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Amphibians and fishes play a central role in shaping the structure and function of

different habitats and the thermal buffer offered by freshwater systems is small.
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life history is, therefore, imperative to predicting the impacts of climate change in

ments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish
species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic,
ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal toler-
ance (CT__

well as the influence of the methodology used to assess these thermal traits using

) and thermal acclimation capacity (acclimation response ratio, ARR) as

a conditional inference tree analysis. We found globally consistent patterns in CT__
and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and
life stage as significant determinants of thermal traits. The analysis demonstrated that
CT, .« does not primarily depend on the climatic origin but on experimental acclima-
tion temperature and duration, and life stage. Higher acclimation temperatures and
longer acclimation times led to higher CT__ values, whereby Anuran larvae revealed a

higher CT__. than older life stages. The ARR of freshwater fishes was more than twice
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1 | INTRODUCTION

Global climate change is not only causing an increase in mean air
and water temperatures, but also an increased magnitude and fre-
quency of extreme climatic events (Lee et al., 2023). As a result, ec-
totherms are more likely to experience temperatures beyond their
critical thermal maximum (CT__ ) in both terrestrial and aquatic
habitats (Duarte et al., 2012; Sunday et al., 2014). This is particu-
larly true for populations already living close to their upper thermal
limit. Consequently, the ability to mitigate thermal stress through
either migration, evolutionary genetic adaptation or acclimation is
crucial for the persistence of species in a changing climate (Franks
& Hoffmann, 2012; Huey et al., 2012; Seebacher et al., 2015). Given
the limited dispersal ability of many species (e.g., freshwater species;
Woodward et al., 2010) and rapid pace of global warming (Hoffmann
& Sgrd, 2011), physiological acclimation is arguably the most im-
portant mechanism for coping with climate change (Gunderson &
Leal, 2016). Understanding differences in acclimation capacity of
species and identifying global patterns can, therefore, help to iden-
tify climate change risks to biodiversity and develop effective con-
servation measures (Somero, 2010).

As an adaptive response to larger seasonal differences in
temperature, thermal tolerance and acclimation capacity of ec-
tothermic species or populations tend to increase with increas-
ing latitude from tropical through temperate climate zones (e.g.,
Cicchino et al., 2023; Deutsch et al., 2008; Peck et al., 2014; Rohr
et al., 2018; Somero, 2005; Sunday et al., 2011; but see: Gunderson
& Stillman, 2015; Sgrensen et al., 2016) and from higher to lower el-
evations (Enriquez-Urzelai et al., 2020; but not: Gutiérrez-Pesquera
etal., 2022; Sunday et al., 2019). This biogeographical pattern is con-
sistent with the climate variability hypothesis (Ghalambor et al., 2006;
Janzen, 1967), suggesting that climatic differences across altitu-
dinal and latitudinal gradients lead to corresponding adaptations
in thermal physiology (but see: Gutiérrez-Pesquera et al., 2022).
Low-latitude species adapted to relatively stable temperature con-
ditions may have a lower acclimation capacity and, therefore, may be
more vulnerable to climate change (Sunday et al., 2014; Tewksbury
et al., 2008; but see: Bovo et al., 2023). However, there is still little

acclimation response ratio, Bogert effect, climate variability hypothesis, CT

that of amphibians. Differences in ARR between life stages were not significant. In
addition to phylogenetic differences, we found that ARR also depended on acclima-
tion duration, ramping rate, and adaptation to local temperature variability. However,
the amount of data on early life stages is too small, methodologically inconsistent,
and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal
traits. We, therefore, propose methods to improve the robustness and comparability
of CT_../ARR data across species and life stages, which is crucial for the conservation

of freshwater biodiversity under climate change.

max developmental

phenotypic plasticity, metamorphosis, thermal bottleneck, thermal tolerance plasticity

empirical evidence supporting the climate variability hypothesis,
possibly due to the limited geographical and phylogenetic coverage
of observations, and because of the inconsistency of the methods
applied to measure the acclimation capacity of different species
and life stages (Gutiérrez-Pesquera et al., 2016; Shah et al., 2017).
Moreover, the use of different methods or protocols might impact
the estimation of thermal traits (Chown et al., 2009; Pottier, Burke,
Drobniak, et al., 2022; Rohr et al., 2018; Terblanche et al., 2007;
but not: Sunday et al., 2019). For example, acclimation duration
(i.e., how long organisms were held at an acclimation temperature
before being exposed to the test temperature; Rohr et al., 2018;
Ruthsatz, Dausmann, et al., 2022) and ramping protocol (i.e., heating
or cooling rate in thermal tolerance trials; llling et al., 2020; Penman
et al., 2023) have been suggested to influence measurements of ac-
climation capacity, as the underlying physiological processes occur
over certain time periods.

In animals with complex life histories, thermal tolerance and ac-
climation capacity are thought to change during ontogeny according
to physiological and morphological reorganizations and concomitant
aerobic capacities in relation to oxygen demand (Portner, 2002;
Portner & Peck, 2010; Ruthsatz, Dausmann, et al., 2022; Ruthsatz,
Dausmann, Paesler, et al., 2020; Ruthsatz, Dausmann, Reinhardt,
et al,, 2020) as well as energetic costs associated with develop-
mental processes (Ruthsatz et al., 2019). Furthermore, life stages
might differ in their ability for behavioral thermoregulation (Little &
Seebacher, 2017; Navas et al., 2008) resulting in stage-specific adap-
tations in thermal traits (Huey et al., 1999). Therefore, determining
taxon-specific acclimation capacity at different ontogenetic stages
should be taken into account when studying climate adaptation of
ectothermic species, as it will help identify life cycle bottlenecks and
provide robust data on the vulnerability of populations or species
to global warming (Bodensteiner et al., 2021; Dahlke et al., 2022;
Pottier, Burke, Drobniak, et al., 2022). To date, most studies have
not distinguished among life stages or have only focused on adults
when addressing the climate variability hypothesis (e.g., Gunderson
& Stillman, 2015; Rohr et al.,, 2018; Sunday et al., 2011, 2014,
2019) and the vulnerability of species to global change (e.g., Calosi
et al.,, 2008; Comte & Olden, 2017a; Molina et al., 2023; Morley
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et al., 2019). Moreover, most studies have pooled several pre- and
post-metamorphic life stages (Pottier, Burke, Drobniak, et al., 2022;
Weaving et al., 2022) thereby risking to overlook a critical thermal
bottleneck in the life cycle (Dahlke et al., 2020). The extent to which
thermal tolerance and acclimation capacity change during ontogeny
is, therefore, not clear for many taxa.

