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A B S T R A C T   

Flood statistics form the basis of many hydrologic designs. However, short observation periods can lead to a high 
degree of uncertainty in the quantile estimates, especially for extreme floods. One way to expand the information 
used in the statistics and, in particular, to include other exceptional floods in the sample is to take historical 
floods into account. The use of these floods, which are usually reconstructed from chronicles or flood marks, has 
long been established for classic flood frequency analysis. However, the fact that historical floods can also have 
different origins and are therefore not statistically identically distributed has so far been ignored. To avoid this 
violation of the statistical assumptions, we show how historical floods, subdivided according to their genesis, can 
be taken into account in type-based flood statistics. For this purpose, the classical partial probability weighted 
moment (PPWM) method is extended for the type-based mixture model of partial duration series (TMPS). The 
result is compared to a Markov chain Monte Carlo method in order to compare the differences between the two 
methods. Type-based statistics can also be used to attribute the different influences of historical floods on the 
quantile estimate. An example shows that floods associated with long-lasting precipitation in particular are 
overestimated in short samples, while heavy rainfall floods are comparatively well represented. The results show 
that the consideration of historical events in type-based statistics not only allows a more balanced view of 
extreme floods, but also enables the influences of these to be attributed.   

1. Introduction 

Flood statistics are a key tool in hydrology. They usually form the 
basis for determining hydrological design variables, such as the design 
flood, that are used for appropriate dimensioning of a structure in order 
to fulfil a pre-defined purpose, e.g., flood protection. Yet, flood statistics 
are also often criticised for high uncertainty, especially when only short 
observation periods of the flood events in the systematic records are 
available (Arnaud et al., 2017; Fischer & Schumann, 2022). This sam
pling uncertainty can manifest in different ways. On the one hand, a 
short observation period that includes one or more extreme flood events 
might lead to an overestimation of the probability of such events, as 
their weight in the estimation is high. On the other hand, if the obser
vation period is too short to include such extreme floods, design floods 
might be underestimated. To reduce this uncertainty related to the 
sample, information extension can be used, i.e., the incorporation of 
additional information in space and time. One example for such an 
extension is the consideration of historical floods or even paleo-flood 

data (Cohn and Stedinger, 1987; Gaume et al., 2010; Payrastre et al., 
2011; Stedinger & Cohn, 1986; to name only a few). Such historical 
floods usually are extreme flood events that were recorded in chronicles 
or whose water levels were marked on historical buildings due to their 
severity, the caused damage or fatalities. Therefore, they can provide 
valuable information on what might be expected as extreme event in a 
catchment. A good example is the Ahrtal in Germany. This region was 
hit in July 2021 by a devastating flood event, causing at least 135 fa
talities and billions of euros of damage (Lehmkuhl et al., 2022). This 
event was seen by many as a totally surprising event. However, histor
ical flood events from the years 1804 and 1910 reveal that similar 
conditions in the past have led to similar flood peaks before (Kahle et al., 
2022). Yet, these events were not part of the systematic records and 
hence the 2021 flood was not anticipated. 

A challenge when aiming to incorporate historical flood events in 
flood statistics always lies in the information acquisition. Usually, 
extreme events are recorded in local chronicles or archives but often 
without precise information on the discharge at the flood peak, which is 
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required for flood statistics. Flood marks deliver water levels, though 
still the reconstruction of the discharge remains challenging, as the river 
profile and the hydraulic conditions might have changed over time. But 
even when the flood peak is available, the historical events remain a 
censored series since no information on ordinary flood events is avail
able in the historical records. Therefore, statistical approaches have to 
be able to consider these censored series. There exist several approaches 
to do so, ranging from simple parametric or non-parametric re-sampling 
of the systematic records to “fill” the censored series, over Bayesian 
Markov Chain Monte Carlo (MCMC) approaches where prior informa
tion is included in the sampling (Reis and Stedinger, 2005) to an adapted 
parameter estimation for censored series. The latter originally is based 
on weighted moments, is rather easy to apply and was first proposed by 
the Bulletin 17B (USWRC, 1975). It was extended to a maximum like
lihood estimation (Stedinger & Cohn, 1986), the expected moments al
gorithm (Cohn et al., 1997) and by Wang (1990) to the probability 
weighted moments. All these approaches have advantages and disad
vantages in terms of efficiency, robustness or uncertainty. For a detailed 
review of approaches to include historical floods in flood statistics we 
refer to Kjeldsen et al. (2014) and the references therein. However, what 
is not considered so far when incorporating historical flood events in 
flood statistics is the flood genesis. Historical flood events might emerge 
from quite different atmospheric and catchment conditions, such as 
heavy rainfall, spatially extended and long-lasting rainfall, snowmelt or 
even ice jam. This information might be difficult to obtain, as chronicles 
usually only provide subjective descriptions of the weather and catch
ment conditions at that time. Yet, the joint consideration of historical 
flood events of different flood genesis leads to inhomogeneous samples 
and hence violates the statistical assumption of identically distributed 
data. In case of systematic records, Fischer et al. (2019) have proposed to 
use type-based flood statistics to overcome the issue of inhomogeneous 
samples. Type-based flood statistics distinguish between different flood 
types and consider each flood type separately with a unique distribution. 
The joint distribution of all flood events, the so-called type-based 
mixture model of partial duration series (TMPS), is then obtained by a 
mixture model. It was shown in several studies that this kind of infor
mation extension, the consideration of the deterministic causes of flood 
events, improves flood statistics in many ways (Fischer & Schumann, 
2023; Yan et al., 2019). Similarly, Garavaglia et al. (2010) propose a 
mixture distribution to consider weather patterns in different samples 
for rainfall statistics, also with the aim to obtain more homogeneous 
samples. 

Here, we will incorporate historical flood events in type-based flood 
statistics. For this purpose, the partial probability weighted moments are 
extended to the application to peak-over-threshold series and applied to 
different type-specific samples. This way, the change of the distribution 
of each flood type due to the consideration of historical events and their 
impact on the overall distribution function can be attributed. We make 
use of a hybrid causative-hydrograph-based classification of floods that 
allows us to classify even long systematic records without the need of 
extensive model results. Moreover, it can be easily applied also to his
torical floods, since only information on the rainfall events, its relative 
extension and intensity, is required. As a comparison, we will also apply 
a simple Bayesian MCMC approach to see how both approaches differ 
and to quantify the uncertainty of the estimation. 

More precisely, we will address the following research questions:  

• How can historical flood events be incorporated in type-based flood 
statistics?  

• How does the consideration of historical flood events alter the type- 
specific distributions?  

• What are the differences between a parameter-based approach and 
an MCMC approach?  

