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Foreword 

This thesis uses the U-net model to reconstruct NDVI time series based on SAR data, which can 

be divided into three main parts. The first part is model training, where a total of nine models are 

trained depending on the input data for regressing NDVI images. The second part involves NDVI 

prediction and time series construction.  In this section, the nine trained models are used for 

predicting NDVI images, and subsequently, NDVI time series for different crops are established 

based on these predictions. The final part is evaluating the quality of the reconstructed NDVI time 

series, focusing primarily on two aspects. Firstly, at the temporal level, the quality of the average 

NDVI time series among all parcels is evaluated. Secondly, the reconstructed NDVI time series 

are used in the Cropmarkers algorithm developed by Wageningen Environmental Research to 

detect important time points in crop growth cycles, assessing the feasibility of the method used 

in this thesis in practical applications. 

This research serves as the thesis for my Master's program in Geo-information Science at 

Wageningen University. Through this program, I gained a lot of knowledge in remote sensing and 

a strong internet in its applications in vegetation monitoring. The topic of this thesis applies deep 

learning techniques, combining optical and radar remote sensing for agricultural monitoring, which 

aligns well with my expertise and interests. I believe it can lay a solid foundation for my future 

career path. 

Many people helped me with my thesis research and writing. First of all, I would like to thank my 

three supervisors, Jan Clevers, Gerbert Roerink and Maciej Soja, for supervising my thesis 

research and writing. Without their supervision and help, the thesis could not be completed 

smoothly. Specifically, I would like to thank Maciej Soja for his support in the implementation of 

the deep learning algorithm, and Adugna Mullissa (UCLA, formerly WUR) for his help in building 

the deep learning model. I would also like to thank Gerbert Roerink for his support in the 

application of the Cropmarkers algorithm and agricultural knowledge. I would also like to thank 

Jan Clevers for his responsible supervision of the progress of my thesis. In addition, I would like 

to thank Wageningen Environmental Research for providing the satellite data and Cropmarkers 

algorithm, and I would also like to thank Jappe Franke for his help in using the High-Performance 

Computer Anunna. Finally, I would like to thank Johannes Reiche for being the examiner to 

evaluate my thesis. 

Yongjin Wang 

10 May 2024, Wageningen 
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Abstract 

The demand for agricultural production output is continuously increasing in the world of today, 

while climate change, disasters, and other issues threaten agricultural production and food 

security, placing higher demands on agricultural management. As a means of remote monitoring, 

remote sensing is widely used in agricultural monitoring due to its low cost and high efficiency, 

playing an important role in assisting agricultural management. The Normalized Difference 

Vegetation Index (NDVI) is a vegetation index calculated by the red and near-infrared bands of 

optical remote sensing images. It is closely related to crop growth and productivity characteristics, 

making it valuable in agricultural monitoring. However, optical remote sensing is highly sensitive 

to weather conditions and prone to cloud cover, leading to frequent data gaps in NDVI time series 

generated based on it. Since synthetic aperture radar (SAR) is independent of weather conditions, 

and SAR data has been proven to be related to NDVI, reconstructing the NDVI time series from 

SAR data is a potential solution. This study is based on the U-net model, which combines different 

Sentinel-1 SAR data and auxiliary data to train nine models. These models are used to reconstruct 

the NDVI time series of several crops in the Flevopolder region of the Netherlands in 2022, and 

are validated on the temporal scale. The modified Cropmarkers algorithm developed by 

Wageningen Environmental Research (WENR) is applied to the reconstructed NDVI time series to 

detect crop emergence, closure, transition, and harvest stages, thus validating the performance 

of the trained models in practical agricultural applications. The method used in this study achieves 

the best overall results for full canopy crops, with the corresponding R2 values obtained for sugar 

beet, consumption potato, silage maize, and winter wheat being 0.92, 0.87, 0.67, and 0.82, 

respectively. Worse results were obtained for half canopy crops, with the R2 values for tulip and 

onion being 0.56 and 0.67, respectively. This is probably due to the low proportion of half canopy 

crop parcels in the training dataset resulting in insufficient training. On grassland, the changes in 

NDVI data caused by mowing could not be predicted well. For full canopy crops, the reconstructed 

NDVI time series detected the four crop penological stages relatively well. The average deviation 

for crop emergence and closure ranged from 5 to 10 days, and for transition it was between 10 

to 15 days. For harvest it varied from around ten to over twenty days depending on the crop type, 

while for half canopy crops the results were worse. Among the nine models, Model M51, which 

used multi-temporal backscatter data, crop identification maps, and year and week information 

as input layers, achieved the best overall performance, whereas adding 12-day interferometric 

coherence data did not improve model performance. Compared to the results of other literatures 

utilizing traditional machine learning algorithms, the method used in this study significantly 

improved the quality of the reconstructed NDVI time series, demonstrating the applicability of the 

U-net model over a larger spatial extent, and providing a solution for supplementing optical NDVI 

time series.  

Keywords: NDVI, time series, reconstruction, Sentinel 1, Sentinel 2, SAR, U-net, deep learning  
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1. Introduction 

1.1. Context and background 

Agriculture is one of the pillars upon which humanity relies for survival and driving socio-economic 

development. With the continuous growth of population and income, there is an increasing 

demand globally for higher agricultural output (Johnson et al., 2014). However, factors such as 

climate change and disasters continuously challenge agricultural production and food security. 

Close monitoring of crop growth can assist in field management, thereby achieving more efficient 

agricultural production. Remote sensing is a technology that utilizes platforms such as aircraft or 

satellites to acquire ground information. Its principle is capturing electromagnetic waves reflected 

or emitted from the Earth surface using sensors, and then converting this information into 

visualized images or data using digital image processing techniques. In agricultural monitoring, 

remote sensing has advantages such as wide monitoring coverage, high observation frequency, 

and low costs for large-scale applications. It has become an efficient and reliable method widely 

applied in crop monitoring. 

Vegetation indices based on optical remote sensing are important tools for achieving this purpose. 

Over the past few decades, many vegetation indices have been proposed, among which the 

Normalized Difference Vegetation Index (NDVI) is the most widely used, which can be calculated 

by the near-infrared (NIR) and red (R) bands (Eq. (1)) from optical remote sensing images. 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅)/(𝑁𝐼𝑅 + 𝑅)    (1) 

NDVI provides an intuitive reflection of vegetation greenness and is also associated with plant 

structural characteristics (Gamon et al., 1995; Turner et al., 1999) and productivity features 

(Gamon et al., 1995). Periodic recording of NDVI within a specific area results in an NDVI time 

series. NDVI time series reflect the dynamic changes of vegetation over time. In the field of 

agriculture, time series are commonly used for detecting crop phenological stages, monitoring 

agricultural activities, estimating crop yields, and more. 

However, optical remote sensing is highly sensitive to weather conditions, particularly clouds and 

precipitation. Under cloudy conditions, optical sensors can be obstructed by cloud cover, leading 

to the inability to conduct normal observations. This can affect the regular acquisition of NDVI, 

and result in data loss, and exacerbating the complexity and challenges of remote sensing 

monitoring, especially in regions with high vegetation dynamics.  

Since the first Landsat missions, the temporal, spatial, and spectral resolution of optical remote 

sensing imagery has continuously improved. With the launch of the Sentinel-2A and Sentinel-2B 

satellites as part of the Copernicus program in June 2015 and March 2017, respectively, this 

problem has been partially alleviated thanks to their low revisit period of 5 days (Drusch et al., 

2012). However, more effective solutions are still needed. 

Synthetic Aperture Radar (SAR) is an active remote sensing system capable of emitting radio- or 

microwave-frequency electromagnetic waves, enabling it to penetrate through clouds, haze, sand, 

and dust, etc. (Mirzaee et al., 2014). Moreover, research has demonstrated the relation between 

radar backscatter and NDVI during crop growth processes (Fieuzal et al., 2013). These 

characteristics make it interesting to predict NDVI data using SAR data and thereby reconstruct 

NDVI time series. The availability of SAR data has greatly increased on a global scale with the 

advent of the Sentinel-1 mission. Compared to previous SAR missions like ERS-1/2 SAR and 

ENVISAT ASAR, the Sentinel-1 constellation of two satellites provides a repeat cycle of 6 days and 

conflict-free operations, along with greater coverage (Torres et al., 2012). This allows SAR data 

to be similar in temporal resolution to optical data and to have a spatial resolution comparable to 

or slightly coarser than that of optical data, ensuring the reliability of NDVI time series 

reconstruction based on SAR data (Moreira et al., 2013). 

1.2. Previous work 

Methods for reconstructing and repairing NDVI time series can generally be divided into two 

categories based on the source of data. The first category relies on optical data itself.  The other 
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category is based on radar data, regressing optical data based on the relationship between the 

two to reconstruct or repair optical time series. 

1.2.1. Time series reconstruction based on optical data 

The first category of reconstruction methods relies on the spatiotemporal information from optical 

data. In the early stages, this approach mainly relied on the temporal information derived from 

individual pixel values (Li et al., 2021). It involved methods such as function-based curve fitting, 

sliding windows filtering methods, and frequency domain approaches. These methods performed 

poorly with large temporal gaps and were sensitive to data variations. They also became 

ineffective when dealing with many anomalies in the time series, such as natural disasters and 

pest infestations. To address these issues, Xu et al. (2015) attempted to use the spatial similarity 

principle to reconstruct NDVI based on neighbouring pixel elements. However, existing cloud 

removal algorithms were not perfect, as they couldn't completely detect cloud shadows and fog. 

