 2020 until 
December 2022. Annual carbon (C) budgets were determined for 2021 
and 2022 and are the focus of this paper. Three PVC collars (height 20 
cm, outer diameter 38 cm), meant for deployment of closed chambers 
(see below) were dug into the soil up to a depth of 15 cm, from east to 
west with 75 cm in between collars to avoid chambers shading each 
other. 

To the north of the collars, a box was placed for the greenhouse gas 
measuring system and batteries, and two dip wells (one for a pressure 
sensor with logger and one for manual validation measurements) were 
placed to measure WTD. We also placed dip wells in nearby ditches to 
measure DWL. Water level in dip wells was monitored using ElliTrack-D 
water pressure loggers (Leiderdorp Instruments). DWL and WTD 
measured relative to a fixed value for the average soil surface, which was 
determined at the start of the experiment via D-GPS relative to a refer-
ence founded in the Pleistocene sand. WTD was used to calculate annual 
WTD and summer WTD (1 July until 30 September). 

To the south of the collars, soil temperature and moisture probes 
were horizontally installed into the ground. Soil temperature was 
measured at depths of 2, 5, and 10 cm with a HOBO® pendant MX2201 
probe and at 20 and 60 cm with a HOBO® STMBM002 probe. Soil 
moisture was measured at depths of 10 cm and 30 cm with a HOBO® 
SMDM005 probe. A photosynthetically active radiation (PAR) sensor 
(HOBO® S-LIA-M003) was installed at 1 m height on the fence sur-
rounding the experimental set-up. Data from soil moisture and tem-
perature sensors at 20 and 60 cm depth were collected with a HOBO® 
U30-NRC data logger on a 5-min interval. 

Soil moisture data was rescaled to water-filled pore space (WFPS) by 
setting the top 5 % of all soil moisture data from the probes to full 
saturation (100 % WFPS) and dividing the remaining values by the mean 
soil moisture value of the top 5 % measurements. These values represent 
a percentage (0–100 %) of WFPS. Hereafter, this is referred to as esti-
mated WFPS (WFPSe) as it does not represent measured values. 

2.4. Mowing and fertilization 

To properly mimic management of the agricultural drained peatland, 
the experimental sites were also fertilized and mowed. All fertilization 
was done with fresh dairy manure (2.0 % N (SD ± 0.3 %), 35.5 % C (SD 
± 2.3 %), C/N ratio 18.5 (SD ± 3.0) and 6.33 mg/g P (SD ± 0.18), 

measured as described below, from the 4-SSI location once or twice a 
year based on the fertilization scheme and quantity of the surrounding 
site farms (Table 1). Mowing occurred when grass height was over 30 
cm. Grass yield was determined inside the collars as follows: Grass 
height was measured before and after cutting with a polystyrene disc 
(diameter 30 cm) and a ruler, after which grass was cut at around 3 cm 
above the soil. The grass and manure samples were then dried at 70 ◦C 
for at least 48 h until stable dry weight. Total nitrogen (TN) and total 
carbon (TC) were determined in milled, dry plant material and dried 
manure (3 mg) using an elemental CNS analyzer (NA 1500, Carlo Erba; 
Thermo Fisher Scientific, Franklin, USA). Paired sites were always 
fertilized and mowed on the same day. 

2.5. CO2 measurements 

We calculated NEE between the soil-vegetation system and the at-
mosphere by analyzing concentration changes of CO2 inside automated, 
transparent, closed chambers (photo in supplementary fig. S.2). The 
chambers (3 at each site) were transparent with a height and inner 
diameter of 51 and 38.4 cm, respectively, and a flat lid controlled by a 
stepper motor. They were placed on the aforementioned collars that had 
a seasonally fluctuating offset in chamber height. Collar heights above 
the surface (some 5 cm) were measured during chamber deployment to 
adjust the volume used in flux calculations and thereby correct for the 
seasonal fluctuation (see below). A multiplexer with an integrated pump 
(2.5 L min− 1; KNF NMP830KNDC-B 12 V) was used to control the 
chambers and facilitate gas circulation between chambers and a gas 
analyzer (LI-850, LI-COR®) via 10 m of polyurethane tubing (one way). 
Chambers were measured every 15 min with 3-min closures and 30-s 
flushing time in between. Concentrations of CO2 and H2O were logged 
every two seconds. Grass heights were recorded at the start of chamber 
deployment. A low-flow fan ensured well-mixed chamber air (Chris-
tiansen et al., 2011; Rochette and Hutchinson, 2005). The average of 
measurements of the three chambers was calculated per 30 min, which 
is the time interval usually used in Eddy Covariance (Vitale et al., 2020; 
S. Zhu et al., 2023), giving 48 estimates of NEE per day. 

Chamber systems were rotated among locations, such that every 
location had 1 to 2 measurement campaigns per month. During each 
campaign, the chamber system was deployed for 2 to 3 days. This setup 
enables 1) measuring multiple locations at a frequency that allows for 
gap-filling of the days in which fluxes were not measured using 
continuously measured environmental variables as further described 
below; and 2) reducing the duration of potential artifacts on vegetation 
and soil as induced by the altered microclimate in the chamber (Boon-
man et al., 2022; Pumpanen et al., 2010). 

Table 1 
description of the sites, with soil type named according to the Dutch soil classification system: “Waardveen” on Carex and Phragmites remnants (kVc), “Koopveen-
gronden” on Sphagnum remnants (hVs), “Koopveengronden” on Carex and Phragmites remnants (hVc) and “Weideveengronden” on Carex and Phragmites remnants 
(pVs). Drainage-irrigation measures are: none (control), Subsurface Irrigation (SSI), Furrow Irrigation (FI) and dynamic Ditch Water Level (d-DWL). DWL is regulated 
according to the decree by the water authority, which aims to maintain it year-round. A more extensive version can be found in Table S1.  

Map code Location name Drainage-irrigation management Soil type Peat thickness (cm) Top layer DWL (cm) Land use 

1A 1-ControlA Control kVc  220 40 cm clay  95 Biological/ grazing 
1B 1-ControlB Control kVc  220 40 cm clay  135 Biological/ grazing 
2A 2-Control Control hVs  120 Peat  35 High-intensity grazing 
2B 2-SSI SSI hVs  125 Peat  40 High-intensity grazing 
3A 3-Control Control kVs  105 30 cm clay  115 High-intensity grazing 
3B 3-SSI SSI kVs  120 30 cm clay  40 High-intensity grazing 
4 4-SSI SSI kVc  170 40 cm clay  45 Biological/ grazing 
5A 5-Control Control hVs  110 30 cm clay  80 Extensive/ grazing 
5B 5-FI FI hVs  150 30 cm clay  15 Extensive/ grazing 
6 6-FI FI hVs  120 Peat mixed with clay  20 Extensive 
7 7-FI FI kVs  160 30 cm clay  35 Biological/grazing 
8A 8-Control Control pVc  230 20 cm clay  55 High-intensity grazing 
8B 8-d-DWL d-DWL pVs  200 20 cm clay  60 High-intensity grazing  
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2.5.1. Flux calculation and quality control 
The CO2 flux, representing the net ecosystem exchange (NEE, μmol 

m− 2 s− 1), was calculated according to Eq. (1): 

NEE =

10V⋅P0

(

1 − W0
1000

)

f0lin

R⋅S(T0 + 273.15)
(1)  

where f0lin represents the rate of change in water-corrected CO2 mole 
fraction (μmol mol− 1 s− 1) inside the closed chamber, V (cm3) is the 
chamber volume, including the effect of (changes in) collar height, S 
(cm2) is the soil surface area, T0 (◦C) is the air temperature measured 
inside the chamber after chamber closure (DS18B20 Digital temperature 
sensor), P0 (kPa) is the air pressure measured by the barometric pressure 
sensor inside the multiplexer after closure (Adafruit BMP183 or 
BMP280), W0 is the water vapor mole fraction as measured by the CO2/ 
H2O analyzer (mmol mol− 1), and R (=8.314 Pa m3 K− 1 mol− 1) is the 
ideal gas constant. f0lin is the linear regression with a regression window 
of 90 s, starting 40 s after chamber closure to account for disturbances 
caused by chamber closure, with a deadband of 15 s. 