Amphibians and freshwater fishes tend to live in relatively shallow
waters (e.g., wetlands, ponds, rivers, lakes) and may, therefore, expe-
rience strong seasonal and daily temperature fluctuations (Capon
et al., 2021) and climate extremes such as heat waves (IPCC, 2021).
In addition, both taxa have a limited ability to disperse over larger dis-
tances and habitats to avoid unfavorable climatic conditions (Albert
etal., 2011; Campos et al., 2021; Yu et al., 2013). Consequently, as a
result of local adaptation (Meek et al., 2023), there should be a close
correspondence between the capacity for thermal acclimation and
the climatic conditions that amphibians and freshwater fishes expe-
rience during their life cycle. However, freshwater systems offer a
wide range of thermal microhabitats that enable behavioral thermo-
regulation (Campos et al., 2021), especially for (post-metamorphic)
amphibians that can switch between water and land. The potential
of behavioral thermoregulation could reduce the need for physiolog-
ical adaptations (also known as the Bogert Effect, Bogert, 1949) and
thus counteract the emergence of geographical patterns in thermal
acclimation capacity and/or thermal tolerance. Given the central
role that amphibians and freshwater fishes play in shaping the struc-
ture and function of these ecosystems (Closs et al., 2016; Hocking
& Babbitt, 2014), understanding determinants and patterns of their
physiological sensitivity is imperative to predicting the impacts of
climate change on freshwater systems.

Here, we aimed to define the determinants and patterns of ac-
climation capacity in upper thermal tolerance in amphibians and
freshwater fishes addressing, for the first time, ontogeny dependent
variation. To do so, we compiled literature on upper thermal toler-
ance and collected empirical data for CT__ in four amphibian (i.e.,
larvae, metamorphs, juveniles, and adults) and three freshwater fish
(i.e., larvae, juveniles, and adults) life stages acclimated to at least
two different temperatures. Next, we calculated the population-
specific acclimation capacity, that is, mean acclimation response
ratio (ARR) of upper thermal limits (i.e., the slope of the linear func-
tion describing the change in thermal tolerance with a given change
in acclimation temperature; e.g., Claussen, 1977; Hutchison, 1961),
and conducted a quantitative synthesis on the acclimation capacity
of amphibians and freshwater fishes to test for differences among
taxonomic groups, among life stages, and across thermal charac-
teristics of populations, that is, biogeographic differences based on
local thermal adaptation. Further, we investigated how the method-
ological context (i.e., acclimation duration and temperature, ramp-
ing rate) affects estimates of thermal traits. Finally, we summarize
methodological concerns, highlight key knowledge gaps, and provide
research recommendations for generating reliable and comparable
data on the acclimation capacity of ectothermic species and their life
stages. This will improve our ability to predict future climate vulner-
ability of species and populations.
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2 | MATERIALS AND METHODS
2.1 | Systematic literature review

We conducted a systematic literature review using ISI Web of
Science (ISl WOS, 2021) on 2022/06/30 and did not apply a times-
pan limit. The following Boolean search string was used to cap-
ture articles with experimental studies manipulating acclimation
temperatures of amphibians and freshwater fishes at different life
stages, and subsequently measured their CT__ : (“amphibian*” OR
“newt*” OR “frog*” OR “toad*” OR “salamander*” OR “freshwater”
AND “fish*”) AND (“early” OR “young” OR ‘life stage*” OR “onto-
gen*” OR “development®” OR “hatchling*” OR “alevin*” OR “larv*”
OR “tadpole*” OR “metamorph*” OR “postmetamorph*” OR “post-
metamorph*” OR “postlarva*” OR “post-larva*” OR “fry*” OR “parr*”
OR “smolt*” OR “subadult*” OR “sub-adult” OR “juvenile” OR “finger-
ling*” OR “adult*”) AND (“thermal” OR “temperature” OR “acclimat*”
OR “heat” OR “warm*”) AND (“tolerance*” OR “thermal tolerance*”

OR “temperature tolerance®” OR “warming tolerance*” OR “heat tol-

*n *n *n

erance®” OR “thermal stress tolerance*” OR “heat stress tolerance
OR “temperature stress tolerance®” OR “limit*” OR “temperature
stress*” OR “thermal limit*” OR “critical temperature*” OR “CT max”
OR “critical thermal m*” OR “thermal performance breadth*” OR

*n

“thermal breadth*” OR “performance breadth*” OR “thermal range

*n

OR “thermal window*” OR “thermal tolerance window*” OR “toler-

*n

ance window*” OR “sensitivity*” OR “thermal sensitivity”).

Our search resulted in 11,057 documents (Figure S1). After re-
moving book chapters, conference contributions, reviews, meeting
abstracts, editorial material, preprints, and proceedings articles,
10,740 published peer-reviewed articles remained in our initial data-
base. Additionally, we manually added articles included in the meta-
analyses of Claussen (1977), Gunderson and Stillman (2015), Comte
and Olden (2017b), Morley et al. (2019) and Dahlke et al. (2020) that
met our inclusion criteria (specified below) but were not obtained
through the ISI Web of Science search. After an initial subjective
evaluation of titles, 3991 articles potentially containing results
matching the objective of the present study were kept and further
assessed for eligibility using the abstract. Thirty-four articles were
not accessible. We contacted the authors of the original articles
to request missing information and heard back from two authors.
Finally, a total of 91 articles (33 on amphibians; 58 on freshwater
fishes) met our inclusion criteria. Search methods are summarized
in a PRISMA flowchart (Figure S1), and a list of included articles and
experimental studies therewithin is available in the figshare data
repository under https://figshare.com/s/57775032a0b79c416ef2
(https://doi.org/10.6084/m9.figshare.24872133).

2.2 | Inclusion criteria

Experimental studies were selected based on the following seven

inclusion criteria:
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Experimental studies were conducted on amphibians (anurans,

caudates, or gymnophiones) or freshwater fishes (teleosts).

