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Microbial cell factories allow the production of chemicals presenting an alternative to traditional fossil fuel-

dependent production. However, finding the optimal expression of production pathway genes is crucial for 
the development of efficient production strains. Unlike sequential experimentation, combinatorial optimization 
captures the relationships between pathway genes and production, albeit at the cost of conducting multiple 
experiments. Fractional factorial designs followed by linear modeling and statistical analysis reduce the 
experimental workload while maximizing the information gained during experimentation. Although tools to 
perform and analyze these designs are available, guidelines for selecting appropriate factorial designs for 
pathway optimization are missing. In this study, we leverage a kinetic model of a seven-genes pathway to 
simulate the performance of a full factorial strain library. We compare this approach to resolution V, IV, III, 
and Plackett Burman (PB) designs. Additionally, we evaluate the performance of these designs as training sets 
for a random forest algorithm aimed at identifying best-producing strains. Evaluating the robustness of these 
designs to noise and missing data, traits inherent to biological datasets, we find that while resolution V designs 
capture most information present in full factorial data, they necessitate the construction of a large number 
of strains. On the other hand, resolution III and PB designs fall short in identifying optimal strains and miss 
relevant information. Besides, given the small number of experiments required for the optimization of a pathway 
with seven genes, linear models outperform random forest. Consequently, we propose the use of resolution IV 
designs followed by linear modeling in Design-Build-Test-Learn (DBTL) cycles targeting the screening of multiple 
factors. These designs enable the identification of optimal strains and provide valuable guidance for subsequent 
optimization cycles.
1. Introduction

Industrial biotechnology uses microbial cell factories for sustainable 
chemical production often through the expression of heterologous path-

ways in a microbial host. However, a common challenge when intro-

ducing a pathway in a microorganism is to find the optimal expression 
level of each of the introduced genes [1–3]. This question can be an-

swered using sequential or combinatorial experimentation, depending 
on whether the expression of the genes is optimized individually or si-
multaneously. When combinatorial optimization is used, the likelihood 
of finding the optimal expression levels increases [4,5]. For example, if 
the abundance of protein A is limiting the pathway, the expression of 
other pathway genes will not affect production as long as the expres-

sion of A is low. However, when the expression of gene A increases, 
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changes in the expression of other pathways genes will likely affect 
production. Combinatorial pathway optimization captures these inter-

actions between the pathway genes and can better guide the pathway 
optimization process.

Combinatorial optimization requires the construction of numerous 
strains. When optimizing a pathway with three genes and two expres-

sion levels, constructing eight (23) strains is needed to test all the 
combinations of genes and levels (full factorial design). The number 
of strains to construct increases exponentially with the number of genes 
to optimize. If the number of genes increases to seven, the number of 
strains increases to 128 (27). Moreover, the number of strains to build 
increases even faster when more than two expression levels are tested: 
27 (33) strains for three genes with three expression levels and 2187 
(37) for seven genes with three expression levels. Even with efficient 
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and automated strain construction and characterization pipelines, re-

ducing the number of strains to build and test while maintaining the 
ability to discern the relative importance of the pathway genes and the 
presence of interactions is desired [4,5].

Statistical design of experiments (DoE) is a technique to minimize 
the experimental effort while maximizing the information gained over 
the studied system [6]. This method can be easily incorporated in 
the Design-Build-Test-Learn (DBTL) cycles commonly used in industrial 
biotechnology [1,2]. In the first cycle, factors, levels, and the desired 
response are defined. For example, a factor is each of the genes whose 
expression will be optimized, and a level is each of the expression 
strengths that will be tested. In turn, the response might be the final 
concentration of the target metabolite. The number of experiments to 
perform is equivalent to the number of strains to build and test. This 
number increases faster with the number of levels than the number of 
factors. Therefore, DoE often starts studying two levels per factor. In 
this way, more factors can be screened, important factors are identi-

fied, and the fine-tuning of factor levels is targeted only to the relevant 
factors in subsequent DBTL cycles. The information gained during ex-

perimentation is stored in a polynomial model. The model coefficients 
are fit so the response is a function of each of the factors and their 
interactions. In this model, the main effects are the coefficients that ex-

plain how the response is affected by changing each individual factor 
(gene). Similarly, two-factor interactions are coefficients that explain 
how the response changes simultaneously considering the levels of two 
factors (genes). Then, an analysis of variance (ANOVA) is used to quan-

tify whether each model parameter significantly influences the response 
[6,5]. The extent to which a significant factor influences the response is 
determined by the absolute value of its main effect. The sign of the coef-

ficient indicates whether the factor has a positive or negative impact on 
the response. When two or multiple factor interactions are significant, 
the effect of a factor is also influenced by the interaction coefficients.

