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Abstract—This research article presents an advanced robotic
system designed for efficient pick-and-place of deformable poultry
pieces from cluttered bins. The system incorporates a novel archi-
tecture with seamless integration of various modules, enabling the
robot to handle deformable poultry with precision. It introduces a
comprehensive evaluation approach to assess the system’s perfor-
mance, considering perception, state modeling, planning and con-
trol, gripping and manipulation. The experiments were conducted
on two different samples of chicken pieces with varying weights and
shapes, under complex and simple scenarios. Performance indica-
tors, failure categories, and cycle time were used for evaluation. The
evaluation revealed an overall success rate of 49.4% for picking and
placing chicken pieces, with failure rates of 21.8% for perception,
30.7% for gripping, and 11% for manipulation modules. These
results highlight areas of improvement, particularly in object de-
tection, grasp pose estimation in clutter, and gripper designs for
deformable products, to create a robust pick-and-place solution.
The proposed robotic system and evaluation method hold immense
potential for revolutionizing the meat processing industry and other
food processing sectors, making automation more efficient and
adaptable to meet the increasing demand in the food industry.

Index Terms—Bin picking, deformable object, machine learning,
robotic system architecture, system analysis.

I. INTRODUCTION

W ITH the advent of industry 4.0 there has been a demand
to transform food processing using robotics and artificial

intelligent (AI) technology. Current robotic and AI technology
is not able to deal with the large variations in shape, size, and
softness of natural food products, such as meat [1]. Global meat
consumption has surged from 115 million metric tons in 2016
to an estimated 140 million metric tons in 2023 [2] and [3],
driven by dietary shifts favoring increased meat consumption.
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Fig. 1. Poultry pieces are currently manually segregated from cluttered piles
in bins to place them in order on the conveyor belt by human laborers for further
processing in the processing line in an industry that is still labor intensive ([5]).

Today, poultry production accounts for roughly one-third of total
meat production worldwide [4]. Since the demand for poultry
products is increasing globally, the need to process more poultry
is also increasing. While automation has made significant strides
in poultry processing industry, the emphasis has predominantly
been on mechanical engineering solutions [5]. Certain tasks,
such as picking chicken pieces from a cluttered pile in a crate
and placing them in order, are still a challenging problem to
automate [6], and therefore currently this task is performed by
human workers (see Fig. 1). This so-called bin-picking task in
poultry processing poses a considerable technological challenge,
primarily arising from the diverse shapes and sizes of poultry
pieces densely and disorderly packed in bins. Mechanically
segregating and arranging them in sequential order in another bin
or on a conveyor belt is exceptionally difficult. Addressing this
challenge necessitates the adoption of advanced technologies, as
exemplified by our involvement in the public–private partnership
project known as cognitive robots for flexible agrofood technol-
ogy (FlexCRAFT) [7]. This study is motivated by the practical
demands of the poultry processing industry, which encounters
substantial difficulties in automating bin-picking tasks due to
the heterogeneous characteristics and disordered arrangement
of poultry pieces in bins. The research aims to provide innova-
tive technological solutions with a direct impact on industrial
processes.

Robot technology has the potential to provide flexible solu-
tions in the face of product and task variation. So far, robot
technology has been extremely successful in, for instance, the
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manufacturing industry [8]. Repetitive operations on large num-
bers of objects that are very well-defined in terms of location,
orientation, shape, and size were instrumental to this success.
Robots have also entered the agrofood production chain, where
adoption continues to grow rapidly [8]. This trend expresses
the readiness of this industry to adopt more advanced tech-
nology. However, the robots currently used in the agrofood
domain are dealing with simple operations on products without
much variation and are essentially based on industrial robotic
pick-and-place technology. Current robot technology still cannot
meet the requirements of flexibility when dealing with variation
within and between different classes of products. Switching
between tasks is an additional challenge on which robotics
still needs to deliver. And due to the characteristic of the meat
industry, robot technology needs capabilities of perception and
action to deal with complex manipulation tasks while han-
dling products having a surface with low and varying friction
characteristics and products that easily deform under external
forces.

In the FlexCraft project [7], we aim to develop more flexible
robotic technology for poultry processing. The objective to
further automate poultry processing originates from the poultry
industry but poses interesting scientific challenges. Automating
the poultry bin-picking task with robots requires flexible capabil-
ities, including perception, world modeling, planning and con-
trol, and gripping. However, integrating these modules robustly
presents a challenge. Moreover, evaluating such a large complex
system requires a systematic approach that considers the perfor-
mance of individual modules that adds to the performance of the
overall system. The existing approaches for evaluating robotic
systems focus either on the whole system’s performance without
assessing individual modules or solely on the evaluation of
individual modules without translating the results to the system’s
performance. A comprehensive evaluation method is needed
to understand the system’s performance, identify failures, and
guide future research for improvement.

Therefore, the contributions of this work are as follows.
1) A novel robotic system architecture is proposed and de-

veloped for picking poultry pieces from a cluttered pile in
a bin and placing them in sequential order in another bin
or on a conveyor belt.

2) A novel approach to evaluate the performance of such a
large system of bin-picking robots is proposed by assess-
ing individual modules as well as the overall system.

3) Using this procedure, we showed where and why the
robotic bin picking system failed and where future re-
search should focus to improve the system’s performance
and discuss the pros and cons of each subcomponent of
the systems and technologies including the details of the
systems.

The rest of this article is organized as follows. Section II
provides the background study. Section III provides materials
and methods for the work, in which Section III-A describes
the experimental environment, and objects characteristics was
described in Section III-B. Section III-C introduces the hardware
and software components of the systems. Section III-D describes
the architecture of the proposed system. Section III-E presents
algorithms proposed for the individual modules. Section IV
presents the methods to conduct experiments and the novel

procedure to analyze pick-and-place robotic systems. Section V
provides the results. Finally, Section VI concludes this article.

II. BACKGROUND

The literature on robotic automation in meat processing is
limited, with a few notable studies focusing on specific aspects of
meat handling [9], [10], and [11]. Jorgensen et al. [12] presented
a robotic system for pick and place operations of pork meat using
suction cups. In [13], the authors developed a vacuum gripper for
picking and placing meat products by the robot. Joffe et al. [14]
demonstrated an approach to handling poultry products that
allowed picking up a whole chicken from an unordered bin using
a suction cup gripper and placing it in a canonical orientation.
However, these studies primarily evaluated the performance of
individual modules rather than the entire system.

When it comes to assessing robotic systems, current literature
shows two approaches: 1) the performance of a whole system is
analyzed, without paying too much attention to the performance
of individual modules in that system, or 2) the performance of
individual module(s) is evaluated without translating the results
to a performance of a total system. A clear example of the former
approach is in the Amazon picking challenge [15]. The evalua-
tion methods used in the Amazon picking challenge also focused
on overall system performance without considering individual
module performance [16]. However, an overall score of the
performance does not measure the performance of individual
modules comprising the system and is therefore not useful to
understand where a system fails and where to pay attention in
future research to improve the technologies to solve real-world
problems.

