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ABSTRACT 

Single nucleotide polymorphisms (SNPs) are widely used in genomic prediction (GP) as bi-allelic 

markers. Dense genome wide SNP markers are deployed to detect small QTL effects affecting 

quantitative traits, since it is supposed that all QTLs are in linkage disequilibrium (LD) with at least 

one marker. However, bi-allelic SNP markers may have some limits in capturing allele effects of 

multi-allelic QTLs, that are expected to occur more often in polyploids. Therefore, haplotype 

markers were developed since they are more informative than the bi-allelic SNP and are able to 

better capture effects of multiple QTL alleles. In this study genomic prediction with bi-allelic SNP 

and haplotype markers was compared.  

We simulated a genotypic and phenotype data of a population of 500 autotetraploid individuals 

with 4 chromosomes. Phenotypes were derived from six traits architectures with three level of 

heritability and the causal loci were set as multi-allelic. Shrinkage and variable selection models for 

genomic prediction were tested with bi-allelic SNPs and multi-allelic markers and predictive abilities 

were compared. 

The performance of haplotype-based GP did not show improvements in comparison to bi-allelic SNP 

markers, that is not in line with theoretical expectations.  

We investigated the reason why haplotypes could not bring improvements in GPs. As first step, we 

tried to understand the effects of population structure in GP models. Population structure seemed 

not to interfere significantly with GP. However, SNP markers were denser than loci used for 

haplotypes and therefore SNPs could presumably capture the variation given by the relation among 

individuals.  

Then, we investigated the effects of single SNP markers and single haplotype marker alleles in GP 

models. Haplotypes were highly informative and theoretically could capture each single multiallelic 

QTL effect with each haplotype variant. However, only a few haplotype alleles of the same locus 

were contributing to estimating the QTL effects, losing the advantage of being multiallelic. Rather, 

the haplotype marker contributed in GP similarly to biallelic SNP markers.  

We recommend either to explore other models which may be more suitable for the haplotype 

markers or investigate other methods to include haplotypes in the GP models.  
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INTRODUCTION 

The use of molecular markers has opened new doors to implementing advanced breeding 

procedures both for plant and animal breeding. At the beginning of this technology, markers were 

costly and difficult to reproduce (Mammadov et al, 2012). However, the potentiality of the use of 

markers was high in breeding and, in fact, it was exploited already at the end of the ‘80s (Paterson 

et al., 1988; Soller & Plotkin-Hazen, 1977; Soller, 1978 ). However, there were some pitfalls in 

marker-assisted selection (MAS), which limited the efficiency of markers such as the low density of 

marker maps, insufficient prediction accuracy and limited software packages (Collard & Mackill, 

2008). Thanks to the advancement in high-throughput DNA sequencing, nowadays the most used 

markers at DNA level are Single Nucleotide Polymorphisms (SNPs), which allow the researcher to 

obtain an accurate and dense map of an organism’s genome. Nowadays, this advancement of high-

throughput DNA sequencing techniques allows a relatively easy and cost-effective way to obtain a 

large number of molecular markers (Baird et al., 2008; Davey et al., 2011; Elshire et al., 2011; Guepta 

et al., 2008). SNPs come from the comparison of genomic DNA sequences of different individuals, 

or within heterozygous individuals, and in some positions two or more bases may differ from each 

other (Syvänen, 2001). SNPs have the advantage to be abundant and widespread in many species’ 

genomes in both coding and non-coding regions.  

Statistical models were developed to efficiently use the genotypic information available such as 

genome wide association studies (Loos, 2020) and genomic prediction (GP) (Meuwissen et al., 2001). 

In fact, Meuwissen et al. (2001) suggested to utilize the genome-wide SNP markers to detect small 

effect QTLs affecting quantitative traits, since it is supposed that all QTLs are in linkage 

disequilibrium with at least one marker.  

However, individual SNPs may show some limits in capturing LD with QTLs. Therefore, the 

information from biallelic SNPs may be integrated when two or more adjacent SNPs are grouped 

defining haplotypes. In fact, Rafalski (2002) suggested that the use of haplotypes is more informative 

than individual SNPs and haplotype-based analysis has more power in analyzing association 

between markers and phenotypes.  

GP is based on using a training population, which consists of observed individuals for which there is 

genotypic and phenotypic information available. This leads to the possibility of predicting 

phenotypic values of not phenotyped but genotyped individuals of the population. In fact, GP 

models figure out estimations of marker effects with which it is possible to predict the genomic 

estimated breeding values (GEBV) (Crossa et al. 2017;Goddard & Hayes, 2007; Meuwissen et al., 
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2001).This approach can have a huge impact on the breeding process because breeders may 

perform preliminary selections based on genotypic data only and boost the efficiency of their 

breeding programs. This advantage is given by skipping that cumbersome step of phenotyping which 

may require lots of time, such as waiting for the right phenological stage, and which often requires 

many resources.  

Despite the very promising use of GP in breeding, there are some complexities. Genomic predictions 

are made by using the SNP markers available and this causes a high dimensionality of the data. The 

problem is that for each marker there is a parameter to estimate, but since there is a larger number 

of markers (p) than the observed individuals (n), this causes an over parameterization of the model 

(Crossa et al., 2017, Meuwissen et al., 2001). This is known as “large p, small n” problem (p>>n). 

Consequently, there is the need of using models which can deal with this complication. To this end, 

a range of parametric, semi-parametric and non-parametric models have been developed and 

adapted for genomic prediction (de Los Campos et al. 2013).  

Parametric models are divided according to the penalty function which is used to perform variable 

selection, shrinkage of estimates, or a combination of both (De Los Campos et al. 2013).  

The effect that the penalty function exhibits on coefficients is different because the components 

added to the sum of squares would shrink all coefficients toward zero, making them small, or would 

shrink some coefficients to zero but others not, making therefore selection of variables. The first 

case refers to Ridge regression (RR) (Endelman, 2011; de Los Campos et al, 2013) and the second to 

least absolute shrinkage and selection operator (LASSO)(de Los Campos et al., 2013; Tibshirani, 

1996). These two methods may be merged giving the so-called Elastic Net (EN), which includes in 

the model either penalty functions (Hui Zou and Trevor Hastie, 2005). Another class of models is the 

Bayesian shrinkage methods. In this type of estimations, the model is based on a prior distribution 

of the unknowns, namely μ, β, σ2. The prior densities of marker effects will bring about variable 

selection or shrinkage. Also, it would determine the amount of shrinkage (de Los Campos et al. 

2013). A non-parametric model for genomic prediction, reproducing kernel Hilbert spaces, was 

proposed by Gianola and van Kaam (2008). This model accounts for non-additive effects instead of 

only the additive breeding value (Piepho et al., 2008).  

However, models depend on several factors which affect prediction accuracy such as trait 

architecture (de Los Campos et al., 2013; Meher et al., 2022), population structure (Werner et al., 

2020), heritability (Crossa et al., 2017; Cuyabano et al., 2015; de Los Campos et al., 2013), linkage 

disequilibrium (Crossa et al., 2017; Cuyabano et al., 2015; de Los Campos et al., 2013), errors in the 
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data and the inclusion of prior knowledge in the analysis (Sarinelli et al., 2019: Zhang et al., 2014), 

just to mention a few.  

Because of the huge advantage that genomic prediction may provide for breeding programs, it is an 

important matter of research for plant breeding studies. But, research is mainly focused on diploid 

plant species and the application on polyploids has been left behind (Wilson et al. 2021). The 

genetics of autopolyploids has more complex patterns than diploids, since they have more than two 

homologous chromosomes. As a consequence, there are more possible allelic dosages and more 

complex inheritance patterns.  

However, autopolyploid plants may benefit from GP to accelerate and render the breeding program 

more efficient.  

 

Haplotype and haploblock  

SNP markers can be grouped into what is called a haplotype. Haplotypes are defined by regions of 

the genome in which two or more SNP markers are grouped and are in strong linkage disequilibrium, 

with almost no recombination between them. Haplotypes are detected by the process called 

haplotyping. These methods are based either on sequence reads or SNP arrays. Some existing 

methods are described by Browning and Browning (2011), but these are for diploid organisms. 

However, some methods were proposed for polyploids based on sequence reads such as Compass 

(Aguiar and Istrail, 2012), HAPLOSWEEP (Clevenger, 2018), Tripoly (Motazedi at Al, 2018) and 

PopPoly (Motazedi, 2019), and Poly-Harch (He et al, 2018). Other methods based on allele dosages 

derived from SNP arrays have been implemented for polyploids such as SATlotyper (Neigenfind , 

2008), polyHap (Su et al., 2008), SHEsisPlus (Shi and Eh, 2005) and Happy-inf (Willemsen et al., 

2018). Since these models do not include pedigree information, Voorrips and Tumino (2022) 

developed a software package PolyHaplotyper which makes use of full-sib families.  

Haploblocks can have different number of SNPs determining the length and the number could be 

arbitrarily chosen. Many studies agree that the number of SNPs per haplotype should be between 

4-10 (Calus et al., 2009, Villumsen and Janss, 2009, Hess et al., 2017). Constructing haplotypes with 

a fixed number of SNPs is a common method in haplotyping (Calus et al., 2008, Villumsen and Janss, 

2009, Hess et al., 2017). Another example of haploblocks construction is given by Thérèse Navarro 

et al. (2022), who grouped 6 consecutive SNPs with an overlap of 4 SNPs. A further alternative was 

explored by Cuyabano et al. (2014) who considered linkage disequilibrium to group SNPs in 

haploblock given that the LD and the pattern of recombination differs across the genome.  
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One of the advantages of using haplotypes as markers is the feature of these being multiallelic. This 

provides stronger information for association studies such as QTL mapping or genome-wide 

association studies (GWAS). The association between marker alleles and QTL alleles is more likely to 

occur with multi-allelic markers than with bi-allelic SNP markers. This happens because a mutation 

may alter the haplotype frequency, whereas may not alter the allele frequency of a biallelic SNP, 

loosing therefore the ability to capture the QTL effect.  

Multiallelic markers help in QTL detection in population composed by polyploids or coming from 

more than two parents. In fact, Thérèse Navarro et al. (2022) developed a model for QTL analysis 

based on multiallelic haplotypes and suggested that the use of multiallelic models is more powerful 

in QTL detection in multiparental and/or polyploid populations compared to biallelic models.  

Unsurprisingly, haplotypes find applications also in genomic prediction and their contribution seems 

promising. The incorporation of haplotypes in animal breeding gives higher prediction accuracy as 

shown by Cuyabano et al. (2014). They incorporated haploblocks into best linear unbiased 

prediction (BLUP) and Bayesian mixture models, the latter showed the best results. Matias et al. 

(2017) found that the use of haploblocks increases predictive ability of genomic prediction in 

breeding population of allogamous plants or plants with high multiallelism. 

 

Population structure  

Population structure is an important factor which may affect genomic prediction accuracy. 