Cao et al. (2018) tried to incorporate spatial domain information to assist temporal filtering, but 

the spatiotemporal reference information was still not fully utilized. 

To address the aforementioned issues, some studies have tried to fuse data from different optical 

sensors (Gao et al., 2017; Griffiths et al., 2020). However, these multi-sensor approaches require 

calibration to harmonize different spatial and spectral resolutions. Additionally, supplementary 

optical data used for this purpose may also be affected by cloud cover, thereby not guaranteeing 

the provision of a substantial amount of reliable supplementary observations (Garioud et al., 2021) 

1.2.2. Time series reconstruction based on Radar data 

Since SAR observations are not affected by cloud cover, an increasing number of studies in recent 

years have utilized SAR data to reconstruct time series of optical vegetation indices. These studies 

can generally be classified into three categories: classical machine learning algorithms (Random 

Forest (RF), Support Vector Machine (SVM)), Gaussian Process (GP) technique, and deep learning 

algorithms. 

In many studies, classical machine learning algorithms have been applied. Mohite et al. (2020) 

conducted regression analyses using NDVI as the independent variable, polarimetric SAR 

backscatter, and some auxiliary information as dependent variables, employing RF and SVM 

algorithms to estimate NDVI time series for several crops. Wang et al. (2019) applied SVM and 

RF algorithms on Sentinel-1, Sentinel-2, and Landsat-8 data, estimating Leaf Area Index (LAI). 

Although traditional machine learning algorithms have achieved satisfactory results in these 

studies, the agricultural datasets used for validation are generally small-scale, and the variety of 

crops included is very limited, thus not guaranteeing the effectiveness of these techniques when 

applied to large-scale areas. 

The second category of methods involves the use of the Gaussian Process (GP) technique. GP is 

a machine learning technique primarily applied to regression and probabilistic classification 

problems in supervised learning. Pipia et al. (2019) trained a Multi-Output Gaussian Process 

(MOGP) model using Sentinel-1 Radar Vegetation Index (RVI) and Sentinel-2 Leaf Area Index 

(LAI) time series to fill in missing values in the LAI time series. Besides time series reconstruction, 

GP has also been applied in other regression tasks for vegetation monitoring. Mercier et al. (2020) 

utilized Gaussian process regression combined with Sentinel-1 and Sentinel-2 time series to 

extract biophysical parameters from various crop parcels. While the performance of GP in such 

regression tasks has been confirmed, GP tuning is complex, sensitive to kernel selection, and 

requires extensive computational resources and long training time, which makes its scalability 

questionable as well. 

The third category of methods involves the use of deep learning techniques for time series 

reconstruction. Deep learning serves as a data-driven model capable of accurately extracting and 

representing information from large-scale satellite images. The continuous advancement of 

computer performance and the increased availability of large datasets greatly support its 

development and application. In recent years, the powerful feature extraction capabilities of deep 

learning algorithms have attracted significant attention (Li et al., 2022). Scarpa et al. (2018) 

conducted experiments in a small agricultural area in Burkina Faso using a small convolutional 
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neural network (CNN) to predict NDVI from Sentinel data for the period from May to November, 

achieving good prediction results when both optical and SAR data were used as inputs. In this 

study, satellite images before or after the target date were also used for neural network training 

to capture temporal information. Roßberg and Schmitt (2023) used a modified U-net model with 

Sentinel data to predict NDVI imagery for different vegetation cover areas around the globe. SAR 

backscatter and NDVI images from the same day, along with some auxiliary images, were used 

for training, resulting in relatively close results across all vegetation cover types. Currently, image-

based deep learning methods still face challenges related to small training datasets and 

questionable scalability when applied to specific fields like agriculture. Moreover, these methods 

often focus primarily on spatial validation, with less attention on temporal scale validation and the 

performance of reconstructed time series in practical applications. Additionally, the input data 

used for model training still needs further exploration to achieve better NDVI prediction results. 

Apart from these methods, another approach involves regression based on SAR time series. Zhao 

et al. (2020) proposed a regression method based on the Multi-CNN-Sequence to Sequence 

(MCNN-Seq) model. It first uses a one-dimensional convolutional neural network (CNN) to extract 

feature information from the time series of VH and VV polarizations of SAR data. Subsequently, 

these features are input into a long short-term memory (LSTM) model to capture the relationship 

between SAR data and target NDVI time series. Compared to the previous category of methods, 

this approach pays more attention to extracting information at the temporal scale. Although this 

method has shown promising results, it requires complete time series for learning, thus lacking 

flexibility and failing to meet the real-time application needs of fields such as agricultural 

monitoring. 

1.3. Research objectives and questions 

Deep learning provides a promising method for predicting NDVI from SAR data, and there is still 

considerable room for improvement in the use and training of deep learning models. Furthermore, 

validation of model predictions at the temporal scale and their performance in specific applications 

require further exploration.  

The focus of this study is on constructing NDVI time series for agricultural crop applications. Radar 

data will be studied for filling gaps in optical time series. This study concentrates on the 

agricultural domain, employing deep learning models with U-net architecture to reconstruct NDVI 

time series for various crops. The applicability of the models for different crops in the study area 

is investigated, and the impact of different types of input data on model performance is evaluated. 

Additionally, to validate the performance of the predicted NDVI time series in practical applications, 

the Cropmarkers algorithm developed by Wageningen Environmental Research (WENR) is adopted 

to assess the performance of the reconstructed time series in detecting crop phenological stages 

and agricultural activities. The research questions of this study are as follows: 

(1) How applicable is the NDVI time series reconstructed by this method to different types of 

crops? 

(a) How does the reconstructed time series compare to the reference NDVI time series 

(from optical data) in terms of overall differences and correlation? 

(b) How does the reconstructed time series perform in detecting crop phenological stages 

and agricultural activities? 

(2) Can combining multiple types of data for training improve the U-net model performance 

compared to using solely multi-temporal SAR backscatter data? 

(a) How does the addition of 12-day coherence data affect the model performance? 

(b) Can the addition of the crop identification map and year and week information improve 

the model performance? 
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2. Data and methods 

Figure 1 illustrates the research process of this study. The research process is divided into three 

parts. The first part focuses on model optimization and training for different combinations of input 

data. In the second part, based on the different models trained in the first part, NDVI images are 

predicted, followed by plot-level reconstruction of NDVI time series. The third part concentrates 

on quality assessment of the NDVI time series reconstructed using different models. Firstly, the 

quality of the average time series for each crop is assessed to estimate overall performance. 

Subsequently, the adjusted Cropmarkers algorithm is employed to predict key time points during 

the crop growth cycle, aiming to evaluate the performance of the reconstructed time series in 

practical agricultural applications. 

 

Figure 1. Overview of the research process. 

 

2.1. Study area 

The research area of this study is the Flevopolder region in the central part of the Netherlands, 

situated at the center of the Flevoland province. Flevopolder is reclaimed land characterized by 

sandy and loamy soil. Initially submerged by the Markermeer and IJsselmeer lakes, extensive 

drainage and land reclamation efforts transformed it into farmland. The location and land cover 

of this area are depicted in Fig 2. Since the majority of the land cover type in the region is 

agricultural fields with a wide variety of crops, it provides favourable conditions for this study. 
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Figure 2. Flevopolder study area 

 

2.2. Data 

In this study, Sentinel-1 and Sentinel-2 NDVI images based on date matching constitute the main 

part of the model training data, and the remaining auxiliary data include crop identification maps 

and year and week information. Parcel boundary maps are employed to assist in generating 

parcel-level NDVI time series for each crop. Cropmarkers reference data is used to validate the 

results obtained by the adjusted Cropmarkers algorithm on the reconstructed NDVI time series. 

2.2.1. Satellite data 

Sentinel-1 data 

Sentinel-1 is a mission initiated by the European Space Agency (ESA) in 2014, aimed at providing 

all-weather, high-resolution Synthetic Aperture Radar (SAR) surface monitoring data. The 

Sentinel-1 constellation includes two satellites, Sentinel-1A and Sentinel-1B (not operational since 

December 2021), positioned in orbits at an altitude of 698 kilometers. They have a phase 

difference of 180 degrees and revisit the same area every 12 days. Sentinel-1 provides SAR 

observation data in the C-band (5.5 cm wavelength) with dual polarization, with a single-look 

spatial resolution in the interferometric wide swath mode of about 4 x 23 meters in the ground 

range and azimuth directions, respectively. The Sentinel-1 data utilized in this study, including 

backscatter images, coherence images, and incidence angle maps, are provided by WENR. 

Backscatter refers to the strength of the radar signal returned to the radar receiver after 

interacting with the Earth surface. Its magnitude depends on the structure and moisture of the 

Earth surface, as well as the wavelength, polarisation and incidence angle of the SAR system. 