• What is the uncertainty related to such a framework? 

Besides the advantage of a larger data basis and hence a probably 

reduced uncertainty in the estimation of extreme floods, the incorpo
ration of historic flood events in type-based statistics has further ad
vantages. First, the awareness of extreme flood events increases, 
especially when the most critical flood-generating mechanisms are 
known. Second, certain flood types that might play no longer a signifi
cant role in the generation of flood events due to climate change, such as 
floods caused by ice jams in Central Europe, can be excluded a-priori 
from the estimation and hence do not impact flood frequency analysis. 
The approach has direct practical relevance, as the incorporation of 
historical floods in flood statistics is recommended in many flood 
guidelines as is the consideration of mixture distributions, e.g., for the 
US or for Germany. 

2. Data 

In this study we consider the Wechselburg catchment, located in 
Saxony in eastern Germany, with a catchment area of 2099 km2. It is 
part of the Mulde river basin and records discharge of the Zwickauer 
Mulde river. The catchment has a mean elevation of 427 m a.s.l., while 
the gauge itself is located at 160 m a.s.l. (Fig. 1). The annual precipi
tation in the catchment is 861.5 mm with a mean annual discharge of 
25.8 m3/s. Within the catchment lies the city Chemnitz, such that 17.4 % 
of the land cover in the catchment are urban, while 46 % are agriculture 
and the rest is covered by forest. In the recent years, the Wechselburg 
catchment was affect by two extreme flood events. In August 2002, a 
flood event that exceeded all records to that date hit the catchment, 
leading to enormous damages. Only 11 years later, in June 2013, a flood 
event of similar peak size again hit the area (Merz et al., 2014). These 
extreme events make this catchment particularly interesting for the 
incorporation of historical flood events, as historical events might shed 
light on how rare extreme events like the ones in 2002 and 2013 in this 
area really are. 

For this study, daily mean and monthly maximum discharges of the 
systematic records starting in November 1909 and ending in October 
2013 were considered (Fig. 2). The daily discharges were used to 
identify and separate the flood events, while the monthly maximum 
peaks are used to capture the flood peak. Moreover, daily precipitation 
data from the E-OBS data set (Cornes et al., 2018) as well as from sta
tions from the German Weather service (DWD) for the time period 
before 1920 have been used. The latter were interpolated to areal pre
cipitation by simple Thiessen polygons (Okabe et al., 2000). Based on 
these precipitation data, together with daily temperature data, daily 
snowmelt was estimated by the degree-day approach with 100 m 
elevation steps (Rango & Martinec, 1995). 

Additionally, information on historical flood events for the whole 
Mulde basin and in particular for the Wechselburg gauge were available. 
By intensive studying of chronicles from towns and churches in the re
gion, Fickert (1934) collected rich information not only on the flood 
events itself but also on the driving mechanisms. He used this infor
mation to compare the historical events to the series of (at that time) 
extraordinary flood events in the years 1920 to 1930. Fickert reports 
that the five listed flood events (Table 1) are the largest in the period 
1433 until the beginning of systematic records in 1910, and while 
smaller flood events occurred in this period, these were not at all com
parable to these extraordinary five flood events. Due to Fickert’s work, 
the data basis for the Wechselburg is exceptional and provides an 
excellent basis for this study. 

3. Methodology 

Here we present the methodology applied in this manuscript to 
derive type-based flood statistics under the consideration of historical 
events. The applied flood event separation and classification as well as 
the statistical model for type-based statistics are described in greater 
detail also in Fischer and Schumann (2023). 
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3.1. Flood event classification 

In a first step, the systematic records have been scanned for flood 
events. The identification and separation of flood events from daily 
discharge series was done by the automatic statistics-based flood event 
separation by Fischer et al. (2021). This approach uses a moving three- 
day-window variance-based threshold to identify flood events. The 
beginning of the corresponding flood event is then defined by the day 
where the discharge rises for the first time. The end of the event is 
defined as the point in time when the baseflow, i.e., the discharge at the 
beginning of the flood event, is reached again after the flood peak, while 
also small increases in the baseflow are allowed. The baseflow is then 
separated by a straight-line method, such that flood volume and flood 
duration can be obtained. The flood peak was obtained from the 
instantaneous flood records, the monthly maximum discharges, to omit 
an underestimation of the flood peaks in flood statistics due to a 
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Fig. 1. Location of the catchment in the Mulde river basin (left) and in Europe (right).  
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Fig. 2. Annual maximum series for the years 1910 (red vertical line) until 2013 (systematic records) and the historical flood events from the year 1433 on. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Historical flood events in the period 1433 until 1910.  

Year Date Flood peak 
(m3/s) 

Rank 

1573 1573–08- 
14 

1000 Second largest (together with 2002) 

1694 1694–06- 
20 

920 Fourth largest 

1771 1771–06- 
30 

900 Sixth largest (after 2013, 2002, 
1573,1694 and 1954) 

1858 1958–08- 
01 

870 Seventh largest 

1897 1897–07- 
31 

435 12th largest  
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smoothening by daily time steps (Bartens & Haberlandt, 2023). 
In a second step, the flood events have been classified according to 

their genesis. Since we aim to use as long records as possible, a classi
fication based on only few input data available for a long period in time 
was applied. We chose the hybrid hydrograph-based-causative classifi
cation proposed by Fischer et al. (2019), which makes use of daily 
rainfall and snowmelt data of the catchment only. First, the flood events 
were classified into rainfall-driven and snow-induced floods. This was 
done by comparing the proportion of snowmelt on the total amount of 
flood-generating water to a pre-defined threshold. For Germany, we 
chose this threshold as 20 %, following recommendations given by 
Kampf and Lefsky (2016) among others. Second, the flood events were 
further distinguished. The rainfall-driven flood events were classified 
into three flood types according to their peak-volume relationship, the 
so-called flood timescale. More precisely, the events were sorted into 
three groups such that the linear regression between flood peak and 
volume is optimal (according to the coefficient of determination). The 
snowmelt-induced flood events were further distinguished into rain-on- 
snow floods and snowmelt-driven floods by application of a kMeans 
clustering to the rainfall and snowmelt sums of the considered events. 
Therefore, five flood types were considered for this study:  

- R1 flood events, which have a small flood timescale and hence are 
characterised by steep hydrographs of short duration, usually asso
ciated with heavy rainfall,  

- R2 flood events with a medium flood timescale and therefore a 
balanced relation between flood peak and volume, usually associated 
with long-duration rainfall,  

- R3 flood events with large flood timescales, characterised by 
hydrographs of very long duration with often several peaks, usually 
associated with sequences of rainfall over a long period,  

- S1 flood events, which are characterised as rain-on-snow floods, 
where rainfall falls down on a snow cover,  

- S2 flood events, which are characterised as snowmelt-induced floods, 
i.e., with a high amount of snowmelt and only a negligible amount of 
rainfall contributing to the generation of the flood event. 