. Animals were acclimated to at least two constant acclimation

temperatures under laboratory conditions prior to the CT_
measurements. Fluctuating temperature treatments were not
considered. Therefore, field experiments were not considered
since the acclimation temperature under field conditions is likely

to fluctuate.

. Articles provided comprehensive information on methodology

(acclimation temperatures and duration, ramping rate), phylogeny
(species names), sampling location (GPS location), and life stage. If
no GPS coordinates were provided but a concrete sampling loca-
tion was stated (e.g., Central Park, New York City, NY, USA), we
searched for the coordinates of the respective location on Google

Maps.

. Animals were collected from their natural habitat. Data were

excluded if measurements were taken from specimens bred ar-
tificially to reduce confounding issues associated with artificial
selective history (Bennett et al., 2018). Experimental studies were
also included if adult animals were collected to immediately re-

produce in the lab to obtain larvae.

. The critical thermal maximum (CT__ ) was used as a standard

max
measure of heat tolerance (Lutterschmidt & Hutchison, 1997a).

Experimental studies using other measures such as voluntary
thermal maximum, time to death, heat knockdown, or lethal tem-
peratures as well as extrapolations from thermal performance
curves were not considered. In aquatic and terrestrial ectotherms
such as amphibians and fish, CT__ is generally measured as loss
of equilibrium (LOE) or loss of rightening response (LRR) following
a steady increase in water or air temperature (dynamic method
according to Fry, 1947). In comparison to other endpoints such
as the onset of spasms (Lutterschmidt & Hutchison, 1997b),
measuring CT___ as LOE or LRR is a non-lethal, robust method at
various body sizes that is repeatable within individuals (Morgan
etal., 2018).

. AtCT_, measurements, the animals could be classified into one of

four different categories representing the consecutive life stages
of amphibians and freshwater fish: (a) larva (pre-metamorphic;
amphibians: <Gosner stage 42), (b) metamorph (only for amphib-
ians: Gosner stage 42-46), (c) juvenile (post-metamorphic), and (d)
adult (after reaching sexual maturity). Embryos were not included
in the present study because the assessment of acute heat toler-
ance in non-mobile life stages requires different endpoints that
may not be directly comparable to the LOE/LRR-based CT___ of
other life stages (Cowan et al., 2023; Lechner et al., 2023).

Food was provided ad libitum during the acclimation time since
food deprivation might decrease thermal tolerance and/or accli-
mation capacity (Lee et al., 2016).

2.3 | Data extraction

When all inclusion criteria were met, data were collated in a spread-
sheet. We extracted mean CT__  for all acclimation temperatures
resulting in 998 single data points (513 for amphibians; 485 for fresh-
water fish). Some of the selected articles performed different experi-
mental studies on, for example, different populations of one species,
different species, or different life stages. Therefore, all available
datasets were included, resulting in 345 experimental studies from
91 articles with 345 paired effect sizes CT_ . and acclimation capac-
ity. Data presented in the text or tables were directly extracted from
the articles. When only raw data were available, mean values were
calculated. For articles that presented results in figures instead of
tables, Engauge Digitizer 12.1 was used (Mitchell et al., 2021) to ex-
tract data from the graphs. In addition to CT__ data, information on
the methodology (i.e., acclimation temperatures and duration, ramp-
ing protocol), as well as on variables representing sampling location
as detailed as possible (i.e., GPS coordinates), phylogeny (i.e., scien-
tific classification according to the Linnean classification), and life
stage at CT,,, assessment was extracted. The data extractions were
performed by KR, KA and PCE, followed by an accuracy check of the
data (KA: freshwater fish sub dataset; KR: amphibian sub dataset;
PCE: both sub datasets).

2.4 | Bioclimatic variables

For each sampling location, 19 bioclimatic metrics, related to tem-
perature and precipitation, and elevation were extracted using
the WorldClim 2 database (http://www.worldclim.org/; Fick &
Hijmans, 2017) for the average of the years 1970-2000. The data
were extracted at a spatial resolution of 30s (~1km?), using pack-
age “geodata” (Hijmans et al., 2022) in R (version 4.2.1; R Core
Team, 2020). Bioclimatic variables are coded as follows (name of
the variable and the unit used as input is included in parenthesis):
Annual Mean Temperature (Bio1;°C), Mean Diurnal Range (Bio 2;°C),
Isothermality (Bio 3; percentage), actual Temperature Seasonality
(Bio 4; standard deviation in°C), Maximum Temperature of Warmest
Month (Bio 5;°C), Minimum Temperature of Coldest Month (Bio
6;°C), Annual Temperature Range (Bio 7;°C), Mean Temperature of
Wettest Quarter (Bio 8;°C), Mean Temperature of Driest Quarter
(Bio 9;°C), Mean Temperature of Warmest Quarter (Bio 10;°C), Mean
Temperature of Coldest Quarter (Bio 11;°C), Annual Precipitation (Bio
12; mm), Precipitation of Wettest Month (Bio 13; mm), Precipitation
of Driest Month (Bio 14; mm), Precipitation Seasonality (Bio 15; co-
efficient of variation expressed in percent), Precipitation of Wettest
Quarter (Bio 16; mm), Precipitation of Driest Quarter (Bio 17; mm),
Precipitation of Warmest Quarter (Bio 18; mm), and Precipitation of
Coldest Quarter (Bio 19; mm) (http://www.worldclim.org/data/biocl
im.html). These macroclimatic data were used as approximations to
identify patterns of local adaptation in amphibians and freshwater
fish, as microclimatic data (e.g. site-specific temperatures) were not
available in original articles or in the WorldClim database. Following
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previous studies (Carilo Filho et al., 2022; Morley et al., 2019), mean
near-surface air temperature was assumed to reflect the tempera-
ture profile of freshwater systems and used to analyze thermal ad-
aptation in both taxa. We are aware that these macroclimatic data as
provided by the WorldClim database (representing surface air tem-
perature) present some limitations in reflecting microclimatic data
(see Section 5 for methods to improve future studies). In contrast
to marine habitats, the temperature of small or shallow bodies of
water might fluctuate with the surface air temperature and animals
at the surface of freshwater systems might be further exposed to
high temperatures. Therefore, we assume that the average near-
surface air temperature is a suitable estimate of the temperature of
freshwater systems, thereby reflecting the thermal local adaptation
of investigated amphibian and freshwater populations. This is in ac-
cordance with previous studies testing the effect of thermal adap-
tation on the thermal physiology of various taxa (e.g., Carilo Filho
et al., 2022; Gutiérrez-Pesquera et al.,, 2016; Morley et al., 2019;
Sinai et al., 2022). Sampling locations were assigned to latitudinal
groups based on the absolute latitude (°N/S) and were categorized
as either tropical (0-25°), subtropical (>25-40°), temperate (>40-
53.55°) or polar (>53.55° Morley et al., 2019).

