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Abstract

Surface runoff plays an important role in contaminant transport, nutrient loss, soil

erosion and peak discharges in streams and rivers. Because it is the result of a variety

of complex hydrological processes, estimating surface runoff using physically based

hydrological models is challenging. Upscaling of physical soil properties is necessary

to cope with the limits of computational power in surface runoff modelling. In flat

landscapes, the (micro)topographic surface controls the onset and progression of sur-

face runoff on saturated soils during rain events. Therefore, its proper representation

is crucial when attempting to model and predict surface runoff. In this study, the

influence of microtopography (centimetre scale) on estimations of maximum depres-

sion storage (MDS), random roughness (RR) and the connectivity threshold (CT) is

explored. These properties are selected because they often serve as surface runoff

indicators in hydrological modelling. To characterize microtopography, a terrestrial

laser scanner (TLS) is used to generate a digital terrain model (DTM) of the study site

with a horizontal spatial resolution of 5 cm. MDS, RR and CT are then calculated and

compared to the values generated from the publicly available Dutch national DTM

dataset with a resolution of 50 cm. Our results show considerable differences in

MDS, RR and CT when calculated for the different input resolution datasets. Using

DTMs that do not sufficiently capture microtopography leads to underestimation of

MDS and RR, and to overestimation of CT. Our findings indicate that surface runoff

indicators, and thereby the surface runoff response of a saturated surface to rainfall

events, are defined at scales smaller than the scales of typically available DTMs.

Understanding surface runoff through modelling studies therefore requires a frame-

work that accounts for this lack of information arising from using coarser resolution

DTMs. We demonstrate a linear relationship between MDS values generated from

the different resolution DTMs. This opens the possibility of using empirical

scaling relationships between high- and lower-resolution DTMs to account for
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microtopography. Repetition of our measurements on similar surfaces would contrib-

ute to establishing such empirical scaling relationships. Our results should be seen as

indicative of flat landscapes and surfaces where centimetre scale microtopography is

relevant.

K E YWORD S

depression storage, DTM resolution, hydrologic connectivity, microtopography, surface
roughness, surface runoff

1 | INTRODUCTION

Surface runoff is an important pathway for nutrient losses (e.

g., Burwell et al., 1975; Haygarth et al., 2005; K.A. Smith et al., 2001;

R. Smith et al., 2015) and contaminant transport (e.g., Chrétien

et al., 2017; Coyne et al., 1995; Peyton et al., 2016; Rakonjac

et al., 2022) from agricultural fields to surface waters. In this capacity,

surface runoff has been linked to eutrophication and algal blooms

(Dolph et al., 2019; Sharpley et al., 1994; Wurtsbaugh et al., 2019),

loss of biodiversity (Dudgeon, 2019; Leip et al., 2015) and drinking

water pollution (Dąbrowska et al., 2018; Gilliom, 2007; Kool

et al., 2023). As surface runoff also leads to soil erosion and contrib-

utes to peak discharges in streams and rivers, there is a need for sci-

entists and water managers to assess its occurrence, magnitude, and

relative contribution to nutrient and contaminant transport (Massop

et al., 2017; van der Velde et al., 2010; Worm et al., 2019). In the con-

text of European legislation like the Water Framework Directive,

knowledge of the relative contribution of surface runoff to the deteri-

oration of surface waters can prove vital in achieving the proposed

environmental quality standards (EC, 2000; Heathwaite & Dils, 2000).

Furthermore, with climate change projections indicating an increase in

the frequency of extreme weather events (Coumou & Rahm-

storf, 2012), studies on surface runoff will become increasingly

pertinent.

Measuring surface runoff in field conditions can be time consum-

ing, expensive, and often requires intensive maintenance (De Louw

et al., 2015; van der Velde et al., 2010). Case studies in scientific liter-

ature are scarce and if present, conducted in lab-context or on small

plots covering up to several square meters (e.g., Chu et al., 2012;

Gomi et al., 2008; Joel et al., 2002; Soultani et al., 1993). Conse-

quently, there is an important role for modelling studies in gaining a

better understanding of this hydrologic phenomenon and in translat-

ing insights from smaller scales to scales relevant for water manage-

ment (catchments >5 km2). Surface runoff is influenced by various

factors, both natural and human-induced, including topography, mete-

orology, climate, local micro- and macro-biota, antecedent soil mois-

ture, soil characteristics, vegetation cover and changes in land use and

land cover. Because surface runoff is the result of a variety of complex

and highly non-linear hydrological processes and interactions, physi-

cally based modelling approaches are prone to overparameterization,

numerical instability or excessive computation times (Beven, 1989;

Frei et al., 2010; Zhang & Cundy, 1989). This is particularly true when

one considers the scale of the relevant processes involved.

Microtopography on the centimetre scale plays an important role in

the onset and progression of surface runoff (Dunne et al., 1991; Frei &

Fleckenstein, 2014). Especially in flat landscapes such as lowlands and

river deltas, where horizontal flow velocity is low and surface runoff is

less influenced by erosion and preferential flow paths, microtopogra-

phy controls the responsiveness of a saturated surface to rain events

(Antoine et al., 2009; Appels et al., 2016). Woolhiser (1996) even

argued that a reasonable estimation of surface runoff cannot be made

without proper measurements of microtopography. In physically

based hydrological models, it is not feasible to perform calculations

with grid cells on this level of detail (Frei & Fleckenstein, 2014).

Therefore, microtopography is often parameterized using subgrid

concepts describing surface storage, surface roughness or surface

connectivity. Because of the runoff controlling nature of microtopo-

graphy, these properties can be regarded as surface runoff indicators.

