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ABSTRACT

The traditional data management systems prove inadequate to handle the volume, velocity, and variety of the
data within farm business processes. Smart farming technologies offer advanced data management systems as a
practical solution to these challenges. However, data is complex and originates from many sources; hence many
aspects of data must be considered during the data management design of smart farming systems. This study
proposes a reference architecture for data management in smart farming, developed through domain analysis
and architecture modeling approaches. The domain analysis provides insights into the common and variant
features and modules of the smart farming system, resulting in a blueprint representing family features across
various smart farming domains. The effectiveness of the proposed reference architecture has been evaluated
through two case studies, demonstrating its efficacy in designing data management systems for smart farming.
The study found that the percentage of reused modules in the case studies, compared to the provided reference
architecture, was 82.6%. The outcomes of this research will pave the way for further exploration in smart

farming, particularly addressing data management issues within smart farming systems.

1. Introduction

The global food demand in 2050 is expected to increase significantly
due to population growth and socio-economic factors, such as rising
income, demographic structures, and urbanization (Food and Agricul-
ture Organization of the United Nations (FAO), 2018). In order to feed
the expanding global population, it is estimated that agriculture will
need to produce around 50% more food by 2050 (Food and Agriculture
Organization of the United Nations (FAO), 2020; Food and Agriculture
Organization of the United Nations (FAO), 2017). However, due to
several factors such as pressure on natural resources, lack of investment
in agriculture, and technological gap, maintaining the pace of produc-
tion increases may be challenging (Food and Agriculture Organization of
the United Nations (FAO), 2017). Therefore, a profound transformation
of the agriculture system is required to enhance agricultural produc-
tivity and sustainable food production (United Nations (UN), 2024).

One of the most promising approaches to maintaining or even
increasing productivity is applying smart farming technologies. The
smart farming system has been applied in different farming domains,

* Corresponding author.

such as crop (Bhat et al., 2023; Dong et al., 2016; Lopez-Riquelme et al.,
2017; Saranya and Nagarajan, 2020; Triantafyllou et al., 2019), live-
stock (Alonso et al., 2020; Kamilaris et al., 2018; Sant’Ana et al., 2022;
Silva et al., 2014; Taneja et al., 2020; Wang et al., 2022), greenhouse
(Subahi and Bouazza, 2020; Yang et al., 2017; Zamora-Izquierdo et al.,
2019), and fish farming (Lee and Wang, 2020; Liu et al., 2023; Zhang
et al., 2024). The system enhanced decision-making processes by
assisting the farmers with invaluable information regarding their field
status (Wolfert et al., 2014). Several data processes and advanced
technologies are needed in a smart farming system in order to provide
insightful information (Rutten et al., 2013). For instance, the Internet of
Thing (IoT) devices are utilized in digital data acquisition to capture the
actual field condition (Alonso et al., 2020; Koksal and Tekinerdogan,
2019; Zamora-Izquierdo et al., 2019) and then machine learning and,
more recently, deep learning techniques are applied to analyze the
generated data (Perakis et al., 2020; Swain et al., 2020). However, the
traditional data management systems are inadequate to handle the
volume, velocity, and variety of the generated data by the sensors and
IoT devices (Wolfert et al., 2017). Hence the advanced data management

E-mail addresses: ngakan.krisnawijaya@wur.nl (N.N.K. Krisnawijaya), bedir.tekinerdogan@wur.nl (B. Tekinerdogan), ccatal@qu.edu.qa (C. Catal), rik.

vandertol@wur.nl (R. van der Tol).

https://doi.org/10.1016/j.ecoinf.2024.102613

Received 11 November 2023; Received in revised form 21 April 2024; Accepted 24 April 2024

Available online 27 April 2024

1574-9541/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:ngakan.krisnawijaya@wur.nl
mailto:bedir.tekinerdogan@wur.nl
mailto:ccatal@qu.edu.qa
mailto:rik.vandertol@wur.nl
mailto:rik.vandertol@wur.nl
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2024.102613
https://doi.org/10.1016/j.ecoinf.2024.102613
https://doi.org/10.1016/j.ecoinf.2024.102613
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2024.102613&domain=pdf
http://creativecommons.org/licenses/by/4.0/

N.N.K. Krisnawijaya et al.

system is a vital element of a smart farming concept (Saiz-Rubio and
Rovira-Mas, 2020).

In smart farming, generally, data management can be divided into
four elements: (1) data acquisition and storage, (2) data preprocessing,
(3) data analysis, and (4) data visualization (Ouafiq et al., 2019). Data
acquisition is the process of acquiring data from the field and then
storing them in digital storage for future analysis purposes (Rawat and
Yadav, 2021). The data are collected from various sources, such as
sensors, electronic resources (e.g., text, video, image), and public re-
sources, and as such, the data are generated in different forms (i.e.,
structured, semi-structured, and unstructured). The next element is data
preprocessing, which can be defined as enhancing the quality of data
that impacts the analytical processing (Meena and Sujatha, 2019). In
this stage, unnecessary data (e.g., noise, missing value, inconsistent
data, duplicate data) are removed from the dataset before applying data
analysis techniques for knowledge discovery. After preprocessing, the
data are then analyzed in order to produce valuable information for the
users to make better decisions. Data analysis is the process of discovering
hidden information from data. Data visualization helps visually present
the data by using various graphs or charts for decision-making (Hashem
et al., 2015). Rawat and Yadav (Rawat and Yadav, 2021) stated that
visual report is more efficient than text documents for information
seekers to gain informative knowledge. Therefore, these data manage-
ment advancements enable farmers to manage their farms efficiently
and effectively (Meeradevi et al., 2019).

Due to the complexity of the data, for instance, the data originated
from various sources. Consequently, many aspects of data (e.g., type,
structure, source, etc.) must be considered during the design of the data
management of smart farming systems (Giray and Catal, 2021). There-
fore, a proper reference architecture is needed to build a system that can
utilize these technologies and satisfy both functional and non-functional
requirements. Functional requirements refer to the specific functional-
ities or features that the system must have to meet the needs of its users.
These requirements are derived from user interactions and describe the
system’s intended behaviour. Non-functional requirements, on the other
hand, are not directly related to the specific functionalities of the system,
but rather define the qualities and characteristics that the system should
possess. These requirements address aspects such as performance, reli-
ability, usability, security, scalability, maintainability, and availability
(Robertson and Robertson, 2012). In addition, an appropriate reference
architecture is a system design that follows the proper software archi-
tecture design guidelines that help define the gross level structures of the
system. Therefore, the proper architecture is key to understanding the
whole system, analyzing the flow of the data in the system, and helping
further the system’s development (Tummers et al., 2021).

A reference architecture is a standardized architectural blueprint or
model that provides guidelines and best practices for designing and
implementing a specific type of system or application. It serves as a
template or guide for developers, architects, and stakeholders involved
in building similar systems. A reference architecture is a reference model
that can be represented by one or more architectural views (Cervantes
and Kazman, 2016). The valuable reference architecture has several
criteria (Tummers et al., 2021): (1) The design should be acceptable,
understandable, and accessible to all stakeholders of the organization,
(2) The critical aspects of the domain should be addressed, and (3) The
design should be up-to-date, maintainable, and valuable for the orga-
nization. From the reference architecture, an application architecture
can be derived. Application architecture is the software architecture of a
particular application that is presented using several architectural views
(Tummers et al., 2021). The application architecture differs from one
case to another since the design depends on the needs of the stakeholders
(Koksal and Tekinerdogan, 2019).

