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Abstract 

Plants are sessile by nature, and as such they have evolved to sense changes in seasonality and their surrounding 
environment, and adapt to these changes. One prime example of this is the regulation of flowering time in angio-
sperms, which is precisely timed by the coordinated action of two proteins: FLOWERING LOCUS T (FT) and TERMINAL 
FLOWER 1 (TFL1). Both of these regulators are members of the PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN 
(PEBP) family of proteins. These regulatory proteins do not interact with DNA themselves, but instead interact with 
transcriptional regulators, such as FLOWERING LOCUS D (FD). FT and TFL1 were initially identified as key regula-
tors of flowering time, acting through binding with FD; however, PEBP family members are also involved in shaping 
plant architecture and development. In addition, PEBPs can interact with TCP transcriptional regulators, such as 
TEOSINTE BRANCHED 1 (TB1), a well-known regulator of plant architecture, and key domestication-related genes in 
many crops. Here, we review the role of PEBPs in flowering time, plant architecture, and development. As these are 
also key yield-related traits, we highlight examples from the model plant Arabidopsis as well as important food and 
feed crops such as, rice, barley, wheat, tomato, and potato.

Keywords:  Architecture, branching, flowering, FLOWERING LOCUS T, TEOSINTE BRANCHED 1, transcription factors.

Introduction

A huge variation in appearance exists within the plant kingdom, 
even between plants of the same species. An underlying reason 
for this is that plants are sessile organisms and need a huge de-
gree of plasticity to survive less favourable conditions. Plants 
therefore respond to subtle differences in their environment. 
This also holds true for the regulation of flowering time in 
angiosperms. Here, plants respond to signals such as increasing 

day length and temperature to sense the optimal time to switch 
from vegetative to reproductive growth.

Rice (Oryza sativa), barley (Hordeum vulgare), and wheat 
(Triticum aestivum) are monocotyledons belonging to the 
Poaceae family, commonly known as grasses. With a total culti-
vated area of over 4 million km2 in 2021 (Food and Agriculture 
Organization of the United Nations, 2023), they represent 
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staples for the entire world population. Rice was domesti-
cated in southern China (Huang et al., 2012). It is a faculta-
tive short-day (SD) plant, which accelerates flowering under 
short days but is also able to flower under non-inductive long-
day (LD) conditions. Nowadays, rice is cultivated at a greater 
range of latitudes across the globe, thanks to the selection of 
 photoperiod-insensitive varieties (Gómez-Ariza et al., 2015; 
Zong et al., 2021). Barley and wheat, on the other hand, are 
temperate cereals mainly domesticated in the Fertile Crescent 
(Morrell and Clegg, 2007; Peleg et al., 2011; Poets et al., 2015; 
Pankin et al., 2018; Zhao et al., 2023). For both of these species, 
two different growth types have been selected during domesti-
cation, based on the presence of a vernalization requirement or 
on sensitivity/insensitivity to photoperiod for the initiation of 
flowering (reviewed in Fernández-Calleja et al., 2021). ‘Winter’ 
varieties need to satisfy a vernalization requirement to initiate re-
productive development. Conversely, ‘spring’ varieties are able to 
flower irrespective of vernalization. Independently, varieties can 
be photoperiod-sensitive or -insensitive;  photoperiod-sensitive 
plants are characterized by accelerated flowering under LD 
conditions. The architecture of the vegetative shoot of rice, 
barley, and wheat is similar, with leaves produced from the main 
shoot apical meristem (SAM) in a distichous phyllotaxis, sub-
tending axillary buds that may or may not develop into sec-
ondary shoots known as tillers. Inflorescence architecture, on 
the other hand, is extremely diverse among cereals (Bommert 
et al., 2005; Bommert and Whipple, 2018). Similarly, a high di-
versity in architecture and development can be observed in the 
dicotyledonous family of the Solanaceae, to which both tomato 
(Solanum lycopersicum) and potato (Solanum tuberosum) belong. 
Both originally domesticated in the Andean region (Spooner 
et al., 2005; Bai and Lindhout, 2007), these species represent 
an important source of food and feed, with nearly 200 tonnes 
and 499 million tonnes, respectively, produced in 2021 (Food 
and Agriculture Organization of the United Nations, 2023). 
Tomato is a day-neutral plant that presents a sympodial growth 
habit. Upon floral initiation, the primary shoot transitions to a 
reproductive state, leading to the formation of a first inflores-
cence. The onset of the inflorescence does not coincide with 
the termination of shoot growth. Instead, shoot growth contin-
ues from the outgrowth of the last axillary meristem produced 
before transition, the so-called sympodial meristem (SYM). 
After the production of a few leaves, the sympodial meristem 
also transitions to an inflorescence meristem, and shoot growth 
is taken over by the last SYM produced. This repetitive pattern 
is continued until exhaustion, and shapes the architecture of 
both tomato shoot and inflorescence (reviewed in Périlleux and 
Huerga-Fernández, 2022). Potato plants can reproduce both 
sexually and asexually, through the formation of flowers and 
tubers, respectively. Tubers are storage organs derived from the 
swelling of stolons, a special type of underground stems. The 
induction of tuber formation is strongly dependent on envi-
ronmental cues. Wild potato (Solanum tuberosum ssp. andigena) 
forms tubers under SD conditions (Jackson, 1999), whereas 

modern varieties (Solanum tuberosum ssp. tuberosum) have been 
bred to induce tuber formation under LD conditions (reviewed 
in Rodríguez-Falcón et al., 2006). Little is known about the 
most favourable conditions for potato flowering, but it has been 
demonstrated that the process is inhibited during tuber forma-
tion (Plantenga et al., 2016, 2019).

