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Abstract
Amphibians and fishes play a central role in shaping the structure and function of 
freshwater environments. These organisms have a limited capacity to disperse across 
different habitats and the thermal buffer offered by freshwater systems is small. 
Understanding determinants and patterns of their physiological sensitivity across 
life history is, therefore, imperative to predicting the impacts of climate change in 
freshwater systems. Based on a systematic literature review including 345 experi-
ments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish 
species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, 
ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal toler-
ance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as 
well as the influence of the methodology used to assess these thermal traits using 
a conditional inference tree analysis. We found globally consistent patterns in CTmax 
and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and 
life stage as significant determinants of thermal traits. The analysis demonstrated that 
CTmax does not primarily depend on the climatic origin but on experimental acclima-
tion temperature and duration, and life stage. Higher acclimation temperatures and 
longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a 
higher CTmax than older life stages. The ARR of freshwater fishes was more than twice 

https://doi.org/10.1111/gcb.17318
www.wileyonlinelibrary.com/journal/gcb
mailto:
https://orcid.org/0000-0002-3273-2826
https://orcid.org/0000-0003-0095-2362
https://orcid.org/0000-0002-1801-748X
https://orcid.org/0000-0003-3190-0880
https://orcid.org/0000-0002-1316-1255
https://orcid.org/0000-0001-6519-9469
https://orcid.org/0000-0003-2621-1001
https://orcid.org/0000-0002-5407-0659
https://orcid.org/0000-0001-7423-1854
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:katharinaruthsatz@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.17318&domain=pdf&date_stamp=2024-05-21


2 of 20  |     RUTHSATZ et al.

1  |  INTRODUC TION

Global climate change is not only causing an increase in mean air 
and water temperatures, but also an increased magnitude and fre-
quency of extreme climatic events (Lee et al., 2023). As a result, ec-
totherms are more likely to experience temperatures beyond their 
critical thermal maximum (CTmax) in both terrestrial and aquatic 
habitats (Duarte et  al.,  2012; Sunday et  al.,  2014). This is particu-
larly true for populations already living close to their upper thermal 
limit. Consequently, the ability to mitigate thermal stress through 
either migration, evolutionary genetic adaptation or acclimation is 
crucial for the persistence of species in a changing climate (Franks 
& Hoffmann, 2012; Huey et al., 2012; Seebacher et al., 2015). Given 
the limited dispersal ability of many species (e.g., freshwater species; 
Woodward et al., 2010) and rapid pace of global warming (Hoffmann 
& Sgró,  2011), physiological acclimation is arguably the most im-
portant mechanism for coping with climate change (Gunderson & 
Leal,  2016). Understanding differences in acclimation capacity of 
species and identifying global patterns can, therefore, help to iden-
tify climate change risks to biodiversity and develop effective con-
servation measures (Somero, 2010).

As an adaptive response to larger seasonal differences in 
temperature, thermal tolerance and acclimation capacity of ec-
tothermic species or populations tend to increase with increas-
ing latitude from tropical through temperate climate zones (e.g., 
Cicchino et al., 2023; Deutsch et al., 2008; Peck et al., 2014; Rohr 
et al., 2018; Somero, 2005; Sunday et al., 2011; but see: Gunderson 
& Stillman, 2015; Sørensen et al., 2016) and from higher to lower el-
evations (Enriquez-Urzelai et al., 2020; but not: Gutiérrez-Pesquera 
et al., 2022; Sunday et al., 2019). This biogeographical pattern is con-
sistent with the climate variability hypothesis (Ghalambor et al., 2006; 
Janzen,  1967), suggesting that climatic differences across altitu-
dinal and latitudinal gradients lead to corresponding adaptations 
in thermal physiology (but see: Gutiérrez-Pesquera et  al.,  2022). 
Low-latitude species adapted to relatively stable temperature con-
ditions may have a lower acclimation capacity and, therefore, may be 
more vulnerable to climate change (Sunday et al., 2014; Tewksbury 
et al., 2008; but see: Bovo et al., 2023). However, there is still little 

empirical evidence supporting the climate variability hypothesis, 
possibly due to the limited geographical and phylogenetic coverage 
of observations, and because of the inconsistency of the methods 
applied to measure the acclimation capacity of different species 
and life stages (Gutiérrez-Pesquera et al., 2016; Shah et al., 2017). 
Moreover, the use of different methods or protocols might impact 
the estimation of thermal traits (Chown et al., 2009; Pottier, Burke, 
Drobniak, et  al.,  2022; Rohr et  al.,  2018; Terblanche et  al.,  2007; 
but not: Sunday et  al.,  2019). For example, acclimation duration 
(i.e., how long organisms were held at an acclimation temperature 
before being exposed to the test temperature; Rohr et  al.,  2018; 
Ruthsatz, Dausmann, et al., 2022) and ramping protocol (i.e., heating 
or cooling rate in thermal tolerance trials; Illing et al., 2020; Penman 
et al., 2023) have been suggested to influence measurements of ac-
climation capacity, as the underlying physiological processes occur 
over certain time periods.

In animals with complex life histories, thermal tolerance and ac-
climation capacity are thought to change during ontogeny according 
to physiological and morphological reorganizations and concomitant 
aerobic capacities in relation to oxygen demand (Pörtner,  2002; 
Pörtner & Peck, 2010; Ruthsatz, Dausmann, et al., 2022; Ruthsatz, 
Dausmann, Paesler, et  al.,  2020; Ruthsatz, Dausmann, Reinhardt, 
et  al.,  2020) as well as energetic costs associated with develop-
mental processes (Ruthsatz et  al.,  2019). Furthermore, life stages 
might differ in their ability for behavioral thermoregulation (Little & 
Seebacher, 2017; Navas et al., 2008) resulting in stage-specific adap-
tations in thermal traits (Huey et al., 1999). Therefore, determining 
taxon-specific acclimation capacity at different ontogenetic stages 
should be taken into account when studying climate adaptation of 
ectothermic species, as it will help identify life cycle bottlenecks and 
provide robust data on the vulnerability of populations or species 
to global warming (Bodensteiner et  al.,  2021; Dahlke et  al.,  2022; 
Pottier, Burke, Drobniak, et  al.,  2022). To date, most studies have 
not distinguished among life stages or have only focused on adults 
when addressing the climate variability hypothesis (e.g., Gunderson 
& Stillman,  2015; Rohr et  al.,  2018; Sunday et  al.,  2011, 2014, 
2019) and the vulnerability of species to global change (e.g., Calosi 
et  al.,  2008; Comte & Olden,  2017a; Molina et  al.,  2023; Morley 

that of amphibians. Differences in ARR between life stages were not significant. In 
addition to phylogenetic differences, we found that ARR also depended on acclima-
tion duration, ramping rate, and adaptation to local temperature variability. However, 
the amount of data on early life stages is too small, methodologically inconsistent, 
and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal 
traits. We, therefore, propose methods to improve the robustness and comparability 
of CTmax/ARR data across species and life stages, which is crucial for the conservation 
of freshwater biodiversity under climate change.