Previous studies have discussed related reference architecture
studies in the literature. For instance, Taneja et al. (Taneja et al., 2019)
and Righi et al. (Righi et al., 2020) presented a client-server architecture
for a smart farming system and did not describe a reference architecture
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in their study. Giray and Catal (Giray and Catal, 2021) presented a
reference architecture for smart farming and sustainable agriculture.
They focused on designing data management due to the complexity of
data management operations in the smart farming system. Their study is
based on design science research (DSR), like domain scoping, domain
modeling, and reference architecture stages, to establish the data man-
agement reference architecture. To evaluate the reference architecture,
they used three different case studies using the recent literature on
sustainable agriculture. In contrast to this article by Giray and Catal
(Giray and Catal, 2021), in this study, the reference architecture is
illustrated using two case studies based on the actual project to develop
smart farming in Indonesia, one for smart dairy farming and the other
for smart fish farming. In addition, the main focus was the sustainability
aspects of agriculture in their study.

Koksal and Tekinerdogan (Koksal and Tekinerdogan, 2019) designed
a reference architecture for IoT-based Farm Management Information
Systems (FMISs). They proposed the architecture that includes main
features such as data acquisition, processing, monitoring, planning,
decision-making, and documenting. They followed an architecture
design method using decomposition, layered, and deployment views to
present the reference architecture. The design showed that the approach
is effective, and their reference architecture can be used to derive a
concrete FMIS. Their study, however, did not focus on data management
design. Tummers et al. (Tummers et al., 2021) and Kruize et al. (Kruize
et al., 2016) described a reference architecture for FMISs that is part of
the smart farming system. Tummers et al. (Tummers et al., 2021) used
context and decomposition views to represent the proposed reference
architecture. Their study also presented a feature model based on the
identified features in the existing FMISs in the literature. They evaluated
the reference architecture using three case studies. In comparison,
Kruize et al. (Kruize et al., 2016) proposed the reference architecture for
farm software ecosystems, their scope is slightly wider than FMISs.
However, both studies did not focus on data management design for
smart farming systems. Santana et al (Santana et al., 2014) developed an
automated system to identify bee species since they have a significant
role in agriculture. They also established a reference process for bee
classification based on wing images. The reference process is beneficial
to help other researchers or stakeholders to understand this complex
process by following the provided steps and experiments.

As such, the contribution of this study is to enhance the current smart
farming reference architecture, particularly the data management
infrastructure, by following the software architecture guidelines and
using a multi-case study protocol to evaluate the proposed reference
architecture. To the best of our knowledge, a few studies exist (Koksal
and Tekinerdogan, 2019; Tummers et al., 2021) that discuss the proper
architecture of the smart farming system. Specifically, a complete
architectural view of a data management system in smart farming is still
arelatively new endeavor (Giray and Catal, 2021). The main objective of
this research is thus to develop a reference architecture for data man-
agement in the smart farming system. Based on this objective, the
following research questions were formulated:

e RQ1. What are the common and variant features of data management
in smart farming?

e RQ2. How to design a proper data management reference architec-
ture for smart farming?

e RQ3. How to develop application architecture based on the designed
reference architecture?

e RQ4. How effective is the designed reference architecture?

As a result of this study, we propose a data management reference
architecture for smart farming. We will provide the approach for
designing the general reference architecture for data management in
smart farming. This study follows the software architecture guidelines
and main steps (Giray and Catal, 2021; Koksal and Tekinerdogan, 2019;
Kruize et al., 2016; Tummers et al., 2021), such as domain scoping,
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domain and features modeling, and using architecture viewpoints to
present the proposed architectural design as shown in Fig. 1.

The design shows the generic reference architecture for smart
farming, which is evaluated by the following two case studies: dairy and
fish farming in Indonesian context within the project called Smart
Indonesian Agriculture (Smart-In-Ag) (Wageningen University and
Research (WUR), 2024). For two specific domains, Dairy Farming and
Fish Farming, we will show how to derive the domain architecture. The
domain architectures are more specific than the generic architecture but
are generic for the specific concrete applications of the corresponding
domain.

The reference architecture presented in this study reflects the overall
software architecture of the Smart-In-Ag project. The contributions of
this study are as follows:

(1) A systematic domain-driven architecture design method is
applied to provide insights into the common and variant features
of data management in a smart farming system.

(2) A novel reference architecture has been proposed for developing
data management in the smart farming system.

(3) The proposed reference architecture is validated using two case
studies in a project.

(4) The generic data management reference architecture is pre-
sented, which can then be used for different application domains.

2. Research methodology

As stated in the Introduction section, the main objective of this
research is to develop a reference architecture for data management in
the smart farming system. The following research questions were
defined:

e RQ1. What are the common and variant features of data management
in smart farming?

e RQ2. How to design a proper data management reference architec-
ture for smart farming?

e RQ3. How to develop application architecture based on the designed
reference architecture?

e RQ4. How effective is the designed reference architecture?

Reference Architecture

conforms to

Domain Architecture

conforms to

SO

Application Architecture K > Application Architecture
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The first research question aims to perform domain analysis to sup-
port the architectural design process. Domain analysis is a systematic
approach to deriving required knowledge in a particular domain. The
results of this question are provided in Section 3. The second question
aims to design a feasible reference architecture for data management in
a smart farming context. This study follows a formal approach and
guidelines in order to derive a well-established architecture design. The
results of this question are discussed in Section 4. Section 5 discusses the
application model to answer the third research question, and then the
proposed design is assessed using multi-case study approaches to answer
research question 4.

Fig. 2 presents the steps that we have followed in conducting this
study. In the first step, systematic literature research (SLR) was done in
our previous study (Ardagna et al., 2016; Ayaz et al., 2019; Krisnawijaya
et al., 2022; Villa-Henriksen et al., 2020). In the SLR study, the state-of-
the-art of data analytics platforms for the agricultural system was
identified. The common features, stakeholders, adopted technologies,
and architectural design were the results of the SLR. The obtained in-
formation from the SLR study was used as input to support the domain
modeling.

In the second step, domain scoping, we define the overall scope of the
systems that we focus on. This is followed by a domain modeling activity
in which the key concepts of the selected domain are identified and
modeled. Here we use feature modeling for modeling the common and
variants features of data management in smart farming systems. The
feature model can support the design processes and give system de-
velopers insights into selecting the features they wish in the system. In
the next step, the reference architecture is designed using a set of
viewpoints. Finally, we will perform a multi-case study to evaluate the
overall approach. These steps will be described in detail in the following
sections.

3. Domain analysis

In this research, the domain analysis process was applied to under-
stand the data management in the smart farming of interest. Domain
analysis is a systematic activity applied to derive and store required
knowledge to support the architectural design process (Koksal and
Tekinerdogan, 2019; Salma et al., 2017; van Geest et al., 2021). The

Reference Architecture
View

conforms to

Domain Architecture
View

conforms to

View

Fig. 1. Methods used for deriving the application architecture. Adapted from Tummers et al. (Tummers et al., 2021).
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Fig. 2. The adopted research method for deriving the reference architecture.

definition of the term “domain” was adopted from Salma et al. (Salma
etal., 2017), which is defined as follows: “Domain is an area of knowledge
or activity characterized by a set of concepts and terminology understood by
practitioners in that area.” In general, domain analysis involves two main
activities (see Fig. 3): domain scoping and domain modeling, which is
explained in the next subsections.

