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A B S T R A C T

Soil health is essential to global sustainable food production. Beyond its role in food production, soil
also plays a crucial role in maintaining ecosystem health and mitigating climate change. Monitoring and
improving the health of agricultural soils requires insight into spatial variation in soil properties and associated
ecosystem functions. Measuring this variation via classic sampling and analysis on field, regional or global
scale is challenging due to high spatial variability inherent to soils and to the lack of affordable and
reliable measurement methods. We present here a novel and worldwide applicable approach combining NIR
spectroscopy using proximal sensors, remote sensing data and deep learning models to predict the main soil
properties controlling soil health in the field. These include the soil texture (clay, sand, silt), soil pH and
buffered cation exchange capacity, the organic and inorganic carbon content and soil nutrient contents for
nitrogen, phosphorus (P) and potassium (K). The designed model infrastructure is shown to predict all soil
properties (except for P and K) on the LUCAS dataset well (𝑅2 > 0.8), and that predictive performance of
field-state samples can be made comparable to lab-dried performance through transfer learning and sensor
fusion with globally available covariates. These findings show that proximal soil sensing has high potential
for soil health assessments and tailor-made recommendations regarding crop, soil and fertiliser management
measures.
1. Introduction

Healthy soils provide a wide range of ecosystem services, such as the
production of food, retention of nutrients, sequestration of carbon and
provision of habitat. Soil health refers to the capacity of soil to function
as a living ecosystem that sustains plants, animals, and humans and
support ecosystem services including agricultural production (Karlen
et al., 2019; Kibblewhite et al., 2008; Lal et al., 2021). Currently,
agricultural soils and their provision of ecosystem services are under
considerable threat due to unsustainable cultivation practices. Intensive
fertilisation, tillage and mono cultures have led to negative impacts on
soil biodiversity, soil acidity, soil structure and nutrient supply (Young
et al., 2021). To enhance the sustainability of agriculture by manage-
ment, it is key to understand the management impact on soil health and
associated ecosystem services, including fertilisation strategies (Snyder
et al., 2014; You et al., 2023), crop and soil management (Young et al.,
2021; Busari et al., 2015). Combining these practices can minimise nu-
trient losses, enhance overall sustainability of agriculture, and mitigate
the adverse effects of agriculture.
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The implementation of sustainable soil management strategies re-
quires a diverse set of options, each adapted to local climate, land use,
yield levels, soil conditions and management opportunities (Amelung
et al., 2020; You et al., 2023). This also includes a critical assess-
ment of existing and site-specific trade-offs between ecosystem ser-
vices (Lehmann et al., 2020) since soil properties and functions vary
over space. Assessing these properties and functions on field and farm
level requires an operational and reproducible methodology account-
ing for chemical, physical and biological processes and their interac-
tions (Ros et al., 2022). Recent soil assessment frameworks like the
Open Soil Index (Ros et al., 2022) and the Soil Navigator (Navigator,
2024) show that it is possible to assess soil health leveraging the
existing knowledge base of agronomic research and routine laboratory
data. Key soil properties include clay content, pH, soil organic carbon,
and soil nutrients like nitrogen, phosphorus and potassium (Bünemann
et al., 2018) given their impact on biological, chemical and physical
soil processes controlling soil health (Ros, 2012; Lal, 2013; Schlatter
et al., 2017; van Doorn et al., 2023). Though the assessment of these
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soil properties is key to monitor soil health and to take appropriate
measures, their data availability is scarce since (i) classic soil sampling
and analysis via wet chemistry is laborious, time consuming, and costly,
and (ii) common sampling protocols ignore spatial variation occurring
within and among fields. As a consequence, spatially explicit insights on
soil health and management impacts at field and farm scale resolution
as well as critical thresholds for associated soil functions are rare, both
being crucial to guide changes in farming practices.

Sensing technologies like the use of Near-Infrared (NIR)
spectroscopy may solve part of these challenges since the analysis is
relatively simple, repeatable, fast and non-destructive (Reijneveld et al.,
2022). The NIR soil spectra are analysed and mapped to soil properties
using statistical methods or machine learning models (Barra et al.,
2021). A common method for linking spectroscopy to soil wet-chemical
properties is the Partial Least Squares (PLS) supervised multivariate
statistical analysis technique. The PLS method is simple to implement
and interpret, computationally efficient and it performs well even with
small datasets. However, with a broader data space or more complex
soil properties, it may not be able to explain all the subtleties of the
spectral signal. A common solution is to use local PLS models (Baumann
et al., 2021; Lobsey et al., 2017; Seidel et al., 2019) which find
local or neighbouring samples to build a local PLS(-like) model on-
the-fly and predict the sample using this local model. Although this
improves modelling performance, it has some drawbacks in relation to
calculation time, and the appropriate definition of neighbourhood.