K E Y W O R D S
acclimation response ratio, Bogert effect, climate variability hypothesis, CTmax, developmental 
phenotypic plasticity, metamorphosis, thermal bottleneck, thermal tolerance plasticity
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et al., 2019). Moreover, most studies have pooled several pre- and 
post-metamorphic life stages (Pottier, Burke, Drobniak, et al., 2022; 
Weaving et al., 2022) thereby risking to overlook a critical thermal 
bottleneck in the life cycle (Dahlke et al., 2020). The extent to which 
thermal tolerance and acclimation capacity change during ontogeny 
is, therefore, not clear for many taxa.

Amphibians and freshwater fishes tend to live in relatively shallow 
waters (e.g., wetlands, ponds, rivers, lakes) and may, therefore, expe-
rience strong seasonal and daily temperature fluctuations (Capon 
et al., 2021) and climate extremes such as heat waves (IPCC, 2021). 
In addition, both taxa have a limited ability to disperse over larger dis-
tances and habitats to avoid unfavorable climatic conditions (Albert 
et al., 2011; Campos et al., 2021; Yu et al., 2013). Consequently, as a 
result of local adaptation (Meek et al., 2023), there should be a close 
correspondence between the capacity for thermal acclimation and 
the climatic conditions that amphibians and freshwater fishes expe-
rience during their life cycle. However, freshwater systems offer a 
wide range of thermal microhabitats that enable behavioral thermo-
regulation (Campos et al., 2021), especially for (post-metamorphic) 
amphibians that can switch between water and land. The potential 
of behavioral thermoregulation could reduce the need for physiolog-
ical adaptations (also known as the Bogert Effect, Bogert, 1949) and 
thus counteract the emergence of geographical patterns in thermal 
acclimation capacity and/or thermal tolerance. Given the central 
role that amphibians and freshwater fishes play in shaping the struc-
ture and function of these ecosystems (Closs et al., 2016; Hocking 
& Babbitt, 2014), understanding determinants and patterns of their 
physiological sensitivity is imperative to predicting the impacts of 
climate change on freshwater systems.

Here, we aimed to define the determinants and patterns of ac-
climation capacity in upper thermal tolerance in amphibians and 
freshwater fishes addressing, for the first time, ontogeny dependent 
variation. To do so, we compiled literature on upper thermal toler-
ance and collected empirical data for CTmax in four amphibian (i.e., 
larvae, metamorphs, juveniles, and adults) and three freshwater fish 
(i.e., larvae, juveniles, and adults) life stages acclimated to at least 
two different temperatures. Next, we calculated the population-
specific acclimation capacity, that is, mean acclimation response 
ratio (ARR) of upper thermal limits (i.e., the slope of the linear func-
tion describing the change in thermal tolerance with a given change 
in acclimation temperature; e.g., Claussen, 1977; Hutchison, 1961), 
and conducted a quantitative synthesis on the acclimation capacity 
of amphibians and freshwater fishes to test for differences among 
taxonomic groups, among life stages, and across thermal charac-
teristics of populations, that is, biogeographic differences based on 
local thermal adaptation. Further, we investigated how the method-
ological context (i.e., acclimation duration and temperature, ramp-
ing rate) affects estimates of thermal traits. Finally, we summarize 
methodological concerns, highlight key knowledge gaps, and provide 
research recommendations for generating reliable and comparable 
data on the acclimation capacity of ectothermic species and their life 
stages. This will improve our ability to predict future climate vulner-
ability of species and populations.

2  |  MATERIAL S AND METHODS

2.1  |  Systematic literature review

We conducted a systematic literature review using ISI Web of 
Science (ISI WOS, 2021) on 2022/06/30 and did not apply a times-
pan limit. The following Boolean search string was used to cap-
ture articles with experimental studies manipulating acclimation 
temperatures of amphibians and freshwater fishes at different life 
stages, and subsequently measured their CTmax: (“amphibian*” OR 
“newt*” OR “frog*” OR “toad*” OR “salamander*” OR “freshwater” 
AND “fish*”) AND (“early” OR “young” OR “life stage*” OR “onto-
gen*” OR “development*” OR “hatchling*” OR “alevin*” OR “larv*” 
OR “tadpole*” OR “metamorph*” OR “postmetamorph*” OR “post-
metamorph*” OR “postlarva*” OR “post-larva*” OR “fry*” OR “parr*” 
OR “smolt*” OR “subadult*” OR “sub-adult” OR “juvenile” OR “finger-
ling*” OR “adult*”) AND (“thermal” OR “temperature” OR “acclimat*” 
OR “heat” OR “warm*”) AND (“tolerance*” OR “thermal tolerance*” 
OR “temperature tolerance*” OR “warming tolerance*” OR “heat tol-
erance*” OR “thermal stress tolerance*” OR “heat stress tolerance*” 
OR “temperature stress tolerance*” OR “limit*” OR “temperature 
stress*” OR “thermal limit*” OR “critical temperature*” OR “CT max” 
OR “critical thermal m*” OR “thermal performance breadth*” OR 
“thermal breadth*” OR “performance breadth*” OR “thermal range*” 
OR “thermal window*” OR “thermal tolerance window*” OR “toler-
ance window*” OR “sensitivity*” OR “thermal sensitivity”).