Factorial designs are used to efficiently sample the design space de-

termined by the factors and levels and are useful for screening in initial 
DBTL cycles. Different factorial designs exist depending on the num-

ber of experiments to perform and the aliasing structure. Aliasing or 
confounding referees to model coefficients that are indistinguishable 
from each other. A design with a higher resolution requires the ex-

ecution of more experiments and results in the confounding of only 
high-order interactions [6]. For instance, resolution V designs allow the 
clear identification of main effects and two-factor interactions. How-

ever, they confound three-order interactions among each other. This 
means that, although some three-factor interaction coefficients can be 
estimated, they cannot be assigned to a specific combination of factors. 
Similarly, resolution IV designs confound two-factor interactions among 
each other. Therefore, they can be used to assess whether these inter-

actions are important but they cannot identify the specific interactions 
that influence the response. Resolution III designs confound main effects 
with two-factor interactions. Therefore, models including main effects 
can be created, but the estimated coefficients represent the mixed ef-

fect of the single factor and the confounded interactions. If interactions 
are not significant, low-resolution designs efficiently reduce the number 
of experiments. However, they may result in incorrect determination 
of main effects when interactions affect the response. Plackett Burman 
(PB) designs are a special type of resolution III designs in which two-

factor interactions are partially confounded with main effects allowing 
the estimation of some interactions. A summary of DoE designs is pre-

sented in Fig. 1 [6].

Factorial designs can easily be generated and analyzed using web 
servers such as DATAtab, licensed programs (Minitab [7], JMP [8]) and 
open-source packages like FrF2 in R [9]. Moreover, these designs have 
been used for the optimization of expression of pathways genes [10,

2]. However, clear recommendations of the type of designs to use for 
pathway optimization are still missing, which hinders their widespread 
1960

application [11].
Computational and Structural Biotechnology Journal 23 (2024) 1959–1967

Fig. 1. Ability of different fractional factorial designs to estimate main ef-

fects (ME), two-factor interactions (2FI), and higher-order interactions (xFI). 
+ indicates the estimation of a coefficient clear of confounding, ∼ indicates 
a confounded estimation, and - indicates the inability to estimate this type of 
coefficient. In Plackett Burman designs confounded coefficients are partially 
correlated with each other, which allows the estimation of some of the interac-

tions.

In silico studies represent biological systems using mathematical 
models. This allows the simulation of multiple constructs and the eval-

uation of computational design tools [12–14]. These studies enable the 
characterization of the robustness of different design approaches to re-

alistic biological scenarios where noise is present and problems during 
strain construction can lead to the inability to build some of the desired 
strains. The best strategies found by an in silico evaluation can then be 
applied in in vivo studies, in which the experimental throughput is con-

siderably lower.

Here, we use a mathematical kinetic model of the curcumin pathway 
(Fig. 2A) to simulate in silico a full factorial library of strains. This li-
brary consists of all the combinations of seven enzymes (factors) at two 
different concentrations (levels) [15]. This pathway is characterized by 
the presence of promiscuous enzymes that catalyze multiple reactions 
and the possibility to produce three different metabolites. Therefore, 
the effect of modifying the abundance of an enzyme on production is 
highly dependent on metabolite concentrations. Concentrations are, in 
turn, affected by the concentration of other pathway enzymes. The use 
of a kinetic pathway model enabled the identification of the best con-

centration levels of each enzyme, as well as the estimation of the real 
coefficients of the polynomial model. Considering this information, we 
tested the capacity of different factorial designs to find the best strains 
in the library space. We also tested their capacity to determine the coef-

ficients of the model which could later be used to guide the expansion 
of the design space. With this we aim to aid metabolic engineers on 
their experimental designs to efficiently allocate time and resources.