Examples of the latter assessment approach, in which indi-
vidual modules are evaluated and not the whole system, can
be found in research on meat processing systems. For example,
Jorgensen et al. [12] measured the performance based on the
score that comprises three subscores for placing the meat at
the desired position and orientation, and ensuring the safety
of the product. In [13], the authors manually analyzed the
performance of suction cup-based system for grasping meat
pieces and identified three categories of failures due to vacuum
loss during lifting, vacuum loss during transferring, and when
multiple objects were lifted during the grasp. However, they did
not analyze the performance of the whole system. In [17], the
authors investigated the gripping mechanism for manipulating
deformable meat products in the industry based on the criteria of
maintaining safety (preventing visual and physical damage to the
product) and hygiene standards. In their work, Joffe et al. [14] did
not show the evaluation method for the entire pipeline either but
only evaluated the picking and placing performance considering
whether an object was picked up or not by the suction cup and
whether the breast of the chicken was facing the picking area
and the neck of the chicken was pointing up toward the ceiling,
respectively.

It appears in research on robotic automation of meat pro-
cessing that a common evaluation process assessing both the
performance of individual subprocesses as well as the overall
system performance is lacking (summarized in Table I), and
such a method could help to get more insight into the dif-
ferent subprocesses in the whole pipeline. In related robotics
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TABLE I
SUMMARY OF THE EXISTING RESEARCH STUDIES’ KNOWLEDGE AND GAPS

research on greenhouse automation, Van Henten et al. [18]
and Bac et al. [19] proposed a robotic system for harvesting
vegetables and their assessment procedure. Building on their
work as a second contribution of this article, we proposed and
demonstrated an assessment procedure that evaluates both the
individual modules as well as their contribution to the overall
performance of the whole system for bin-picking robots for
meat processing, which could provide important insights into
the performance of the whole system.

III. MATERIALS AND METHODS

A. Experimental Environment

The pick and place environment was created in a laboratory
setup shown in Fig. 2. The chicken pieces were randomly posi-
tioned in a black crate having dimensions of 580×380×30 mm.
There was ambient illumination (approximately 300–500 lx)
estimated across the workspace at various times during the
experiments; no additional lighting was used. The setup was
designed to replicate a future industry setup, that is, a robotic
arm was installed next to the bin so that the bin was reachable
by the robot to pick up objects and place them at a distance
from one another on a conveyor belt. In order to obtain a top
view of the bin, a camera (Model: Intel RealSense D435, 2017)
featuring a color sensor with a resolution of 1920×1080 pixels
(1080p) and a depth sensor with a resolution of 1280×720 pixels
(720p) was installed at the top of the bin at a height of 740 mm.
A six DoF manipulator (Model: ABB IRB 1200) was placed
at a distance of 250 and 80 mm away from the bottom-left
corner of the crate along the x- and y-axis of the robot so that it
could reach everywhere inside the crate. A gripper (Model: Festo
Adaptive gripper fingers DHAS-ME-H9-120) was mounted at
the end-effector of the robot, which was used for picking and
placing the chicken pieces.

Fig. 2. Experimental setup for picking and placing of chicken pieces from a
crate.

B. Objects Characteristics and Variations

The experiments were performed at room temperature (20 °C–
25 ◦C) with two different samples of chicken pieces, one contain-
ing light-weight pieces and the other containing heavy-weight
pieces. The experiments utilized a total of 357 training images
and 180 test images. Each test image contained a maximum of
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TABLE II
DETAILED INFORMATION ABOUT THE SAMPLE SET OF CHICKEN PIECES

ten pieces for the complex set and a maximum of eight pieces
for the simple set. The experiments were repeated five times for
each sample set in each scene. These chicken pieces exhibited
variations in terms of sizes, shapes, and weights. The heavy
sample contained pieces having lengths ranging from 22 to
24 cm and widths ranging from 7 to 10 cm and a weight range
from 330 to 370 g; the light sample contained pieces having
lengths ranging from 16 to 18 cm and the width ranged from 5 to
7 cm and the weight ranged from 280 to 320 g. The utilization of
different samples allowed us to analyze the potential influence
of size and shape on the system’s performance.

C. Hardware and Software Components of the Systems

The robotic system was developed as part of the research
project called FlexCRAFT [7]. A detailed description of the
hardware and software components of pick-and-place robots
and a discussion of choices for each component is given in the
following sections.

1) Hardware Components: The robotic systems for picking
and placing objects mainly consisted of three subsystems: a
manipulator, an end effector, and a sensing system.

i) Manipulator: We used the ABB IRB 1200 manipulator
having six DoF. The six DoF provided the robot with the
ability to move in 3-D space and to allow free precise
positioning and posturing of the tip of end effectors to
cope with jobs.

ii) End effector: The chicken pieces are naturally deformable
objects of varied shapes and sizes. To manipulate such
kinds of objects without damaging them requires a ro-
bust, highly flexible gripper. To the best of our knowl-
edge, at present, the gripper that can safely manipulate
deformable poultry pieces is very rare in the market.
We experimented with different grippers available in the
market to pick and place chicken legs, for example, the
suction cups, two-fingers Robotiq gripper, and the Festo
Fin-Ray grippers. However, experimentally, it has been
found that the suction cups are not suitable for picking
chicken pieces as they leave undesired marks on the piece
that is referred to as visual damage, as shown in Fig. 3 and
it does not fulfill the requirement of maintaining hygiene,
which is a crucial aspect in food processing [17]. The
design of the robotic gripper is also not very suitable for
manipulating chicken legs as its grasping is not as firm as
required to transport chicken pieces. Even, there is more
chance of physically damaging the product as it is very
rigid. In this article, we chose the Festo gripper (Model:
Festo adaptive gripper fingers DHAS-ME-H9-120) as an
end-effector for the experiments as it is adaptive to shapes
and sizes. This simple Fin-Ray gripper can reliably pick
chicken legs from the narrow, deep shelf bins. The simple
shape and thin fingertips of the end-effector reduce the

Fig. 3. (a) Undesired mark on the chicken leg after picking it by the suction
cup. (b) Grasping chicken pieces by the two-fingers Robotiq gripper.

need for complex collision avoidance or pregrasp object
manipulation, as it easily fits in between objects, pushing
them aside if necessary.

iii) Sensors: An RGBD camera (Model: Intel RealSense
D435) was used to capture both the RGB and the depth
image of the crate from the top. We selected the Re-
alsense D435 camera after careful consideration of its
suitability for our application. The criteria for its selection
included its ability to provide high-quality color images
(1920×1080 pixels or 1080p resolution), and depth in-
formation with a high level of accuracy (resolution of
1280×720 pixels for depth perception). It has a wide-
angle lens with a 90° horizontal field of view, aperture
f/2.2, 30 fps, rolling shutter mechanism, and 30 fpsa. It
has a depth range of approximately 30–300 cm, making
it suitable for our applications.
In order to integrate all the hardware components, an
interface was provided by a computer. The ABB IRC5
robot controller was connected to the computer through
the gigabit Ethernet interface to control the manipulator.
The gripper was controlled via an Arduino (Model: UNO
R3 SMD Atmega328P), and it was directly connected
to the Arduino board via a simple breadboard circuit.
Serial communication between the Arduino controller
board and the computer was done through a USB 3.0. The
camera was connected directly to the computer through
a USB cable. The schematic block diagram of hardware
connection is shown in Fig. 4.

2) Software Components: A software framework for the de-
velopment of picking and placing robots was developed to
provide a modular generic high-level functionality by structured
programming, thus leading to faster and simplified development
of robots. In theory, this allows users to have multiple modules—
but they are different approaches to accomplishing the same task
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Fig. 4. Schematic block diagram of hardware connection.

and they can be called whenever required. The software frame-
work allows sequential/parallel execution of different modules
to perform complex tasks. Each module was written in C++ or
Python language.

