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Abstract
Cholestasis is characterized by hepatic accumulation of bile acids. Clinical manifestation of cholestasis only occurs in a 
small proportion of exposed individuals. The present study aims to develop a new approach methodology (NAM) to predict 
drug-induced cholestasis as a result of drug-induced hepatic bile acid efflux inhibition and the resulting bile acid accumu-
lation. To this end, hepatic concentrations of a panel of drugs were predicted by a generic physiologically based kinetic 
(PBK) drug model. Their effects on hepatic bile acid efflux were incorporated in a PBK model for bile acids. The predicted 
bile acid accumulation was used as a measure for a drug’s cholestatic potency. The selected drugs were known to inhibit 
hepatic bile acid efflux in an assay with primary suspension-cultured hepatocytes and classified as common, rare, or no for 
cholestasis incidence. Common cholestasis drugs included were atorvastatin, chlorpromazine, cyclosporine, glimepiride, 
ketoconazole, and ritonavir. The cholestasis incidence of the drugs appeared not to be adequately predicted by their Ki for 
inhibition of hepatic bile acid efflux, but rather by the AUC of the PBK model predicted internal hepatic drug concentration 
at therapeutic dose level above this Ki. People with slower drug clearance, a larger bile acid pool, reduced bile salt export 
pump (BSEP) abundance, or given higher than therapeutic dose levels were predicted to be at higher risk to develop drug-
induced cholestasis. The results provide a proof-of-principle of using a PBK-based NAM for cholestasis risk prioritization 
as a result of transporter inhibition and identification of individual risk factors.
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Abbreviations
ADR	� Adverse drug reaction
AO	� Adverse outcome
AOP	� Adverse outcome pathway
AUC​	� Area under the curve
BSEP	� Bile salt export pump
CLint	� Intrinsic clearance
Cmax	� Maximal concentration in plasma
CYP	� Cytochrome P450
DILI	� Drug-induced liver injury
FDA	� Food and Drug Administration
Fup	� Fraction unbound in plasma
GCDCA	� Glycochenodeoxycholic acid
MIE	� Molecular Initiating Event
MRP	� Multidrug resistance protein
NAM	� New approach methodology

OATP	� Organic anion transporter
PBK	� Physiologically based kinetic
PON	� Paraoxonase
QSAR	� Quantitative structure–activity relationship
UGT​	� UDP-glucuronosyltransferases

Introduction

Drug-Induced Liver Injury (DILI) is the most frequent cause 
for drug development discontinuation and DILI incidence is 
expected to increase, because of an increased dependency on 
drugs by the aging population (Walker et al. 2020). DILI is 
classified in a hepatocellular, cholestatic, and a mixed type 
(Yu et al. 2017), where cholestatic DILI is characterized 
among others by a disrupted bile flow. While the DILI inci-
dence is very low, with < 1 in 1000 to 1 in 100,000 users 
(Kaplowitz 2005; Fontana et al. 2023), the clinical outcome 
to the individual is devastating. Cholestatic liver injury con-
stitutes 20–40% of DILI cases (Sundaram and Bjornsson 
2017), which underscores the critical necessity for robust 
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tools to identify potentially cholestatic drug candidates early 
in the drug-discovery phase and identification of sensitive 
individuals. Besides drugs, certain food additives, dietary 
supplements, biocides, and industrial chemicals can induce 
cholestasis (Vilas-Boas et al. 2019, 2020). The present study 
aims to develop a new approach methodology (NAM) to 
predict drug-induced cholestasis as a result of drug-induced 
hepatic bile acid efflux inhibition and the resulting bile acid 
accumulation.

In recent years, substantial attention has been directed 
toward the development of Adverse Outcome Pathways 
(AOPs) as a conceptual framework for toxicological risk 
assessment. AOPs consist of a sequence that encompasses a 
Molecular Initiating Event (MIE), one or more Key Events 
(KEs), and an Adverse Outcome (AO), collectively rep-
resenting responses spanning various tiers of biological 
complexity (Ankley et al. 2010). The fundamental princi-
ple underlying AOPs is that the MIE(s) combined with a 
select set of KEs can elucidate and forecast a toxicologi-
cal response. Notably, these identified MIE(s) and KEs are 
amenable to exploration through NAMs, thereby facilitat-
ing a mechanism-centered, animal-free approach to assess-
ing the safety of chemicals (Leist et al. 2017). Inhibition of 
the hepatic bile salt export pump (BSEP) is considered as 
MIE in the AOP of cholestasis. BSEP-inhibition leads to 
intrahepatic bile acid accumulation and subsequent toxicity 
(Vinken et al. 2013). A recent case study elucidated that two 
azole fungicides (propiconazole and tebuconazole) inhib-
ited BSEP-mediated bile acid transport and affected several 
nuclear receptors (Knebel et al. 2022) which is in line with 
the AOP. Propiconazole and tebuconazole did not induce 
cholestasis in standard rodent in vivo bioassays (Heise et al. 
2015; Schmidt et al. 2016; Nielsen et al. 2012), although 
for clinically used azole fungicides, cholestasis has been 
reported in the European database of suspected adverse drug 
reaction (ADR) reports (www.​adrre​ports.​eu; accessed on the 
21st of August 2023). Knebel et al. explain the discrepancy 
between the outcomes of their in vitro testing strategy and 
the rodent assays by the fact that the intrahepatic propicona-
zole and tebuconazole concentrations in the in vivo bioas-
says were too low to induce BSEP inhibition (Schmidt et al. 
2016). Hence, the in vitro testing strategy probably success-
fully revealed use of propiconazole and tebuconazole as a 
hazard for cholestasis, but for a risk assessment, it is impor-
tant to consider organ concentrations. Organ concentrations 
can be derived from studies with laboratory animals or in 
an animal-free approach using physiologically based kinetic 
(PBK) modeling.

To predict drug-induced cholestasis, the drug PBK 
model predicting internal hepatic concentrations in humans 
of a series of selected drugs was incorporated in a bile 
acid PBK model describing the synthesis, circulation, and 
excretion of the most abundant bile acid in human serum, 

glycochenodeoxycholic acid (GCDCA) (Bathena et  al. 
2013). Conjugated bile acids, like GCDCA, are typically 
transported by carrier-mediated transport, while unconju-
gated bile acids are mainly transported over the liver mem-
branes via passive processes and thus unlikely to be affected 
by transporter inhibition (Notenboom et al. 2018). Simulat-
ing only one bile acid enabled us to keep the model com-
plexity to a minimum, making the model easier to interpret 
and minimizing the risk of overfitting. The selected drugs 
are all known to inhibit hepatic bile acid efflux but are clas-
sified as common, rare, or no for their incidence of induc-
ing cholestasis. The time-dependent drug-induced intrahe-
patic GCDCA accumulation was determined and compared 
to the inhibitory constant (Ki) of the drug for hepatic bile 
acid efflux inhibition as a measure for cholestatic potency. 
This newly defined approach also enabled prediction of the 
chances on developing cholestasis in people with slower 
clearance of the drug, a larger bile acid pool, reduced BSEP 
abundance, or given higher than therapeutic dose levels. 
Thus, this modeling approach serves a proof-of-concept to 
predict drug-induced cholestasis based on NAMs.