There is a vast difference in plant architecture, growth habit, 
and developmental timing between the above-mentioned 
species. However, the main players orchestrating plant ar-
chitecture and developmental timing seem to be conserved. 
Flowering time is in all cases induced by FLOWERING 
LOCUS T (FT)-like proteins and relies on their interaction 
with FLOWERING LOCUS D (FD)-like proteins of the 
bZIP transcription factor family, while architecture is, under 
the control of conserved TCP proteins, among others. These 
two traits are tightly linked, and evidence suggests that the 
interplay between PHOSPHATIDYLETHANOLAMINE 
BINDING PROTEINs (PEBPs) and TCPs is not only critical 
in the coordination of plant growth, but also highly conserved 
across angiosperms. In this review we present an overview of 
the roles of PEBPs, bZIPs, and TCPs in the regulation of flow-
ering time and plant architecture, and how the interaction be-
tween members of these gene families shapes the life cycle of 
both monocot and dicot crops.

Day length and temperature induce the 
expression of FLOWERING LOCUS T

Synchronizing the reproductive phase with the most favourable 
environmental conditions is crucial to maximize the plant’s re-
productive potential. To align the start of the reproductive phase 
with the environment, plants can sense different stimuli, such as 
day length (i.e. photoperiod) and temperature. Photoperiodic 
flowering relies on the components of the circadian clock 
and follows the external coincidence model (Pittendrigh and 
Minis, 1964). When the external light input coincides with 
a sensitive phase of an output of the circadian clock, flow-
ering is initiated. Whether this happens under long days, short 
days, or both depends on the growth habit of the plant. In 
the model plant Arabidopsis, the floral regulators GIGANTEA 
(GI), CONSTANS (CO), and FT play key roles in the pho-
toperiodic flowering responses (Mizoguchi et al., 2005). This 
pathway is highly conserved in plants; however, minor differ-
ences may occur between species. In rice, for example, which 
is a facultative SD plant, two parallel photoperiodic pathways 
have been identified (recently reviewed in Vicentini et al., 
2023). One pathway is mediated by the rice homologue of 
GIGANTEA (OsGI), the CONSTANS-like gene Heading date 
1 (Hd1), and the FT orthologue Hd3a, which act analogously 
to the Arabidopsis GI, CO, and FT cascade (Hayama et al., 
2003). A second route that controls the expression of Hd3a in 
response to photoperiod depends on the rice-specific genes 
Grain number, plant height and heading date 7 (Ghd7), Ghd8, and 
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Early heading date 1 (Ehd1). This network also controls the ex-
pression of a second florigen, RICE FLOWERING LOCUS 
T 1 (RFT1) (Doi et al., 2004; Komiya et al., 2009; Zhang et al., 
2015; Zong et al., 2021). Under SD conditions, flowering is 
accelerated via the promotion of Hd3a and RFT1 by Hd1 and 
Edh1 (Doi et al., 2004; Zhang et al., 2015). Under LD condi-
tions, genetic and protein–protein interactions between Hd1 
and the LD flowering regulators Ghd7, Ghd8, and PSEUDO-
RESPONSE REGULATOR 37 (OsPRR37) inhibit Hd3a and 
RFT1 expression (Goretti et al., 2017; Cai et al., 2019; Zhang 
et al., 2019; Zong et al., 2021; Sun et al., 2022). The conversion 
of Hd1 from an activator of flowering under SD conditions to 
a repressor of flowering under LD conditions is dependent on 
PHYTOCHROME B (OsPHYB) (Izawa et al., 2002) and on 
the interacting partners Ghd7 and Ghd8 (Nemoto et al., 2016; 
Du et al., 2017; Goretti et al., 2017; Zhang et al., 2017; Zong 
et al., 2021). Hd1 can form a complex with Ghd8 to silence 
Hd3a expression (Du et al., 2017; Goretti et al., 2017). In addi-
tion, Hd1 negatively regulates Ehd1 expression by forming a 
complex with Ghd7, or with both Ghd7 and Ghd8 (Nemoto 
et al., 2016; Zhang et al., 2017; Zong et al., 2021). OsPRR37 
also plays a key role in the control of photoperiodic flow-
ering, as under long days, it down-regulates Ehd1 expression, 
acting downstream of OsPHYB or via interaction with Ghd8 
(Gao et al., 2014; Goretti et al., 2017). OsMADS50 is an LD 
flowering promoter, acting upstream of Ehd1 (Komiya et al., 
2009; Ryu et al., 2009). As a result, flowering under long days is 
delayed compared with short days, and is exclusively promoted 
by RFT1 (Komiya et al., 2009; Giaume et al., 2023).

Rice is a tropical plant and therefore does not need to ex-
perience a period of cold to start its reproductive phase. In 
contrast, in plants that are vernalization sensitive, such as winter 
accessions of barley and wheat, photoperiod-induced flowering 
is initiated only if a vernalization requirement is satisfied (re-
cently reviewed in Dixon et al., 2022). The crosstalk between 
the photoperiod (PPD) and vernalization (VRN) pathways 
happens at the VERNALIZATION 1 (VRN1) and VRN2 
levels (Yan et al., 2004; Turner et al., 2013; Deng et al., 2015). 
Before vernalization, VRN2 inhibits FT1 expression (Mulki 
and von Korff, 2016). After the vernalization requirement is sat-
isfied, VRN1 expression levels increase. VRN1 promotes FT1 
by directly binding to the FT1 promoter (Deng et al., 2015) 
and by lifting VRN2-mediated repression (Yan et al., 2004). 
In both cereals, long days induce the expression of the photo-
period gene PPD1, a PSEUDO-RESPONSE REGULATOR 
(PRR) gene that controls the expression of FT1 (Turner et al., 
2005; Kitagawa et al., 2012; Shaw et al., 2013). Taken together, 
the molecular networks that control FT expression are con-
served between plant species; however, differences may occur 
depending on the plant’s growth habit (Fig. 1). These subtle but 
important differences ensure that FT expression and function 
are tightly regulated to integrate environmental signals. This, 
in turn, safeguards proper developmental timing or flowering 
induction tailored to the surroundings of the plant.