A robot operating system (ROS, Noetic) was utilized as
a middleware running on Ubuntu (version: Ubuntu 20.04) to
communicate between hardware and software modules while
performing parallel execution. Each module was created as an
ROS node that was able to communicate with other ROS nodes
through a topic and respond to inputs. To perform the motion
planning a MoveIt package was integrated with ROS and for the
simulation and visualization, a Gazebo platform was used.

We designed a generic state machine that organizes and
regulates the execution sequence of each module or function by
operating its own ROS nodes. Nodes have the ability to publish
or subscribe to topics. Services may also be provided by or used
by nodes. Depending on the condition or situation, the state
machine made a transition to one of the possible next states.
Implementing code and error handling functionality was made
simpler by centralizing this transition mechanism into a general
system component. An error handler determined the best course
of action to do when an error was discovered, such as pausing the
program and informing the user via an error message or resetting
a node, thus realizing the performance of the whole system.

D. System Architecture

A novel system architecture was designed for a fully au-
tonomous robot that was developed for picking chicken pieces
from a bin of cluttered scenes to segregate and place them in
order. The system architecture integrates four main modules:
1) perception module, 2) world modeling module, 3) motion
planning and control module, and 4) gripping module, which
addresses the specific challenges associated with the picking
and placing of chicken legs.

1) Perception: This module processes sensor data and inter-
prets it within the context of the task description, allowing
the robot to understand its surroundings. For example, de-
tecting and identifying the objects that have to be picked up
by the robot, localizing them in the crate, and determining
the corresponding real-world coordinates of the objects.

Fig. 5. Representation of the robotic system architecture, employing a task–
skill–motion paradigm. The skill comprises interactions between hardware and
software activities, enabling the robot to fulfill its responsibilities. The figure
highlights the interconnectedness of the robot’s task, knowledge, and motion
through discrete and continuous control, perception, world model, and gripping
modules. It demonstrates how these components work collaboratively, allowing
the robot to execute tasks efficiently and effectively.

It extracts relevant visual features and provides essential
input to the subsequent modules.

2) World modeling: This module acts as a bridge between
the other modules, storing and exchanging various types
of information about the robot’s environment, which other
modules can read or write. It constructs a comprehensive
representation of the environment, taking into account
both static and dynamic elements. It incorporates informa-
tion from the perception module, such as the geometry and
deformability of the chicken legs, the cluttered bin, and
other objects in the vicinity. This representation enables
the robot to reason about the state of the environment,
predict the behavior of the objects, and make informed
decisions during the pick-and-place process.

3) Decision making and planning: This module help the
robot decide what actions it should perform at each mo-
ment to achieve its tasks effectively. For example, it gener-
ates collision-free trajectories for the robot’s manipulator
to reach and grasp the chicken legs. It utilizes the infor-
mation from the world modeling module to plan efficient
path that consider task-specific objectives.

4) Gripping: It takes into consideration the information from
the world modeling modules to determine the optimal grip
configuration. It focuses on the control of an adaptive
gripper or end-effector to securely grasp the target chicken
legs. It takes action to open the gripper at appropriate time
to grasp the target and close the gripper to release the target
when it reached the desired placing location.

Fig. 5 represents the robots system architecture, a task-skill-
motion paradigm, that is how a robotic system connects the
robot’s task (what it needs to do) to its physical motion (how
it performs the task), that is facilitated by the robot’s knowl-
edge/skill, which helps the robot make the right decisions at
the right time. The skill is a set of interactions between hard-
ware and software activities that enable the robot to realize
above-mentioned four responsibilities. In summary, the figure
illustrates how the robot’s task, knowledge, and motion are inter-
connected through discrete and continuous control, perception,
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Fig. 6. Illustrates the hierarchical levels of robotic world modeling, show-
casing the interconnections vital for effective task performance. From basic
sensor–actuator interactions to modeling objects and fulfilling task requirements,
it captures the essential layers enabling the robot’s operational efficiency.

world model, and gripping modules, enabling the robot to carry
out its tasks efficiently and effectively. Fig. 6 shows how behav-
ioral interactions occur at different levels of modeling the world.

1) Actuators and sensors form the basic level, linking the
robot to the physical reality. This level represents the
“smallest world” where the robot operates.

2) The next level involves models of relevant objects in
the real world, containing information that needs to be
connected to the sensors and actuators.

3) The subsequent level relates these objects to: i) the robot
itself, ii) other objects in the environment, and iii) the task
requirements.

In summary, the figure demonstrates how different levels of
modeling the world interconnect to enable the robot to perform
tasks effectively, with a focus on sensor–actuator interactions,
object modeling, and task requirements.

These interconnections/data associations within the robotic
system architecture enables a coherent and effective framework
for the picking and placing of chicken legs. The architecture
follows a modular design that enables seamless integration
and interaction between modules, offering important system
features.
� Modular and scalable design: The architecture follows

a modular design, allowing for the seamless integration
of the perception, world modeling, motion planning, and
gripping modules. The novel contribution lies in the devel-
opment of a scalable architecture that facilitates the addi-
tion of new modules or functionalities as the requirements
evolve, making it adaptable to future advancements.

� Real-time decision making: The architecture enables real-
time decision making by integrating the perception, world
modeling, motion planning, and gripping modules in a
coherent manner. The novel contribution lies in the de-
velopment of efficient communication protocols and data
exchange mechanisms between these modules, allowing
for timely and synchronized decision making to adapt to
the changes in the environment.

Fig. 7 shows a task sequence or flowchart diagram of the
picking and placing robot. At the very beginning of an ex-
periment, we manually checked if the computer was able to
establish connections with other hardware devices, such as the
robot controller, the gripper controller, and the camera. Once
everything was okay, the algorithm initialized the robot ma-
nipulator at the home position such that the picking crate was
fully visible to the RealSense camera mounted on the top to

capture RGBD images of the picking workspace. The RGBD
images were registered and the RGB image was passed to the
object detection and classification algorithm (see Section III-E1)
to segment individual objects in the crate, and classify their
poses whether they are facing up or down. The detected and
classified fully visible pieces on the top, their mask and the
classification results were fed as input to the next level pose
estimation algorithm. At this stage, we utilized the depth image
and fed it as well as input it to the pose estimation algorithm.
The pose estimation algorithm provided the 3-D position and
3-D orientation of each detected fully visible piece. Then, based
on the strategy algorithm selected the target piece to be picked
up by the robot. Once, the grasp pose was estimated for the target
piece based on the object pose and the gripper pose, the motion
planner planed the motion of the manipulator from its current
pose to the target pose. Before executing the motion the system
checked the status of the gripper and ensured that it was open.
The robot executed the motion to the target object position. Once
it reached, its gripper closing action was triggered to grasp and
picked up the target object and moved it to the placing position.
Once the robot manipulator reached the desired placing position,
the gripper opening action was triggered to release the object.
Hence, it completed one cycle and then the algorithm went back
to check if there was any object found in the crate and repeated
this process until the crate was empty or there was no object
detected by the robot.

Overall, the proposed architecture provides a systematic and
comprehensive approach to address the challenges of picking
and placing chicken legs. By combining perception, world mod-
eling, motion planning, and gripping modules, the architecture
enables the robot to perform delicate and precise manipulation
tasks in real-world scenarios, with potential applications in the
food industry and other domains requiring dexterous object
handling.