Population structure may occur because of several reasons, for instance geography reasons, natural 

selection or artificial selection (Yu et al. 2006; Price et al. 2010). In addition, populations in plant 

breeding may show structure due to diverse genetic background and family structure (Werner et 

al., 2020). Population structure brings variability of allele frequencies and the degree of relationship 

between subpopulations is captured by markers, causing inflation of the predictive ability of GP 

models (Daetwyler et al., 2012; Habier et al., 2007). If the population structure diminishes due to 

crossing or selection within subpopulations, markers involved in the relationship between 

individuals will lose their meaning and GP accuracy will increase. Population structure can affect the 

accuracy of genomic prediction and decline the genetic gain in a breeding program. In fact, in a 

previous work conducted by de Valk (2023) suggested to investigate population structure for every 

trait. Therefore, it would be interesting to quantify how much population structure affect the 

genomic prediction analysis.  
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Trait architecture  

Trait architecture is an important aspect to consider because it affects genomic prediction (de Los 

Campos, 2013). Many phenotypic traits are quantitative which are controlled by many QTLs. 

Therefore, several scenarios could occur such as traits affected by one or only a few main effect 

QTLs, or controlled by many small effect QTLs or even there is a situation that is a mix of the two. 

Moreover, QTLs may have the same size effect on the trait, or as most probable in real situation, 

they may have different weight on the phenotype observed. This could happen with one or a few 

major QTLs plus many more with small effect. In this case, for example, QTL effects may follow a 

normal distribution. QTLs can also be multiallelic which means they have more than two variants at 

the same locus which would affect the same trait. In this case to tag multiallelic QTLs, biallelic 

markers should not be sufficient and therefore it could be advantageous to use multiallelic markers. 

Research questions 

The main object of this work was to compare the performance of haplotypes-based genomic 

prediction with SNP-based genomic prediction. Besides this we wanted to explore how trait 

architecture and heritability could affect genomic prediction based on haplotypes. As consequence 

of the first results, we moved our attention to evaluate the contribution of population structure in 

GP. Then we also assessed the effects of single SNPs and haplotype variants in explaining the 

phenotypic variance and how they were included in GP models.  

MATERIALS AND METHODS 

Population 

For this study, a population of 500 individuals was simulated by using PedigreeSim software 

(Voorrips and Maliepaard, 2012). We simulated this population starting from a genetic map with 4 

chromosomes, 100 cM long and 1001 loci: a locus at every 0.1 cM. The chromosomes were named  

A, B, C and D. The loci were numbered from 0000 and to 1000. The name of each locus is then given 

by the combination of the chromosome letter and the position along the chromosome. We used 

this genetic map for a tetraploid population with 4 chromosomes (2n = 4x = 16) and 4004 loci across 

all chromosomes.  

The next step was the random generation of six different, chromosome-long, haplotypes, with 25% 

haplotype specific SNPs, used as founder haplotypes for the population.  These haplotypes were 

assigned to 10 founder individuals according to the frequencies used in Vos et al. (2017) (0.30, 0.25, 
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0.175, 0.125, 0.10, and 0.05). Founder individuals, identified as generation zero, were used to 

simulate the first-generation individuals. In this first generation three traits ( X, Y, Z) were set up  in 

order to create three subgroups whose names are respectively X, Y and Z. The proportions of these 

three subpopulations in each generation was 0.5, 0.3 and 0.2 for X, Y and Z, respectively. Then, 15 

generations were simulated applying a random mating scheme within the subgroups, with the 

mating between subgroups  limited to 5%. Selection intensity was 0.5 in every generation and for 

each trait. The target heritability 0.6 for all three traits. Therefore, each subpopulation was subject 

to selection for one of the trait and this caused a clear population structure.1. Population structure 

was detected by principal components analysis (PCA) and then the most significant PCs were 

regressed against the phenotype to estimate the contribution of population  structure in explaining 

the genetic variation. In addition, the ANOVA of phenotype against subpopulation groups was 

computed. The variance explained by PC or subpopulations, were in relation to the residual variance 

obtained by the analysis and phenotype variance according to the following formula  

1 – Residual variance/phenotype variance. 

GP with no LD with QTL 

To further explore the contribution of population structure in GP, a new set of SNP markers were 

built. For this experiment the monogenic trait was studied. SNP markers in LD with QTL were 

removed using the distance at which LD drops below 0.1 for 90 % of markers pairs ( de Valk, 2023). 

Genomic prediction were computed with this marker set to detect the effect of population structure 

and see how contributed the effective LD between marker and QTL-.  

 

Trait architecture 

To build the final population, three traits X, Y and Z were generated which then were used to 

construct the population structure. In fact, the population used for this study had three 

subpopulations relating to these three traits . Each trait was affected by eight biallelic loci and there 

were no loci overlapping between these traits. A total of twenty-four loci, involved for the traits X, 

Y and Z, were removed from the  marker set available for simulating the traits for the genomic 

predictions. For the genomic prediction analysis, we simulated a set of six traits which differed from 

each other by their genetic architecture. Each trait had different causal loci involved  randomly 

selected from a pool of loci  located at integer positions in the genetic map. The simulation consisted 

of building traits affected by one or more loci, moving from the simplest to a more complex 
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configuration. The trait architecture reproduced was monogenic, oligogenic, polygenic and a mix of 

oligogenic and polygenic. The monogenic trait consisted of one multiallelic locus, with six alleles, 

which affects the phenotype. In our work we denote this architecture as “mono”. For the oligogenic 

trait there were two configurations. One involves one multiallelic locus, with six alleles, and three 

biallelic loci, whereas the other consisted of four multiallelic loci each with six alleles. These two 

trait architectures were named “oligo_1” and “oligo_4”, respectively. The polygenic trait is affected 

by 100 biallelic loci. These causal loci were distributed equally across the chromosome but randomly 

within the chromosome,(table 1). With regard to the mixed genetic configuration, there were two 

types of architectures. One was created  by mixing  “oligo_1” and “poly” and the other by mixing  

"oligo_4” and “poly”; their respective names were “mix_1” and “mix_4”. This resulted in 4 major 

causal loci, 1 multiallelic locus and 3 biallelic loci for “mix_1” and four multiallelic loci for “mix_4”, 

explaining 50 % of the genetic variance and 100 minor biallelic loci explaining the remaining 50 % of 

the genetic variance (table 2).  

 

Table 1 Configuration of mono, oligo and poly trait architectures.  

  biallelic loci multiallelic loci 

Mono 
 

1 

oligo_1 3 1 

oligo_4 
 

4 

Poly 100 
 

 

Table 2 Configuration of mix traits. Major QTL are the ones producing half of the total genetic 
variance, whereas minor QTLs are producing the other half of the genetic variance. 

  major QTLs minor QTLs 

  biallelic multiallelic biallelic multiallelic 

mix_1 1 3 100   

mix_4   4 100   
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Phenotypic data 

In this work we studied the genomic predictions of individuals whose phenotype is affected by 

different genetic architectures. To simulate the phenotype, we assigned values to the alleles of the 

causal loci and these values vary according to the number of alleles. An effect was assigned to each 

allele, both in the biallelic case and in the multi-allelic case. Then, we assume an additive model, 

meaning that the effects assigned to a locus over the four homologs were summed up. In case of a 

biallelic locus in which there are four alleles like 0,0,1,1 and the effects are 0 for the 0s and 1 for the 

1s, the phenotype is 2. That principle was also applied to multiallelic QTLs. There was also additivity 

between the causal loci in case of polygenic traits and therefore the phenotype was formed from 

the summation of effects of all QTLs involved.  

In our population study, there were 6 haplotypes since 6 chromosome-length haplotypes were used 

for building our population. By using files generated by PedigreeSim, we could track the haplotypes 

segregation and obtain the genotypes of the individuals in the 15th generation  with the right 

haplotype at each locus (fig. 1).  

 

Figure 1 Example of genotypic information of individuals at the 15th generation by using haplotypes. 
At the side of the figure are the loci names. The column names combine  the generation number, the 
name of the individual , and the homolog number.  

Knowing the phased haplotypes, it is possible to assign an effect to each haplotype of a multiallelic 

causal locus and obtain the genotypic value associated to that locus by using a specific PedigreeSim 

function. In fact, we considered the haplotypes as alleles; in each locus per homolog, there are six 

possible haplotype alternatives, and we consider them as alleles. The effects assigned to the QTL 

alleles are 0, 0.33, 0.66 and 1. After having assigned the allele effects and obtained genetic values 

of the individuals, we added the environmental noise based on three values for the heritability:  0.2, 

0.5 and 0.8. The environmental variance 𝜎𝜀
2 was obtained using the formula 

𝜎𝜀
2 = (1−𝐻2)∗𝜎𝑔

2/𝐻2    
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where 𝐻2 is the target heritability and 𝜎𝑔
2 is the genetic variance of the simulated trait in the 

fifteenth generation. Once we obtained the environmental variance, the phenotype is given by 

adding a normal distributed environmental variation with mean 0 and standard deviation      √σε
2             

to the genotypic value. 

After computing the phenotype, it is possible to determine the realized heritability 𝐻2=𝜎𝑔
2/𝜎𝑝

2. For 

the mixture trait architecture an oligogenic part, including the main effect QTLs, was combined with  

a polygenic part consisting of minor effect QTLs. To combine these two components, the QTL effects 

were adjusted in order to split the genetic variance between the two components equally. To 

achieve this, the genetic variance of the polygenic side was scaled according to the oligogenic 

variance. This proportion was used to obtain scaled biallelic QTL effects for the polygenic part of the 

mixture trait. By doing this, each of the two components of the trait explains 50 % of the genetic 

variance. 

At the end of this process, for each trait architecture three versions were used according to the 

three different heritability values. In conclusion, we ended up with a set of 18 scenarios which are 

in fact given by 6 trait architectures times three heritability values.  

 

Marker data 

With this study we wanted to investigate if the use of haplotypes in genomic predictions could 

improve the predictions based on biallelic marker SNPs. To achieve this, we constructed two main 

marker sets: one made of biallelic SNPs and the other made of multiallelic haplotype markers. 

Biallelic marker set: PedigreeSim provided phased genotypes of the individuals of our study 

population. As first data set, PedigreeSim software provides a matrix with markers in the rows and 

the four homologs of each individual in the columns (fig. 2- A). This data set was adapted to fit the 

genomic prediction models; therefore, an allele dosage file was built, consisting of the dosages 

across the homologs in each chromosome (fig. 2 – B). From this last marker set, loci belonging to 

the marker pool used as causal loci were removed. In addition, markers with a frequency either 

below 0.05 or above 0.95 were removed. Ultimately, 3339 SNPs were used for  genomic prediction 

and a variant of this marker set was also used for running genomic prediction analysis. In this variant 

set, haplotype tagging markers were removed; the final number of markers used in this analysis was 

2656.  
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Figure 2 – A) table with phased genotypes with markers in the first column and individual - homologs 
in the following columns.  In the alleles of markers “A0001” of the individual “G15_X001”, highlighted 
in red, has four copies of “1”. B) dosage table with individuals as row names and marker names as 
columns. In this table which derives from the phased genotypes table (A), 4 is the dosage of the 
individual “G15_X001” for the locus “A0001” which sums up the four copies of “1” in table A for the 
respective individual and locus.   