These flood types have been utilised before for different studies in 
Europe and were shown to represent the flood-generating processes well 
(Brunner & Fischer, 2022; Fischer & Schumann, 2022; Fischer et al., 
2019). Yet, for the approach proposed here, basically any flood classi
fication could be applied, as long as it is available for long records and 
applicable to historical events. 

3.2. Type-based flood statistics 

For type-based flood statistics, we applied the type-based mixture 
model of partial duration series (TMPS) developed by Fischer (2018) 
and Fischer et al. (2019). This model considers the flood types in 
different POT-samples and combines these in a multiplicative mixture 
model. Assume that we have M flood types (here: M = 5). Each flood 
type j = 1,…,M is represented by a sample Xj;1,…,Xj;nj of flood events. 
First, each flood type is modelled separately by a POT-approach with 
threshold uj. The exceedances Xj;i > uj are assumed to follow a Gener

alized Pareto distribution Gj with parameters θj =
(

κj, βj

)
, where κj is 

the shape parameter and βj is the scale parameter, a typical extreme 
value model for exceedances (Balkeema-de Haan-Theorem, Balkeema & 
de Haan, 1974). The threshold uj was chosen as three times the long- 
term mean discharge weighted by the frequency of the respective 
flood type in each month, an empirical hydrology-based threshold that 
makes the obtained distribution comparable to the one of the annual 
maxima as already discussed in Fischer (2018). Theoretically, other 
thresholds could be taken into account, though it has to be noticed that 
the choice of the threshold may critically impact the results. To obtain 
the distribution of the whole sample of flood type j, besides the 

distribution of the exceedances also the probability of non-exceedance 
of the threshold must be known. Here, we estimated this probability 
by fitting a Generalized Extreme Value Distribution, Hj, to all flood 
events of type j. Hj has shape parameter ξj, scale parameter σj and 
location parameter μj. Therefore, the distribution function of flood 
events of type j is given by 

Fj(x) = Hj(uj)+ (1 − Hj(uj))Gj(x)

= exp

⎛

⎜
⎝ −

(

1 + ξj
uj − μj

σj

)−
1
ξj

⎞

⎟
⎠+

(

1 −

(

1 + κj

(
x − uj

βj

))− 1
κj
)
⎛

⎜
⎝1

− exp

⎛

⎜
⎝ −

(

1 + ξj
uj − μj

σj

)−
1
ξj

⎞

⎟
⎠

⎞

⎟
⎠.

To consider the annual distribution of flood type j, i.e., the one required 
to estimate annual return periods, one can simply combine the distri
bution Gj with a discrete distribution modelling the probability that the 
number of events per year of flood type j, λj, is equal to r: 

F̃j(x) =
∑∞

r=0
Pj(λj = r)Gj(x)r  

We chose a Poisson distribution for this purpose. 
Finally, to consider all flood types jointly, a mixture model is applied 

to receive the TMPS model with distribution 

F(x) =
∏M

j=1
Fj(x)

3.3. Partial probability weighted moments (PPWM) 

As stated before, there exist various possibilities on how to include 
historical flood events in flood statistics. One that includes these events 
directly in the parameter estimation and is at the same time robust and 
efficient was proposed by Wang (1990). The idea is to split the sample of 
all flood events into those above a given threshold and those below this 
threshold. The threshold is assumed to be the flood peak from which on 
it is highly probably that a flood event was recorded in some chronicles 
or similar, therefore becoming a historical flood event. Those times that 
do not appear in the chronicles are assumed to only have flood events 
below the threshold. The sample of events above the threshold therefore 
consists of all historical flood events as well as those events of the sys
tematic records that are greater than the threshold. 

Statistically speaking, one has a sample of n flood events X1,…,Xn in 
the systematic records. Furthermore, one has knowledge on flood events 
over a historical period of m years, though only for those events greater 
than a threshold uH the flood peak is known. Let’s assume that this ap
plies to l event in the historical series denoted with Xh, while k events in 
the systematic record exceed the threshold, too. Wang (1990) then de
fines a censored sample X(n− k+1),…,X(n),Xh

(m− l+1),…,Xh
(m)

with the cor

responding order statistic Xʹ́
(n+m− k− l+2)⩽...⩽Xʹ́

(n+m)
. Additionally, we have 

a second sample X(1),…,X(n− k) with values from the systematic records 
below the threshold. Based on these two samples, now parameter esti
mators can be obtained. Wang (1990) proposes the probability weighted 
moments (PWM, Greenwood et al., 1979). These are the basis for L- 
moment estimators, which are widely used in flood statistics due to their 
robustness and efficiency even for small samples (Hosking, 1990). 
Probability weighted moments of order i for a random variable X with 
distribution F(x) = P(X⩽x) are defined as 

βi =

∫ 1

0
x(F)FidF.
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Unbiased estimators for probability weighted moments of order i,bi, of a 
sample X1,…,Xn are given by 

bi =
1
n
∑n

j=1

(j − 1)(j − 2)⋅…⋅(j − i)
(n − 1)(n − 2)⋅…⋅(n − i)

X(i)

Probability weighted moments βi including historical events can be 
obtained from the two censored samples by the so-called partial prob
ability weighted moments (PPWM) 

βi =

∫ 1

0
x(F)FidF =

∫ F(uH)

0
x(F)FidF+

∫ 1

F(uH)

x(F)FidF = βʹ
i + βʹ́

i  

Unbiased estimators based on the censored sample below the threshold 
are given by 

bí =
1
n
∑n

j=1
(j− 1)(j− 2)⋅…⋅(j− i)
(n− 1)(n− 2)⋅…⋅(n− i)X

∗
(j) with 

X∗
(i) =

{
X(i), if X(i)⩽uH

0, else  

and based on the censored sample above the threshold by 

bʹ́
i =

1
n + m

∑n+m

j=n+m− k− l+2

(j − 1)(j − 2)⋅…⋅(j − i)
(n + m − 1)(n + m − 2)⋅…⋅(n + m − i)

Xʹ́
(j)