E. Proposed Algorithms for Software Modules

In this section, we provide the details of underlying methods
for each of the four modules described in the previous section.

1) Perception Module: The perception module consisted of
three subtasks: 1) object detection and classification, 2) object
pose, and grasp pose estimation, and 3) target selection.
� Object detection and classification: The object detection

and classification module was continuously running to
detect objects in the crate using the color images cap-
tured by the RealSense camera. Object detection and
classification basically involved bounding box detection
and mask detection for each class of objects. In recent
times, the most popular way to detect objects is to apply
deep convolutional neural networks (CNNs) algorithms,
such as faster R-CNN [20], that achieves high accuracy
but is slower and resource-intensive, and YOLO [21]
enables real-time object detection, while SSD [22]
balances accuracy and speed. U-Net specializes in medical
image segmentation but is limited to instance segmentation
tasks. Mask R-CNN [23] and YOLACT [24] offer accurate
object detection and instance segmentation but sacrifice
real-time performance. YOLACT++ [25] improves upon
YOLACT with enhanced performance, while Poly-YOLO
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Fig. 7. Flowchart diagram of the task sequences for picking and placing the chicken pieces by the robot.

excels in handling objects with arbitrary shapes. Each
algorithm possesses unique merits and demerits, as listed
in Table III, catering to specific needs in object detection
and instance segmentation applications. As in semantic
segmentation, the multiple objects are treated in a single
category as one entity and in the use case, on the other
hand, we needed to identify individual objects within these
categories (fully visible top, fully visible bottom, partly

visible top, and partly visible bottom. An example of all
these categories is shown in Fig. 8).
Hence, mask R-CNN is a preferred choice as accurate
object detection and precise instance segmentation are of
paramount importance for our application of bin picking of
chickens, although we have to compromise with real-time
performance. Its ability to provide pixel-level segmen-
tation and handle complex scenes makes it suitable for
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TABLE III
DIFFERENCES AMONG STATE-OF-THE-ART OBJECT DETECTION ALGORITHMS WITH RESPECT TO THE APPLICATION

Fig. 8. Example of four different classes of poultry pieces: fully visible top,
fully visible bottom, partly visible top, and partly visible bottom.

applications as detailed understanding of object boundaries
is crucial.

� Object pose and grasp pose estimation: The RealSense
camera recorded images in color and depth at the same res-
olution. As a result, the depth image was directly covered
with a mask created from the color image, and extracting
the point cloud belonging to the mask resulted in the surface
of the chicken piece that was visible to the camera. This
was done to obtain the segmented point cloud for each
individual chicken piece. This point cloud contained noise
as a result of the mask quality, the effect of infrared light on
the depth measurements, and areas of the image that were

outside the depth range that the camera was calibrated on.
The algorithm used an outlier removal technique to remove
the noise and extract the point cloud that represented the
chicken piece. To estimate the location of the chicken piece,
the corresponding (x, y, z) coordinates of the point cloud
were averaged, i.e., we calculated the mean of the point
cloud associated with each chicken piece. The 3-D pose
of the object was calculated using the principal component
analysis (PCA) of the extracted point cloud. The PCA uses
singular value decomposition to find the eigenvectors. The
eigenvector associated with the largest eigenvalue repre-
sents the orientation of the chicken piece along the x-axis.
This eigenvector passes through the midpoint (x, y, z) and
aligns with the outermost point on the drumstick side of
the chicken leg. The second eigenvector, perpendicular to
the first, represents the width of the chicken pieces. Finally,
the third eigenvector signifies the thickness of the pieces.
A more detailed explanation of the algorithm is described
in our previous work [26].
The grasp pose was calculated based on the estimated 3-D
pose of the object. We rotated the object pose by 180o

about the x-axis to get a grasp pose of the end effector.
However, the algorithm used only the angle calculated in
the horizontal plane (XY plane), that is, the angle about the
Z-axis of the end effector with respect to the position of the
object. Considering the rotation angles about the X- and
Y-axis of the grasp pose resulted in the worst grasping and
picking performance. Probably, solutions to estimate the
object pose under conditions of occlusions, cluttered and
varying shapes and sizes are not very reliable. The grasp
poses were converted from the camera coordinate frame
into the world coordinate frame of the manipulator, using
a transformation matrix between the camera coordinate
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frame and the world coordinate frame T camera
world obtained

using hand–eye calibration [27]

T grasp
world = T camera

world · T grasp
camera (1)

where T grasp
world represented the transformation matrix be-

tween the world coordinate frame to grasp pose of the
object coordinate frame; T grasp

camera was the transformation
between the camera coordinate frame and the grasp pose
of the object coordinate frame. Thus, it calculated the
necessary transformations for transforming image feature
coordinates into real-world coordinates. The transforma-
tion matrix between the camera coordinate frame and the
world coordinate frame T camera

world was

T camera
world = T base

world · T tool0
base · T camera

tool0 (2)

where T base
world was the transformation between the world

coordinate frame and the base coordinate frame of the
robot; T tool0

base was the transformation matrix between the
base coordinate frame and the end effector coordinate
frame of the robot; T camera

tool0 was the transformation matrix
between the end effector coordinate frame to the camera
coordinate frame. Therefore, transformation matrixT camera

world
remained fixed throughout the experiment as the camera
was static with respect to the world.
It is wise to mention that the possible damage could occur to
the costly robot grippers and the robot itself if the grasping
position or orientation of the object is estimated and given
incorrectly. Therefore, to minimize potential hazards to
the property workspace constrains had been introduced by
using “safe” maximum input levels.

� Target object selection: Among all the detected objects
in the bin, we were required to select one target object
to be picked up by the robot at a time, which raised the
challenge of how to choose the best one to pick out of all
the detected objects. Hence, we proposed a strategy to pick
the object which was on the top of the pile and fully visible,
considering that would be the easiest for the robot to pick.
The detection and pose estimation algorithm provided the
estimated pose for all the fully visible objects in cluttered
scenarios in the crate. The object that was on the top of
the pile was the one that is closest to the camera along the
z-direction. Hence, we calculated the distance between the
camera’s z-position (Cz) and the positions of all the objects
that were completely visible (Oi

z) and selected the one with
the minimum distance value by

targetobject = min(Cz −O1
z , Cz −O2

z , . . ., Cz −Ov
z )

(3)
where i = 1, . . ., v, and v was the number of detected fully
visible objects at time t.

2) World Modeling Module: Current robotic systems are pre-
programmed to deal with very specific tasks on a limited set of
objects very well-defined in terms of location, shape, size, and
material properties. However, to deal with variability and enable
flexibility, robotic systems need to reason about the objects in
their environment or world. Hence a representation of the world
is required, i.e., world modeling is defined as the process of
creating a numerical model of a real-world environment, or
workspace. This can be graphically displayed to provide the
user with a 3-D surface model of the workspace for simulations,

Fig. 9. Schematic diagram of the world model representation of the environ-
ment.

analysis, and task planning [28]. In this work, a numerical
task-centric world model was developed to interact with the
environment shown in Fig. 9. We stored information about the
(static) obstacles in the workspace; the state of the robot, the
end effector, the gripper; the information related to the objects
in a numerical form. For example, if the state of the gripper was
open it was numerically represented as 1, and if it was closed
that state was represented as 0, and that information was stored
in the world model and used by the gripping module whenever
necessary. Similarly, the configuration of the manipulator was
represented by Θ and the end effector position was represented
by x, y, and z in a 3-D space. The id and grasp pose of objects
were stored over time to assist the perception module and task
planning module in the presence of occlusion and variation.