Our search resulted in 11,057 documents (Figure S1). After re-
moving book chapters, conference contributions, reviews, meeting 
abstracts, editorial material, preprints, and proceedings articles, 
10,740 published peer-reviewed articles remained in our initial data-
base. Additionally, we manually added articles included in the meta-
analyses of Claussen (1977), Gunderson and Stillman (2015), Comte 
and Olden (2017b), Morley et al. (2019) and Dahlke et al. (2020) that 
met our inclusion criteria (specified below) but were not obtained 
through the ISI Web of Science search. After an initial subjective 
evaluation of titles, 3991 articles potentially containing results 
matching the objective of the present study were kept and further 
assessed for eligibility using the abstract. Thirty-four articles were 
not accessible. We contacted the authors of the original articles 
to request missing information and heard back from two authors. 
Finally, a total of 91 articles (33 on amphibians; 58 on freshwater 
fishes) met our inclusion criteria. Search methods are summarized 
in a PRISMA flowchart (Figure S1), and a list of included articles and 
experimental studies therewithin is available in the figshare data 
repository under https://​figsh​are.​com/s/​57775​032a0​b79c4​16ef2​ 
(https://​doi.​org/​10.​6084/​m9.​figsh​are.​24872133).

2.2  |  Inclusion criteria

Experimental studies were selected based on the following seven 
inclusion criteria:
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1.	 Experimental studies were conducted on amphibians (anurans, 
caudates, or gymnophiones) or freshwater fishes (teleosts).

2.	 Animals were acclimated to at least two constant acclimation 
temperatures under laboratory conditions prior to the CTmax 
measurements. Fluctuating temperature treatments were not 
considered. Therefore, field experiments were not considered 
since the acclimation temperature under field conditions is likely 
to fluctuate.

3.	 Articles provided comprehensive information on methodology 
(acclimation temperatures and duration, ramping rate), phylogeny 
(species names), sampling location (GPS location), and life stage. If 
no GPS coordinates were provided but a concrete sampling loca-
tion was stated (e.g., Central Park, New York City, NY, USA), we 
searched for the coordinates of the respective location on Google 
Maps.

4.	 Animals were collected from their natural habitat. Data were 
excluded if measurements were taken from specimens bred ar-
tificially to reduce confounding issues associated with artificial 
selective history (Bennett et al., 2018). Experimental studies were 
also included if adult animals were collected to immediately re-
produce in the lab to obtain larvae.

5.	 The critical thermal maximum (CTmax) was used as a standard 
measure of heat tolerance (Lutterschmidt & Hutchison,  1997a). 
Experimental studies using other measures such as voluntary 
thermal maximum, time to death, heat knockdown, or lethal tem-
peratures as well as extrapolations from thermal performance 
curves were not considered. In aquatic and terrestrial ectotherms 
such as amphibians and fish, CTmax is generally measured as loss 
of equilibrium (LOE) or loss of rightening response (LRR) following 
a steady increase in water or air temperature (dynamic method 
according to Fry, 1947). In comparison to other endpoints such 
as the onset of spasms (Lutterschmidt & Hutchison,  1997b), 
measuring CTmax as LOE or LRR is a non-lethal, robust method at 
various body sizes that is repeatable within individuals (Morgan 
et al., 2018).

6.	 At CTmax measurements, the animals could be classified into one of 
four different categories representing the consecutive life stages 
of amphibians and freshwater fish: (a) larva (pre-metamorphic; 
amphibians: <Gosner stage 42), (b) metamorph (only for amphib-
ians: Gosner stage 42–46), (c) juvenile (post-metamorphic), and (d) 
adult (after reaching sexual maturity). Embryos were not included 
in the present study because the assessment of acute heat toler-
ance in non-mobile life stages requires different endpoints that 
may not be directly comparable to the LOE/LRR-based CTmax of 
other life stages (Cowan et al., 2023; Lechner et al., 2023).

7.	 Food was provided ad  libitum during the acclimation time since 
food deprivation might decrease thermal tolerance and/or accli-
mation capacity (Lee et al., 2016).

2.3  |  Data extraction

When all inclusion criteria were met, data were collated in a spread-
sheet. We extracted mean CTmax for all acclimation temperatures 
resulting in 998 single data points (513 for amphibians; 485 for fresh-
water fish). Some of the selected articles performed different experi-
mental studies on, for example, different populations of one species, 
different species, or different life stages. Therefore, all available 
datasets were included, resulting in 345 experimental studies from 
91 articles with 345 paired effect sizes CTmax and acclimation capac-
ity. Data presented in the text or tables were directly extracted from 
the articles. When only raw data were available, mean values were 
calculated. For articles that presented results in figures instead of 
tables, Engauge Digitizer 12.1 was used (Mitchell et al., 2021) to ex-
tract data from the graphs. In addition to CTmax data, information on 
the methodology (i.e., acclimation temperatures and duration, ramp-
ing protocol), as well as on variables representing sampling location 
as detailed as possible (i.e., GPS coordinates), phylogeny (i.e., scien-
tific classification according to the Linnean classification), and life 
stage at CTmax assessment was extracted. The data extractions were 
performed by KR, KA and PCE, followed by an accuracy check of the 
data (KA: freshwater fish sub dataset; KR: amphibian sub dataset; 
PCE: both sub datasets).

2.4  |  Bioclimatic variables

For each sampling location, 19 bioclimatic metrics, related to tem-
perature and precipitation, and elevation were extracted using 
the WorldClim 2 database (http://​www.​world​clim.​org/​; Fick & 
Hijmans, 2017) for the average of the years 1970–2000. The data 
were extracted at a spatial resolution of 30 s (~1 km2), using pack-
age “geodata” (Hijmans et  al., 2022) in R (version 4.2.1; R Core 
Team,  2020). Bioclimatic variables are coded as follows (name of 
the variable and the unit used as input is included in parenthesis): 
Annual Mean Temperature (Bio1;°C), Mean Diurnal Range (Bio 2;°C), 
Isothermality (Bio 3; percentage), actual Temperature Seasonality 
(Bio 4; standard deviation in°C), Maximum Temperature of Warmest 
Month (Bio 5;°C), Minimum Temperature of Coldest Month (Bio 
6;°C), Annual Temperature Range (Bio 7;°C), Mean Temperature of 
Wettest Quarter (Bio 8;°C), Mean Temperature of Driest Quarter 
(Bio 9;°C), Mean Temperature of Warmest Quarter (Bio 10;°C), Mean 
Temperature of Coldest Quarter (Bio 11;°C), Annual Precipitation (Bio 
12; mm), Precipitation of Wettest Month (Bio 13; mm), Precipitation 
of Driest Month (Bio 14; mm), Precipitation Seasonality (Bio 15; co-
efficient of variation expressed in percent), Precipitation of Wettest 
Quarter (Bio 16; mm), Precipitation of Driest Quarter (Bio 17; mm), 
Precipitation of Warmest Quarter (Bio 18; mm), and Precipitation of 
Coldest Quarter (Bio 19; mm) (http://​www.​world​clim.​org/​data/​biocl​
im.​html). These macroclimatic data were used as approximations to 
identify patterns of local adaptation in amphibians and freshwater 
fish, as microclimatic data (e.g. site-specific temperatures) were not 
available in original articles or in the WorldClim database. Following 
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previous studies (Carilo Filho et al., 2022; Morley et al., 2019), mean 
near-surface air temperature was assumed to reflect the tempera-
ture profile of freshwater systems and used to analyze thermal ad-
aptation in both taxa. We are aware that these macroclimatic data as 
provided by the WorldClim database (representing surface air tem-
perature) present some limitations in reflecting microclimatic data 
(see Section 5 for methods to improve future studies). In contrast 
to marine habitats, the temperature of small or shallow bodies of 
water might fluctuate with the surface air temperature and animals 
at the surface of freshwater systems might be further exposed to 
high temperatures. Therefore, we assume that the average near-
surface air temperature is a suitable estimate of the temperature of 
freshwater systems, thereby reflecting the thermal local adaptation 
of investigated amphibian and freshwater populations. This is in ac-
cordance with previous studies testing the effect of thermal adap-
tation on the thermal physiology of various taxa (e.g., Carilo Filho 
et  al.,  2022; Gutiérrez-Pesquera et  al.,  2016; Morley et  al.,  2019; 
Sinai et  al.,  2022). Sampling locations were assigned to latitudinal 
groups based on the absolute latitude (°N/S) and were categorized 
as either tropical (0–25°), subtropical (>25–40°), temperate (>40–
53.55°) or polar (>53.55°; Morley et al., 2019).