FT is a mobile signal that moves from the 
leaves to the shoot apical meristem

FT is a member of the PHOSPHATIDYLETHANOLAMINE 
BINDING PROTEIN (PEBP) family, whose members are 
known to be regulators of phase transitioning, such as flow-
ering initiation (Khosa et al., 2021). The identification of 
FT protein as the florigen (Corbesier et al., 2007) happened 
relatively recently, considering that the idea of a mobile 
 flowering-inducing signal was first postulated in the 1930s 
(Knott, 1934; Chailakhyan, 1936; reviewed in Zeevaart, 2008). 
The mobility of FT from leaf to the SAM forms an integral 
part of its function. Under inductive conditions, FT is expressed 
in the leaf phloem companion cells (Takada and Goto, 2003; 
Chen et al., 2018). FT protein is then loaded into the sieve 
elements (Mathieu et al., 2007) and translocated via the bulk 
flow to the SAM, where it induces flowering (Corbesier et al., 
2007). The long-range movement of FT is not restricted to 
FT protein, as FT mRNA is also capable of moving through 
the plant via long-distance transport (Corbesier et al., 2007; Li 
et al., 2009, 2011; Lu et al., 2012), although its functional rele-
vance is still largely uncharacterized (reviewed in Jackson and 
Hong, 2012; Yu et al., 2022). FT’s mobility depends on both 
long-distance transport via the phloem and short-distance cell-
to-cell transport at the site of synthesis and action, that is, at 
the leaf phloem companion cells and within the SAM, respec-
tively. Aside from FT, other PEBP members are also capable 
of moving through the plant. In the model plant Arabidopsis, 
for example, TERMINAL FLOWER 1 (TFL1) moves within 
the meristem to control meristem development (Conti and 
Bradley, 2007; Goretti et al., 2020) and in the developing seeds, 
where it regulates seed size (B. Zhang et al., 2020). These obser-
vations suggest that cell-to-cell transport is an integral part of 
PEBP function.

There are two main described mechanisms that are involved 
in FT transport. One mechanism is via FT interaction with 
the multiple C2 domain and transmembrane region protein 
(MCTP) proteins. In Arabidopsis, three MCTP transporters of 
FT have been identified: FT-INTERACTING PROTEIN 1 
(FTIP1) (Liu et al., 2012), QUIRKY (QKY) (Liu et al., 2019), 
and MCTP6 (Liu et al., 2018). Plants lacking the function of 
any of these MCTPs exhibit a late flowering phenotype, con-
sistent with the proposed lack of FT transport (Liu et al., 2012, 
2018, 2019). A second mechanism through which FT transport 
is mediated is via the direct interaction of FT with the cel-
lular membranes. Interestingly, transport of FT from the com-
panion cells to the sieve elements is a temperature-regulated 
process (Liu et al., 2020; Susila et al., 2021). At lower tempera-
tures, when FT expression is reduced (Blázquez et al., 2003), 
FT protein is sequestered at the level of the membranes via 
interaction with the phospholipid phosphatidylglycerol (Susila 
et al., 2021). Since the association of FT with the cellular mem-
branes is temperature dependent (Susila et al., 2021), this envi-
ronmental factor can, in addition to regulating FT expression, 
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also impact on FT transport directly. Together, this constitutes 
another layer of control over the flowering time transition. 
Within the phloem, FT is actively transported (Endo et al., 
2018) by interacting with the heavy metal binding protein 
SODIUM POTASSIUM ROOT DEFECTIVE 1 (NaKR1) 
(Zhu et al., 2016). The unloading of FT from the phloem sap to 
the provascular tissue underneath the SAM is still uncharacter-
ized, although some key residues in the FT protein have been 
suggested to be involved in this process (Endo et al., 2018). 
The bulk flow within the phloem is non-selective and, as such, 
the gating mechanism that controls FT mobility occurs at its 

on- and off-loading from the phloem and within cell-to-cell 
transport through plasmodesmata. Therefore, understanding 
the mechanisms of this transport are of key interest to gain 
deeper insights into the control of FT and, thereby, flowering 
induction.