Wang (1990) showed that the use of bí  and bʹ́
i leads to unbiased estimates 

of βʹ
i and βʹ́

i . 
In the context of type-based flood statistics, things become a bit more 

complicated. In this case, we want to apply the PPWM approach to the 
parameter estimation for each type-specific distribution Fj, j = 1,…,M, 
therefore for a POT-sample for Gj and the whole uncensored sample for 
Hj. Please note that the equations above apply to typical flood samples, 
mainly annual series. For the type-specific samples, however, we deal 
with POT samples, which are censored already. Moreover, the number of 
events in the historical period is unknown, as it is no longer equal to the 
number of years, since in POT series more than one event per year can 
occur. Therefore, we assume here a constant number of flood events of a 
given flood type per year. This number can thus be estimated from the 
systematic records and be transferred to the historical period. Let us 
assume that for flood type j we have an average number of λj events per 
year in the systematic records. Then, for the historical period of m years 
we would have a number of m⋅λj events, where lj of the events exceed the 
type-specific threshold uH;j. In the systematic sample of flood type j, Xj;1,

…,Xj;nj , kj events exceed the threshold uH;j. 
The PPWMs for a censored series like the POT series considered for 

the distribution function Gj were provided by Wang (1990). While the 
sample above the historical threshold uH;j remains the same as before, 
the sample below this threshold is now censored from above by uH;j and 
from below by the type-specific threshold of the POT sample, uj. 
Therefore, the PPWMs of order i for each flood type j are given by 

βi;j =

∫ Fj(uH;j)

Fj(uj)

x(Fj)Fi
jdFj +

∫ 1

Fj(uH;j)

x(Fj)FidF = βʹ́ʹ
i + βʹ́

i  

The corresponding unbiased estimators then would be 
bʹ́́

i;j =
1
nj

∑nj
t=1

(t− 1)(t− 2)⋅…⋅(t− i)
(nj − 1)(nj − 2)⋅…⋅(nj − i)X

∗
j;(t) with 

X∗
(k) =

{
Xj;(k), if uj < Xj;(k)⩽uH;j

0, else  

and  

With this extended version of the PPWM, the parameters of the distri
bution Gj can be estimated. We use here the PPWMs to obtain L-Mo
ments in the traditional way. 

The parameter estimation for the distribution function Hj is analo
gously to the case of annual maximum series described before though 
with an adjusted number of historical events equal to m⋅λj. 

For visual comparison in the distribution plots, plotting positions of 
the annual maximum series were estimated. When considering system
atic data only, i.e. n annual maximum floods Xi, the traditional Weibull 
plotting positions 

pp(i) =
rank(Xi)

n + 1  

were considered, where pp(i) is the plotting position of the event i. 
In the case of h historical data Yi in a period of m years and n sys

tematic annual maximum data Xi, whereof in total nʹ = h+l exceed the 
threshold of historical data uH, the plotting positions pph(i) described in 
Hirsch (1987) were considered: 

pph(i) =

⎧
⎪⎪⎨

⎪⎪⎩

rank(Xi;X,Y)
n + 1

, if Xi < uH

nʹ

m + n
+

rank(Xi;X,Y) − nʹ

n + h − nʹ + 1
⋅
n + m − nʹ

n + m
, if Xi⩾uH.

where rank(Xi;X,Y) refers to the rank of the observation Xi conditional 
on the systematic and historical records. 

When considering POT series, as it is done for the type-specific dis
tributions, the plotting positions for flood type j are changed according 
to the relationship T = 1 − 1

λj(1− p) . 

3.4. Bayesian Markov Chain Monte Carlo (MCMC) 

As a second approach to consider historical flood events in the TMPS 
model, we apply the Bayesian Markov Chain Monte Carlo (MCMC) 
approach. This approach has been used before in the context of histor
ical floods for annual maximum series and regionalisation approaches 
(Reis & Stedinger, 2005; Payrastre et al., 2011; Gaume et al., 2010; Gaál 
et al., 2010) or for rainfall (Isikwue et al., 2015). The basic idea is to 
include prior information in the estimation. In traditional Bayesian 
estimation approaches, it is crucial to estimate the normalisation con
stant, which is difficult in many cases, especially when having complex 
models. MCMC, instead, samples values of the parameters from the 
posterior distribution without computing the normalisation constant. 
Here, we apply the Metropolis-Hasting algorithm, which generates data 
with a distribution converging to the posterior distribution (Reis and 
Stedinger, 2005). Roughly speaking, this approach is similar to sampling 
techniques, yet not with independent draws. Here, we even assume no a- 
priori information, avoiding assumptions on a suitable distribution, a 
suitable variance and an acceptance rate (see MacPherson et al., 2023). 
The MCMC approach has the advantage that also confidence intervals of 
the flood quantiles can be obtained easily. 

bʹ́
i;j =

1
nj + m⋅λj − kj − lj

∑nj+m⋅λj

t=nj+m⋅λj − kj − lj+2

(t − 1)(t − 2)⋅…⋅(t − i)
(nj + m⋅λj − 1)(nj + m⋅λj − 2)⋅…⋅(nj + m⋅λj − i)

Xʹ́
j;(t)
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To make Bayesian MCMC applicable to the TMPS model, we make a 
few assumptions. First, we assume that the probability of exceedance of 
the threshold uj is constant over time. Therefore, it does not have to be 
estimated via Bayesian MCMC, keeping the algorithm simple. Second, if 
we do not observe historical flood events of a given flood type, we as
sume that all historical floods lie below the historical threshold uH;j. This 
is reasonable, as large historical floods would have been recorded. 

The Likelihood function of the TMPS model for the systematic series 
X1,…,Xn with parameter set θ then is obtained as follows 

L(X|θ) =
∏n

i=1
f(xi) =

∏n

i=1
(F(xi))́

  

=
∏n

i=1

∏5

j=1

(
(pu;j) + (1 − pu;j)Gj(xi;j )́

)

=
∏n

i=1

∑5

j=1
(1 − pu;j)gj(x)

∏

{k∈1,…,5}/j

Fk(xi;j)

where pu;j = Hj(uj) is assumed to be known. 
When considering systematical and historical records Y1,…,Yh 

jointly, the Likelihood function is given by the product of both Likeli
hoods (MacPherson et al., 2023): 

L(X,Y|θ) = L(X|θ)⋅L(Y|θ)

where L(Y|θ) =
∏h

j=1f(yj)⋅Pj(h|θ) and Pj(h|θ) is assumed to be known. 
The likelihood function for the AMS series are derived analogously, 

though solely based on the GEV distribution, i.e. f(x) would be replaced 
by h(x) in this case. 