Therefore, Deep Learning (DL) models have become popular due
to their ability to learn abstract, hierarchical and non-linear represen-
tations of data, which overcomes the limitations of methods such as
(local) PLS. These models have achieved state-of-the-art performance
in various tasks such as image analysis (Yu et al., 2022; Chen et al.,
2022; Wang et al., 2022), speech recognition (Zhang et al., 2020; Chung
et al., 2021) and natural language processing (Brown et al., 2020).
In 2019 Padarian et al. were one of the first to model soil spectro-
scopic data with DL. They transformed 1D spectra in 2D-spectrograms,
which performed significantly better than traditional modelling like
PLS. Around the same time, Riese and Keller (2019) classified soil
texture using a 1D-Convolutional Neural Network (CNN). In recent
years these models have become more sophisticated, introducing local-
isation and multiple channels (Tsakiridis et al., 2020), a combination
with an Recurrent Neural Network (RNN) to address the sequential
nature of spectra (Yang et al., 2020), a deeper CNN architecture (Zhong
et al., 2021) and a combination with a Virtual Auto-Encoder (VAE) to
generalise and simplify spectral preprocessing (Tsimpouris et al., 2021).

Where the potential of NIR has been proven for all major soil
properties and some major plant nutrients, the current application to
determine in-field variation of soil properties is limited by the fact that
current sensors in routine agricultural laboratories are often relatively
large devices unsuitable for field work, still requiring extensive soil
sampling and subsequent transportation and preprocessing. Given the
strong spatial variation in soil properties within and across fields,
the use of portable NIR devices provide multiple advantages since
they allow for in-field measurements, avoid sample preprocessing, and
devices are available at low costs (Shen et al., 2022). However, portable
NIR spectrometers also have several challenges in field conditions: they
typically have a low spectral resolution, limited waveband range and
in-field measurements come with the danger of heterogeneous sample
consistency, moisture and soil presentation. Various techniques to ad-
dress in-field conditions include external parameter orthogonalisation,
(moisture-explicit) direct standardisation, piece-wise direct standard-
isation, orthogonal signal correction, and generalised least squares
weighting (Zhou et al., 2021; Roudier et al., 2017; Ji et al., 2015;
Minasny et al., 2011). However, each technique applies an irreversible
transformation to convert the original spectral signal into a ‘dry’ signal.
Most techniques also require local samples in the creation of the specific
moisture conversion models for a local area. A benefit of deep learning
2

is the ability to transfer models trained on one target problem over
to another target problem. We hypothesise that training the model on
field spectra, using transfer learning to train from a model directly
trained on dry soil spectra, is an effective method to address in-field
soil conditions.

In this paper we show the potential of portable near-infrared spec-
trometers to be used in the field worldwide to measure soil organic and
inorganic carbon, clay, silt and sand content, soil pH, the CEC, and the
major nutrients nitrogen, phosphorus and potassium. This significantly
improves the ability to measure and monitor soil properties and soil
health for both agronomic and environmental purposes. In more detail,
we first evaluate an innovative DL architecture to predict the variation
in aforementioned soil properties using the European LUCAS database.
Second, we evaluate whether a portable NIR device can be used for
direct in-field measurements using a global dataset of agricultural soils
(retrieved from 36 countries) and a transfer learning method to correct
for soil moisture interference in the measured spectrum. Lastly, we
evaluate the value of remote sensing derived covariates for robust and
reliable in-field measurements.

2. Material & methods

In order to test the core hypotheses of this paper, two facets of the
proposed framework must be defined: the spectral, wet-chemical and
remote sensing datasets used to train and evaluate model performance,
and a description of the DL architecture and training procedure applied.

2.1. Data

Two spectra datasets are described within this paper: the LUCAS
open-source VisNIR spectral dataset which contains lab-condition dry
sample spectra, and the AgroCares proprietary NIR spectral dataset
which contains both lab- and field-state spectra. Both datasets contain
NIR spectral data and their corresponding soil wet-chemical derived
properties. Furthermore, in order to test whether the inclusion of
remote sensing data can improve the accuracy of proximal NIR sen-
sors (Rossel et al., 2011) in the field, each sample in both datasets also
contains the location of the sample’s origin, allowing the collection of
location specific covariates. A visual summary is depicted in Fig. 1.

2.1.1. LUCAS
The LUCAS 2009 (Land Use/Land Cover Area Frame Survey) dataset

is an open-source database that contains nearly 20,000 soil samples
from 25 European countries (Tóth et al., 2013; Orgiazzi et al., 2018).
The samples were collected and analysed using standardised methods
in a single laboratory. Each sample was air-dried and sieved to a
maximum size of 2 mm, after which their absorbance spectra were
measured using a FOSS XDS Rapid Content Analyzer with wavelength
400–2500 nm at resolution 0.5 nm. The LUCAS dataset partly contains
highly organic soils like peat that have an entirely different nutrient
value distribution to the bulk of the dataset. To ensure metrics are
not skewed, these samples are excluded from the dataset, resulting in
17,937 samples for analysis.

The LUCAS dataset contains a total of 11 wet-chemical proper-
ties, each measured within the same lab using the same procedures.
These include the clay, sand and silt content (using a laser diffrac-
tion method, ISO13320:2009), the soil pH (determined in water and
CaCl2, ISO10390:2005), the organic and inorganic carbon content
(using dry combustion for SOC and a volumetric method for carbon-
ates, ISO10694:1995), total 𝑁 (using a modified Kjeldahl method,
ISO11261:1995), the buffered CEC (using barium chloride extraction,
ISO11260:1994), and nutrients P (P soluble in sodium hydrogen CaCO3
solution, ISO11263:1194) and K (determined via atomic absorption
spectrometry after extraction with NH4OAc). Some values were mea-
sured below the limit of detection, but reported as the limit values;
we have explicitly removed these for our experiments. For detailed

information, see Jones et al. (2020).
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Fig. 1. A soil sample is scanned and collected in the field together with its GPS coordinates. The sample is sent to a laboratory for wet-chemistry analysis and re-scanned after
drying and preprocessing with a NIR scanner.
Data split. Data was split identically to Tsakiridis et al. (2020), result-
ing in five training data folds. For efficiency, experiments on LUCAS
were performed with a fixed validation set (fold 1).