The florigen activation complex

Once imported into the cells of the SAM, FT acts as a tran-
scriptional cofactor. First, it contacts 14-3-3 proteins in the 

Fig. 1. The final trigger that promotes floral transition is conveyed by FT and its orthologues in Arabidopsis (A), tomato (B), potato (C), rice (D), and wheat 
(E). Upon perception of different environmental (e.g. cold and/or photoperiod) and internal (e.g. age) stimuli, FT is produced in the leaves and travels to 
the shoot apical meristem, where it forms a complex with FD and 14-3-3 proteins to regulate the transcription of floral meristem identity genes such 
as AP1/FUL MADS-box genes. AP1, APETALA 1; CO, CONSTANS; Ehd1, Early heading date 1; FA, FALSIFLORA; FDL, FD-like; FLC, FLOWERING 
LOCUS C; FD, FLOWERING LOCUS D; FT, FLOWERING LOCUS T; FUL, FRUITFULL; GI, GIGANTEA; Ghd7, Grain number, plant height and heading 
date 7; Hd1, Heading date 1; Hd3a, Heading date 3a; LD, long days; MC, MACROCALYX; OsPHYB, RICE PHYTOCHROME B; PPD1, PHOTOPERIOD 
1; OsPRR37, PSEUDO-RESPONSE REGULATOR 37; RFT1, RICE FLOWERING LOCUS T-1; SPGB, SELF-PRUNING G-BOX; SFT, SINGLE FLOWER 
TRUSS; VRN1, VERNALIZATION 1; VRN2, VERNALIZATION 2.
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cytosol, forming a complex, which is then transported into 
the nucleus (Taoka et al., 2011; Li et al., 2015). Here, FT inter-
acts with the A-class bZIP transcription factor FLOWERING 
LOCUS D (FD), with the 14-3-3 proteins bridging and rein-
forcing this interaction. Collectively, the formed heterohexa-
meric complex is called the florigen activation complex (FAC) 
(Taoka et al., 2011). Within the FAC, the transcription factor 
FD binds to the DNA to induce the expression of floral iden-
tity genes, including APETALA1/FRUITFULL (AP1/FUL) 
MADS-box genes (Abe et al., 2005; Wigge et al., 2005; Komiya 
et al., 2008; Li and Dubcovsky, 2008; Digel et al., 2015; Gao 
et al., 2018; K. Li et al., 2021; Jiang et al., 2022). The interaction 
between FT-like proteins and FD is highly conserved across 
angiosperms (Pnueli et al., 2001; Li et al., 2015; Leeggangers 
et al., 2018; Cerise et al., 2020; Moraes et al., 2022).

Taken together, FT is a key integration factor that moves, 
after its production in the leaf, to the SAM, where it forms an 
FAC to induce flowering. As such, FT is a mobile protein that 
connects signals perceived in the leaves to induce a transition 
in the meristem.

Balancing florigens with anti-florigens to 
control the timing of development

Three phylogenetic clades can be identified in the PEBP 
gene family: FT-like, TFL1-like, and MOTHER OF FT AND 
TFL1 (MFT)-like. Interestingly, besides FT, other members of 
the family are involved in the regulation of flowering time. In 
Arabidopsis, the FT-like gene TWIN SISTER OF FT (TSF) 
is partially redundant with FT, and promotes flowering under 
non-inductive conditions (Yamaguchi et al., 2005). TFL1, the 
founding member of the TFL1-like clade, has an opposite ef-
fect on flowering time, maintaining the SAM in a vegetative 
state instead of initiating floral transition (Conti and Bradley, 
2007). In contrast to FT, only short-range movement has been 
reported for TFL1, which is constitutively expressed in the 
central region of the SAM and translocated to the outer epi-
dermal layer L1 (Conti and Bradley, 2007; Goretti et al., 2020). 
Nevertheless, the creation of a transcriptional complex with 
FD-like and 14-3-3 proteins is a shared mechanism between 
FT/FT-like and TFL1/TFL1-like proteins (Kaneko-Suzuki 
et al., 2018). Most importantly, the ability to interact with 
common partners lies at the core of the reported antagonism 
between the two clades (Kaneko-Suzuki et al., 2018; Collani 
et al., 2019; Zhu et al., 2020). Within the FAC, TFL1 competes 
with FT for binding to FD, in both the active phosphory-
lated state and the inactive unphosphorylated state, and thereby 
prevents flowering induction (Taoka et al., 2011; Kawamoto 
et al., 2015; Collani et al., 2019). Moreover, TFL1 in complex 
with FD acts as a direct transcriptional repressor of floral mer-
istem identity genes or flowering time genes, some of which 
are targets of FT, for example, the pioneer transcription factor 
LEAFY (LFY) (Hanano and Goto, 2011; Zhu et al., 2020). The 

model of competition between FT and TFL for FD interac-
tion is conserved in several plant species, including dicots and 
monocots (Kaneko-Suzuki et al., 2018). In rice, for example, 
the antiflorigen RICE CENTRORADIALIS 3 (RCN3) 
is able to form a florigen repression complex (FRC) with 
the 14-3-3 protein Gf14b and the FD homologue OsFD1 
(Kaneko-Suzuki et al., 2018).

Although direct competition for FAC/FRC formation has 
been directly confirmed only in Arabidopsis and rice (Kaneko-
Suzuki et al., 2018; Collani et al., 2019; Zhu et al., 2020), it is 
known in other species that the balance between FT-like and 
TFL1-like genes plays a critical role in the regulation of phase 
transition and developmental processes. In tomato, the FT-like 
gene SINGLE FLOWER TRUSS (SFT) and the TFL1-like 
gene SELF PRUNING (SP) are known to have contrasting 
effects on the regulation of termination of sympodial growth 
(Pnueli et al., 1998; Lifschitz and Eshed, 2006; Lifschitz et al., 
2006) (Fig. 2E). The relative abundance (dosage) of SFT, SP, 
and other PEBPs is critical in the regulation of both flowering 
time and overall shoot architecture (Lifschitz and Eshed, 2006; 
Krieger et al., 2010; Park et al., 2012; Jiang et al., 2013; Cao 
et al., 2016; Soyk et al., 2017; Gaarslev et al., 2021). Together, 
SFT and SP control the rate at which meristems develop and 
acquire a new identity (Park et al., 2012). Such a role for the 
PEBPs has also been observed in other crops. For example, the 
barley TFL1-like gene CENTRORADIALIS (HvCEN) influ-
ences the number of grains per spike by regulating the speed 
of inflorescence development (Bi et al., 2019). In particular, 
HvCEN can promote both spikelet initiation, by interacting 
with the FT-like gene HvFT3, and subsequent floret develop-
ment, by interacting with HvFT1 (Bi et al., 2019). Overall, it 
seems that PEBPs affect phase transitions and associated archi-
tectural changes by finely tuning the timing of each phase via 
a dosage-dependent mechanism.