2.5.2. Quality check 
Data points were deemed erroneous and removed when the ana-

lyzer's cell pressure or temperature was outside of the manufacturer's 
guaranteed spec range. 

The flux data was manually checked per campaign, excluding points 
that did not meet the following three criteria: 1) an R2 > 0.9 of the linear 
regression (except for sunrise and sunset) during spring, summer, and 
autumn, and R2 > 0.6 during winter (when fluxes are lower and there-
fore R2 is naturally lower, 2) the PAR-flux curve showed an expectable 
trend (based on grass height) and 3) absence of methodological errors 
(broken fan, malfunctioning lid etc.). Selecting data based on R2 may 
have excluded some measurements which had changing cloud cover 
during the 90 s that changes in CO2 concentration were recorded. 

We admit that warming or cooling of the chamber headspace 
compared to ambient air temperature is an important filter criterion 
(some studies, such as Vaidya et al., 2021, discard flux data when 
warming exceeds 1.5 K). Nevertheless, a temperature correction for 
daytime NEE fluxes remains absent in our current analysis. No filtering 
for substantial changes in relative humidity was applied either. Incom-
plete mixing of the headspace in periods with relatively long grass may 
have occurred, but was not quantified nor corrected for. The potential 
greenhouse effect of periodically deployed chambers on grass growth 
and consequently on C export through harvesting biomass requires 
attention in future studies. 

2.5.3. Gap-filling to determine NEE, Reco, and GPP 
Because only a limited number of days were measured during the 

campaigns, the remaining days had to be gap-filled based on these data. 
Gap-filling was performed with a Random Forest (RF) model because it 
performed well in previous studies (Mahabbati et al., 2021; Zhu et al., 
2023). We did not choose to construct Reco and GPP models to gap-fill 
NEE (as in e.g., Poyda et al., 2021; Weideveld et al., 2021) because 
these models (Lloyd-Taylor and Arrhenius) can include a large degree of 
bias (Liu et al., 2022). Also, our data was relatively similar to Eddy 
Covariance (EC) data because it consisted of high-frequency day- and 
night-time measurements with regular long gaps in between, and gap- 
filling for EC is generally performed with models such as RF and mar-
ginal distribution sampling (MDS) (Mahabbati et al., 2021). 

The RF model was trained with the estimated NEE of all years (2020, 
2021 and 2022) and the following environmental parameters as 
explanatory variables: PAR, air temperature, soil temperature at 20 cm 
depth, ground water temperature, day of the year, day− /nighttime flag, 
WTD, grass height, and days since mowing. We built 800 trees using 
three variables per split using the randomforest function from the ‘ran-
domForest’ package (Breiman, 2001). To reduce uncertainty of an 

individual RF model, the median model over 250 model runs has been 
used. Days since mowing was added because we found that mowing 
strongly increased NEE, which only largely recovered after about a 
week. In case data from soil temperature at 20 cm depth (18 % missing) 
or PAR (48 % missing) were missing, they were gap-filled using a 
regression with environmental data from the nearest measurement 
location or from the meteorological weather station of the Royal Dutch 
Meteorological Institute in Leeuwarden, depending on the distance. Soil 
temperature at 20 cm depth was chosen because soil temperature at 5 
and 10 cm depth had much more missing data (76 % and 68 %, 
respectively). Air temperature data from the SSI-4 site were used for all 
sites, as it was complete for the entire 2021 and 2022. Soil moisture was 
not included in gap-filling because there were large data gaps in these 
data due to faulty probes. 

Ecosystem respiration (Reco) and GPP were also calculated through 
gap-filling methods. To estimate Reco, we trained an RF model with data 
from the night fluxes (PAR < 1) using the same environmental variables 
as for the full RF model. We then used the RF model to predict respi-
ration during the day and night with the available environmental data. 
Only night data was used to predict Reco for the full day, because during 
the night GPP = 0, and therefore the CO2 emissions during the night are 
assumed to represent ecosystems respiration only, whereas daytime 
fluxes are a combination of ecosystem respiration and photosynthesis. 
The RF model for Reco was trained similarly to the RF model for NEE, 
using air temperature, soil temperature at 20 cm depth, ground water 
temperature, day of the year, WTD, grass height, and days since mowing 
as environmental variables, but excluding the PAR and day/night vari-
ables, as the model was trained on nighttime data only when PAR was 
<1. Although it is an established method to model daytime Reco based on 
nighttime Reco estimates, we are aware that it may lead to biased esti-
mates as both the temperature response of Reco and the temperature- 
controlled magnitude of Reco can differ between day- and nighttime, 
for example, due to processes such as inhibited leaf respiration in light 
(Järveoja et al., 2020; Keenan et al., 2019). RF was used because this was 
shown to perform much better when calculating Reco than using 
empirical models such as the Lloyd-Taylor modified Arrhenius function 
(Han et al., 2022). Subsequently, GPP during the day was calculated by 
subtracting the NEE from the Reco. Importantly, some of the analyses in 
this paper focus only on the measurements of Reco taken in the field 
during the nighttime (Rnight

eco ) rather than including the values predicted 
by RF, as these provide the most concrete evidence of relationships 
between ecosystem respiration and environmental variables, and are not 
affected by possible bias in the RF model. 

We performed an uncertainty analysis on this gap-filling using data 
from a different automated chamber system located in location 4-SSI 
that has largely been permanently deployed since 2021 (Aben et al., 
2024), where year-round measurements have been taken, continuously 
measuring day and night fluxes.. To simulate a dataset, campaigns (2–3 
days of consecutive measurements) were selected from a continuous 
dataset (measured concurrently at site 4-SSI). These campaigns were 
used to train the model and fill the artificial gaps based on the re-
lationships established by the model. With gap filling, an annual NEE 
budget can be produced, which can be compared to the annual NEE 
budget of the measured values. As the measurement frequency was not 
equally distributed over the year and over all sites (supplementary table 
S.1) we tested four scenarios for different campaign intervals measuring: 
once a month, twice a month, four times per month and seasonally, 
where more measurement were taken in summer compared to winter 
(supplementary table S.2). Each scenario used the same total amount of 
data points throughout the full year. Based on this uncertainty analysis, 
an estimate can be made of the extent to which mobile measurements 
are suitable for determining annual budgets. 