2.5 | Effect size calculation: ARR

A well-established method to measure acclimation capacity in ther-
mal tolerance in ectothermic animals is the calculation of the ARR,
that is, the slope of the linear function describing the change in
thermal tolerance with a given change in acclimation temperature
(e.g., Claussen, 1977; Gunderson & Stillman, 2015; Hutchison, 1961,
Morley et al., 2019). We separately calculated the ARR for CT__.

within each study using the equation according to Claussen (1977):

CT,

maxjrz] CTmax[”]

ARR = T2-T1 ’

where T represents the acclimation temperature (°C; with T2=high-
est acclimation temperature and T1=lowest acclimation temperature)
and CT,__, the heat tolerance estimates (°C). When data on more than
two acclimation temperatures were presented, we calculated the ARR
for each stepwise comparison (e.g., 18-20°C, 20-22°C, 22-24°C;
Pottier, Burke, Drobniak, et al., 2022) and used the mean ARR of all
comparisons in the statistical analysis. Higher absolute values of ARR
correspond to higher plasticity in thermal tolerance limits (i.e., greater
acclimation capacity; Claussen, 1977; Gunderson & Stillman, 2015;
Kingsolver & Huey, 1998; van Heerwaarden et al., 2016). An ARR of
1.00 indicates a 100% acclimation in thermal tolerance to a tempera-
ture increase of 1°C (Morley et al., 2019).
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2.6 | Statistical analyses

For all statistical tests R 4.0.2 (R Core Team, 2020) was used. All
plots were constructed using R packages “ggplot2” (Wickham &
Wickham, 2009), “ggtree” (Yu et al., 2017) and Adobe lllustrator CSé.

Conditional inference tree (CIT) analysis (R package “partykit,”
Hothorn & Zeileis, 2015) was used to assess the influence of geo-
graphic origin (bioclimatic variables, elevation), phylogeny (taxon
and order level), experimental methodology (ramping rate, mean
acclimation duration, mean acclimation temperature), and ontogeny
on CT__ and ARR of amphibians and freshwater fishes. As an advan-
tage over traditional (parametric) methods, CIT is a non-parametric
method that handles complex non-linear relationships without mak-
ing specific assumptions about data distribution or being sensitive to
outliers. CIT involves recursive partitioning to split data into subsets
based on the relevance of predictor variables. At each node of the
tree, a permutation-based test (Monte Carlo method with Bonferroni
correction) determines whether the split is statistically significant
(a<.05). The initial split in the tree indicates which predictor vari-
able has the strongest correlation with the response variable (CT__.
or ARR). The resulting tree provides a hierarchical structure and
classification of significant predictor variables. A post-pruning strat-
egy based on the Akaike information criterion (Akaike, 1974) was
used to avoid overfitting, that is, removal of nodes that do not im-
prove the overall fit of the model (Hothorn & Zeileis, 2015). The raw
data used for the analysis are provided in the electronic Supporting
Information (Table S1).

Phylogenetic trees for visualizations were created using the
R package “fishtree” (Chang et al., 2019) for freshwater fishes
(Teleostei). The amphibian ultrametric tree was obtained from the
timetree.org website in June 2022 (Kumar et al., 2022). To ensure the
validity, we developed a workflow to filter out taxonomically invalid
taxa. Firstly, a time tree was generated using the “Build a Timetree”
function on timetree.org. The taxa names were then extracted
from the generated time trees using the R package “ape” (Paradis &
Schliep, 2019), excluding non-binomial names. The extracted list was
cross-checked with the GBIF Backbone Taxonomy using the species
matching tool (https://www.gbif.org/tools/species-lookup, accessed
June 2022). Matches at the species rank with an accuracy of 100%
were extracted and matches with lower accuracy were manually
verified. The resulting species list was uploaded back onto timetree.
org using the “Load a List of Species” function. The newly generated
time tree was then downloaded and used for visualizations.

The relationship between absolute latitude (°N/S), elevation (m),
and the bioclimatic variables that revealed a significant effect on
CT,.x (Bio 14, Bio 7) and ARR (Bio 3) in the CIT analysis was assessed
using linear regressions. Differences in respective bioclimatic vari-
ables between latitudinal groups (tropical, subtropical, temperate,
polar) were compared using Kruskal-Wallis tests followed by pair-
wise Mann-Whitney U- tests with false discovery rate-correction.

We were unable to test for a publication bias (i.e., whether sta-
tistically insignificant or negative results are less likely to be pub-
lished) in our data set given the use of a non-standardized effect size
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metric (i.e., ARR). Therefore, it remains possible that this bias may

also occur.

3 | RESULTS

The analysis of paired CT,,, and ARR values included 201 experi-
mental studies on 96 amphibian species (2 orders) (Figure 1a,c)
and 144 experimental studies on 93 teleost species (14 orders)
(Figure 1b,d), corresponding to a phylogenetic coverage of ap-
proximately 1% within each taxon. No data were available for
Gymnophiona. Most experimental studies determined CT__ and
ARR in adult animals. For freshwater fishes, only one study deter-
mining CT___ in larvae was obtained, while 20% of the data covered
juveniles (Figure 1b). For amphibian species, 12% of the data was
available for one or several of the early life stages, that is, larvae,
metamorphs, and/or juveniles (Figure 1a).The geographic origin of
amphibian and fish species displayed a bias toward temperate and
subtropical regions, with 60% of all sampling sites located in North
America, 10% in Australia and New Zealand, 8% in South America,
6% in Europe, and 4% in China (Figure 1c,d). The CT__  protocols
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p <.001 Teleostei, Anura, Caudata

Teleostei

Acclimation duration <28°C

p =.002

<6day  >6day p=.001

Acclimation duration
p =.003
<16.2°C >16.2°C

<21day >21day /
/ \
Node 1 Node 2 Node 3 Node 4 Node 5
o
5 40
e
1S
>
1S PP,
£ o—o
©
£
g 30 * -0
[]
£ °
®©
L
S T.:
20
n=9 n=19 n=9 n=124 n=233

FIGURE 2 Conditional inference tree for critical thermal maximum (CT,

Habitat T°C (Bio1)
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were variable in both taxa, with acclimation times ranging from 0.5
to 150day (mean=11.2day), acclimation temperatures ranging from
8.0 to 31.75°C (mean=19.45°C), and ramping rates ranging from
0.02 to 1.0°Cmin~* (mean=0.75°Cmin™).