3) Motion Planning Module: In the case of industrial ma-
nipulators, motion planning refers to providing suitable joint
angle position (or velocity) trajectories to move the robot from
one pose to another. Many state-of-the-art motion planning
algorithms are available in the form of the open motion planning
library [29], which has been integrated into several easy-to-use
software packages like MoveIt [30]. In this article, we used the
MoveIt package in integration with ROS for building motion
planning algorithms for ABB IRB 1200 robot manipulator. The
simulation was carried out using Gazebo [31] environment. The
motion planning for the picking and placing task involved a
sequence of a few steps.

Once the first target object in the crate was detected, the
estimated grasp pose of the target was sent to the MoveIt planner
that planned a path from the current pose of the robot to the
desired estimated pregrasp pose above the target object. The
MoveIt planner used the bidirectional rapidly exploring random
trees [32] algorithm to plan a path from initial pose to the desired
goal pose. Then the robot started executing the path from its
home pose to the pregrasp pose. Then, from the pregrasp pose it
moved to the estimated grasp pose to grasp and pick the object
and back to the postgrasp pose above the grasp pose. Then, the
robot moved from the postgrasp pose to the predefined preplace
pose to the place pose to place the object. The placing pose of the
object was predefined. After placing the object, the robot moved
to the postplace pose. Meanwhile, if the next target object was
found in the crate, the robot moved to the pregrasp pose and
repeated the process until the crate was empty. Else, the robot
moved to the home pose and stopped the process.

4) Gripping Module: The gripping module focuses on con-
trolling the selected Festo Fin-Ray gripper while picking and
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Fig. 10. Example picture of the Festo gripper that adapted to the shape of the
chicken piece to firmly grasped it during the picking and placing operation in
one of the experiments.

placing chicken pieces using robots. The gripper was operated
through a pneumatic valve which was controlled using a micro-
controller enables precise control and coordination of the grip-
per’s actions. The microcontroller receives input signals from
the personal computer, processes them, and sends corresponding
commands to the pneumatic valve, determining the gripper’s
opening and closing actions at appropriate time. This integration
of technology allows for automated and programmable oper-
ation of the gripper enhances the efficiency and reliability of
the pick-and-place process, reducing the risk of product quality
issues and ensuring the integrity of the transported chicken
pieces.

It is crucial to apply appropriate amount of force in handling
delicate and deformable chicken pieces to prevent excessive
force that may cause deformation or damage. Hence, we define
deformability constrains as follows.
� Determined acceptable deformation defined the acceptable

limits/thresholds for deformation considering acceptable
amount of flattening or bending that can occur during the
grasping process without compromising the overall quality
or appearance.

� Established force–deformation relationship determined
the relationship between the grasping force applied by
the robot and the resulting deformation of the object.
This involves experimental testing to measure the force–
deformation behavior using Hooke’s law [], that states a
change in shape due to the application of a force is a
deformation. Even very small forces are known to cause
some deformation is written by

F = kΔL (4)

where ΔL is the amount of deformation produced by
the force F , and ΔL. The deformation can be along any
axis and it is proportional to the applied force. Based on
this relationship, the maximum allowable force that the
gripper can exert during grasping was set to stay within the
predefined deformability constraints.

Fig. 10 shows the Festo gripper (Model: Festo adaptive grip-
per fingers DHAS-ME-H9-120) transporting chicken pieces by
grasping it firmly.

Fig. 11. Example of (a) simple and (b) complex scenarios of chicken pieces
in a crate.

IV. EVALUATION AND EXPERIMENTAL PROCEDURES

A. Experimental Testing Scenarios

The experiments were conducted for both the light and heavy
samples (as described in Section III-A) under two different
testing scenarios: 1) a complex scenario, and 2) a simple scenario
depending on the placement of chicken pieces in the bin. These
scenarios were designed to assess the impact of occlusions and
clutter on the system’s performance. Each scenario was repeated
five times for both the light and heavy samples. In the simple
scenario [see Fig. 11(a)], eight pieces were taken in total and
randomly placed in one layer in the crate touching each other,
whereas, for the complex scenarios [see Fig. 11(b)], ten pieces
were taken in total and randomly placed in three layers so that
the pieces were overlapping and some pieces partially occluded
other pieces. In total 20 sets of experiments were conducted for
both samples, out of which five were with simple scenes and
five were with complex scenes for each sample set.

B. Guidelines of the Picking and Placing Task

A well-defined set of guidelines was established for the pick-
ing and placing task during the experiments, as follows.
� The robots were tasked to automatically pick one chicken

piece at a time from a pile in the crate and place them into
the desired location on another crate and repeat the process
to empty the bin.

� In case of any failure at any stage, starting from detecting
an object to placing an object during the execution, the
detected target chicken pieces at that cycle were removed
manually and the algorithm was continued to pick up the
next object.

Subsequently, the system was evaluated based on identified
subtasks (see Section IV-B1), and its performance was assessed
at each step using various evaluation criteria. A specific proto-
col was followed, encompassing the recording of performance
indicators (see Section IV-B2) and categorizing successes or
failures (see Section IV-B3). These recorded measurements were
employed to conduct experiments and determine the overall
performance of the robotic system (see Section IV-B2).

1) List of Subtasks: Nine distinct subtasks were identified for
which the system’s performance was evaluated, as listed in the
following.

1) The robot must correctly identify and classify at least one
chicken piece that lies on the top of the pile.

2) The robot must select the target chicken piece to be picked.
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3) The robot must correctly estimate the pose of the target
chicken piece.

4) The robot must correctly estimate the grasp pose of the
end effector or the gripper.

5) The robot must reach the desired grasp pose of the target
chicken piece.

6) The robot must grasp the target chicken piece firmly.
7) The robot must pick the chicken piece.
8) The robot must transport the chicken piece to the desired

placing pose.
9) The robot must properly release the object at the desired

placing pose.
2) Performance Indicators: The evaluation process em-

ployed the following performance indicators.
1) Object detection success (%): The number of chicken

pieces successfully detected in the crate as a fraction of
the total number of chicken pieces in the crate.

2) Target selection success (%): The number of times the
algorithm successfully selected the target piece per total
number of chicken pieces in the crate.

3) Object pose estimation success (%): The number of times
the algorithm successfully estimated the pose of the
target chicken piece per total number of chicken pieces
in the crate.

4) Grasp poses estimation success (%): The number of
times the algorithm successfully estimated the grasp pose
of the target chicken piece per total number of chicken
pieces in the crate.

5) Reaching target (%): The number of times the robot was
able to plan the path and reach the desired target location
per total number of chicken pieces in the crate.

6) Grasping success rate (%): The number of times the
robot was able to grasp the target object successfully
per total number of chicken pieces in the crate.

7) Picking success rate (%): The number of times the robot
was able to pick the target object successfully per total
number of chicken pieces in the crate.

8) Transporting success rate (%): The number of times the
robot was able to transfer the target object successfully
from its postgrasp position to the preplaced position per
total number of chicken pieces in the crate.

9) Placing success rate (%): The number of times the robot
was able to place the target object successfully per total
number of chicken pieces in the crate.

10) Object damage rate (%): The number of damaged
chicken pieces per total number of chicken pieces in the
crate. A chicken piece was consider damaged if the robot
cut more than 5 mm into the chicken piece or caused a
bruise. Measuring meat damage was highly relevant for
economic feasibility because a producer cannot market
damaged meat.