2.5  |  Effect size calculation: ARR

A well-established method to measure acclimation capacity in ther-
mal tolerance in ectothermic animals is the calculation of the ARR, 
that is, the slope of the linear function describing the change in 
thermal tolerance with a given change in acclimation temperature 
(e.g., Claussen, 1977; Gunderson & Stillman, 2015; Hutchison, 1961; 
Morley et  al.,  2019). We separately calculated the ARR for CTmax 
within each study using the equation according to Claussen (1977):

where T represents the acclimation temperature (°C; with T2 = high-
est acclimation temperature and T1 = lowest acclimation temperature) 
and CTmax the heat tolerance estimates (°C). When data on more than 
two acclimation temperatures were presented, we calculated the ARR 
for each stepwise comparison (e.g., 18–20°C, 20–22°C, 22–24°C; 
Pottier, Burke, Drobniak, et al., 2022) and used the mean ARR of all 
comparisons in the statistical analysis. Higher absolute values of ARR 
correspond to higher plasticity in thermal tolerance limits (i.e., greater 
acclimation capacity; Claussen,  1977; Gunderson & Stillman,  2015; 
Kingsolver & Huey, 1998; van Heerwaarden et al., 2016). An ARR of 
1.00 indicates a 100% acclimation in thermal tolerance to a tempera-
ture increase of 1°C (Morley et al., 2019).

2.6  |  Statistical analyses

For all statistical tests R 4.0.2 (R Core Team,  2020) was used. All 
plots were constructed using R packages “ggplot2” (Wickham & 
Wickham, 2009), “ggtree” (Yu et al., 2017) and Adobe Illustrator CS6.

Conditional inference tree (CIT) analysis (R package “partykit,” 
Hothorn & Zeileis, 2015) was used to assess the influence of geo-
graphic origin (bioclimatic variables, elevation), phylogeny (taxon 
and order level), experimental methodology (ramping rate, mean 
acclimation duration, mean acclimation temperature), and ontogeny 
on CTmax and ARR of amphibians and freshwater fishes. As an advan-
tage over traditional (parametric) methods, CIT is a non-parametric 
method that handles complex non-linear relationships without mak-
ing specific assumptions about data distribution or being sensitive to 
outliers. CIT involves recursive partitioning to split data into subsets 
based on the relevance of predictor variables. At each node of the 
tree, a permutation-based test (Monte Carlo method with Bonferroni 
correction) determines whether the split is statistically significant 
(α < .05). The initial split in the tree indicates which predictor vari-
able has the strongest correlation with the response variable (CTmax 
or ARR). The resulting tree provides a hierarchical structure and 
classification of significant predictor variables. A post-pruning strat-
egy based on the Akaike information criterion (Akaike,  1974) was 
used to avoid overfitting, that is, removal of nodes that do not im-
prove the overall fit of the model (Hothorn & Zeileis, 2015). The raw 
data used for the analysis are provided in the electronic Supporting 
Information (Table S1).

Phylogenetic trees for visualizations were created using the 
R package “fishtree” (Chang et  al.,  2019) for freshwater fishes 
(Teleostei). The amphibian ultrametric tree was obtained from the 
timetree.org website in June 2022 (Kumar et al., 2022). To ensure the 
validity, we developed a workflow to filter out taxonomically invalid 
taxa. Firstly, a time tree was generated using the “Build a Timetree” 
function on timetree.org. The taxa names were then extracted 
from the generated time trees using the R package “ape” (Paradis & 
Schliep, 2019), excluding non-binomial names. The extracted list was 
cross-checked with the GBIF Backbone Taxonomy using the species 
matching tool (https://​www.​gbif.​org/​tools/​​speci​es-​lookup, accessed 
June 2022). Matches at the species rank with an accuracy of 100% 
were extracted and matches with lower accuracy were manually 
verified. The resulting species list was uploaded back onto timet​ree.​
org using the “Load a List of Species” function. The newly generated 
time tree was then downloaded and used for visualizations.

The relationship between absolute latitude (°N/S), elevation (m), 
and the bioclimatic variables that revealed a significant effect on 
CTmax (Bio 14, Bio 7) and ARR (Bio 3) in the CIT analysis was assessed 
using linear regressions. Differences in respective bioclimatic vari-
ables between latitudinal groups (tropical, subtropical, temperate, 
polar) were compared using Kruskal–Wallis tests followed by pair-
wise Mann–Whitney U- tests with false discovery rate-correction.

We were unable to test for a publication bias (i.e., whether sta-
tistically insignificant or negative results are less likely to be pub-
lished) in our data set given the use of a non-standardized effect size 

ARR =

CTmax[T2]
− CTmax[T1]

T2 − T1
,
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metric (i.e., ARR). Therefore, it remains possible that this bias may 
also occur.