4. Results and discussion 

4.1. Classification of systematic and historical flood events 

After application of the flood event separation and flood classifica
tion to the systematic records of Wechselburg gauge, 248 flood events 
have been identified for the years 1910 until 2013, i.e., an average of 
2.38 flood events per year. Thereof, 74 events have been classified as 

type R1 (on average 0.712 events per year), 41 as type R2 (on average 
0.394 events per year), 74 as type R3, 23 as type S1 and 36 as type S2. 
The majority of events therefore are rainfall driven. To be able to un
derstand the meteorological drivers of these flood events and to later on 
classify the historical events according to these drivers, the character
istics of the flood-related rainfall were compared (Fig. 3). Besides rain
fall sum, rainfall duration and runoff coefficient of each flood events, 
also the relative intensity of the flood-related rainfall was considered, 
which is defined as the proportion of the maximum 1-day rainfall sum on 
the total sum of rainfall. For flood types S1 and S2, it has to be consid
ered for this comparison that the contributing snowmelt is not consid
ered. The results prove significant differences between the flood-related 
rainfall events of different flood types. R1 flood events are associated 
with rainfall events of short duration of only one or two days (probably 
shorter, but that would be hidden by the daily resolution of the input 
data). While the overall amount of rainfall is not large, the relative in
tensity is: On average, 60 % of the total precipitation falls within one 
day. This leads to surface runoff, since the soil often cannot infiltrate 
such high intensities in such short time. R1 flood events therefore can be 
clearly associated with heavy rainfall. The rainfall sums as well as the 
duration of R2 floods are larger than for R1 floods, while the rain in
tensities are more uniform and smaller. With an average rainfall dura
tion of three days and larger runoff coefficients, a larger amount of 
rainfall is transferred to subsurface runoff. Obviously, long-duration 
synoptic rainfall events can be associated with this flood type. Flood 
type R3 is associated with the longest rainfall events (on average 10 
days) with largest rain sums. The intensity is low and uniformly 
distributed over the whole rainfall event, leading to large runoff co
efficients. The rainfall associated with flood type S1, the rain-on-snow 
events, is comparable to that of the R1 floods, though with lesser in
tensity. This is reasonable, as the energy transferred by the rainfall into 
the snow cover that leads to a rapid snow melt has to be large. Finally, 
the rainfall associated with the snowmelt-driven floods (S2) can be seen 
as negligible. The sum is comparably small (and might even contain 
snow) and distributed over a long period of time. Here, clearly snow 
melt from the snow cover is the main driver. 

The annual distribution of the flood events is given in Fig. 4. There, a 
circular statistic was applied (Burn, 1997), where the coordinates in the 
unit circle were multiplied with the empirical non-exceedance 

rel. intensity rain duration (days)

rain sum (mm) runoff coefficient
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Fig. 3. Characteristics of flood-related rainfall events differentiated by the flood type.  
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probability. The flood events with largest flood peaks are thus displayed 
closest to unit circle, while flood events with small flood peaks are 
displayed close to the centre. The largest events (close to the unit circle) 
clearly occur in summer and early winter. In August, most of the flood 
events are caused by heavy rainfall (type R1), while in July sequences of 
rainfall and therefore probably a wet soil led to the most extreme floods 
(type R3). In spring and early winter, instead, long-duration rainfall led 
to the largest flood events (type R2). Snow-induced flood event only play 
a minor role for the generation of extreme floods, and if they do, then 
only in combination with heavy rainfall (type S1). The mean day of 
occurrence of flood types S1 and S2 is clearly in January, while heavy- 
rainfall floods (R1) and long-duration-rainfall floods (R2) tend to 
occur in August respectively July, though less uniformly. 

To include the historical events in Table 1 in the parameter estima
tion, these have to be classified first. From the previous analyses it is 
obvious that the historical events must be rainfall-driven, since all flood 
events occur in summer. However, from the flood peak alone it is not 
clear into which of the three rainfall-driven flood types these events 
should be classified. If the flood volume would be known, a classification 
would be easily possible with the given classification as simply the peak- 
volume-relationship would be compared to those of the systematic re
cords. However, flood volume is rarely available for historical floods or 
afflicted with high uncertainty due to changing hydraulic conditions in 
flood plains. However, information on the corresponding rainfall might 
be available, though not as specific rainfall amounts but as descriptions 
of the rainfall events, i.e., their duration, intensity and extension. For 
this purpose, information from chronicles is often valuable. For the 
Wechselburg gauge, Fickert (1934) has summarised such rainfall in
formation that is now used here for the classification. For the 1573 flood 
event, it is known that the flood was caused by “catastrophic downpour” 
which concentrated on August 12 on small cells of only few square 
kilometres in the catchments in the Mulde river basin. Therefore, rainfall 
of a duration of less than two days led to an extreme flood. Given this 
information and having in mind Fig. 2, we classified the 1573 as heavy- 
rainfall-driven flood and therefore R1. For the 1694 flood, it is known 
that it was caused by short, intensive rainfall that only occurred for one 
day. It was therefore classified as R1 event, too. The 1771 flood was 
quite different. The whole June of the year 1771 was characterised by 
several long-duration rainfall events, leading to several smaller floods in 
early and mid-June. Finally, on June 30th and Juli 1st, a rainfall event 
with extraordinary large rainfall sums hit large parts of several sub- 

basins in the Mulde river basin. The wet soil led to a fast reaction of 
the catchment and the catastrophic flood event. The temporal and 
spatial extension of the flood-generating rainfall event leads to the 
conclusion that it must have been an R2-flood event. The flood event 
1858 followed a period of drought in July 1858. On July 28th, rainfall 
started that lasted for several days with constant intensity. Finally, on 
August 1st, the intensity intensified for large areas of the Mulde river 
basin, causing the flood event. Therefore, again it can be concluded that 
the 1858 was an R2 flood event. The best documented historical flood 
event in the Mulde river basin is the one occurring in 1897, since there 
already rainfall records (though in small scale) were available. These 
records prove that rainfall over four days with only rare extreme in
tensities were the trigger for the 1897 flood event. Therefore, this flood 
event was classified as R2 flood, too. 

4.2. Incorporation of historical flood events in type-based flood statistics 

With the previous flood classification, the application of the PPWMs 
to the type-specific flood samples (historical and systematic) was 
possible. In the following, we will evaluate how the distributions 
including historical events changed compared to when only the sys
tematic records are used for flood statistics. A special focus is laid on the 
shape parameter since this parameter is mainly responsible for the shape 
of the right tail and is known to be most impacted by the extreme floods 
and also by uncertainty in estimation. 