2.1.2. AgroCares dataset
AgroCares has an in-house dataset of ∼17,500 samples from 36

countries. These samples were analysed in the AgroCares laboratory
with a variety of wet-chemical procedures for the same parameters as
LUCAS. Note that although for P and K the soil extraction method is
different, so the reported values are correlated to each other (Wolf and
Baker, 1985), except for P when pH < 7 (Nel et al., 2023; Mallarino,
1995). Details about the laboratory methods, parameter statistics and
sample locations are reported in the Appendices.

Each soil sample was air-dried, sieved and scanned with a Hand-
held NIR Scanner which produces spectra with wavelength 1300–
2525 nm at 5 nm resolution. Approximately 10,000 of these samples
were also scanned in field-state condition before air-drying. Field-state
spectra exhibit much larger moisture features and the aggregation of
soil particles is likely to also obscure information that is otherwise
clear in the lab-dried spectra. We refer to the lab-dried and field-
state datasets as ‘labdry’ and ‘field’ respectively. Fig. 2 illustrates the
differences between field and labdry spectra for the same sample.
The prominent moisture peaks in field soil obscure features that are
more easily observed in labdry spectra. The final spectrum used in the
datasets for each sample is an averaged spectrum consisting of 2/3–
5 for labdry/field sample states (as of writing, 3 scans is the current
procedure for field samples). Multiple spectral measurements are to
protect against the heterogeneity of the sample.

Spectral data for both labdry and field datasets were obtained using
the following procedure: scanning the soil on-site, bagging the scanned
soil and sending to the AgroCares laboratory, scanning the dried and
sieved sample for labdry spectra and finally performing wet chemical
measurements to obtain the reference values for the sample. The soil
sample is collected as a composite of ten subsamples per hectare.
Each subsample is taken from a 0–30 cm depth and mixed together
within a bucket. For detailed instructions about scanning and sampling
see AgroCares (2024) and Luebbers (2024).
3

Data split. The full dataset is split into training, validation and test sets.
The training set is used to shape the weights of the DL models, while
the validation set acts as a stand-in for the test set to prevent overfitting
on the training data. The test set is only used to compute performance
metrics and is not used for any form of (hyperparameter) optimisation
or model selection. Both the validation and test sets are made with a
minimum set of 60 samples per country to ensure global applicability of
the models developed. The sets are defined using the following criteria:

• The properties of the soil sample are not outliers. An outlier is
defined as having a value that lies 4.25 times the interquartile
range outside of the soil property.

• There exists no other data point within 1 kilometer proximity.
• All target soil properties are available.
• At least 30 samples are available for this country, preferring

samples that have a field scan available.

After this filtering, the 30 samples per validation and test set are
collected randomly. There are 29 countries for which there are at
least 60 samples (30 validation + 30 test) in the dataset making a
global validation and test set of 840 samples each. Of these, 621/637
validation/test samples have a corresponding field spectrum available.

2.1.3. Remote sensing covariates
Both LUCAS and AgroCares datasets record GPS coordinates for

every sample. These coordinates can be used to find publicly available
remote sensing data about the sampling point. A total of 57 static
covariates were calculated using Google Earth Engine (Gorelick et al.,
2017). Elevation was selected from Multi-Error-Removed Improved-
Terrain (MERIT) (Yamazaki et al., 2017) and used to calculate aspect,
elevation, slope and hillshading. For Sentinel-1 the scenes recorded
in 2018 to 2021 were used to calculate the Volumetric Soil Moisture
(VSM) (Zakharov et al., 2020). Scenes were aggregated using median
and standard deviation and grouped by season.

From Sentinel-2 the harmonised Level 2 A data from 2018 to
2021 were used to calculate Second Brightness Index (BI2) (Escadafal,
1989; Wang et al., 2021), Soil-Adjusted Total Vegetation Index (SATVI)
(Marsett et al., 2006) and Transformed Vegetation Index (TVI)
(Nellis and Briggs, 1992). First, the pixels in the scenes with clouds
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Fig. 2. Example of the spectral differences between 5 individual scans from a field sample (upper) and a 2 scans from a lab-dried and sieved sample (bottom).
were masked (jdbcode, 2024). For BI2 and SATVI, the scenes classi-
fied as ‘bare_soil’ according to band ‘Scene Classification (SCL)’ were
selected to calculate both indices. The values were then aggregated
using a median and standard deviation function. If a pixel has no scenes
with a ‘bare_soil’ classification, the value is set to 0. The TVI was also
aggregated with median and standard deviation and grouped by season.