Methods

Selection and classification of drugs

The criteria for the inclusion of a drug in our panel were (a) 
causally linked to the development of DILI by the U.S. Food 
and Drug Administration (FDA) (Chen et al. 2016), (b) oral 
administration in clinical practice, (c) able to inhibit bile acid 
efflux with the half inhibitory concentration (IC50) for bile 
acid efflux available from an assay with human suspension-
cultured hepatocytes and the IC50 being < 100 µM (Zhang 
et al. 2016), (d) the reported DILI being not immune-medi-
ated, and (e) two or more in vivo pharmacokinetic studies 
available in the literature to validate the drug PBK model-
based predictions for plasma concentrations. The maximal 
concentration used for the IC50 determination by Zhang 
et al. (2016) was 100 µM. This resulted in a final inclu-
sion of 18 drugs, i.e., atorvastatin, bicalutamide, bosentan, 
chlorpromazine, cyclosporine, deferasirox, fluoxetine, flu-
tamide, glimepiride, haloperidol, lovastatin, ketoconazole, 
pioglitazone, ritonavir, rosiglitazone, saquinavir, trazodone, 
and troglitazone. Flutamide, lovastatin, and saquinavir were 
excluded from further simulations based on the results from 
the generic PBK model, as described in “Glycochenode-
oxycholic acid PBK model” section. The drugs resulted in 
different types of DILI. The LiverTox® database classified 
chlorpromazine, cyclosporine, and ritonavir as cholestatic 
DILI, and the remaining drugs were classified as hepatocel-
lular/mixed DILI (http://​Liver​Tox.​nih.​gov; last accessed on 
the 24th of August 2023). For atorvastatin, the LiverTox® 

http://www.adrreports.eu
http://LiverTox.nih.gov
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database reported two cases of mixed, one of cholestatic 
and one of hepatocellular DILI. Glimepiride and haloperidol 
were not present in the LiverTox® database. The cholestasis 
incidence of the 15 remaining drugs was evaluated based 
on the European database of suspected adverse drug reac-
tion (ADR) reports (www.​adrre​ports.​eu; last accessed on the 
24th of August 2023). The following adverse reactions were 
considered cholestatic: cholestasis, cholestatic liver injury, 
cholestatic jaundice, and cholestatic hepatitis. The incidence 
of cholestasis was classified by us, using the European ADR 
database as follows: common (> 0.5% of ADR cholestatic), 
rare (0.3–0.5% of ADR cholestatic), and no (< 0.3% of ADR 
cholestatic). The threshold for common incidence was set 
to 0.5% of ADR to ensure that the drugs chlorpromazine, 
cyclosporine, and ritonavir, which were identified as choles-
tatic in the LiverTox® database,  were classified as common 
causes of cholestasis. The 0.3% threshold was set artificially 
to account for background cholestasis incidence. Additional 
drugs classified as common for induction of cholestasis 
according to our classification were: bosentan, ketoconazole, 
atorvastatin, and glimepiride. Riede et al. (2017) reviewed 
cholestasis incidence of several drugs based on cohort and 
retrospective studies. In line with our classification, Riede 
et al. (2017) classified cyclosporine cholestasis incidence as 
common and rosiglitazone as not cholestatic, but ketocona-
zole and atorvastatin cholestasis incidences were classified 
as rare in contrast to our classification system. No expla-
nation was found for the discrepancy between atorvastatin 
and ketoconazole cholestasis incidence classification  by 
these authors and  the ADR database, hence, we used our 
classification system based on the European ADR database. 
Bosentan was classified as rare or common depending on the 
dose in the review of Riede et al. (2017). At therapeutic dose 
level, i.e., 125 mg twice a day, bosentan was considered a 
rare cause of cholestasis. Since the drugs were evaluated at 
their therapeutic dose level in the current study, bosentan-
induced cholestasis incidence was classified as rare. Trogl-
itazone was banned from the market and therefore not in the 
European ADR database, and also not in the review by Riede 
et al. (2017). A review of cohort studies indicated that trogl-
itazone causes hepatocellular liver injury, with rare instances 
of mixed or cholestatic liver injury (Chojkier 2005). Trogl-
itazone cholestasis incidence was therefore classified as rare. 
Maximal prescribed daily dosage was used for simulations 
and obtained from the supplier’s prescription information.

Generic PBK models for drugs

A generic PBK model was used to predict the hepatic con-
centrations of the selected drugs at therapeutic dose level 
and above. These concentrations were subsequently used to 
predict the inhibitory effect on hepatic bile acid efflux and 
resulting bile acid accumulation using a coupled bile acid 

PBK model (see “Glycochenodeoxycholic acid PBK model” 
section).

The generic drug PBK models were adapted from Punt 
et al. (2022). Briefly, the PBK models consisted of compart-
ments for lung, adipose, bone, brain, heart, intestine, liver, 
kidney, muscle, skin, spleen, and arterial and venous blood. 
Different compared to Punt et al. (2022), a blood:plasma 
ratio of 0.55 was used for acidic compounds (1-hematocrit), 
and 1 for neutral or basic compounds (Cubitt et al. 2009). 
Physicochemical properties (pKa, logP, logD, topological 
surface area, and molecular weight) of the drugs were pre-
dicted using Chemicalize, https://​chemi​calize.​com/ devel-
oped by ChemAxon (http://​www.​chema​xon.​com). The phys-
icochemical properties were subsequently used to predict 
tissue:plasma partition coefficients (Berezhkovskiy 2004; 
Rodgers and Rowland 2006), absorption rate constants, and 
fractions absorbed (Hou et al. 2004).

As part of this study, several in vitro and in silico methods 
were evaluated to derive the tissue:plasma partition coeffi-
cients, hepatic intrinsic clearance, and fraction unbound in 
plasma (Fup) (Table 1). In more detail, for the tissue:plasma 
partition coefficients, values derived using the in silico 
methods of Rodgers and Rowland (2006) and Berezhkovs-
kiy (2004) were compared. For the fraction unbound (Fup), 
both the in silico method of Lobell and Sivarajah (2003) and 
in vitro rapid equilibrium dialysis data using human plasma 
were evaluated. Clearance data were derived from in vitro 
hepatocyte studies or the pkCSM in silico tool (Pires et al. 
2015). It should be noted that in vitro the hepatic intrinsic 
clearance was measured, while pkCSM predicted the total 
clearance, i.e., a combination of hepatic and renal clearance. 
Where possible, in vitro intrinsic hepatic clearance (CLint) 
and Fup data were obtained from the high-throughput toxi-
cokinetic (httk) database (Pearce et al. 2017); alternatively, 
a literature search in Scopus was conducted to obtain the 
in vitro CLint (Supplementary Table S1). In vitro CLint was 
determined using fresh or cryopreserved primary human 
hepatocytes (PHH) cultured in a monolayer or suspension. 
The CLint was determined based on substrate depletion or 
metabolite formation. The incubation medium did not con-
tain any serum and was optimized for hepatocyte function, 
maintaining physiological temperature and pH.

Corrections for non-specific binding of the compounds to 
the hepatocytes in vitro were applied based on the calcula-
tion method of Kilford et al. (2008). The in vitro and in silico 
clearance data were scaled to the in vivo situation based on 
a hepatocellularity of 117.5 × 106 hepatocytes per gram liver 
(Barter et al. 2007) and a liver weight of 1470 g, or 70 kg 
body weight, respectively, see Eqs. 1 and 2

(1)CLint,in vivo = CLint,in vitro × Hep × Vli × 60 × 10−6,

http://www.adrreports.eu
https://chemicalize.com/
http://www.chemaxon.com
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where in Eq. 1, CLint,in vivo is the intrinsic clearance in vivo 
in L min−1 entire liver−1, CLint,in vitro the hepatic intrinsic 
clearance in vitro in µL min−1 10–6 hepatocytes, Hep the 
hepatocellularity in 106 hepatocytes/g liver, and Vli the 
weight of the liver in grams. A factor of 10–6 L µL−1 and 
60 min h−1 was applied to convert the CLint to units appli-
cable to the PBK model. Equation 2 describes the in silico-
to-in vivo scaling of the total clearance (CLtot). CLtot,in vivo is 
the total clearance in vivo L min−1 entire liver−1, CLtot,in silico 
the total clearance as predicted by pkCSM in mL min−1 kg 
body weight−1, and BW the body weight in kg. Here, factors 
of 10–3 L mL−1 and 60 min h−1 were applied to convert the 
CLtot to units applicable to the PBK model.