Second, the effect of removing campaigns from the dataset on the 
NEE resulting from the RF models was determined to assess sensitivity of 
random forest to input data. This was done as follows: for every 
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campaign per location, a dataset was created in which this campaign 
was removed. Subsequently, the RF model was run 120 times for this 
new dataset, resulting in new gap-filling data and new annual NEE per 
year per location. Then, the variation between NEE per year per location 
with the different removed campaigns was determined by calculating 
the 95 % confidence interval. 

2.6. Relationship annual C budgets and drainage-irrigation management 

The gap-filled fluxes were used to calculate the annual NEE per 
location in 2021 and 2022. Similarly, annual budgets of Reco and GPP 
were calculated using gap-filled values for Reco and GPP. We use the 
Tiemeyer et al., 2016 definition for C budget, which accounts for C 
export via harvest and C import via manure, but not for the potential loss 
of C via leaching or lateral transfer and the potential emission of volatile 
organic C, methane, and carbon monoxide. Therefore, C budget was 
calculated by summing up annual NEE, C export through harvest (pos-
itive term), and C import through fertilization (negative term), which 
were determined as described above. 

The average C budgets from the different sites were compared ac-
cording to their annual WTD-class (shallow-drained or deep-drained). 
The 3-Control and 4-SSI sites were not included in this comparison 
because at 3-Control the old grass sod had been removed and new grass 
had been sown just before the start of the experiment, leading to a 
temporary built-up of soil carbon stocks often coinciding with very low 
NEE, and 4-SSI had a much lower number of campaigns compared to 
other sites, leading to much higher uncertainty as described above. 
When classifying sites as either shallow-drained or deep-drained, the 
two-year mean of WTD was used. 

Furthermore, the individual C budgets were related to drainage- 
irrigation mitigation measures (regulated DWL (control), SSI, FI, and 
dynamic DWL), year (2021 and 2022), annual WTD, summer WTD, and 
(regulated) DWL, also excluding the 3-Control and 4-SSI locations. Dif-
ferences between drainage-irrigation measures and years were tested 
with a repeated measures ANOVA using the rstatix package (Kassam-
bara, 2020). Dynamic DWL was not tested because there was only one 
site. These results should be regarded with caution because the 4-SSI site 
was included to enable testing with the repeated measures ANOVA. The 
difference in C budget between 2021 and 2022 and the effects of annual 
WTD, summer WTD, and DWL were tested using a separate linear mixed- 
effects model with the lme function using the nlme package (v3.1–152; 
Pinheiro et al., 2021), with site as a random factor. 

2.6.1. Relationship of Rnight
eco with WTD and soil moisture 

To investigate mechanisms potentially driving site-specific variation 
in CO2 emission, we related WTD and soil moisture to Rnight

eco . We 
parametrized nonlinear models for the response of Rnight

eco to WTD and soil 
moisture. For the relationship between Rnight

eco and WTD, a Gompertz 
function was fitted (eq. 2) as in Tiemeyer et al. (2020), using the nlsLM 
function of the minpack.lm package (Elzhov et al., 2023). The uncer-
tainty in the predictions was estimated with bootstrapping (n = 999) 
using the nlstools function (Baty et al., 2015). 

Rnight
eco (WTD) = Rnight

ecomin
+ Rnight

ecodiff
⋅e− a⋅eb⋅WTD (2)  

where Rnight
ecomin is the lower asymptote, Rnight

ecodiff is the difference between 
upper and lower asymptotes, while a and b are fitting parameters for the 
displacement along the x-axis and the growth rate. An additional anal-
ysis was performed with the nlme function, using the nlme package 
(v3.1–152; Pinheiro et al., 2021), in which location was added as a 
random factor. 

For the relationship between soil moisture and Rnight
eco , a quadratic 

polynomial function was fitted to enable a comparison with Säurich 
et al. (2019), who also used this function. The function was also fitted 

with the nlsLM function. To improve interpretability of the soil moisture 
data, we pooled the data in bins of 5 % WFPSe by taking the average of 
all values within the bin (e.g., all values between 95 % and 100 % 
WFPSe). Lines were fitted for the pooled data, including only pooled data 
points that included at least 5 values to avoid a very large effect on the 
quadratic model by single measurements. 

2.6.2. Comparison with Tier 1 and Tier 2 models 
To compare the estimated C budget from our data with Tier 1 and 

Tier 2 models, C budgets were calculated according to IPCC emissions 
factors (Tier 1, Drösler et al., 2013), and the SOMERS and GLG models 
(Tier 2, Erkens et al., 2022; van den Akker et al., 2008). The IPCC 
emission factors were based on the average WTD of sites, and sites with a 
WTD higher than 0.35 m were classified as “shallow-drained nutrient- 
rich grasslands”, while locations with deeper WTD were classified as 
“deep-drained nutrient-rich grasslands”, which give C budgets of 13.2 
and 22.4 t CO2 ha− 1 yr− 1 respectively (Drösler et al., 2013). The SOM-
ERS- and GLG-based C budgets were determined based on the regulated 
DWL as maintained by the Frisian water authority. 

SOMERS 1.0 (Erkens et al., 2022) uses a combination of region 
(province of Friesland), drainage-irrigation management (e.g., is SSI 
used or not) and regulated DWL to calculate C budget. The model uses a 
combination of several numerical models about processes related to 
water and carbon based on data from five peat locations in the 
Netherlands, one of which is in Friesland. To calculate SOMERS C 
budgets, soil type, distance to nearest ditch, drainage-irrigation man-
agement, summer DWL, and winter DWL are entered into a sheet specific 
for the region according to the SOMERS calculation rules (Erkens et al., 
2022, https://www.nobveenweiden.nl/rekenregels/). 

The GLG model (van den Akker et al., 2008) made use of charac-
teristics of the fibric peat layer, presence or absence of a clay layer, and 
regulated DWL, according to eq. (3) for peat with a clay layer and eq. (4) 
for peat without a clay layer: 

C budgetGLGclay
= F⋅(15.5⋅DWL − 3.5)⋅ρso⋅fros⋅frc⋅44

/
12 (3)  

C budgetGLGno clay
= F⋅(15.5⋅DWL+2.7)⋅ρso⋅fros⋅frc⋅44

/
12 (4) 

With C budgetGLGclay 
and C budgetGLGno clay

in tons CO2 ha− 1 yr− 1 and 
where F = 1, DWL of the location (m), ρso is bulk density of the peat (kg 
m− 3), fros is organic matter content of the peat (− ), and frc is the carbon 
fraction of the organic matter (− ). Organic matter content was deter-
mined via loss on ignition of peat samples. Peat samples were inciner-
ated for 4 h at 550 ֯C. Total nitrogen (TN) and total carbon (TC) were 
determined in soil material (9–23 mg) using an elemental CNS analyzer 
(NA 1500, Carlo Erba; Thermo Fisher Scientific, Franklin, USA). As the 
GLG model estimates C budgets using the deeper fibric peat layer, we 
used the peat parameters measured at a depth of 55 to 85 cm, thus 
excluding the clay layer which is very different from the peat. 

All analyses were performed in R-4.3.1 (R Core Team, 2019). 

3. Results 

In this research, we determined the quantity and drivers of CO2 
emission in thirteen drained peatlands in the Friesland region for two 
years with different drainage, peat thickness, and water management. 