The average predictions of bulk density, cation exchange capacity,
volumetric fraction of coarse fragments, clay fraction, total nitrogen,
organic carbon density, soil acidity, sand fraction, silt fraction and soil
organic carbon content for the depths 0–5 cm, 5–15 cm and 15–30 cm
were selected from SoilGrids 2.0 (Poggio et al., 2021). For organic
carbon stocks, the average predictions from 0–30 cm were selected. To
avoid data leakage from LUCAS into SoilGrids only 26 of the 57 static
covariates were used for training on the LUCAS dataset.

From WorldCover, the land cover classifications from version v100
(Zanaga et al., 2021) and v200 (Zanaga et al., 2022) were selected.
These categorical classifications are one-hot encoded. A full overview
is given in Table 8 in the Appendices. The resulting covariates dataset
for LUCAS is made publicly available at GitHub (Kok, 2024).

2.2. Model framework

We designed an innovative DL model framework that combines the
NIR spectrum with data derived from remote sensing and the power of
DL algorithms to predict the variation in a series of soil properties. A
DL model, broadly speaking, consists of multiple hidden layers defined
by learnable parameters that link to one-another through a series of
weights and activation functions capable of capturing nonlinear com-
plex patterns in the data. However, optimising DL models require an
abundance of data and computation. The added options and flexibility
of DL models also come with the drawback of many hyperparameters
that need careful tuning and optimising.

A benefit of DL models is the availability of transfer learning, which
is the ability to take a pretrained model on some domain as a starting
point and exploit the learned parameters for a new domain. As high-
lighted earlier, in-field spectral measurements present difficulties due to
moisture and sample heterogeneity, but transfer learning could allow a
model to first be trained on a labdry spectral dataset before attempting
to learn features from the more difficult field dataset.

The layered architecture of DL models is also flexible in terms of
data flow. Data computed at one stage of the model can be reinserted
later (He et al., 2015). This opens up the possibility of including
multiple data sources to obtain a single prediction, for example using
4

remote sensing data to enhance the model’s predictive capabilities.
Globally available datasets contain general information about a sam-
ple’s location, which can be included into a model to provide a type of
context alongside a sample’s spectrum.

The total process of training a prediction model involves data pre-
processing, model architecture definition and parameter optimisation.
For all experiments, these procedures are largely the same. In all ex-
periments we use the same convolutional neural network architecture
outlined in Section 2.2.2, including remote sensing covariates when
stated.

2.2.1. Preprocessing
Preprocessing for spectral data typically includes two standard pro-

cedures: Savitzky–Golay (SG) smoothing (Savitzky and Golay, 1964)
and the Standard Normal Variate (SNV) transformation (Dhanoa et al.,
1989). Convolutional neural networks have the capability to process
multiple convolutions of the same input simultaneously. So, instead of
selecting specific smoothing parameters for SG followed by SNV, all
combinations of window sizes (1–64) and derivatives (0–2) are applied
simultaneously, to produce 192 parallel representations of every input
spectrum. We also include the original unprocessed and SNV-processed
versions of the input spectra to produce a total of 194 variations.

The LUCAS spectra are downsampled by a factor of ten thus leav-
ing 420 data points per sample. Downsampling is a common opera-
tion (Tsakiridis et al., 2020; Tsimpouris et al., 2021), typically used
to improve optimisation speed by reducing the number of inputs.
Moreover, this step-size is consistent with the AgroCares dataset which
also has a 5 nm resolution. Preliminary experiments showed no signif-
icant increase in performance when training with the highest possible
resolution.

Preprocessing of each target soil parameter value involves two
techniques: Box–Cox transformation (Box and Cox, 1964) to convert the
data into an approximately normal distribution, followed by a rescaling
transformation to rescale the Box–Cox transformed values between
[−1, 1]. The parameters for these transformations are derived from the
training dataset and applied to the validation and test sets. If remote
sensing covariates are included in the experiment, they are rescaled
between [0, 1] without a Box–Cox transformation.

2.2.2. Architecture and training procedure
The model architecture is defined as a CNN which consists of two

sequential sets of convolutional layers, each followed by a normalising
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Fig. 3. The spectra are preprocessed, then feature maps are computed using convolutional layers which are combined in fully connected layers to obtain a final layer with n
predictions for n targets. Optionally, remote sensing covariates are added in the final stage. Field models are constructed similarly, but they are initialised with weights from the
pre-trained labdry model.
and pooling layer. The CNN is then flattened into a fully connected
layer, which is concatenated with the covariate inputs if they are part
of the model. This is followed by three fully connected dense layers
leading into an output layer that predicts all target values simultane-
ously. The output layer uses the 𝑡𝑎𝑛ℎ activation function to bound the
predicted values between [−1, 1] (target values are rescaled as defined
in Section 2.2.1). Fig. 3 illustrates the architecture visually.

While the types of layers used in the model are fixed, the exact
hyperparameters that define each layer and the method of learning are
key to producing effective models. Table 1 lists all the hyperparameters
that such an architecture must use and the associated ranges of each
hyperparameter.

Exhaustively optimising each hyperparameter value is computa-
tionally infeasible. To speed this up, we exploit a technique called
Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) as im-
plemented by Optuna (Akiba et al., 2019). This algorithm optimises
hyperparameter values by modelling the performance of previously
sampled ranges and statistically identifying hyperparameter combina-
tions that yield the lowest error. The error of a given combination is
defined as the validation loss of the model using the hyperparameter
5

Table 1
Hyperparameter value ranges/choices.