Thus backscatter images can be used to identify surface features, land cover types, and monitor 

surface changes. For backscatter images, WENR obtained Single Look Complex (SLC) data and 

processed them using ESA SNAP and GDAL. The processing steps included applying precise orbit 

files, co-registration, calibration, multi-looking using a 5 x 1 window, terrain correction, and linear 

to decibel (dB) conversion. Finally, dual-polarization (VH, VV) backscatter images are obtained.  
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Coherence images were generated from two complex-valued SAR images acquired 12 days apart 

over the same area. They reflect the temporal stability of the Earth surface, playing an important 

role in monitoring surface changes. The coherence ranges from 0 to 1, where a coherence of 1 

indicates complete similarity between the two images, while a coherence of 0 indicates complete 

dissimilarity. The processing steps included applying precise orbit files, co-registration, calibration, 

coherence estimation using a 19 x 4 window, and terrain correction. Finally, all strip areas from 

the same overpass were merged into a single coherence image with a spatial resolution of roughly 

60 meters. 

As the training data of the model included data from two adjacent orbits from the descending 

pass, this study also used the local incidence angle map. It contained information about the angle 

at which radar waves interact with the Earth surface at each pixel location in SAR images. The 

local incidence angle map was derived by WENR based on the DEM normals, taking into account 

the local slope calculated from the reference DEM. 

Sentinel-2 data 

The purpose of the Sentinel-2 mission is to provide global coverage of high-resolution 

multispectral imagery with a high revisit frequency, enhancing the continuity of multispectral 

imagery provided by the French SPOT satellite series and providing data for further observation 

products (Spoto et al., 2012). The Sentinel-2 constellation comprises two satellites, Sentinel-2A 

and Sentinel-2B, launched as part of the Copernicus program in June 2015 and March 2017, 

respectively, to collect spectral reflectance data of the Earth surface. With a revisit period of ten 

days at the equator for each satellite, the Sentinel-2 constellation can observe the Earth every 

five days (Drusch et al., 2012).  

This study utilized NDVI images provided by WENR. After atmospheric correction of Sentinel-2 

data, WENR calculated NDVI based on the near-infrared and visible red bands and obtained NDVI 

images with a resolution of 10 meters. In cases where cloud cover is present in the images, 

regions with low cloud cover ratios are filtered out. If there is too much cloud coverage, experts 

determine whether to process the images. Generally, images with cloud cover exceeding 

approximately 95% are not processed. 

2.2.2. Parcel boundary map and crop identification map 

The Parcel Boundaries map contains information on parcel boundaries and crop type in the 

Netherlands. It is based on the Basis Registratie Percelen (BRP), which is the Dutch equivalent of 

the EU mandatory Land Parcel Information System (LPIS). 

Due to the varying proportions of pixels representing different crops in the training data, the 

model may perform poorly on crops with fewer training data. To mitigate this effect and help the 

model in better identifying each crop, this study created a crop identification map based on the 

"GEWASCODE" field in the Parcel boundary map (Figure 3). Parcels with the same crop type are 

uniquely identified by a specific value.  
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Figure 3. Crop Identification map of Flevoland for 2022 as used in this study 

 

2.2.3. Year and week information 

Since the training dataset of this study includes Sentinel data from multiple years, some factors 

such as seasonality and weather conditions may lead to overall differences between data from 

different years and dates. To account for this during model training, this study added year and 

week information in each set of training data, in the form of dummy value images.  

2.2.4. Cropmarkers reference data 

The Cropmarkers reference data contains information about key growth stages and harvest times 

of crops within each parcel in the Netherlands throughout the year. This data is obtained through 

the application of the Cropmarkers algorithm (Groenmonitor, n.d.) on NDVI time series and radar 

coherence time series. WENR hosts a website (https://www.groenmonitor.nl/) containing NDVI 

time series for each crop parcel within the Netherlands. WENR applies the Cropmarkers algorithm 

to these time series as well as to the coherence time series generated from Sentinel-1A and 1B, 

thereby estimating the dates of several key points in the crop growth cycle. In this study, this 

reference data is utilized to validate the results obtained from the adjusted Cropmarkers algorithm 

applied to the reconstructed NDVI time series. 

2.3. Methods 

2.3.1. Model training 

2.3.1.1 Model structure 

This study uses a model with a U-net architecture (Figure 4). The U-net model is a well-established 

model used for pixel-wise regression and semantic segmentation, widely applied in the field of 

remote sensing (Fan et al., 2022). The U-net model features an encoder-decoder structure. The 

encoder is responsible for extracting and compressing valuable features from the input data. It 

consists of multiple sets of 3x3 convolutional layers, followed by Rectified Linear Unit (ReLU) 

activation functions applied element-wise to each feature. Between each set of convolutional 

layers, 2x2 max-pooling operations are employed to downsample the features, reducing the 

spatial resolution of the data while doubling the number of channels. The decoder, on the other 

hand, generates the final output based on the extracted features. Similar to the encoder, it also 

consists of multiple sets of 3x3 convolutional layers. However, after each set, the decoder 

performs upsampling on the current feature set while halving the number of channels, aiming to 

restore the spatial resolution of the features lost during the encoding phase. 
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One characteristic of this model is the presence of skip connections between the encoder and 

decoder. These connections copy features from different parts of the encoder and merge them 

into symmetric parts of the decoder. This means that subsequent convolutional layers can operate 

on features from both the encoder and decoder. In semantic segmentation, the features of 

decoder contain rich semantic information, while the encoder contains richer spatial information. 

Therefore, their combined application can lead to precise pixel-level segmentation. When this 

model is applied to pixel-wise regression tasks, it also benefits from this advantage. 

 

Figure 4. U-net structure (Ronneberger et al. (2015)) 

 

2.3.1.2 Training data groups 

To verify the impact of different input data on model training, this study designed a total of 9 

training datasets and trained the model accordingly. The composition of each dataset is shown in 

Table 1, where NDVI images serve as the dependent variable, and SAR images along with other 

auxiliary data serve as independent variables. The trained models can be categorized into three 

types based on the SAR data used: 

• The first type includes Model M3. This model solely utilized single-day dual-polarization 

backscatter images and an incidence angle map as input layers. 

• The second category includes models M5, M51, M52, and M53. As input for these models, 

backscatter data from two dates (current date and 12 days prior) were utilized to provide 

temporal information. Model M5 was trained using backscatter images and an incidence 

angle map as input. Additionally, the crop identification map, and year and week 

information were either fully or partially added as auxiliary data, resulting in the training 

of models M51, M52, and M53. 

• The third category includes models M7, M71, M72, and M73. In addition to the data used 

in the second category, dual-polarization 12-day coherence images were provided as 

input. Model M7 was trained using backscatter images (current date and 12 days prior), 

12-day coherence images, and an incidence angle map. Similarly, crop identification map 

and year and week information were fully or partially added as additional input, leading 

to the training of models M71, M72, and M73. 
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Table 1. Models trained with different image groups 

 

 

2.3.1.3 Optimization and training 

For model training, this study employs the Adam method as the optimizer. Adam is a stochastic 

gradient descent optimization algorithm based on adaptive estimation of low-order moments, 

which offers advantages such as high computational efficiency and low memory requirements, 

making it suitable for problems involving large datasets and multiple parameters (Kingma & Ba, 

2014). The initial learning rate is set to 0.001, and the learning rates for each parameter are 

adaptively adjusted based on the gradients. Mean Squared Error (MSE) is used as the loss function, 

and Mean Absolute Error (MAE) is used as the metric to evaluate the model performance (Roßberg 

& Schmitt, 2023). Their formulas are as follows: 

𝑴𝑺𝑬 =
𝟏

𝑵
∑ (𝒚𝒊 − 𝒚�̂�)

𝟐(𝑵−𝟏)
𝒊=𝟎      (2) 

𝑴𝑨𝑬 =
𝟏

𝑵
∑ |𝒚𝒊 − 𝒚�̂�|

(𝑵−𝟏)
𝒊=𝟎      (3) 

Before training, this study conducted 5-fold cross-validation on each set of training data to 

determine the most suitable batch size and number of epochs. The experimental groups for batch 

size were set to 16, 32, and 64, while the number of epochs was set to 150. Subsequently, each 

model was trained based on its cross-validation results, and the optimal parameters selected are 

presented in Table 2. 

Table 2. Parameters of training the models tested in this study. 

(For model explanation see Table 1.) 

Models Batch Size Number of epochs 

M3 32 50 

M5 32 70 

M7 32 70 

M51 32 80 

M52 32 80 

M53 32 70 

M71 32 140 

M72 32 100 

M73 32 100 



 

10 

 

 

2.3.2. Data preparation and NDVI prediction 

In this study, the training dataset contains all available data in the region of the Netherlands from 

2016-2022. All images used for training are divided into 128x128 pixels to balance training 

efficiency and memory usage. For year and week information, the year dummy value image 

contains values representing the years starting from 2010, while the week dummy value image 

contains values representing the weeks within the current year starting from January 1st.  

