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Abstract 
 
Variables used in ecological models usually concern aspects such as climate, soil and land cover. 
However, the structure of vegetation is a factor that is less commonly taken into account. Devices 
that have been used often so far to acquire vegetation data are multispectral imagery and synthetic 
aperture radar. Nevertheless, with the development of Light Detection and Ranging (LiDAR), 
vegetation could be mapped in more detail. In this thesis, it was researched how LiDAR data can be a 
valuable addition to ecological research into five different woodpecker species: the black 
woodpecker, great spotted woodpecker, middle spotted woodpecker, lesser spotted woodpecker 
and green woodpecker. In order to get more insight into these preferences, 14 different metrics 
representing aspects of vegetation structure were calculated from LiDAR point clouds. Three 
different types of metrics were calculated. At first, metrics were calculated that give information 
about the vertical complexity of vegetation, such as the standard deviation of vegetation height. 
Moreover, metrics were made that give information about the horizontal heterogeneity of 
vegetation, such as vegetation roughness. The third category is less commonly used in research. 
Namely, metrics were calculated with the use of polygons representing tree crowns, such as the 
distance to the forest edge. The metric values extracted at the locations of woodpecker observations 
were used in Maxent models in order to acquire information about the habitat preferences of 
woodpeckers. At first, one Maxent model was run with the observations of all five woodpecker 
species combined as input. The main results showed that the 95th percentile of vegetation height had 
the biggest importance and that the woodpecker family prefers trees that are taller than the average 
tree in the study area. Thereafter, a separate Maxent model was run for each woodpecker species in 
order to get more insight into the different habitat preferences of the species. The results showed 
several similarities, such as that the 95th percentile had the biggest variable importance for each 
species. The biggest difference that was found was that the results of the middle spotted 
woodpecker, lesser spotted woodpecker and green woodpecker showed that they have a preference 
for the edge of the forest, whereas no preferences were observed for the black woodpecker and 
great spotted woodpecker. Overall, this research has shown that LiDAR data can be a valuable 
addition to ecological research into woodpeckers. Moreover, the methodology used in this research 
could be an example of how LiDAR data can be used in ecological research into bird species in 
general. In future research, certain metrics could be improved in order to become more reliable for 
deriving information about vegetation structure that is relevant for woodpeckers. Moreover, Maxent 
models could be run with absence points instead of background points in order to increase the 
accuracy of the models. Namely, even though the accuracy values of the models used in this research 
were sufficient, there is still uncertainty about the reliability of the accuracy assessment, as the use 
of background points can lead to the model showing a lower accuracy than actually is the case. 
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1. Introduction 

1.1 Vegetation structure 
In ecological research, species distribution models (SDMs) are commonly used to find the 
relationship between the distribution of a species and environmental variables (Koma et al., 2022). In 
research on bird distributions, the inputs for SDMs are often variables concerning climate, 
topography, land cover and soil. These variables are important factors at a large scale. Nevertheless, 
at a smaller spatial extent (smaller than 100 km2), vegetation structure can also be an important 
factor (Bakx et al., 2019). Vegetation structure is the three-dimensional arrangement of plants. 
Aspects such as plant height, distribution of vertical layers and density are part of the structure of a 
plant (Farwell et al., 2021). In this thesis, different trees, bushes and other singular plant units will be 
called vegetation units. The combination of these vegetation units in an area is called the vegetation 
composition of an area (Farwell et al., 2021). Especially vegetation heterogeneity, which is the 
diversity in vegetation in an area, has an influence on the spatial distribution of a species (Farwell et 
al., 2021). A higher variation of vegetation could lead to a higher variety of resources, which means 
that areas with a high vegetation heterogeneity could attract more species. Additionally, according to 
research of Kissling et al. (2023), important factors for habitat preferences such as nest site selection 
and the availability of food are strongly related to horizontal and vertical heterogeneity of 
vegetation. More specifically, the combination of different vegetation units in an area and the 
structure of these vegetation units play an important role in the habitat selection of birds. In this 
thesis, the terms habitat preferences and habitat selection are often used. Habitat preferences refer 
to certain versions of aspects of vegetation structure in a habitat. For example, the aspect tree height 
might be important for the habitat selection of a species and the specific preferred version of that 
aspect might be tall trees. Then, ‘tall trees’ is a habitat preference of this species. Thus, in this thesis 
a habitat preference is defined as the version of a vegetation structure aspect/characteristic. 
Additionally, there could be many more preferences that are more or less important for the species’ 
choice for its habitat. Eventually, this trade-off between habitat preferences and their combination 
result in the habitat selection of a species. 