2. Material and methods

2.1. Pathway simulation and noise

A kinetic model of the curcuminoid pathway was obtained from 
[15]. This model uses Michaelis-Menten kinetics expression rate laws 
for all reactions except C3H. For this reaction a mass-action rate law is 

used. Enzymes catalyzing multiple reactions (FCS, DCS, and CURS) con-

https://datatab.net/statistics-calculator/design-of-experiments
https://support.minitab.com/en-us/engage/help-and-how-to/tools/forms/form-tools/statistical-analysis/doe-analysis/
https://www.jmp.com/en_sg/software/capabilities/design-of-experiments.html
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Fig. 2. A. Curcuminoid pathway. Boxplots show the curcumin (Cur) production data distribution of strains containing low (-1) or high (1) enzyme concentration 
obtained with the kinetic model [15]. B. Kinetic model simulations of curcumin production of the 128 strains forming the full factorial design space. C. Production 
data distribution of strains containing low (-1) or high (1) concentration of COMT given low (-1) or high (1) concentration of C3H. Metabolite abbreviations: 
TYR, tyrosine; CUA, p-coumaric acid; CAA, caffeic acid; FEA, ferulic acid; CUCOA, coumaroyl-CoA; CACOA, caffeoyl-CoA; FECOA, feruloyl-CoA; DCUCOA, diketide 
coumaroyl-CoA; DFECOA, diketide feruloyl-CoA; BDC, bisdemethoxycurcumin; DMC, demethoxycurcumin; CUR, curcumin. Enzyme abbreviations: TAL, tyrosine 
ammonia lyase; C3H, coumarate-3-hydroxylase; COMT, caffeic acid O-methyl transferase; FCS, feruloyl/coumaroyl-CoA synthase; CCOAOMT, caffeoyl-CoA O-methyl 
transferase; DCS, diketide-CoA synthase; CURS, curcumin synthase.
tain additional substrate competition terms in their rate laws to account 
for their promiscuity (Fig. 2A). The model was simulated using the AM-

ICI library [16] and the CVODES ODE solver [17]. Each of the seven 
enzymes in the pathway was considered a factor with the default en-

zyme concentration as low level and five times the default concentration 
as high level. The parameter corresponding to enzyme concentration 
for each reaction in the pathway was altered to simulate the 128 (27) 
strains constituting the full factorial library. In silico triplicates for each 
strain were obtained adding 5% or 20% of Gaussian noise. The simu-

lated full factorial data is available in Gitlab.

2.2. Simulation of DoE designs

Resolution V, IV, and III designs were generated using the FrF2 
function from the FrF2 R package given the number of factors and 
the desired resolution [9]. Placket-Burman (PB) designs were gener-

ated with the pb function from the same package indicating the desired 
number of factors and experiments. For each design, columns were per-

muted to account for the effect of randomly assigning factors (enzymes) 
to the design columns. From the full factorial design data, experiments 
1961

were selected according to the design and used to train a linear model 
by ordinary least squares regression using the R lm function. The linear 
model had the form:

𝑦 = 𝛽0 +
𝑖=𝑛∑

𝑖=1
𝑀𝐸𝑖 ⋅ 𝐹𝑖 +

𝑖=𝑛∑

𝑖=1

𝑗=𝑛∑

𝑗=1
2𝐹𝐼𝑖∶𝑗 ⋅ 𝐹𝑖 ⋅ 𝐹𝑗, (1)

where 𝑦 represents the curcumin concentration obtained by the kinetic 
pathway model; 𝛽0 represents the y-intercept, 𝑀𝐸𝑖 refers to the main 
effect of factor 𝑖 (𝐹𝑖) and 2𝐹𝐼𝑖∶𝑗 refers to the two-factor interaction 
between factor 𝑖 and 𝑗. The total number of factors is indicated by 𝑛.

For resolution V and IV designs, additional linear models were 
trained assuming the inability to construct some of the proposed strains 
by randomly removing rows of the design matrix. The effect of exclud-

ing 1, 2, 5, and 10 rows or 1, 2, 3, and 5 rows for the resolution V and 
IV designs respectively was evaluated in 100 random permutations of 
the design columns.

To compare DoE designs with random sampling strategies, experi-

ments from the full factorial design were randomly sampled using the 
sample function in R. The number of samples was equal to the number 
of strains selected by each of the designs and the sampling process was 

repeated as many times as the performed permutations.

https://gitlab.com/wurssb/Modelling/in_silico_doe
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For each permutation of the design or random sample, the R sum-

mary function was used to obtain the ANOVA table which provides 
the estimated coefficients of the linear model (MEs and 2FIs) and their 
associated p-values. These p-values and coefficients were compared to 
those obtained by training the linear model with the full factorial design 
(“ground truth”).