To ensure training effectiveness，backscatter images, crop identification map and year and week 

information are all normalized between 0 and 1. The formulars are as follows： 

𝑩𝒂𝒄𝒌𝒔𝒄𝒂𝒕𝒕𝒆𝒓𝒏𝒐𝒓𝒎 =
𝑩𝒂𝒄𝒌𝒔𝒄𝒂𝒕𝒕𝒆𝒓+𝟑𝟓

𝟓𝟎
                            (4) 

𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆_𝒂𝒏𝒈𝒍𝒆𝒏𝒐𝒓𝒎 =
𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒄𝒆_𝒂𝒏𝒈𝒍𝒆−𝟐𝟎

𝟗𝟎
      (5) 

𝑪𝒐𝒅𝒆𝒏𝒐𝒓𝒎 =
𝑮𝑬𝑾𝑨𝑺𝑪𝑶𝑫𝑬

𝟕𝟎𝟎𝟎
                    (6) 

𝒀𝒆𝒂𝒓𝒏𝒐𝒓𝒎 =
𝒀𝒆𝒂𝒓

𝟐𝟎
      (7) 

𝑾𝒆𝒆𝒌𝒏𝒐𝒓𝒎 =
𝑾𝒆𝒆𝒌

𝟔𝟎
      (8) 

The pixel count of various major crops in the training dataset was checked, as shown in Figure 5. 

Meanwhile, the pixel count of crops in the training dataset for each month was also checked to 

determine the temporal distribution of the data. Taking maize as an example, its pixel distribution 

is shown in Figure 6. 

 

Figure 5. Number of pixels per crop type in the training dataset 
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Figure 6. Maize pixel count in the training dataset by month 

The dataset used for prediction included all available Sentinel-1 images from the year 2022 along 

with auxiliary data (crop identification map and year and week data). Before prediction, all images 

were normalized to a range of 0 to 1 and cropped to the Flevopolder region. Subsequently, the 

images were segmented into 128*128 pixel patches with a stride of 64 pixels. To reduce the 

memory load, 1000 batches were processed at a time for prediction. After predicting NDVI using 

the trained model, the NDVI values of all patches were summed up at their respective positions, 

and the mean was calculated between the patches to obtain the final NDVI, resulting in the 

predicted NDVI images.  

2.3.3. Time series creation 

To investigate the performance of each model in reconstructing NDVI time series, several major 

crops within the study area were selected, and their parcel-level NDVI time series were 

reconstructed. The crops can be classified into three categories: 

• Full canopy crop: This category includes sugar beet, silage maize, consumption potato, 

and winter wheat. These crops have a fully developed canopy that covers the ground 

without significant visible bare soil after a certain period of growth. Winter wheat is a 

winter crop typically sown in late September and harvested around June or July of the 

following year (around the 200th day of year), while the other crops are summer crops 

planted in April or May and harvested around August or September of the same year. 

• Half canopy crop: This category includes tulip and onion. These crops have a canopy that 

does not fully cover the ground throughout the growth cycle, resulting in some areas of 

bare soil. Both tulip and onion are summer crops, but tulips have an earlier growth cycle 

compared to other summer crops (approximately between the 80th and 200th day of the 

year). 

• Grassland: This category includes both permanent and temporary grasslands. The 

primary agricultural activity in grassland parcels is mowing events. Since mowing only 

removes a certain length of grass rather than all of it, there is a persistent canopy cover 

in grassland parcels over time. 

The first step in reconstructing the NDVI time series is to select and extract parcels of different 

crops within the study area. The parcel boundary map provided by WENR contains information 

about the land use type and crop species of each parcel, which can be used to extract parcels for 

each crop. For full canopy and half canopy crops, this study extracted parcels based on the 

GEWASCODE field for each crop. For grassland, since there is not much difference between the 
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two types of grassland, this study extracted the parcels of both into one category based on the 

CATEGORY field. 

For each parcel, this study calculated the average NDVI value of all pixels corresponding to the 

area in the NDVI image and stored it as the NDVI value for that parcel. By performing this 

operation on all predicted NDVI images, parcel files containing NDVI values for multiple dates 

were created for each crop. Subsequently, NDVI time series for each parcel were generated based 

on this information. This study also performed this operation on the reference Sentinel-2 NDVI 

images to generate the reference NDVI time series. During the experiments, it was observed that 

the time series generated by combining data from two Sentinel-1 overpasses exhibited numerical 

fluctuations compared to those generated using data from a single overpass. To ensure the quality 

of the reconstructed time series, this study only used Sentinel-1 data from the central overpass 

to reconstruct the NDVI time series. 

2.3.4. Validation 

2.3.3.1 Validation on average time series 

For the same type of crop, there is generally a relatively uniform growth cycle. To assess the 

overall quality of the reconstructed NDVI time series, the predicted NDVI time series and the 

reference NDVI time series of all parcels were averaged. Subsequently, this study performed linear 

interpolation on the average time series and assessed the quality by calculating R-squared (R2), 

Root Mean Squared Error (RMSE) and percent bias (PBIAS). However, for grassland, due to 

variations in the timing and frequency of mowing across parcels throughout the year, averaging 

the time series would not be meaningful. Therefore, this study selected the reconstructed NDVI 

time series for several plots and directly compared them with reference NDVI to evaluate their 

performance. 

R2 is a metric used to assess the goodness of fit of a model, with the value indicating the fraction 

of the observed variance in the data that is explained by the model. A value closer to 1 indicates 

a better fit of the model to the data, while negative values indicate that the average reference 

value provides a better prediction than the model. Its formula for calculation is as follows: 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1      (9) 

  𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1      (10) 

     𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
       (11) 

𝑦𝑖 = NDVI value of the reference observation 

ŷi = NDVI value of the prediction of observation 

y̅ = mean of yi 

RMSE is an error metric that quantifies the combined effect of random and systematic effects 

(bias). It is commonly used to assess the estimation performance using a single metric. It can be 

calculated using the following formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1          (12) 

PBIAS can be used to measure the average tendency of simulated values to be greater than or 

less than observed values. The optimal value is 0, with positive values indicating overestimation 

and negative values indicating underestimation. Its formula is as follows: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (�̂�𝑖−𝑦𝑖)𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

× 100%         (13) 
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2.3.3.2 Validation on the results of adjusted Cropmarkers algorithm 

Cropmarkers algorithm is a Python algorithm developed by WENR for cropland monitoring. It 

imports NDVI and VV coherence time series of all parcels in the Netherlands and estimates 

important arable operation dates such as ploughing, seeding, and harvest. Additionally, the 

algorithm predicts the dates of key nodes in the crop growth cycle, including emergence, closure, 

and transition (Figure 7), by fitting an S-curve to the NDVI time series. The algorithm distinguishes 

between summer and winter crops. Winter crops include winter wheat, winter barley, and triticale, 

while the rest are summer crops. The algorithm is not applicable to vegetables, fruits, grasslands, 

and bare soil. 

 

Figure 7. Example application of applying the Cropmarkers algorithm to a beet field (Groenmonitor, n.d.) 

This study modified the Cropmarker algorithm to only require the NDVI time series of each parcel 

as input, without the need for coherence time series. The modified algorithm is applied to the 

reconstructed NDVI time series and detects the dates of emergence, closure, transition, and 

harvest for summer crops, as well as the harvest date for winter crops. Where closure indicates 

that the crop canopy has fully covered the soil, and transition means the critical point when the 

crop changes from growth to fruit development. After this node until the maturity or harvest of 

the crop, all solar energy will be used for fruit development. The details and decision processes of 

the algorithm can be found in Appendix 7.1. 

This study validates the results obtained using the adjusted Cropmarkers algorithm by comparing 

them with the Cropmarkers reference data provided by WENR. After matching the results of each 

parcel with the reference data based on parcel number, Mean Absolute Error (MAE), RMSE and 

PBIAS are calculated to evaluate the results.  
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3. Results 

3.1. Comparison between predicted NDVI images 

Figure 8 presents the NDVI images predicted by models M3, M5, and M7 using Sentinel-1 SAR 

data from August 3, 2022, alongside the reference Sentinel-2 NDVI image. The grayscale range 

of the images is 0-1, with lighter colors indicating higher NDVI values. From the figure, it can be 

observed that the spatial details of the images predicted by model M3 are severely lost, resulting 

in overall poor prediction quality. Models M5 and M7 demonstrate generally good prediction quality. 

This indicates that multi-temporal backscatter images provide more effective information for 

model learning compared to single-day backscatter images, while the addition of coherence data 

does not significantly improve the predictive performance of the model at the spatial scale. Upon 

inspection, the predicted images by model M3 are generally blurry and fail to distinguish between 

different NDVI values among parcels, showing generally poor quality compared to the results of 

the other models. Therefore, in this study, model M3 is excluded, and the remaining eight models 

are chosen for the reconstruction of the NDVI time series. 

 

Figure 8. NDVI images predicted by model M3, M5, M7 and the reference NDVI image (from left to right) 

3.2. Validation on reconstructed NDVI time series 

3.2.1. Full canopy crop 

Figure 9 displays the comparison between the reconstructed average NDVI time series based on 

model M51 and the reference NDVI time series. It can be observed that while the reconstructed 

NDVI time series exhibit some numerical fluctuations during spring and winter, they overall 

capture the general trend of NDVI values throughout the growing cycle of full canopy crops well. 

For sugar beet, the reconstructed time series closely aligns with the reference time series in terms 

of the timing, magnitude, and peaks of NDVI growth and decline. For potato (consumption) and 

winter wheat, the model effectively predicts NDVI during the crop growth period and peak NDVI 

period as they mature. However, there is some prediction error during the crop harvest period, 

characterized mainly by a delayed NDVI decrease and overall higher predicted values compared 

to the reference time series. For maize, the peaks of reconstructed NDVI time series are lower 

than the reference NDVI time series, and the model also exhibits some errors in predicting the 

decline phase of NDVI. 
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Figure 9. NDVI time series of full canopy crop reconstructed by model M51 (From left to right and top to 
bottom, the sequence is sugar beet, potato, winter wheat and maize) 

Table 3 displays the quality assessment results of the average NDVI time series of full canopy 

crops reconstructed by the eight models in this study. It is observed that the models perform best 

in predicting sugar beet time series, with all models achieving R2 values of around 0.9, indicating 

a high correlation between the reconstructed and reference time series, and a low RMSE of 0.9. 