The uncertainty analysis of the artificial data gaps on a continuously 
measured site showed that an approach with two campaigns per month 
in the growing season and one campaign per month outside of the 
growing season led to low variation in NEE (Fig. 2, 95 % confidence 
interval for annual NEE ± 1.5 t CO2 ha− 1 yr− 1), comparable to a setup 
with two or four campaigns per month (95 % confidence interval ± 2 t 
CO2 ha− 1 yr− 1 and ± 1.6 t CO2 ha− 1 yr− 1 respectively). In contrast, the 
variation was higher with one campaign per month (±3 t CO2 ha− 1 

yr− 1), likely because of capturing less variation caused by harvest and 
fertilization events. Most sites had a measurement frequency in between 
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the seasonal scenario and the scenario with one campaign per month 
(supplementary table S.1). However, because one site was measured 
much less frequently for logistical reasons (4-SSI), this location is further 
marked with an asterisk in all results. 

The sites had variable carbon (C) budgets, ranging from − 0.1 t CO2 
ha− 1 yr− 1 up to 33.3 t CO2 ha− 1 yr− 1 (Table 2). When sites were clus-
tered based on annual WTD class (shallow-drained <30 cm annual WTD 
or deep-drained >30 cm annual WTD, Fig. 3A), no differences in C 
budget were found. The mean C budget of shallow-drained sites was 
similar to the mean C budget of deep-drained locations (14.69 vs 14.68 t 
CO2 ha− 1 yr− 1, excluding 3-Control and 4-SSI, see Fig. 3A), which is 
close to the IPCC emission factor for shallow-drained peatlands (13.19 t 
CO2 ha− 1 yr− 1) but much lower than the IPCC emission factor for deep- 
drained peatlands (22.35 t CO2 ha− 1 yr− 1). On average, NEE contributed 
negatively to C budget (average − 3.5 t CO2 ha− 1 yr− 1), ranging from 
− 19.5 to 9 t CO2 ha− 1 yr− 1 (Table 2), giving an average Root Mean 
Square Error of 20.78 kg ha1 d− 1 and Mean Absolute Error of 11.89 kg 

ha− 1 d− 1 (supplementary fig. S.4). C export (positive term) through 
harvest was the largest term contributing to the average C budget 
(average 23.3 ± 6.6 SD t CO2 ha− 1 yr− 1), while C import (negative term) 
through manure application was much less (− 5.1 ± 2.9 SD t CO2 ha− 1 

yr− 1). Harvest also correlated strongly with GPP (supplementary fig. 
S.5). 

A repeated measures ANOVA did not show an explanatory effect of 
drainage-irrigation management for the variation in C budget (Fig. 3B, 
F2,8 = 0.67, p = 0.54). Although the average C budgets of sites with 
furrow irrigation (FI) (10.5 t CO2 ha− 1 yr− 1) and sub surface irrigation 
(SSI) (12.5 t CO2 ha− 1 yr− 1, excluding 4-SSI) were slightly lower than 
the average C budget of control sites (16.6 t CO2 ha− 1 yr− 1), there was 
also high variability within treatments with, e.g., a high C budget for one 
SSI location (29.8 t CO2 ha− 1 yr− 1 for 2-SSI in 2021) and a low C budget 
for one control locations (− 0.1 t CO2 ha− 1 yr− 1 for Control-2 in 2022). 
The single dynamic DWL site (8-d-DWL) had an above average C budgets 
in both 2021 and 2022 (20.6 and 31.4 t CO2 ha− 1 yr− 1). 

Fig. 2. Estimate and variation in mobile measurement simulation. A) NEE for each of the scenarios. The dark grey bar results from including all data points, as well as 
gap filling when data was not available. Light grey bars result from the various scenarios. It should be noted that C import through manure application and C export 
through grass harvesting are not included, resulting in negative values. B) The NEE difference with the estimate, as well as the variation between model runs. The 
label above each error bar shows the percentage of data included in each of the runs. 

Table 2 
Annual Carbon Budgets (CB), NEE, Reco, GPP, harvest, and applied manure for different locations for different years in t ha− 1 y− 1. The 3-Control and 4-SSI locations are 
marked with an asterisk due to unique conditions; 3-control had a new grass layer sown just before the start of the experiment, leading to a very low NEE, whereas 4-SSI 
had a much lower number of campaigns compared to other locations.     

CB NEE ± 95 % CI Reco GPP Harvest Manure Annual WTD  IPCC_EF SOMERS CB GLG CB 

Location Treatment Year t CO2 ha− 1 yr− 1 cm IPCC_EF t CO2 ha− 1 yr− 1 

1-ControlA Control 2021 15.4  − 6.3 ± 0.42 54.6 − 60.9 26.1 − 4.5 25.7 Shallow 13.19 19.1 17.1  
Control 2022 6.4  − 6.7 ± 0.30 53.1 − 59.9 17.6 − 4.5 42.0 Deep 22.35 19.1 17.2 

1-ControlB Control 2021 10  − 6.7 ± 0.32 57.2 − 63.9 21.1 − 4.5 39.0 Deep 22.35 20.25 4.6  
Control 2022 − 0.1  − 19.5 ± 0.42 49.6 − 69.1 23.9 − 4.5 64.1 Deep 22.35 20.25 5.2 

2-Control Control 2021 33.3  9.6 ± 0.36 89.3 − 79.7 30 − 6.4 36.6 Deep 22.35 8.8 11.2  
Control 2022 12.9  0.8 ± 0.33 64 − 63.3 18.5 − 6.4 62.3 Deep 22.35 8.8 11.9 

2-SSI SSI 2021 29.8  0.7 ± 0.37 71.2 − 70.5 35.5 − 6.4 28.5 Shallow 13.19 8.8 10.3  
SSI 2022 8.4  − 7.6 ± 0.35 63.7 − 71.3 22.4 − 6.4 58.5 Deep 22.35 8.8 10.8 

3-Control* Control 2021 7.6  − 17 ± 0.27 62.2 − 79.2 32.2 − 7.6 24.7 Shallow 13.19 5.6 6.6  
Control 2022 0.6  − 14.3 ± 0.31 55.1 − 69.4 25.3 − 10.3 54.4 Deep 22.35 5.6 6.6 

3-SSI SSI 2021 14.9  − 5.2 ± 0.36 72.4 − 77.6 27.7 − 7.6 21.0 Shallow 13.19 31.18 36  
SSI 2022 0.1  − 13.1 ± 0.28 59.2 − 72.3 23.6 − 10.3 43.0 Deep 22.35 31.18 36 

4-SSI* SSI 2021 24.1  − 1.3 ± 0.88 72.2 − 73.5 31.2 − 5.7 25.9 Shallow 22.35 7.15 4.1  
SSI 2022 21.8  1.4 ± 1.14 74.3 − 73 20.4 0 35.3 Deep 22.35 7.15 4.1 

5-Control Control 2021 19.1  0.2 ± 0.30 71.8 − 71.6 21.5 − 2.5 29.0 Shallow 13.19 27.1 12.4  
Control 2022 25.8  9 ± 0.46 75.7 − 66.8 19.4 − 2.6 55.9 Deep 22.35 27.1 12.4 