Parameter Values

batch size 256, 512, 1024
learning rate [1e−7, 1e−3] (logstep)
activation relu, prelu, selu
dilation [1, 8] (step=1)
kernel size [3, 9] (step=2)
filters [64, 512] (step=64)
neurons [64, 512] (step=64)
l2 regularisation [1e−7, 1e−3] (logstep)
pooling avg, max
pooling size 2, 3

combination. In our setup, TPE first samples seven random combina-
tions, then starts to sample interesting combinations based on these
previous results for 50 trials.

We use the Adam optimiser (Kingma and Ba, 2014) to train for at
most 500 epochs, using mean-squared error on all targets as the loss
of the model. After each epoch, the loss on the validation set is also
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calculated. If the validation loss does not decrease after 10 epochs the
learning rate is halved, and if the validation loss does not decrease for
30 epochs the training process is terminated. The model with the best
validation loss is returned as the selected model for this combination.

After hyperparameter optimisation is complete, we use an ensemble
of four of the best-performing models (according to validation loss) to
average test set predictions of the four models.

2.2.3. Transfer learning
When training a model for predicting field spectra, transfer learn-

ing can be utilised to improve the model performance and speed of
convergence. With transfer learning, features relating to soil prop-
erties can be relatively easily identified by the CNN in the labdry
model, then that model forms a foundation upon which the field
dataset is trained, allowing the learning process to build upon the
labdry-informed features.

To perform transfer learning, the top seven training setups on the
labdry dataset are selected, based on validation set loss. These each
serve as a starting point of training the field dataset. Each setup is
repeated three times in the same fashion as training from scratch,
yielding 21 models. The reason for this repetition is to account for the
instability inherent to the neural network training process. Again, the
best four models (on validation set) make up the final ensemble model
for field-state samples.

2.2.4. Remote sensing covariates
Every sample used to train the model is linked to a spectrum (or

spectra: labdry and field), target values (the measured soil properties),
but also the geographic location from where the sample originated. Re-
mote sensing covariates are obtained by querying publicly available re-
mote sensing data sources based on GPS coordinates (see Section 2.1.3
for details). These features are not powerful enough alone to predict soil
properties accurately, but rather they should be treated as contextual
information alongside the spectral signal. When covariates are included
in the model architecture, they are provided as an additional input to
the model, preprocessed (Section 2.2.1) and concatenated beside the
features obtained after the convolutional blocks.

2.2.5. Evaluation metrics
We primarily use the metrics 𝑅2 (coefficient of determination) and

𝑅𝑃𝐼𝑄 (ratio of performance to interquartile distance) to evaluate the
performance of the DL models and describe the variation in measured
soil properties. For all results, an independent test set is used to produce
impartial results. The 𝑅𝑃𝐼𝑄 is used instead of 𝑅𝑀𝑆𝐸 (root mean
quared error) because the latter is dependent on the range of the
bserved values whereas 𝑅𝑃𝐼𝑄 is given relative to the range of the
arget values, so it can be compared across target values originating
rom different datasets. For bias we report mean error 𝑀𝐸 to evaluate
nder/overprediction.

Given a dataset of 𝑛 samples, ground truth 𝑦 and prediction �̂�, the
etrics can be calculated as follows:

𝑅2(𝑦, �̂�) = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(1)

𝑀𝑆𝐸(𝑦, �̂�) =

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑛
(2)

𝑅𝑃𝐼𝑄(𝑦, �̂�) =
𝑄3 −𝑄1

𝑅𝑀𝑆𝐸(𝑦, �̂�)
(3)

𝑀𝐸(𝑦, �̂�) =
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
𝑛

(4)

with 𝑄1 and 𝑄3 being the 25% and 75% quartile of the test set reference
ata respectively.
6

3. Results and discussion

3.1. Prediction of soil properties on dried soils

The designed DL infrastructure and calibration procedure made it
possible to predict the majority of the soil properties with a high
accuracy (Table 2). The best predictions were found for pH and CaCO3
with an 𝑅2 > 0.92. Contents of clay, sand, soil organic carbon and
total nitrogen could also be predicted with 𝑅2 values above 0.8 and
𝑅𝑃𝐼𝑄 values almost above 3.0. The variation in soil phosphorus and
potassium is more challenging to predict given 𝑅2 values between 0.4
and 0.6. Alternative state-of-the-art modelling approaches (Tsimpouris
et al., 2021; Tsakiridis et al., 2020) being tested on LUCAS dataset
show very comparable performance to the approach tested in this
study for all soil properties. There are other modelling approaches
being evaluated on the LUCAS dataset (Padarian et al., 2019; Zhong
et al., 2021), but these typically include the small set of highly organic
samples which tend to skew the evaluation metrics due to the extreme
values included. We have included the full set of soil properties in
our models, as their inclusion has shown no negative effect on the
performance of the other properties in experiments.