A literature search was performed to compile a dataset 
on human in vivo drug plasma peak concentrations (Cmax) 
after a single oral dose of the selected drugs. The follow-
ing keywords were used in Scopus: ((TITLE (“drug name”) 
AND ALL (bioavailability OR pharmacokinetics OR kinet-
ics)) AND (( human OR man OR volunteer OR subject)) 
AND (Cmax OR “c max” OR “maximal concentration” 
OR “maximum concentration” OR “peak concentration”)). 
The studies that were identified for each drug were subse-
quently filtered to exclude (1) results obtained for specific 
patient groups like patients with renal impairment or gastric 

(2)CLtot,in vivo = CLtot,in silico × BW × 60 × 10−3, by-pass, (2) studies with children, and (3) studies using slow 
or extended-release formulations. At least two Cmax values 
per drug were collated from different doses and/or studies. 
The dose (normalized to bodyweight), Cmax and references 
were gathered in the file “Invivo.xlsx” in the Github reposi-
tory.1 The final dataset included 115 studies and 179 sets of 
dose and corresponding Cmax values for 18 drugs. A default 
bodyweight of 70 kg was assumed if the bodyweight was not 
reported in the study. Cmax values were averaged if experi-
ments were performed under both fasted and fed conditions. 
Most studies reported peak concentrations in plasma, but if 
blood concentrations were reported, they were converted to 
plasma concentrations based on the blood:plasma ratio (see 
Table 1). The studies included a variable number of human 
volunteers per group with an arithmetic mean of 20 (range: 
min. 5–max. 89).

The predicted plasma Cmax was compared with the 
observed plasma Cmax as obtained from the meta-anal-
ysis. The ratio predicted:observed Cmax was calculated 
for each study and/or dose. This resulted in a number of 
ratios per compound. The median of this ratio was cal-
culated per compound, and for further simulations, the 
combination of input parameters that gave a median ratio 

Table 1   Input parameters for the generic PBK model

Ka: absorption rate constant, Fa: fraction absorbed, Kpad, Kpbo, Kpbr, Kpgu, Kphe, Kpki, Kpli, Kplu, Kpmu, Kpsk, and Kpsp are tissue:plasma 
partition coefficients for adipose tissue, bone, brain, gut, heart, kidney, liver, lung, muscle, skin, and spleen, respectively
QSAR quantitative structure activity relationship

Process Parameter(s) Method Number 
of drugs

References

Intestinal uptake Ka, Fa QSAR based on the topological 
surface area

18 Hou et al. (2004)

Physicochemical parameters pKa, logP, logD, topoc-
ological surface area, 
molecular weight

Chemicalize (in silico) 18 https://​chemi​calize.​com/ developed 
by ChemAxon

Tissue:plasma partition coef-
ficients

Kpad, Kpbo, Kpbr, 
Kpgu, Kphe, Kpki, 
Kpli, Kplu, Kpmu, 
Kpsk, Kpsp

In silico 18 Rodgers and Rowlands (2006)

In silico 18 Berezhkovskiy (2004)
Hepatic intrinsic clearance CLint (Cryopreserved) primary human 

hepatocytes (in vitro)
15 Data derived from the httk pack-

age (Pearce et al. 2017) or other 
publications (see Table S1)

Total clearance CLtot pkCSM (in silico) 18 Pires et al. (2015)
Fraction unbound plasma Fup Equilibrium dialysis (in vitro) 18 Data derived from the httk package 

(Pearce et al. 2017), or other 
publications (Hahn et al. 1973; 
Zaghloul et al. 1987)

In silico 18 Lobell and Sivarajah (2003)
Blood:plasma ratio BP Acidic drugs: 0.55 (1-hematocrit)

Neutral or basic drugs: 1
18 Cubitt et al. (2009)

1  https://​github.​com/​Veron​ique-​de-​Bruijn/​PBK-​model-​chole​stasis.​git.

https://chemicalize.com/
https://github.com/Veronique-de-Bruijn/PBK-model-cholestasis.git
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predicted:observed Cmax closest to 1 was selected. Only 
the drugs of with a median ratio predicted:observed Cmax 
within tenfold were used for further analysis (n = 15). An 
overview of the metabolizing enzymes or transporters 
involved in the kinetics of the drugs was made to find 
explanations for over- or underpredictions. The informa-
tion about the involved enzymes and transporters was 
obtained from literature (Wishart et al. 2018; Elsby et al. 
2012; Cockshott 2004; Hebert 1997; Klatt et al. 2011; 
Treiber et al. 2007).

Glycochenodeoxycholic acid PBK model

A PBK model describing synthesis, circulation and excre-
tion of bile acids in healthy individuals was based on our 
previous work (de Bruijn et al. 2022, 2023). The concep-
tual model is presented in Fig. 1. The enterohepatic circu-
lation was modeled as a circulation of GCDCA between 
the liver (extracellular and intracellular), gallbladder, and 
intestine. The intestinal uptake and the hepatic uptake 
and efflux were described using carrier-mediated trans-
port processes, i.e., ASBT, NTCP, or BSEP-mediated, 
respectively. The NTCP-mediated hepatic uptake of 
GCDCA was modeled permeability-limited as described 
in our previous work (de Bruijn et al. 2023). The kinetic 
parameters for ASBT-mediated transport were obtained 
using Caco-2 cells cultured on permeable cell culture 
inserts and scaled from the in vitro to in vivo situation 
as described in our previous work (de Bruijn et al. 2023). 
GCDCA de novo synthesis in the liver was set equal to its 
excretion via the feces. GCDCA was actively transported 
from the liver to the common bile duct by BSEP following 
Michaelis–Menten kinetics. The BSEP-mediated efflux of 
GCDCA was described by Eq. 3

where E is the BSEP-mediated efflux in µmol/h, Vmax is the 
maximum efflux rate of GCDCA in blood in µmol/entire 
liver/h, [Cliveriw] the free concentration of bile acids 
in intracellular water in liver in µmol/L and Km,BSEP the 
Michaelis–Menten constant in µmol/L for BSEP-mediated 
GCDCA efflux. The Vmax and Km for BSEP-mediated trans-
port of GCDCA were obtained from a vesicular transport 
assay in a baculovirus-infected Sf9 system (Kis et al. 2009).

The differential model equations were encoded and solved 
using the deSolve package version 1.32 in R version 4.1.0 
(Soetaert and Petzoldt 2010; R Core Team 2022). The model 
code can be found in the Github repository (see Footnote 1).

Inhibitory effect of drugs on hepatic bile acid efflux

The hepatic-free concentration of the within tenfold pre-
dicted drugs at the maximal prescribed daily therapeu-
tic dosage was used to simulate their inhibitory effect on 
hepatic GCDCA efflux. The conceptual PBK model for the 
drugs was combined with the PBK model for GCDCA as 
displayed in Fig. 1. The concentrations required to reduce 
hepatic bile acid efflux by 50% (IC50) were derived from 
a study using suspension-cultured primary human hepato-
cytes (PHHs) (Zhang et al. 2016) and corrected for in vitro 
non-specific binding (Kilford et al. 2008). The IC50 values 
obtained using PHHs were for all drugs except pioglitazone 
lower than the IC50 values obtained using BSEP-transfected 
membrane vesicles (Supplementary Table S2). Therefore, 
the results obtained from suspension-cultured PHHs were 
used for further simulations as a worst-case estimate. Mem-
brane vesicles and suspension-cultured PHHs provide dif-
ferent insights in hepatic bile acid efflux. PHHs are known 

(3)E =
Vmax,BSEP × [Cliveriw]

K
m,BSEP + [Cliveriw]