The potato and maize time series have average R2 values around 0.75 and similarly low RMSE. 

Winter wheat time series exhibit lower R2 values compared to the other three crops, averaging 

only around 0.6, but the RMSE is not significantly higher than that of the other three crops, and 

the PBIAS is comparable. This may be due to the more pronounced delay in the decline of NDVI 

for winter wheat. It is worth noting that all models exhibit positive PBIAS values for each crop, 

indicating an overall tendency for models to overestimate the NDVI time series. 

Among all the models, NDVI time series predicted by model M51 exhibit the highest overall R2 

and the smallest RMSE and PBIAS. Compared to Model M5, its overall performance is better, 

indicating that the combination of crop identification maps and year and week information can 

provide more useful data for the U-net model. Similarly, model M71 shows better overall 

performance compared to model M7, which confirms this point. However, models M52 and M53 

perform worse than model M5. Compared to model M7, models M72 and M73 do not demonstrate 

overall better metrics as well, indicating that the separate use of crop identification maps and year 

and week dummy value images in model training does not provide much benefit for full canopy 

crops. Compared to models M7, M71, M72, and M73, models M5, M51, M52, and M53 generally 

have better evaluation metrics, showing more accurate NDVI prediction capabilities. This also 

suggests that the addition of 12-day coherence images does not help the U-net model capture 

more useful information during training. 

Table 3. Validation of average NDVI time series for full canopy crop by each model 

Crop type 

Models 

M5 M7 M51 M52 M53 M71 M72 M73 

Matrices 

Sugar beet 

R2 0.90 0.88 0.92 0.88 0.91 0.91 0.90 0.88 

RMSE 0.08 0.09 0.08 0.09 0.08 0.08 0.08 0.09 

PBIAS 3.66 7.83 6.93 13.47 9.56 10.66 11.59 7.28 

Consumption 

Potato  

R2 0.81 0.67 0.87 0.76 0.68 0.78 0.76 0.7 

RMSE 0.1 0.13 0.08 0.11 0.12 0.1 0.11 0.12 
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PBIAS 15.64 18.67 10.73 20.53 25.29 19.87 20.72 23.1 

Winter wheat 

R2 0.57 0.57 0.65 0.54 0.53 0.65 0.67 0.53 

RMSE 0.12 0.12 0.11 0.13 0.13 0.11 0.11 0.13 

PBIAS 9.1 10.67 7.01 12.55 8.55 10.81 8.28 9.77 

Silage maize  

R2 0.82 0.8 0.77 0.73 0.69 0.79 0.75 0.7 

RMSE 0.09 0.1 0.11 0.12 0.12 0.1 0.11 0.12 

PBIAS 9.67 14.44 9.39 19.1 19.93 16.42 13.07 18.58 

 

3.2.2. Half canopy crop 

Figure 10 depicts the comparison between the time series of half canopy crops reconstructed by 

Model M51 and the reference time series. In the tulip time series, only the first growth cycle 

corresponds to the growth cycle of tulips. It can be observed that the trend of NDVI changes can 

still be predicted relatively well. However, compared to full canopy crops, the time series of half 

canopy crops generally exhibit overestimation during the crop growth cycle. Additionally, the time 

series of onions also show a noticeable delay in the decline of NDVI. 

 

Figure 10. NDVI time series of half canopy crop reconstructed by model M51 (From left to right, the 
sequence is tulip and onion) 

Table 4 presents the quality assessment results of the NDVI time series reconstructed by the eight 

models for half canopy crops in this study. It can be observed that compared to full canopy crops, 

the models achieved relatively lower R2 and higher PBIAS and RMSE values in predicting the time 

series of half canopy crops. This indicates that the predicted NDVI time series have insufficient 

explanatory power for the reference time series and overall exhibit a more pronounced tendency 

to overestimate. 

Comparing model M5 with M51, and model M7 with M71, it can be observed that models M51 and 

M71, which utilize crop identification map and year and week information, achieve a significant 

improvement in R2 compared to M5 and M7. Additionally, there is a certain decrease in RMSE and 

PBIAS, indicating an improved predictive capability of the models for NDVI. Models M52 and M72 

demonstrate better ability in predicting onion time series compared to M5 and M7, however, there 

is no improvement in tulip prediction, suggesting that adding crop identification map solely only 

helps in predicting onion time series. On the other hand, models M53 and M73 show worse 

performance in comparison to M5 and M7, indicating that using year and week dummy value 

images alone does not enhance the models ability for NDVI time series prediction of half canopy 

crops. Comparing models M5, M51, M52, M53 with models M7, M71, M72, M73, it can be observed 

that similar to full canopy crops, the addition of 12-day coherence images does not significantly 

improve the ability of the U-net model to predict NDVI time series for half canopy crops. 
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Table 4. Validation of average NDVI time series for half canopy crop by each model 

Crop type 

Models 

M5 M7 M51 M52 M53 M71 M72 M73 

Matrices 

Tulip 

R2 0.29 0.35 0.56 -0.03 -0.12 0.51 0.35 0.26 

RMSE 0.12 0.11 0.09 0.14 0.15 0.1 0.11 0.12 

PBIAS 22.91 21.66 18.97 32.33 31.78 20.78 25.42 25.19 

Onion 

R2 0.2 -0.01 0.53 0.67 -0.04 0.4 0.35 -0.02 

RMSE 0.13 0.14 0.1 0.08 0.15 0.11 0.11 0.14 

PBIAS 33.25 40.44 22.19 9.79 41.09 26.72 30.77 43.42 

 

3.2.3. Grassland 

Figure 11 illustrates two parcel-level NDVI time series reconstructed based on models M5 and 

M51. It can be observed that the reconstructed NDVI time series exhibit significant discrepancies 

compared to the reference NDVI time series, and model M51 does not perform better than model 

M5. In the reference time series, there are multiple rapid declines in NDVI, most of which are 

caused by mowing events. However, these events cannot be well predicted in the reconstructed 

time series. Additionally, the reconstructed NDVI time series exhibit some numerical fluctuations, 

which pose a risk of being misinterpreted as mowing events in practical applications such as 

mowing detection using NDVI time series. Therefore, the current models trained in this study have 

limited applicability to grasslands. 

 

Figure 11. Two parcel NDVI time series of grassland reconstructed by model M5 (upper) and M51 
(lower) 

 

3.3. Validation on results of Cropmarkers algorithm 

Figure 12 shows the MAE, RMSE, and PBIAS of the reconstructed NDVI time series of full canopy 

crop obtained after applying the Cropmarkers algorithm for each model. Detailed results are 

provided in the appendix 7.2. From the figure, it can be observed that there is not much difference 

in the errors obtained when detecting the occurrences of crop emergence, closure, and transition 

for each crop type. The average deviations for emergence and closure predictions range between 

5-10 days. For transition predictions, it ranges between 10-15 days. There is a tendency for 

overestimation in estimating the emergence date and underestimation for closure and transition 
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dates. In predicting the occurrence of harvest, the results are varied among crop types. The 

reconstructed NDVI time series for maize and winter wheat perform better on Cropmarkers 

compared to the other two crops. Maize shows a very small PBIAS, indicating minimal bias in the 

prediction results, with errors primarily originating from random error sources. Winter wheat, on 

the other hand, exhibits a higher positive PBIAS, indicating a tendency to overestimate the harvest 

date. Sugar beet and potato showed worse results, with both having a small PBIAS and higher 

MAE and RMSE, which indicated that the errors were mainly random. None of the models exhibits 

a consistently stronger performance over the others. 

 

Figure 12. Validation results of Cropmarkers algorithm on full canopy crop 
 

Figure 13 shows the results for half canopy crops. It can be observed that the overall performance 

of the reconstructed NDVI time series for tulip is notably worse than that of onion, with high errors 

in the detection of the four phenological stages. And based on the obtained PBIAS values, there 

are large biases in the predictions.  

Figure 14 illustrates a comparison of the results distribution for the crop emergence predicted by 

the Cropmarkers algorithm based on the reconstructed time series for tulip and onion. It can be 

observed that a portion of the results shows significant deviations. 
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Figure 13. Validation results of Cropmarkers algorithm on half canopy crop 

 

Figure 14. Scatter plot of Cropmarkers results for half canopy 

(left: tulip, right: onion. X-axis is predicted Doy, Y-axis is reference Doy. The color of points represents 
probability density to show point distribution) 
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4. Discussion 

4.1. Results for full canopy crops 

In the results section, this study discusses the applicability of various trained models in 

reconstructing NDVI time series. For full canopy crops, the U-net model yields good prediction 

results. The NDVI time series during crop growth can be accurately simulated, demonstrating 

good applicability. Model M51 achieved the best evaluation metrics, indicating that combining crop 

identification, year, and week information provides consistently good results, while the addition 

of 12-day coherence images did not benefit the model. 