Diversification of the PEBP family 
members and their impact on plant 
architecture

In the Poaceae (Chardon and Damerval, 2005; Dong et al., 2020; 
Bennett and Dixon, 2021) and Solanaceae (Zhang et al., 2022; 
Y. Sun et al., 2023), there has been a notable expansion of the 
PEBP gene family, both via whole-genome duplication and 
through segmental or tandem duplications, coupled with neo- 
or subfunctionalization of the different members (Bennett and 
Dixon, 2021). A nice example is provided by the rice FT-like 
genes Hd3a and RFT1, which arose from a recent tandem 
duplication followed by subfunctionalization (Chardon and 
Damerval, 2005). Hd3a is the main florigen under SD condi-
tions, whereas under LD conditions the role is fulfilled by RFT1 
(Tamaki et al., 2007; Komiya et al., 2008, 2009). Although there 
is still little known about the exact functions of all the different 
homologues that are derived from the duplication events and 
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Fig. 2. Effect of FT–TFL balance on flowering time, plant architecture, and inflorescence architecture. The balance between FT and TFL has an effect on 
the plant phenotype; an overview of the phenotype of plants with high TFL or low FT (left column), and high FT or low TFL (right column), is shown. The 
phenotype of the wild type (WT) is represented in the central column. (A) In rice, hd3a rft1 mutants are unable to flower under inductive and non-inductive 
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are still present in the various plant genomes, it is likely that 
they are important for the fine-tuning of both flowering time 
and plant architecture.

There is an increasing amount of evidence that PEBPs are 
more than just floral integrators. In recent years, PEBP family 
members have been linked with different biological processes, 
such as the regulation of plant height, tiller number, and inflo-
rescence architecture (Zhang et al., 2005; Conti and Bradley, 
2007; Bi et al., 2019; Shaw et al., 2019; Zhu et al., 2021; Giaume 
et al., 2023), storage organ formation (Navarro et al., 2011; 
X. Zhang et al., 2020; Jing et al., 2023; recently reviewed in 
Khosa et al., 2021; Susila and Purwestri, 2023), and seed germi-
nation and dormancy (Xi et al., 2010; Nakamura et al., 2011; S. 
Liu et al., 2013) (Fig. 2). For example, FT2 in barley and wheat, 
and its orthologue in rice, OsFT-L1, have only a minor role in 
the regulation of flowering time, and are mainly involved in 
the determination of inflorescence architecture (Shaw et al., 
2019; Gauley and Boden, 2021; Giaume et al., 2023). Mutants 
in wheat FT2 show a slight delay in heading date, coupled with 
an increase in spikelet number, suggesting that progression to 
the terminal spikelet stage is slowed in ft2 mutants (Shaw et al., 
2019; Gauley and Boden, 2021). Similarly, RCN4 in rice is also 
involved in the regulation of panicle architecture (Zhu et al., 
2021). Tiller and spikelet numbers are reduced in knockout 
lines for the TFL1 orthologues in barley (hvcen; Bi et al., 2019) 
and wheat (tatfl1-5; J. Sun et al., 2023).

In tuberous crops, PEBPs are involved in the regulation of 
both flowering and tuber formation. In potato, tuberization 
is initiated under SD conditions, when the expression of the 
tuberigen SELF-PRUNING 6A (StSP6A) is induced in the 
leaves (Navarro et al., 2011). In a similar fashion to that re-
ported for florigens, StSP6A is transported from the leaves. 
Ultimately, it promotes StMADS1 and StMADS13 expres-
sion in the stolons, resulting in tuberization (Navarro et al., 
2011; Gao et al., 2018). Transcriptional regulation by StSP6A 
is achieved via the creation of a tuberigen activation complex 
(TAC) with FD-like proteins and 14-3-3 proteins (Teo et al., 
2017). Interestingly, StSP6A affects tuber formation and floral 

bud development in opposite ways (Plantenga et al., 2019). 
The TFL1/CEN orthologue StCEN inhibits tuber initia-
tion and development by directly competing with StSP6A for 
the formation of a tuberigen complex (X. Zhang et al., 2020), 
analogous to the competition reported for FT-like and TFL1-
like proteins in the regulation of floral transition in rice and 
Arabidopsis (Kaneko-Suzuki et al., 2018; Collani et al., 2019; 
Zhu et al., 2020). It has recently been shown that the florigens 
StSP3D and FT-like 1 (StFTL1) can induce tuber formation in 
a photoperiod-dependent manner, promoting StMADS1 and 
StMADS13 expression and subsequently reinforcing StSP6A 
expression in the developing tubers (Jing et al., 2023). Taken 
together, these findings indicate that PEBP proteins not only 
modulate flowering time but also have an impact on storage 
organ formation and plant architecture.