Haplotype marker set: For each chromosome, six chromosome-long haplotypes (HP_1 to HP_6) 

were generated and then assigned to 10 founder individuals which formed the base of our final 

population. Therefore, the phased haplotypes of each founder individual corresponded to a 

haplotype in all its chromosome length.  In our population, corresponding to the 15th generation, 

there was a mixture of haplotypes per homolog due to recombination. In the end, we obtained a 

phased file of founder alleles file with 6 possible alleles per locus per homolog (fig. 3 - A). Similarly 

to biallelic markers, this data format must be adapted to a format fitting the statistical models used 

for genomic predictions. It must be as similar as the biallelic dosage file. To achieve this, markers 

were converted into pseudomarkers. Each locus was implemented with 6 alternatives 

corresponding to each haplotype allele. The names used for the pseudomarkers have been 

arbitrarily chosen and they are the combination of the locus name and the haplotype allele name. 

For example, for the locus A0005, the pseudomarker names are A0005_HP_1, A0005_HP_2, 

A0005_HP_6 to indicate the six haplotypes. Then, the dosage is the sum of the haplotype alleles 

present in that locus. For example, if we have individual G15_X001 which has haplotypes HP_4, 

HP_1, HP_1 and HP_4, the dosage would be 2 for the pseudomarkers A0005_HP_1 and A0005_HP_4 

and zero for A0005_HP_2, A0005_HP_3, A0005_HP_5 and A0005_HP_6 (fig. 3).    
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Figure 2 – A) table reporting the haplotypes at each locus for each homolog. The row names are the 
loci names, and the columns are the homolog of each individual. Haplotypes are named as HP in 
combination with the haplotype number. B) Pseudomarkers table. Row names are the individuals 
and columns are the pseudomarkers. There are six (amount of haplotypes) pseudomarkers per locus. 
In this example there are six pseudomarkers for the locus A0005.  

 

Converting the markers into pseudomarkers increases the number of variables to six times as many 

as the number of single markers. This can bring about to a very large file and increase the time for 

running the analysis. For this reason, we decided to reduce the loci involved and keep only the ones 

at point 5 positions in the genetic map. For instance, we used locus A0005, A0015, A0025 and at 

position 0.5, 1.5, 2.5 cM and so on. In this way the loci kept were 1 cM apart from each other. Then, 

from our pseudomarker file, rare pseudomarkers with frequencies below 0.5 and above 0.95 were 

removed. In the end, we obtained a file with 16603 variables in the format as shown in figure 3 - B 

with individuals in the rows and pseudomarkers in the columns.      

Statistical models 

rrBLUP 

Endelman (2011) developed an R package to run prediction analysis based on Ridge Regression (RR), 

which is equivalent to best linear unbiased prediction (BLUP) in the context of mixed models 

(Whittaker et al., 2000; Meuwissen et al.,2001).  

The basic rrBLUP model is:  

𝐲 = 𝐖𝐆𝐮 +  ε         [1] 

where  𝐮 ~ N( 0, 𝐈σu
2) is a vector of marker effects, G is the genotype matrix for biallelic SNPs, W is 

the design matrix relating individuals to observations (y). The BLUP solution for marker effects  is  

�̂� =  𝐙′(𝐙𝐙′ +  λ𝐈)−1𝐲, where Z = WG and the Ridge parameter  is λ =  
σe

2

σu
2⁄ .  The analysis are run 

using the RR-BLUP package function mixed.solved(). 
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RKHS 

From rrBLUP package by Endelman (2011), there is the possibility to use two more kernels in 

addition to the realized relationship model: one is the Gaussian model and the other is the 

exponential model. In our experiments, we used the Gaussian model kernel. From the equation 1 

used to estimate breeding values based on the marker effects, there is the equivalent kinship-BLUP 

equation in which the breeding values are predicted based on the individual kinship: 

𝐲 = 𝐖𝐠 +  ε 

            g ∼ N(0, 𝐊𝜎𝑔
2)     [2] 

where g is a vector of genotypic values, and K is the relationship matrix. With equation 2 it is possible 

to calculate BLUP based on different kernel functions (K). As mentioned, we used the Gaussian 

model that is given by equation [3] 

𝐾𝑖𝑗 =  exp [− (
𝐷𝑖𝑗

𝜃
)

2

]         [3] 

where  𝜃 is a scale parameter that determine how quickly the genetic covariance decays with 

distance and  𝐷𝑖𝑗  is the Euclidean distance between genotypes i and j normalized to the interval 

[0,1]: 

𝐷𝑖𝑗 =  [(
1

4
𝑀) ∑ (𝐺𝑖𝑘 − 𝐺𝑗𝑘)

2𝑀
𝑘=1 ]

2

          [4] 

where M is the number of markers and G is the genotypic matrix.  

In rrBLUP package the function used for RKHS is kinship.BLUP() where it is specified the parameter 

K.method = “GAUSS”.  

 

Elastic Net 

The R package glmnet developed by Friedman et al. (2010) calculate penalized regression model 

that combines LASSO and RR by using weighted average of the ℓ1 and ℓ2 norms as penalty function. 

The Elastic Net regression model estimates the parameters mean and marker effects by solving the 

optimization problem given in the equation 5: 

                                                                                                                                 [5] 
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  [6]        

Where ∑(𝑦𝑖 −  𝜇 −  ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2
  of the equation [5] is the sum of squared residuals and 𝑗(𝛽) =

(1 −  𝛼)
1

2
 ‖𝛽‖ℓ2

2 +  𝛼‖𝛽‖ℓ1 [Eq. 6] is the penalty function which is a weighted average of ℓ1 and ℓ2 

norms. The two parameters controlling the penalty function are lambda (λ) and alpha (α).  

Lambda controls the severity of the penalty function and is internally optimized by using the glmnet 

function cv.glmnet(). This function computes the 10-fold-cross validation to find the best lambda 

over a grid of 100 values of lambda. The function returns two values of lambda for which the user 

can choose from: lambda.min and lambda.1se. From the manual of glment written by Hastie at. All 

(2023), the two lambda provided by cv.glmnet is explained as “lambda.min is the value of lambda 

that gives minimum mean cross-validated error, while lambd.1se is the value of lambda that gives 

the most regularized model such that the cross-validated error is within one standard error of the 

minimum”. In previous analysis (de Valk, 2023), Elastic Net was too stringent for certain 

combinations of training and tests sets when predicting for polygenic traits with low heritability. 

This brought about the incapability of calculating the Pearson correlation for the predictive ability 

because NA were generated ( we refer to this problem as NA problem). To minimize this NA problem 

it was decided to use lambda.min as it provides a less stringent model. As consequence, for the 

present work we used the same parameter.  

 

The α parameter controls the mix between LASSO (α = 1) and Ridge regression (α = 0) in the penalty 

function. 

 For this parameter there is no an internal cross validation cycle provided by the glmnet functions 

and therefore we set up a cross-validation cycle to select the best α from a range of 11 values ( 0 to 

1 by 0.1) for our genomic predictions. Just after having selected the best α, there is a second five-

fold cross-validation cycle run m times to obtain m means of the predictive ability. The fold which 

returned NA were kept out when calculating the predictive ability mean of the inner-cross 

validation.  
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Bayes B 

In our study we include a model which performs variable selection from the R package BGLR (Pérez 

& de Los Campos, 2014).  

BGLR implement the linear model  

𝑦 =  𝜇 + 𝑋𝛽 +  𝜀                  [7] 

𝜎𝜀
2 =  𝜒−2(𝑑𝑓𝜀 , 𝑆𝜀) 

𝑃(𝜃|𝑦, 𝜔) ∝ 𝑃(𝑦|𝜃)𝑃(𝜃) 

Where 𝑦 is a vector of responses, 𝜇 is the overall mean, 𝛽 is a vector of random marker effects, 𝑋 is 

an allelic dosage matrix and 𝜀 is a vector of residuals. The residual variance 𝜎𝜀
2 has a scaled-t 

distribution with degree of freedom 𝑑𝑓𝜀  (>0) and scale parameter 𝑆𝜀 (>0). The third expression of 

equation [7], is the conditional distribution of the data and 𝜃 represents the unknowns such as the 

intercept, regression coefficient, random effects and the residual variance.  

The prior density for the marker effects in Bayes B is a combination of a point of mass at zero and 

the scaled-t slab summarized by the expression: 

𝑃(𝛽𝑗 , 𝜎𝛽
2, 𝜋 ) =  ∏ 𝛽𝑗𝑘𝑘 ~ 𝑁(0, 𝜎𝛽

2) + (1 + 𝜋)1(𝛽𝑗𝑘 = 0)            [8] 

Where 𝑃(𝛽𝑗 , 𝜎𝛽
2, 𝜋 )  is a function of the scaled-t slab and the point of mass at zero 

(1 + 𝜋)1(𝛽𝑗𝑘 = 0). The effects of important markers are sampled from the scaled-t slab which has 

a large variance that comes from a scaled-inverse  𝜒2 distribution 𝜎𝛽
2 =  𝜒−2(𝑑𝑓𝛽 , 𝑆𝛽) while the 

effects of unimportant markers are equated to zero by sampling from the point of mass at zero. 

In Bayes B three hyperparameters are used to control the severity of the penalty: 𝑑𝑓𝛽 is the degrees 

of freedom for marker effects, 𝑆𝛽 is a scaling parameter that is sampled from the gamma distribution 

𝑆𝛽 ~ 𝐺(𝑟, 𝑠) and 𝜋 is the proportion of non-zero markers allowed in the model which is sampled 

from the beta distribution 𝜋 ~ 𝐵(𝑝0, 𝜋0) and optimized using an internal validation method. The 

prior densitie for the remaining unknown model parameters are a flat prior for the overall mean 

and a scaled-inverse 𝜒2 density for the residual variance 𝜎𝜀
2 =  𝜒−2(𝑑𝑓𝜖 , 𝑆𝜀). 

The R package BGLR utilizes a Gibbs sampler to optimize the posterior density. In total we used to 

12500 iterations of this Gibbs sampler, of which 2500 were burn in iterations.     
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Experimental setup 

The experiment aimed to compare SNP-based GP with haplotype-based GP under different 

scenarios consisting of the combination of trait architecture and heritability. Each trait was 

replicated ten times and the loci for the same trait were different in each replication. For the SNP-

based GP was used two set of markers: one complete with 3339 and the other without the 

haplotype-tagging SNP with a total of 2656 markers. For the haplotype-based GP a set of 16603 

pseudomarkers was used. SNP markers and pseudomarkers, for the haplotypes, were normalized 

to [-1, - 0.5, 0, 0.5, 1], then centered and scaled. In addition, phenotypic data was centered and 

scaled.  