Characterizing microtopography as a storage component provides

an intuitive parameter, the maximum depression storage (MDS), which

is widely applied in hydrological models with various degrees of com-

plexity (e.g., Aquanty, 2015; Beven & Kirkby, 1979; DHI, 2023; Kroes

et al., 2017; Markstrom et al., 2015; Neitsch et al., 2011; Panday &

Huyakorn, 2004). MDS describes the maximum volume of water that

can be stored on the surface and often functions as a threshold-type

parameter that must be filled before surface runoff can occur. It can

be estimated directly from elevation data using filling algorithms, as a

lumped parameter through model calibration or by empirical relation-

ships with surface roughness indices. As this study is focussed on the

representation of topography, the method utilizing model calibration

is not considered further here. The disadvantage of using filling algo-

rithms in estimating MDS is that grid data that can capture all relevant

topographic features is often not available. Roughness indices offer

an alternative method of calculating MDS that accounts for microto-

pography (Chu et al., 2012). Kamphorst et al. (2000) provide an over-

view of different roughness indices and how they relate to MDS and

found that random roughness (RR), which is the standard deviation of

a surface corrected for general slope, is most suited for estimation of

MDS. The advantage of deriving MDS from RR is that RR can be cal-

culated directly from spot measurements of elevation (e.g., observed

with laser techniques or manual pin measurements), while for filling-

algorithm-based estimates of MDS these spot measurements need to

be interpolated into a spatial grid, losing important fine-scale informa-

tion (e.g., Thomas et al., 2017; Yang & Chu, 2013). Antoine et al.

(2009) argued that fields with similar geostatistical properties (i.e.,

variogram) can have different rainfall-runoff responses, depending on
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the connectivity of microchannels and gullies in the landscape.

Peñuela et al. (2013) further developed this idea by creating a parame-

ter, the connectivity threshold (CT, see Section 2), that indicates at

which depression storage a field starts to produce runoff. This typi-

cally is far before the full MDS is reached and depends on the connec-

tivity of depressions to the outflow boundary. This concept of

hydrologic connectivity in combination with MDS has potential to

improve runoff description in hydrologic models (Peñuela et al., 2015).

Estimating MDS, RR and CT requires a proper representation of

the hydrologic surface. The resolution of publicly available digital

terrain models (DTMs) is often not sufficient for capturing microtopo-

graphy on the centimetre scale. Furthermore, interpolation in the pre-

processing phase of the DTM product may lead to smoothing of the

elevation profile and alter its geostatistical properties (Desmet, 1997;

Li et al., 2020). As these DTMs are widely used in terrain analysis and

hydrologic modelling, it is important to consider the influence of DTM

resolution and construction methods on the representability of the

dataset. Recent developments in data processing capacity and mea-

surement technology, like terrestrial- and airborne-laser scanning,

have made it possible to construct a surface in great detail (Harpold

et al., 2015; Telling et al., 2017). Terrestrial laser scanners have been

used in numerous studies to generate high resolution DTMs and eval-

uate the effects of small-scale topography in earth science research

(e.g., Barneveld et al., 2019; Fan & Atkinson, 2018; Jan et al., 2018; Li

et al., 2020).

The research objectives of this study are to assess the influence

of DTM resolution on estimating surface runoff indicators and to

explore how we may account for small scale microtopography when

only relatively coarse, public DTMs are available. Addressing these

objectives will increase our understanding of the topographic proper-

ties governing surface runoff in flat landscapes, shed light on the level

of detail required to estimate surface runoff through modelling stud-

ies, and improve the interpretation of the outcomes of modelling

studies utilizing publicly available DTMs.

A case study is presented in which a terrestrial laser scanner (TLS)

is used to generate a DTM with a horizontal spatial resolution (hereaf-

ter referred to as: resolution) of 5 cm. The 5 cm-DTM is then used to

determine MDS, RR and the CT. These properties are then compared

with a similar set of values calculated for a different input DTM with a

lower resolution of 50 cm, AHN3, which is the publicly available

Dutch national DTM (see: https://pdok.nl/). This case study highlights

the significance of microtopography in characterizing a surface used

to estimate surface runoff indicators and explores empirical relation-

ships between DTM-derived parameters from high- and lower-resolu-

tion datasets. Such relationships will improve the representation of

microtopography in surface runoff studies.

2 | METHODS

2.1 | Site description

The study site, located in the Twente region in the eastern part of The

Netherlands, is a low slope (average slope <1%) 1.4 ha permanent

grassland used for grazing by dairy cows (Figures 1 and 2). The field

has been used in this way for over a decade and apart from rotational

grazing, agricultural activities are limited to mowing (twice a year) and

fertilizer injections (twice a year). The topsoil (0–20 cm below the sur-

face) consists of moderately fine sand with organic matter (approxi-

mately 5%) and traces of silt and loam (both approximately 10%; see:

https://www.dinoloket.nl). The studied sub-catchment within the field

is bordered by a ditch in the north, the hydrological divide in the

south, a ridge in the west and continuing grassland in the east. Around

25% of the land surface of The Netherlands is permanent grassland

and it is considered an important source of nutrient and contaminant

transport (de Vries et al., 2021; Rakonjac et al., 2023).

2.2 | Topographic data

The study site is discretized into regular grid digital terrain models

(DTMs) in two horizontal spatial resolutions: 5 and 50 cm. The resolu-

tions are chosen to distinguish between micro- and meso-topographic

surface features within the context of flat landscapes. The 5 cm-DTM

can capture microtopographic structures, that is, tussocks and the

spaces in between that are characteristic for lowland cattle pastures

(Figure 2b). The choice for a 5 cm-DTM is supported by the works of

Kamphorst et al. (2000) and Habtezion et al. (2016), who found no

changes in storage and topographic properties at grid sizes below

40 mm (test range 2–40 mm) and 10 cm (test range 2–80 cm) respec-

tively. In contrast, the 50 cm-DTM is too coarse to capture the micro-

topographic features characteristic for our study site. By using both

resolutions, this study aims to evaluate how microtopography and

input DTM resolution influence estimates of the surface runoff

indicators selected in this study. Another reason for selecting the

F IGURE 1 50 cm-DTM of the study site with surface samples
S1–S8.
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50 cm-DTM is because it has national coverage (The Netherlands) and

therefore offers potential scaling and application opportunities.