3.1. Domain scoping

In the domain scoping process, the domains of interest, stakeholders,
and their goals were identified. This study followed the main steps
presented in Fig. 3 to apply the domain scope. First, the domain is
defined, and for this research, the domain is data management in smart
farming. Understanding the recent factors for deriving knowledge to
establish the reference architecture is crucial (Giray and Catal, 2021).
The agricultural domain, in our case, involves both traditional and

Domain Scoping

Domain Modeling

Define
concern/domain

Define search
strategy

a1

Collect a set of paper
N

e

Exclude/include

Ju

Select paper

Extract the relevant
features

Analyze the
commonality and
variability

Provide
domain/feature model

the papers

|

Evaluate the model

Fig. 3. Domain analysis process.
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modern farming to get insight into the daily practices of its processes.
Therefore, the phrase “farming”, “agriculture”,” smart farming”, and
“precision agriculture” are our main phrases to combine with the
“reference architecture”. The next step is identifying the recent trends in
data management. According to Giray and Catal (Giray and Catal,
2021), big data, machine learning, and data lake are emerging tech-
nologies that evolved from traditional data management in recent years.
Based on their research, this study adopts the phrases used to represent
data management and combines them with the other phrases explained
earlier. This search strategy has been applied in the Scopus database to
collect the papers. To assure sufficient coverage, the manual search
method was also conducted.

The exclusion criteria were applied to the obtained papers to get only
the relevant papers for designing the feature model. The papers that are
not written in English, do not provide a complete text, and are duplicate
publications were excluded from the analysis. The relevant papers were
used as input for deriving a domain model and the reference architec-
ture. The list of the selected papers is shown in Table 1.

3.2. Feature model

One of the common approaches to representing domain knowledge is
a feature model. Feature modeling is one of the approaches in a domain
model to show the familiar concepts of the identified domain knowledge
by using a commonality and variability analysis approach (Tekinerdo-
gan et al., 2005; van Geest et al., 2021). Thus, a feature model can be
used to show common and variant features of a system or concept. This
model is constructed as a tree, where the root element represents the
system or concept, and its nodes represent the particular system’s fea-
tures (Salma et al., 2017). Each feature has sub-features and has the
following specific types to show the dependencies among features:
mandatory, optional, or alternative. The analysis is explained in the
following subsections.

3.2.1. Feature model for smart farming
Firstly, this study identified the implementation aspects of smart
farming in agriculture. Smart farming is the concept that applies digital

Table 1
Papers to derive the data management reference architecture in smart farming.

Ecological Informatics 81 (2024) 102613

data to provide precise information to support decision-making for the
primary farming process. In general, the feature model for the smart
farming system is presented in Fig. 4. Various common features of a
smart farming system are presented in this model. Several top-level
features of the smart farming system have been identified, such as cat-
egories, adopted technologies, farm activities, goals, domains, field data,
and a data management system (Saiz-Rubio and Rovira-Mads, 2020).

3.2.1.1. Categories. According to Balafoutis et al., (Balafoutis et al.,
2020) smart farming can be categorized into the following three inter-
related main categories: farm management information system (FMIS),
precision agriculture (PA), and agricultural automation and robotics.
FMISs are a set of software systems to assist farmers in performing
various agricultural tasks. The FMISs are used to collect, process, store
and disseminate data to carry out operations and functions of the farm.
Meanwhile, PA refers to optimizing the farm management input by
using several emerging technologies, such as Unmanned Aerial Vehicles
(UAVs) for aerial data, sensors to get ground data, and a decision support
system (DSS) to optimize farming decision-making. These data are used
to observe and measure the various field parameters to obtain insights
regarding the precise time and moments to do specific tasks. The third

# Categories
/' ® Adopted technologies
@ Farm activities Legend:

Smart farming {—OGoals ¥ Mandatory
\ Abstract Feature
®Domains @ Concrete Feature

(. Collapsed

| @Field data
CData management system

Fig. 4. Feature diagram of data management in agricultural systems.
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category is autonomous machines or robots applied in agriculture. These
reacting technologies are interconnected to cover the automatic control
of all agricultural production levels by using machine learning, com-
puter vision or artificial intelligence algorithms (Balafoutis et al., 2020).
The system designers are able to choose one of these categories or
combine these categories when implementing smart farming. This
feature diagram is shown in Fig. 5.

3.2.1.2. Adopted technologies. In this research, the adopted technologies
were divided into the following five sub-features: data analytics, sensing
technologies, computing infrastructures, communication technologies,
user interface, and hardware systems. All these features are mandatory
features in a smart farming system, and they are integrated into one
another (Krisnawijaya et al., 2022). In data analytics features, machine
learning, deep learning, statistical-based model, mathematical model
and geospatial analysis are commonly used to analyze the data. The
system designers can choose one or all of these approaches in their
system. Sensors are mandatory tools in sensing technologies since they
can be used almost in all agricultural domains as data sources. Mean-
while, UAVs, Unmanned Ground Vehicles (UGVs), and Geographic In-
formation Systems (GISs) are optionally utilized in a particular
agricultural domain. For instance, when the smart system needs spatial,
location or area data, the designer can simply use UAV and GIS as data
sources.

In a smart farming system, the architects should also consider the
system infrastructures to develop and apply them. The cloud-based and
standalone systems are the common infrastructure found in the current
studies. However, some studies also implemented the hybrid system by
using edge computing or blockchain to improve the system’s computing
performance. Furthermore, proper communication in computing infra-
structure should be determined when developing a smart system since it
also affects the system’s performance. In this study, it is found that
several communication technologies are used in smart farming systems,
such as Wireless Sensor Networks (WSNs), Radio Frequency Identifica-
tion (RFID), Near Field Communication (NFC), Bluetooth, and cellular
network. They are mandatory in the system; however, the architects can
choose the suitable ones.

User interface applications can be used to disseminate and visualize
the data for the stakeholders, and it has been found that there are two
application types: Web and mobile applications. A web application and
mobile application are required in the smart farming system. In order to
send several commands from the central processing unit to the actuators,
Internet of Things (IoT) technology is required. IoT can also be utilized
to control several automation systems or robots to do specific tasks. In
this study, both IoT and robotics are categorized as hardware features in
the smart farming system. Fig. 6 shows adopted technologies in smart
farming.

3.2.1.3. Farm activities. In the farm system, farming practices mean a
collection of production methods that are applied to produce agricul-
tural products (Corporation, 2020). Ploughing, planting, fertilization,
irrigation, pest inspection, and growing the seed are examples of the
crop’s daily agricultural activities (McConnell and Dillon, 1997). In
animal farming, such as dairy, fish, and poultry, it is common to see the
producer raising their livestock, disease inspection, checking the feed,
and managing the waste. According to Wolfert et al. (Wolfert et al.,
2017), these activities can be divided into primary and supporting farm

___OFMIS

ICategories _Precision agriculture
) Agricultural robotics&automation

Fig. 5. Feature diagram of categories.
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Fig. 6. Feature diagram of adopted technologies.

processes. The primary activities are those involved in product creation.
Furthermore, two daily sub-activities for controlling activity are moni-
toring and recording the field situation. However, even though the
farmers have already implemented smart systems, for some reason, they
still prefer to do several practices in traditional approaches (Mourik
et al., 2021). Fig. 7 presents the feature diagram of farming practices.

3.2.1.4. Goals. The results from our investigation of collected papers
show five common goals of the smart farming system: productivity
improvement, cost reduction, resource efficiency, prevention of dis-
eases, and risk management. Fig. 8 shows the feature diagram of goals.