Regulation of flowering time by members 
of the TCP gene family

TCP genes belong to a plant-specific family of tran-
scription factors named after the founding members 
TEOSINTE BRANCHED 1 (TB1) in maize (Zea mays), 
CYCLOIDEA (CYC) in snapdragon (Antirrhinum majus), 
and PROLIFERATING CELL NUCLEAR ANTIGEN 
FACTORS 1 and 2 (PCF1 and PCF2) in rice (Cubas et al., 
1999). ZmTB1 regulates branching by inhibiting axillary bud 
outgrowth, and as such has been critical for maize domestica-
tion from the ancestor teosinte (Doebley et al., 1995, 1997). 
AmCYC is implicated in the determination of the dorsoventral 
asymmetry characteristics of snapdragon flowers (Luo et al., 
1996). OsPCF1 and OsPCF2 homo- and heterodimerize to 
bind to cis-elements in the promoter of the cell cycle regulator 
PROLIFERATING CELL NUCLEAR ANTIGEN (PCNA), 
driving its expression in the meristem (Kosugi and Ohashi, 
1997). Such a diversity in the functions of the founding mem-
bers of the TCP family mirrors the functional diversity that can 
be found throughout the entire family. Based on phylogenetic 

conditions (Giaume et al., 2023). Panicles of plants overexpressing RCN4 are shorter than those of the WT and highly branched (Zhu et al., 2020). The 
quadruple knockdown of RCN1/2/3/4 presents a mild early-flowering phenotype, coupled with a strong panicle phenotype, with a reduced number of 
branches and grains (C. Liu et al., 2013). (B) Wheat ft-b1 mutants present a strong late-flowering phenotype and paired spikelets (Boden et al., 2015). 
tfl1-5 plants flower earlier compared with the WT, and present a lower number of tillers. The number of grains per spike is also reduced (J. Sun et al., 
2023). (C) In barley, hvcen mutants are early flowering and have a lower number of tillers; plant height and spike length is reduced (Bi et al., 2019). No 
data are available on the phenotype of hvft1 knockout mutants. (D) When both FT and TSF are mutated (ft tsf), Arabidopsis plants flower later than the 
WT. Knocking out TFL1 results in an early-flowering plant with an inflorescence that terminates in a terminal flower (Conti and Bradley, 2007), hence the 
name. (E) Plant architecture and inflorescence architecture are modified in the tomato sft mutant (Molinero-Rosales et al., 2004). After the transition of 
the apex from vegetative to reproductive, also in this case earlier than in the WT, the newly formed transition meristem retrogresses to a vegetative state 
after forming one or two single flowers. Sympodial units are then formed from the repetitive cycles of floral transition and return to a vegetative state. 
Inflorescence architecture is not altered in sp mutants, whereas changes in the sympodial growth patterns are observed. The main apex transitions earlier 
and the growth terminates after three sympodial units (Pnueli et al., 1998). (F) In potato, knockdown of the FT-like gene StSP3D causes a late-flowering 
phenotype under long days, but no effect on tuber formation under short days (Navarro et al., 2011). A reduced level of StCEN expression leads to 
an early-flowering phenotype under long days and increased tuberization under short days (X. Zhang et al., 2020). CEN, CENTRORADIALIS; EF, early 
flowering; FT, FLOWERING LOCUS T; Hd3a, Heading date 3a; LF, late flowering; LD, long-day conditions; NF, not flowering; OE, overexpressing; RCN, 
RICE CENTRORADIALIS; RNAi, RNA interference; RFT1, RICE FLOWERING LOCUS T-1; SD, short-day conditions; SP, SELF PRUNING; SFT, SINGLE 
FLOWER TRUSS; TFL, TERMINAL FLOWER; TFL1, TERMINAL FLOWER 1; TSF, TWIN SISTER OF FT.
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studies, the TCPs can be classified into two groups, class 
I and class II (Cubas et al., 1999). Members in class II can 
be additionally grouped into two distinct clades, namely the 
CINCINNATA (CIN) clade and the CYC/TB1 clade (Nath 
et al., 2003; Howarth and Donoghue, 2006). TCP proteins are 
implicated in the regulation of several biological processes, 
mainly by tuning cell proliferation and growth. Several reviews 
have been published on this topic over the years (Rath et al., 
2022; Zhou et al., 2022; Viola and Gonzalez, 2023; Viola et al., 
2023). Initially, the ability to directly control the transcrip-
tion of cell-cycle regulators (Manassero et al., 2013; Nicolas 
and Cubas, 2016a) was thought to be shared among all mem-
bers of the TCP family (Cubas et al., 1999). However, it seems 
more and more likely that TCPs act on plant growth and ar-
chitecture, conveyed via both direct and indirect regulation of 
cell-proliferation genes (Efroni et al., 2008; Danisman et al., 
2012). In addition, TCPs are implicated in different hormonal 
signalling pathways (Nicolas and Cubas, 2016a). TCPs have 
also been shown to be involved in developmental processes 
such as flowering time, whole-plant and inflorescence archi-
tecture (Ramsay et al., 2011; Bai et al., 2012; S. Wang et al., 
2015; Nicolas and Cubas, 2016b; Dixon et al., 2018; de Souza 
Moraes et al., 2022), and fertility (Jin et al., 2011; Jiao et al., 
2018; Gladman et al., 2019; de Souza Moraes et al., 2022). TCP 
members are additionally engaged in drought tolerance (Ding 
et al., 2019; Urano et al., 2022; Gull et al., 2023; Jiao et al., 2023) 
and plant defence (Kim et al., 2014; X. Wang et al., 2015; Bao 
et al., 2019; Wang et al., 2019).