5-FI FI 2021 4.2  − 13.4 ± 0.45 53.2 − 66.7 20.2 − 2.5 16.6 Shallow 13.19 13.2 1.1  
FI 2022 6  − 4.2 ± 0.38 58.3 − 62.5 12.9 − 2.6 32.5 Deep 22.35 13.2 0 

6-FI FI 2021 4.9  − 4.1 ± 0.44 51.9 − 56.1 10.9 − 1.9 18.4 Shallow 13.19 3.3 8.4  
FI 2022 11.7  − 3.3 ± 0.27 51.8 − 55.3 17.5 − 2.4 34.3 Deep 22.35 3.3 8.1 

7-FI FI 2021 13.3  − 4.9 ± 0.26 78.8 − 83.7 23.9 − 5.7 28.3 Shallow 13.19 9.15 1.1  
FI 2022 16  − 0.9 ± 0.33 76.3 − 77.3 21.5 − 4.5 37.3 Deep 22.35 9.15 2.5 

8-Control Control 2021 14.8  − 3.5 ± 0.63 56.2 − 59.8 23.5 − 5.1 18.4 Shallow 13.19 12.5 7.1  
Control 2022 17.3  0.5 ± 0.67 63.7 − 63.3 24.6 − 7.7 37.2 Deep 22.35 12.5 6.9 

8-d-DWL dynamic DWL 2021 31.4  − 0.7 ± 0.20 70.4 − 71 37.2 − 5.1 18.9 Shallow 13.19 15.4 3.7  
dynamic DWL 2022 20.6  − 5 ± 0.28 65.5 − 70.5 33.4 − 7.7 33.0 Deep 22.35 15.4 2.3  
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When comparing paired sites, the 5-FI site had a much lower C 
budget than the 5-Control site (Table 2, 5.1 vs 22.5 t CO2 ha− 1 yr− 1), 
which was coupled with a strong effect of FI on WTD (supplementary fig. 
S.6). The 2-SSI site also had a lower C budget than the 2-Control site 
(19.1 vs 23.1 t CO2 ha− 1 yr− 1), although this difference was smaller, 
possibly because the effect on WTD was also smaller. SSI also heightened 
WTD in 3-SSI compared to 3-Control (supplementary fig. S.6), but 
because of the new grass sod in 3-Control these C budgets cannot be 
fairly compared. Finally, the 8-d-DWL site had a higher C budget than 
the 8-Control site (26.0 vs 16.1 t CO2 ha− 1 yr− 1), although it did have 
slightly higher WTD (Table 2, supplementary fig. S.6). 

Contrary to expectations that a higher WTD leads to lower emissions, 
the colder, wetter year 2021 (supplementary fig. S.7), during which all 
sites had higher annual WTD and summer WTD (supplementary table 
S.4, fig. S.8), showed a trend towards having higher C budgets (F1,10 =

3.94, p = 0.075, Fig. 4A). Furthermore, C budgets did not correlate to 
annual WTD, summer WTD, or regulated DWL (p > 0.1 for all, 

Fig. 4B–D). 
In contrast, Rnight

eco showed a relationship with WTD where Rnight
eco 

increased at relatively shallow WTD between 0 and 50 cm (Fig. 5A, 
supplementary table S.5). However, at deeper WTD than 50 cm, there 
was no further increase in Rnight

eco . A similar pattern was visible when 
looking at individual measurements (supplementary fig. S.9), which also 
shows the temperature response of CO2 emissions. When looking at sites 
separately (supplementary fig. S.10), most individual sites show a 
similar pattern, although for some sites, the relationship was more 
linear. Importantly, WTD was often 50 cm or deeper in summer for most 
sites (supplementary table S.4, fig. S.8). 

The quadratic relationship between water-filled pore space (WFPSe, 
estimated based on soil moisture; see Methods) at − 10 and − 30 cm and 
Rnight

eco shows an optimum soil moisture content range at which most CO2 
was emitted (Fig. 5). This optimum was most pronounced for soil 
moisture at 10 cm depth (Fig. 5A) and less pronounced for soil moisture 
at 30 cm depth (Fig. 5C), as also highlighted by the stronger evidence 

Fig. 3. Carbon Budget (CB) in t CO2 ha− 1 yr− 1 per (A) measurement site and (B) drainage-irrigation measure. Measurement sites in Fig. 3A are categorized by 
drainage according to IPCC standards for annual WTD using the avarage of the two years in which they were measured. Points show the average CB, the error bars 
show the minimum and maximum values of the CB per location for 2021 and 2022 combined. Colors show the contribution of different C imports and exports on CB 
per year. Arrows indicate a 95 % confidence interval for the average CBs of shallow-drained (<30 cm annual WTD) and deep-drained (>30 cm annual WTD) sites, 
grey bars indicate IPCC emission factors for shallow-drained and deep-drained nutrient-rich grasslands. In Fig. 3B, colors indicate drainage-irrigation measures and 
the grey bar is the range for IPCC EFs. In both panels, the 3-Control and 4-SSI sites are marked with an asterisk due to unique conditions; 3-control had a new grass 
layer sown just before the start of the experiment, whereas 4-SSI had a much lower number of campaigns compared to other locations. 

Fig. 4. (A) difference between Carbon Budgets (CB) in 2021 and 2022 (excluding 3-Control and 4-SSI), and relationship between CB and (B) annual Water Table 
Depth (WTD), (C) summer WTD, and (D) fixed regulated Ditch Water Level (DWL). Blue represents 2021, yellow represents 2022 and N = 22. 
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that the parameter estimates deviated from zero (supplementary table 
S.6 and S.7). WFPSe at 10 cm depth ranged from 20 to 100 % with an 
optimum at 60 %, while WFPSe at 30 cm depth ranged from 40 to 100 % 
with an optimum at 75 %. 

When comparing the C budgets in this project to C budgets estimated 
with Tier 1 and Tier 2 models (Fig. 6), it is visible that the amount of 
variation in our dataset is best captured by Tier 2 models, whereas Tier 1 
models assume a fixed value based only on annual WTD (Fig. 6A, 
Table 2). However, when comparing C budgets per site-year estimated 
by SOMERS (Fig. 6C) and GLG (Fig. 6D) with our data, there is no clear 
relationship. Furthermore, the average C budget estimated by the GLG 
model was substantially lower than in our data (7.6 vs 14.7 t CO2 ha− 1 

yr− 1), while the average C budget estimated by SOMERS was lower 
(13.0 t CO2 ha− 1 yr− 1). Interestingly, while in our data we found no 
relationship between annual WTD and C budget, the Tier 1 and Tier 2 
models have comparable relationships with increasing C budget at 
increasing WTD (Fig. 6B). Because the Tier 2 models used regulated 
DWL as an input variable, the relationship between C budget and 
regulated DWL is even more pronounced for these models, especially for 
SOMERS (supplementary fig. S.11 A). 