® Preparation
| Ploughing
| Planting
Fertiization
Growing/Raising
@ Production .
| Feed checking
Farm activities K | Waste management
| Pest/disease inspection
@ Monitoring
@ Controling -

®Recording —<—___
"~ Paper-based

@®Harvesting

Fig. 7. Feature diagram of farm activities.
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Fig. 8. Feature diagram of goals.

3.2.1.5. Domains. The domain feature in this research includes all of
the mentioned agricultural domains in the literature that implemented
smart farming as their management solution. In this feature, the do-
mains are dairy, animal, fishery, arable, horticulture, and greenhouse.
The feature is shown in Fig. 9.

3.2.1.6. Field data. The crucial feature in smart farming is field data
since smart systems’ decision-making relies on the actual data derived
from the field (Collado et al., 2019; Krisnawijaya et al., 2022; Saiz-Rubio
and Rovira-Mas, 2020). The field data are retrieved from parameters
measured from the crop, animal, soil, and environment. These mea-
surements are based on the agricultural domains and the purposes of the
system. The field data feature is presented in Fig. 10.

3.2.1.7. Data management system. The advanced data management
lifecycle model usually consists of several activities, such as data
acquisition, storage, processing, monitoring and reporting, and visuali-
zation (Paakkonen and Pakkala, 2015). Another feature commonly
found in the data management system in smart farming is data security.
The data can be collected, processed, and analyzed to turn these features
into valuable information for farmers. Therefore, data management can
help farmers manage their farm operations better since they can make
decisions tailored to their farms’ specific needs. The features diagram of
the data management system is presented in Fig. 11 and is discussed in
the next section.

3.2.2. Feature model of data management

In this section, the common features and sub-features of the data
management system are discussed. Both traditional and advanced data
management systems, such as big data, were observed in this study.
Fig. 12 presents the top-level features of the data management system in
the context of smart farming. In addition, Fig. 13 shows the relationship

" Greenhouse

Fig. 9. Feature diagram of domains.
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Fig. 10. Feature diagram of field data.
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Fig. 12. The detailed features of a smart farming data management system.
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between features for data management systems. A data value chain
starts from generating raw data and then transfers and loads into data _— Batch
. . . Mobility < T
storage. Web services can bridge data storage and processing features 2 h o
after the data is stored in a database system. The data can then be
1 Structured

processed and analyzed in these features and transformed the data into
valuable information. The obtained information is disseminated through
data visualization features. Mostly, data analytics resulted in valuable
information but also provided knowledge for decision-making pro-
cesses. The features include an alert system, real-time monitoring, and
information management.

3.2.2.1. Data. Traditionally, the farmers have applied handwritten
notes to evaluate their farm operations. With the development of tech-
nology in modern agriculture, data can be generated from several
sources and has become a mandatory feature of the agricultural system
(Fulton and Port, 2018). Salma et al. (Salma et al., 2017) explained that
this feature could describe data usage, state, and representation. In a
smart farming system, there are several sub-features of the data feature,
such as mobility, structure, and data input. Mobility of the data, which is
batch and stream, can affect the system’s data analysis and processing
operations (Salma et al., 2017). Therefore, this sub-feature should be
considered while designing a smart system. The next sub-feature is the
data structure. There are three types of data structures based on the data
sources: structured, semi-structured, and unstructured. This feature
highly influences the development process of data storage, processing,
and analysis (Salma et al., 2017).

Furthermore, the data input defines the process of how data can act
as an input for the smart system. In general, a system can be accessed by
other systems or people depending on the status of the data. For
instance, the upon-requested data can be accessed only by asking
permission from the data owner. On the other hand, everyone could
have permission to get data from public sources. Therefore, the data
access type is a part of the data input feature. Another sub-feature of
data input is a modality to check data form, whether textual, visual, or
audio. As mentioned, the data sources are also essential to explain the
generated data and how to handle them. Data generation can be divided
into agronomic, machine, production (Fulton and Port, 2018), and
predictive data. The feature diagram of the data feature is shown in
Fig. 14.

3.2.2.2. Data acquisition. This feature is responsible for generating new
data or collecting the existing ones (Demestichas and Daskalakis, 2020).
The data acquisition features consist of data loading, data logging, data
aggregation, and data transfer. Data aggregation has the following sub-
features: data fusion and data integration. Data fusion refers to concat-
enating two or more representations of two identical objects into single,
clear, and consistent ones (Demestichas and Daskalakis, 2020). Data

@ Structure <}—— Semistructured
| Unstructured
)Data < | Proprietary
@ Data access type < Public
| Upon-requested

| Textual

[ P
@Data input |— @ Modality ~* Visual
\ 1 Audio
Agronomic
\ __— Machine
@®Data generation <[
1 Production

| Predictive data

Fig. 14. Feature diagram of data.

transfer includes the following sub-features: Wireless Sensor Network
(WSN), Bluetooth, Radio Frequency Identification (RFID) and Cellular
network (see Fig. 15).

1 Data fusion
#® Data aggregation
i Data integration
1 WSN
| Bluetooth
)Data scquision |————— —4@Data transfer <— RFID
i NFC
| Cellular network
@ Data loading
(Data logging

Fig. 15. Feature diagram of data acquisition.
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3.2.2.3. Data storage. Fig. 16 presents a data storage feature that is vital
in the smart farming system since it is a place to store all generated data
needed by the actors involved in the system to share valuable knowledge
and experiences (Demestichas and Daskalakis, 2020). It comprises seven
sub-features: a data model, database, web services, data warehouse, data
lake, and metadata management. The data model provides a framework
for all stages of data to store and process according to business needs.
This study considered both traditional data storage features (e.g., data
warehouse, metadata management) and advanced big data system fea-
tures, such as data lake, graph data model, and NoSQL database.

3.2.2.4. Computing infrastructure. Considering the system’s infrastruc-
ture in the smart farming context is crucial since it affects scalability,
cost, and performance. The computing infrastructure in this study has
four widely used system infrastructure models for developing a smart
agricultural system: cloud computing, hybrid cloud-edge computing,
blockchain system, and standalone system (dedicated server). Fig. 17
shows the feature diagram of the computing infrastructure.

3.2.2.5. Data processing. In data processing features (see Fig. 18), data
preprocessing aims to prepare and facilitate data processing operations
(Salma et al., 2017; Yang et al., 2021). The data is cleaned, transformed,
or compressed to be ready for the analysis stage. Data cleansing is a
mandatory feature in data preprocessing, while other features are
optional and depend on the needs or purposes of data analytics.
Furthermore, in an agricultural system, it is common to see various types
of analyzing the data, such as descriptive, diagnostic, predictive, or
prescriptive analytics. Hence, the system uses advanced analytics tech-
niques, namely geospatial analysis, mathematical model, statistical
analysis, deep learning, and machine learning, depending on analytics
types or purposes and users’ needs. The machine learning method has its
own types to analyze the data and specific tasks to generate the analytics
results. Finally, as mentioned earlier in the data feature (see Fig. 14),
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Fig. 17. Feature diagram of computing infrastructure.
there are two types of data processing: batch and stream processing.

3.2.2.6. Data visualization. This feature provides the way how the in-
formation is presented to the end-users. There are two common purposes
of developing visualization systems in the smart system to help users
identify the trend of data or the pattern of data. The data visualization
types were also considered to deliver insightful information to users
(Krisnawijaya et al., 2022). There are three types of visualization based
on the generated information from the system, such as temporal infor-
mation (represented by using a line graph or scatter plot), multi-
dimensional information (using a pie chart, Venn diagram, bar graph,
or histogram), and geospatial information (using heat or flow map).
Fig. 19 shows the features diagram of the data visualization.