Across all species studied, CT,_ - ranged from 20.75 to 46.00°C
(Table S1; Figure S2a). Acclimation capacity in upper thermal toler-
ance was positive in 97.1% of the experimental studies with an av-
erage of 0.22°C with every 1°C increase in acclimation temperature
across all experimental studies and life stages, whereas the accli-
mation response for CT__ was negative (i.e., negative ARR) in 2.0%
of the experimental studies. Across all species studied, ARR ranged
from -0.08 to 1.68 (Table S1; Figure S2b).

For CT,_,, data of freshwater teleosts and amphibians (345 ob-
servations=number of experiments), the CIT model (73% explained
variance) resulted in a classification tree with 8 internal splits and 9
terminal nodes (Figure 2). Phylogeny (order/taxon), acclimation tem-
perature and acclimation duration were the main discriminators of
CT

max’

bio1) and life stage. The first split separated a group of teleost stud-

followed by geographic origin (annual habitat temperature,

ies (mainly salmonid species) with lower CT__ values compared to

the mean of all other studies (p<.001). In this group of cold-water

4
. Acclimation T°C
p <.001

>28°C

Life stage
p <.001

Adults, juveniles, metamorphs Larvae

Acclimation T°C
p <.001

Habitat T°C (Bio 1)
p=.003

<31°C >31°C <16.8°C >16.8°C

Node 6 Node 7 Node 8 Node 9

g T

Taxon
® Anura
® Caudata

® Teleostei

n=73 n=40 n=31 n=7

may) Of freshwater fish (Teleostei) and amphibians (Anura and

Caudata). The sequence of internal nodes (splits) corresponds to a hierarchical structure of significant predictor variables. At each split,

lines indicate the classification into groups with higher (black) and lower (red) CT

values. Boxplots show the distribution of CT__ values

max max

(colored symbols) for each terminal node (n=number of experimental studies). Acclimation T=mean acclimation temperature used in an

experiment before CT__

acclimation temperatures before CT,_ measurements (day).

measurements (°C). Habitat T=mean annual temperature Biol (°C). Acclimation time=mean exposure time to
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fish, CT,,, increased significantly with acclimation duration (nodes
1-3), with classification thresholds of split 2 and 3 defining differ-
ences between short (<6days), intermediate (6-21days) and long
acclimation times (>21days). For the majority of teleost and am-
phibian data (308 observations), CT,_ . was significantly dependent
on acclimation temperature (split 4, p<.001), mean annual habitat
temperature (Bio 1; split 5, p=.001) and life stage (split 6, p<.001).
Overall, there was a positive correlation between acclimation/mean
node 4-9). Split 4 separated
teleosts and amphibians acclimated below or above 28°C. In the

annual habitat temperature and CT___ (
colder group (split 5), CT,_ . was higher for teleosts and amphibians
that originated from warmer habitats, with a classification threshold
of 16.2°C (node 4 and 5). For species acclimated above 28°C, CT_ .
differed between ontogenetic life stages (split 6), with larvae hav-
ing higher tolerance limits than juveniles, metamorphs and adults.
However, this classification was phylogenetically unbalanced, as all
larvae were anuran species (node 8 and 9). Splits 7 and 8 show that
after accounting for ontogenetic differences, CT__ was higher at
warmer acclimation temperature (>31°C, node 6 and 7) and higher

mean annual habitat temperatures (>16.8°C, node 8 and 9).

For ARR data (345 observations), the CIT model (52% explained
variance) produced a classification tree with 7 internal splits and 8
terminal nodes (Figure 3). The main discriminators of ARR were phy-
logeny (order/taxon) and acclimation time, followed by CT__ meth-
odology (ramping rate) and a minor influence of local temperature
variability (isothermality, Bio 3). The first split of the classification
tree separated a large number of teleost studies (102 observations,
68 species, node 1 and 2) with a higher ARR compared to the average
of the other fish and amphibian studies in the dataset (p <.001). The
relatively high thermal plasticity of the fish species in node 1 and 2
was not related to any of the variables examined. Within this group,
however, ARR decreased at higher acclimation temperatures, with a
classification threshold of 20°C (split 2, p=.003). Split 3 was based
on CT__ methodology, classifying fish and amphibian studies into
groups with an acclimation duration longer or shorter than 14 days
(node 3-8). Longer acclimation generally resulted in higher ARR val-
ues (node 3-5, p<.001), but the acclimation effect differed accord-
ing to ramping rate (split 4), phylogeny (split 5 and 6) and climate
variability (split 7). When the acclimation duration exceeded 14 days,

ARR studies were further classified according to ramping rate (split

1
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Teleostei, Anura, Caudata
Teleostei Acclimation duration
p <.001
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7] 6]
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/ \ Teleostei  Anura, Caudata Higher (>39%) Lower (£39%)
/ \ / N\
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
100 L4
o
o
<
o
® 075 Taxon
2 ® Anura
8 050 oL
g O [ ® Caudata
p LS oo
5 e, ® Teleostei
8 (4 .
g 0.25 [ .«F
g J - 5‘@5"”;'5
2 )
0.00 o
A
n=20 n=282 n=9 n=16 n=61 n=10 n=58 n=74

FIGURE 3 Conditional inference tree for the acclimation response ratio (ARR) of freshwater fish (Teleostei) and amphibians (Anura

and Caudata). The sequence of internal nodes (splits) corresponds to a hierarchical structure of significant predictor variables. At each
internal node, lines indicate the classification into groups with higher (black) and lower (red) ARR values. Boxplots show the distribution of
ARR values (colored symbols) for each terminal node (n=number of experimental studies). In node 1, high outlier values (n=2) were not
shown for scaling reasons. Acclimation T=mean acclimation temperature used in an experiment before CT__ measurements (°C). Ramping

rate=heating rate for CT___

measurements in°C per minute. Isothermality =local temperature variability Bio 3 (%). Acclimation time=mean

exposure time to acclimation temperatures before CT . measurements (day).
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4, p<.001) and taxon (split 5, p=.031). These classifications imply
higher ARR values of anurans at slow heating rates (<0.1°Cmin™3),
and higher ARR values of teleosts compared to amphibians at ramp-
ing rates >0.1°Cmin™? (Figure 3). If the acclimation period was less
than 14 days, a subsequent split occurred according to phylogenetic
order (split 6, p<.001) and isothermality (split 7), indicating a positive
relationship between ARR and local temperature variability (node 7
and 8, p=.011). Ontogenetic differences in ARR were not detected.