The interaction between PEBP proteins and TCP family 
members has been reported in multiple species and is thought 
to contribute to the regulation of flowering time and whole-
plant or inflorescence architecture. A first example of such 
an interaction has been characterized in apple (Malus domes-
tica), where MdTCP4a and MdTCP2a, respectively ortho-
logues of the miR319-regulated class II CIN TCPs AtTCP4 
and AtTCP2, have been identified as potential interactors of 
MdFT (Mimida et al., 2011). The interaction between TCPs 
and PEBPs has been studied in detail in Arabidopsis. Here, the 
class II CYC-TB1 member BRANCHED 1 (BRC1), homol-
ogous to the founding member TB1, is able to interact with FT 
and TWIN SISTER OF FT (TSF) to control the flowering of 
axillary branches (Niwa et al., 2013). The ability of FT to in-
teract with TCPs is extended to several members of both class 
I and class II TCPs (Ho and Weigel, 2014). Moreover, the spec-
ificity reported for BRC1 binding of FT but not TFL1 seems 
to be shared by other class I and class II members, thereby sug-
gesting that some of the key residues identified as markers for 
an FT or TFL1-like activity may be involved in the creation 
of such an interaction (Ho and Weigel, 2014). The interaction 
of BRC1 with FT and TSF might explain the early-flowering 
phenotype in brc1 mutants (Niwa et al., 2013), in which the 
florigens are not titrated by interaction with BRC1. This effect 
is not unique to Arabidopsis; for example, in rye (Secale cereale) 
ScTCP9 can interact with ScFT and potentially regulate 

flowering time by disturbing the formation of the FAC (Zhan 
et al., 2023). Similarly, in Brassica juncea, the interaction between 
BjuBRC1-1 and BjuFT is suggested to be important for the 
negative regulation of flowering time (Feng et al., 2022). In hy-
brid aspen (Populus tremula × tremuloides), the TB1 orthologue 
BRC1 is a key regulator of seasonal growth, being able to bind 
and sequester the FT-like protein FT2, thus promoting growth 
cessation under non-inductive conditions (Maurya et al., 2020). 
In Arabidopsis, BRC1 interacts with both FD and FT (Niwa 
et al., 2013; Ho and Weigel, 2014; Li et al., 2019). Similarly, the 
class II CIN TCPs AtTCP5, AtTCP13, and AtTCP17 are able 
to interact at the protein level with FD, and can act by facilitat-
ing the binding of FD to target loci (Li et al., 2019).

The above examples are focused on the interaction of 
TCPs with the FAC components FT and FD. However, TCPs 
are involved in the regulation of flowering time at different 
levels (recently reviewed in Viola and Gonzalez, 2023). In 
Arabidopsis, AtTCP20 and AtTCP22 can influence flowering 
time by directly regulating the expression of the clock com-
ponent CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), 
in a LIGHT-REGULATED WDs (LWDs)-dependent mech-
anism (Wu et al., 2016) or by forming photobodies with 
CRYPTOCHROME 2 (CRY2) upon blue light exposure 
(Mo et al., 2022). In the same model organism, CONSTANS 
(CO) expression is under the control of miR319-regulated 
class II CIN TCPs (Kubota et al., 2017; Liu et al., 2017). In 
particular, AtTCP4 is able to promote CO expression in a 
GIGANTEA (GI)-dependent and -independent way, interact-
ing with either GI (Kubota et al., 2017) or the flowering regu-
lators FLOWERING BHLH (FBHs) and PHYTOCHROME 
AND FLOWERING TIME 1 (PFT1) (Liu et al., 2017). 
Downstream in this pathway, TCPs can regulate flowering by 
acting at the level of the flowering integrators SUPPRESSOR 
OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and 
FT (Balsemão-Pires et al., 2013; Lucero et al., 2017; X. Li et al., 
2021; Camoirano et al., 2023). Conversely to what has been 
reported in Arabidopsis, the TCP4 orthologue in tomato, 
LANCEOLATE (LA), has a negative effect on flowering via 
direct or indirect repression of the FT-like gene SFT and the 
MADS-box gene APETALA1/MACROCALYX (AP1/MC) 
(Silva et al., 2019). This exemplifies that subtle yet important 
mechanistic differences may occur between species. Taken to-
gether, TCP proteins modulate flowering time through inter-
acting with components of the FAC, but also through direct 
control of key flowering time-related genes.

TCP and PEBP interaction and plant 
architecture: a spotlight on TB1 
orthologues

One of the most well-known members of the TCP transcrip-
tion factor family is TB1 (Doebley et al., 1995). Originally, 
TB1 was identified as the key domestication-related gene in 
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A