,

Fig. 1   Conceptual model for 
the PBK modeling of bile acid 
homeostasis and the influence 
on this homeostasis by drugs. 
Conceptual model for GCDCA 
PBK model was taken from 
de Bruijn et al. (2023), and 
conceptual model for generic 
drugs PBK models was taken 
from Punt et al. (2022). CLint: 
intrinsic clearance; Fup: fraction 
unbound plasma; GCDCA: gly-
cochenodeoxycholic acid; GFR: 
glomerular filtration rate
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to have a physiologically relevant expression of several 
transporters and metabolizing enzymes, rather than the 
exclusive BSEP expression in membrane vesicles. Hence, in 
contrast to membrane vesicles, the drug-induced inhibitory 
effect on bile acid efflux from primary suspension-cultured 
human hepatocytes is not necessarily caused by an exclu-
sive inhibition of BSEP-mediated transport, but could also 
be caused by inhibition of the uptake, basolateral efflux by 
MRP3/4 or the conjugation process. Nevertheless, the net 
drug-induced bile acid efflux inhibition was incorporated 
in the equation for BSEP-mediated efflux. The PHHs were 
commercially obtained and pooled from 10 donors, includ-
ing 5 males and 5 males aged 17–65. Cells were cultured in 
suspension at a density of 0.25 × 106 cells/mL in the pres-
ence of 10 µM cholic acid and various drug concentrations. 
Upon incubation, the PHHs conjugated the cholic acid with 
a glycine group resulting in glycocholic acid. After incuba-
tion, intra- and extracellular bile acid concentrations were 
quantified using LC–MS/MS. In the absence of specific data 
on the effects of all the selected drugs on bile acid efflux for 
GCDCA, glycocholic acid efflux was used as a surrogate 
for all drugs (Zhang et al. 2016). Glycocholic acid showed 
greater inhibition (lower IC50) in assays with PHHs than 
GCDCA and was considered as a worst-case estimate of 
GCDCA efflux (Chothe et al. 2021; Yucha et al. 2017). 
Competitive inhibition was assumed, as this is the typical 
mode of drug-transporter-inhibition (Kenna et al. 2018). The 
following formula to calculate Ki applies for competitive 
inhibitors like the drugs considered here (Eq. 4) (Yung-Chi 
and Prusoff 1973):

where Ki is the inhibitory constant in µM, IC50 the half 
maximum inhibitory concentration of the drug in µmol/L, 
[S] the substrate concentration in µM, and Km the Michae-
lis–Menten constant in µM.

Subsequently, the inhibitory effect of the drugs on 
GCDCA efflux was incorporated in the PBK model equa-
tion describing BSEP-mediated efflux. In line with competi-
tive inhibition, the Km,BSEP in the corresponding Michae-
lis–Menten reaction (Eq. 3) was modified to the apparent 
Km (Km,BSEP,app) as follows (Eq. 5):

where Km,BSEP,app is the apparent Michaelis–Menten constant 
in µM, [I] the unbound hepatic concentration of the inhibitor 
(= drug) in µM and Ki the inhibitory constant in µM.

The dose-metric used to evaluate intracellular GCDCA 
accumulation was the area under the curve (AUC), because 

(4)Ki =
IC50

1 +
[S]

Km

,

(5)Km,BSEP,app = Km,BSEP

(

1 +
[I]

Ki

)

,

it has been acknowledged AUC is the most relevant for 
endpoints that are influenced by total dose over time 
resulting in an accumulation (Rietjens et al. 2019).

Simulating sensitive individuals

The developed PBK approach was also employed to eval-
uate drug effects on intrahepatic GCDCA accumulation 
in sensitive individuals. For these studies, cyclosporine 
was selected as the model drug, because the maximal 
prescribed daily therapeutic dose resulted in intrahepatic 
concentrations equivalent to the Ki for bile acid efflux inhi-
bition, facilitating detection of changes in the bile acid 
accumulation. In our previous work, we established that 
an over 1.5-fold increased total bile acid pool size posed 
an individual at risk for intrahepatic bile acid accumula-
tion as a result of BSEP-inhibition (de Bruijn et al. 2022). 
Furthermore, a low BSEP abundance was identified as a 
potential risk factor for the development of cholestasis. 
Therefore, as an example, the effects of cyclosporine on 
intrahepatic accumulation were simulated for (a) a refer-
ence individual, (b) an individual with a 1.5-fold increased 
total bile acid pool size compared to the reference indi-
vidual, (c) an individual with low hepatic BSEP abun-
dance, or (d) an individual with an increased pool size 
and a low BSEP abundance. The low and reference BSEP 
abundances were derived from a meta-analysis of hepatic 
transporter abundances in healthy Caucasians (Burt et al. 
2016). The in vitro to in vivo extrapolation of Vmax was 
based on the BSEP abundance. A lower BSEP abundance 
thus resulted in a lower in vivo Vmax. The reference indi-
vidual had a BSEP protein abundance of 0.84 pmol BSEP 
protein per a million hepatocytes. Low BSEP abundance 
was set to the reported mean minus three times the stand-
ard deviation and amounted to 0.23 pmol BSEP protein 
per million hepatocytes.

Sensitivity analysis

To assess the influence of the parameters on the model out-
come, a sensitivity analysis was performed for the plasma 
Cmax of the drugs and the intrahepatic GCDCA levels. The 
drug’s doses were set to 1 mg/kg body weight. For plasma 
Cmax, all potential combinations of input parameters were 
evaluated. The normalized sensitivity coefficients (NSC) for 
hepatic GCDCA levels were calculated using the combina-
tion of input parameters giving the drug’s Cmax in closest 
agreement with the in vivo data (Supplementary Table S3). 
Based on the method reported by Evans and Andersen 
(2000), the normalized sensitivity coefficients (NSCs) for 
the model parameters were calculated as follows:
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where C indicates the initial value of the model output, and 
C′ indicates the modified value of the model output result-
ing from an increase in the parameter value. P indicates the 
initial parameter value and P′ indicates the modified param-
eter value after a 5% increase of its value, keeping all other 
parameters at their original value.

Results

Tissue:plasma partitioning has a major impact 
on Cmax for acidic drugs

Figure 2 visualizes the effect of altering the method for 
obtaining the partition coefficients, the intrinsic clearance, 
or Fup parameter, while keeping the methods for defining 
the other generic drug PBK model parameters unchanged. 
For 13 out of 18 drugs, the Cmax predictions by the generic 
model were within fivefold of the observed data for at least 
one combination of the drug PBK model input parameters. 
The predicted Cmax of atorvastatin and haloperidol were 
more than fivefold but less than tenfold overpredicted. The 
Cmax of saquinavir, flutamide, and lovastatin were more than 
tenfold overpredicted for all combinations of input param-
eters (Supplementary Material Figure S2). The largest effect 
on Cmax was observed for the method used to define the 
partition coefficients (Fig. 2A). For drugs with pKa < 6, i.e., 
atorvastatin, bosentan, deferasirox, and glimepiride, calcu-
lating the partition coefficients by the method of Berezhko-
vskiy resulted in an over fivefold lower prediction for the 
Cmax as compared to the results obtained with the method 
of Rodgers and Rowland. The Fup and clearance methods 
had smaller effects on plasma Cmax. Intrinsic total clearance 
predicted by pkCSM resulted in slightly higher or similar 
Cmax values as intrinsic hepatic clearance determined using 
(cryopreserved) primary hepatocytes (Fig. 2B). Supported 
by this close agreement between the two sets of Cmax predic-
tions, pkCSM was employed to predict clearance for rosigli-
tazone, pioglitazone, and deferasirox for which no in vitro 
clearance data were available. This approach resulted in Cmax 
predictions within fivefold compared to the observed phar-
macokinetic data.

The hepatic free concentration of the drugs was predicted 
using the combination of input parameters giving the Cmax 
in closest agreement with the in vivo data. Exemplary Fig. 3 
indicates which combination of input parameters gave the 
most accurate prediction for the Cmax of bosentan and glime-
piride. The closest agreement with in vivo data was achieved 
for bosentan and glimepiride when the Cmax values were 
predicted using the method of Rodgers and Rowland for 

(6)NSC =
C
� − C

P� − P
× P∕C,

tissue partitioning and the method of Lobell and Sivarajah 
for calculation of Fup. Cmax was predicted best when deter-
mining the clearance by the in silico tool pkCSM and pri-
mary hepatocytes for bosentan and glimepiride, respectively. 
These comparisons were made for all 18 drugs and are dis-
played in 6.5 Supplementary file Figure S1. In case two 
methods resulted in exactly the same median ratio predicted: 
observed, the in silico methods were chosen for intrinsic 
clearance and Fup. Supplementary Table S3 provides a 
tabular overview of the methods chosen for prediction of 
the parameters for further simulations. Flutamide, saquina-
vir, and lovastatin were excluded from further predictions 
because of the > tenfold overprediction of their Cmax. Even 
though Cmax predictions above fivefold but within tenfold of 
the observed Cmax are not very precise, they are still consid-
ered relevant (Punt et al. 2021).