First, the input parameters of the PPWM approach must be defined. 
The historical records start in the year 1433, while the systematic re
cords cover the period 1910 to 2013. The historical period therefore 
covers m = 478 years. The beginning of the historical period was set to 
1433, as since then it can be assumed that all historical flood events have 
been noted (Fickert, 1934). Next, the threshold for the historical events 
had to be defined. Here, we chose the threshold type-specifically, i.e., 
the threshold may vary with the flood type. The reason behind this 
assumption is that spatially limited events, as caused, e.g., by heavy 
rainfall, might only appear in chronicles if they were extreme. Only in 
this case they might have affected enough people or caused enough 
damage to be reported. Spatially extensive events, like R2 or R3 floods 
which are caused by large-scale rainfall events, instead, automatically 
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Fig. 4. Circular statistics for the identified flood events at Wechselburg gauge. 
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affect more people and might thus be recorded even if the flood peak 
itself was not that extreme. We chose uH;1 = 500 m3/s and uH;2 = 375 
m3/s such that historical events as well as only the most extreme events 
of the systematic records exceed the thresholds (Fig. 5). The choice of 
these thresholds is a subjective one and might affect the goodness of fit 
critically. For example, Wang (1990) uses x100 as the historical threshold 
such that on average five flood events would lie above the threshold 
when having historical and systematic records of 500 years. In our 
example, we have 481 years of historical and systematic records and 
with the chosen thresholds 5 (R1) respectively 7 (R2) flood events 
exceed the thresholds. Therefore, the chosen thresholds are comparable 
to the choice of Wang (1990). However, other thresholds are possible, 
and the choice might depend on the catchment under consideration. One 
could check the assumption made for the threshold by application of a 
Poisson test (Lang et al., 1999). To allow to investigate the impact of the 
choice of the type-specific threshold, we have repeated the estimation 
with one unique threshold uH = uH;1 = uH;2 = 500 (Figure A.1 in the 
appendix). The results did not differ much. 

As a comparison, the PPWM approach was applied to the annual 
maximum series (AMS), too. Here, we used the GEV distribution and a 
historical threshold of 800 m3/s, leading to five flood events in the 
historical and systematic records to lie above the threshold. This 
approach is analogous to the one proposed by Wang (1990). 

When comparing the distribution functions based on the systematic 
records only (Fig. 6a) and of systematic and historical records (Fig. 6b), 
differences become visible. First of all, the resulting joint TMPS model 
results in significantly smaller flood quantiles for return period from 
100 years on. Additionally, the right tail seems to be less heavy, leading 
to a less exponential shape in the plot. At the same time, the consider
ation of historical events leads to slightly larger flood quantiles for re
turn periods in the range of 5 to 50 years. Comparing the results to those 
obtained when using the annual maximums series (AMS) and a GEV 
distribution, it appears that both models change quite similarly. When 
comparing the 100-year floods, one can see that both approaches, AMS 
and TMPS, deliver quite similar flood quantiles when considering the 
systematic data only. The 100-year flood in this case is in a range of 914 
m3/s (AMS) to 975 m3/s (TMPS). When considering the historical and 
the systematic records jointly, the 100-year flood decreases to 764 m3/s 
(AMS) respectively 899 m3/s (TMPS). Thus, the flood quantiles of the 
AMS approach decrease similar to those of the TMPS model. 

This implies that the PPWMs have a similar effect on the TMPS model 
and on the classical AMS approach. However, for the TMPS model it is 
now possible to attribute the changes by having a look at the type- 
specific distribution. Since there have been no historical flood events 
of flood types R3, S1 and S2, the distribution functions of these flood 
types do not change. For the two flood types with historical events, R1 
and R2, however, significant changes become visible. For the heavy- 
rainfall floods (R1), the flood quantiles become larger for most return 
periods. This is probably caused by the two extreme historical floods 
that have been added to the record and that are among the largest floods 
of all time in this catchment. Yet, the right tail seems to be less heavy. 
For the R2 floods, a clear decrease of the tail heaviness of the right tail 
can be observed. Instead of an exponential increase in the plot, a 
converging behaviour occurs for the distribution function when adding 
the historical floods to the records. It can therefore be concluded that the 
general decrease of R2 flood quantiles leads to a decrease of flood 
quantiles in the TMPS model. Yet, the right tail of the TMPS model is still 
dominated by the R1 flood events, leading to a slightly heavy tail. The 
plotting positions for the AMS confirm the benefit of incorporating 
historical flood events. The largest floods are better captured by the 
distribution function. However, plotting positions depend much on the 
observation period. Therefore, their explanatory power is limited, which 
has to be considered here. Plotting positions for the type-specific dis
tributions can be found in Figure A.2 in the appendix. 

The observations regarding the TMPS model are confirmed when 
having a look at the distribution parameters (Table 2). Indeed, for both 
flood types, R1 and R2, the shape parameter κj of the GPD distribution, 
which serves as an indicator for skewness and tail heaviness, has 
decreased for the PPWM approach. For heavy-rainfall floods (R1), it 
decreased from 0.201 to 0.051 and therefore only a slight heavy tail 
remains. For the R2 floods, the heavy tail (κ2 = 0.189) changed to a light 
tail (κ2 = − 0.428). At the same time, the variability indicated by the 
scale parameter βj increased significantly. The GEV distribution 
included in the type-specific distribution is less affected. Since the GEV is 
only used to estimate the probability of exceedance of the threshold uj, it 
has limited effect on the overall distribution and is only given here for 
sake of completion. 

What is striking for the PPWM approach is that the variability in
creases significantly for the GPD distribution. This is because in the 
PPWM approach, for the historical period all events below the threshold 
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are assumed to be equal to the mean. Together with few extreme events 
this increases the variability rapidly, especially when considering a high 
threshold. Still, the resulting distributions seem to be reasonable as they 
represent the empirical frequency of the extreme events well. For 
example, a flood event with flood peak 1000 m3/s has a return period of 
about 200 years. Therefore, the three most extreme floods with about 
that flood peak magnitude would have a theoretical probability close the 
empirical probability when considering the systematic and historic re
cords, as can be seen also by the plotting positions. 

4.3. Comparison to MCMC approach 

When comparing the results of the MCMC approach to those of the 
PPWM approach, a difference of the resulting distribution functions can 
be seen (Fig. 7a and b). This applies mainly to the flood types R1 and R2, 
as can be expected since only there additional information in terms of 
historical events is used. For these two flood types, only the shape 
parameter of the GPD changes significantly (Table 3). For both flood 
types it reduces to values close to zero and hence to a light-tailed dis
tribution, which is visible in Fig. 5a. Such behaviour is then inherited by 
the TMPS model which, compared to the results of the systematic data 
only (Fig. 6a), also has a light tail and much smaller flood quantiles for 
return periods from 10 years on. Even for a return period of 1000 years, 
the corresponding flood quantile of the TMPS model lies at 804 m3/s and 
thus below the five largest flood events in the records. Compared to the 
results of the PPWM approach, the smaller flood quantiles up to 5 years 
are similar but for larger return periods the flood quantiles derived with 
the MCMC approach are much smaller. This is mainly due to the smaller 
scale parameters derived by the MCMC approach. It appears that the 
MCMC approach assumes a smaller variability of the flood events. This is 

especially crucial for the heavy-rainfall floods of type R1. Here, a higher 
variability is able to better capture the extreme events that occurred in 
the past. The MCMC approach, however, results in a distribution that 
would assign these events with return periods much higher than 1000 
years which is questionable as such events have appeared a couple of 
times in the historical and systematic records. When comparing the 100- 
year flood events, similar differences become evident. While for the 
systematic period, both approaches, AMS and TMPS, result in almost the 
same flood quantile (877 m3/s) with confidence bands between 577 and 
1468 m3/s (AMS) respectively 594 and 1532 m3/s (TMPS), the differ
ence increases when considering the historical events. The 100-year 
flood of the TMPS model decreases to 564 m3/s (434–756 m3/s), 
while the 100-year flood of the AMS decreases to 783 m3/s (701–905 
m3/s). 