Measuring this set of soil properties with high precision and accu-
racy (Table 2) allows one to assess soil health for a series of chemical,
physical and biological soil functions as shown by Bünemann et al.
(2018) who reviewed existing soil properties and indicators being used
in soil quality assessments. For example, Ros et al. (2022) derived more
than 21 soil indicators to assess soil health with respect to sustainable
crop production. The performance of the proximal sensor predictions
show that the soil nutrient supply for nitrogen and potassium as well
the pH buffering can be evaluated in view of crop and soil type depen-
dent thresholds. The performance for phosphorus is currently too low
for appropriate underpinning of fertiliser recommendations and can
likely only be used to distinguish P deficient from P rich soils. Similarly,
the moisture retention capacity, the aggregate stability, erodibility,
workability, and sealing risk can be derived since clay content, sand
content and soil organic carbon are known. Ease of sampling and
measurement are often considered one of the major requirements for
soil quality indicators, and reliability and costs are also considered
important.

Using global models for local applications could be problematic
because they usually capture general trends about the data, at the
cost of local performances. However, DL models have the flexibility
and capacity to characterise problems into many features without
compromising local specificity. Alternatives like spiking or local models
suffer from increased computational demands and complexity, both in
terms of how to handle locality or similarity of samples and how to
maintain potentially many models for a global application. Our DL
approach can be seen as a natural extension of the algorithm developed
by Tsakiridis et al. (2020) but it significantly differs from Tsimpouris
et al. (2021), who use a separate, densely stacked auto-encoder instead
of the convolutional layers and bootstrap aggregation (bagging) as a
form of ensembling. Our models improve over Tsakiridis et al. (2020),
which can be explained by the use of extensive preprocessing, a broader
range of learnable parameters and performing additional hyperparame-
ter tuning. However, our model approach typically performs somewhat
worse than Tsimpouris et al. (2021) (Table 2). Possible explanations for
the lower performance could be that they did not remove values below
the limit of detection or that their ensembling procedure is much more
extensive as it requires 50 separate models to be built and individually
optimised.

The preprocessing steps (i.e. Savitzky–Golay derivative smoothing)
have been argued as unnecessary (Ng et al., 2019, 2020) since convo-
lutional filters were found to construct filters that resemble common
preprocessing techniques from the raw spectrum. However, we found
the preprocessing improves the mean 𝑅2 and 𝑅𝑃𝐼𝑄 by 3% and 6%

respectively on the LUCAS dataset (no covariates). Our hypothesis is
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Table 2
State-of-the-Art comparison. See Eqs. (1)–(4) for metric definitions. 𝑀𝐸 and some elements are not found in Tsimpouris et al. (2021). CaCO3
statistics from Tsimpouris et al. appear to be on a different range and hence are excluded.

Element Tsimpouris et al. Ours

𝑅2 𝑅𝑃𝐼𝑄 𝑅𝑀𝑆𝐸 𝑅2 𝑅𝑃𝐼𝑄 𝑅𝑀𝑆𝐸 𝑀𝐸

clay 0.88 4.15 4.32 0.87 3.85 4.68 0.21
silt 0.80 3.19 8.14 0.78 2.96 8.79 0.58
sand 0.84 4.34 10.36 0.82 4.00 11.25 0.27
pH (H2O) 0.93 7.08 0.33 0.92 6.34 0.37 0.00
OC 0.88 2.29 9.96 0.81 2.38 8.48 0.88
N 0.86 2.34 0.59 0.81 2.42 0.54 0.05
CEC 0.85 2.94 3.93 0.84 3.04 3.74 0.31

Mean 0.86 3.76 5.38 0.84 3.57 5.41 0.33

pH (CaCl2) missing 0.93 6.97 0.37 0.00
P missing 0.35 1.38 23.16 4.19
K missing 0.52 1.14 147.09 17.84
CaCO3 excluded 0.94 3.08 37.71 0.90
Table 3
AgroCares NIR-dataset performances for combinations of sample state, use of transfer and use of covariates. Sample state 𝐿 = labdry spectra
model, 𝐹 = field spectra model and 𝐹𝐿 = field spectra model transferred from labdry model. See Eqs. (1)–(4) for metric definitions. 𝑅𝑀𝑆𝐸
and 𝑀𝐸 can be found in Table 7 in Appendices.

Covariates Without With

Metric 𝑅2 𝑅𝑃𝐼𝑄 𝑅2 𝑅𝑃𝐼𝑄

Sample state 𝐿 𝐹 𝐹𝐿 𝐿 𝐹 𝐹𝐿 𝐿 𝐹 𝐹𝐿 𝐿 𝐹 𝐹𝐿

Experiment (a) (b) (c) (a) (b) (c) (d) (e) (f) (d) (e) (f)

clay 0.70 0.67 0.69 2.70 2.64 2.70 0.71 0.67 0.68 2.77 2.62 2.66
silt 0.68 0.59 0.59 2.92 2.54 2.54 0.73 0.62 0.67 3.18 2.65 2.85
sand 0.69 0.63 0.64 3.17 2.94 2.96 0.73 0.68 0.73 3.41 3.18 3.43
pH (KCl) 0.74 0.61 0.63 3.59 2.99 3.08 0.76 0.68 0.70 3.75 3.27 3.42
pH (H2O) 0.75 0.64 0.66 3.18 2.68 2.74 0.77 0.69 0.71 3.30 2.88 2.97
OC 0.83 0.78 0.79 1.77 1.60 1.61 0.87 0.80 0.80 2.03 1.68 1.66
N 0.79 0.77 0.78 1.72 1.70 1.74 0.83 0.72 0.77 1.88 1.55 1.72
CEC 0.81 0.79 0.79 2.86 2.71 2.69 0.83 0.79 0.80 3.00 2.71 2.80
P 0.51 0.46 0.44 1.15 1.32 1.30 0.59 0.49 0.52 1.26 1.33 1.37
K 0.44 0.37 0.34 1.32 1.21 1.18 0.48 0.38 0.39 1.37 1.21 1.22