B

Fig. 3. Low or high TB1 dosage strongly affects plant architecture. (A) In barley, int-c.5 mutants carry a frameshift mutation in HvTB1 (Ramsay et al., 
2011). int-c.5 mutants in a Bowman background present a high tillering phenotype during early development (Ramsay et al., 2011; Liller et al., 2015). 
Spikes of the int-c.5 mutant have an intermediate phenotype, with partial development of the lateral spikelets. In Arabidopsis, the brc1 mutant has a 
similar branched shoot phenotype, caused by axillary bud outgrowth (Aguilar-Martínez et al., 2007). Potato BRC1b RNAi plants also show outgrowth 
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maize, where the insertion of a transposable element called 
HOPSCOTCH resulted in an increased dosage of ZmTB1. In 
turn, the increased ZmTB1 level caused a complete suppression 
of axillary branching. Since its original discovery, orthologues 
of TB1 have been identified as major players that control plant 
architecture and yield in various crops (Fig. 3), including rice, 
barley, and wheat (Doebley et al., 1997; Takeda et al., 2003; 
Ramsay et al., 2011; Dixon et al., 2018). The core function of 
these orthologues, as negative regulators of bud outgrowth, is 
conserved in angiosperms. In cereals, they are also known to 
modulate inflorescence architecture. Barley plants that carry 
a loss-of-function allele of the TB1 orthologue vulgare row-
type spike (VRS) 5, for example, exhibit increased development 
of lateral florets, and an increased tiller number early in de-
velopment (Ramsay et al., 2011; Liller et al., 2015) (Fig. 3A, 
top panel). Recent comparative network analysis of AtBRC1 
and ZmTB1 suggested that both genes control abscisic acid 
(ABA) hormone signalling. In the model plant Arabidopsis, 
BRC1 binds directly to the promoter of homeodomain leu-
cine zipper (HD-ZIP) transcription factors. This results in the 
initiation of ABA signalling and the suppression of bud out-
growth (González-Grandío et al., 2017; van Es et al., 2024). The 
activation of HD-ZIP family members by TB1 is conserved in 
maize. Here, ZmTB1 targets the HD-ZIP transcription factor 
ZmGRASSY TILLERS (ZmGT1) in addition to ABA signal-
ling components (Whipple et al., 2011; Dong et al., 2019). This 
suggests that this core regulatory control on shoot branching 
is evolutionarily ancient, predating the separation of monocots 
and dicots (van Es et al., 2024).

Similarly, the interaction between homologues of FT and 
TB1 is highly conserved across the plant kingdom (Niwa et al., 
2013; Dixon et al., 2018), and provides an initial and direct link 
between flowering time and genes that control plant architec-
ture. This interaction, however, does not always have an impact 
on flowering time as is the case in BRC1–FT1 interaction. In 
wheat, for example, the TB1 D-homeologue  (TB-D1) interacts 
with FT1, preventing the formation of an FAC with 14-3-3 
proteins and other FD-like proteins (Dixon et al., 2018). As a 
consequence, an increased dosage of TB-D1, as is observed in 
the highly-branched (hb) mutants, results in a slight delay of the 
early phases of inflorescence development. This ultimately leads 
to the production of paired spikelets (Fig. 3B), a phenotype also 
observed in ft-b1 mutants (Boden et al., 2015). Nonetheless, no 
effect on flowering time has been reported in wheat hb lines 
that have an increased dosage of TB-D1 (Dixon et al., 2018). 
In potato, tuberization is controlled by the FT-like StSP6A 
gene, and the StSP6A protein interacts directly with the TCP 
StBRC1b (Nicolas et al., 2022). StSP6A is expressed under 

SD conditions (Susila and Purwestri, 2023), whereas under 
LD conditions, StSP6A is suppressed by a CONSTANS-LIKE 
transcription factor (StCOL1), which acts through the acti-
vation of StSP5G, another PEBP family member (Abelenda 
et al., 2016). In the absence of StSP5G, StSP6A is expressed in 
the leaf tissue and transported to the stolon, where it forms an 
activation complex that induces tuberization below ground. 
Tuberization above ground is prevented as StSP6A protein is 
bound, and antagonized, by StBRC1b (Nicolas et al., 2022). In 
the absence of a functional StBRC1b, the axillary buds in the 
aerial parts of the plant become strong sinks, competing for 
resources with the tubers below ground (Nicolas et al., 2022). 
This leads to an accumulation of photoassimilates in the aerial 
buds that normally would have been transported to the tubers 
(Nicolas et al., 2022). As a consequence, ectopic aerial tubers 
are formed in brc1b mutants, at the cost of underground tuber-
ization. This mechanism exemplifies that TCPs, in this case 
StBRC1b, can act as gatekeepers of the source/sink balance, 
potentially in an interplay with PEBP family members (Susila 
and Purwestri, 2023). In conclusion, TB1-like TCP transcrip-
tion factors form a conserved central hub that controls plant 
architecture and development, potentially through modulation 
of the source/sink balance and interaction with PEBP family 
members.

Conclusions and perspectives

Flowering time is tightly regulated by the interplay of FT and 
TFL1, which form a complex with the transcription factor 
FD. Recent research indicates that FT/TFL-like proteins also 
interact with TCP transcription factors, which are key regula-
tors of plant architecture. Although the genetic and molecular 
interactions behind the interplay between PEBPs and TCPs 
seem to be conserved in crops, the roles of most of the mem-
bers of the expanded gene families are still unknown. Similarly, 
a more in-depth knowledge of how different members of the 
same family interact with each other both genetically and 
physically is required. Additionally, little is known about the 
importance of the relative dosage among different orthologues, 
and how this impacts on the regulation of plant architecture 
and life cycle and, as a consequence, yield. With regard to this 
last point, a shift toward quantitative assays is required in order 
to better evaluate the possible competition that can occur and 
regulate the formation of the various complexes.

To conclude, in this review we have highlighted the inter-
twined role of PEBPs and TCPs in the regulation of flow-
ering time and plant architecture. Both traits are critical in 

of axillary buds, in this case accompanied by aerial tuber formation (Nicolas et al., 2022). (B) The wheat hb mutant has been selected from a MAGIC 
population, following the paired spikelet phenotype in the spikes. This phenotype results from an increased dosage of TB-D1 in the line due to tetrasomy 
of chromosome 4D. hb plants also present a lower tiller number compared with the wild-type (Dixon et al., 2018). BRC1, BRANCHED 1; hb, highly-
branched; int-c, Intermedium-c; TB1, TEOSINTE BRANCHED 1.
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determining the final yield, and it is therefore important to 
understand how this interplay takes place in crops.
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