Table 2 
Distribution parameters of the AMS and TMPS model for the PWM approach for systematic records only (Syst.) and the PPWM approach for historical and systematic 
records (Hist.).  

Model Generalized Pareto Distribution Generalized Extreme Value Distribution  

κj βj uj ξj σj μj  

Syst. Hist. Syst. Hist. Syst. Hist. Syst. Hist. Syst. Hist. Syst. Hist. 

AMS − − − − − − 0.304 0.212  76.5 80.3  147.6 138.7 
R1 0.201 0.051 80.89 165.5 73.6 73.6  0.434 0.254  45.3 51.9  113.6 104.4 
R2 0.189 − 0.428 111.74 291.2 77.7 77.7  0.477 0.279  54.8 66.7  128.5 101.1 
R3 − 0.196 − 111.1 − 81.4 − 0.273 − 45.2 − 123.6 −

S1 − 0.045 − 53.3 − 90.9 − 0.213 − 29.4 − 110.7 −

S2 − 0.796 − 193.6 − 98.7 − − 0.015 − 56.8 − 174.5 −
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Fig. 7. Distribution functions for given return periods based on a) the systematic and b) systematic and historical records derived with MCMC; c) and d): Corre
sponding confidence bands for TMPS and AMS models. 

Table 3 
Distribution parameters of the AMS and TMPS model for the MCMC approach for 
systematic records only (Syst.) and for historical and systematic records (Hist.).  

Model Generalized Pareto Distribution  

κj βj uj  

Syst. Hist. Syst. Hist. Syst. Hist. 

R1 0.152  0.072  82.4  81.7  73.6  73.6 
R2 0.125  − 0.068  120.2  104.0  77.7  77.7 
R3 − 0.218  − 0.262  114.1  111.0  81.4  81.4 
S1 − 0.073  − 0.060  54.8  53.9  90.9  90.9 
S2 − 0.810  − 0.811  197.4  196.6  98.7  98.7  

Generalized Extreme Value Distribution  
ξj  σj  μj 

AMS 0.304  0.212  76.5  80.3  147.6  138.7  
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Comparing the results of the PPWM and the MCMC approach for the 
AMS series demonstrates that both approaches have almost no differ
ence. Here, the variability is reduced similarly. From these results it can 
be concluded that the MCMC approach seems to underestimate the 
variability of the historical period. The obtained flood quantiles for the 
TMPS model seem to be too small compared to the observed extreme 
floods. Especially heavy-rainfall floods seem to be underestimated by 
this approach, while the PPWM approach better captures this flood type. 
For the AMS approach, no difference between the two approaches be
comes apparent. This is due to a different weighting in the MCMC 
approach. Such a behaviour should be noticed when considering flood 
types in flood statistics in the context of historical floods. 

The MCMC approach also allows to investigate the uncertainty 
related to the estimation of the models. In theory, this is also possible for 
the PPWM method, e.g. by nonparametric bootstrap. However, in such a 
case the resampling with replacement for historical floods would not be 
meaningful, as the variability is limited. Moreover, when considering 
type-specific distributions, it has to be taken into account that neither 
the frequencies nor the event magnitudes of the flood types should be 
altered by the approach. Thus, a resampling would only be possible 
within the type-specific samples. For these reasons, such an approach 
was not considered in Section 4.2. The MCMC approach does not have 
these issues. 

It can be seen in Fig. 7c and d that the uncertainty related to the 
TMPS is slightly higher than for the AMS approach. This mainly due to 
the higher number of parameters used in this model. Though the higher 
number of flood events considered by the POT approach balances this a 
bit, the uncertainty remains high especially for large return periods. This 
was already reported by Fischer and Schumann (2023). In the upper 
range of the confidence bands of the TMPS model, flood quantiles of up 
to 1000 m3/s for a return period of 1000 years could be obtained. 
However, the 95 % confidence interval of the TMPS model does not even 
reach the 5 % interval of the AMS approach, demonstrating again that 
the TMPS model is significantly smaller than the AMS model when using 
the MCMC approach for large return periods. Yet, it can also be seen that 
the incorporation of historical events significantly reduces the uncer
tainty related to the estimation of both approaches. 

4.4. Limitations of the approach 

The previous investigations have demonstrated that both ap
proaches, PPWM and MCMC can be applied to the TMPS model. How
ever, the PPWM approach resulted in quantile estimates that seem to 
better represent the observed return periods of the most extreme floods. 
Still, there are limitations of this approach that have to be discussed. 

One crucial choice that impacts the model results is the threshold. As 
always for POT approaches, the choice of the threshold can increase or 
decrease the flood quantile estimates. Here, we made two assumptions 
on the threshold. First the type-specific POT-threshold in the TMPS 
model was chosen as three times the weighted long-term mean 
discharge, where the weights were chosen according to the frequency of 
the respective flood type in each month. This choice was made based on 
the empirical, hydrological consideration that a flood event should be 
several times higher than the mean discharge (Dyck et al., 1980). It was 
discussed in comparison to other, statistical approaches before by 
Fischer (2018). Depending on the catchment and the climatic condi
tions, other choices might be appropriate, too. For central Europe, this 
threshold has been proven to deliver reliable flood estimates. The second 
choice of a threshold was made for the historical threshold, i.e., the flood 
peak from which on it is assumed that historical flood events have been 
recorded. Here, we used a visual inspection of the type-specific samples 
and chose the threshold such that it clearly separated extreme flood 
events from ordinary flood events. As a result, in nearly 600 years of 
records, five to seven flood events exceeded this threshold, a number 
quite close to what was assumed by Wang (1990) as a reasonable 
threshold. Wang (1990) used the empirical 100-year flood and argued 

that a return period of 100 years indicates an extreme level. Again, other 
choices might be reasonable here and should be investigated further in 
future studies. The assumption of type-specific historic thresholds did 
not influence the results much but might be hydrologically more 
reasonable than one fixed threshold for all flood types, as the severity 
and extension of a flood event and thus the probability to be reported on 
varies much with the flood type. Spatially extended flood events like R2 
or R3 floods affect more people and hence might be recorded more 
frequently, even though their magnitude might be smaller than that of 
spatially limited heavy-rainfall floods. The assumption of these thresh
olds applied to both approaches, PPWM and MCM, and hence affects 
both models alike. 