The 5 cm-DTM was obtained through a LiDAR survey in

November 2021, using a Riegl® VZ-400 terrestrial laser scanner

(TLS) mounted on an extendable tripod of approximately 3.5 m in

height. The scanner was placed in vertical position, scanning 360� in

horizontal and between 130� and 30� relative to nadir in vertical

direction (Figure 3). This means that the ground surface close to the

scanner was not sampled directly, but from an adjacent scan posi-

tion. This resulted in slightly lower point densities directly around

the locations where the scanner was placed. The angular resolution

of the scanner was set to 0.04�, resulting in point densities between

10 000 and 100 000 points/m2. The different scans were co-regis-

tered using 5 cm-diameter retro-reflective tubes, placed between

the scan positions. Absolute geo-referencing was done based on the

add-on GPS receiver and the point clouds were levelled based on

the inclination sensors of the instrument. Surface points were

extracted using the lasground_new module of the LAStools soft-

ware package (see: https://rapidlasso.com/lastools/), which has

demonstrated good results in earlier studies (Moudrý et al., 2020). It

applies progressive triangulated irregular network (TIN) densifica-

tion. The module first extracts the lowest points for each cell within

a user defined grid, which we set at 25 cm (the size of the largest

surface feature: a tussock), from which it builds an initial TIN. This is

then densified by iterating over the points in the point cloud, in

which ground- (progressively added to the TIN) and non-ground

points are classified based on distance and angle to the TIN plane

and nodes. As we worked with a 25 cm initial grid on a relatively flat

surface, we removed spikes above 15 cm from the initial TIN plane,

as such steps were considered non-ground (vegetation) points. The

algorithm allows for slight ‘bulging’ (we used the default 2.5 cm:

one tenth of the initial grid size) of the calculated surface. The result

of the lasground_new module is a fine resolution TIN containing all

classified ground points. Next, the blast2dem module applies

inverse distance weighting (IDW) to transform the TIN to a 5 cm

regular grid (see: https://rapidlasso.com/blast/blast2dem/). The

50 cm-DTM used in this study is the open source AHN3 dataset,

which covers all of The Netherlands (see: https://app.pdok.nl/

viewer). The part of the dataset covering the study site was gener-

ated in 2012 using airborne laser imagery with a point cloud density

of 10–14 points/m2. The point clouds were classified into surface

and non-surface points (partly automated, partly by hand) and trans-

formed to the 50 cm-DTM using squared inverse distance weighting

to estimate the elevation at the centre of the grid cell (see: https://

ahn.nl/ahn-the-makin-of). To allow for comparison of the DTM-

derived surface runoff indicators within the study site, random rect-

angular surface samples were selected by hand with dimensions

30 � 30 m (Figure 1). The size of the samples was chosen following

F IGURE 2 (a) Wide view photograph of the study site, a typical Dutch cattle pasture, taken in the summer of 2023. (b) Close up photograph,
taken in a wet period in the winter of 2024, showing water stored in surface depressions between tussocks. Some of the smaller puddles have
merged, increasing the hydrologic connectivity of the surface.
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Appels et al. (2011), who proposed a maximum semivariogram

range/field length ratio of 0.1 for a representative sample of a ran-

domly distributed surface. The average semivariogram range of the

field samples is approximately 2 m, yielding a range/field length

ratio of 0.067.

2.3 | Surface runoff indicators

The three surface runoff indicators used in this study, maximum

depression storage (MDS), random roughness (RR) and connectivity

threshold (CT) are chosen based on their popularity in scientific litera-

ture and on their relevancy in hydrologic modelling (e.g., Chu

et al., 2010; Kamphorst et al., 2000; Martin et al., 2008; Peñuela

et al., 2015; Yang & Chu, 2013).

2.3.1 | Maximum depression storage

MDS, also called surface depression storage or depression

storage capacity, is the maximum volume of water that can be stored

in depressions on a surface (Amoah et al., 2013). It is a ubiquitous con-

cept, often functioning as a threshold-type parameter in surface run-

off-related modelling. A depression within a DTM can be

mathematically defined based on the elevation values of the grid cells

surrounding a given centre cell. If the centre cell has a lower elevation

than its neighbouring cells, it is considered a surface depression. The

sum of the volumes of all surface depressions in a DTM is considered

the MDS, and is usually normalized over the area to be expressed in

millimetres. As surface depressions often consist of clusters of grid

cells, the most common way of calculating MDS is by iterating over

the grid cells in a DTM, gradually ‘filling’ the depressions until none

remain. In this study, we apply the SAGA GIS Wang & Liu filling algo-

rithm to derive MDS directly from the DTMs (Wang & Liu, 2006). The

algorithm creates a spatially distributed map of surface depressions.

MDS is obtained by filling up surface depressions in order of a priority

queue that starts with the lowest outflow boundary grid cell and

expands every iteration. The outflow boundaries are located at all

sides of the analysed surface. The algorithm progressively connects

the regular grid to the outflow boundary, applying a least-cost scheme

that selects the lowest elevation of all eight neighbouring cells to gen-

erate optimal flow paths. In the final stage the complete surface is

connected to an outflow boundary and MDS can be determined. It

is considered efficient and accurate and is widely adopted in scientific

literature (e.g., Jensen et al., 2017; Kopecký et al., 2021; Niittynen

et al., 2018).

2.3.2 | Random roughness

The concept of random roughness (RR), a measure of the elevational

variability of a surface, is a popular way of statistically parameterizing

topography in hydrology (e.g., Cremers et al., 1996; Hansen

et al., 1999; Kamphorst et al., 2000; Moriasi et al., 2012; Mwendera &

F IGURE 3 Depiction of the TLS measurement procedure. Red circles portrait the ‘blind zone’ right below the TLS (black rectangle), resulting
from the 30� angle α with respect to nadir (vertical line z). The blind spot is measured from an adjacent position, leading to differences in point

densities at different locations on our study site. In our case study, the point densities varied from 10 000 to 100 000 points per square meter.
The study site was measured from 20 different scanning positions throughout the field, at approximately 20–30 m (horizontal line x) from each
other in a grid-wise movement (5 rows in the west–east direction, 4 columns in the north–south direction). The 130� angle β represents the
maximum angle at which the TLS scans its surroundings. The actual ‘line of sight’ of the TLS is obtained by subtracting angle α (30�) from angle β

(130�) and results in a viewing angle of 100�. This wide angle allows the TLS to, apart from its blind zone, scan the complete study site from every
scanning position (illustrated by horizontal line y).
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Feyen, 1992; Onstad, 1984). It is usually derived from high resolution

(mm-cm scale) pin-meter measurements and therefore able to account

for microtopography. Its calculation however is subject to discussion

as authors disagree on how to correct for slope and tillage, whether

to use standard deviation or standard error, and whether to use log

transformation in generating RR (Kamphorst et al., 2000). In this

study, we follow the definition of Currence and Lovely (1970) and

Kamphorst et al. (2000), who define RR as the standard deviation of

elevation points in a transect of a DTM after correcting for slope.