RESULTS 

Haplotype vs SNP markers 

To investigate the contribution that multiallelic haplotypes may have on genomic predictions, we 

compared haplotype-based genomic prediction with biallelic SNP-based genomic prediction for a 

set of traits characterized by different level of heritability and genetic structure. There are several 

methods to construct haplotypes and together with other factors, such as models, trait architecture 

etc.,   can have an impact on prediction accuracies.  Some studies are present for diploid species  

(Cuyabano et al., 2014;  Yang Da 2015; Hess et al. 2017; Matias et al.,2017; Ballesta et al., 2019; Won 

et al. 2020; Lin et al.,2024) and the research on this topic for polyploid species has lagged behind. 

Multiallelic markers have a high potential to detect the effect of a linked QTL, especially in case of 

multiallelism (two or more effects). We hypothesized that the use of multiallelic haplotype markers 

could have a positive contribution on genomic prediction compared to biallelic SNP markers for 

capturing the effects of multiallelic causal loci. 

To this aim, we generated multiallelic haplotype markers composed of one locus with six alleles 

(corresponding to the founder alleles), then we ran genomic prediction analysis with four different 

statistical models for each trait at three different levels of heritability. Haplotype- genomic 

prediction was compared with  SNP-based genomic prediction. 14400 observations were collected, 

and the predictive ability ranged from -0.02 to 0.89. On average Bayes B and Elastic Net yielded 

higher prediction ability than RKHS and rrBLUP regardless the type of marker used. Looking at the 

difference between haplotype-based and SNP-based genomic predictions, RKHS and rrBLUP had 
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nearly the same average predictive ability, while Bayes B and Elastic Net were slightly higher in favor 

of the biallelic SNP markers.   

Predictive ability of haplotype-based GP in relation to the heritability, trait architecture and models 

had the same pattern of the SNP-based GP analysis and the predictive ability values were quite 

similar.  The main difference was between shrinkage models and variable selection models (Figure 

4 and appendix 1), that was in line with previous work (de Valk, 2023). For the simplest genetic 

configuration, monogenic trait, variable selection models yielded better predictions than shrinkage 

models at all heritability levels and for both marker sets. Similarly, predictions for "oligo_1" had a 

general clear difference between the two types of models, however this difference was less 

remarkable at low heritability. In “oligo_4, where the four causal loci were multiallelic, the gap 

between variable selection and shrinkage models varied among the heritability levels. In fact, at low 

heritability all four models gave on average similar predictive abilities, whereas the difference 

became larger at middle and high heritability. Moving into a more complex configurations, the gap 

between models is almost nullified and the models performed similarly. The variable selection 

models were influenced by trait architecture and, in fact, the prediction ability dropped for the 

polygenic traits at the level of shrinkage models. On the other hand, shrinkage models had a 

consistent performance among traits despite their genetic complexity. However, for the polygenic 

traits, BB generally performed slightly better than the other models at all heritability levels for both 

the marker sets.       

Looking at the differences between haplotypes and SNPs (fig. 5), generally SNP-based genomic 

predictions performed moderately better than haplotype-based genomic predictions. Still there was 

a distinction between variable selection models and shrinkage models because the differences were 

clearer for the variable selection model and mainly at middle and high heritability (fig. 4). On the 

other hand, shrinkage models (rrBLUP and RKHS) on average performed equally between the two 

marker sets (fig. 5-B). In fact, the gap was in the range of 0.001, an imperceptible difference.  
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Figure 4 –  Boxplots showing the mean genomic prediction results per genomic prediction  model. 
The models represented are BB for Bayes B, EN for elastic net, RKHS for reproducing kernel Hilbert 
space and rrBLUP for Ridge regression BLUP. Each panel represents the trait architecture as “mono”, 
“oligo_1”, “oligo_4”, “poly”, “mix_1” and “mix_4” in combination with the marker set used for 
genomic prediction (HP for the multiallelic marker set and SNP for the biallelic SNP marker set). In 
the x-axis there are the mean heritability values per trait architecture obtained from ten replications; 
the y-axis shows the predictive ability. On average BB and EN performed better than RKHS and 
rrBLUP for the monogenic and oligogenic traits. Whereas genomic predictions from BB and EN 
dropped at shrinkage models outputs for the polygenic traits. However, variable selection models 
yielded higher predictive ability in almost all scenarios.  
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Figure 5 – Box plot showing the same genomic prediction results from fig. 1, but grouped by marker 
sets: HP stands for multiallelic haplotype marker set and SNP for biallelic SNP marker set. Each panel 
is the combination of trait architecture and statistical model used for the genomic prediction. In the 
x-axis there are the mean heritability values per trait architecture obtained from ten replications; the 
y-axis shows the predictive ability. In A) is shown the results for variable selection models (Bayes B 
and Elastic Net) in which it is visible that SNP-based genomic predictions had a slight higher 
predictive abilities than haplotype-based genomic predictions in almost al scenarios. Whereas in B) 
results from shrinkage models (Ridge regression BLUP and Reproducing Kernel Hilbert Space) are 
shown. In this case the predictive abilities were equivalent and indeed the marker sets used did not 
entail any difference. 
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Removing haplotype-tagging SNPs 

A Further analysis consisted of removing haplotype-tagging SNPs from the SNP marker set. Since 

the results of haplotype-based GP were similar to SNP-based GP, we wanted to explore whether 

haplotype-tagging SNPs had a significant impact on genomic predictions. To this aim, only the 

monogenic trait was observed, and the average level of heritability values were 0.197, 0.509 and 

0.807.  

Looking at the overall averages, the predictive ability based on SNP marker set was 0.547 (standard 

deviation 0.23), for the haplotype-marker set was 0.54 (standard deviation 0.224) and for the non-

haplotype-tagging SNP marker set the predictive ability was 0.539 (standard deviation 0.229). The 

pattern was consistent with the previous analysis: predictive ability was positively related to the 

heritability values and there was a clear distinction between variable selection and shrinkage 

models. Within models, the differences are subtle between markers groups. By removing haplotype-

tagging SNPs from the SNP marker set, it did not bring any important changes and the average 

prediction ability was approximately the same as the ones obtained by using the complete SNP 

marker set.  

 

 

Figure 6 – Boxplot of genomic predictions of the “mono” trait grouped by typology of marker set: HP for 
multiallelic haplotype marker set, SNP for biallelic marker set and SNP_ntag for biallelic marker set with 
haplotype-tagging SNPs removed. Each panel represents the statistical model used which are Bayes B (BB), 
elastic net (EN), reproducing kernel Hilbert space (RKHS) and Ridge regression BLUP (rrBLUP). In the y-axis 
there is the predictive ability and x-axis the heritability means for the monogenic trait.  
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Population structure 

The comparison between haplotype-based genomic prediction with SNP-based genomic prediction 

did not meet our hypothesis. In a previous work carried out on the same population by de Valk 

(2023), it was showed that the population structure had an impact on genomic predictions. 

Therefore, we first analyzed the genetic structure of the population through PCA (principal 

components analysis). Subpopulations were clearly separated by means of the first principal 

components that explained 20.1 % of the genotypic variance. PC1 could cluster the population in 

two main groups. Subpopulation Y was well separated from the other two subgroups X and Z, which 

showed to be closely related. The other principal components could not further explain the 

population structure since they were not able to further separate the population in subgroups (fig. 

7).   

The pattern generated by PC1 was generally in line with the means of subpopulation genetic values 

of each trait in most replications (Appendix 2). That was confirmed by the ANOVA in which almost 

all replications had at least one subpopulation mean differing statistically from the others (tab. 3). 

After that, we wanted to analyze the variance explained by principal components for the monogenic 

trait. To achieve this, we computed the analysis of variance on the phenotype at the three level of 

heritability in relation to an increasing number of principal components and then plot the R-squared 

against the number of PCs (fig. 8). This result showed that for this population and for this trait the 

variance explained by PCs had a logarithm fashion path and the initial slop is increasing in relation 

to the heritability level. However, the curve had a lower increase from 100 PCs onward and the 

proportion of variance approaches to the heritability levels (0.2, 0.5 and 0.8).  

Principal components were fit in genomic predictions as fixed effects to account for population 

structure as proposed by Daetwyler et al. (2012) in sheep population. With this method, these 

authors obtained a decrease in predictive abilities as the number of PCs increased in the model till 

reaching a plateau. They speculate that that plateau is given from LD of markers and QTL as the 

majority of the population structure effect is accounted for. We carried out a similar analysis 

including in rrBLUP model up to 350 principal components (fig. 9) for predicting the monogenic trait. 

For the predictive abilities at low and middle level of heritability, there was a clear decrease from 

100 PCs whereas at high heritability the decrease started from around 150 PCs. By contrast, we did 

not obtain a plateau but a continuous decrease in predictions which became greater as the number 

of PCs increased.  
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A further analysis to check if the population structure could affect predictive ability, rrBLUP with a 

SNP marker set without loci in LD with QTL was launched for the monogenic trait. In fig. 10 the 

predictive ability is shown and it is notable how much the predictive ability dropped if markers in LD 

were removed. In table 3 instead are reported the proportion of the across subpopulation groups 

over the heritability. These values could give a weight of the variance explained by population 

structure over the genetic variance. It is interesting to see the replicates which had high proportion 

of heritability across subpopulation had a smaller drop in predictive ability when SNPs in LD with 

the QTL  were removed. The other way round, when this proportion was smaller the drop in 

predictive ability was greater.  

 

 

 

Figure 7 – Pairs of the first 5 Principal components of a principal components analysis (PCA) for the 
genetic structure of the population used for genomic prediction. The subgroups of the population are 
X, Y and Z which are clustered by the first principal component accounting for 20.1% of the genotypic 
variance.  
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Figure 8 – Plot of the proportion of phenotypic variation explained by an increasing number of PCs. 
In the X axis there are the number of PCs and in the Y-axis the R2 ( proportion of phenotypic variance 
explained by PCs); each panel corresponds to the low, mid and high heritability which values 
corresponded to 0.2, 0.5 and 0.8 respectively.  

 

Figure 9 – Plot of predictive ability resulted from including an increasing number of PCs in the base 
rrBLUP model. Each line corresponds to a level of heritability which are approximately 0.2, 0.5 and 
0.8 for low, mid and high respectively. 
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Table 3 – P-values for the significance of at least one subpopulation mean be different from the other 
means. When the P-value is below 0.001, for simplicity is indicated as “<0.001”. Column names 
indicate the trait architecture and row names are the corresponding replications.  
 

mono oligo_1 oligo_4 poly mix_1 mix_4 

rep_1 < 0.001 < 0.001 < 0.001 0.681 < 0.001 < 0.001 

rep_2 < 0.001 < 0.001 < 0.001 0.041 < 0.001 < 0.001 

rep_3 < 0.001 0.293 < 0.001 < 0.001 < 0.001 < 0.001 

rep_4 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

rep_5 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

rep_6 < 0.001 0.054 < 0.001 0.016 0.933 < 0.001 

rep_7 0.154 0.083 0.304 < 0.001 < 0.001 0.116 

rep_8 < 0.001 0.106 < 0.001 < 0.001 < 0.001 < 0.001 

rep_9 < 0.001 < 0.001 < 0.001 < 0.001 0.313 < 0.001 

rep_10 < 0.001 0.083 < 0.001 < 0.001 < 0.001 < 0.001 

 

 

 

Figure 10 – Comparison of predictive ability of rrBLUP run with haplotype, SNP and markers with SNP 
in LD with the QTL removed. The x-axis are reported the level of heritability and low corresponds to 
heritability around 0.2, mid for 0.5 and high for 0.8. in the y-axis there is the predictive ability. 
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Table 3 – proportion of  heritability across subpopulation over genetic heritability per 

replication for the monogenic trait 

rep_1 rep_2 rep_3 rep_4 rep_5 rep_6 rep_7 rep_8 rep_9 rep_10 

0.041 0.066 0.104 0.054 0.108 0.172 0.003 0.301 0.226 0.167 

 

 

Investigation at locus level 

To dig into the reason why multiallelic haplotype did not bring improvements to genomic 

predictions, we wanted to analyze into more detail each locus, for both marker sets and see the 

contribution that each locus could have in predicting the phenotype. Since we were dealing with 

simulated data, we knew all about every locus of the genome including the causal ones. To see what 

happens at locus level, we opted to analyze in depth the simplest case like the “mono” trait whose 

phenotype was affected only by one multiallelic locus. Specifically, we considered the monogenic 

trait of replication one with heritability 0.775. The causal locus was at position D0700 and the 

assigned allele effects were 0.33, 0, 0.66, 1, 0.66, and 0 for the alleles HP_1, up to HP_6, respectively. 