Linear models were evaluated on their ability to predict curcumin 
production of the full factorial library of strains. Main effects of models 
trained with fractional factorial designs or random samples were em-

ployed to calculate the curcumin concentration of all the strains in the 
full factorial library. Predictions of linear models were compared to the 
predictions of the kinetic model (“ground truth”) using the coefficient 
of determination (R2). The r2_score function from sklearn was used.

2.3. Prediction of optimal strains within the design space

Linear models trained with data derived from experiments selected 
by permutations of DoE designs or random sampling were used to 
predict strains with the highest curcumin production. Strains were pre-

dicted as optimal producers according to the linear models when the 
levels of the enzymes with a significant main effect agreed with the 
sign of the estimated coefficients in the linear model. For enzymes with 
insignificant main effects, strains containing any of the concentration 
levels were considered as optimal candidates. The frequency in which 
each strain was selected as optimal in each permutation of the design 
or set of random samples was computed and compared to the actual 
production according to the kinetic pathway model.

2.4. DoE and machine learning

The suitability of experiments designed using DoE to train machine 
learning (ML) models was assessed with random forest as an example 
using the scikit-learn Python library. Models were trained using 10-fold 
cross-validation and model performance was assessed based on the co-

efficient of determination (R2). Trained models were used to predict 
the production of the full factorial design space and the frequency of 
each strain as part of the two best predicted strains was computed. Ad-

ditionally, random forest models were trained with all the data from 
the designs (without cross-validation). This approach was equivalent to 
the training strategy used for linear models. For 100 random permuta-

tions of the resolution IV design, the effect of hyper-parameter tuning 
on model performance was evaluated. A grid search using leave one 
out cross-validation was employed to optimize the number of estima-

tors (100, 200, 200), the maximum depth of the trees (none, 10, 20), 
the minimum number of samples required to split an internal node (2, 
5, 10) and the minimum number of samples required to be at a leaf 
node (1, 2, 4).

3. Results

3.1. Simulation of the full factorial library and factorial designs

The curcumin pathway contains seven enzymes from which FCS, 
DCS, and CURS are promiscuous and able to catalyze multiple reac-

tions (Fig. 2A). Moreover, in this pathway demethoxycurcumin, bis-

demethoxycurcumin, and curcumin can be produced. Therefore, opti-

mizing curcumin production requires fine-tuning the concentration of 
the pathway enzymes. A full factorial library for this pathway consider-

ing two concentration levels per enzyme requires the simulation of 128 
strains. This library contains all possible combinations between factor 
levels, resulting in curcumin production ranging from 10−4 to 0.2 mM. 
This library represents the “ground truth” for the system (Fig. 2B). In 
factorial designs, the effect of a factor is estimated considering repli-

cate experiments and experiments where the given factor is constant 
regardless of other factor levels. For each enzyme, Fig. 2A shows the 
1962

distribution of curcumin production by strains containing low (-1) or 
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high (1) enzyme concentrations. Changing the concentration of C3H, 
COMT, and FCS has the highest impact on curcumin production, fol-

lowed by changes in CCOAOMT and CURS concentrations. Notably, as 
expected for biological systems, high expression of all pathways genes 
does not necessarily result in optimal production.

The benefit of combinatorial experimentation compared to sequen-

tial experimentation is exemplified in Fig. 2C. When the concentration 
of C3H is low, changing COMT concentration has a limited impact 
on production. However, this impact increases when the concentra-

tion of C3H is high. The relationship between COMT and C3H, also 
true for other enzymes (Sup. Figure 1), can only be captured through 
combinatorial optimization and is missed when factors are optimized 
sequentially.

After the simulation of the full factorial library, DoE fractional fac-

torial designs were simulated selecting experiments according to four 
different designs (resolution V, resolution IV, resolution III, and PB) or 
random sampling. These designs differ in the number of strains to build 
and test. The resolution V design requires the construction of 64 strains 
and ensures that main effects and two-factor interactions are free of 
confounding. The resolution IV design requires the construction of 16 
strains but two-factor interactions are confounded among each other. 
Finally, PB and resolution III designs require the construction of 12 and 
8 strains respectively but confound main effects with two-factor interac-

tions. In resolution III designs main effects and two-factor interactions 
are completely confounded and, in PB designs, the correlation between 
these coefficients is partial. While in random designs any of the strains 
can be constructed, only a fraction of the strains are selected in DoE 
fractional designs. This ensures orthogonality in the desired columns 
and allows a clear estimation of the linear model coefficients (Sup. Fig-

ure 2).