Mean 0.69 0.63 0.64 2.44 2.23 2.25 0.73 0.65 0.68 2.60 2.31 2.41
a
i
m
m

a
a
r
a
n
i
m
b
b
c
a
t
c

g
s
r
p
h

that by removing this step, the CNN is better able to focus on feature
extraction during training. It is not known how much each of the 194
preprocessing channels individually contributes to performance at this
time, and the influence of preprocessing algorithms warrants further
study.

3.2. Prediction of soil properties under field conditions

While most studies in relation to NIR sensors focus on spectra col-
lected in controlled conditions, the use of mobile sensors in the field is a
challenge since NIR reflectance is sensitive to variation in environmen-
tal conditions, in particular soil moisture (Bünemann et al., 2018). To
assess whether NIR can be used as a monitoring tool directly on field-
state samples, the performance of the field-state model was evaluated
and compared to performance of the labdry (dried and ground) model
using the AgroCares NIR-dataset. The performance of field-state models
was compared under two conditions: one situation where the model
was built ‘from scratch’ directly on field-state spectral data, and another
one where the model was built on top of a previously-built labdry-state
model via transfer learning.

Moisture obfuscates the light’s interaction with the sample and is
therefore a source of noise which makes moist samples more difficult
to predict. The effect of moisture on model performance can be clearly
seen in Table 3 with labdry (𝑎) and field soils (𝑏). On average, 𝑅2 and
𝑅𝑃𝐼𝑄 drop by 9.5% and 9.4% respectively when building a model
7

from field soil directly. Exploiting the labdry dataset by using transfer s
learning to train the field model (𝑐) from the labdry model yields
small average benefit over direct field training (𝑏), but when also

ncluding covariates (experiments (𝑑), (𝑒) and (𝑓 ), see Section 3.3 for
ore details), the improvement gained from transfer learning increases
ore substantially.

The transfer learning approach as applied in our study is simple to
pply, but it requires that both air-dried and field-moist spectra are
vailable for each sample. Additional tests where the same soil was
ewetted at various moisture contents showed that the transfer learning
pproach was applicable across a wide range of moisture levels (data
ot shown). Only at high moisture contents (above field capacity) there
s a slight decrease in the prediction performance. Reflecting on the
odel performance for all soil properties, each model is guaranteed to

e on par (e.g. organic carbon) or better in terms of performance on
oth 𝑅2 and 𝑅𝑃𝐼𝑄 metrics (P and K are exceptions when not using
ovariates). When labdry models are already available, this has the
dditional benefit that a transfer learning field model is much faster
o converge than training a model from scratch which saves training
osts.

For all elements except arguably P and K the model can be used to
et a good estimate of the nutrients in the soil which enables regular
oil health monitoring. Even for the worst element, low potassium
egions in the field will still be discernible from a high potassium
ortion. This implies that the use of proximal sensing in the field can
elp farmers to optimise their soil management while accounting for

patial variation in soil properties and associated threats, functions or



Geoderma 446 (2024) 116903M. Kok et al.

i
m
s
s

Table 4
Covariate performance (excluding SoilGrids) on the LUCAS dataset. See Eqs. (1)–(4) for
metric definitions.

Covariates Without With

Element 𝑅2 𝑅𝑃𝐼𝑄 𝑅2 𝑅𝑃𝐼𝑄

clay 0.85 3.67 0.86 3.73
silt 0.74 2.76 0.75 2.83
sand 0.79 3.73 0.80 3.81
pH.in.CaCl2 0.93 6.89 0.93 7.03
pH.in.H2O 0.92 6.29 0.92 6.42
OC 0.83 1.92 0.85 2.01
N 0.81 1.99 0.82 2.07
CEC 0.82 2.64 0.82 2.70
P 0.27 1.15 0.26 1.15
K 0.44 1.02 0.48 1.06
CaCO3 0.94 2.76 0.93 2.69

Mean 0.76 3.17 0.77 3.23

ecosystem services. It has also the potential to improve the agronomic
knowledge base that has been derived from field averaged values
thereby ignoring the spatial variation within fields (Ros et al., 2022).

The earlier extensive review of Bünemann et al. (2018) describes
three main limitations of spectroscopic techniques when applied in the
field. First, sensors determine only the properties of the first millime-
ters of the soil area analysed. Second, soil moisture levels, particle
density and roughness of the soil surface can affect the predicted soil
properties. Lastly, the accuracy and precision is strongly controlled by
the calibration and validation process and the prediction is as good as
the calibration data set. Our study shows that all three aspects can be
covered by well designed and automated procedures for sampling, field
analysis, model selection and calibration. Even under field conditions
around 70% to 80% of the variation in soil properties (except for P and
K) can be explained with the DL model.