The allele frequencies were 0.33, 0.29, 0.27, 0.015, 0.08 and 0.012 for HP_1 to HP_6, respectively.  

As first analysis, we estimated the allele effects of the causal locus and see if the alleles 

corresponded to the values assigned. To achieve this, we computed a linear regression with 

phenotype as dependent variable and pseudomarkers of the causal locus as independent variables. 

The estimated values were 0.359, 0.013, 0.688, 0.958, 0.679, NA for HP_1 to HP_6 respectively and 

the R-squared of the regression was 0.799.  

We next moved to investigating the contribution of the surrounding loci in explaining the phenotypic 

variation. To obtain this information, we regressed the phenotype against variables like haplotype-

markers and SNP-markers. Haplotype-markers were regressed against the phenotype in two ways: 

first all pseudomarkers of a locus together and, secondly a single pseudomarker as single 

independent variable (fig. 11).   

Regression for haplotypes with the six alleles belonging to the same locus, the R-squared resulted 

high for the two loci closest to the causal locus, which were D0695 and D0705 whose values were 

0.667 and 0.736 respectively. The region where loci gave the R-squared above 0.4 ranged from 

D0675 to D0725. Out of these boundaries R-squared decreased quite rapidly toward zero. From 
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D0625 and D0815 the R-squared started being below 0.1. On the other hand, when single 

pseudomarkers were regressed against the phenotype the pattern of the R-squared was like the 

previous result, it was approximately a bell shape with the pick around the causal locus. The highest 

R-squared values were attributable to the two loci surrounding the causal locus and specifically for 

allele HP_2 and HP_3.  Pseudomarkers D0695_HP_2 and D0695_HP_3 showed a R-squared equal to 

0.451 and 0.342 respectively. The other important pseudomarkers were D0705_HP_2 and 

D0705_HP_3 with R-squared of 0.484 and 0.339. Conversely, the other pseudomarkers of these two 

loci like D0705_HP_1, D0705_HP_4, D0705_HP_5, D0705_HP_6, D0695_HP_1, D0695_HP_4, 

D0695_HP_5 and D0695_HP_6 had R-squared ranging from 0.008 to 0.062.  

R-squared obtained by regressing the phenotype over each single biallelic SNP marker, had a bell 

distribution similar to the previous analysis made on haplotypes. The presence of loci was 

approximately regular, one every 0.1 cM, but the effects which they had on the phenotype were not 

always consistent with the distance from the casual locus. The highest R-squared values belonged 

to the loci closer to the casual locus such as D0704, D0699 and D0693 and their respective values 

were 0.483, 0.478 and 0.458. However, some loci close to the casual locus had low R-squared values 

as for example D0701, D0702, D0697 with values equal to 0.001, 0.067 and 0.0002.  

After that, we wanted to see which markers were selected by a model. This allowed us to explored 

if there was a correspondence between selected markers of the two marker sets and how haplotype 

markers were used by the model. To this end, we looked at the elastic net outputs generated by 

glmnet R package because it delivered higher predictive abilities together with Bayes B model, and 

delivered a selection of markers with their respective estimated values (appendix 3 and 4). For the 

bi-allelic SNP markers, the model selected 20 SNPs on the chromosome D, which is the chromosome 

where the casual locus sat. Seven markers had high R-squared ranging from 0.232 to 0.483 and their 

estimated effects ranged from -0.249 to 0.239. Interestingly, among the loci which had the highest 

R-squared, there were two haplotype-tagging SNPs (D0703 and D0704) which tagged the founder 

haplotype three and haplotype two. These two markers had R-squared values of 0.336 and 0.483. 

Focusing on marker D0703 for which allele “1” was the tagging allele for haplotype two, and 

haplotype two at causal locus corresponded to HP_2 allele whose effect was zero. The “0” allele 

instead represented other haplotypes whose alleles at casual locus D0700 were HP_1, HP_3, HP_4, 

HP_5 and HP_6 and their respective effects were 0.33, 0.66, 1, 0.66 and 0. Therefore, the allele “1” 

seemed to link to the null effect, while allele “0” linked mostly to higher effects.  
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Another relevant marker was D0699 whose R-squared was 0.478. The allele “1” belonged to 

haplotype one and two and the “0” for haplotype three, four, five and six. Therefore, allele “1” was 

linked to both HP_1 and HP_2, whereas the “0” allele was linked to HP_3, HP_4, HP_5 and HP_6 of 

the causal locus. Also in this case seemed to be present a connection between marker alleles and 

casual locus alleles: “1” for lower effects and “0” for the higher effects.  

By contrast, looking at a marker with a poor fit in linear regression, despite its closeness to the casual 

locus, it does not provide any useful information. For instance, marker D0708 had the R-squared 

equal to 0.00006 and the allele “0” is connected to HP_1, HP_5 and HP_6, whereas allele “1” is 

linked to HP_2, HP_3 and HP_4. That means that allele “0” is linked to value 0.33, 0.66, 0 and allele 

“1” to value 0, 0.66 and 1.  

Regarding the haplotype data set, the Elastic Net model selected and estimated the effects of 

twenty-five pseudomarkers for chromosome D. The heaviest effects were attributed to HP_2 and 

HP_3 for the loci D0695 and D0705. The values assigned to D0695_HP_2 and D0695_HP_3 were -

0.12 and 0.11, instead for the pseudomarkers D0705_HP_2 and D0705_HP_3 were -0.29 and 0.30. 

For locus D0705 there was also a value for the haplotype HP_5 corresponding to 0.144. The 

remaining estimated effects were around zero and their R-squared computed previously was 

approximately zero.  

With this analysis we could see how SNP markers and haplotype markers were used by the model. 

Alleles of SNP markers selected by the model, for example, were generally associated with a high or 

low effect to the multiallelic causal locus. On the other hand, we expected that haplotype markers 

could be associated with the casual locus alleles more precisely delivering a more accurate 

estimation of the causal locus allele effects and, consequently, delivering a higher predictive ability. 

However, the allele effects captured by the model were not complete, because only some alleles of 

the most significative loci were estimated. In fact, broadly speaking, the predictive abilities were on 

par or slightly lower for the haplotype marker set in comparison to the biallelic SNP markers.  
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Figure 11 – A) Bar chart for the R-squared of multiallelic loci regressed against the phenotype. 

Phenotype was regressed against the six haplotypes of a locus according to the formula y ~ loc_HP_1 

+ loc_HP_2 + loc_HP_3 + loc_HP_4 + loc_HP_5 + loc_HP_6. On the x-axis there is the loci names and 

on the y-axis the R-squared. B) Bar chart of R-squared obtained by regressing each single 

pseudomarker of the haplotype marker set according to the formula y ~ loc_HP_n (for example y ~ 

D0769_HP_4). On the x-axis the pseudomarker names from D0605_HP_1 to D0815_HP_6, on the y-

axis the R-squared. Each color represents an alleles ( HP_1 to HP_6) of the loci. C) Bar chart of R-

squared obtained by regressing each single SNP marker of the biallelic marker set according to the 

formula y ~ SNP. On the x-axis the SNP marker names from D0572 to D0813, on the y-axis the R-

squared.  

 

DISCUSSION 

Comparison between bi-allelic SNP marker and haplotype markers  

Haplotype may have a positive contribution to genomic prediction compared to single SNP due to 

its multiallelic nature and may contribute to better capture the LD with multi-allelic casual loci 

(Cuybano et al., 2014; Meuwissen et al., 2014). In addition, haplotypes are able to track ancestral 

information of genotypes (Bath at al. 2021). With this study, we wanted to acquire an insight into 

the application of haplotypes in genomic prediction for polyploids individuals and compare the 

results with SNP-based genomic prediction. Haplotype-based GP gave very similar results to SNP-

based GP in terms of response to trait architecture, heritability and statistical model. The 

performance of haplotype-based GP may depend on several factors as for example traits, genetic 

structure of the population and the method used for haplotype construction (Lin et al., 2024).  
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In our simulation, haplotypes were made of one single locus for which there were six variants 

corresponding to the ancestral haplotypes used as base of our population study. While the traits 

were replicated ten times with different random position of the causal loci. The haplotypes we 

employed were supposed to be highly informative because they brought accurate information of 

both the genome structure and LD through the genome.  

In contrast to the potential improvement that haplotypes may provide (Cuybano et al., 2014; Lin et 

al., 2024), our results showed no improvement in predictive ability with haplotype markers in 

comparison to a complete set of bi-allelic SNP markers, despite the model used and heritability level. 

Rather, shrinkage models run with SNP markers, Bayes B and Elastic Net, conferred slightly higher 

predictive abilities than haplotype-based genomic prediction for the monogenic and oligogenic 

traits. Elastic net outputs were still a bit higher using SNP markers for the polygenic traits, whereas 

Bayes B gave similar results for both marker sets. Shrinkage models were not affected by trait 

architecture and predictive abilities were steady for both marker sets. The trend of the predictive 

ability in relation to models, traits and heritability levels were the same for the two marker sets and 

these results were in accordance with what was observe by de Valk (2023) in GP computed with bi-

allelic SNP markers on traits with bi-allelic QTLs. In fact, the effects of traits architecture, model and 

heritability on predictive ability are not touched by the type of marker used.  

Therefore, we can confirm what was observed by de Valk (2023) that variable selection models are 

more appropriate for traits with few QTLs, whereas they lose predictive power as the number of 

QTL increases since the model assigns an error margin to the selected markers (Daetwyler et al., 

2010). In the polygenic traits the differences between models were minimal.  Variable selection 

models lose predictive power due to the high number of QTLs, whereas shrinkage models had a 

steady performance among traits. Shrinkage models showed this consistency because they include 

all markers in the model and no error is associated to the identification of markers. Noise stems 

from heritability of the trait and the extent of LD between markers and QTL (Daetwyler et al., 2010; 

de Valk, 2023). 