3.2.2.7. Data monitoring and reporting. The mandatory features in
monitoring and reporting features are interfaces, dashboards, and in-
formation management. The interface provides the interaction of the
smart system with the users and other systems (Salma et al., 2017).
Furthermore, the information is delivered to the end-users through the
dashboard and information management report. Real-time monitoring,
decision support system, and alert system are optional in data moni-
toring and reporting features, as shown in Fig. 20.
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Fig. 16. Feature diagram of data storage.
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Fig. 19. Feature diagram of data visualization.

3.2.2.8. Data security. Data security is not explicitly mentioned in most and implemented to protect people’s data. Fig. 21 shows several features
existing data management studies. Hence, data security is optional in of data security.
this study. However, data security is important and should be discussed

10



N.N.K. Krisnawijaya et al.

®interface

Ecological Informatics 81 (2024) 102613

1 csv

/ @Information management ——@Report format 4— RDF

)Data monitoring and reporting {—L*Red—fme monitoring

X Decision support system

OMert system =

@Dashboard

" Database view

———1 short-message-system based

~ 1 Notification system

Fig. 20. Feature diagram of data monitoring and reporting.

__®Data authorization
@ Authorization <
@ User authorization

@ Access control

;7_,,470Avaiabi‘ty

e S——

@ Confidentiality
@ Privacy
@ Encryption

Fig. 21. Feature diagram of data security.
4. Reference architecture design
4.1. Selection of views

In this section, the three selected sets of viewpoints of the Views and
Beyond (V&B) architecture framework (Clements et al., 2010) are used,
including the context diagram, decomposition viewpoint, and deploy-
ment viewpoint. These views were used to represent the proposed
reference architecture. In our review, the context diagram, decomposi-
tion view, and deployment view were used to represent the reference
architecture. The context diagram depicts all interactions between the
system and external elements. It is applied to show the project’s scope
and clarify various parts. Therefore, a context diagram illustrates what
system is to be developed as well as which parts and components are
needed (Clements et al., 2010; van Geest et al., 2021). The decomposi-
tion view depicts the system’s modules and submodules. This view is
used to show how the system’s responsibilities are divided among them.
The use of a decomposition view in understanding both similarities and
dissimilarities across diverse modules enables the parallel implementa-
tion of responsibilities since separate modules can be allocated to
different teams (Clements et al., 2010; van Geest et al., 2021). The
decomposition view shows the software’s structure by decomposing
larger modules into smaller ones. It is perceived as a fundamental ar-
chitecture view since it provides the input for the deployment view.
Meanwhile, the deployment view is applied to analyze performance,
reliability, security, and availability (Clements et al., 2010; van Geest
et al., 2021). The reference architecture of the smart farming system is
elaborated in the following subsections.

4.2. Context diagram

The context diagram of the data management system in the smart
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farming context is presented in Fig. 22. First, the data management
system interacts with various data generated by IoT devices, sensors,
UAVs, and UGS. UAVs and UGS are optional devices for data acquisition
operations, depending on the agricultural domains and farming prac-
tices. The mandatory actors are farmers, while researchers and veteri-
narians are optionally involved in the system. However, these actors also
provide some inputs to enhance the collected data for the system. The
data management system also receives the data from other sources, such
as weather services and intelligent machinery (e.g., milking robots). The
former usually provides public data for people who want to access
weather data for specific purposes. The latter is usually installed on the
farm to assist farmer activities and generate their status to keep in the
system. Furthermore, the generated information or action from the data
analysis phase is sent to the IoT devices or web and mobile applications.
The IoT devices do some tasks based on the commands sent by the
system while showing generated information for the end-users through
the web or mobile applications. The standalone system is required if no
servers or network communications are installed on the farm. Lastly, the
other mandatory stakeholders are the decision support and alert sys-
tems. These systems help farmers to monitor and manage their farms.

4.3. Decomposition view

In this section, all possible modules required for the data manage-
ment system in smart farming are presented in a decomposition view
(see Fig. 23). This view shows the decomposition of main modules into
sub-modules in the overall system module, and all the modules are
optional. The main purpose of presenting this view is to list entities that
are supposed to be considered when designing the software architecture
(Tummers et al., 2021). The top-level modules for data management
systems are data acquisition, storage, processing, visualization, moni-
toring, and security. Besides, this view also presents the sub-modules
from each main module mentioned before. For instance, the following
sub-packages in the data processing package are shown in the decom-
position view: data preprocessing, batch processing, stream processing,
and data analysis. The system designer should take into account the data
analysis techniques such as geospatial analysis, statistical-based models,
mathematical models, deep learning, and machine learning when
designing the smart farming system.

4.4. Deployment view

Fig. 24 shows the identified modules to the relevant hardware. The
data acquisition, storage, visualization, and processing packages are
placed on the data management server. On the user side, the application
systems are deployed and installed. Other nodes are the devices that act
as data generators for the smart farming system. The deployment view
presents zero or more servers and one or more clients. The standalone
system with all modules on the client side is deployed if there is no
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Fig. 22. Context diagram.

server. Meanwhile, a system with at least one server and multiple clients
is a client-server system, i.e., mobile or web applications. Finally, the
cloud-based system is a system that has multiple servers and multiple
clients with advanced communication technology (Tummers et al.,
2021).

5. Case study evaluation
5.1. Problem statement

In this section, the case study that describes the underlying problems
is discussed. Two case studies of smart farming in Indonesia have been
selected due to two main reasons. First, to the best of our knowledge, no
literature discusses a proper reference architecture for the Indonesian
smart farming system. Second, this study is funded by INREF to develop
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a smart farming system in Indonesia. Therefore, the application archi-
tectures resulted in this study are used as a blueprint for further system
development. In the following, the details of two case studies are
presented.

5.1.1. Case study: dairy farming

According to Statistics Indonesia (Statistics Indonesia - Badan Pusat
Statistik (BPS), 2024a), milk production in Indonesia has significantly
increased in the last three years, from 135 million litres in 2018 to 221
million litres in 2020. Indonesia’s dairy industry is dominated by
smallholder farmers, about 87% of the total production (Kementerian
Perdagangan Republik Indonesia - Ministry of Trade Republic of
Indonesia, 2010). Their characteristics are typically small, still, on
average, maintaining traditional approaches to managing their farms
and owning less than ten milking cows (Jahroh et al., 2020). The
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Indonesian government aims to increase domestic milk production by up
to 50% by implementing an advanced dairy farming system. For
instance, applying new technologies in feed management is considered
to increase production (Jahroh et al., 2020). One of the central regions
of dairy production in Indonesia is West Java, which has potential re-
sources and a suitable climate for raising dairy cattle and became one of
the regions with the largest dairy cattle population in Indonesia (Sta-
tistics Indonesia - Badan Pusat Statistik (BPS), 2024b). Furthermore,
West Java is one of Indonesia’s top three provinces, contributing to
Indonesian milk production (Jahroh et al., 2020).

5.1.2. Case study: pond-based aquaculture

Indonesia plays an important role in global fishery production,
contributing 5.8% of global production (Senff et al., 2018). It has a wide
area suitable for aquaculture development (Food and Agriculture Or-
ganization of the United Nations (FAO), 2024). Besides dairy farming,
West Java also has potential fishery production, with 321,000 tons of
production in 2020 (Kementerian Kelautan dan Perikanan - Ministry of
Marine Affairs and Fisheries Republic of Indonesia, 2024). Most fish
farmers in West Java still use traditional approaches for their farms or
ponds.