3.2. Pathway optimization: predictions of optimal strains

Given a set of enzymes (factors) and enzyme concentrations (levels), 
we analyzed the capacity of different DoE fractional factorial designs 
to find the enzyme concentration levels that optimize curcumin pro-

duction. The performance of these designs was compared to random 
construction of the same number of strains. Each selected set of exper-

iments was used to train a linear model containing main effects and 
two-factor interactions. Then, significant coefficients were determined 
by ANOVA. Enzymes with significant main effects are important for 
production. If an enzyme with a significant effect has a positive coeffi-

cient, it should be present at high concentration in the optimal strains. 
In contrast, an enzyme with a significant negative effect should be 
present in low concentrations in the optimal strains. For enzymes with 
insignificant main effects, production should not change regardless of 
the chosen concentration. Considering these criteria, we computed the 
frequency at which each strain is predicted as optimal by each design 
permutation or random sampling. This process was repeated assuming 
5% or 20% noise in the data. Predictions were compared to the “ground 
truth”, defined by the curcumin production of the full factorial library 
obtained with the kinetic pathway model. We show here the results as-

suming 20% noise in the production data.

The full factorial data shows the presence of two strains with equal 
performance, characterized by high expression of C3H, CURS, and DCS, 
low expression of FCS, COMT, and CCOAOMT, and unaffected by the 
expression level of TAL (Fig. 3A). Only resolution V and IV designs 
guarantee the identification of both or one of these two optimal strains 
(Fig. 3A). The resolution V design only suggests two strains as top pro-

ducers, and the random selection of 64 strains results in the suggestion 
of four strains. However, the resolution IV design might suggest the con-

struction of up to 16 new strains. Still, the targeted construction of the 
16 strains required by the resolution IV design is more efficient than the 
random construction of 32 strains. When a resolution IV design is used 
one of the optimal strains is always suggested, and the total number of 

strains to build and test is reduced. When designs with lower resolution 
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Fig. 3. A. Prediction of optimal strains based on linear models trained with data from factorial designs and random sampling assuming 20% noise. B. Prediction of 
optimal strains by linear models trained with resolution V and IV factorial designs simulating the inability to construct some of the required strains assuming 20% 
1963

noise.
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Fig. 4. Estimation of linear model coefficients using data from fractional designs and random samples given 20% noise in the response A. Frequency of the 
identification of main effects as significant. B. Estimated coefficients for each main effect. Mean coefficients and standard deviations of all possible permutations of 
the design or random samples are shown. C. Frequency of the identification of 2-factor interactions as significant using data from full factorial, resolution V, random 
64, and random 32 designs.
are chosen, the probability of finding the best strains from the full fac-

torial library markedly decreases. Only in the case of the resolution III 
design, the number of suggested strains to construct is lower than in the 
random control (Fig. 3A).

Linear models trained with data from fractional factorial designs are 
usually validated based on their capacity to optimize production [1,18,

10]. These models need to be trained with data from all the planned 
experiments in order to avoid losing important information. Therefore, 
the generation of data for validation would require the construction 
and testing of additional strains. However, here, the use of in silico data 
allows the validation of the models when predicting the production of 
all the strains in the full factorial library. Models trained with data from 
resolution V designs or the random sampling of 64 strains showed the 
best performance on the full factorial data (R2 = 0.83 ± 0.00). They 
were followed by resolution IV (R2 =0.82 ±0.01) and resolution III 
designs (R2 =0.72±0.03). Models trained with PB designs (R2 =0.44 
±0.30) or the random sampling of 32 (R2 =0.75 ±0.19), 16 (R2 =0.49 
±0.16), 12 (R2 =0.13 ±1.50), or 8 (R2 =-0.35 ±2.54) strains showed 
lower performance and higher standard deviations (Sup. Figure 3).

For the resolution IV design, we further studied whether including 
the best two producer strains in the design influenced the prediction of 
the top strains. In 60% of all the permuted resolution IV designs, the 
optimal strains were not included, which did not affect the predictions 
(Sup. Figure 4).