Another assumption made for the models was that of stationarity. It 
was assumed that the frequency of flood types did not change over the 
last 600 years and that therefore it can be transferred to the historical 
period. Moreover, it was assumed that the probability distributions were 
stationary. Since in the last centuries some flood types such as heavy- 
rainfall floods have become more frequent (Fischer & Schumann, 
2023 & 2024) and other flood types might have vanished (such as ice 
floods in Germany), such an assumption is at least questionable. Yet, it is 
difficult to obtain information on these past changes solely from the 
systematic records. Moreover, the impact of the frequency of events in 
the historical period on the resulting flood is small, as it is considered 
only indirectly in the ranks used for the PPWM. For the MCMC approach, 
the impact is assumed to be greater as here the whole period of historical 
floods is simulated under this assumption. Alternatively, one could think 
about having time-varying weights in the mixture model. Such an 
approach would take into account that the impact of certain flood types 
changes over time. Besides a varying frequency, it is also argued 
sometimes that the magnitude of flood events has changed over time. In 
such a case, non-stationarity of the data would be considered by time- 
varying distribution parameters (Yan et al., 2017). Of course, such as
sumptions add uncertainty to the approach and should be only made 
based on solid studies. Future studies should therefore focus on ana
lysing the changes that affected flood (types) in the past years and the 
future and consider time-varying parameters and frequencies that could 
be supported by climate scenarios. 

One limitation that only applies to the PPWM approach is that flood 
types R3, S1 and S2 are not considered in the historical period, as no 
historical floods of these types have been observed. However, the 
absence of historical floods also contains information, namely that no 
extreme floods of these types have occurred in the past. Such informa
tion is not used in the PPWM approach. However, in the systematic 
records no extreme floods of these event types have been observed, too, 
as indicated by the light-tailed distributions. Therefore, there would not 
have changed much in the distributions if the information on no extreme 
events in the past would have been used. This has also been demon
strated by the MCMC approach, where indeed the distributions of R3, S1 
and S2 floods did not change much when the historical period is 
considered. 

In this study, five flood types have been considered. This decision is 
based on previous studies for Europe (Brunner & Fischer, 2022; Fischer 
& Schuman, 2023), where this number of flood types proved to result in 
clearly distinguishable flood types, each with different characteristics of 
rainfall intensity, rainfall duration, snowmelt as well as flood volume 
and duration. Therefore, this number of flood types was adapted here, 
too. However, as shown in Fig. 7, a larger number of flood types in
creases the number of parameters of the TMPS model and thus the 
related uncertainty. One could therefore think of reducing the number of 
flood types and apply an objective criterion such as the BIC (Spie
gelhalter et al., 2002) to determine the optimal number of flood types. 
However, this might limit the deterministic interpretability of the flood 
types, which was one major focus point in this study. Therefore, it was 
decided to keep the five flood types here. Additionally, one could also 
think about a different flood classification, e.g. a hydroclimatic one or a 
more process-based classification (Tarasova et al., 2019). 
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Finally, one of the major limitations of both approaches, PPWM and 
MCMC, in the context of type-based flood statistics lies in the required 
information for the flood classification. Compared to traditional ap
proaches based on annual maximum series, type-based statistics require 
knowledge on the genesis of each flood to allow for a flood classification. 
Such information might be hard to obtain, especially when chronicles or 
similar sources are not available. Here, we demonstrated that sufficient 
information can be obtained when the season of occurrence of the event 
is known (which is usually the case as at least the month of occurrence is 
recorded) and the extension and relative magnitude of the correspond
ing rainfall event is described. However, in other parts of the world such 
information might be harder to obtain, limiting the application of the 
proposed approach. As for all historical flood records, there is always 
uncertainty related to the flood peak. Historical records are mostly based 
on water stages and the discharge is thus obtained by stage-discharge 
curves. These curves are usually not derived for such conditions and 
extreme flood events as considered in the historical period. Thus, these 
curves are extrapolated and their validity for extreme events remains 
unclear. 

5. Conclusions 

In this work we have demonstrated how historical flood events can 
be incorporated into type-based flood statistics. For this purpose, the 
partial probability weighted moments were applied, and the historical 
flood events were classified according to their flood genesis for a 
catchment in Germany. The results were compared to an MCMC 
approach. Both approaches resulted in smaller flood quantiles and less 
heavy-tailed up to light-tailed distributions when the historical flood 
events were considered. The flood quantiles of the TMPS model 
decreased similarly to those of the annual maximum series. With the 
type-based flood statistics, it was possible to attribute this decrease. It 
was shown that the distribution of heavy-rainfall floods changes only 
slightly, as extreme floods similar to those in the last century have 
occurred for 600 years. This is in particular interesting for the 2002 
extreme flood in this catchment, since a similar flood event occurred 
almost 600 years before. The 2002 flood event is therefore neither un
expected nor exceptional in its genesis. Moreover, the variability of this 
flood type is constantly high over the whole period, as small flood events 
and large flood events occur alike. In contrast, the distribution of the 
long-duration-rainfall floods decreased significantly and especially the 
right tail changed from a heavy to a light tail. From the historical events 
it can be seen that indeed only in the last century the most extreme 
events of this type occurred with the most exceptional event occurring in 
2013. Previous flood events have been smaller and extreme floods of this 

type only occurred since the late 18th century. The incorporation of 
flood genesis therefore did not only help to improve the estimation of 
flood quantiles for large return periods by extending the available in
formation, it also allows to evaluate the impact of certain rainfall pat
terns over time. In this study, the PPWM approach proved to better 
capture the variability of the flood types compared to the MCMC 
approach. The MCMC tends to result in small flood quantiles for large 
return periods in case of type-based statistics which should be kept in 
mind for future studies. We have also discussed the limitations of both 
approaches, which mainly lie in the assumptions of thresholds and sta
tionarity. Future studies should address the assumption of stationarity, 
which might limit the applicability of these approaches for long historic 
periods. 
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Fig. A1. Distribution functions for given return periods based on a) the systematic records only and b) the systematic and historical records derived with PPWM with 
unique threshold for all flood types.
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