5.1.3. Problem statement

Mainly, the farming practices in Indonesia, including dairy and fish
farming, are still using traditional approaches. The farmers usually faced
challenges in making decisions regarding the problems in the field since
they did not have accurate data and information to support their de-
cisions. A proper smart system is essential in Indonesian agricultural
practices nowadays. Therefore, in order to help the Indonesian gov-
ernment, a smart Indonesian agricultural project was established by the
lead of Wageningen University and Research (WUR) and Institut Per-
tanian Bogor (IPB University Indonesia). This project aims to develop
data infrastructure for Indonesian agriculture, specifically fish and dairy
production. The whole project is funded by INREF (Wageningen Uni-
versity and Research, 2024a; Wageningen University and Research,
2024b; The Interdisciplinary Research and Education Fund (INREF),
2024).

5.2. Case study protocol

The case study is used to assess and evaluate the proposed archi-
tecture designs and feature models. The main goal of using these case
studies is to evaluate the developed architecture designs and feature
models. The case study research protocol in this research follows the
protocol defined by (Koksal and Tekinerdogan, 2019; Runeson and Host,
2009; Tummers et al., 2021; van Geest et al., 2021). Both dairy and fish
studies are prospective cases, which include the system that are planned
to be developed (Koksal and Tekinerdogan, 2019). Five process steps
that have been followed when implementing the case studies are as
follows: (1) Designing the case study, (2) Preparing data collection, (3)
Collecting evidence, (4) Analyzing collected data, and (5) Reporting.
Table 2 presents the case study design. The data collection is conducted
by distributing questionnaires to the project manager, project members,
and the smart farming experts outside the project. The questions for the

Table 2
Case study design.

Case study Cases: Indonesian dairy and fish farming

activities

Goal To evaluate feature models and architecture designs

Research RQ4. How effective is the designed reference architecture?
questions

Sources Project manager, project members, smart farming experts

outside the project
Survey through questionnaire
Qualitative data analysis

Data collection
Data analysis
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survey are presented in Appendix A.

The survey is organized as follows: (1) The survey instrument is
created in the first step. This research used a questionnaire as the survey
instrument to observe and get information regarding dairy and fish
farming practices and future plans. (2) Second, the questionnaire is pilot
tested with several field experts to ensure that the questions are being
interpreted as intended. The information gained from the pilot test
process is essential to identify the revisions needed to increase the
questionnaire’s content validity. (3) The final questionnaire is distrib-
uted to the experts and researchers in the case studies domain, dairy and
fish farming. Later, the survey results are used as a basis to develop
application architecture. (4) In the final step, the researchers analyze
and review the application architectures from the cases. The following
sections discuss the results of the processes mentioned above.

5.3. Feature model for the case studies

5.3.1. Case-1: dairy farming

Fig. 25 shows the feature model for Indonesian smart dairy farming
based on the conducted survey. This application feature model is
derived from the family feature model for the smart farming system, as
shown in Fig. 4. The family features are chosen to fit the case study’s
needs. As shown in Fig. 24, FMIS is the common smart farming type in
Indonesia, while PA and automation systems are optional. FMIS in
Indonesian smart farming systems focuses on managing and trans-
forming raw data into valuable information for stakeholders.

Regarding data analytics features, machine learning, statistical, and
mathematical models were commonly used to analyze the raw data.
Sensors are the primary sensing technology to help generate the data to
support data analytics performance. The UAVs, UGVs, and GIS can be
used as additional data sources to get more precise data regarding farm
conditions. For example, the UAV and GIS can be used as data sources
when the smart system needs spatial, location or area data. A cloud
computing platform and standalone system (i.e., dedicated server) are
commonly found as the computing infrastructure to implement data
processing and analytics. Furthermore, WSN and cellular networks are
used to communicate among the devices in the field, while RFID is an
optional approach. In order to disseminate and visualize the actual data,
mobile applications are required in smart dairy farming systems. In this
feature diagram, mostly the stakeholders of dairy farming choose a
mobile application as a mandatory application. It does not mean that
web applications are not required, but they prefer to have mobile ap-
plications to see the actual data from the field. It might drive due to users
have a better experience by using mobile applications since they are
simple, accessible, and user-friendly.

The generated data in the dairy domain are based on several
measured parameters, such as cow’s health, behaviour, well-being,
productivity, and location. These data must be analyzed to achieve the
system’s goals, such as productivity improvement, resource efficiency,
or disease prevention. Other measurements are optionally used
depending on the research purpose.

5.3.2. Case-2: fish farming

In the fish farming case, automation systems or robotics are the most
studied systems. This result is strengthened by Dzulqornain et al.
(Dzulgornain et al., 2018) and Periyadi et al. (Periyadi et al., 2020), who
also developed an automation system to help farmers control pond water
quality by monitoring water’s pH and salinity, water temperature, and
water level using sensors. Therefore, sensors are needed to collect the
field data and become the only source of data in smart fish farming.
Contrary to smart dairy farming, developers tend to use mathematical
models rather than other techniques as data analytics algorithms in
smart fish farming systems. IoT is a mandatory feature in the domain to
control hardware systems and robotics devices. For data communica-
tion, WSN is a preferred approach in smart fish farming. Mobile appli-
cations are still critical devices as user interfaces in dairy and fish



N.N.K. Krisnawijaya et al.

Ecological Informatics 81 (2024) 102613

User interface

Farm activities (5]

Legend:

O/ Mandatory

< Optional

A Or Group
Abstract Feature

[ ] Concrete Feature

(. Collapsed

Fig. 25. Reference feature diagram for smart dairy farming of the INREF project.

farming to present the information.

The common goals of the smart system in aquaculture are produc-
tivity improvement, resource efficiency, and cost reduction. The system
needs specific field data to achieve these goals, such as fish productivity,
location, water temperature, and water quality. Fig. 26 presents the
application features of smart fish farming.

5.4. Application architecture design
5.4.1. Case-1: dairy farming

5.4.1.1. Context diagram. Fig. 27 shows the context diagram for the
smart dairy farming case. Firstly, the weather information and spectral



N.N.K. Krisnawijaya et al.

SOFMIS

Ecological Informatics 81 (2024) 102613

,{‘

Pr

agriculture

Statistical based model
| . Geospatal analysis
1 % ——4@Sensor
‘ ‘ @®Sensing ——— .
OGIS
\ QWW\ é = > < Hybnd Cloud-Edge
| “‘ _Blockchain
“ @ Stand-sione system
@ Communication @WSN
[ OWeb
[ \ @User interface —~——__ )
(f @ Mobie
@Hardware system ®loT
| @Fanmacomes
S @ Productivity improvement
|\ @ Resource efficiency
:‘ \ ®Goals =« U Risk management
“‘ —@Cost reduction
\ \ Disease prevention
“ #®Domains —@Fishery
(\ @ Productivity
|\ ~ Behaviour
OHealth
‘ \ Wel-being
“ ‘ @ Location
| @Fielddata € sze p—
ks Sol ¥ Mandatory
J  Optional
@ Tempersture Abstract Feature
\l Humidity = g::;::Feature
‘ Weather
@ Water quaity

‘Dﬂmsym

Fig. 26. Reference feature diagram for smart fish farming of the INREF project.

data from the weather service provider and the satellite data provider
are not necessarily needed in this case. The veterinarian and researcher
added information on dairy farming is essential for the system. Thus, the
veterinarian is transformed from an optional to a mandatory stakeholder
in the dairy domain. Another change is that intelligent machinery has
become essential in smart dairy farming, while alert and decision sup-
port systems are optional. Generally, to access information, the survey
participants tend to choose standalone and mobile rather than web
applications.