During in vivo studies experimental limitations might hinder the con-

struction of some of the required strains for a design. Hence, we studied 
the robustness of resolution V and IV designs to missing strains. The 
performance of the resolution V design was minimally affected when up 
to 10 strains (16%) were excluded from the design. While the number 
of strains to construct in order to find the optimal production increased 
from 2 to 4, at least one of the two best producers was always suggested 
1964

(Fig. 3B). When the resolution IV design was used, excluding one strain 
from the design (6% of the library) had a minor impact on predictions. 
However, when 2 (13% of the library) or more strains were omitted, 
the probability of finding the best strain decreased, and the number of 
wrongly suggested optimal strains increased (Fig. 3B).

3.3. Pathway insights: identification of significant factors and interactions

The coefficients of the linear models are used to predict the optimal 
strains. Besides, they unveil the effect of each enzyme on curcumin pro-

duction, improving the understanding of the studied pathway. These 
insights can then be used to guide following DBTL cycles that focus 
on the factors with the strongest influence on the response. Moreover, 
they can point to relevant interactions between factors that enhance the 
knowledge of the pathway. Here we assess the capacity of each of the 
DoE fractional factorial designs or random samples to identify signif-

icant main effects and interactions. The correct identification of these 
coefficients explains, in turn, the capacity of each design to find the 
optimal production strains.

The concentration of C3H is the factor with the strongest influence 
on production. Regardless of the level of noise, all the DoE designs 
identify C3H as a significant main effect with a positive influence on 
production (Fig. 4A, B). The importance of this factor is also captured 
when 64 or 32 strains are randomly sampled. However, when 16, 12, 
or 8 strains are randomly selected, this effect is missed in 1%, 2%, and 
7% of the experiments, respectively (Table 1).

Resolution V, IV, and III designs are always able to identify the neg-

ative effect of FCS and COMT. However, 6% to 20% of the PB designs, 
depending on the level of noise, are unable to capture this behavior 
(Fig. 4A, B, Table 1). Similarly, the ability to identify the importance 
of these factors is lost when less than 64 strains are randomly sampled, 
especially when the level of noise increases.

Given 5% noise, resolution V and IV designs, and the random se-
lection of 64 strains, allow the identification of the positive effect of 
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Table 1

Frequency (expressed as a percentage) of main effects identified as significant by ANOVA using 
data from different fractional factorial designs or random strain sampling.

C3H FCS COMT CURS CCOAOMT DCS TAL

Resolution V
5% noise 100 100 100 100 100 100 0

20% noise 100 100 100 100 100 100 0

Random 64
5% noise 100 100 100 100 100 90.4 22.6

20% noise 100 100 100 100 100 90.4 22.6

Random 32
5% noise 100 99.8 99.4 89.2 79.7 56.8 45.2

20% noise 99.8 92.3 89.3 41.1 33.6 15.9 12.4

Resolution IV
5% noise 100 100 100 100 100 63.3 63.3

20% noise 100 100 100 88.7 63.3 26.7 3.3

Random 16
5% noise 99.9 95.6 93.5 73.2 79.1 69.4 76.8

20% noise 98.9 73.4 67.2 36 33.9 26.5 33.8

Plackett-Buramn
5% noise 100 95.7 93.6 93.6 89.8 90.1 87.9

20% noise 100 79.2 77.6 70.1 65.8 69.4 59.4

Random 12
5% noise 99.7 94 90.2 72.8 77.6 68.9 82.9

20% noise 97.7 69.1 65.6 40.1 38.6 33.7 46.8

Resolution III
5% noise 100 100 100 93.3 90 86.7 96.7

20% noise 100 100 100 60 63.3 60 66.7

Random 8
5% noise 98 88.5 83.2 61.2 72.9 65.4 73.7

20% noise 93 59.7 57.7 35.7 40.4 35.9 41.6
CURS and the negative effect of COMT (Fig. 4A, B, Table 1). However, 
when the level of noise increases, the chances of identifying these ef-

fects with resolution IV designs decrease to 89% and 63%, respectively. 
Yet, the likelihood of finding these effects is doubled when compared to 
the random selection of 32 strains. PB and resolution III designs show 
similar performance in identifying the importance of these genes. How-

ever, these designs are unable to correctly estimate the effect of CURS 
and COMT on the response as indicated by the high standard deviations 
of the coefficient values (Fig. 4B). Notably, these designs show better 
performance than their random counterparts.

DCS and TAL are the factors with the smallest coefficients and, there-

fore, the smallest impact on production. However, while the expression 
level of DCS significantly affects production, modifying the expression 
of TAL does not change curcumin titers. The only design able to capture 
this behavior is the resolution V design, which outperforms the random 
selection of 64 strains. Other designs, based on DoE or a random selec-

tion of strains, are unable to distinguish the effect of these two genes 
(Fig. 4, Sup. Table 1).