Since the SNP markers included haplotype-tagging markers, we speculated that this could have 

conferred a stronger power to detect the effects of multiallelic QTLs. Therefore, we ran the 

experiment with the monogenic trait and made a new set of SNP markers without the haplotype-

tagging SNPs. In the overall results this did not affect the predictive ability which remained 

equivalent to the complete SNP marker set. The complete SNP marker set may have been 
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sufficiently dense providing the sufficient information that the model needed to predict the 

phenotype. That means that there were highly informative non-haplotype-tagging SNPs in LD with 

the QTL. However, zooming into the replicates, in a few cases the haplotype-tagging SNPs had a 

relevant impact in estimating the QTL effects and removing them from the marker set the predictive 

ability dropped. This effect happened because for the trait of that replicate the haplotype-tagging 

SNPs were also in strong LD with the QTL and therefore they were highly informative. In fact, Alemu 

et al. (2023) applied a preselection of haplotype-tagging SNPs to include in the prediction model 

obtaining a higher predictive ability for FHB (fusarium head blight) resistance and yield-related 

traits. They argued that the advantage of preselection of haplotype-tagging markers can reduce the 

dimensionality of the models and potentially reduce the cost of genotyping, targeting the ones 

which tag important haplotypes. However, we did not investigate further this topic in the current 

work, because we were interested in understanding the reason why the haplotypes did not 

outperform the bi-allelic SNP markers. For the current study the haplotype-tagging SNP did not level 

up the prediction of the SNP marker set, but surly there are potentialities to exploit and that can be 

topic for future investigations.  

 

Effect of population structure 

Since the loci used to build the haplotypes were about six times smaller than the number of bi-allelic 

SNPs, we speculate that the variation of population structure could have been captured better with 

the dense SNP marker set and inflate the predictive ability. Population structure was assessed 

through the principal components analysis using the SNP-markers. The subgroups (X, Y and Z) were 

clustered in two main groups only in relation to the first PC. The rest of PCs did not further cluster 

the population. Then, we wanted to correct the genomic prediction for population structure by 

including in the model an increasing number of PCs as fixed effects. We focused on monogenic trait 

and the genomic prediction were computed with rrBLUP model. The method of correcting the 

prediction, including in the model PCs as fixed effects, was proposed by Deatwyler et al. (2012). They 

obtained a plateau that would represent the prediction accuracy due to LD of markers and QTL as 

the main population structure effect was accounted for. In contrast, we obtained a continuous 

decrease in predictive ability with steeper decline as the number of PC became greater than 100.  In 

addition, no plateau was reached. The striking point was that the predictive ability obtained with 

the correction of the first PCs remained almost unchanged. Whereas it would be expected that 
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already at the first PCs the predictive ability would have dropped because PC1 explained the 

variation of the population structure. To further explore the effect of population structure, a 

simulation was carried out for the monogenic trait removing the markers in LD with the QTL, 

according to the LD values assessed by de Valk (2013). The overall means showed that the predictive 

ability significantly dropped for the markers with no LD as there was not a strong population 

structure. De Valk (2013) compared the effect of marker set with and without LD with QTLs for both 

a trait strongly correlated to the population structure and one not correlated to population 

structure. The predictive ability obtained with markers without  LD to QTLs had a significant drop 

for the trait not correlated with population structure, whereas the trait correlated with the 

population structure had a light drop. That significant drop in predictive ability was observed on this 

work and therefore it seemed that, in the overall mean, the population structure was not 

significantly inflating the predictions. Zooming into the replicates, it is possible to see different cases 

in which traits had different correlation to the population structure and population structure 

variation was estimated as suggested by Guo et al. (2014). A few replicates had high population 

structure effect and consequently the drop of predictive ability using SNP without LD with QTL was 

less than the others which had very low population structure effect. However, for the trait with no 

population structure and predicted with markers not in LD with the QTL, there was still a residual 

variation that must be explained.  

The remaining variation of the population used in  the present work could come from a strong 

relation among individuals. That could be speculated from the fact that only one PC could cluster 2 

main groups and the group composed of subpopulation X and Z was the most numerous. Then, 

when correcting the genomic prediction for PCs, there was a continuous decrease in predictive 

ability meaning that PCs were accumulatively accounting for genetic variation. Based on these 

results, we suggest to implement the population study in order to augment the genetic distance 

among subgroups or individuals to investigate if that remaining variation could partially derive from 

the relation among individuals.   

 

Effects of single loci 

Haplotype markers did not improve genomic prediction and SNP markers seemed to be in some 

cases more informative. We knew the true founder haplotypes of each locus and therefore we 

constructed the haplotypes in a very theoretical way: a haplotype block was formed of one locus 



31 
 

and each haplotype had six variants corresponding to the founder haplotypes, which were the origin 

of the population studied. Then, to assign a phenotype to each individual of the population, four 

effects of the causal loci were assigned to their respective haplotypes. Therefore, haplotype markers 

used as variants in genomic prediction were supposed to be highly informative and, the ones in LD 

with the QTL, strictly connected to the allele effects of the causal locus. Therefore, we investigated 

the contribution of each locus in explaining the genetic variation for the monogenic trait.  

By regressing each single variable singularly against the phenotype, we could observe which 

variables were informative for genomic predictions. Starting with the bi-allelic SNP markers, the R-

squared was higher as its position approached the causal locus and, vice versa, R-squared decreased 

as the distance increased. However, not all the closest SNP markers were significant in estimating 

the locus effects. That most probability was due to the lack of association of “0” and “1” allele of 

the bi-allelic SNP marker to a high or low value of the multiallelic QTL effects. Whereas the markers 

with high R-squared could capture either high or low QTL allele values with the 1 or 0 allele of the 

marker. Therefore, a biallelic marker allele could be associated with more than one QTL allele effect. 

In this way the marker allele 0, for example, could be associated with three QTL haplotypes with a 

relative high value, vice versa could be for the allele 1 that could be associated with the other three 

QTL effects with low values.  

The most significant SNP markers, with a sufficiently high R-squared were located within 

approximatly 4 cM from each side of the casual locus. In fact, 4 cM corresponds to the short-range 

LD estimated by de Valk (2023) for this population. Beyond 4 cM distance from the causal locus, the 

R-squared values were closer to zero. 

The elastic net model, in fact, selected and assigned heavier effects to markers with high R-squared 

values and they sat around the causal locus region, which is 8 cM long. Whereas, the other markers 

selected by the model falling beyond the region of the causal locus had low R-sqaured and the values 

assigned by the Elastic Net model were approximately zero.  

When regressing the haplotype variables singularly, the trend was similar to that of the SNP 

markers. The more the distance from the causal locus the smaller R-squared. Zooming into a specific 

case as example, see  replication one, the variants HP_2 and HP_3 of some loci in the QTL region 

explained a good extent of genetic variation. Whereas, The other loci variants near to the casual 

locus (HP_1, HP_4, HP_5, HP_6) were not able to explain genetic variation. The tendency that some 

loci variants explained much more genetic variation than others was quite common through the 
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replications. Then, the variants whose R-squared was high, corresponded to either a high effect QTL 

allele or low effect.  

As expected, Elastic Net model assigned the heaviest values for those variants which had the highest 

R-squared. However, also less significant loci and variants were selected by the model despite their 

low R-squared values, but their estimated effects were approximately zero.  

Therefore, the phenotype was estimated based only on a few variants per selected locus. For 

example, the model estimated effects for the allele HP_2 and HP_3 of the locus D0695, whereas the 

other alleles of the same locus were not considered.  

Haplotype variables included in the genomic prediction models seemed to behave similarly to the 

bi-allelic SNP markers, since a single significant haplotype variable captured more than one casual 

QTL effect. In this way the haplotype marker set loses that advantage given by the multiallelism. 

Haplotypes in LD with the QTL would have provided specific alleles for each QTL alleles providing a 

more accurate estimation of the phenotype. Multiallelic haplotypes have the advantage of having 

more variants that could be associated with the multiallelic variants of a QTL, but the rearrangement 

of haplotypes alleles as single variable in the design matrix may have increased the multicollinearity 

causing the loss this advantage (Aschard et al., 2015; Matias et al., 2017).  

The potentiality that haplotypes can furnish to the genomic prediction was confirmed by the results 

of regressing the phenotype against a single locus with all its variants. Similarly to single SNP markers 

and single haplotype variants, the R-squared was higher as the loci approaches the causal locus and 

diminished as the distance increased. The only difference was that the values were higher than the 

single haplotype variants and single SNPs. The most significant loci had R-squared close to the 

heritability of the trait. That proofs what we hypothesized that the haplotype markers are highly 

informative. Probably, the method used to fit the haplotype markers in the predictive models was 

not suitable for exploiting all the advantages that haplotypes can bring. That is ground for future 

research to test other models or implement models and design matrix to better exploit the 

advantages brought by haplotypes.  

In this work we have to consider that the comparison between the two marker sets was not fair. 

We reduced the number of loci to convert in haplotype markers in order to reduce the dimension 

of the data and consequently to reduce the time needed for computing the analysis, especially for 

the variable selection models. In fact, the total number of bi-allelic SNP markers were 2556 while 
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the loci used for haplotypes were 395. That could be an aspect to consider for future works since in 

this way loci strongly linked to the QTL would be present also for the haplotypes. However, equating 

the number of loci for both marker sets would not change the fact that haplotype alleles of a locus 

would be exploited properly by the models and rather the collinearity problem would increase as 

the number of variables would be grater. But this must be tested.        

 

CONCLUSION 

In this work haplotypes did not bring improvements in genomic predictions for all traits architectures, 

heritability levels and GP models. These results are not in line with some works in literature which confirmed 

GP accuracy being improved. On the other hand, some other studies did not show improvements similarly to 

what showed in the present work. However, the haplotypes used for genomic prediction in other studies 

were built from a highly dense SNP marker set, in contrast to our haplotypes which included only a marker 

from a very limited number of loci. In addition, the comparison between the marker set in this work was 

unfair because the number of loci implied were different between the sets being greater for bi-allelic SNP 

markers. Despite the different number of loci implied, the haplotypes conceived in this work were highly 

informative, but they were not well used by models since they could not precisely capture the alleles effect 

of the causal QTL. But, closest haplotypes to the QTL when regressed against the phenotype as whole locus, 

including all its variants, provided an R-squared close to the genetic heritability of the trait. This indicates 

that haplotypes are very informative and could explain more genetic variance than the single SNP or single 

haplotype variable (as pseudomarker).  Future studies should aim to explore models which can better use 

haplotypes or explore methods for including haplotypes in the models as locus, with its respective alleles, 

and not as single variable that would behave similarly to bi-allelic SNP  markers losing the advantage of being 

multiallelic.  