5.4.1.2. Decomposition view. Fig. 28 shows the decomposition view of
the smart dairy farming case. It can be seen that 37 modules are reused
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in this case study, which becomes the functional requirements from the
stakeholders. WSN, cellular networks, and RFID can be implemented as
communication protocols to transfer data among entities involved in the
system. All the sub-features of the data acquisition and monitoring
feature can be used. Furthermore, data lake, warehouse, metadata
management, and all web services’ functions are essential for the smart
system to store and manage the data. Regarding the data analysis
module, the experts in this survey tend to choose a mathematical,
statistical-based model and machine learning to implement data ana-
lytics. Finally, visualization modules are selected to disseminate the
information by using multi-dimensional (e.g., pie chart, Venn diagram,
bar graph, histogram) and temporal (e.g., scatter plot, line graph,
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Fig. 27. Context diagram of smart dairy farming.

timelines).

5.4.1.3. Deployment view. The architecture deployment view of smart
dairy farming is presented in Fig. 29. The required modules discussed in
the decomposition view are deployed to a central server. In addition, the
sub-modules of the system are not shown in the deployment view. In this
case study, a thin client (fewer modules installed) is chosen for the client
side since all modules and data are located on the central server. The
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deployment view presents zero and more servers, meaning standalone,
mobile, or web applications are covered in this design. Finally, sensors,
intelligent machinery, and IoT devices are also deployed in the system.

5.4.2. Case-2: fish farming

5.4.2.1. Context diagram. Fig. 30 shows the entities involved in the
smart fish farming system. Overall, farmers, researchers, and
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veterinarians are key actors in this domain. Sensors and IoT devices are
essential to generate data both in dairy and fish farming. In contrast to
dairy farming, weather service providers are optional for this case study,
depending on the need for weather data. As in dairy farming, standalone
and mobile applications are the preferred device to present information
regarding the field’s condition rather than the website. A decision sup-
port system and alert system are still needed and depend on the system’s
purpose.

5.4.2.2. Decomposition view. Fig. 31 provides the decomposition view
of smart fish farming obtained using the reference decomposition view
presented in Fig. 23. Out of 46 modules provided in the reference ar-
chitecture, 28 are the functional requirements of the stakeholders in the
fish farming case study. It is shown that WSN is the only protocol chosen
by experts in the survey to transfer the data among entities. The data is
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then stored in a relational database module. The implementation of a
data lake and warehouse is also needed in this domain. For analytics
purposes, it seems that the mathematical model is the preferred
approach for the experts. Finally, the temporal visualization module is
needed to present the valuable information.

5.4.2.3. Deployment view. The modules shown in the decomposition
view are deployed in a central server system. The central server employs
sensors and IoT devices to help farmers manage their ponds. As in dairy
farming, a thin client is selected, and zero or more servers are required
for this case study. The deployment view is presented in Fig. 32.

6. Discussion

This research has developed a reference architecture for smart
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farming data management through domain analysis and architecture
modeling. Domain analysis provides insights into common and variant
features and modules of smart farming systems, forming the basis for
family features. These family features contribute to the development of
the reference architecture. As a result, other smart farming application
architectures can be designed using the reference architecture and
family features outlined in this study.

The domain analysis in this study yields two family features: one
encompassing general smart farming features and another focusing on
data management. While the primary goal is to develop a data man-
agement architecture, features of smart farming systems from a broader
perspective are also identified. These family features are derived from
academic literature in the Scopus database and also from our previous
SLR work (Krisnawijaya et al., 2022).

The presented reference architectures are designed to adapt to the
dynamic nature of smart farming. Given the evolving nature of smart
farming technologies, flexibility is essential to integrate new features,
handle increasing data complexity, and incorporate modules from
various sources. Supplementary literature, such as software requirement
specifications (SRS) documents, vendor websites, and other grey liter-
ature, may introduce new functionalities and modules to enhance the
proposed architecture.

To address data complexity, our reference architecture incorporates
several big data features, including data lakes, NoSQL databases, and
distributed databases. Additionally, data is highlighted as a mandatory
feature in the feature diagram to emphasize its significance in data
management.

The reference architectures are developed using an architecture
framework with well-defined viewpoints, including context, decompo-
sition, and deployment. Application architecture can be derived from
the proposed reference architecture through a multi-case study method,
offering flexibility for different concrete architectures based on specific
needs.

It is crucial to note that presented modules and features are not
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absolute for certain domains, as different application domains may
necessitate new features and functionalities. Therefore, further research
is essential to enhance and adapt the architecture.

Two case studies were conducted to demonstrate the applicability of
the proposed architecture in the dairy and fish farming domains. The
results showed that the reference architecture facilitated the rapid
design of application architectures, as validated by stakeholder feedback
through a questionnaire. To mitigate the threat of misinterpretation,
survey questions were thoroughly discussed among researchers and
pilot-tested with field experts.

Based on the case study results, the application architecture was
easily derived from the reference architecture. Stakeholders’ responses
through the questionnaire form indicated that the design method
expedited the application architecture design process. All survey ques-
tions presented in Appendix A were accompanied by a description of the
question’s purpose to facilitate stakeholders in answering. Furthermore,
the stakeholders were able to express their expectations and needs of the
design using the space provided in the questionnaire. The application
architecture view models were designed based on stakeholder re-
quirements. Initially, the context diagram was crafted to illustrate the
interaction between entities and the system. The input for this diagram
came from stakeholders and their concerns, aiming to capture as many
essential interactions as possible. However, it is acknowledged that
there might be more possible interactions than those depicted in the
diagram.

Another view model in this study is the decomposition view, pre-
senting all possible modules for a specific domain. The view was
designed as generically as possible by including all possible modules in
the design. Despite careful and iterative discussions among the authors,
there remains a possibility that some modules for a particular applica-
tion are missing. Finally, the third view is the deployment view, map-
ping all features and modules into specific servers, applications, and
devices.

In addition to qualitative evaluation, conclusions can be derived
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Fig. 30. Context diagram of smart fish farming.

from quantitative metrics, including the percentage of reuse given the
provided reference architecture. For both case studies, we observed that
the total reuse based on the reference architecture was quite high. In the
context diagrams, the reference architecture could be reused without the
need for adding new architectural entities. A similar result was found in
the decomposition and deployment view, where the modules provided
in the reference architecture can significantly be applied in both case
studies, and additional modules are not required. Out of the 46 modules
provided in the reference architecture, 10 modules were reused only in
the dairy farming case study, one module was reused only in the fish
farming case study, while 27 modules were reused in both case studies.
The calculation of the percentage reuse modules can be seen below.

total reused modules in case studies
x 100%

%reuse modules = - -
total modules in reference architecture

10+ 1427 38

Based on the calculation above, the total reuse of the modules was
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82.6%. This is an essential and substantial improvement in cost savings
and time reduction for the development of the systems.

Finally, this study proposes a novel method to derive the reference
architecture by involving domain architecture in the process, which can
be seen in Fig. 1. Although several previous studies have developed
reference architecture in the agricultural field, Giray and Catal (Giray
and Catal, 2021), Tummers et al. (Tummers et al., 2021), and Santana
etal. (Santana et al., 2014), none of them applied domain architecture in
deriving their architecture despite its importance in acquiring and
storing required knowledge and information to assist and support the
application design process in the domain of interest. Therefore, this
research provides not only generic architecture for smart farming but
also for the domains of dairy and fish farming.