4. Discussion 

4.1. General findings 

We used custom-built automated transparent chambers that were 
regularly rotated among sites to quantify CO2 fluxes and carbon (C) 
budgets of thirteen Frisian drained peatlands in 2021 and 2022 with 
different water table depth (WTD), drainage-irrigation management, 
and soil moisture. We found that this method could give accurate results 
with low 95 % confidence intervals when measuring seasonally, which 
was similar to our setup. Contrary to expectation, variation in C budgets 
seemed independent from drainage-irrigation management. Shallow- 
drained and deep-drained sites had similar average C budgets, while 

sites with furrow irrigation (FI) and sub surface irrigation (SSI) did not 
have statistically lower C budgets than control sites, possibly because of 
high within-treatment variation in C budgets and the small sample size. 
Also, we found no relationship between variation in C budget and 
annual WTD. In contrast, Rnight

eco increased from 85 to 250 kg CO2 ha− 1 

day− 1 as the daily WTD dropped from 0 to 50 cm across all sites. A 
deeper WTD had no apparent effect on Rnight

eco , which could be explained 
by the quadratic relationship we found between Rnight

eco and soil moisture, 
as further discussed below. Finally, C budgets estimated by Tier 1 (IPCC 
EF) and Tier 2 models (SOMERS and GLG) mismatched the between-site 
variation found in chamber-based estimated C budgets. Across all sites, 
drainage-irrigation mitigation measures, and years, Tier 1 and Tier 2 
approaches can differ substantially from the C budget estimates pre-
sented here. 

4.2. Measuring CO2 emission with periodic automatic chamber 
measurements 

In this study we used a novel method to determine CO2 emission 
from peatlands, by using automatic chambers rotated among sites in 
campaigns of 2–3 days. Then, a random forest (RF) model was used to 
determine CO2 emission on days without measurements based on 
environmental parameters. An uncertainty analysis, using data from a 
site where automated chambers were placed permanently, showed a low 
confidence interval when these campaigns were carried out seasonally, 
measuring once per month outside the growing season and twice per 
month in the growing season, similar to our setup. The reason for this 
was likely that having a higher frequency of campaigns in the growing 
season better captured harvest and fertilization events. 

This analysis showed that our method enables to measure multiple 
sites, allowing for a high spatial coverage of peatland areas, while 
having enough data to accurately determine annual CO2 emission. This 
method is much less costly and less labor-intensive than measuring the 

Fig. 5. A) Relationship between WTD and Rnight
eco averaged per night. Grey points show Rnight

eco average per night, blue points show the pooled data in bins of 10 cm WTD. 
Error bars show a 95 % confidence interval of pooled data in bins of 10, only including pooled data with at least five data points. The histogram shows the density of 
measurements for a certain WTD. The yellow line is according to a fitted Gompertz function, as shown in eq. (3) and also used in Tiemeyer et al. (2020). Parametrized 
values are Rnight

ecomin= 84, Rnight
ecodiff = 229, a = 5.2, and b = − 0.073. Additionally, the Gompertz function was also fitted with the nlme function including site as a random 

effect (supplementary fig. S.10). B & C) Relationship between estimated water-filled pore space (WFPSe) and average Rnight
eco at a soil depth of (B) 10 cm and (C) 30 cm. 

Grey dots show individual measurements, blue dots show WFPSe binned into 5 % intervals, where each bin contains a minimum of five observations. Confidence 
intervals for binned values are shown, yellow lines are fitted according to quadratic polynomial functions, of which the parameter estimates and p-values are shown 
in supplementary tables S.6 and S.7. 
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same number of sites continuously with automatic chambers (e.g., Aben 
et al., 2024) that disturb the vegetation, need continuous site mainte-
nance, and require a high number of greenhouse gas analyzers and 
automatic chambers. Furthermore, gap-filling CO2 fluxes with a RF 
model based on day and night measurements is likely much more ac-
curate than gap-filling CO2 fluxes with GPP and Reco models based on 
light and dark measurements with manual chambers (Liu et al., 2022). 
Thus, the method used in our study presents a good trade-off between 
site disturbance, cost, labor intensity and accuracy. 

4.3. Between-site and between-year variation in carbon budget and 
relation to drainage-irrigation management 

Annual C budgets of CO2 emission differed substantially between 
sites and years, as found in earlier studies (Schrier-Uijl et al., 2014; 
Tiemeyer et al., 2016; Weideveld et al., 2021). The between-site and 
between-year variation was seemingly not explained by drainage- 
irrigation management nor annual WTD. There were no clear differ-
ences between the average C budget from shallow-drained or deep- 
drained peatlands, and sites with drainage-irrigation mitigation mea-
sures (SSI, FI, and dynamic DWL) did not have significantly different C 
budgets from control sites, possibly because of high variability within 
treatments and low sample size. While a significant effect of SSI on C 
budgets has been found in some cases (Boonman et al., 2022; Aben et al., 
2024), this effect is not consistent throughout literature (Tiemeyer et al., 

2021; Weideveld et al., 2021). Control sites also had high variation and 
included both the sites with the lowest and highest C budget (− 0.1 and 
33 t CO2 ha− 1 yr− 1), although Tiemeyer et al. (2016) found much larger 
variation in C budgets (~3 to 69 t CO2 ha− 1 yr− 1 for nutrient-rich 
grasslands on organic soils). Our highest C budget of 33 t CO2 ha− 1 

yr− 1 was found in location 2-Control, which is one of the sites without a 
clay layer, which can potentially explain why this budget was so high 
(van den Akker et al., 2012). We expect the low budget of − 0.1 t CO2 
ha− 1 yr− 1 in location 1-ControlB to be due to natural variation in site- 
years, as this is a more commonly observed C budget (Aben et al., 
2024; Evans et al., 2021). 

Year-to-year variation between C budgets is commonly observed 
(Aben et al., 2024; Weideveld et al., 2021). In contrast to our expecta-
tions, the colder, wetter year 2021, which had higher annual WTD and 
summer WTD, showed a trend towards having higher C budgets than 
2022. It is not fully clear why C budgets were higher in 2021. In the 
current dataset, C budget seemed independent from annual WTD, 
summer WTD, and regulated DWL, which contrasts national datasets 
(Tiemeyer et al., 2020; Evans et al., 2021). In national studies, WTD is 
usually correlated to vegetation type, land-use intensity, and site- 
specific soil properties (Tiemeyer et al., 2016). Importantly, sites 
investigated here revealed a summer WTD between 50 cm to 80 cm, 
characteristic for the Friesland region (Provincie Fryslân, 2021), which 
could lead to high emissions in a short period of time (Regina et al., 
2014). Furthermore, the difference in soil properties (e.g., pore size 
distribution, stability of soil organic matter, alternative electron 
acceptor loading) in most sites could obscure effects of WTD on soil 
respiration in the topsoil, as these variables are important for soil 
respiration (McCarter et al., 2020; Normand et al., 2021) but we did not 
measure them. Therefore, we cannot rule out a relationship between the 
water table and C budget, especially if more sites with near-surface 
summer WTD and with a wider range of soil properties had been 
included. 

4.4. Relationship between Rnight
eco and hydrological drivers of soil respiration 

in peatlands 

To better understand the mechanisms driving variation in CO2 

emission, we studied how Rnight
eco varied according to WTD and soil 

moisture. Interestingly, Rnight
eco increased with lowering WTD on the scale 

of single nights, likely because a deeper WTD facilitates oxygen intru-
sion and hence aerobic oxidation of soil organic matter (Iiyama et al., 
2012). However, Rnight

eco only increased at WTD up to around 50 cm, while 
there was no apparent effect of WTD on Rnight

eco at deeper WTD (> 50 cm). 
Since most sites had a managed DWL below 50 cm, which stimulated 
summer WTD below 50 cm, this means that most sites could emit high 
quantities of CO2 during the growing season, when temperature is 
highest and most emissions occur (Updegraff et al., 2001). Therefore, it 
is possible that if more sites were included with a shallow managed DWL 
close to the surface (i.e. well-above 50 cm) or with drainage-irrigation 
management increasing WTD to well-above 50 cm, we may have 
observed contrasting groups of C budget - annual WTD relationships. 