In the reconstructed NDVI time series, it can be observed that the model exhibits some bias in 

predicting NDVI during the NDVI declining phase of the crop growth cycle. This problem is most 

evident for maize, potato, and winter wheat. One possible reason for this is the ripening process 

of the crops. As the fruits gradually mature, the leaves of the crops begin to age, accompanied 

by a reduction in chlorophyll and water content, leading to a decrease in the green vegetation 

cover and consequently a decrease in NDVI values in Sentinel-2 imagery. During this stage, the 

vegetation canopy structure and moisture does not change significantly, resulting in small changes 

in Sentinel-1 backscatter images and 12-day coherence images, which are sensitive to structural 

changes. This leads to the insignificant changes in the reconstructed NDVI time series. Chen et al. 

(2023) demonstrated that SAR signals become unstable and noisy during the maturation stage of 

crops, which may also contribute to this problem. When the predicted NDVI begins to decline, it 

often indicates the maturity of crop physical structure or the start of harvesting. 

In addition, the reconstructed NDVI time series of maize has peaks that are lower than the 

reference NDVI time series. This is probably due to the uneven distribution of pixel counts for 

maize fields in the training dataset across different months. Figure 6 illustrates the distribution of 

maize pixels in the training dataset for each month, showing a significantly lower pixel count in 

July compared to other months of the growing season. The underestimation of NDVI values mainly 

occurs in July (Figure 9), supporting this hypothesis. 

Through the PBIAS values in Table 3, it can be observed that almost all models exhibit positive 

PBIAS across each crop type, indicating a tendency for overestimation in the reconstructed time 

series. One possible reason for this phenomenon is the relative instability of the predictive 

performance of the model outside the crop growth cycles. During spring and winter, precipitation, 

freezing, flooding, and other factors may induce changes in soil moisture and structure, causing 

fluctuations in radar imagery, which could in turn lead to variations in NDVI predicted by the 

model. As most parcels are bare during these periods, actual NDVI levels are low, so the 

fluctuation of NDVI appears as an overestimation. Additionally, the model overestimates during 

the period of NDVI decrease, which is a contributing factor. 

Based on the results obtained from the application of the Cropmarkers algorithm, the 

reconstructed NDVI time series in this study demonstrate relatively good performance in 

predicting the occurrences of emergence, closure, and transition. When predicting harvest 

occurrence, there are differences in the results obtained for different crops. Sugar beet and potato 

show relatively large random errors, indicating that while the model performs well on average 

time series, there are still differences in the predictive quality of NDVI time series for different 

parcels. Winter wheat and maize have overall small errors, but the composition of errors is 

different. Error of maize mainly comes from random errors with very small bias, demonstrating 

the best performance among all crops. On the other hand, results of winter wheat show a tendency 

for overall overestimation, possibly due to the more pronounced delay in NDVI decline time in the 

reconstructed NDVI time series.  

4.2. Results for half canopy crops 

The model trained in this study performs overall worse in predicting the NDVI time series of half 

canopy crops compared to full canopy crops. The predicted NDVI is significantly higher than the 

reference NDVI time series. This is probably due to that half canopy crop parcels are less 

represented in the training data. Figure 5 illustrates the number of pixels for each crop parcel in 
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the training dataset, and it can be seen that the tulip and onion only take up a very small portion 

of the training data. As a result, the U-net model mostly captures the relationship between NDVI 

and SAR data of full canopy crops during training, while lacking sufficient training data for half 

canopy crops. When predicting NDVI, the model interprets the changes in SAR image values for 

half canopy crop parcels based on the relationship between NDVI and SAR data for full canopy 

crops. Since full canopy crops generally have higher NDVI values throughout the growth cycle, 

this leads to an overestimation of the NDVI time series for half canopy crops by the model. Model 

M51 still achieves the best evaluation metrics for the reconstructed NDVI time series, indicating 

that the auxiliary data such as crop identification maps added to training dataset helps the U-net 

model distinguish between different crops to some extent, contributing to addressing this issue. 

However, more effective solutions are still needed. The 12-day coherence data still does not 

provide benefits for the model training. 

On the results obtained using the Cropmarkers algorithm, half canopy crops generally perform 

worse compared to full canopy crops, which is attributed to the insufficient training of the model 

on half canopy crops. Tulip results show a high systematic error, as can be seen in Figure 14, 

where results for some parcels are underestimated. Since tulips have a relatively early growth 

cycle compared to other crops, after the harvest of tulips, other types of crops may be planted in 

the parcels. In the Cropmarkers reference data, the recorded timings for phenological stages for 

these parcels might belong to the crops planted after tulips (for instance, most of the reference 

dates for incorrectly predicted emergence dates are around day 225, corresponding to the start 

of the second growth cycle in Figure 10), leading to this issue. 

4.3. Results for grasslands 

From the first parcel NDVI time series (left) in Figure 11, it can be observed that the NDVI of this 

parcel increases from around 0.3 to above 0.8 from March to May. One possible reason for this 

phenomenon is that the parcel was previously used for other purposes and was only converted to 

grassland in 2022. The period from March to May is when grass grows to its normal canopy 

coverage. During this process, the model performs well in predicting NDVI changes. In the later 

part of that year, the NDVI remains relatively high, indicating the persistent presence of grassland 

canopy coverage. The predictive performance of models during this period is poor. The main 

agricultural activity in the grassland parcel is mowing, which only cuts a certain length of grass 

rather than all of it, resulting in canopy cover always being present. Compared to the changes in 

surface structure caused by transitioning from bare soil to significant vegetation cover, the 

changes caused by mowing are relatively small, and the grassland canopy structure remains 

relatively similar before and after mowing. This may have brought difficulties for the learning and 

discrimination of the U-net model, leading to this problem. 

4.4. Comparison with literature 

Mohite et al. (2020) employed tuned Support Vector Regression (SVR) and tuned Random Forest 

Regression (RFR) to reconstruct the NDVI time series based on Sentinel-1 data for rice, cotton, 

banana, and turmeric crops. The first three crops are full canopy crops, while turmeric is a half 

canopy crop. In their study, the best performing RFR achieved R2 values of 0.79, 0.76, 0.69 for 

rice, cotton, banana respectively, with RMSE values of 0.08, 0.09, 0.11, and obtained an R2 value 

of 0.71 with an RMSE of 0.12 for turmeric. Compared to this study, the method employed in my 

study yielded overall better R2 results for full canopy crops, demonstrating better performance 

over regular machine learning algorithms. However, for half canopy crops, my results were worse 

than that of this study, which is due to the insufficient training of models on half canopy crops. 

Chen et al. (2023) integrated SAR raw data features, various radar vegetation index features, and 

temperature-related data to regress NDVI time series for maize and soybean using a random 

forest model. Across the reconstructed NDVI time series covering the entire growth cycle, this 

method achieved an R2 of 0.725 and RMSE of 0.145 for maize, and an R2 of 0.437 and RMSE of 

0.269 for soybean, which is a half canopy crop. Compared to this study, my method yielded better 

results for maize and similarly performed well for the half canopy crop, demonstrating better 

applicability. Notably, this study demonstrated that both radar-related vegetation indices, as well 

as temperature-related data, can provide gains for model training, highlighting the potential of 

using multisource data to improve model performance. 
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In studies employing deep learning models, image-based NDVI prediction tends to focus more on 

spatial scale validation, with less emphasis on the temporal scale. While time-series-based NDVI 

prediction are more validated on the temporal scale. Zhao et al. (2020) utilized the MCNN-Seq 

model based on SAR time series to predict NDVI time series, achieving R2 values of 0.9409, 0.9824, 

0.9157, 0.9749, and 0.7018 for onion, winter wheat, maize, sugar beet, and alfalfa respectively. 

Compared to their study, the results obtained in my research were relatively worse. However, it 

is worth noting that their validation was field-specific, thus the performance in broader areas 

remains uncertain. Garioud et al. (2021) employed the SenRVM model with a recurrent neural 

network (RNN) architecture, also regressing NDVI time series based on SAR time series. They 

trained the model on a single-class dataset containing only crop data, achieving an average R2 of 

0.95 and RMSE of 0.06 for predicted NDVI time series of crop parcels, which are better than my 

results as well. Through these comparisons, time series-based methods may have an advantage 

in capturing temporal features within complete time series, leading to better overall prediction 

performance. However, compared to the method used in this study, it lacks flexibility and cannot 

perform real-time supplementation of NDVI time series. 

4.5. Suggestions for future development 

This study only validated the reconstructed NDVI time series of various crop plots within the study 

area for the year 2022. As factors such as overall weather conditions and moisture levels may 

vary across different years and could influence the results, it is necessary to validate the methods 

used in this study across multiple years. Additionally, expanding the study area further would help 

to further verify the generalizability of the U-net model. 

The combined use of multi-source data in training deep learning models has shown great potential 

for improving model performance. Therefore, it is advisable to jointly use different data sources 

in the training dataset. For example, adding RGB images may enhance the prediction of the U-

net model during crop ripening stages, and vegetation index data related to radar may help the 

model better learn the relationship between SAR data and NDVI, etc. Additionally, incorporating 

data from more temporal phases might enable the model to capture more information on time 

scales during training, thereby improving overall prediction performance. So, this is also a point 

worth trying. 