7. Conclusion
This paper has presented and evaluated the proposed data manage-

ment reference architecture for smart farming using two case studies. To
the best of our knowledge, this is the first study that explicitly focuses on
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the architecture design approach for the data management system in a
smart farming context by incorporating domain architecture in the
process. Overall, it was demonstrated that the proposed reference ar-
chitecture is useful and practical for designing the smart farming system.
The presented features and architecture views are beneficial when
developing new systems in different agricultural domains, with a spe-
cific emphasis on data management and the smart farming system in
general.

Formal architecture design viewpoints were chosen in order to
develop the reference architecture in this research. The reference ar-
chitecture can serve as a blueprint for designing new smart farming
systems, as it has been validated using a multi-case study approach. The
proposed reference architecture appeared to be successful and effective
for designing smart farming systems. However, further research is
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needed to evaluate the proposed architectures for different domains.
The authors expect this study to encourage more researchers and prac-
titioners to develop and propose a novel design for smart farming
systems.
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Appendix A. Appendix

List of questions for the respondents (stakeholders):

1. What is your position in the domain(s)?

Farm manager
Data manager
Researcher
Data analyst
Other
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2.

What are the goal(s) of adopting smart farming technologies in
your domain?

Productivity improvement

Cost reduction

Resource efficiency

Disease prevention

Risk management

Other

. Which smart farming category do you find the most in your

domain?

e Farm management information system (FMIS)
e Precision agriculture (PA)

e Agricultural automation and robotics

o I do not know

. Which of the following data analytics techniques will you need

for your domain/system?
e Machine learning
Deep learning
Statistical based model
Mathematical model
Geospatial analysis

I do not know

. In your opinion, what application(s) are needed in smart

farming?
e Web application
e Mobile application

. Do you need Internet of Things technology for your domain?

e Yes
e No
e Not applicable
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7.

10.

11.

12.

13.

14.

Do you need robotics for your domain?
e Yes

e No

e Not applicable

. Which of the following metrics do you think are important for

your domain?
e Temperature
e Humidity

e Weather

e Water quality
Soil

Size
Productivity
Location
Behaviour
Health

e Well-being
e Other

. Which of the following phases of the data science lifecycle are

important for your domain?

e Data acquisition (How the data are obtained)

e Data storage (How the data are stored, e.g., cloud or local

server)

Data processing (How the data will be transformed into valu-

able information)

Data visualization (How the data will be delivered to the

stakeholders, mostly using graph, chart, etc.)

e Data monitoring and reporting (How the data will be dissem-
inated, e.g., reporting, notification, etc.)

e Data security (How the data will be kept confidential)

e I do not know

Not applicable

What data do you need for your domain?

Agronomic data (e.g., crop conditions, animal conditions, etc.)

Machine data (data from agricultural machinery)

Production data (e.g., planting dates, spraying records, etc.)

Predictive data (forecast future production under current

conditions)

What type of data do you need?

e Textual

e Visual

e Audio

e Other

What type of data structure do you think is commonly processed

in your domain?

e Structured data (e.g., quantitative data, statistical results)

e Semi-structured data (e.g., CSV, XML, JSON)

e Unstructured data (e.g., qualitative data, text files, images,
videos)

e I do not know

Which features of data collection do you think are needed for

your domain?

e Data aggregation (Gathering data from multiple sources and

presenting it in summarized format)

Data transfer (Securing exchange of data between systems or

organization)

Data loading (Copying or loading data from a source to a

database)

Data logging (Storing actions/events of a system or network

over a period of time)

e I do not know

e Not applicable

e Other

Which of the following techniques will you need for collecting

data?

e Sensor
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15.

16.

17.

18.

19.

20.

21.

22.

Ecological Informatics 81 (2024) 102613

Unmanned aerial vehicles (UAVs)

Unmanned ground vehicles (UGVs)

GIS

I do not know

Not applicable

Other

Which of the following processes do you need in data processing?

e Collect data over a period of time, then process it

e Collect data in a small time period, then process it (near real
time)

o Both processes are needed

e I do not know

e Not applicable

Which of the following computing infrastructures do you need?

Cloud computing

Edge computing

Blockchain

Standalone computer/Dedicated server

I do not know

Not applicable

Other

Which of the following communication technologies will you

need for data transfer?

e Wireless sensor network (WSN)

e Radio Frequency Identification (RFID)

e Near Field Communication (NFC)

e Bluetooth

°

L]

L]

L]

Cellular network
I do not know
Not applicable
Other
How do you access the dataset for research?
e By public sources
Get permission from the data owner
Using proprietary data
Not applicable
Other
Which type of data model do you need for storing your data?
e Relational data model (traditional model using tables with
rows and columns)
e Graph data model (NoSQL model using graph or tree to illus-
trate the relation between data)
Object-oriented data model (to work with complex data
objects)
I do not know
Not applicable
Other
Which database type will you need?

e Relational database (e.g., MySQL, Microsoft access)
e NoSQL (e.g., MongoDB, HBase, Cassandra)

e Parallel processing database (e.g., Oracle)

e Distributed database (e.g., Hadoop, Apache Spark)
e I do not know

e Not applicable

e Other

Which database architecture will you need for your domain?
Fileserver

Client-Server

3-tier Architecture

Distributed system

I do not know

Not applicable

Other

Please select the function of the data storage that you think is
necessary for a smart farming system.

e Storing structured and filtered data (Data warehouse)
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23.

24.

25.

26.

27.

28.

29.

e Storing structured, semi-structured, and unstructured raw data
(Data Lake)

e Storing information about the structure of the stored data
(Metadata repository)

e I do not know

e Not applicable

e Other

Which web service functions do you need for your domain?

o Data synchronization (Maintaining the consistency of among

data)

Data redundancy & fault tolerance (Preventing data loss)

Data update (Updating changes automatically)

I do not know

Not applicable

Other

Which features will you need for data preprocessing?

Data deduplication (Eliminating excessive copies of data)

e Data cleansing (Removing incorrect, corrupted, incomplete

data)

Data transformation (Changing the structure or format of data)

Data compression (Modifying or converting the bits structure

of data)

e I do not know

e Not applicable

e Other

In data processing, which one do you choose?

e Using well-labeled training data (Supervised)

e Combining labeled with unlabeled training data (Semi-
supervised)

e Using unlabeled training data (Unsupervised)

e I do not know

e Not applicable

What kind of data analytics do you need?

e To know what happen (Descriptive analytics)

e To know how something happen (Diagnostic analytics)

e To know what will happen (Predictive analytics)

e To know what should be done if something happens (Pre-
scriptive analytics)

Please select one or more machine learning tasks below that you

need for data processing?

Multiclass classification

Binary classification

Regression

Clustering

Anomaly detection

Forecasting

Recommendation

I do not know

Not applicable

Other

For which purpose do you need data visualization?

o Identify trend of data

Identify the pattern of data

I do not know

Not applicable

Other

What is the most common type for data visualization in your

domain?

e Temporal type (e.g., Scatter plot, line graph, timelines)

e Multi-dimensional type (e.g., pie chart, Venn diagram, bar

graph, histogram)

Geospatial (e.g., heat map, flow map)

I do not know

Not applicable

Other
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30. Please select the function that you think is necessary for moni-
toring and reporting data

Interface

Dashboard

Information management (e.g., reporting)

Real-time monitoring

Decision support system

Alert system (e.g., short message system (SMS), phone

notification)

Not applicable

e Other

Which of the following data security approaches do you need?

o Authorization

e Access control

e Availability

e Authentication

Confidentiality

Privacy

Encryption

Not applicable

Other

31.
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