3  |  RESULTS

The analysis of paired CTmax and ARR values included 201 experi-
mental studies on 96 amphibian species (2 orders) (Figure  1a,c) 
and 144 experimental studies on 93 teleost species (14 orders) 
(Figure  1b,d), corresponding to a phylogenetic coverage of ap-
proximately 1% within each taxon. No data were available for 
Gymnophiona. Most experimental studies determined CTmax and 
ARR in adult animals. For freshwater fishes, only one study deter-
mining CTmax in larvae was obtained, while 20% of the data covered 
juveniles (Figure  1b). For amphibian species, 12% of the data was 
available for one or several of the early life stages, that is, larvae, 
metamorphs, and/or juveniles (Figure  1a).The geographic origin of 
amphibian and fish species displayed a bias toward temperate and 
subtropical regions, with 60% of all sampling sites located in North 
America, 10% in Australia and New Zealand, 8% in South America, 
6% in Europe, and 4% in China (Figure  1c,d). The CTmax protocols 

were variable in both taxa, with acclimation times ranging from 0.5 
to 150 day (mean = 11.2 day), acclimation temperatures ranging from 
8.0 to 31.75°C (mean = 19.45°C), and ramping rates ranging from 
0.02 to 1.0°C min−1 (mean = 0.75°C min−1).

Across all species studied, CTmax ranged from 20.75 to 46.00°C 
(Table S1; Figure S2a). Acclimation capacity in upper thermal toler-
ance was positive in 97.1% of the experimental studies with an av-
erage of 0.22°C with every 1°C increase in acclimation temperature 
across all experimental studies and life stages, whereas the accli-
mation response for CTmax was negative (i.e., negative ARR) in 2.0% 
of the experimental studies. Across all species studied, ARR ranged 
from −0.08 to 1.68 (Table S1; Figure S2b).

For CTmax data of freshwater teleosts and amphibians (345 ob-
servations = number of experiments), the CIT model (73% explained 
variance) resulted in a classification tree with 8 internal splits and 9 
terminal nodes (Figure 2). Phylogeny (order/taxon), acclimation tem-
perature and acclimation duration were the main discriminators of 
CTmax, followed by geographic origin (annual habitat temperature, 
bio1) and life stage. The first split separated a group of teleost stud-
ies (mainly salmonid species) with lower CTmax values compared to 
the mean of all other studies (p < .001). In this group of cold-water 

F I G U R E  2 Conditional inference tree for critical thermal maximum (CTmax) of freshwater fish (Teleostei) and amphibians (Anura and 
Caudata). The sequence of internal nodes (splits) corresponds to a hierarchical structure of significant predictor variables. At each split, 
lines indicate the classification into groups with higher (black) and lower (red) CTmax values. Boxplots show the distribution of CTmax values 
(colored symbols) for each terminal node (n = number of experimental studies). Acclimation T = mean acclimation temperature used in an 
experiment before CTmax measurements (°C). Habitat T = mean annual temperature Bio1 (°C). Acclimation time = mean exposure time to 
acclimation temperatures before CTmax measurements (day).
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fish, CTmax increased significantly with acclimation duration (nodes 
1–3), with classification thresholds of split 2 and 3 defining differ-
ences between short (<6 days), intermediate (6–21 days) and long 
acclimation times (>21 days). For the majority of teleost and am-
phibian data (308 observations), CTmax was significantly dependent 
on acclimation temperature (split 4, p < .001), mean annual habitat 
temperature (Bio 1; split 5, p = .001) and life stage (split 6, p < .001). 
Overall, there was a positive correlation between acclimation/mean 
annual habitat temperature and CTmax (node 4–9). Split 4 separated 
teleosts and amphibians acclimated below or above 28°C. In the 
colder group (split 5), CTmax was higher for teleosts and amphibians 
that originated from warmer habitats, with a classification threshold 
of 16.2°C (node 4 and 5). For species acclimated above 28°C, CTmax 
differed between ontogenetic life stages (split 6), with larvae hav-
ing higher tolerance limits than juveniles, metamorphs and adults. 
However, this classification was phylogenetically unbalanced, as all 
larvae were anuran species (node 8 and 9). Splits 7 and 8 show that 
after accounting for ontogenetic differences, CTmax was higher at 
warmer acclimation temperature (>31°C, node 6 and 7) and higher 
mean annual habitat temperatures (>16.8°C, node 8 and 9).

For ARR data (345 observations), the CIT model (52% explained 
variance) produced a classification tree with 7 internal splits and 8 
terminal nodes (Figure 3). The main discriminators of ARR were phy-
logeny (order/taxon) and acclimation time, followed by CTmax meth-
odology (ramping rate) and a minor influence of local temperature 
variability (isothermality, Bio 3). The first split of the classification 
tree separated a large number of teleost studies (102 observations, 
68 species, node 1 and 2) with a higher ARR compared to the average 
of the other fish and amphibian studies in the dataset (p < .001). The 
relatively high thermal plasticity of the fish species in node 1 and 2 
was not related to any of the variables examined. Within this group, 
however, ARR decreased at higher acclimation temperatures, with a 
classification threshold of 20°C (split 2, p = .003). Split 3 was based 
on CTmax methodology, classifying fish and amphibian studies into 
groups with an acclimation duration longer or shorter than 14 days 
(node 3–8). Longer acclimation generally resulted in higher ARR val-
ues (node 3–5, p < .001), but the acclimation effect differed accord-
ing to ramping rate (split 4), phylogeny (split 5 and 6) and climate 
variability (split 7). When the acclimation duration exceeded 14 days, 
ARR studies were further classified according to ramping rate (split 

F I G U R E  3 Conditional inference tree for the acclimation response ratio (ARR) of freshwater fish (Teleostei) and amphibians (Anura 
and Caudata). The sequence of internal nodes (splits) corresponds to a hierarchical structure of significant predictor variables. At each 
internal node, lines indicate the classification into groups with higher (black) and lower (red) ARR values. Boxplots show the distribution of 
ARR values (colored symbols) for each terminal node (n = number of experimental studies). In node 1, high outlier values (n = 2) were not 
shown for scaling reasons. Acclimation T = mean acclimation temperature used in an experiment before CTmax measurements (°C). Ramping 
rate = heating rate for CTmax measurements in°C per minute. Isothermality = local temperature variability Bio 3 (%). Acclimation time = mean 
exposure time to acclimation temperatures before CTmax measurements (day).
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    |  9 of 20RUTHSATZ et al.