Population structure was explored and quantified for the monogenic trait to see if could affect the predictive 

ability. In the population object of this study there was a genetic structure that was assessed with PCA 

analysis, but the monogenic trait did not show to strongly relate to the population structure. Therefore, the 

predictive ability was not inflated by population structure effect. However, when assessing the correlation of 

the trait to the population structure removing markers in LD, still there was a part of genetic variation 

explained by unknown factors. From the results of this study, we could speculate that part of that remaining 

genetic variation, not connected to the LD between markers and QTL, could be due to a strong relation 

between individuals. We recommend for future investigations, to implement the population with more 

distantly related individuals in order to explore that remaining genetic variation not explained by the LD with 

the QTL.  
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Appendix 1. Average predictive ability.  
The averages are given by grouping marker type, trait architecture, model and heritability level. In addition, 

these averages are obtained from the prediction of ten replication per trait. Column mrk indicate the typology 

of marker used: HP stands for haplotype marker set and SNP for biallelic marker set. Tr_arc column indicate 

the trait architecture analyzed which are mono, oligo_1, oligo_4, poly, mix_1 and mix_4. Under the column 

model there are the abbreviations of the prediction model used for the analysis which are Bayes B (BB), 

elastic net (EN), reproducing kernel Hilbert space (RKHS) and Ridge regression BLUP (rrBLUP). In h2-mean 

column there is the average heritability for each trait; PA-mean is the prediction ability means and PA-sd is 

the standard deviation of the PA means.  

mrk tr_arc heritability model h2 - mean PA - mean PA -  sd 

HP mono low BB 0.197 0.2933 0.0832 
SNP mono low BB 0.197 0.2979 0.0795 

HP mono low EN 0.197 0.3176 0.0829 
SNP mono low EN 0.197 0.3341 0.073 

HP mono low RKHS 0.197 0.2194 0.0755 
SNP mono low RKHS 0.197 0.2129 0.0709 

HP mono low rrBLUP 0.197 0.2289 0.0695 
SNP mono low rrBLUP 0.197 0.2213 0.0678 

HP mono mid BB 0.509 0.6423 0.0294 
SNP mono mid BB 0.509 0.6537 0.0265 

HP mono mid EN 0.509 0.6396 0.0293 
SNP mono mid EN 0.509 0.6601 0.0263 
HP mono mid RKHS 0.509 0.5147 0.0399 

SNP mono mid RKHS 0.509 0.511 0.0452 
HP mono mid rrBLUP 0.509 0.5231 0.0398 

SNP mono mid rrBLUP 0.509 0.5182 0.0452 
HP mono high BB 0.807 0.8355 0.0331 

SNP mono high BB 0.807 0.8578 0.0189 
HP mono high EN 0.807 0.8248 0.0379 

SNP mono high EN 0.807 0.8504 0.0235 
HP mono high RKHS 0.807 0.7205 0.0457 

SNP mono high RKHS 0.807 0.7224 0.0479 
HP mono high rrBLUP 0.807 0.7212 0.0473 

SNP mono high rrBLUP 0.807 0.7267 0.0487 
HP oligo_1 low BB 0.217 0.2265 0.0647 

SNP oligo_1 low BB 0.217 0.2315 0.0485 

HP oligo_1 low EN 0.217 0.2817 0.0521 
SNP oligo_1 low EN 0.217 0.3024 0.0429 

HP oligo_1 low RKHS 0.217 0.1959 0.075 
SNP oligo_1 low RKHS 0.217 0.2091 0.0682 

HP oligo_1 low rrBLUP 0.217 0.2075 0.0649 
SNP oligo_1 low rrBLUP 0.217 0.22 0.0595 

HP oligo_1 mid BB 0.513 0.6219 0.0391 
SNP oligo_1 mid BB 0.513 0.6413 0.0363 

HP oligo_1 mid EN 0.513 0.6209 0.0333 
SNP oligo_1 mid EN 0.513 0.6427 0.0273 

HP oligo_1 mid RKHS 0.513 0.5361 0.0401 
SNP oligo_1 mid RKHS 0.513 0.5444 0.0349 

HP oligo_1 mid rrBLUP 0.513 0.5384 0.039 
SNP oligo_1 mid rrBLUP 0.513 0.5444 0.0336 
HP oligo_1 high BB 0.767 0.8478 0.0206 

SNP oligo_1 high BB 0.767 0.8621 0.013 
HP oligo_1 high EN 0.767 0.8362 0.0221 

SNP oligo_1 high EN 0.767 0.8529 0.0139 
HP oligo_1 high RKHS 0.767 0.7639 0.0285 

SNP oligo_1 high RKHS 0.767 0.7654 0.0257 
HP oligo_1 high rrBLUP 0.767 0.7687 0.0276 

SNP oligo_1 high rrBLUP 0.767 0.7721 0.0248 
HP oligo_4 low BB 0.201 0.3205 0.0484 

SNP oligo_4 low BB 0.201 0.314 0.0514 
HP oligo_4 low EN 0.201 0.305 0.0474 

SNP oligo_4 low EN 0.201 0.3248 0.0528 
HP oligo_4 low RKHS 0.201 0.307 0.052 

SNP oligo_4 low RKHS 0.201 0.302 0.0544 
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mrk tr_arc heritability model h2 - mean PA - mean PA -  sd 

HP oligo_4 low rrBLUP 0.201 0.3118 0.0508 
SNP oligo_4 low rrBLUP 0.201 0.3071 0.0521 

HP oligo_4 mid BB 0.485 0.586 0.0232 
SNP oligo_4 mid BB 0.485 0.5978 0.0246 

HP oligo_4 mid EN 0.485 0.5886 0.0234 
SNP oligo_4 mid EN 0.485 0.6157 0.0181 

HP oligo_4 mid RKHS 0.485 0.5459 0.031 
SNP oligo_4 mid RKHS 0.485 0.5458 0.0324 

HP oligo_4 mid rrBLUP 0.485 0.5411 0.0296 
SNP oligo_4 mid rrBLUP 0.485 0.5423 0.0308 

HP oligo_4 high BB 0.797 0.8489 0.0111 
SNP oligo_4 high BB 0.797 0.8557 0.012 
HP oligo_4 high EN 0.797 0.8369 0.0132 

SNP oligo_4 high EN 0.797 0.8469 0.0126 
HP oligo_4 high RKHS 0.797 0.7621 0.0293 

SNP oligo_4 high RKHS 0.797 0.7653 0.0291 
HP oligo_4 high rrBLUP 0.797 0.7672 0.0256 

SNP oligo_4 high rrBLUP 0.797 0.7703 0.0259 
HP poly low BB 0.2 0.2964 0.0433 

SNP poly low BB 0.2 0.2985 0.0461 
HP poly low EN 0.2 0.284545 0.05 

SNP poly low EN 0.2 0.2864 0.0561 
HP poly low RKHS 0.2 0.2785 0.0476 

SNP poly low RKHS 0.2 0.2828 0.0492 
HP poly low rrBLUP 0.2 0.279 0.0474 

SNP poly low rrBLUP 0.2 0.2851 0.0488 

HP poly mid BB 0.477 0.5491 0.0344 
SNP poly mid BB 0.477 0.5565 0.0339 

HP poly mid EN 0.477 0.5419 0.0378 
SNP poly mid EN 0.477 0.5444 0.0353 

HP poly mid RKHS 0.477 0.5414 0.0399 
SNP poly mid RKHS 0.477 0.541 0.0389 

HP poly mid rrBLUP 0.477 0.5506 0.0372 
SNP poly mid rrBLUP 0.477 0.5524 0.0368 

HP poly high BB 0.784 0.7678 0.0248 
SNP poly high BB 0.784 0.774 0.0239 

HP poly high EN 0.784 0.7531 0.029 
SNP poly high EN 0.784 0.7664 0.0242 
HP poly high RKHS 0.784 0.7578 0.0268 

SNP poly high RKHS 0.784 0.762 0.0256 
HP poly high rrBLUP 0.784 0.7661 0.0245 

SNP poly high rrBLUP 0.784 0.7737 0.0229 
HP mix_1 low BB 0.182 0.319 0.0309 

SNP mix_1 low BB 0.182 0.3325 0.0271 
HP mix_1 low EN 0.182 0.2998 0.0355 

SNP mix_1 low EN 0.182 0.309 0.0343 
HP mix_1 low RKHS 0.182 0.3273 0.0278 

SNP mix_1 low RKHS 0.182 0.3287 0.0262 
HP mix_1 low rrBLUP 0.182 0.3192 0.0296 

SNP mix_1 low rrBLUP 0.182 0.3306 0.0268 
HP mix_1 mid BB 0.515 0.5172 0.0267 

SNP mix_1 mid BB 0.515 0.5262 0.0286 
HP mix_1 mid EN 0.515 0.4923 0.026 

SNP mix_1 mid EN 0.515 0.5108 0.0284 

HP mix_1 mid RKHS 0.515 0.5029 0.0231 
SNP mix_1 mid RKHS 0.515 0.5078 0.0211 

HP mix_1 mid rrBLUP 0.515 0.5053 0.0226 
SNP mix_1 mid rrBLUP 0.515 0.5109 0.0196 

HP mix_1 high BB 0.816 0.7815 0.0188 
SNP mix_1 high BB 0.816 0.7946 0.0188 

HP mix_1 high EN 0.816 0.7653 0.0228 
SNP mix_1 high EN 0.816 0.7791 0.0218 

HP mix_1 high RKHS 0.816 0.7578 0.02 
SNP mix_1 high RKHS 0.816 0.7614 0.0201 

HP mix_1 high rrBLUP 0.816 0.7648 0.0193 
SNP mix_1 high rrBLUP 0.816 0.7703 0.0193 
HP mix_4 low BB 0.205 0.3424 0.0418 

SNP mix_4 low BB 0.205 0.3376 0.0419 
HP mix_4 low EN 0.205 0.3258 0.0471 



40 
 

mrk tr_arc heritability model h2 - mean PA - mean PA -  sd 

SNP mix_4 low EN 0.205 0.3271 0.0438 
HP mix_4 low RKHS 0.205 0.3333 0.0464 

SNP mix_4 low RKHS 0.205 0.331 0.0458 
HP mix_4 low rrBLUP 0.205 0.3365 0.0452 

SNP mix_4 low rrBLUP 0.205 0.3345 0.0445 
HP mix_4 mid BB 0.524 0.5704 0.0284 

SNP mix_4 mid BB 0.524 0.5732 0.0314 
HP mix_4 mid EN 0.524 0.5566 0.0364 

SNP mix_4 mid EN 0.524 0.5588 0.0379 
HP mix_4 mid RKHS 0.524 0.5612 0.0328 

SNP mix_4 mid RKHS 0.524 0.5621 0.0327 
HP mix_4 mid rrBLUP 0.524 0.5655 0.0318 

SNP mix_4 mid rrBLUP 0.524 0.566 0.0321 

HP mix_4 high BB 0.82 0.8023 0.0221 
SNP mix_4 high BB 0.82 0.8105 0.0211 

HP mix_4 high EN 0.82 0.7908 0.0273 
SNP mix_4 high EN 0.82 0.8007 0.0235 

HP mix_4 high RKHS 0.82 0.78 0.0224 
SNP mix_4 high RKHS 0.82 0.7863 0.0222 

HP mix_4 high rrBLUP 0.82 0.7871 0.0208 
SNP mix_4 high rrBLUP 0.82 0.793 0.0206 

 

Appendix 2.- Means of subpopulation genetic values 
Table with means of genetic values for each subpopulation and for each trait architecture in each replication. 