They argued against the use of standard error, as it would be directly

related to the number of elevation data points. Furthermore, they did

not perform log-transformation as RR is more sensitive to changes in

roughness without it. Instead of using a transect, we use all elevation

points in the DTM to generate RR to account for roughness in both x-

and y-directions. Kamphorst et al. (2000) correct for slope using a lin-

ear trend plane, which is reasonable considering the small areas of

their field plots, which range from 0.2 to 3.5 m2. As this method may

lead to outliers in the residuals and corresponding elevation points

due to heterogeneity in the sloping surface, we chose to detrend the

study site using SAGA's simple filter functionality in QGIS (see:

https://sourceforge.net/p/saga-gis/wiki/grid_filter_0/). This module

calculates the average value within a search radius for every point in a

DTM and provides a straightforward approach for correcting a surface

for general slope (Cavalli & Marchi, 2008). By making each calculated

elevation grid cell in the trend surface a function of its neighbouring

cells instead of one linear trend plane, we can account for heteroge-

neity in the sloping surface. The search radius of the moving average

will affect the resulting detrended surface. The choice of this radius is

subjective and depends on the purpose of the study and nature of the

relevant topographic features (Trevisani et al., 2012). To evaluate

the effect of search radius, the algorithm is repeated for search radii

of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 cm. RR is

then retrieved by taking the standard deviation of the residuals after

subtracting the filtered DTM from the original DTM. The concept of

RR is commonly employed in calculating MDS through empirical for-

mulas utilizing RR and general slope as independent variables. To eval-

uate the impact of DTM resolution on RR-derived MDS estimates, we

selected a range of popular empirical formulas (see Table 1; similar to

Abd Elbasit et al., 2020) from scientific literature (Hansen et al., 1999;

Kamphorst et al., 2000; Mwendera & Feyen, 1992; Onstad, 1984).

The use of such empirical formulas in hydrological models like the soil

erosion model LISEM (De Roo et al., 1996) implies a level of generaliz-

ability. We included them to our analysis to explore their applicability

beyond the data from which they were developed, and to publicly

available DTMs such as the 50 cm-DTM used in this case study.

2.3.3 | Connectivity threshold

To assess the influence of microtopography on hydrologic connectiv-

ity, we follow the work of Darboux et al. (2002) and Antoine et al.

(2009). These authors found that traditional indicators used to quan-

tify spatial variability of surfaces, such as semivariograms and relative

bivariate entropy are not able to distinguish between different land-

scape configurations with similar geostatistical properties. Antoine

et al. (2009) developed a methodology that can capture the runoff

dynamics of these different topographies, utilizing a fill-and-spill algo-

rithm to generate a relative surface connection function (RSCf). The

fill-and-spill model deposits a volume of water on a DTM per timestep

and redistributes this water based on surface elevation and under the

assumption of instantaneous water transfer. Surface depressions

become ponds, which can merge into larger ponds until they reach

the outflow boundary and become surface runoff. Plotting depression

storage (m3) (x-axis) against the ratio surface connected to the outflow

boundary/total surface (�) (y-axis) yields the RSCf. To allow for com-

parison of different surfaces independent of surface area, Peñuela

et al. (2013) normalized the depression storage component of the

RSCf by the MDS. In this paper we use this dimensionless form of

the RSCf to characterize functional connectivity. The point on the

RSCf where a sharp increase in area contributing to runoff with

increasing relative depression storage can be detected is called the

connectivity threshold (CT). This behaviour is typically associated with

runoff generating surfaces (Darboux, Davy, et al., 2002; Darboux,

Gascuel-Odoux, & Davy, 2002; Peñuela et al., 2015). The CT can be

interpreted as a measure of the reactivity of a saturated surface to a

rain event. It consists of points CTx and CTy, corresponding to the

ratio depression storage/maximum depression storage (x-axis) and the

ratio runoff rate/rain rate (y-axis) respectively. Following Peñuela

et al. (2013), we do not consider the point CTy as it represents a bor-

der effect, especially for smaller surfaces such as our field samples

S1–S8. As CTy at point CTx = 0 represents the surface initially con-

nected surface to the outflow boundaries, the RSCf methodology is

sensitive to surface sample size and input DTM resolution. The point

CTx contains information on functional connectivity, as it depicts the

filled percentage of MDS needed before a rapid increase in surface

runoff can be observed.

The RSCf is constructed using the output of the fill-and-spill algo-

rithm FASTR, which is similar to the Antoine et al. (2009) model and

the Wang and Liu (2006) filling algorithm described in Section 2.3.1

(Appels et al., 2011). For a detailed description, we refer to Appels

et al. (2011).

We propose a new method for finding the CT to standardize the

procedure and allow for intercomparison between case studies. As

TABLE 1 Adapted from Abd Elbasit et al. (2020): the four
empirical formulas using the concept of RR to calculate MDS.