Kinetic processes involved in the kinetics 
of the drugs

To facilitate the evaluation of potential processes that may con-
tribute to deviations in the predicted versus observed Cmax, 
an overview of the involved phase I, II, or III processes in the 
kinetics of the 18 drugs was created (Fig. 4). The color of the 
bullets indicates the ratio predicted:observed Cmax. Interest-
ingly, the Cmax values for the statins lovastatin and atorvastatin 
were > fivefold overpredicted. These drugs, along with defera-
sirox and haloperidol, undergo phase II metabolism by several 
UDP-glucoronosyltransferase (UGT) enzymes. Haloperidol is 
also overpredicted, but deferasirox is underpredicted. Besides 
the UGT enzymes, the cytochrome P450 (CYP) enzymes 
CYP2C8 and CYP3A4 are involved in the metabolism of lov-
astatin and atorvastatin. Hepatic uptake of lovastatin and ator-
vastatin occurs through the organic anion transporter (OATP) 
1B1. The highest overprediction was observed for lovastatin. 
All together the overview reveals that the over- or underpre-
diction of the Cmax cannot be ascribed to a specific metabolic 
phase or enzyme since for all drugs, including the drugs with 
the highest level of deviation but also the drugs for which 
accurate predictions were obtained similar phase I, II, and II 
metabolism and respective isoenzymes seem to be involved.

Drug PBK model‑based predictions of free hepatic 
concentrations at therapeutic dose levels and their 
comparison to the Ki for inhibition of bile acid efflux

Upon evaluation of the drug PBK model predictions for 
plasma Cmax values, the PBK models were used to predict 
maximal free hepatic concentrations of the drugs (assumed 
to be equal to free concentrations of the drugs in venous 
blood leaving the liver) at therapeutic dose levels. In Table 2, 
these predicted maximal free hepatic concentrations of the 
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drugs are compared to the respective Ki values for drug-
mediated inhibition of hepatic bile acid efflux by presenting 
the ratio between these two values. From these ratios, it fol-
lows that not all drugs when dosed at their therapeutic level 

will result in maximal free hepatic concentrations able to 
reach the Ki (ratio equals at least 1) and thus will not result 
in effective inhibition of bile acid efflux. The PBK models 
can also be used to predict the dose levels required to reach 

Fig. 2   Ratio predicted:observed 
Cmax for the 18 selected drugs 
using different methods to 
obtain the PBK model input 
parameters for a partition 
coefficients, b clearance, and c 
fraction unbound (Fup), while 
the other methods to obtain 
the input parameters where as 
indicated in the box above 
a–c. Green dashed line: ratio 
predicted:observed = 1; lower 
and upper black dashed lines: 
ratio predicted:observed = 0.2 or 
5, respectively
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maximal free hepatic concentrations of the drugs that reach 
the Ki, and these dose levels are also presented in Table 2. 
Comparison of these dose levels to the therapeutic dose lev-
els corroborates that for some drugs, therapeutic dose levels 

are high enough to induce maximal free hepatic concentra-
tions in the range or above the Ki, resulting in inhibition 
of bile acid efflux, while for others higher than therapeutic 
dose levels would be needed. For cyclosporine for example, 

Fig. 3   Ratio predicted:observed 
Cmax for bosentan and glime-
piride using eight different 
combinations of PBK model 
input parameters. The green box 
indicates that this combination 
of input parameters resulted in a 
median ratio predicted:observed 
closest to 1. The combination in 
green is used for further simula-
tions. Clearance: hep = primary 
hepatocytes, pkCSM = in silico 
clearance, partition coefficients: 
Berezhkovskiy or Rodgers and 
Rowlands, fraction unbound in 
plasma: LS = Lobell Sivarajah, 
RED = rapid equilibrium dialy-
sis. Green dashed line: ratio 
predicted:observed = 1, lower 
and upper black dashed lines: 
ratio predicted:observed = 0.1 or 
10, respectively

Fig. 4   Phase I, II, or III kinetic processes involved in the pharmacoki-
netics of the 18 selected drugs. To facilitate evaluation of potential 
parameters that may contribute to deviations in the predicted versus 
observed Cmax, the color of the bullets indicates for the respective 

drug the logarithm of the median ratio predicted:observed Cmax. For 
the combination of input parameters used for the PBK predictions, 
see Supplementary Table S3
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the ratio between the maximal free hepatic concentrations 
and the Ki amounts to 12.9 and the therapeutic dose level is 
11-fold higher than what would be needed to reach the Ki 
while for others, like bosentan, this ratio amounts to 0.03, 
indicating that a 34-fold higher than therapeutic dose level 
would be needed to reach the Ki.

These results already explain why defining the Ki (or 
IC50) for bile acid efflux inhibition defines the hazard but 
does not predict the risk on developing cholestasis. However, 
it is also important to consider that not only a comparison 
of the maximal free hepatic concentrations to the respective 
Ki values is relevant to obtain insight in chances on effects 
on bile acid efflux and accumulation, but also the duration 
of this situation where free hepatic concentrations are in the 
range of the Ki or above.

To further study these aspects, Fig. 5 presents the drug 
PBK model-based predictions for the free hepatic drug con-
centration over time at therapeutic dose levels including a 
comparison to the respective Ki values. From these results, it 
follows that for some drugs, the therapeutic dose will result 
in free hepatic drug concentrations over the whole 24 h 
time frame (far) below the respective Ki in some cases not 
even reaching 10% of the Ki, the latter being a concentration 
at which for a competitive inhibitor less than 10% inhibi-
tion can be expected. The curves also reveal that for drugs 

for which at the therapeutic dose level, the maximum free 
hepatic drug concentration will be reached or even exceed 
the Ki, the overall time frame during which concentrations in 
the range or above the Ki can be expected will depend on the 
rate of clearance. Comparison of the data for chlorpromazine 
and troglitazone, for example, reveals that, although the ratio 
between the predicted maximum free hepatic concentration 
and the Ki is comparable for both drugs, amounting to 2.56 
and 2.20 respectively, the time frame during which for tro-
glitazone the free hepatic concentrations are in the range of 
the Ki is substantially larger than for chlorpromazine, due 
to the far more efficient clearance of chlorpromazine. This 
indicates that for prediction of the risk of cholestasis not the 
ratio between the maximum free hepatic concentration of 
the drug at therapeutic dose level and the Ki, but rather the 
ratio between the AUC of the drug compared to the Ki is of 
importance. Therefore, Table 2 also presents the AUC/Ki 
ratios at therapeutic dose levels for the different drugs.