Under trait architecture (Trait arch.) column there are the names of the trait analyzed such as Mono, Oligo_1, 

Oligo_4, Poly, Mix_1 and Mix_4. Rep column indicate the replication number. Column X, Y and Z are the 

subpopulations names. 

Trait arch. Rep X Y Z 

Mono rep_1 1.34 1.56 1.39 

rep_2 1.58 1.85 1.58 

rep_3 1.94 1.45 1.97 

rep_4 2.44 2.82 2.60 

rep_5 1.58 1.13 1.56 

rep_6 2.09 2.72 2.00 

rep_7 2.29 2.18 2.31 

rep_8 1.55 2.46 1.63 

rep_9 2.66 1.61 2.65 

rep_10 3.38 3.77 3.39 

Oligo_1 rep_1 6.86 4.12 6.72 

rep_2 10.41 7.86 10.64 

rep_3 7.67 7.95 7.85 

rep_4 6.41 8.11 6.47 

rep_5 8.75 7.25 8.76 

rep_6 5.35 5.57 5.08 

rep_7 7.15 6.83 7.19 

rep_8 11.02 11.22 11.23 

rep_9 10.64 9.99 10.70 

rep_10 11.97 11.64 11.80 

Oligo_4 rep_1 6.31 9.08 6.46 

rep_2 8.25 7.49 8.35 

rep_3 7.66 8.56 7.44 

rep_4 7.29 5.83 7.35 
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Trait arch. Rep X Y Z 

rep_5 6.51 7.81 6.51 

rep_6 9.34 8.51 9.29 

rep_7 7.18 7.35 7.12 

rep_8 8.88 9.46 9.06 

rep_9 7.67 10.07 7.73 

rep_10 8.87 7.43 8.74 

Poly rep_1 202.02 202.63 202.67 

rep_2 202.51 201.18 203.50 

rep_3 192.09 196.07 193.25 

rep_4 198.78 179.86 198.76 

rep_5 202.89 215.17 202.83 

rep_6 217.00 215.72 218.68 

rep_7 227.36 223.81 228.32 

rep_8 204.76 207.85 204.57 

rep_9 205.25 209.89 205.59 

rep_10 219.00 211.59 218.87 

Mix_1 rep_1 59.16 56.58 59.18 

rep_2 67.46 64.53 67.97 

rep_3 49.67 50.82 50.10 

rep_4 41.68 40.03 41.74 

rep_5 46.45 47.23 46.44 

rep_6 48.62 48.59 48.68 

rep_7 48.09 47.13 48.31 

rep_8 41.31 41.97 41.48 

rep_9 56.74 57.12 56.87 

rep_10 47.93 46.38 47.73 

Mix_4 rep_1 54.94 57.85 55.24 

rep_2 47.86 46.84 48.16 

rep_3 41.82 43.42 41.80 

rep_4 32.09 28.27 32.14 

rep_5 39.31 42.59 39.30 

rep_6 46.68 45.62 46.91 

rep_7 41.81 41.44 41.90 

rep_8 44.93 46.06 45.08 

rep_9 49.99 53.34 50.11 

rep_10 49.90 47.07 49.75 



 

 

Appendix 3.-Table with SNP information selected by Elastic net for monogenic trait and 

replication one 
Table reporting the biallelic SNP markers selected by elastic net model and their respective information such as: frequence of allele “1” (freq_1), founder 

haplotype tagged (hap_tag), the tagging alleles (tagall), the founder haplotype frequences for the locus (HP_1_freq to HP_6_freq), marker estimated effects 

(EN_SNP_effect), R-squared (R2) and the founder haplotype alleles (H1 to H6). Causal locus is D0700 and under the columns of founder haplotypes is reported 

the respective allele name and its effect assigned.  

 

 

 

marker freq_1 hap_tag tagall HP_1_freq HP_2_freq HP_3_freq HP_4_freq HP_5_freq HP_6_freq EN_SNP_effect R2 H1 H2 H3 H4 H5 H6

D0295 0.568 2 1 0.104 0.568 0.212 0.077 0.013 0.026 -0.010 1.364E-06 0 1 0 0 0 0

D0345 0.428 0.046 0.541 0.3 0.018 0.064 0.031 0.012 1.518E-02 1 0 1 1 1 0

D0579 0.605 0.29 0.285 0.298 0.022 0.105 0 0.001 9.188E-03 0 1 1 1 0 0

D0586 0.389 0.296 0.292 0.274 0.022 0.116 0 -0.012 3.803E-02 0 0 1 0 1 1

D0602 0.688 0.234 0.312 0.282 0 0.172 0 -0.006 2.048E-03 1 0 1 0 1 1

D0664 0.723 0.263 0.24 0.338 0.02 0.124 0.014 0.049 2.323E-02 0 1 1 1 1 0

D0674 0.626 0.284 0.232 0.348 0.012 0.11 0.015 -0.011 2.325E-01 1 1 0 0 1 0

D0682 0.716 0.298 0.268 0.302 0.015 0.102 0.015 0.005 3.171E-01 1 0 1 1 1 0

D0693 0.291 0.302 0.278 0.286 0.015 0.108 0.012 -0.249 4.579E-01 0 1 0 0 0 1

D0699 0.578 0.304 0.274 0.297 0.015 0.098 0.012 -0.107 4.779E-01 1 1 0 0 0 0

D0700 0.284 0.33 0.294 0.27 0.015 0.08 0.012 HP_1 = 0.33 HP_2 = 0 HP_3 = 0.66 HP_4 = 1 HP_5 = 0.66 HP_6 = 0

D0702 0.11 0.326 0.286 0.278 0.015 0.084 0.012 0.036 6.764E-02 0 0 0 1 1 1

D0703 0.723 3 0 0.332 0.281 0.278 0.015 0.084 0.012 -0.089 3.363E-01 1 1 0 1 1 1

D0704 0.282 2 1 0.332 0.281 0.277 0.015 0.083 0.012 -0.205 4.831E-01 0 1 0 0 0 0

D0708 0.561 0.326 0.248 0.282 0.029 0.102 0.012 0.003 5.634E-05 0 1 1 1 0 0

D0712 0.339 0.313 0.278 0.258 0.058 0.082 0.012 0.239 3.942E-01 0 0 1 0 1 0

D0751 0.18 0.264 0.264 0.283 0.043 0.138 0.009 0.044 1.170E-02 0 0 0 1 1 0

D0755 0.257 0.264 0.248 0.281 0.058 0.141 0.009 -0.002 1.791E-01 0 1 0 0 0 1

D0992 0.329 0.294 0.377 0.07 0.12 0.086 0.052 0.008 2.109E-02 0 0 1 1 1 1



 

Appendix 4. Table with haplotype markers information selected by Elastic net and  for 

monogenic trait replication one  
Table reporting the multiallelic haplotype markers selected by elastic net model and their respective information such as: locus names (locus), the founder 

haplotype frequences for the locus (HP_1_freq to HP_6_freq), the estimated effects of each allele ( HP_1_EN_eff to HP_6_EN_eff) and the R-squared of each 

allele per locus (HP_1_R2 to HP_6_R2). In correspondence the causal locus (D0700), it is reported the respective allele name and its effect assigned under the 

columns HP_1_EN to HP_6_EN. 

 

 

 

 

 

 

locus HP_1_freq HP_2_freq HP_3_freq HP_4_freq HP_5_freq HP_6_freq HP_1_EN_eff HP_2_EN_eff HP_3_EN_eff HP_4_EN_eff HP_5_EN_eff HP_6_EN_eff HP_1_R2 HP_2_R2 HP_3_R2 HP_4_R2 HP_5_R2 HP_6_R2

D0065 0.112 0.49 0.259 0.066 0.034 0.038 0.0025 0.00258 0.01237 0.00993 0.01280 0.00038 0.00043

D0205 0.101 0.479 0.248 0.106 0.052 0.015 -0.0037 0.00210 0.00141 0.00282 0.00280 0.00194 0.00046

D0265 0.068 0.494 0.229 0.164 0.025 0.018 -0.0294 0.00862 0.02106 0.00357 0.01086 0.00426 0.00020

D0315 0.051 0.576 0.288 0.013 0.052 0.021 -0.0162 0.01269 0.00597 0.00295 0.00274 0.00768 0.00002

D0585 0.298 0.289 0.274 0.022 0.116 0 0.0026 0.00574 0.00735 0.02962 0.02221 0.00396 0.00000

D0605 0.232 0.315 0.293 0 0.16 0 -0.0097 0.01590 0.00300 0.02038 0.00000 0.00134 0.00000

D0635 0.231 0.296 0.296 0.005 0.16 0.011 0.0205 0.00802 0.10692 0.06177 0.01505 0.00329 0.00132

D0655 0.321 0.232 0.266 0.018 0.147 0.016 -0.0020 0.00025 0.10770 0.09690 0.00664 0.00267 0.00010

D0665 0.254 0.24 0.339 0.02 0.123 0.023 0.0194 0.01875 0.18202 0.24369 0.01015 0.00297 0.00466

D0675 0.281 0.23 0.35 0.014 0.11 0.015 -0.0040 0.02169 0.21063 0.23689 0.03283 0.00003 0.00404

D0695 0.296 0.281 0.298 0.015 0.098 0.012 -0.1054 0.1102 0.00845 0.45148 0.34198 0.03283 0.02592 0.00889

D0700 0.33 0.294 0.27 0.015 0.08 0.012 HP_1 = 0.33 HP_2 = 0 HP_3 = 0.66 HP_4 = 1 HP_5 = 0.66 HP_6 = 0

D0705 0.332 0.282 0.277 0.015 0.083 0.012 -0.2900 0.3013 0.1444 0.00980 0.48396 0.33902 0.02930 0.06178 0.01002

D0715 0.287 0.276 0.284 0.058 0.084 0.012 0.1167 0.01456 0.24159 0.28228 0.00565 0.06505 0.01002

D0745 0.274 0.216 0.312 0.052 0.136 0.01 0.0489 0.00041 0.18573 0.10806 0.01219 0.00355 0.00895

D0755 0.264 0.248 0.281 0.058 0.141 0.009 -0.0070 0.0171 0.0243 0.00020 0.17107 0.11036 0.00862 0.00252 0.00561

D0775 0.246 0.239 0.283 0.043 0.139 0.05 -0.0395 0.00182 0.13747 0.07798 0.00211 0.00028 0.00103

D0805 0.132 0.212 0.357 0.054 0.224 0.021 -0.0151 0.0172 0.01323 0.09111 0.07417 0.01901 0.03822 0.00574

D0895 0.278 0.336 0.07 0.08 0.096 0.14 0.0172 0.01497 0.01828 0.00060 0.02037 0.00612 0.00268

D0995 0.301 0.372 0.076 0.121 0.078 0.052 -0.0086 0.00739 0.00134 0.00483 0.00831 0.00128 0.00744