The apparent absence of a relationship between WTD and Rnight
eco below 

WTDs around ~50 cm may be explained by the effect of soil moisture: 
deep WTDs occur during periods of drought, and we found an quadratic 
relationship between WFPSe and Rnight

eco . During those conditions, the soil 
moisture content of the labile carbon-rich topsoil may become low 
enough to initiate drought stress on the microbial community, thereby 
constraining respiration and hence CO2 production. Drought constraints 
on peat respiration were shown in a controlled lab study by Säurich 
et al., 2019 and field study by Makiranta et al., 2009, who found a 
similarly shaped relationship between WFPSe and CO2 emission as in the 
current study. Peat layers below 50 cm (henceforth subsoil) are often 
characterized by lower respiration rates and, consequently, CO2 flux 

Fig. 6. Comparison of Carbon Budgets (CB) estimated in this project with CBs 
estimated by Tier 1 (IPCC emission factors, Drösler et al., 2013) and Tier 2 
(SOMERS and GLG, Erkens et al., 2022; van den Akker et al., 2008) models. (A) 
boxplot showing CBs estimated by the different methods. (B) Comparison of 
relationship between annual WTD and the CB from the different models. (C and 
D) comparison between individual CBs estimated by Tier 2 models (SOMERS 
and GLG) and CBs estimated in this project. For Fig. 6A and B, colors indicate 
method; for Fig. 6C and D, colors indicate years. 
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potential compared to the topsoil (Quadra et al., 2023; Regina et al., 
2014; Säurich et al., 2019). Since the (degraded) topsoil generally has 
the highest content and lability of carbon (Leifeld et al., 2012; Weide-
veld et al., 2021; Kuzyakov and Gavrichkova, 2010) and has the highest 
oxygen intrusion (Iiyama et al., 2012), reductions in emissions from 
these layers can strongly impact total emissions. Higher emission 
observed in 2021 may support the moisture-optimum aspect of the ef-
fects of WTD on CO2 emission, as lower emission in 2022 may have been 
due to moisture limitation of microbial activity in the topsoil despite 
higher temperature. We expect that the soil moisture – Rnight

eco relationship 
stems from the response of microbial respiration to various soil moisture 
levels. 

In the literature, contrasting results have been found for the effect of 
WTD on CO2 emission. One study based on Eddy Covariance data from 
sixteen locations showed that different land uses along a management- 
related WTD gradient suggest a relationship between C budget and 
WTD (Evans et al., 2021). When looking only at sites with similar land 
use as in our study (grasslands), the study found increasing C budgets 
with deeper annual WTD between ~20 and 55 cm. However, this rela-
tionship was largely determined by two grasslands from Canada and 
Chile with low productivity. The study also found that an annual WTD 
deeper than 55 cm led to higher C budget, but sites with this annual 
WTD were croplands. Another study, based on campaign-wise mea-
surements with manual closed chambers in 118 locations in Germany, 
showed a Gompertz-type relationship between annual WTD and C 
budget with a strong reduction of C budget at annual WTD higher than 
50 cm and a much smaller effect at deeper annual WTD (Tiemeyer et al., 
2020). These locations were also variable in land use but because this 
study included a high total number of sites, the patterns were less 
impacted by the small subset of sites with a different land use. We found 
a similar Gompertz-type relationship, although in our study this rela-
tionship was found between WTD and Rnight

eco , rather than between C 
budget and annual WTD. 

The studies (Evans et al., 2021; Tiemeyer et al., 2020; and our study) 
all agree that drainage up to 50 cm likely leads to increased CO2 emis-
sion. It is interesting to note that these conclusions were reached with 
different methodologies (Eddy Covariance, campaign-wise with manual 
chambers, campaign-wise with automatic chambers). Thus, although a 
limitation of campaign-wise measurements is that gap-filling of long 
methodology-related data gaps comes with uncertainty (Gao et al., 
2023; Liu et al., 2022), the agreement in results with other studies gives 
further confidence in our findings. However, the effect of WTD on CO2 
emission at depths deeper than 50 cm still needs to be investigated 
further to determine the main driving factors of CO2 emission at this 
depth and their relationship with WTD. 

4.5. Comparison chamber-based carbon budget with carbon budget 
estimated by Tier 1 and Tier 2 models 

To analyze the representation of regional CO2 emission by national 
inventory reporting (NIR), we compared the chamber-based C budgets 
with the C budgets estimated by Tier 1 (IPCC EFs) and Tier 2 (SOMERS 
and GLG) models. The Tier 1 IPCC EFs (Drösler et al., 2013) predict 
higher C budgets for deep-drained sites (22.35 t CO2 ha− 1 yr− 1) than 
shallow-drained sites (13.19 t CO2 ha− 1 yr− 1), but in our data, these had 
a similar average C budget (both average 14.7 t CO2 ha− 1 yr− 1) close to 
the IPCC emission factor for shallow-drained sites. Furthermore, 
because Tier 1 EFs only provide two possible values for CO2 emission 
from shallow-drained nutrient-rich grasslands on organic soils, they did 
not reflect the variation in C budgets found in our dataset. One expla-
nation why deep-drained sites had lower C budgets than IPCC pre-
dictions could be our methods, as we used a novel approach to estimate 
C budgets, and previous studies have suggested that the methods used 
are important for C budget estimates (Schrier-Uijl et al., 2014; Brouns 

et al., 2015; Kruijt et al., 2020; Weideveld et al., 2021; Liu et al., 2022). 
A second reason might be that differences in soil properties (e.g., pore 
size distribution, stability of soil organic matter, alternative electron 
acceptor loading) of Frisian peatlands could lead to lower soil respira-
tion in the topsoil (McCarter et al., 2020; Normand et al., 2021) than in 
the sites used for determining IPCC EFs. 

The between-site and between-year variation in chamber-based C 
budgets mismatched the variation in NECBs estimated by Tier 2 models 
(GLG and SOMERS), as the differently estimated C budgets showed little 
correlation (Fig. 6C/D). The average C budget estimated by the GLG 
model (7.6 t CO2 ha− 1 yr− 1, van den Akker et al., 2008) was also much 
lower than the average chamber-based C budget (14.7 t CO2 ha− 1 yr− 1). 
Possibly, the relationship between land subsidence and WTD that is 
assumed in this model did not apply to our data. Also, the alternative 
version of this model, which uses the lowest annual WTD of the past 
eight years, might give a different result which could be more similar to 
our data. 