Empirical formula Reference

MDS = 0.112 � RR
+ 0.031 � RR2 � 0.012 � RR � S

Onstad (1984)

MDS = 0.294 � RR
+ 0.036 � RR2 � 0.01 � RR � S

Mwendera and Feyen

(1992)

MDS = 0.369 � RR � 3.76 � RR � S
+ 11.1 � RR � S2

Hansen et al. (1999)

MDS = 0.234 � RR
+ 0.01 � RR2 + 0.012 � RR � S

Kamphorst et al. (2000)
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the CT represents a threshold in the hydrologic connectivity of a sur-

face, we opted for a breakpoint analysis as described in Muggeo

(2003). We applied the ‘segmented’ functionality in R to find two lin-

ear regressions and the point where they intersect, the breakpoint,

which is interpreted as the CT (Muggeo, 2008). In addition to finding

the CT, this method potentially provides extra information on the con-

nectivity dynamics of a surface, in which the two linear regressions

describe the connectivity regime in the pre-threshold stage (charac-

terized by filling of depression storage) and the post-threshold stage

(characterized by spilling from depression storage).

2.4 | Study design

The goals of this study are: (1) to assess the influence of DTM resolu-

tion on estimating surface runoff indicators MDS, RR and CT; and

(2) to investigate possible empirical relationships between the surface

runoff indicators derived from high (5 cm) and low (50 cm) resolution

DTMs. The broader aim is to develop a scaling approach that can be

used to estimate surface runoff indicators based on the topography of

a surface. By dividing the study site into eight surface samples, this

case study is designed to explore the scalability and evaluate within-

field variability of the surface runoff indicators. The indicators are cal-

culated for the whole study site, for the separate surface samples S1–

S8, and for the average of the surface samples using both the high-

and low-resolution DTMs. Comparing the values calculated from the

high- and low-resolution DTMs will provide valuable insights in

the potential application of lower resolution DTMs in estimating

parameters that are influenced by small scale topography. Further-

more, indicator estimates derived from the whole field relative to the

sample means will help evaluate the representativeness of surface

runoff indicators at different spatial scales.

3 | RESULTS

3.1 | Maximum depression storage

MDS for the selected field samples S1–S8 from our study site (Fig-

ure 1) ranges from 0.4 to 2.1 mm (50 cm-DTM) and from 1.2 to

4.0 mm (5 cm-DTM; Figure 4). The MDS values calculated from the

5 cm-DTM (y-axis) are roughly twice as large as the values calculated

from the 50 cm-DTM (x-axis).

A linear relationship between the estimated MDS for both DTMs

can be derived from the graph (R2 0.98). This result can be attributed

to differences in data collection methods (TLS vs. airborne LiDAR),

interpolation procedures or actual changes in microtopography that

occurred between both data collection periods. We consider actual

changes in topography unlikely, as there has been no change in land

use for over a decade, and agricultural activities on the field are kept

to a minimum (see Section 2.1). Furthermore, since the linear relation-

ship suggests a systematic difference between the datasets, the most

likely explanations are differences in data collection methods or

interpolation procedures. Variability in MDS calculated for the field

samples S1–S8 is large (SD 0.5 and 0.9 mm for the 50 cm-DTM and

5 cm-DTM respectively) compared to their mean absolute values of

approximately 1.0 mm (50 cm-DTM) and 2.1 mm (5 cm-DTM). The

lower estimates in S1–S6 as compared to S7 and S8 are likely caused

by steeper local slope (S3–S6) and by surface compaction and levelling

due to use of heavy machinery on the headland (S1 and S2). MDS

values calculated for the full domain of the study site (1.1 mm for the

50 cm-DTM and 2.2 mm for the 5 cm-DTM), indicated by the red cir-

cle in Figure 4, fall closely to the fitted linear equation. The difference

between the average MDS of all surface samples (blue rhombus) and

the full domain MDS (red circle) can be interpreted as a boundary

effect, resulting from a greater outflow boundary/spatial domain ratio

F IGURE 4 MDS in millimetres calculated from the 5 cm-DTM plotted against MDS calculated from the 50 cm-DTM. The points in the graph
represent MDS values for the selected field samples S1–S8 (orange), their mean (blue rhombus) and the MDS for the full domain (red circle).
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which leads to a higher initially connected surface and therefore a

lower number of disconnected surface depressions for the samples. In

the filling algorithm used to calculate MDS, only these initially discon-

nected surface depressions contribute to MDS. As a consequence of

the grid cell area/sample area ratio, the boundary effect is more pro-

nounced in the 50 cm-DTM, leading to an 18% difference between

mean sample and full domain MDS for the 50 cm-DTM and a 5% dif-

ference between mean sample and full domain MDS for the

5 cm-DTM.

3.1.1 | Random roughness

Calculated RR values (Figure 5) in the eight sample plots range from

8.7 to 19.4 mm (50 cm-DTM) and from 11.7 to 22.3 mm (5 cm-DTM).

Our results show that estimated RR is consequently higher (Pearson's

correlation coefficient = 0.997) for the 5 cm-DTM as compared to

the 50 cm-DTM, irrespective of the filter radius used in detrending

the surface. Similar to the MDS results, a systematic difference

between the outcomes derived from both DTMs can be observed. For

the same reasons as mentioned in Section 3.1, the most likely expla-

nations for the observed offset between the 5 cm- and 50 cm-DTM

RR are either differences in data collection methods (TLS vs. airborne

LiDAR) or the use of inverse distance weighting (IDW) in constructing

the 50 cm-DTM, thereby creating a structural and consistent smooth-

ing error of around 2.5 mm.

It is evident that the choice of filter radius strongly influences

estimated RR values for both DTMs, leading to RR values roughly

twice as large when comparing the lowest (50 cm) and highest

(500 cm) filter radii applied in this study. This effect of filter radius can

be interpreted as being a consequence of heterogeneity in the sloping

surface and the presence of mesotopographic structures which

interfere with the calculations of the filter algorithm. Both aforemen-

tioned surface features are present on our case study site (Figure 1).

Practically, this means that the larger the filter radius, the bigger the

chance that elevation points within the radius deviate from the eleva-

tion value at the centre of the filter radius by a larger amount. As the

detrended surface used in calculating RR is the result of subtracting

the filtered DTM from the original DTM, RR values increase with

increasing filter radius. It is important to emphasize that there is no

ground truth in a surface analysis based on RR. The choice of a smaller

filter radius can highlight roughness at smaller topography scales, such

as tussocks and soil aggregates, whereas the choice of a larger filter

radius can highlight roughness related to larger surface features, such

as rills and gullies generated during land cultivation.