PBK model predictions for drug‑induced bile acid 
accumulation

To provide insight in the consequences of the drug kinetic 
profiles for bile acid accumulation, PBK model predictions 
for drug-induced bile acid accumulation were made by 

Table 2   Therapeutic dose, inhibitory constant (Ki) for inhibition 
of hepatic bile acid efflux, ratio between the drug PBK model pre-
dicted maximal free hepatic concentration at therapeutic dose level 
(assumed to be equal to free concentration in venous blood leaving 
the liver) and the Ki, ratio between the drug PBK model predicted 

area under the curve (AUC) free hepatic concentration at therapeu-
tic dose level, the predicted dose required to obtain a maximal free 
hepatic concentration of the drug equal to Ki and the AUC above the 
Ki

a Therapeutic dose is the maximal prescribed daily dose and obtained from the supplier’s information
b Ki is the inhibitory constant of bile acid efflux inhibition induced by the drugs. The Ki was obtained by measuring glycocholic acid efflux in an 
assay using primary hepatocytes in suspension (Zhang et al. 2016)

Drug Therapeutic dose 
(mg/kg body weight)a

Ki (nM)b Ratio internal maximal 
liver concentration: Ki

Ratio internal 
liver AUC: Ki (h)

Dose required to reach Ki 
(mg/kg body weight)

AUC above 
the Ki 
(µmol/L h)

Atorvastatin 1.143 112 0.15 1.26 8.0 0.00
Bicalutamide 0.714 979 0.22 1.85 3.0 0.00
Bosentan 3.571 493 0.03 0.39 123 0.00
Chlorpromazine 28.57 460 2.56 2.20 11 0.36
Cyclosporine 15.00 4.88 12.9 253 1.2 1.12
Deferasirox 20.00 505 505 0.51 0.19 103
Fluoxetine 0.635 320 0.80 2.29 0.8 0.00
Glimepiride 0.086 603 0.03 0.31 2.6 0.00
Haloperidol 0.214 1134 0.11 0.28 2.0 0.00
Ketoconazole 17.14 173 5.16 26.0 3.5 1.26
Pioglitazone 0.643 631 0.91 14.8 0.7 0.00
Ritonavir 17.14 28.0 4.88 38.3 3.5 0.44
Rosiglitazone 0.114 8.18 0.47 10.8 0.3 0.00
Trazodone 8.571 1919 1.28 9.88 6.5 0.20
Troglitazone 11.43 64.0 2.20 12.4 5.0 0.12
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linking the drug PBK models to a PBK model for bile acid 
kinetics. Figure 6 presents the predicted GCDCA accumu-
lation at both the therapeutic dose levels as well as at the 
dose levels at which the maximum free hepatic concentra-
tion was predicted to reach the Ki (Table 2). These results 
confirm that for several of the drugs, therapeutic dose levels 
would not result in substantial bile acid accumulation in line 
with the incidence report for cholestasis being not or rarely 
reported. When dose levels would be at dose levels where 
the free maximum hepatic concentrations would be at the Ki, 
bile acid accumulation would be always less than twofold 
compared to the placebo and in some cases not observed 

at all. Of interest to note is also that only for some of the 
drugs for which cholestasis is observed commonly, espe-
cially cyclosporine, ritonavir, and ketoconazole, bile acid 
accumulation at therapeutic dose levels is higher than what 
is predicted for the placebo (Fig. 6a). Comparison to the bile 
acid accumulation predicted for these drugs at dose levels 
where the Ki is reached (Fig. 6b) reveals that this higher bile 
acid accumulation at therapeutic dose levels can be ascribed 
to the fact that the therapeutic dose level is higher than the 
dose levels where the Ki is reached (Table 2). The results 
obtained also reflect that this PBK model-based prediction 
accounts for the effects of the drug on the bile acid efflux 

Fig. 5   Free hepatic drug concentration over time at therapeutic dose level. Blue dashed line = Ki, gray dashed line = 10% of Ki
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during the whole 24 h interval thus also taking into account 
differences in drug clearance. This is again illustrated by 
the differences between chlorpromazine and troglitazone 
for which the ratio between the predicted maximum free 
hepatic concentration at therapeutic dose level and the Ki is 
comparable (Table 2). At both simulated dose levels, chlor-
promazine, in spite of its ability to inhibit bile acid efflux, 
was predicted to not result in hepatic GCDCA accumulation, 
while troglitazone, with less efficient clearance and a higher 
AUC, was predicted to result in increased hepatic bile acid 
levels (Fig. 6). To further illustrate the importance of the 
size of the AUC as compared to the Ki for predicting whether 
bile acid accumulation is to be expected, Fig. 7a presents the 
PBK model predicted GCDCA accumulation (expressed as 
fold change in the AUC of GCDCA compared to the pla-
cebo) versus the ratio of the AUC of the drug versus the Ki, 
showing that the PBK modeling indeed adequately accounts 
for the effect of the varying concentration of the drug on bile 
acid accumulation overtime, while when using the ratio of 
the maximum free hepatic concentration of the drug and 
the Ki as the descriptive parameter no adequate prediction 
is obtained (Fig. 7b).

Finally, it is also of interest to note that the PBK model-
based predictions for bile acid homeostasis presented in 
Fig. 6 do not in all cases reflect the frequency of occur-
rence of cholestasis at therapeutic doses of the drug. While 
for some compounds, it is clear that therapeutic dose levels 
are high enough to cause bile acid accumulation; for others, 
the therapeutic dose levels are too low to induce this effect. 
There are also drugs for which bile acid accumulation is 
predicted to occur, while there is no or only rare reported 
incidence of cholestasis, while for some drugs for which 
occurrence of cholestasis is common bile acid accumulation 
at therapeutic dose level is limited or even absent. Of special 
interest is the apparent difference between the three thia-
zolidines troglitazone, rosiglitazone, and pioglitazone. The 
kinetic profiles predicted for these compounds by the generic 
PBK model show substantial differences and especially a 
lack of effective clearance at prolonged time intervals for 
rosiglitazone and pioglitazone, resulting in potentially unre-
alistically high AUC levels for these drugs by the generic 
PBK model.

This suggests that using the AUC above the Ki as a meas-
ure to predict the occurrence of cholestasis may be a bet-
ter approach. Table 2 lists these predicted AUC above Ki 

Fig. 6   PBK model predicted 
hepatic glycochenodeoxycholic 
acid (GCDCA) accumulation at 
a the maximal therapeutic dose 
level or b the dose at which 
the maximum free hepatic 
concentration reaches the Ki 
(see Table 2). The dashed line 
indicates the placebo (set to 1). 
AUC​ area under the curve
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values for the various drugs. This would predict only the 
following drugs of the series of 15 drugs studied to induce 
cholestasis at their therapeutic dose in the order: ketocona-
zole > cyclosporine > > ritonavir > chlorpromazine > trazo-
done > troglitazone. It is of interest to note that these first 4 
compounds are all listed as commonly inducing cholestasis, 
while trazodone and troglitazone rarely induce cholestasis. 
This would suggest that the AUC above the Ki might be the 
best parameter to predict the risk of cholestasis. The fact 
that this AUC above the Ki would not identify the common 
occurrence of cholestasis for atorvastatin and glimepiride 
might be related to the fact that another mode of action than 
inhibition of bile acid efflux is underlying the effect, since 
at therapeutic dose levels, these two drugs were predicted 
to never reach free hepatic concentrations that would cause 
efficient inhibition of bile acid efflux.

Increased bile acid pool size and reduced BSEP 
abundance are potential synergistic risk factors 
for cholestasis

The PBK modeling of drug-induced bile acid accumula-
tion presented so far did not yet take into account factors 
that may cause individuals to become sensitive toward bile 
acid accumulation. In subsequent PBK modeling studies, it 
was investigated to what extent an augmented bile acid pool 
size and low BSEP abundance are potential risk factors for 
the development of cholestasis upon exposure to selected 
drugs. To this end, first the effects of cyclosporine adminis-
tration for individuals with an increased total bile acid pool 
or decreased BSEP levels or both were simulated (Fig. 8). 
Cyclosporine was selected for these studies, because the 
free intrahepatic levels of this drug were shown to meet the 
Ki threshold upon therapeutic dose levels. For comparison, 
also the effects of these interindividual modifications on the 

hepatic GCDCA levels upon placebo treatment were calcu-
lated and are presented in Fig. 8 as well. The combination 
of both an increased pool size and low BSEP abundance 
resulted in intrahepatic GCDCA levels surpassing the cumu-
lative effects of each factor in isolation. These observations 
suggest a potential synergistic impact for individuals in 
which both risk factors are present simultaneously.