The inability to correctly identify significant main effects is the 
reason for the incorrect prediction of optimal strains by the designs 
(Fig. 3A). For instance, models trained with resolution V designs only 
predict optimal strains with high concentrations of CURS and DCS, and 
low concentration of CCOAOMT. However, some of the linear models 
trained with other designs miss the relevance of these enzymes. They in-

correctly suggest strains with low CURS and DCS concentration and/or 
high CCOAOMT concentration as optimal.

In addition to the determination of main effects, resolution V de-

signs or the random selection of 64 or 32 strains allow the estimation 
of all the coefficients corresponding to two-factor interactions (Fig. 3C). 
These interactions point to factors whose effect on the response is af-

fected by the level of another factor. When the full factorial data is 
used to train a linear model, thirteen significant two-factor interac-

tions are found. All the enzymes but TAL have a significant interac-

tion with C3H and FCS; CURS additionally interacts with COMT, DCS, 
and CCOAOMT; and COMT and CCOAOMT also show a significant in-

teraction. The presence of a high number of significant interactions 
highlights the synergistic effect obtained when combining the optimal 
concentrations of various enzymes and underscores the relevance of 
1965

combinatorial pathway optimization. However, not all the significant 
two-factor interactions have the same effect on the response and their 
absolute coefficients vary from 1.2 ⋅ 10−2 to 6.2 ⋅ 10−4 (Sup. Figure 5).

Assuming 5% noise in the response, linear models trained with res-

olution V designs correctly identify the eleven most important interac-

tions, including interactions with absolute coefficients of 10−3. When 
the level of noise increases to 20% this design still allows the identifi-

cation of the six most important two-factor interactions, with absolute 
coefficients above 2.8 ⋅ 10−2. Regardless of the level of noise, models 
trained with resolution V designs prevent the incorrect identification of 
insignificant interactions (false positives), frequently found when ran-

domly selected strains are used for model training (Fig. 3C).

When resolution IV designs are used to train linear models, specific 
two-factor interactions cannot be determined. However, the estimated 
coefficients of the confounded interactions give information on their 
relative importance compared to the main effects. Fig. 5 shows how 
two-factor interactions 1 and 2 have an effect on the response similar 
to the main effect of COMT. Likewise, the effect of two-factor interac-

tion 3 is similar to the main effect of CURS. Therefore, these designs 
are able to clearly identify that the effect of interactions in the studied 
system should not be ignored. Notably, resolution IV designs with up 
to three missing strains are also able to correctly estimate the relevance 
of the two-factor interactions (Sup. Figure 6). Considering this, the best 
strains in the design space could be found using a sequential experi-

mentation approach. For instance, a resolution IV design could be first 
used to identify C3H, FCS, and COMT as the most important main ef-

fects, relative to the importance of two-factor interactions. In a second 
DBTL round, the expression level of these genes could be fixed accord-

ing to the sign of their coefficients. Then, a resolution V design with the 
remaining 4 factors could be performed. In this case, the resolution V 
design involves the construction of 16 strains and is equivalent to a full 
factorial design. This approach ensures the identification of the optimal 
strains with a total of 32 experiments.

Finally, the partial correlation between main effects and interactions 
in PB designs should allow the identification of some interactions. Us-

ing subset regression the factors and interactions that result in models 
with better fit could be identified. However, subset models only con-

sistently predicted the importance of C3H and failed to find significant 
interactions. These results together with the low R2 of models trained 
with PB designs (Sup. Figure 3) showcase the inappropriateness of this 

design for pathway understanding and optimization.
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Fig. 5. Absolute values of model coefficients trained with data from permutations of a resolution IV design. The mean coefficient and standard deviation of main 
effects and confounded two-factor interactions (2FI) are shown.
3.4. Comparison of linear models and random forest