11) Cycle time (s): Time of an average full picking and
placing operation of one chicken piece, including object
detection, pose estimation, target selection, reaching,
grasping, picking, transporting, and placing the target at
the desired location per total number of chicken pieces
in the crate.

3) Failure Categories: The failures during the picking and
placing attempts were categorized as follows.

1) Incorrect object detection: a) chicken piece was partially
detected or b) if two or more pieces were detected as one,
or c) if no piece was found.

2) Poor target selection: When there existed a fully visible
piece that was easier to pick than the target piece. For
example, the strategy to select the target piece was based
on the highest point cloud among all detected fully visible
pieces, as discussed in Section III-E1. However, this does
not always give the best results, especially when the piece
was tilted and some parts of the point cloud of the piece
were at a higher level but the piece was cluttered, i.e.,
surrounded by other pieces, and was then difficult to
grasp.

3) Incorrect object pose estimation: if the object pose was
not estimated or the estimated object pose was not in the
range of ground truth, as discussed in Section III-E1.

4) Poor grasp poses quality: a) if the estimated grasp pose
was not in the range of ground truth as discussed in
Section III-E1, b) if the object did not fit into the gripper
based on the pose, c) if the robot picked more than one
object at a time.

5) Failed to reach grasp: if the robot was not able to reach
the desired grasp pose due to the inability to plan motion.

6) Failed to grasp: a) if the object slipped while closing the
gripper to grasp the object or b) it failed to grasp due to
incorrect action of the gripper motion or c) while grasping
if the the robot hit other objects and damaged.

7) Failed to pick: if the object slipped out of hand while
moving from grasp pose to postgrasp pose after grasping.
This could be caused due to (a) poor gripper design, (b)
the target object sticking to the underneath object or the
crate below it.

8) Failed while transferring: a) if the object slipped out of
the hand/gripper while moving from the postgrasp pose
to the preplace pose or b) if the motion planner failed to
compute a safe path between these two points.

9) Failed to place: if the robot did not place an object at the
desired place position. In addition, it would be good to
consider placing the object in the desired orientation, but
we did not consider this for the experiments.

One failure category was assigned to each unsuccessful pick-
ing and placing attempt, i.e., where the system failed first out
of nine defined categories. Let us say, a sample set contains X
number of pieces in total, and the number of pieces that failed
in ith category is denoted by Xi. Then, the failure rate Yi for the
ith category was calculated as

Yi =
Xi

X −∑i−1
j=1 Xi

∗ 100 (5)

where i = 1,2,..., n, and n was the total number of categories,
i.e., nine for our case. Equation (5) was used to calculate the
failure rate of each category in the experiments. So, out of ten
objects, if the robot failed zero time in the first four categories,
two times in category five, i.e., failed to reached grasp, one time
in the category 6, i.e., failed to grasp, then the failure rate for
the category 5 and 6 would be 2

10−(0+0+0+0) ∗ 100 = 20% and
1

10−(0+0+0+0+2) ∗ 100 = 12.5%, respectively.
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TABLE IV
RESULTS FOR EACH SIMPLE VERSUS COMPLEX SCENE OF LIGHT SAMPLE SET

TABLE V
RESULTS FOR EACH SIMPLE VERSUS COMPLEX SCENE OF HEAVY SAMPLE SET

V. RESULTS

The experimental results of the picking and placing of chicken
pieces are described in this section. The quantitative results for
the experiments of the simple and the complex scenarios for
both the light and heavy samples are given in Table IV for
the light chicken pieces. For the complex scene, during the
first experiment, out of ten pieces, six times the robot failed to
successfully pick and place chicken pieces. Out of six failures,
one time it failed to detect and segment the object properly,
one time it incorrectly estimated the pose, one time the grasp
pose was not good, and three times the chicken piece slipped
out of the gripper while picking. That means the robot could
achieve a 40% success rate in picking and placing chicken pieces
in the first experiment. The success rates for the second, third,
fourth, and fifth experiments were 40%, 30%, 50%, and 50%,
respectively. On average, it is observed that out of 29 failures,
five times the system incorrectly detected objects, three times
failed to select the target, two times incorrectly estimated pose,
nine times incorrectly estimated grasp pose, one time failed to
grasp the object, seven times failed in picking an object, and
two times it failed to transfer object due to slip. Hence, the
average success rate for the complex scene achieved was 42%.
Similarly, for the simple scene, during the first experiment, out
of eight pieces, three pieces were not successfully picked and
placed by the robot. Among these three pieces, the robot failed to
grasp two pieces and one piece slipped out of the gripper during
transfer to the placing location. That means the robot achieved
a 62.5% success rate in picking and placing chicken pieces. The
success rate for the second, third, fourth, and fifth experiment

achieved was 62.5%, 37.5%, 50%, and 62.5%, respectively. On
average, out of 18 failures, four times it failed to estimate grasp
pose, two times it failed to grasp the object, ten times it failed
to pick the object, and two times it failed to transfer the object.
Hence, the average success rate for the simple scene achieved
was 55%. Overall, the success rate for the simple scene (55%)
was higher than for the complex scene (42%).

Similarly, Table V shows the experimental result for picking
and placing chicken legs for the heavy chicken pieces. The
overall success rate for the complex scenes was 50% whereas for
the simple scene it was a bit more, i.e., 52.5%. A similar trend
with the light sample set was observed in the failure rate in the
first three categories of perception for the simple scene, i.e., 0%,
however, for the complex scene, there are 3, 1, 1 piece failed in
detection, target selection, and the pose estimation categories.
In terms of grasp quality, there were seven pieces that failed
in a complex scene compared to a simple scene. This shows
that clutter was a serious issue while estimating grasp pose.
The highest failure rate was observed in picking the objects for
both the complex and simple scenes, which were nine out of 25
failures and 14 out of 19 failures for the complex and simple
scenes, respectively. Overall, the robot achieved a success rate
of 50.6% for picking chicken legs from a pile to placing them
in order. The success rate for the heavy sample set was achieved
at 51.2% including complex (50%) and simple scenes (52.5%),
and for the light sample set, the success rate was 48.5% including
complex (42%) and simple scenes (55%). So there was not much
difference in success rate when picking and placing the lighter
or heavier chicken pieces. However, it is observed that there
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TABLE VI
RESULTS OF FAILURES IN INDIVIDUAL CATEGORIES FOR HEAVY VERSUS LIGHT SAMPLE SET

was a pronounced difference in the overall success rate between
complex scenes (46%) and simple scenes (53.7%), which clearly
indicates that the scene complexity highly influenced the perfor-
mance of the overall systems.