Fig. 7   Hepatic glycochenode-
oxycholic acid (GCDCA) area 
under the curve (AUC) relative 
to placebo versus a the hepatic 
drug concentration AUC/Ki 
and b maximal hepatic drug 
concentration/Ki. Simulations 
were done at therapeutic dose 
levels

Fig. 8   Area under the curve (AUC) of GCDCA levels in liver intra-
cellular water upon administration of the maximal prescribed daily 
dose of cyclosporine in different sensitive individuals. Yellow = pla-
cebo, blue = cyclosporine. Control = reference individual, pool 
size = 1.5-fold increased GCDCA pool size compared to the refer-
ence, BSEP = low BSEP abundance, Pool + BSEP = individual with a 
1.5-fold increased GCDCA pool low BSEP abundance. GCDCA glyc-
ochenodeoxycholic acid
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Sensitivity analysis

The sensitivity analysis (Fig. 9a) revealed that especially 
the fraction absorbed (Fa) and dose of the drug have strong 
positive influence on the plasma Cmax of the drugs, and that 
the blood:plasma ratio (BP) has a strong negative influ-
ence. Cardiac output (QC) and body weight (BW) could 
have a positive or negative influence on the plasma Cmax of 
the drugs, depending on which drug was simulated and the 
parametrization of the PBK model. Figure 9b reveals that 
the parameters related to the bile acid homeostasis typically 
had a stronger influence on the hepatic GCDCA AUC than 
drug-specific parameters. The most influential drug-specific 
parameters were Ki for hepatic efflux inhibition (Ki), fraction 
absorbed (Fa), and dose of the drug. Parameters related to 
the maximal rate of BSEP-mediated hepatic GCDCA efflux 
or its scaling had a strong influence on the hepatic GCDCA 
AUC. A boxplot was generated of the normalized sensitiv-
ity coefficients for all 15 drugs. Some NSC values were 
± 1.5 × the interquartile range and thus considered an outlier. 
Normalized sensitivity coefficients for rosiglitazone were 
most often considered outliers followed by pioglitazone.

Discussion

Accurate predictions of internal dosimetry are of para-
mount importance in driving the acceptance of advanced 
(animal-free) testing methodologies for chemical safety 
evaluations. Internal dosimetry predictions are also instru-
mental in bridging the gap between in vitro toxicity and 
in vivo dose–response relationships or drug potency data. 
The present study aims at development of a new approach 
methodology (NAM) to predict drug-induced cholestasis, 
as a result of hepatic efflux inhibition and subsequent bile 
acid accumulation. To this end, a generic PBK model was 
built to predict hepatic concentrations of 18 selected drugs. 
For 15 of these drugs, the predicted Cmax was within tenfold 
of the observed Cmax. The predicted internal hepatic dose 
level of these 15 drugs was incorporated in a bile acid PBK 
model describing the synthesis, circulation, and excretion of 
the exemplary bile acid GCDCA. The intrahepatic GCDCA 
accumulation was determined as a measure for cholestatic 
potency.

The generic PBK models were parameterized using dif-
ferent in vitro and in silico input parameters and the plasma 
Cmax predictions were validated with in vivo plasma Cmax. 

Fig. 9   Sensitivity analysis for a plasma Cmax of 18 drugs parameter-
ized using different combinations of input parameters and b hepatic 
glycochenodoxycholic acid (GCDCA) accumulation as indicated by 
the area under the curve (AUC) of hepatic GCDCA after administra-
tion of 15 selected reference drugs. Outliers are colored and shaped. 
Parameters are included when in a 15 or more and in b 10 or more 
normalized sensitivity coefficients (NSCs) were < − 0.25 or > 0.25. 
BP: blood:plasma ratio; QC: cardiac output; Kpgu: plasma:gut 
partition coefficient; Clint: clearance; SF: scaling factor for clear-
ance; fup: fraction unbound in plasma, fuhep: fraction unbound to 
hepatocytes; BW: body weight; Ka: absorption rate constant of the 

drug; dose: dose; Fa: fraction absorbed; VmaxBSEPc: maximal rate 
of BSEP-mediated hepatic GCDCA efflux; MWBSEP: molecu-
lar weight of BSEP; WL: weight of liver; hep: hepatocellularity; 
aBSEP: BSEP abundance; Qgb: fraction of GCDCA going directly 
to the gallbladder; Ki: inhibitory constant of hepatic bile acid efflux; 
ge: gallbladder ejection rate; Gdose: amount of GCDCA in gallblad-
der at t = 0; FVliw: fraction of intracellular water in liver; KmBSEP: 
Michaelis–Menten constant of BSEP-mediated hepatic GCDCA 
efflux. square = chlorpromazine, circle = fluoxetine, up-pointing trian-
gle = pioglitazone, diamond suit = rosiglitazone
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Different methods were applied to define the parameters 
required to model the drug kinetics by the generic PBK 
model. Tissue-partitioning was predicted using the quan-
titative-property-property relationships as described by 
Berezhkovskiy (2004) or Rodgers and Rowland (2006). For 
acidic drugs, i.e., pKa < 6, the method used for prediction 
of the tissue:partition coefficients had a major effect on pre-
dicted plasma Cmax. For 2 out of 4 strongly acidic drug in 
our dataset, the predictions were closest to the in vivo data 
when the method of Rodgers and Rowlands was used, while 
for the remaining 2 strongly acidic drugs, the closest fit was 
achieved with Berezhkovksiy’s method. These observations 
suggest that the most predictive approach to simulate plasma 
Cmax cannot be determined by a drug’s physicochemical 
properties alone but that model parameterization should be 
evaluated on a case-by-case basis, and include drug-specific 
processes where necessary to enhance predictive accuracy.

In vivo clearance predictions were based on studies with 
primary human hepatocytes (PHHs) and the in silico tool 
pkCSM. Interestingly, pkCSM resulted in Cmax predictions 
similar to the predictions made with in vitro clearance data. 
If any differences were observed between the two differ-
ent inputs, the pkCSM tool resulted in higher, i.e., more 
conservative, predictions than the in vitro clearance. These 
findings provide support for the use of the pkCSM tool also 
for pioglitazone, rosiglitazone, and deferasirox for which no 
in vitro clearance data obtained from PHHs were available. 
PHHs retain all phase I and phase II metabolic enzymes and 
co-factors necessary for metabolic clearance and transporter 
function and are considered the golden standard for hepatic 
clearance predictions (Richert et al. 2006). Comparison of 
the PBK model predictions of the present study based on 
the clearance data obtained with the various PHH models 
indicates adequate predictions and confirms the validity of 
the in vitro model used to quantify drug clearance. Neverthe-
less, in vitro clearance predictions typically underestimate 
in vivo clearance for highly bound chemicals, even after cor-
recting for the fraction unbound in plasma (Jones et al. 2022; 
Hallifax et al. 2010). An underestimation of the clearance is 
unlikely to have affected the risk prioritization in the current 
work. The current study included only three drugs that were 
> 90% bound to plasma, i.e., fluoxetine, cyclosporine, and 
haloperidol. Here, the use of PHHs may have resulted in an 
underestimated CLint and thus higher and more conserva-
tive predictions of intrahepatic drug levels. Despite being 
potentially conservative, the maximal free hepatic concen-
tration of fluoxetine and haloperidol did not exceed the Ki. 
Consequently, we predicted low risk upon therapeutic fluox-
etine or haloperidol dosing. Finally, the cyclosporine PBK 
model was parameterized based on pkCSM, so these results 
were not affected by a potential artifact in the in vitro clear-
ance. Further research is needed to determine the most suit-
able way to predict clearance of highly bound compounds. 

Potentially, in silico tools may provide accurate and quick 
clearance predictions for highly bound compounds, espe-
cially when trained based on human in vivo clearance data 
with a well-defined chemical applicability domain. The use 
of empirical scalars to correct for known and unknown dif-
ferences between the in vitro and in vivo situation has been 
shown a promising alternative to predict in vivo hepatic 
clearance (Jones et al. 2022).