4, p < .001) and taxon (split 5, p = .031). These classifications imply 
higher ARR values of anurans at slow heating rates (<0.1°C min−1), 
and higher ARR values of teleosts compared to amphibians at ramp-
ing rates >0.1°C min−1 (Figure 3). If the acclimation period was less 
than 14 days, a subsequent split occurred according to phylogenetic 
order (split 6, p < .001) and isothermality (split 7), indicating a positive 
relationship between ARR and local temperature variability (node 7 
and 8, p = .011). Ontogenetic differences in ARR were not detected.

Isothermality (Bio 3; R2 = .708, p < .001) and annual mean tem-
perature (Bio 1; R2 = .696, p < .001) decreased from the tropics to 
the polar latitudes (Figure  S4). Both bioclimatic variables did not 
correlate with elevation (Bio 1: R2 = .137, p < .001; Bio 3: R2 = .012, 
p = .046).

4  |  DISCUSSION

4.1  |  Context-Dependent Drivers and Broad-Scale 
patterns of physiological limits

The most striking result from our analyses is that the acclimation 
capacity of freshwater fish was more than twice that of amphibians, 
indicating a strong phylogenetic signal. Our findings align with those 
reported in previous syntheses (Gunderson & Stillman, 2015; Morley 
et al., 2019; Pottier, Burke, Drobniak, et al., 2022; Rohr et al., 2018), 
demonstrating a higher thermal plasticity in organisms inhabiting 
aquatic habitats compared to their terrestrial counterparts in gen-
eral, and with fish (marine and freshwater) exhibiting greater thermal 
plasticity compared to amphibians (Gunderson & Stillman,  2015). 
Compared to most (post-metamorphic) amphibians, freshwater fish 
are restricted to their aquatic habitat throughout their life cycle 
(Comte & Grenouillet, 2013). As aquatic habitats tend to have less 
spatial variability in operative thermal conditions than terrestrial 
habitats (Gunderson & Stillman, 2015; Sunday et al., 2014), behav-
ioral thermoregulation is constrained, and freshwater fish are more 
likely than amphibians to use thermal plasticity to buffer against 
changing thermal conditions. Consequently, the capacity for thermal 
plasticity appears to be phylogenetically conserved between both 
taxa (Angilletta et al., 2002; Bodensteiner et al., 2021), depending 
on the ability for behavioral thermoregulation as explained by the 
Bogert effect (Bogert, 1949; Cowles & Bogert, 1944; Muñoz, 2022), 
rather than on the level of thermal variation to which a population is 
exposed to (Huey et al., 1999) as suggested by the climate variability 
hypothesis (Janzen, 1967). Moreover, unlike freshwater fishes, most 
amphibians undergo a habitat shift from a larval aquatic to a post-
metamorphic terrestrial habitat (Shi, 2000). As an adaptive response 
to often shallow or temporary larval habitats (Newman,  1992), 
amphibian larvae display a high degree of plasticity in growth 
and development (Burraco et  al.,  2021; Kulkarni et  al., 2017; 
Ruthsatz, Dausmann, et al., 2018, Ruthsatz, Peck, et al., 2018; Sinai 
et  al.,  2022), providing a means for increasing fitness (Schlichting 
& Pigliucci,  1998). Therefore, plasticity in timing of metamorpho-
sis appears to be more important than that in thermal tolerance to 

reduce mortality risk (Rudolf & Rödel, 2007) due to desiccation or 
temperature extremes (Albecker et al., 2023; Burraco et al., 2022). 
This might, at least in part, explain the lack of an ontogenetic pattern 
in acclimation capacity in amphibians.

Unlike acclimation capacity, geographic origin was one of the pri-
mary determinants of heat tolerance in both taxa, with a higher heat 
tolerance in populations from regions with a higher annual mean 
temperature compared to populations from regions with a lower an-
nual mean temperature. These findings support, at least in part, the 
climate variability hypothesis (Bozinovic et  al.,  2011; Janzen,  1967) 
since annual mean temperature decreases with latitude and is high-
est in tropical low-elevation regions. Both taxa, therefore, exhibit 
physiological adaptations to latitude-dependent thermal regimes 
to which they are exposed. Our results agree with the findings of 
a large body of research that has confirmed the link between phys-
iological limits and large-scale geography based on a species' local 
adaptation to temperature and other associated climatic variables 
(e.g., Gutiérrez-Pesquera et al., 2016; Pintanel et al., 2022; Sunday 
et  al.,  2011, 2019; but not: Addo-Bediako et  al., 2000; Sørensen 
et al., 2016). Yet, in addition to the broader literature, our synthesis 
indicated that CTmax was not only generally higher in populations from 
warmer regions as often found in low latitudes but also, importantly, 
varied with ontogeny. These findings emphasize the importance of 
assessing life stage-specific sensitivity to thermal stress as well as 
spatial climatic differences in conservation science. Therefore, fo-
cusing on large-scale geographical patterns for predicting how biodi-
versity will respond to future environmental change might bear the 
risk of overlooking context-dependent variation in thermal traits and 
thus, intraspecific differences in vulnerability to changing thermal 
conditions (Duarte et al., 2012; Gutiérrez-Pesquera et al., 2016). For 
example, Bovo et al.  (2023) demonstrated that responses of tropi-
cal amphibians to climate variation were heterogenous as a conse-
quence of intraspecific variation in physiological traits and spatial 
variation in climate with elevation. Furthermore, Sunday et al. (2011) 
and Pinsky et al. (2019) reported that the physiological sensitivity of 
ectotherms across all latitudes depended on the realm, with terres-
trial ectotherms being less sensitive to warming than aquatic ecto-
therms due to their higher capacity for behavioral thermoregulation.