Table VI presents the performance of the individual categories
for the experiments for both the heavy and light sample sets. It
showed that for the simple scene, there were 0% failure cases in
the first three categories of the perception module which include
object detection, target selection, and object pose estimation,
whereas for the complex scene the failure rate was 8%, 4%, and
3%, respectively. Even the robot failed more to estimate grasp
pose for the complex scene (16%) than for the simple scene
(7.5%). All these failures are due to the overlap, cluttered, and
occlusion conditions in the crate. In terms of motion planning,
the robot did not fail to reach the grasp pose till it placed the
object for both scenes. However, the robot failed quite seriously
whenever the gripper was in action irrespective of the complexity
of the scene, i.e., while grasping the object, picking the object,
and transferring the object the failure rate for the complex scene
was 1%, 33.3%, 10.4%, and for the simple scene, it was 2.7%,
24%, and 5%, respectively. The robot failed to grasp as the
gripper pushed the object away from the desired grasp point
during the closing action. The robot failed to pick up the object
as the object was slipping out of hand while pulling up. Similarly,
the object was slipping out of hand while the robot was in
motion to transfer the object. Overall, there was no damage to
the chicken pieces found throughout the experiments. However,
given how frequently the gripper failed to manipulate objects, it
is clear that there is an immediate need to work on designing a
suitable gripper to manipulate natural, soft, deformable objects,
such as chicken legs as it leads to the highest failure. Moreover,
the perception algorithm needs to be improved to deal with
overlap, occlusion, and clutter, especially when estimating grasp
pose. We demonstrated these failures at each step of perception
as follows.

1) Incorrect object detection: Fig. 12 displays typical exam-
ples of incorrect object detection, where the top two pieces
are detected as one piece.

2) Poor target selection: Fig. 13 shows an example of poor
target selection. In the scene, the chicken piece on the top
was selected as the target piece but that was surrounded by
five other pieces in the neighborhood, hence it was harder
to grasp. However, it can be seen that there were other
fully visible (whole_top or whole_bottom) pieces placed
in the less cluttered area (for instance, the bottom-right
most piece) in the scene which was easier to grasp than

Fig. 12. Example of incorrect object segmentation, where two pieces are
detected as one by the mask R-CNN deep learning algorithm.

the selected one. Hence, a better target selection strat-
egy/approach is required which should take into consid-
eration the neighborhood pieces while selecting the target
piece.

3) Incorrect object pose estimation: Fig. 14 shows an ex-
ample of incorrect pose estimation of the target object,
where the z-axis (red) was pointed downward. However,
the z-axis should point upward. The reason for the in-
correct estimation of the direction of the z-axis is the
misclassification of the object side (top/bottom) from the
mask R-CNN algorithm, i.e., the algorithm predicts the
bottom side as the top side. It is explained in detail in Raja
et al. [26].

4) Poor grasp quality: Fig. 15 shows an example of poor
grasp quality. It was not a good grasp pose for the target
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Fig. 13. Example of poor target selection. (a) Segmented output image of
mask R-CNN of top-view RGB image. (b) RViz visualization of the point cloud
image of the same scene showing grasp pose of the selected target piece.

Fig. 14. Example of incorrect object pose estimation. (a) Segmented output
image of mask R-CNN of top-view RGB image of the scene. (b) RViz visual-
ization of the point cloud image of the scene showing the object pose.

Fig. 15. Example of poor grasp quality. (a) Segmented output image of mask
R-CNN of top-view RGB image of the scene. (b) RViz visualization of the point
cloud image of the scene showing the estimated grasp pose on the selected target
object.

object as there was another object underneath, and conse-
quently while grasping, the gripper grasped both objects.
Of course, the quality of the grasp is highly related to
the design of the gripper and how to approach the objects
during grasping.

During the experiments, we kept track of which objects failed
at which subtasks and recorded that information and presented
it in the form of a heatmap in Table VII, where the x-axis
represents the order of pieces picked and the y-axis represents
the subtasks. The heatmap represents the results for all five
experiments for each of the sample sets, Table VII(a), (b), (c),
and (d) presents heatmap for simple light, complex light, simple
heavy, and complex heavy sample sets, respectively. The darker
color represents less number of failures and the lighter color
represents high failures. The number in the map represents the
total number of times the robot failed at particular subtasks
during the picking-and-placing operations conducted for each
sample set. That means, the maximum number in the map could
be 5, i.e., the robot could fail a maximum of five times at each
subtasks out of five conducted experiments and the minimum
number could be 0, i.e., no failure. For the complex light sample
set, the first piece selected as the target was incorrectly detected
in one of the five experiments. The robot failed during the
operation on the second object in line in three experiments out of
five experiments, one time at poor grasp quality, one time failed
to pick and one time slipped while transferring. Similarly, while
operating the third piece, the robot failed three times (one time
the object was detected incorrectly, one-time target selection was
poor and one time the object slipped while picking) out of five
experiments. While operating the tenth object, the robot failed
one time while picking. It is visible from the map that, there was
more failure in the perception module at the beginning compared
to the later stage of the experiments. It might happen due to
occlusion and being cluttered. That means as the robot removes
objects from the crate, the complexity of the scene reduces, i.e.,
there is less clutter, overlap, or occlusion conditions, hence the
performance of the perception module gets better at the later
stage, which indicates that there is a need for better perception
module that is robust to occlusion and cluttered.

The average time taken to successfully pick and place a
chicken piece was 16 s.

VI. DISCUSSION

The presented research demonstrates a significant step for-
ward in the development of an advanced robotic system for
the efficient pick-and-place of deformable poultry pieces from
cluttered bins. The achieved overall success rate of 49.4% indi-
cates that the system is capable of handling deformable objects
to a reasonable extent. However, the identified failure rates
in individual modules, such as perception (21.8%), gripping
(30.7%), and manipulation (11%), reveal areas that require fur-
ther attention for improvement. The practical experiments with
the robots to pick and place real chicken pieces and the proposed
evaluation method in this study has provided valuable insights
into the system’s performance, allowing us to pinpoint specific
challenges and potential solutions. In the following sections, we
discuss lessons learned from the experiments by reflecting on the
properties of deformable chicken pieces, that is how the object
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TABLE VII
ANALYSIS OF FAILURE AT SUBTASKS DURING THE EXPERIMENTS BASED ON THE ORDER OF PICKING OF THE OBJECTS FOR THE DATASETS (A) SIMPLE LIGHT, (B)

COMPLEX LIGHT, (C) SIMPLE HEAVY, (D) COMPLEX HEAVY

stiffness or the size and shape affects the overall performance
of the systems. Moreover, the discussion will reflect on the
four different modules of perception, world modeling, motion
planning, and gripping in the pipeline. Also, we would reflect on
the proposed assessment procedure that combines the evaluation
of all the modules.

A. Objects

One crucial aspect that emerged from the experimental results
is that the influence of cluttered scenarios on the overall system
performance. The picking and placing success rate has reduced
by 9.7% for the complex scene compared to the simple scene.
The presence of cluttered and occlusion was one of the major
reasons for the poor success. The effect of size of chicken pieces
has a little influence on the success rate. However, the shape
of chicken pieces has a lot of effect on the performance of
perception, gripping, and manipulation modules, thus on the
overall performance. A task for future work is, therefore, to
look for better solutions for all these modules to improve their
performance. In addition, there is a need to investigate the effects
of the surface properties of poultry pieces on performance. As
the surface of the chicken pieces was slippery and its friction
properties changed based on stiffness that varies with the tem-
perature and that has an effect on the overall performance of the
system. The poultry pieces were sticky which also adds to the
poor manipulation success rate.

B. Cycle Time

Human workers can pick chicken pieces at an approximate
rate of 4–6 s per piece. In general, reaching that speed for
handling manmade objects with an automated solution is likely
as much a research problem as it is an engineering one, requiring
fine-tuning computations of all algorithms as well as optimizing
all robot motions. However, this is not the case for naturally
deformable objects like poultry pieces. As while manipulation,
to reduce the cycle time, velocities of the system need to in-
crease, which might have an effect on the masses, forces, and
friction coefficient of the deformable poultry pieces. When these
characteristics alter, the ability of the object to be gripped by
the gripper will be affected. Hence, in the future, it has to be
investigated how the performance with the velocity of the robot

and the system has to evaluate based on the time. Speed can be
utilized as one metric of development, perhaps driving the choice
of robotic mechanisms as well as algorithmic solutions, with the
risk of leading the community to premature optimization rather
than unorthodox creativity.