Isothermality (Bio 3; R2=.708, p<.001) and annual mean tem-
perature (Bio 1; R?=.696, p<.001) decreased from the tropics to
the polar latitudes (Figure S4). Both bioclimatic variables did not
correlate with elevation (Bio 1: R?=.137, p<.001; Bio 3: R?=.012,
p=.046).

4 | DISCUSSION

4.1 | Context-Dependent Drivers and Broad-Scale
patterns of physiological limits

The most striking result from our analyses is that the acclimation
capacity of freshwater fish was more than twice that of amphibians,
indicating a strong phylogenetic signal. Our findings align with those
reported in previous syntheses (Gunderson & Stillman, 2015; Morley
et al., 2019; Pottier, Burke, Drobniak, et al., 2022; Rohr et al., 2018),
demonstrating a higher thermal plasticity in organisms inhabiting
aquatic habitats compared to their terrestrial counterparts in gen-
eral, and with fish (marine and freshwater) exhibiting greater thermal
plasticity compared to amphibians (Gunderson & Stillman, 2015).
Compared to most (post-metamorphic) amphibians, freshwater fish
are restricted to their aquatic habitat throughout their life cycle
(Comte & Grenouillet, 2013). As aquatic habitats tend to have less
spatial variability in operative thermal conditions than terrestrial
habitats (Gunderson & Stillman, 2015; Sunday et al., 2014), behav-
ioral thermoregulation is constrained, and freshwater fish are more
likely than amphibians to use thermal plasticity to buffer against
changing thermal conditions. Consequently, the capacity for thermal
plasticity appears to be phylogenetically conserved between both
taxa (Angilletta et al., 2002; Bodensteiner et al., 2021), depending
on the ability for behavioral thermoregulation as explained by the
Bogert effect (Bogert, 1949; Cowles & Bogert, 1944; Mufioz, 2022),
rather than on the level of thermal variation to which a population is
exposed to (Huey et al., 1999) as suggested by the climate variability
hypothesis (Janzen, 1967). Moreover, unlike freshwater fishes, most
amphibians undergo a habitat shift from a larval aquatic to a post-
metamorphic terrestrial habitat (Shi, 2000). As an adaptive response
to often shallow or temporary larval habitats (Newman, 1992),
amphibian larvae display a high degree of plasticity in growth
and development (Burraco et al., 2021; Kulkarni et al., 2017,
Ruthsatz, Dausmann, et al., 2018, Ruthsatz, Peck, et al., 2018; Sinai
et al., 2022), providing a means for increasing fitness (Schlichting
& Pigliucci, 1998). Therefore, plasticity in timing of metamorpho-
sis appears to be more important than that in thermal tolerance to
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reduce mortality risk (Rudolf & Rédel, 2007) due to desiccation or
temperature extremes (Albecker et al., 2023; Burraco et al., 2022).
This might, at least in part, explain the lack of an ontogenetic pattern
in acclimation capacity in amphibians.

Unlike acclimation capacity, geographic origin was one of the pri-
mary determinants of heat tolerance in both taxa, with a higher heat
tolerance in populations from regions with a higher annual mean
temperature compared to populations from regions with a lower an-
nual mean temperature. These findings support, at least in part, the
climate variability hypothesis (Bozinovic et al., 2011; Janzen, 1967)
since annual mean temperature decreases with latitude and is high-
est in tropical low-elevation regions. Both taxa, therefore, exhibit
physiological adaptations to latitude-dependent thermal regimes
to which they are exposed. Our results agree with the findings of
a large body of research that has confirmed the link between phys-
iological limits and large-scale geography based on a species' local
adaptation to temperature and other associated climatic variables
(e.g., Gutiérrez-Pesquera et al., 2016; Pintanel et al., 2022; Sunday
et al., 2011, 2019; but not: Addo-Bediako et al., 2000; Sgrensen
et al., 2016). Yet, in addition to the broader literature, our synthesis
indicated that CT__ was not only generally higher in populations from
warmer regions as often found in low latitudes but also, importantly,
varied with ontogeny. These findings emphasize the importance of
assessing life stage-specific sensitivity to thermal stress as well as
spatial climatic differences in conservation science. Therefore, fo-
cusing on large-scale geographical patterns for predicting how biodi-
versity will respond to future environmental change might bear the
risk of overlooking context-dependent variation in thermal traits and
thus, intraspecific differences in vulnerability to changing thermal
conditions (Duarte et al., 2012; Gutiérrez-Pesquera et al., 2016). For
example, Bovo et al. (2023) demonstrated that responses of tropi-
cal amphibians to climate variation were heterogenous as a conse-
quence of intraspecific variation in physiological traits and spatial
variation in climate with elevation. Furthermore, Sunday et al. (2011)
and Pinsky et al. (2019) reported that the physiological sensitivity of
ectotherms across all latitudes depended on the realm, with terres-
trial ectotherms being less sensitive to warming than aquatic ecto-

therms due to their higher capacity for behavioral thermoregulation.