4.2  |  Life stage-specific thermal sensitivity as a key 
factor in species vulnerability to climate change

In species with complex life histories such as amphibians and teleost 
fish, life stages differ in size, morphology, physiology, and behavior 
(Wilbur,  1980). Therefore, selection might promote stage-specific 
adaptations in thermal physiology (Enriquez-Urzelai et  al.,  2019; 
Ruthsatz, Dausmann, et  al.,  2022; Ruthsatz, Rakotoarison, 
et  al.,  2022). Ignoring those life stage-specific differences in ther-
mal physiology may drastically underestimate climate vulnerability 
of species with consequences for successful conservation actions. 
Here, we found that CTmax but not acclimation capacity differed be-
tween life stages in amphibians, with a higher CTmax in larval stages. 
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However, this pattern was only evident when high acclimation tem-
peratures were used in experimental set-ups and was most pro-
nounced in larvae from habitats with a high annual mean temperature 
as those found in the tropics. Limnic larvae may have a reduced ca-
pacity for behavioral thermoregulation due to their limited body size 
impairing the movement between different microclimates (Enriquez-
Urzelai et al., 2019; Kingsolver et al., 2011; Sinclair et al., 2016), mak-
ing them more dependent on passive responses to temperature 
fluctuations. To cope with changes in temperatures, a high heat 
tolerance is, therefore, advantageous in early life stages (Ruthsatz, 
Dausmann, et al., 2022). This might be particularly true for animals 
that are already living close to their heat tolerance since the ontoge-
netic difference was only evident at high acclimation temperatures 
and strongest in anurans from habitats with a high annual mean tem-
perature. In contrast, post-metamorphic stages might rather be able 
to select favorable microclimates by behavioral thermoregulation 
(Haesemeyer, 2020; Navas & Otani, 2007). This is particularly true 
for amphibians, as their post-metamorphic terrestrial habitats offer 
much spatial variability in operative thermal conditions (Gunderson 
& Stillman, 2015), while juvenile and adult (freshwater) fish are able 
to behaviorally thermoregulate by performing vertical and horizon-
tal movements (Amat-Trigo et al., 2023; Breau et al., 2007; but not: 
Clark et al., 2022). Our findings are in line with the pattern found for 
aquatic larvae by Cupp Jr. (1980), Sherman (1980), Enriquez-Urzelai 
et  al.  (2019), and Ruthsatz, Dausmann, et  al.  (2022), who demon-
strated a higher CTmax in amphibian larvae than in post-metamorphic 
stages. In contrast, Dahlke et al. (2020) found no difference in heat 
tolerance between larval and adult stages in marine and freshwa-
ter fish. Notably, our synthesis yielded only one estimate for larval 
CTmax and acclimation capacity in freshwater fish and, thus, we lack 
the data for any conclusion. Given that small body sizes of larvae 
restrict their capacity for behavioral thermoregulation, we would 
would expect freshwater fish to exhibit the same life stage-specific 
differences in thermal sensitivity observed in amphibians. In a recent 
study on the European common frog (Rana temporaria), young larvae 
may define the climate sensitivity of populations since that life stage 
exhibited the lowest acclimation capacity (Ruthsatz, Dausmann, 
et  al.,  2022). Furthermore, it is worth noting that our synthesis 
did neither encompass embryos nor gametes producing/spawning 
stages, which have recently been reported to have the lowest heat 
tolerance in fish (Dahlke et al., 2020, 2022; Pottier, Burke, Zhang, 
et al., 2022) and the lowest acclimation capacity across ectotherms 
(Pottier, Burke, Drobniak, et al., 2022). To better identify potential 
life history bottlenecks in thermal sensitivity in amphibian, fish and 
other taxa inhabiting freshwater, future studies should adopt a more 
comprehensive approach by considering a wider range of life stages 
within species.

4.3  |  Understanding context-dependent 
physiological adaptation in ectotherms

Global syntheses on physiological studies can help us determine the 
winners and losers of climate change through assessment of broad-
scale patterns of species' thermal limits and acclimation capacity for 
modifying their thermal tolerance (Somero, 2010). This knowledge, 
in turn, enables us to develop suitable conservation strategies to 
mitigate the negative effects of climate change. However, our key 
findings emphasize that assessing species' vulnerability to changing 
thermal conditions based on large-scale geographic and/or phyloge-
netic patterns in thermal traits might cover up context-dependent 
physiological adaptations. In other words, tropical ectothermic spe-
cies are considered particularly vulnerable to global warming as they 
live close to their physiological limits and have poor acclimation abil-
ity (Huey et al., 2009; Sunday et al., 2014; Tewksbury et al., 2008), 
but such generalizations might for instance ignore intraspecific vari-
ation in physiological limits across variation in climate with elevation 
(Bovo et al., 2023). Physiological adaptations are driven by the inter-
play between microclimate temperature heterogeneity and the be-
havioral thermoregulatory abilities of ectotherms (Huey et al., 2012; 
Pincebourde et al., 2016; present study) depending on their habitat 
characteristics (Kulkarni et al., 2017; Pinsky et al., 2019), ontogeny 
(Enriquez-Urzelai et al., 2019; Ruthsatz, Dausmann, et al., 2022), life 
history traits such as body size (Peralta-Maraver & Rezende, 2021; 
Rubalcaba & Olalla-Tárraga,  2020) or activity patterns (Navas & 
Otani,  2007; Ruthsatz, Rakotoarison, et  al.,  2022), and/or energy 
balance (Muñoz, 2022; Pörtner et al., 2005). Physiological traits and 
limits are consequently rather evolutionary driven dynamic con-
cepts than fixed values for a species (Bovo et al., 2018, 2023; Navas 
et al., 2022). In order to improve predictions of climate change im-
pacts on biodiversity, it is imperative to deepen our understanding 
of context-dependent physiological adaptations (Meek et al., 2023), 
thereby advancing the development of suitable conservation meas-
ures/strategies that incorporate evolutionarily enlightened perspec-
tives (Ashley et al., 2003; Cook & Sgrò, 2018) beyond the species 
level (Figure 4).

5  |  CONCLUSION

There is a growing body of physiological studies assessing ther-
mal limits and acclimation capacity of species, investigating physi-
ological systems setting these limits to better predict shifts in the 
productivity and species distribution patterns in a warming world. 
Our synthesis points to representation biases in taxonomy, species' 
biogeographic distribution, life stage, and biases resulting from non-
standardized study design. Here, we found the influence of life stage, 
phylogeny, and thermal adaptation to depend on acclimation dura-
tion and acclimation temperature of the animals and the ramping 
rate used, underscoring the importance of a thoughtful selection of 
the methodological approach. Notably, due to the biases present in 
existing data sets, most results from subsequent analyses (including 
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F I G U R E  4 Synthesis of biological and methodological determinants as well as key directions for future research on acclimation capacity 
in amphibians and freshwater fish to advance the application of thermal traits in assessing species' and populations' vulnerability to climate 
change. See text for further details.
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those presented here) cannot be generalized to all geographic re-
gions, life stages, and (taxonomic) groups, which limits the ability to 
predict organismal responses to global change (White et al., 2021). 
Therefore, we conclude our synthesis by addressing those data in-
adequacies and proposing methods to enhance data collection pre-
sented in five themes (Figure 4):