RR values generated from the full domain are consistently higher

than the sample average RR values. We attribute this to an underrep-

resentation of the south-west part of the field site in the surface sam-

ples. This more elevated part of the field has higher roughness values,

leading to the difference between the sample mean RR and the full

domain RR.

3.1.2 | Random roughness derived maximum
depression storage

As can be expected from the RR results in the previous section, MDS

calculated with the empirical formulas from Table 1 shows a system-

atic difference between the estimates derived from the two DTMs

(Figure 5). MDS derived from the 5 cm-DTM is consistently higher

than MDS derived from the 50 cm-DTM for all formulas.

Only the Onstad (1984) formula (filter >1.5 m) is able to accu-

rately estimate the target value, which is defined as the original non-

detrended 5 cm-DTM MDS calculated with the Wang and Liu (2006)

F IGURE 5 RR in millimetres for the 5 cm- and 50 cm-DTMs, plotted for different filter radii used in detrending the surface. The graph shows
RR for surface samples S1–S8 (blue, green, and yellow dots), their average (red dots) and for the full domain (rhombi).
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filling algorithm (see Sections 2.3.1 and 3.1). All other formulas using

the 5 cm-DTM-derived RR overestimate MDS. The large differences

between the outcomes of the empirical formulas indicate that caution

should be exercised in the selection of such formulas when used in

scientific studies. A large detrending effect is introduced when using a

filter algorithm to remove the general slope. In Figure 6, this is evident

from the difference between the filling-algorithm based estimates of

MDS for the unprocessed (rhombus) and detrended (circles) 5 cm-

DTMs (difference of 1.8–4.8 mm). The MDS estimates calculated with

the empirical formulas of Mwendera, Hansen and Kamphorst appear

to be more closely related to the filling-algorithm based MDS esti-

mates derived from the accompanying detrended DTMs, whereas the

Onstad formula predicts MDS more closely to the target value.

From these results, it is evident that RR and the empirical formu-

las in which RR is used to calculate MDS are strongly affected by the

resolution and the construction method of the input DTM, as well as

by the detrending methodology used in correcting for slope.

3.2 | Hydrologic connectivity

Relative surface connection functions (RSCf) for the 5 cm- and

50 cm-DTMs show clear differences between the curves obtained

from the different input DTMs (Figure 5). The 50 cm-DTM describes

the surface as better connected than the 5 cm-DTM, as can be

derived from the connectivity thresholds (CT), which are located at

the points where the ratio runoff rate/rainfall rate (y-axis) starts to

increase substantially. The exact location of CT is arbitrary by design.

Peñuela et al. (2013) defined this point at RSCf dy/dx = 1. Estimations

of this point depend on the window of calculation and are sensitive to

local behaviour of the RSCf, meaning that an expert assessment is still

required to validate the outcome of the calculations used to deter-

mine the CT. Since the CT represents a threshold in surface

connectivity, we opted for a breakpoint analysis to determine its loca-

tion systematically. The results of the breakpoint analysis are plotted

in Figure 7 (circles and rhombi). As argued in the methods Sec-

tion 2.3.3, point CTy is sensitive to boundary effects resulting from

the size and resolution of the spatial domain, affecting the surface

area initially connected to the outflow boundary. Point CTx is not

influenced by this boundary effect.

Point CTx for the full domain is estimated at x = 0.20 for the

50 cm-DTM and at x = 0.42 for the 5 cm-DTM. This means that 20%

of the 50 cm-DTM depression storage is filled before surface runoff

will start to considerably increase, whereas for the 5 cm-DTM this

value lies around 42%, which for our study site corresponds to

0.31 mm for the 50 cm-DTM and 0.92 mm for the 5 cm-DTM. For

the sample average curves, CTx values are estimated at 0.49 (50 cm-

DTM) and 0.65 (5 cm-DTM), corresponding to 0.76 and 1.42 mm,

respectively. This implies that when using the RSCf methodology, the

estimation of the runoff response of a saturated surface to a rain

event is greatly impacted by the representation of microtopography

in the input DTM. It suggests that unconnected microdepressions not

captured in the coarser resolution DTM play a role in the connectivity

of the study site. The differences between the 5 cm-DTM CTx esti-

mates of the samples and their means, and the full domain are coun-

terintuitive. The full domain seems better connected than the

samples S1–S8. A possible reason is the slightly lower value of MDS

calculated for the samples than for the full domain (see Section 3.1),

which could alter relative depression filling dynamics. This reveals

that the scalability of the RSCf methodology is not straightforward

and requires in-depth knowledge of the representability of the sur-

face samples used to explain connectivity at larger scales. The 5 cm-

DTM CTx estimates are consequently higher than their 50 cm-DTM

counterparts, indicating that the use of a coarser DTM leads to a

more hydrologically connected surface, implying a higher chance of

surface runoff.

F IGURE 6 MDS in millimetres from empirical formulas (Table 1) for different SAGA Simple Filter radii. RR of the full study domain and a
general slope of 1.08% were used in the calculations. For reference, the grey rhombus shows the MDS for the original 5 cm-DTM calculated with
the Wang and Liu (2006) filling algorithm, which is regarded the target value. The grey circles show the filling algorithm-based MDS calculated
with detrended 5 cm-DTMs as input, highlighting the impact of detrending methods on surface storage properties.
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All three surface runoff indicators demonstrate a dependency on

input DTM resolution. The 50 cm-DTM fails to capture microdepres-

sions and the connections between them, which significantly influ-

ence the estimates of MDS, RR and CT. The characteristic features of

our study site, tussocks and the spaces between them, necessitate a

DTM resolution on the centimetre to decimetre scale for accurate

representation. If a lower resolution DTM is used, in our case the

50 cm-DTM, there is a tendency to underestimate MDS and RR while

overestimating hydrologic connectivity.