3.3. Leveraging remote sensing data for sensor accuracy

Remote sensing techniques provide a powerful means for char-
acterisation and monitoring of near-surface soil properties and land
use changes at reasonable temporal and spatial resolutions. Concep-
tually, McBratney et al. (2003) came with the so-called SCORPAN
approach to analyse their influence on soil formation, a framework to
predict the spatial variation in soil properties based on soil forming
factors, like climate, land use, organisms, relief, parent material, time
and spatial position. Since the major soil properties like SOC, clay
content and pH are for a large extent affected by parent material,
geohydrology and the position in the landscape, one might expect that
fusing handheld spectra with remote sensing data will improve the
accuracy and precision of estimated soil properties (Asgari et al., 2020;
Grunwald et al., 2015).

For the LUCAS dataset (Table 4) there is a small performance
improvement when adding (non-SoilGrids) covariates. On the Agro-
Cares dataset (Table 3), the inclusion of the SoilGrids covariates results
in a more pronounced improvement. The AgroCares labdry dataset
improved by an average 5.7% and 7.0% on 𝑅2 and 𝑅𝑃𝐼𝑄 respectively.
On field-transferred spectra the average increase was in a similar range
with 8.0% and 6.1%. Figs. 4 and 5 illustrate performances across
labdry, field, and field with transfer, all using covariates. The increased
performance is consistent across all soil properties with the strongest
effect on the weakest nutrient 𝑃 .

For almost all soil properties the sensor fusing in a single model
mproved the prediction. Similar findings have been presented for yield
aps (Dobermann and Ping, 2004), farm based mapping of carbon

tocks (van der Voort et al., 2023) implying that fusion of sensor
ets with available soil-environmental databases provide promising
8

pathways for soil assessments facilitating decision making to adapt soil
and crop management in view of complex local, regional and global
environmental challenges.

Since the use of remote sensing data in field-state models for proxi-
mal mobile sensors produces performances that are almost at the same
level as models that are built on labdry and ground spectra alone,
we conclude that remote sensing derived covariates can be used as
compensation for the moisture artefacts that remain in a field sample
even after transfer learning models are being applied. However, it
is important to note that the application in the field also becomes
dependent on this data and is more sensitive to the cited accuracy
of the sampling location. Since a broad spectrum of soil information
has already been adopted in precision farming systems to optimise
decisions, data availability is not necessarily a limiting factor in large
areas in the world.

In order to understand the contributions of each of the covariates
used, a simple feature permutation analysis was performed. The follow-
ing procedure was repeated ten times on the AgroCares field dataset:
within the test set, for each covariate, the order of the covariates were
randomly permuted across all samples, producing new output predic-
tion values for every sample in the test set. The absolute differences in
predictions from the non-permuted predictions were then summed for
every target value, producing a relative ranking of importance in how
much the value of a covariate affects the predictions. Attribution values
for all covariates can be found in Table 8 in the Appendix. Covariates
related to texture, seasonal VSM, and landcover classifications were
found to be most important. These align with the SCORPAN approach
in that these properties are informative for soil form, climate, and
land use. It is important to realise that attribution is not necessarily
causation as there can be many solutions for a given problem (Kirk-
patrick et al., 2017). This is one of the reasons eXplainable Artificial
Intelligence (XAI) is challenging and still an active research area (Ali
et al., 2023). An extensive covariate importance analysis is therefore
left for future work.

Note that this paper focuses on main chemical and physical soil
properties controlling agronomic and environmental soil functioning
thereby ignoring soil biological measurements (Bünemann et al., 2018;
Lehmann et al., 2020). Due to the strong relationship of soil biological
processes with soil organic matter, pH, texture and nutrient levels (Rei-
jneveld et al., 2022), soil sensors might nevertheless provide insights in
the temporal and spatial dynamics of soil functions controlled by soil
biology. Similarly, measurements of labile, reactive or stable carbon
fractions (Ghani et al., 2003; Haynes, 2005; Ros, 2012) might add value
to the total SOC being used in this study.

4. Conclusion

Portable near-infrared spectrometers can be used to determine soil
properties relevant for soil quality assessments in the field, allowing
farmers and land users to monitor soil health indicators over space and
time, and to adapt crop, soil and fertiliser management to the local situ-
ation. The chosen DL model architecture and calibration and validation
procedures applied allowed the development of robust and accurate
model predictions for a series of agronomic relevant soil properties.
These include the soil texture, the organic and inorganic C content,
the soil pH and buffered cation exchange capacity as well as the
total nitrogen content. Applying transfer learning made it possible to
correct for variations in soil moisture, ensuring high accuracy on in situ
measurements done in the field. Sensor fusion with remote sensor data
showed clear improvements for most of the soil properties included,
implying that the use of spatial explicit covariates will enhance the

predictive power of soil-spectral prediction models.
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Fig. 4. Test set prediction results clay, silt, sand and pH (from top to bottom) for labdry (left) and field samples without (middle) and including (right) remote sensing covariates.
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Fig. 5. Test set prediction results for OC, N, CEC, P and K (from top to bottom) for labdry (left) and field samples without (middle) and including (right) remote sensing covariates.
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