5.1  |  Biogeographic and taxonomic coverage

We found geographical trends in physiological limits associated with 
bioclimatic conditions at different latitudes. Thus, additional re-
search is needed in poorly represented (mostly tropical) regions that 
generally correspond to low-  and middle-income countries (King, 
2004). Addressing this issue can yield additional, important insights, 
as such geographic bias in existing data sets has been shown to limit 
our ability to predict organismal responses in these less-studied re-
gions (White et al., 2021). Our synthesis highlights that most experi-
ments have been conducted in North America, Europe, and Australia 
and information gaps exist for most parts of Neotropics, Africa and 
Sino-Oriental regions. Those regions harbor the highest diversity of 
species for both anurans and freshwater fishes (Jenkins et al., 2013; 
van der Sleen & Albert, 2022). Such regional differences in research 
effort are common in conservation science (McLaughlin et al., 2022; 
Schiesari et al., 2007; Sinai et al., 2022; Winter et al., 2016; White 
et  al., 2021) despite the fact that under-studied regions contain 
the vast majority of global biodiversity hotspots (Mittermeier 
et  al.,  2011). Furthermore, most of these experiments used spe-
cies that are common, widely distributed, and/or easily obtained by 
researchers. Studies on other species (particularly those already in 
decline) are needed to avoid taxonomic bias and reach stronger con-
clusions on whether specific taxa might be more sensitive to global 
warming (da Silva et al., 2020). Additionally, there may be an eleva-
tion bias in sampling, as most available data represent lowland rather 
than mountain species. As, for example, CTmax of tropical and sub-
tropical amphibian species has been shown to vary within the same 
latitude (Duarte et  al.,  2012; Gutiérrez-Pesquera et  al.,  2016), we 
urge future studies to focus on elevation gradients as well as cross-
latitudinal sampling, especially in tropical high-mountain populations 
(Bovo et al., 2023).

5.2  |  Relevance of life stage and sex

We urge future studies to measure a wider range of life stages and 
to measure both sexes within species to better identify thermal 
bottlenecks and assess climate change risks (Dahlke et  al.,  2020; 
Klockmann et al., 2017). All of the summaries to date likely overes-
timate physiological limits since most studies have been performed 
on adults, and thermal tolerance increases (Klockmann et al., 2017; 
Rubalcaba & Olalla-Tárraga, 2020; but not: Di Santo & Lobel, 2017) 
and acclimation capacity decreases (Pottier et al., 2021) with body 
size. Furthermore, after sexual maturity, females and males differ 

in a wide range of morphological, physiological, and behavioral as-
pects as well as in their energetic investment in gamete production 
(Hayward & Gillooly, 2011). A recent meta-analysis across ectother-
mic taxa revealed that the acclimation capacity differed between 
adult males and females in wild-caught animals (Pottier et al., 2021). 
Furthermore, Dahlke et al. (2020) found narrower thermal tolerance 
ranges in spawning females and van Heerwaarden and Sgrò (2021) 
demonstrated that a low heat tolerance of male fertility is a critical 
bottleneck in insects.

5.3  |  Ecological relevance

Future laboratory experiments should adopt a more comprehen-
sive and multifaceted approach for higher ecological relevance of 
thermal trait estimates (Desforges et al., 2023). Under natural con-
ditions, organisms must often cope with multiple simultaneously 
occurring environmental stressors (Gunderson et al., 2016; Rohr & 
Palmer, 2013) such as declining dissolved oxygen levels in freshwa-
ter habitats due to climate-induced temperature increases (Pörtner 
& Peck, 2010). As thermal limits are shaped by oxygen availability 
(Pörtner, 2001, 2010), organisms might exhibit lower thermal limits 
under natural conditions. Moreover, exposure to pollutants might 
reduce thermal tolerance (Little & Seebacher, 2015) or acclimation 
capacity (Ruthsatz, Peck, et al., 2018) due to increased metabolic de-
mands of detoxification processes or disruption of endocrine path-
ways involved in physiological acclimation. Physiological responses 
to increased water temperature as performed in the experimental 
studies summarized here (i.e., a single stressor) may not align with 
observed responses of individuals in the natural environments with 
multiple stressors (Katzenberger et al., 2014; Potts et al., 2021).

5.4  |  Methodological approach

Customizing protocols to account for organismal and context-
dependent variations in physiological limits (e.g., body size, life stage, 
sex, thermal history) will allow researchers to obtain more ecologi-
cally relevant estimates to inform conservation efforts. The applica-
tion of an acute thermal ramping rate and a standardized endpoint 
such as the LOE are used to measure critical thermal limits (Becker 
& Genoway, 1979). The estimates are sensitive to differences in the 
methods. For example, faster ramping (heating) rates tend to yield 
higher thermal tolerance estimates compared to slower ramping rates 
(Kovacevic et al., 2019; Moyano et al., 2017; Penman et al., 2023). 
Furthermore, measuring several endpoints (LOE/LRR, onset of 
spasms/heat rigor) if possible (Cowan et al., 2023; Wu & Kam, 2005) 
might facilitate comparisons between different taxonomic groups 
and/or experiments (Lutterschmidt & Hutchison, 1997b). Using wild-
collected animals is important as those reared in the laboratory may 
have physiology traits that differ from wild conspecifics (Morgan 
et al., 2022; Pottier et al., 2021). Methodological recommendations 
have been recently published and comparable methods are needed 
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to compare thermal limits of different life stages (Cowan et al., 2023; 
Desforges et al., 2023).

5.5  |  Through reporting of research details

Thorough and transparent reporting of experimental details in em-
pirical studies such as sampling location and animal origin, among 
others, is required to enhance the comparability of studies on 
thermal traits. Furthermore, most studies working on adults did 
not report the sex of animals despite the potential for sex (or re-
productive state) to be important factors in thermal sensitivity. 
Additionally, reporting microhabitat temperatures (i.e., in-site tem-
peratures) will improve our understanding of thermal adaptation at 
the population-level. The ability to make broad-scale comparisons 
of thermal tolerance across taxa, life stages, and regions will be en-
hanced when studies report as much methodological detail as pos-
sible. Consequently, these future studies will contribute more robust 
estimates of climate vulnerability needed to guide climate change 
interventions.

By considering our recommendations, future studies will be 
more comparable, facilitating the utilization of respective findings in 
large-scale studies and models that assess species vulnerability and 
thus, population dynamics under global warming.
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