C. Perception Module

The success rate for detecting, selecting the target, and
estimating the pose of chicken pieces in the simple scene
showed a remarkable improvement, reaching 100%, compared
to 92%, 96%, and 97% in the complex scene. That means there
was no failure in the simple scene, but faced challenges in the
complex scene due to clutter and occlusions, resulting in some
failures. Hence, this is a critical area that requires advancements
in object detection and recognition algorithms, especially in
cluttered environments. Developing sophisticated perception
techniques that can accurately interpret the context provided by
the task description is key to improving the overall performance
of the system.

While estimating the grasp pose of the target chicken piece,
the surrounding environmental situation, such as clutter, occlu-
sion, and even the noisy depth information was not considered.
To the best of our knowledge, the literature on estimating the
grasp pose of chicken pieces considering the surrounding en-
vironment is yet to appear. To effectively use the cameras in
future research, the issue of poor depth estimates should be
addressed. Another explanation for poor depth estimation is due
to the lighting condition. The light may have partially reflected
on chicken pieces and due to that some of the point clouds were
missing or provided with NAN values, which can be overcome
by having more uniform illumination systems on the crate. In the
industry environment, the illumination can actually be controlled
to overcome the issues.

D. World Modeling

The world model made for this application was very simple,
where the robot was able to successfully store necessary infor-
mation in the memory and used it when necessary. However,
to improve the performance of different modules of the robot,
it might be required to build a more sophisticated world model
in the future. For example, the robot could have information
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on the arbitrary shapes and sizes of objects, whether simple or
complex, it can be rapidly modeled and store the information
to allow a robot to interact with it. Moreover, the world model
should be capable to add information on 3-D surface maps, or
models to form a 3-D world model of the target workspace.

E. Motion Planning

During the experiments, the path generated by MoveIt! plan-
ner to move the end-effector from one initial position to the
other goal position looks good for the application of picking and
placing objects. However, sometimes, MoveIt generates weird
complex motion trajectories for the robot arm even when moving
between two closely adjacent points. Due to the bad motion, the
object slipped out of hand while transferring from the picking
location to the placing location. This affects the performance of
the overall result significantly. A better motion planner could
improve the performance of the system.

To follow the planned trajectory, the IRC5 ABB robot con-
troller was used, which is able to follow the generated trajectory
very accurately to reach the goal position. Hence, the robot
could accurately reach the target location to pick the object and
precisely place it at the desired location.

F. Gripping and Manipulation

A number of issues related to object properties explained the
performance of unsuccessful grasp and picking of the chicken
pieces by the Festo gripper. However, the design of the end-
effector mostly influenced the ability to manipulate the chicken
pieces. The gripper was not very effective at handling the object’s
deformability and slippery nature. We tried to improve the grasp-
ing performance by not closing the gripper completely. When the
gripper was completely closing it squeezed the object too much
and due to that objects commonly slipped out of the gripper.
It is desired to find a better gripper in the future which can
provide stability by firmly grasping the chicken piece. Similarly,
it needs to be investigated how much force is required to grasp
the object as currently, we are providing constant force to pick
all the chicken pieces. The gripper having a force-feedback
capability could improve the gripping performance. Damages
to the chicken pieces did not occur, which is a very positive
aspect of the gripper.

G. Systems and Assessment Procedures

The modular design of the system architecture allowed for
seamless integration and interaction between modules, facil-
itating efficient task execution. The combination of modules
provided a comprehensive approach to address the complexities
of deformable poultry handling. However, it lacks incorporat-
ing of learning and adaptation mechanisms that can enable
continuous improvement of the system’s performance. This
continuous learning and adaptive approach holds promise for
creating a highly robust and efficient robotic system for pick-
and-place tasks, making it more versatile and capable of han-
dling real-world challenges in the food processing industry and
beyond.

One of the notable strengths of this research lies in the
proposed assessment procedure that combines the evaluation
of all the modules. This comprehensive approach allows for

a holistic understanding of the system’s performance, offering
valuable insights into the interplay between the different com-
ponents and their collective impact on the overall success rate.
Several aspects of hardware and software compatibility were
verified using the proposed methodology—the effectiveness of
the used 3-D vision system, the gripper design, the perception
algorithms, the motion planning algorithms, and the execution
rate of the tasks. Moreover, during the experimental trial, the
evaluation methodology immediately revealed the reason for
failures and considerable limitations of that system, e.g., in one
of the experiments the object detection algorithm detected two
pieces as one, and in another experiment due to the bad motion of
the manipulator object slipped out of the gripper. Furthermore,
illumination proved to be a challenging task for object detection,
etc. This individual reason for failure/success has an effect on
the overall performance of the proposed system. We could not
have gained these insights without this method of evaluation.

The system components and their assessment procedure can
be used by developers or integrators that want to build and
quickly evaluate the configuration of a sample bin-picking work-
station. The performed experiments can therefore be directly
comparable between the selected hardware and software com-
ponents by various research teams or industries. In the practical
context, the method of evaluation could be very useful for
the industry. Although, the experimental results indicated that
the robotic bin-picking system still lacks the speed, dexterity,
and flexibility, possessed by a human worker. Despite all, the
proposed systems showed that it is possible to handle deformable
objects by the robot considering cluttered bin-picking scenarios.
Although in many literature [33], researchers stated that it is
even hard to pick and place simple objects that would match
the human mind and hand–eye coordination. Further work is
needed to improve the performance of the system and fine-tune
the evaluation. Please note that different operations require a
different assessment.

VII. CONCLUSION

This research presents an advanced robotic system for ef-
ficiently picking and placing deformable poultry pieces from
cluttered bins. The modular design of the architecture allowed
for seamless integration and interaction between modules, facil-
itating efficient task execution. The combination of perception,
world modeling, motion planning, and gripping modules pro-
vided a comprehensive approach to address the complexities
of deformable poultry handling. The proposed assessment pro-
cedure, which evaluates all modules’ performance, proved to
be effective in identifying strengths and weaknesses within the
system. This evaluation framework indicated an overall success
rate of 49.4%. We identified the key problems of the developed
system by evaluating the performance against 13 performance
indicators, and nine failure categories by conducting exper-
iments with two different sample sizes of poultry pieces in
simple and complex scenes. The experimental results showed
that the performance of the robot was improved by 7.7% for
a simple scene compared to a complex scene. This difference
mainly occurred due to the poor performance of the perception
module for the complex scene compared to the simple scene. The
performance of the gripping module was poor for both scenes
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as it highly depended on the interaction between the gripper
and the target object. The performance of world modeling and
motion planning modules was good for both scenes, i.e., the
information was correctly stored in the world model and used
by the other modules when required; and the robot was able to
appropriately position its end-effector at the desired location.
Hence, it can be concluded that the gripping module, i.e., the
gripper design should get more attention. In addition, a robust
perception module is needed for complex scenes in order to
boost performance. Due to the proposed method of evaluation,
we could have achieved these valuable insights. Overall, the
developed systems have the potential to be deployed in the
food processing industry to pick and place objects, and the
assessment procedure may offer valuable insights in terms of
practical application.
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