4.2 | Life stage-specific thermal sensitivity as a key
factor in species vulnerability to climate change

In species with complex life histories such as amphibians and teleost
fish, life stages differ in size, morphology, physiology, and behavior
(Wilbur, 1980). Therefore, selection might promote stage-specific
adaptations in thermal physiology (Enriquez-Urzelai et al., 2019;
Ruthsatz, Dausmann, et al., 2022; Ruthsatz, Rakotoarison,
et al., 2022). Ignoring those life stage-specific differences in ther-
mal physiology may drastically underestimate climate vulnerability
of species with consequences for successful conservation actions.
Here, we found that CT_, but not acclimation capacity differed be-
tween life stages in amphibians, with a higher CT__ in larval stages.
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However, this pattern was only evident when high acclimation tem-
peratures were used in experimental set-ups and was most pro-
nounced in larvae from habitats with a high annual mean temperature
as those found in the tropics. Limnic larvae may have a reduced ca-
pacity for behavioral thermoregulation due to their limited body size
impairing the movement between different microclimates (Enriquez-
Urzelai et al., 2019; Kingsolver et al., 2011; Sinclair et al., 2016), mak-
ing them more dependent on passive responses to temperature
fluctuations. To cope with changes in temperatures, a high heat
tolerance is, therefore, advantageous in early life stages (Ruthsatz,
Dausmann, et al., 2022). This might be particularly true for animals
that are already living close to their heat tolerance since the ontoge-
netic difference was only evident at high acclimation temperatures
and strongest in anurans from habitats with a high annual mean tem-
perature. In contrast, post-metamorphic stages might rather be able
to select favorable microclimates by behavioral thermoregulation
(Haesemeyer, 2020; Navas & Otani, 2007). This is particularly true
for amphibians, as their post-metamorphic terrestrial habitats offer
much spatial variability in operative thermal conditions (Gunderson
& Stillman, 2015), while juvenile and adult (freshwater) fish are able
to behaviorally thermoregulate by performing vertical and horizon-
tal movements (Amat-Trigo et al., 2023; Breau et al., 2007; but not:
Clark et al., 2022). Our findings are in line with the pattern found for
aquatic larvae by Cupp Jr. (1980), Sherman (1980), Enriquez-Urzelai
et al. (2019), and Ruthsatz, Dausmann, et al. (2022), who demon-
strated a higher CT,__ in amphibian larvae than in post-metamorphic
stages. In contrast, Dahlke et al. (2020) found no difference in heat
tolerance between larval and adult stages in marine and freshwa-
ter fish. Notably, our synthesis yielded only one estimate for larval
CT,,.x and acclimation capacity in freshwater fish and, thus, we lack
the data for any conclusion. Given that small body sizes of larvae
restrict their capacity for behavioral thermoregulation, we would
would expect freshwater fish to exhibit the same life stage-specific
differences in thermal sensitivity observed in amphibians. In a recent
study on the European common frog (Rana temporaria), young larvae
may define the climate sensitivity of populations since that life stage
exhibited the lowest acclimation capacity (Ruthsatz, Dausmann,
et al., 2022). Furthermore, it is worth noting that our synthesis
did neither encompass embryos nor gametes producing/spawning
stages, which have recently been reported to have the lowest heat
tolerance in fish (Dahlke et al., 2020, 2022; Pottier, Burke, Zhang,
et al., 2022) and the lowest acclimation capacity across ectotherms
(Pottier, Burke, Drobniak, et al., 2022). To better identify potential
life history bottlenecks in thermal sensitivity in amphibian, fish and
other taxa inhabiting freshwater, future studies should adopt a more
comprehensive approach by considering a wider range of life stages
within species.

4.3 | Understanding context-dependent
physiological adaptation in ectotherms

Global syntheses on physiological studies can help us determine the
winners and losers of climate change through assessment of broad-
scale patterns of species' thermal limits and acclimation capacity for
modifying their thermal tolerance (Somero, 2010). This knowledge,
in turn, enables us to develop suitable conservation strategies to
mitigate the negative effects of climate change. However, our key
findings emphasize that assessing species' vulnerability to changing
thermal conditions based on large-scale geographic and/or phyloge-
netic patterns in thermal traits might cover up context-dependent
physiological adaptations. In other words, tropical ectothermic spe-
cies are considered particularly vulnerable to global warming as they
live close to their physiological limits and have poor acclimation abil-
ity (Huey et al., 2009; Sunday et al., 2014; Tewksbury et al., 2008),
but such generalizations might for instance ignore intraspecific vari-
ation in physiological limits across variation in climate with elevation
(Bovo et al., 2023). Physiological adaptations are driven by the inter-
play between microclimate temperature heterogeneity and the be-
havioral thermoregulatory abilities of ectotherms (Huey et al., 2012;
Pincebourde et al., 2016; present study) depending on their habitat
characteristics (Kulkarni et al., 2017; Pinsky et al., 2019), ontogeny
(Enriquez-Urzelai et al., 2019; Ruthsatz, Dausmann, et al., 2022), life
history traits such as body size (Peralta-Maraver & Rezende, 2021;
Rubalcaba & Olalla-Tarraga, 2020) or activity patterns (Navas &
Otani, 2007; Ruthsatz, Rakotoarison, et al., 2022), and/or energy
balance (Mufoz, 2022; Pértner et al., 2005). Physiological traits and
limits are consequently rather evolutionary driven dynamic con-
cepts than fixed values for a species (Bovo et al., 2018, 2023; Navas
et al,, 2022). In order to improve predictions of climate change im-
pacts on biodiversity, it is imperative to deepen our understanding
of context-dependent physiological adaptations (Meek et al., 2023),
thereby advancing the development of suitable conservation meas-
ures/strategies that incorporate evolutionarily enlightened perspec-
tives (Ashley et al., 2003; Cook & Sgro, 2018) beyond the species
level (Figure 4).

5 | CONCLUSION

There is a growing body of physiological studies assessing ther-
mal limits and acclimation capacity of species, investigating physi-
ological systems setting these limits to better predict shifts in the
productivity and species distribution patterns in a warming world.
Our synthesis points to representation biases in taxonomy, species'
biogeographic distribution, life stage, and biases resulting from non-
standardized study design. Here, we found the influence of life stage,
phylogeny, and thermal adaptation to depend on acclimation dura-
tion and acclimation temperature of the animals and the ramping
rate used, underscoring the importance of a thoughtful selection of
the methodological approach. Notably, due to the biases present in
existing data sets, most results from subsequent analyses (including
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FIGURE 4 Synthesis of biological and methodological determinants as well as key directions for future research on acclimation capacity
in amphibians and freshwater fish to advance the application of thermal traits in assessing species' and populations' vulnerability to climate
change. See text for further details.
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those presented here) cannot be generalized to all geographic re-
gions, life stages, and (taxonomic) groups, which limits the ability to
predict organismal responses to global change (White et al., 2021).
Therefore, we conclude our synthesis by addressing those data in-
adequacies and proposing methods to enhance data collection pre-
sented in five themes (Figure 4):