In this study, the overall prediction performance of the U-net model on NDVI time series of half 

canopy crops was poor due to their low representation in the training data. Therefore, future 

research should focus on balancing the proportions of different crop parcels in the training data. 

It is also worth trying to create separate training data for different types of crops, which may 

improve the model performance when applied to specific crop types. It is also important to ensure 

that the training data is evenly distributed on the time scale during the crop growth cycle to avoid 

situations where predicted values are lower than reference values during certain periods. 

 

5. Conclusion 

This study investigated a method for reconstructing NDVI time series based on the U-net model. 

The performance of the trained models on different crops and the influence of different input data 

combinations on the model performance were evaluated. Additionally, the usability of the 

reconstructed time series for detecting crop phenological stages was validated. 

The model performed best on full canopy crops, demonstrating good usability, while the results 

on half canopy crops were relatively poor. This was attributed to the disproportionate 

representation of different crops in the training dataset, leading to insufficient training of the 

model on half canopy crops. Therefore, it is recommended to balance the proportions of different 

crops in the training data to improve model performance. The model showed poor predictive 

performance for grasslands. The change in vegetation canopy caused by mowing, the main 

agricultural activity of grassland, is smaller than the process of other crops from bare soil to crop 

canopy coverage, which makes accurate prediction of the model difficult. Specialized training of 

the U-net model using a training dataset containing only grassland parcels may improve prediction 

quality. 
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In terms of the use of input data, multi-temporal backscatter images significantly improve the 

performance of the model compared to single-day backscatter images, indicating the necessity of 

providing temporal information for model training. However, the joint use of 12-day 

interferometric coherence images did not improve performance. The combined use of a crop 

identification map and year and week data provided an overall improvement in the performance 

of the U-net model, which demonstrates the potential of combining data from multiple sources to 

improve model performance, so this is worthy of further exploration. 

For crop phenological stage detection, the NDVI time series reconstructed by the method in this 

study achieved relatively good results in predicting crop emergence, closure, and transition, with 

varying prediction performance for harvest among different crops. 

In summary, the method used in this study can effectively reconstruct NDVI time series, providing 

valuable information for crop growth monitoring, with great potential for performance 

improvement. With the increasing importance of agricultural production monitoring, it can provide 

rich information for agricultural management, assisting managers in making relevant decisions to 

achieve more efficient and secure agricultural production, thereby contributing to the goal of 

global agricultural output growth. 
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7. Appendix 

7.1. Details and decision processes of the modified Cropmarkers algorithm 

The modified Cropmarkers algorithm takes NDVI time series of all parcels from an area as the 

input. The algorithm begins with data preparation, using a Whittaker filter (Eilers, 2003) to smooth 

the input NDVI time series. It then generates an array “d_NDVI”, containing the differences 

between every two NDVI points, followed by creating the “sum_d_NDVI” array to record 

continuous decreases in NDVI values based on the “d_NDVI” array. The algorithm also creates 

arrays “doy_NDVI” to record the day of year (Doy) of NDVI images and “d_doy” to record the 

intervals between dates. The "lowest_ten" NDVI value with a numerical size of 10% is also 

calculated. 

Crop emergence, closure and transition dates 

For the detection of crop emergence, closure, and transition, the Cropmarker algorithm first 

determines the crop type based on the plot number. If it is a summer crop, it determines whether 

vegetation cover exists in each parcel during the winter (Table 5). The winter status of the parcel 

is then further used to detect the occurrence of ploughing (Table 6). 

Table 5. Winter status judging process 

Step 1 Doy < 100 

Step 2 NDVImean >0.4 else 

Step 3 _ Doy < 50 

Step 4 _ NDVImean >0.4 else 

Winter status Winter green Winter green Winter bare 

 

Table 6. Ploughing detecting process 

Step 1 Doy ≤ 175 

Step 2 If winter status = “winter green” If winter status = “winter bare” 

Step 3 Doy of minimal d_NDVI to  

Doy of minimal d_NDVI + 50 days 

Doy of minimal sum_d_NDVI to  

Doy of minimal sum_d_NDVI + 50 

days 

_ 

Step 4 NDVI_1 <0.35 or (NDVI_1<lowest_ten 

and NDVImean < NDVI_1) 

(NDVI_1=Doy where d_NDVI is 

smallest) 

NDVI_2 <0.35 or 

(NDVI_2<lowest_ten and NDVImean < 

NDVI_2) 

(NDVI_2=Doy where sum_d_NDVI is 

smallest) 

_ 

Step 5 Ploughing date1 = Doy of (d_NDVI)min Ploughing date2 = Doy of 

(sum_d_NDVI)min 

_ 

Step 6 If both ploughing date1 and 

date2 exist 

If only ploughing 

date1 exists 

If only ploughing 

date2 exists 
_ 

Results Ploughing date = ploughing date1 Ploughing date = 

ploughing date2 

No ploughing moment detected 

 

The modified Cropmarker algorithm detects the dates of crop emergence, closure, and transition 

by fitting an S-curve to the NDVI time series. Based on the timing of ploughing, the algorithm 

determines the time range "sfit_x" of the S-curve and the indices "ix" of the data used for 

optimizing functions. The specific conditions and results are presented in Table 7. 
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Table 7. Determination of ix and sfit_x 

Step 1 If ploughing exist else 

Step 2 If Doy of ploughing > 100 else _ 

Step 3 Doy of ploughing to 250 _ _ 

Step 4 If there are more than one peak value in NDVI time series else _ _ 

Step 5 If the peak occurs after the 

ploughing date more than once. 

else _ _ _ 

Results ix = (Doy≥ploughing date) & 

(Doy≤Doy of the earliest peak 

NDVI) 

sfit_x: From (ploughing date -5) 

to (Doy of the earliest peak NDVI 

+5) 

ix = (Doy>ploughing date) & 

(Doy<Doy of the peak NDVI) 

sfit_x: From (ploughing date 

-5) to (Doy of the peak NDVI 

+5) 

ix = (Doy>ploughing 

date) & (Doy<Doy of 

the peak NDVI) 

sfit_x: From 
(ploughing date -5) to 

(Doy of the peak 

NDVI +5) 

ix = (Doy≥100) & (Doy

≤215)&( sum_d_NDVI

≥ -0.15 

sfit_x: From 95 to 220 

ix = (Doy≥100) & (Doy

≤215)&( sum_d_NDVI

≥ -0.15 

sfit_x: From 95 to 220 

 

The Cropmarker algorithm fits an S-curve using a sigmoid function (equation 14). Default, 

minimum, maximum, and standard deviation values are set for each parameter (Table 8). The 

algorithm first uses the Doy and NDVI data at the ix index as the dataset and employs the 

GN_DIRECT_L and LN_COBYLA algorithms from the NLopt library to optimize the parameters, 

aiming to find the optimal fit under the specified constraints. Subsequently, the optimized 

parameter set is used to fit the S-curve, where the date of the first 45-degree point on the curve 

is determined as the date of crop emergence, the date of the second 45-degree point as the date 

of transition, and the optimized parameter a3 as the date of crop closure. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎0 +
𝑎1

(1+𝑒
−

𝑥−𝑎3
𝑎2 )

    (14) 

 

Table 8. Parameter constraints for curve fitting (eq. 14) 

parameter a0 a1 a2 a3 

Lower bounds 0.1 0.2 2 110 

Upper bounds 0.3 0.75 9 200 

Default values 0.2 0.7 5 160 

Standard Deviation 0.05 0.05 2.5 10 

 

Harvest of summer crop 

At the time of harvest, the NDVI of a parcel often rapidly declines to a relatively low value, which 

the Cropmarkers algorithm primarily utilizes to identify the harvest date. Additionally, to exclude 

other agricultural activities such as mowing, the algorithm also considers the slope of the NDVI 

time series, calculated by dividing d_NDVI by d_doy. The algorithm first seeks the maximum NDVI 

within a period after crop closure. If crop closure is detected, the algorithm searches for the 

maximum NDVI within the period from the closure date to 100 days afterward. If closure is not 

detected, the algorithm searches for the maximum NDVI between the 150th and 250th days. If 

multiple maximum NDVI values are found, the interval containing the harvest occurrence is 

defined as from the earliest maximum NDVI date to the 360th day; otherwise, it is defined as 

from the maximum NDVI date to the 360th day. The specific determination of harvest is detailed 

in Table 9. 
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Table 9. Determination of summer crop harvest 

 

 

Harvest of winter crop 

For determining the harvest of winter crops, the Cropmarker algorithm also relies on NDVI, 

d_NDVI, and sum_d_NDVI combined with the slope of the time series. The algorithm first defines 

the date range between 150 and 250 Doy as the potential harvest period. Within this range, the 

algorithm assesses whether there are date indices that meet the conditions specified in Table 10. 

If there are no such indices, the slope is considered as 0. If there are date indices that meet the 

conditions and there are at least two points within the interval from the earliest date to 35 days 

afterward, the algorithm employs least squares fitting to estimate a linear model and calculate 

the slope. Otherwise, the slope is considered as 0. Subsequently, the algorithm combines the 

conditions specified in Table 10 with the slope to determine the occurrence of harvest, as detailed 

in Table 11. 