4 | DISCUSSION

In this case study, a 5 cm-DTM and a 50 cm-DTM were used to

assess the influence of microtopography on estimating surface runoff

indicators maximum depression storage (MDS), random roughness

(RR) and the connectivity threshold (CT). Our results show that the

surface runoff indicator estimates are sensitive to input data resolu-

tion. For our case study site, using the 50 cm-DTM leads to lower

estimates of MDS and RR, and to higher estimates of CT compared to

the estimates based on the 5 cm-DTM. When integrated into hydro-

logical models, surface runoff indicator estimates based on coarser

resolution DTMs could therefore lead to overcompensating with

other parameters in calibration procedures, thereby contributing to

the well discussed equifinality problem (Beven & Binley, 1992;

Kirchner, 2006).

The majority of scientific studies relating DTM resolution to

depression storage (Habtezion et al., 2016; Huang & Bradford, 1990;

Martin et al., 2008; Yang & Chu, 2013), random roughness (Li

et al., 2020) and functional hydrologic connectivity (Habtezion

et al., 2016; Yang & Chu, 2013) agrees with our findings. Notable

exceptions can be found in Abedini et al. (2006) and Kamphorst et al.

(2000), who found MDS decreasing and unchanged with decreasing

DTM resolution respectively. We attribute the results of Abedini et al.

(2006) to a border effect resulting from closed boundary conditions in

calculating MDS on the west, north and east side of their study

domains (areas of 1 m2). Kamphorst et al. (2000) analysed 221 lab-

and agricultural surfaces (areas from 0.2 to 3.5 m2) and found no sig-

nificant differences in the calculated MDS for grid spacings from 2 to

40 mm. This work was one of the reasons a 5 cm-DTM was chosen as

the ‘high’ resolution dataset in this study. To the best of our knowl-

edge, this is the first analysis that relates field scale, high resolution

measurements to national scale data. We hereby hope to bridge the

gap between what is necessary (high-resolution, labour-intensive

datasets) and what is publicly available (lower-resolution, national

datasets) for DTM-based estimates of surface runoff indicators. A big

improvement would be the determination of relevant topography

scales for surfaces with similar land use or land cover, defining the grid

size needed to capture the storage, roughness and connectivity prop-

erties of a surface.

The results show that within-field variation of MDS is large (fac-

tor 4) on our study site. Different factors play a role in shaping the

surface, including vegetation type and its growth properties, trampling

by cattle, grazing frequency, the amount and methods of fertilizer

application using heavy machinery, local climate, and the presence of

micro- and macro-biota. Most of these shaping factors are defined at

the centimetre to decimetre scale. Although these processes are spa-

tially and temporally dynamic in nature and difficult to quantify, the

F IGURE 7 Relative Surface Connection Function (RSCf) for the 5 cm-DTM (blue) and 50 cm-DTM (red) with the ratio runoff rate/rain rate (–)
on the y-axis and the ratio depression storage/maximum depression storage (–) on the x-axis. Both the full domain (dark lines) and the surface
samples S1–S8 (light lines) are plotted, as well as the sample mean (dotted lines). Breakpoint analysis estimates of the connectivity threshold
(CT) are also shown for the full domain (rhombi) and the sample means (circles).
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linear relationship we found between the MDS of the 5 cm- and

50 cm-DTMs (for samples S1–S8) suggest that empirical relationships

can be established. The 10 years between the construction of both

DTMs can in this light be seen as a shortcoming of this study, but also

as an indicator that shaping processes over time do not necessarily

impact the geostatistical properties of a surface. This opens the possi-

bility of parameterizing surfaces based on land use or land cover. Rep-

etition of our experiment on similar fields at different points in time

and comparing different land uses could contribute to exploring this

potential for geostatistical similarity. Since this case study was

focussed on evaluating the application of national scale data in esti-

mating surface runoff indicators, we did not include an analysis on the

origins of the observed differences between both DTMs. We do

acknowledge however, that future research based on our findings

would greatly benefit from quantifying the impact of data collection

methods and timing, and interpolation procedures. This would help

interpreting the meaning of empirical, linear relationships, such as the

one we found in this study.

The use of RR requires a slope corrected surface. The correction

for slope is often done by subtracting a linear trend plane from the

elevation data. This could work well for small sample areas but

becomes problematic when considering larger natural landscapes with

variation in the sloping surface, as the residuals will become increas-

ingly deviated from the mean. As these residuals determine the RR,

this methodology is flawed by design for use on larger surfaces. In this

study the SAGA GIS simple filter functionality is used to generate the

detrended DTM, but this comes at the expense of representing topo-

graphic features by averaging values within a search radius, leading to

DTM-smoothing for small search radii or DTM-roughening for large

search radii. For the small search radii, this translates to flattening of

topography by removing surface features on the decimetre to meter

scale. For large search radii, the increasing chance of elevation points

deviating from the elevation of the centre grid cell leads to higher

residual values, which is translated to a rougher detrended DTM. To

date, no methodology has been proposed that is able to account for

heterogeneity in the sloping surface in the important pre-processing

step of detrending a surface before calculating RR. The detrending

method used in this study resulted in a large difference in MDS calcu-

lated with the filling algorithm between the detrended and non-

detrended 5 cm-DTMs. Across the full range of filter radii used, MDS

values were roughly 2–3 times larger for the detrended surfaces com-

pared to the original surface, indicating substantially altered surface

characteristics. This stresses the importance of quantifying the effects

of the detrending method used in RR-based research.

An in this study unexplored opportunity is the use of raw point

clouds instead of interpolated DTM products. Theoretically, these raw

data should contain similar geostatistical information across different

scales, provided that the analysed surface samples are representative,

and that vertical measurement error is of equal magnitude. As RR is

calculated as the standard deviation of a for slope corrected surface, it

is not dependent on a prepared grid. RR and RR-based empirical for-

mulas used in estimating MDS, are therefore more suited for this

approach than filling-algorithm-based MDS and CT, which do require

a prepared grid.