Interestingly, the average C budget of SOMERS (12.7 t CO2 ha− 1 

yr− 1) deviated less from average chamber-based C budget (14.7 t CO2 
ha− 1 yr− 1) than other TIER 1 and TIER 2 approaches. One explanation 
for this small deviation is that the SOMERS TIER 2 approach has been 
calibrated against C budgets estimates from similar automated chambers 
as those used in the current study. It is important to note that SOMERS is 
intended to be applied at a grid-scale and that it is based on coarse soil 
types, which might not accurately reflect the carbon content of the soil. 
Furthermore, the assumptions of the underlying models of SOMERS 
could expect stronger effects of variables such as WTD, soil moisture, 
and temperature than were present in the Frisian locations, especially 
because SOMERS only included one Frisian site for its validation. 
Finally, SOMERS estimates carbon cycling of the whole parcel rather 
than of a representative measuring plot, although it seems unlikely that 
field scale emission differs from plot scale emission to such an extent 
that could explain the large deviations observed in 11 comparisons 
replicated in 2 years. Therefore, further development of the SOMERS 
models may be needed to improve site-specific estimates of C budget 
related to management choices in drained peatlands. 

Importantly, however, accounting for year-to-year variation in Tier 1 
and 2 models is challenging. This variation is largely caused by variables 
such as WTD, air and soil temperature, root and litter carbon storage, 
and soil moisture, while data on these variables is often not available. 
Therefore, when establishing emission factors, simplification is needed, 
while striving to minimize uncertainty through measurements over a 
sufficient spatiotemporal scale, especially taking care not to limit data to 
one year, which may have unusually high or low C budgets. Using a 
method such as the one applied in our study can help provide these data. 

4.6. Limitations and uncertainties 

Accurate estimation of C budgets is essential for gaining insights into 
carbon dynamics within ecosystems. One notable concern in current C 
budget estimations is the potential underestimation of GPP due to the 
chamber warming effect (on average increasing Tair + 0.82 ◦C) that may 
stimulate photosynthesis during chamber closure and presence across 
most of the year when leaf temperature is below its temperature opti-
mum (Li et al., 2020; McPherson, 1983; Wagner and Reicosky, 1992; 
Woledge and Dennis, 1982). On the other hand, the simultaneous small 
increase in soil temperature (average increase Tsoil + 0.38 ◦C at 5 cm 
depth could partly counter this increase in GPP by increasing soil 
respiration. Furthermore, since the effect of the chambers on Tair and 
Tsoil was similar for different drainage-irrigation measures, this likely 
does not affect interpretations of treatment effects. We expect a net 
underestimation of NEE as Tair increased more than Tsoil, and photo-
synthesis is more sensitive to temperature than soil respiration (Urban 
et al., 2007). More research is needed to quantify the effect of increased 
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Tair and Tsoil on NEE, e.g. by comparing NEE between cooled and non- 
cooled chambers. Furthermore, regression times to estimate NEE can 
have a large influence on C budget estimations (Shi et al., 2022), which 
deserves more attention in future research. Although the absolute size of 
NEE is likely affected by methodological choices, we assume that NEE 
differences between sites, between years and between drainage- 
irrigation measures are less prone to a biased analysis (Liu et al., 
2022). Furthermore, we acknowledge that land-use intensity, drainage- 
irrigation management, and annual groundwater table are often corre-
lated (Couwenberg, 2011; Tiemeyer et al., 2016; Evans et al., 2021). 
Therefore, the nature of the relationship between C budgets and WTD, as 
well as the size of C budgets, is partly determined by these factors. 

In summary, while there is confidence in the relative differences and 
spatial patterns of C budget estimations, there is recognition that abso-
lute CO2 emission values may be subject to uncertainties. Addressing the 
identified challenges, such as (transparent) chamber effects, will 
contribute to refining the accuracy of C budget estimations. Future 
research should further explore the correlation between drainage- 
irrigation methods and land-use intensity, providing a more nuanced 
understanding of the factors influencing carbon dynamics in drained 
peatlands. 

4.7. Implication for management 

Our study suggests that drainage-irrigation management can 
potentially reduce carbon emission from peatlands. The current analysis 
emphasises the importance of rewetting the uppermost 50 cm of the soil 
throughout the year. Increased WTD in the range between 0 and 50 cm 
stimulates CO2 emission as confirmed by the saturation-curve relation-
ship between daily WTD and Rnight

eco . 
Lowering land-use intensity (e.g. lower nitrogen fertilizers, less grass 

cuts, no tillage, lower grazing density) may further reduce CO2 emission 
as suggested by case studies (Beetz et al., 2013), national inventories 
(Tiemeyer et al., 2016; Tiemeyer et al., 2020; Evans et al., 2021) and 
meta-analyses (Wilson et al., 2016). Reducing evapotranspiration rates 
by adapted grassland management may increase soil moisture levels to 
levels high enough reduce CO2 emission (Fig. 5; Säurich et al., 2019). 

5. Conclusion 

The data presented here gave an overview of emission spatial het-
erogeneity and of the drivers of between-site and between-year carbon 
budget from drained peatlands the Friesland province. Also, we pre-
sented a novel method to determine CO2 emission, combining periodic 
measurements by automated chambers with gap-filling using a Random 
Forest model, which was shown to give a good trade-off between site 
disturbance, cost, labor intensity and accuracy. Water table depth 
(WTD) positively correlated to nightly ecosystem respiration up to 50 
cm, but this was not reflected in the relationship between annual and 
summer WTD and carbon budgets. The deep WTD during the growing 
season likely led to suboptimal soil moisture conditions in the topsoil, 
which became too dry for high CO2 emission. Furthermore, we could not 
detect an effect of drainage-irrigation management on carbon budgets, 
which may be related to the large between-site and between-year vari-
ation combined with a small sample size. Finally, the mismatch in car-
bon budget estimations by chambers and prediction by Tier 1 and Tier 2 
models calls for an improved representation of CO2 emission drivers in 
Tier 2 and Tier 3 approaches to better include between-site and 
between-year variation. Methodological short-comings of automated 
lid-closed chambers need improvement before embedding their carbon 
budget estimates in National Inventory Reporting schemes. To conclude, 
our study showed that 1) shallow WTDs greatly determine CO2 emission, 
2) regional measurements of CO2 emission are instrumental for model 
validation, and 3) periodic automatic chamber measurements can be an 
effective and efficient method to determine these emissions. 
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Säurich, A., Tiemeyer, B., Dettmann, U., Don, A., 2019. How do sand addition, soil 
moisture and nutrient status influence greenhouse gas fluxes from drained organic 
soils? Soil Biol. Biochem. 135 (November 2018), 71–84. https://doi.org/10.1016/j. 
soilbio.2019.04.013. 

Schrier-Uijl, A.P., Kroon, P.S., Hendriks, D.M.D., Hensen, A., Van Huissteden, J., 
Berendse, F., Veenendaal, E.M., 2014. Agricultural peatlands: towards a greenhouse 
gas sink - A synthesis of a Dutch landscape study. Biogeosciences 11 (16), 
4559–4576. https://doi.org/10.5194/bg-11-4559-2014. 

Shi, R., Su, P., Zhou, Z., Yang, J., Ding, X., 2022. Comparison of eddy covariance and 
automatic chamber-based methods for measuring carbon flux. Agron. J. 114, 
2081–2094. https://doi.org/10.1002/agj2.21031. 

Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., 
Drösler, M., Ebli, M., Eickenscheidt, T., Fiedler, S., Förster, C., Freibauer, A., 
Giebels, M., Glatzel, S., Heinichen, J., Hoffmann, M., Höper, H., Jurasinski, G., 
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