Table 10. Conditions of calculating slope 

Condition 1 Condition 2 Condition 3 

((d_NDVI)min < -0.3) & (NDVI < 

0.45) 

(sum_d_NDVI)min < -0.3) & (NDVI < 

0.45) 

d_NDVI < -0.3 

 

Table 11. Determination of winter crop harvest  

Step 1 ((d_NDVI)min < -0.3) & (NDVI < 0.45) & (slope < 2) else _ 

Step 2 _ (sum_d_NDVI)min < -0.3) & 

(NDVI < 0.45) & (slope < 2) 

else 

Step 3 _ _ (d_NDVI < -0.3) & (slope <2) 

Results Harvest date = The earliest date meeting step 1 

condition 

Harvest date = The earliest 

date meeting step 2 condition 

Harvest date = The earliest date 

meeting step 3 condition 

 

  

Step 1  (d_NDVI < -0.2) & (NDVI < 0.5) & 

(slope < -0.01) 

else 

Step 2 _  ((sum_d_NDVI)min < -0.3) & (NDVI< 

0.475) 

else 

Step 3 _ The earliest DOY meeting the step 2 

condition to 50 days after it 

d_NDVI < -0.3 

Step 4 _  (NDVImean < the earliest NDVI) | (NDVImin < 

0.4) | (the earliest NDVI < 0.4) 

The earliest DOY meeting step 3 condition 

to 50 days after 

Step 5 _ _ NDVImean < the earliest NDVI 

Results Harvest date = the earliest date meeting 

step 1 condition 

Harvest date = the earliest date meeting 

step 2 condition 

Harvest date = the earliest date meeting 

step 3 condition 
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7.2. Validation results of applying Cropmarkers algorithm 

Table 12. Validation results of applying Cropmarkers algorithm on full canopy crop 

phenologi

cal stage 
Matrices 

Models 

M5 M7 M51 M52 M53 M71 M72 M73 

Crop type 

Emergenc

e 

MAE 

Sugar beet 8.15 11.81 12.48 8.61 8.58 9.76 7.14 9.36 

Consumption 

potato 
9.24 12.51 9.79 9.25 8.28 8.69 7.35 9.69 

silage maize 8.73 8.02 11.43 9.67 6.83 11.27 8.35 7.68 

RMSE 

Sugar beet 16.82 18.62 18.55 15.93 16.57 17.91 14.65 19.3 

Consumption 

potato 
17.06 20.21 15.88 17.99 14.27 15.66 16.25 16.27 

silage maize 14.04 12.14 15.40 15.60 11.77 15.58 13.77 12.6 

PBIAS 

Sugar beet 5.3 8.15 9.07 5.74 5.58 6.72 3.76 6.19 

Consumption 

potato 
4.14 7.62 5.64 4.7 3.65 4.33 2.49 5.86 

silage maize 0.67 2.48 5.52 0.05 -2.29 4.16 -1.07 2.01 

Closure 

MAE 

Sugar beet 8.13 7.25 6.53 7.45 6.97 6.84 7.98 7.77 

Consumption 

potato 
9.04 8.28 7.03 9.08 7.69 7.26 8.86 5.83 

silage maize 9.17 7.21 8.71 10.82 11.66 8.42 10.62 7.35 

RMSE 

Sugar beet 17.85 17.29 16.28 16.33 16.89 17.75 16.55 19.89 

Consumption 

potato 
18.16 19.11 15.29 19.42 14.84 16.17 18.36 15.57 

silage maize 16.43 12.12 13.53 18.77 16.20 15.03 17.63 13.05 

PBIAS 

Sugar beet -2.84 0.98 1.54 -2.81 -2.18 -0.26 -3.27 -1.17 

Consumption 

potato 
-2.2 1.61 -0.35 -3.01 -2.55 -1.55 -3.25 0.07 

silage maize -3.38 -1.56 0.84 -4.11 -6.29 -0.01 -5.16 -1.96 

Transition 

MAE 

Sugar beet 16.77 10.16 9.72 16.99 14.86 11.78 15.34 13.75 

Consumption 

potato 
14.71 10.21 11.03 18.19 13.49 12.38 15.06 9.24 

silage maize 12.84 10.8 10.4 14.85 16.86 10.61 15.28 10.79 

RMSE 

Sugar beet 24.18 20.87 19.67 23.26 22.54 22.1 22.54 24.44 

Consumption 

potato 
23.12 21.89 19.11 26.16 19.74 20.63 23.36 18.83 

silage maize 20.1 15.46 15.47 22.53 21.54 17.31 21.67 16.2 

PBIAS 

Sugar beet -7.14 -2.48 -2.39 -7.62 -6.3 -3.78 -6.69 -4.72 

Consumption 

potato 
-5.54 -1.53 -3.53 -7.67 -5.92 -4.62 -6.09 -2.81 

silage maize -5.19 -3.5 -1.75 -5.99 -7.99 -2.18 -6.81 -3.77 

Harvest 

MAE 

Sugar beet 22.78 24.29 24.15 26.62 21.83 26.06 23.1 21.21 

Consumption 

potato 
20.03 20.13 22.38 24.64 17.3 19.1 21.5 17.88 

silage maize 10.96 12.28 11.96 18.14 11.86 12.24 13.35 9.9 

Winter wheat 17.84 14.60 18.23 17.45 17.21 15.43 14.73 16.34 

RMSE Sugar beet 46.15 44.8 45.33 45.33 40.98 48.49 43.54 45.71 
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Consumption 

potato 
36.57 39.68 35.77 43.59 30.76 34.53 40.25 35.11 

silage maize 22.96 23.06 24.28 34.05 23.24 24.36 27.29 19.28 

Winter wheat 22.55 17.99 16.08 19.56 19.43 17.70 17.18 18.61 

PBIAS 

Sugar beet -1.86 -0.57 -2.5 1.33 -0.3 -3.2 -2.24 2.84 

Consumption 

potato 
-3.33 -2.32 -5.47 -2.03 -3.17 -3.72 -3.25 -2.52 

silage maize -0.96 0.75 0.25 0.85 -0.09 0.17 0.19 0.75 

Winter wheat 8.92 7.18 8.08 8.8 8.68 7.53 7.23 8.21 

 

Table 13. Validation results of applying Cropmarkers algorithm on half canopy crop 

phenologi

cal stage 
Matrices 

Models 

M5 M7 M51 M52 M53 M71 M72 M73 

Crop type 

Emergenc

e 

MAE 

Tulip 31.57 33.25 34.26 33.60 33.0 33.33 34.03 34.17 

Onion 14.78 15.40 12.07 18.41 15.44 11.29 13.5 14.84 

RMSE 

Tulip 43.21 46.06 46.46 45.72 45.97 45.7 45.55 45.75 

Onion 27.28 27.26 24.44 27.91 25.2 24.35 27.02 23.0 

PBIAS 

Tulip 4.16 2.77 5.64 3.42 1.73 8.2 5.81 4.59 

Onion -4.11 -4.48 2.73 9.67 -6.06 1.19 3.39 -6.24 

Closure 

MAE 

Tulip 16.78 18.63 18.6 19.24 18.6 17.99 18.45 18.54 

Onion 21.11 21.7 12.92 17.27 22.73 13.28 14.66 21.44 

RMSE 

Tulip 41.26 44.93 44.06 43.9 44.32 42.87 43.4 44.57 

Onion 32.18 32.25 26.92 28.02 30.58 27.31 29.88 28.01 

PBIAS 

Tulip -10.79 -11.97 -10.44 -11.07 -12.14 -8.13 -10.42 -11.39 

Onion -7.34 -7.85 -0.72 6.03 -9.51 -1.98 -0.11 -9.41 

Transition 

MAE 

Tulip 22.77 26.58 26.45 24.3 24.45 25.42 25.2 27.6 

Onion 26.12 27.17 16.37 17.16 28.61 17.3 18.3 26.35 

RMSE 

Tulip 41.59 46.00 45.74 43.81 44.24 43.78 44.05 46.19 

Onion 37.97 38.28 31.32 30.07 36.68 31.96 34.63 33.43 

PBIAS 

Tulip -14.19 -15.84 -15.54 -14.33 -15.07 -13.31 -14.57 -15.89 

Onion -8.53 -9.23 -2.47 3.15 -10.94 -3.5 -1.85 -10.49 

Harvest 

MAE 

Tulip 51.78 55.05 55.92 55.58 53.88 51.09 64.13 52.48 

Onion 26.19 26.79 26.44 30.63 24.44 27.18 33.04 23.3 

RMSE 

Tulip 75.89 78.51 81.73 78.53 76.61 75.03 88.85 75.79 

Onion 54.52 53.96 54.01 58.81 49.25 54.26 62.44 45.38 

PBIAS 

Tulip -11.94 -9.62 -5.47 -12.18 -12.64 -5.96 3.33 -2.71 

Onion 1.13 1.62 2.14 3.48 0.87 2.98 7.42 0.76 
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7.3. Artificial Intelligence (AI) Statement 

In the process of writing this thesis, ChatGPT is used to provide grammar and vocabulary checks 

for the written paragraphs, which aims to improve the quality of the text. Additionally, it offers 

some translation assistance when encountering difficulties during writing, such as unfamiliar 

words or complex sentence structures. All outputs from the AI are only used for assisting in writing 

and helping me improve my English writing. The content of the thesis is not influenced by the AI. 

A sample conversation link is provided below： 

https://chat.openai.com/share/2e605ce2-71ee-4ec0-92b1-0d0be41f4a1b 