5.1 | Biogeographic and taxonomic coverage

We found geographical trends in physiological limits associated with
bioclimatic conditions at different latitudes. Thus, additional re-
search is needed in poorly represented (mostly tropical) regions that
generally correspond to low- and middle-income countries (King,
2004). Addressing this issue can yield additional, important insights,
as such geographic bias in existing data sets has been shown to limit
our ability to predict organismal responses in these less-studied re-
gions (White et al., 2021). Our synthesis highlights that most experi-
ments have been conducted in North America, Europe, and Australia
and information gaps exist for most parts of Neotropics, Africa and
Sino-Oriental regions. Those regions harbor the highest diversity of
species for both anurans and freshwater fishes (Jenkins et al., 2013;
van der Sleen & Albert, 2022). Such regional differences in research
effort are common in conservation science (McLaughlin et al., 2022;
Schiesari et al., 2007; Sinai et al., 2022; Winter et al., 2016; White
et al,, 2021) despite the fact that under-studied regions contain
the vast majority of global biodiversity hotspots (Mittermeier
et al., 2011). Furthermore, most of these experiments used spe-
cies that are common, widely distributed, and/or easily obtained by
researchers. Studies on other species (particularly those already in
decline) are needed to avoid taxonomic bias and reach stronger con-
clusions on whether specific taxa might be more sensitive to global
warming (da Silva et al., 2020). Additionally, there may be an eleva-
tion bias in sampling, as most available data represent lowland rather
than mountain species. As, for example, CT___ of tropical and sub-
tropical amphibian species has been shown to vary within the same
latitude (Duarte et al., 2012; Gutiérrez-Pesquera et al., 2016), we
urge future studies to focus on elevation gradients as well as cross-
latitudinal sampling, especially in tropical high-mountain populations
(Bovo et al., 2023).

5.2 | Relevance of life stage and sex

We urge future studies to measure a wider range of life stages and
to measure both sexes within species to better identify thermal
bottlenecks and assess climate change risks (Dahlke et al., 2020;
Klockmann et al., 2017). All of the summaries to date likely overes-
timate physiological limits since most studies have been performed
on adults, and thermal tolerance increases (Klockmann et al., 2017;
Rubalcaba & Olalla-Tarraga, 2020; but not: Di Santo & Lobel, 2017)
and acclimation capacity decreases (Pottier et al., 2021) with body
size. Furthermore, after sexual maturity, females and males differ

in a wide range of morphological, physiological, and behavioral as-
pects as well as in their energetic investment in gamete production
(Hayward & Gillooly, 2011). A recent meta-analysis across ectother-
mic taxa revealed that the acclimation capacity differed between
adult males and females in wild-caught animals (Pottier et al., 2021).
Furthermore, Dahlke et al. (2020) found narrower thermal tolerance
ranges in spawning females and van Heerwaarden and Sgro (2021)
demonstrated that a low heat tolerance of male fertility is a critical

bottleneck in insects.

5.3 | Ecological relevance

Future laboratory experiments should adopt a more comprehen-
sive and multifaceted approach for higher ecological relevance of
thermal trait estimates (Desforges et al., 2023). Under natural con-
ditions, organisms must often cope with multiple simultaneously
occurring environmental stressors (Gunderson et al., 2016; Rohr &
Palmer, 2013) such as declining dissolved oxygen levels in freshwa-
ter habitats due to climate-induced temperature increases (Pértner
& Peck, 2010). As thermal limits are shaped by oxygen availability
(Portner, 2001, 2010), organisms might exhibit lower thermal limits
under natural conditions. Moreover, exposure to pollutants might
reduce thermal tolerance (Little & Seebacher, 2015) or acclimation
capacity (Ruthsatz, Peck, et al., 2018) due to increased metabolic de-
mands of detoxification processes or disruption of endocrine path-
ways involved in physiological acclimation. Physiological responses
to increased water temperature as performed in the experimental
studies summarized here (i.e., a single stressor) may not align with
observed responses of individuals in the natural environments with
multiple stressors (Katzenberger et al., 2014; Potts et al., 2021).

5.4 | Methodological approach

Customizing protocols to account for organismal and context-
dependent variations in physiological limits (e.g., body size, life stage,
sex, thermal history) will allow researchers to obtain more ecologi-
cally relevant estimates to inform conservation efforts. The applica-
tion of an acute thermal ramping rate and a standardized endpoint
such as the LOE are used to measure critical thermal limits (Becker
& Genoway, 1979). The estimates are sensitive to differences in the
methods. For example, faster ramping (heating) rates tend to yield
higher thermal tolerance estimates compared to slower ramping rates
(Kovacevic et al., 2019; Moyano et al., 2017; Penman et al., 2023).
Furthermore, measuring several endpoints (LOE/LRR, onset of
spasms/heat rigor) if possible (Cowan et al., 2023; Wu & Kam, 2005)
might facilitate comparisons between different taxonomic groups
and/or experiments (Lutterschmidt & Hutchison, 1997b). Using wild-
collected animals is important as those reared in the laboratory may
have physiology traits that differ from wild conspecifics (Morgan
et al., 2022; Pottier et al., 2021). Methodological recommendations
have been recently published and comparable methods are needed
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to compare thermal limits of different life stages (Cowan et al., 2023;
Desforges et al., 2023).

5.5 | Through reporting of research details

Thorough and transparent reporting of experimental details in em-
pirical studies such as sampling location and animal origin, among
others, is required to enhance the comparability of studies on
thermal traits. Furthermore, most studies working on adults did
not report the sex of animals despite the potential for sex (or re-
productive state) to be important factors in thermal sensitivity.
Additionally, reporting microhabitat temperatures (i.e., in-site tem-
peratures) will improve our understanding of thermal adaptation at
the population-level. The ability to make broad-scale comparisons
of thermal tolerance across taxa, life stages, and regions will be en-
hanced when studies report as much methodological detail as pos-
sible. Consequently, these future studies will contribute more robust
estimates of climate vulnerability needed to guide climate change
interventions.

By considering our recommendations, future studies will be
more comparable, facilitating the utilization of respective findings in
large-scale studies and models that assess species vulnerability and
thus, population dynamics under global warming.
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