Hydrologic connectivity has been identified as a key-concept in

hydrology, having the potential to bridge the gap between static sur-

face storage parameters and dynamic (surface) runoff processes

(Antoine et al., 2009). In this study, we found that the performance of

the RSCf framework, utilizing the CT to quantify hydrologic connec-

tivity, is strongly dependent on the resolution of the input DTM. We

also found a scaling issue, following the counterintuitive observation

that the full study site of the 5 cm-DTM was more hydrologically con-

nected than the separate samples S1–S8. This raises the question

whether this methodology can be applied at small scales to explain

connectivity at larger scales. Further research on the scalability of the

RSCf methodology is necessary to determine its potential for use in

hydrologic modelling.

The hydrological processes governing surface runoff vary with

spatial scales and landscape topographic characteristics. In sloping,

heterogeneous terrain, macro- and meso-topography will dominate

runoff dynamics on saturated soils, while in flat landscapes microto-

pography takes precedence. Numerous studies on surface runoff

have analysed depression storage and hydrologic connectivity based

on meter-scale input DTMs (e.g., Barron et al., 2011; Jiang

et al., 2023; Wang et al., 2021; Zhu et al., 2013). While the domi-

nance of meso- and macro-topography in these studies justifies the

use of meter-scale data, our results show that flat landscapes require

higher resolution DTMs for accurate estimates of storage and con-

nectivity properties. Analogue to the broadly accepted terms catch-

ment- and wetland-hydrology, we propose a new sub-discipline:

lowland hydrology. This distinction could contribute to frame theoret-

ical insights within the context of flat landscapes, thereby enabling

generalizations and upscaling without losing credibility due to the

comparison of these insights with research conducted in landscapes

dominated by macro- and meso-relief. An example of a lowland-spe-

cific opportunity is the construction of tables containing values of

MDS, RR and CT, classified by land use and based on repeated high-

resolution measurements and empirical relationships with publicly

available lower-resolution DTMs. Such empirical tables would also

pave the way for addressing the time-restricted nature of DTM-

derived parameters, by identifying key topography-shaping moments

throughout the season (e.g., tilling, harvesting, etc.) and their impact

on surface runoff indicator values.

Our findings reveal a fundamental issue in the way we model and

understand the hydrological processes of surface runoff in flat land-

scapes: If the topographic properties governing surface runoff in satu-

rated conditions (surface storage and hydrologic connectivity) are

defined at the centimetre scale, how should we interpret modelling

outcomes that utilize coarser scale DTMs? Based on the results of this

study, we argue that in flat landscapes, the use of coarser scale DTMs

leads to underestimation of MDS and RR, and overestimation of

CT. Consequently, there is a need to develop scaling relationships that

can quantify these effects in the absence of high resolution DTM

data. The observed linear correlation between MDS values derived

from high- and lower-resolution DTMs in this study offers a potential

method of addressing the loss of information arising from the use of

coarser scale DTMs. Further research is needed to evaluate the scal-

ability of RR and CT.
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5 | CONCLUSION

Our results show that estimates of surface runoff indicators maxi-

mum depression storage (MDS), random roughness (RR) and connec-

tivity threshold (CT) are severely impacted by the spatial resolution

of the digital terrain model (DTM) used in the calculations. Filling-

algorithm derived MDS values were roughly twice as high for the

5 cm-DTM as compared to the 50 cm-DTM for both the surface

samples S1–S8 and the full study site domain. RR of the full study

site was consistently estimated to be around 3–4 mm higher when

using the 5 cm-DTM as input, independent of the detrending filter

radius applied. This amounts to 15%–35% of the absolute values

across the full range of RR calculations in this study, that is, RR values

for both the input DTMs and for all utilized filter radii in the detrend-

ing process (RR range: 10.4–23.7 mm). This translated into consistent

differences of MDS calculated with the empirical formulas (Table 1)

between the input DTMs. Estimates of point CTx, the parameter used

to quantify functional hydrologic connectivity, were also significantly

impacted by the input DTM resolution. Both the CTx for the sample

means (0.65 for the 5 cm-DTM and 0.49 for the 50 cm-DTM) and

the CTx for the full study site domain (0.42 for the 5 cm-DTM and

0.20 for the 50 cm-DTM) showed high dependence on DTM

resolution.

A crucial consideration for all research on these surface proper-

ties is that the use of interpolated DTM products with insufficient res-

olution, that is, unable to capture microtopographic surface features,

will cause underestimation of MDS and RR, and overestimation of

functional hydrologic connectivity. Estimating surface runoff indica-

tors in flat landscapes from commonly available, lower-resolution

DTMs will therefore lead to overestimation of surface runoff, necessi-

tating compensatory adjustments with other parameters when inte-

grated into hydrological models. An important step in establishing a

better understanding of the relevant topography scales of different

surfaces would be the development of a measurement driven knowl-

edge base coupling land use or land cover to the scales at which MDS,

RR and hydrologic connectivity are defined. Our outcomes suggest

that for MDS, an alternative might be found in the development of

empirical formulas that account for the lack of information associated

with coarser scale DTMs. MDS results for the surface samples S1–S8

appeared to fit a linear regression between the values of the 5 cm-

and 50 cm-DTMs. Such a linear response suggests a possibility to

develop an easy way of reverse engineering DTM smoothing caused

by interpolation methods. High resolution surface measurements with

terrestrial or UAV-LiDAR scanners will contribute to solidifying land

use-specific empirical relationships.

Quantifying surface runoff in flat landscapes remains a key chal-

lenge in hydrology and water management. Due to the impracticality

of direct measurements, our understanding largely hinges on model-

ling studies. As we found that surface runoff indicators MDS, RR and

CT are defined at the centimetre scale, it is imperative for the parame-

terization of topography to account for this scale-dependency. Explo-

rations such as the one offered in this case study have the potential

to reduce parameter ambiguity of surface runoff indicators used in

hydrological modelling. As climate change projections indicate an

increase in the frequency and intensity of heavy rain events, our

research contributes to better understanding its impacts on the

hydrological response of surface systems. Our results should be seen

as indicative of flat landscapes such as lowlands and river deltas and

surfaces where centimetre scale microtopography is relevant.
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