Machine learning (ML) algorithms can be used as an alternative to 
linear models to gather the information obtained during experimenta-

tion based on DoE designs [19]. Although recovering information from 
these models is harder than from linear models, ML algorithms can rec-

ognize more complex patterns within the data. As an example of a ML 
algorithm, we tested the ability of random forest models trained us-

ing 10-fold cross-validation to predict the best-performing strains given 
data from random samples or DoE designs. However, training these 
models with 32 or fewer experiments often resulted in negative R2

values for some of the iterations. Even when only models with R2 coef-

ficients above 0.6 were used, randomly selecting experiments or using 
DoE factorial designs resulted in equally bad predictions of best strains 
(Sup. Figure 7). These results did not change when all the strains from 
a design were used for model training. This strategy, equivalent to the 
training of linear models, did not include cross-validation and avoided 
losing information due to a reduced number of strains during training. 
Hyperparameter tuning did not improve the performance of the ran-

dom forest models. Therefore, given the small number of experiments 
required when considering the optimization of seven factors, linear 
models outperform random forest. However, the ability of ML mod-

els to benefit from training data based on DoE designs if the number of 
factors and, therefore, experiments increases, remains unexplored.

4. Discussion

DoE involves the design of experiments using fractional factorial de-

signs and their analysis using linear models and ANOVA. Although there 
are numerous tools to perform and analyze these designs [7–9], clear 
recommendations on which designs to use for pathway optimization are 
missing. Here we showed how fractional factorial designs can be used to 
find the optimal concentration of a pathway’s enzymes and understand 
the impact of factors on production. In both cases, the resolution V de-

sign, which requires half of the experiments of a full factorial, excels. It 
provides the same information as the full factorial design and finds the 
strains with the best curcumin titers. When this design is used, all main 
effects are correctly identified as well as the most important two-factor 
interactions (Fig. 4). We highlight the relevance of these interactions 
to understand and improve production, as designs where main effects 
and interactions are confounded struggle to find the optimal strains 
(Fig. 3A). However, the identification of a significant interaction does 
not necessarily reflect a biological mechanism. For instance, factors rep-

resenting all enzymes but TAL are included in significant interactions 
with C3H. This is due to the requirement of high C3H concentration to 
obtain high levels of curcumin. It does not mean that all these enzymes 
physically interact with C3H but it could lead to hypotheses aiming to 
explain the importance of this enzyme for the pathway functioning.

We propose resolution IV designs as the best trade-off between in-

formation gain and experimental effort, and the best option to initially 
screen the effect of factors in the response. The key strength of this 
design is the lack of confounding among main effects and interac-
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tions, which allows the confident identification of main effects. Besides, 
although two-factor interactions are confounded, these designs allow 
weighting their importance compared to the individual effects. More-

over, these designs provide a solid knowledge basis of the system under 
study that can be expanded in different directions depending on the ex-

perimental goal. Here, we show how, when the aim is to find the best 
possible production given the initial factors and levels, the most im-

portant main effects can be fixed. Then a resolution V design can be 
performed on the remaining factors. In this case, two-factor interaction 
coefficients involving the most important (fixed) factors will not be es-

timated, but the optimal strain will be found. Alternatively, if the goal 
is to find these coefficients, original resolution IV designs could be aug-

mented using D-optimal designs. These designs select experiments from 
the full factorial that allow the clarification of the desired interactions 
by minimizing the variance of the model coefficients [6]. Finally, when 
the researcher aims at expanding the original design space, the number 
of levels of the most relevant factors could increase following the direc-

tion indicated by the linear model coefficients. Alternative designs such 
as Box-Behnken designs that include three levels per factor could be 
used to train response surface models [10,6], in this case, testing higher 
concentrations of C3H and lower concentrations of FCS and COMT.

In this study, the use of a kinetic model allowed the simulation of 
a full factorial design and the comparison of fractional designs with-

out a limitation on throughput (i.e. number of strains to test and build). 
This comparison was performed considering realistic scenarios includ-

ing noise and datasets with missing information due to, for instance, 
problems during strain construction. However, during the in vivo opti-

mization of pathways, the achievable throughput is a critical parame-

ter that should determine how the optimization process is performed. 
Given the throughput, we recommend fixing the number of factors to 
screen to be able to obtain resolution IV designs. The advent of bio-

foundries that automate the strain construction process is continuously 
increasing the capacity to build strains [20–22]. This increase should 
be accompanied by high-throughput, automated cultivation and screen-

ing protocols as well as automated data collection [23]. Scaling these 
processes will allow the assessment of numerous factors in screening 
studies that should go beyond pathway engineering to include optimiza-

tion at the metabolic and bio-process levels.

Scripts for the generation and analysis of the designed libraries, the 
prediction of optimal strains and the analysis of the desigs using ML, as 
well as additional data are available at Gitlab.
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