The complete set of evaluated drugs consisted of 18 
drugs. For 13 drugs, the predictions made by the generic 
PBK model were within a fivefold range, and for 7 drugs, the 
predictions were within a twofold range of the correspond-
ing in vivo data. Typically, regulatory contexts demand 
predictions by a drug-specific PBK model within a twofold 
range of the in vivo data (Peters and Dolgos 2019); however, 
given the large variability within reported human in vivo 
kinetic data, this requirement might be excessively rigorous. 
Thus, deviations may in part be due to the variability within 
reported human in vivo biokinetic data. For saquinavir, for 
example, in vivo Cmax values ranging from 5.4 to 66.1 µg/L 
were observed at similar dose levels (Frohlich et al. 2004; 
Vella and Floridia 1998) indicating variability in the avail-
able human in vivo data as a potential reason for the rela-
tively large fold differences between predicted and reported 
Cmax values. Biological, technical and analytical interstudy 
differences could contribute to this variability, underpin-
ning the need for harmonized in vivo biokinetic study pro-
tocols and the need to understand at least the main drivers 
of interindividual differences. Only 3 drugs (i.e., lovasta-
tin, saquinavir, and flutamide) were excluded from further 
analysis toward potential bile acid accumulation, because 
the generic PBK model overpredicted their plasma Cmax by 
> tenfold. Aside from the large differences in human in vivo 
data contributing to the discrepancies, the generic, minimal 
structure of the PBK model is unlikely to make precise pre-
dictions. Generic PBK models describe the kinetic aspects 
for all drugs in a similar way with a limited amount of input 
parameters. This method is less time-consuming than devel-
oping a chemical-specific PBK model which often requires 
experimental determination of specific kinetic parameters 
for, e.g., transporter-mediated renal excretion. Even though 
less-precise, predictions within tenfold may still be consid-
ered relevant (Punt et al. 2021). When higher confidence 
is needed, chemical-specific, or perhaps class-specific PBK 
models need to be developed. For example, saquinavir and 
flutamide are multidrug resistance protein (MRP)-1 sub-
strates and it can be speculated that by incorporating MRP-1 
mediated renal and/or biliary clearance in the PBK model, 
the predictions would be improved. Lovastatin Cmax is prob-
ably overestimated, because extrahepatic clearance is not 
(sufficiently) considered, resulting in an underprediction 
of total clearance. No in vitro lovastatin intrinsic clearance 
was measured using PHHs (Pearce et al. 2017), while the 
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total in vivo lovastatin clearance was reported to be 451 L/h 
(Zhou et al. 1995). pkCSM predicted a higher total clearance 
than was measured using PHHs, but the predicted clearance 
only amounted to 36 L/kg after extrapolation to the in vivo 
situation. pkCSM might not be suitable to accurately predict 
total clearance of drugs with substantial extrahepatic clear-
ance. Lovastatin is metabolized through glucuronidation, 
lactonization, and cytochrome P450-mediated oxidation 
which can take place outside the liver (Reig-Lopez et al. 
2021). Glucuronidation is catalyzed by UDP-glucurono-
syltransferases (UGTs) and these are widely expressed in 
various tissues, including liver, kidney, lung, and intestine 
(Tukey and Strassburg 2000; Naritomi et al. 2015). Lactoni-
zation can occur as a spontaneous process at pH < 6 or medi-
ated by plasmatic paraoxonase (PON) at pH > 6 (Reig-Lopez 
et al. 2021). Underestimation of the clearance provides a 
conservative estimate of the Cmax.

Upon gaining sufficient confidence in the PBK predictions 
for 15 out of 18 drugs, we employed the PBK models to pre-
dict free intrahepatic drug concentrations and incorporated 
these into the bile acid PBK model to predict the effects of 
the drugs on hepatic bile acid accumulation resulting from 
inhibition of bile acid efflux. Hepatic accumulation at thera-
peutic dose levels was simulated for the commonly choles-
tatic drugs cyclosporine, ritonavir, and ketoconazole. Inter-
estingly, no hepatic GCDCA accumulation was predicted at 
therapeutic dose levels of atorvastatin, chlorpromazine, and 
glimepiride, even though these drugs were classified as com-
mon causes of cholestasis. It is hypothesized that these drugs 
cause cholestasis through mechanism(s) that cannot be fully 
captured by the short-term (1 h) assay with a suspension-
cultured PHH assay. The PHH assay is most suitable to study 
short-term competitive transporter inhibition. According to 
the cholestasis AOP, the mechanism(s) or molecular initiat-
ing events (MIEs) could involve transporter, hepatocellular, 
and bile canalicular changes (Vinken et al. 2013; Gijbels 
et al. 2020). Chlorpromazine probably induced cholestasis 
through hepatocellular changes that can be observed only 
after several hours of incubation. It was shown that Hep-
aRG cells exposed to 50 µM of chlorpromazine for 4 h lost 
~ 50% of hepatocellular tight junctions (Morgan et al. 2019). 
Glimepiride induced intrahepatic bile canalicular dilatation 
in a human clinical case study (Omar et al. 2009), which can 
impossibly be captured in a system with suspension PHHs. 
Atorvastatin-induced cholestasis is not fully understood, but 
it is has been speculated that immune-allergic reactions or 
ROS formation are involved (Karahalil et al. 2017). Further-
more, the different DILI patterns (hepatocellular/cholestasis/
mixed) reported after atorvastatin treatment suggest that its 
mode of action is multifaceted and that a battery of tests 
is required for an NAM-based risk assessment (Averbukh 
et al. 2022).

In our previous study, we observed a 60% increase in 
the liver GCDCA upon bosentan treatment, while in the 
current work, no substantial increase was observed (de 
Bruijn et al. 2022). The discrepancy between the two stud-
ies can be attributed to variations in dosage and tissue 
partitioning, ultimately leading to a lower free intrahe-
patic bosentan concentration. In our earlier study, a clini-
cal trial-like dosage of 500 mg twice a day was simulated 
(Fattinger et  al. 2001), while in the current study, the 
maximal prescribed daily dose of 250 mg once a day was 
used. Furthermore, in our previous investigation, an exper-
imental logP value of 3.1 was employed (Meyer 1996), 
while in the current study, a logP value of 5.5, predicted 
using Chemaxon, was used. This change, combined with a 
slightly higher pKa value (5.5 versus 5.8), led to a tenfold 
increase in the liver:plasma partition coefficient, as calcu-
lated using the method of Rodgers and Rowlands. Besides, 
the in silico calculated fraction unbound decreased by five-
fold due to these changes in physicochemical parameters. 
Taking the influence of the physicochemical parameters 
and the dose together, this resulted in a decreased free 
hepatic bosentan concentration in the current manuscript 
compared to the previous study and thus a reduced effect 
on hepatic GCDCA levels. These findings stress the impor-
tance of accurate estimates of lipophilicity.

Inhibition of hepatic bile acid efflux is a hazard for chol-
estasis risk, but the results of the present study clearly dem-
onstrated that predicting the risk cannot be based on the IC50 
or Ki for inhibition of hepatic bile acid efflux alone. PBK 
modeling of the intracellular hepatic drug concentration time 
profile and its comparison to the Ki appeared to be the best 
way to predict the cholestatic potential with especially the 
AUC above the Ki providing a better prediction than the total 
AUC/Ki ratio or the Ki or IC50 as such. This indicates that 
one has to take into account not only the drug’s potency to 
inhibit the bile acid efflux, but also the external dose level 
and its kinetics. In addition, the individual’s susceptibilities 
were shown to influence the risk with people with a higher 
bile acid pool size and low BSEP abundance being more 
susceptible. The developed combined drug and bile acid 
PBK models incorporate all this information and predict 
drug-induced cholestasis as a result of hepatic transporter 
inhibition. For a complete risk assessment of cholestasis, 
also MIEs focusing on hepatocellular and bile canalicular 
changes need to be included. Future research should focus 
on validation and standardization of these assays and quanti-
tatively coupling the measured MIEs to cholestasis risk. The 
current results provide a proof-of-principle of a PBK model 
to bridge the gap between in vitro potency to inhibit hepatic 
bile acid efflux and in vivo cholestasis risk prioritization.
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