1.2 LiDAR 
In previous research, fine-scale vegetation variables were not included in SDMs due to that fine-scale 
vegetation was not yet measured at a large scale (Bakx et al., 2019). Nevertheless, remote sensing 
developments have resulted in that fine-scaled vegetation structures are now measured over larger 
areas and that resulting vegetation data are more detailed. Vegetation data were often measured by 
remote sensing products such as multispectral imagery and synthetic aperture radar (SAR) (Koma et 
al., 2022). However, the development of Light Detection and Ranging (LiDAR) data could improve the 
detail in which green structures are mapped. LiDAR is a technology in which a device sends out 
optical waves in order to measure the earth surface and its objects (Li et al., 2022). The sent out laser 
beams reflect against objects, the time until return is measured and subsequently the distance 
between the objects and the sensor can be derived. These measurements result in a point cloud of 
elevation data. This active remote sensing technique, in which laser pulses are emitted from a device 
on a plane or helicopter in order to measure the surface, is called airborne laser scanning (ALS) (Bakx 
et al., 2019). From the point cloud data, vegetation metrics can be calculated. Figure 1a shows the 
trajectory of LiDAR pulses sent out by a plane. Each pulse can reflect against multiple objects. Each 
time a wave returns to the sensor is counted, resulting in multiple returns (Esri, 2024b). Figure 1b 
shows an example of a point cloud created by LiDAR, as well as examples of which vegetation 
structure metrics can be calculated with this point cloud (Bakx et al., 2019). LiDAR metrics could be a 
more accurate representation of vegetation structure than radar and multispectral imagery derived 
metrics (Koma et al., 2022). Thus, as LiDAR data can be used to create more detailed vegetation 
structure layouts, there can be explored more how LiDAR data can be a used to map vegetation 
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structure. Besides airborne laser scanning, also terrestrial laser scanning can be used to create 
vegetation metrics. The difference is that terrestrial laser scanning is performed by a person walking 
on the earth surface with a LiDAR device. This way of scanning could give a better view of the lower 
vegetation layers, whereas airborne laser scanning can provide more detail of the upper layers. In 
this thesis, airborne laser scanning data is used as it is available for bigger areas and is more useful 
for most metrics created during this thesis. 

  
Figure 1: (a) Trajectory of a LiDAR pulse and its multiple returns (Esri, 2024b). (b) Point cloud of a 
forest (Bakx et al., 2019). ‘a’ shows different vegetation layers of a forest. ‘b’ shows different metrics 
that can be calculated for these different vegetation layers. 

1.3 Woodpeckers 
Over the past three decades, the conservation status of avifauna has decreased globally (Lees et al., 
2022). As in 2022, 13.5% of the 10994 official birds species are labelled as under threat of global 
extinction on the Red List of the International Union for Conservation of Nature (IUCN). Important 
factors in bird decline are habitat loss and climate change. The factor habitat loss is often caused by 
human transformations of landscapes, such as agricultural expansion and urbanization. Agricultural 
expansion has a homogenizing effect on a landscape, meaning that landscapes become more similar 
to each other (Endenburg et al., 2019). This could lead to more similar forest bird communities in 
these landscapes. Also the urbanization of landscapes has a homogenizing effect on bird habitats 
neighbouring these areas (Sidemo-Holm et al., 2022). Namely, urbanization can lead to habitat 
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fragmentation, noise pollution and light pollution, contributing to a lower bird species richness in 
these habitats. In the Netherlands, woodpeckers (Picidae) are in contrast to many bird species not 
endangered. Woodpeckers are resident birds and breed in the Netherlands. Moreover, as they have 
a big presence in the Netherlands, they are protected birds (Vogelbescherming Nederland, n.d.a). 
The most common woodpecker species in the Netherlands are the green woodpecker (Picus viridis), 
lesser spotted woodpecker (Dryobates minor), middle spotted woodpecker (Dendrocoptes medius), 
great spotted woodpecker (Dendrocopos major) and black woodpecker (Dryocopus martius). 
Although they are different species, they all have in common that they excavate cavities in trees. This 
has two main purposes. At first, the cavities could be used as a roost, a place for woodpeckers to rest 
(Jackson & Jackson, 2004). Secondly, the cavities can be used as nests for them to breed and protect 
their hatchlings from predators such as pine marten and owls (Puverel et al., 2019). By creating 
cavities, woodpeckers fulfil and important function in ecosystems (Zawadzki & Sławski, 2023). 
Namely, they provide ecosystem functions for other species. For example, microhabitat formation 
occurs in the created cavities and other species make use of the cavities when they are abandoned 
(Puverel et al., 2019). Thus, woodpeckers are important for conserving cavity dependent species. 

1.4 LiDAR in ecological research 
Even though the five woodpecker species mentioned are not endangered in the Netherlands, the 
observed trend of homogenization due to factors such as agricultural expansion and urbanization 
could also put pressure on the existence of these species. Especially because woodpeckers have an 
important role in ecosystems, it is important to preserve this family. In order to preserve 
woodpeckers, more information could be obtained about their habitat preferences. Furthermore, it 
was earlier mentioned that more research could be done in the creation of metrics that represent 
aspects of vegetation structure with LiDAR data. As woodpeckers are dependent on trees to breed in, 
aspects of vegetation structure, such as vegetation height, could be a big factor in the habitat 
selection of woodpeckers. This makes the woodpecker family a suitable family to research regarding 
their preferences for different vegetation structures. Thus, it can be explored more how LiDAR data 
can be used in ecological research in order to acquire more information about the habitat 
preferences of the woodpecker family in the Netherlands. Besides that research on woodpeckers 
specifically would provide more information about this family, the results of this research would also 
show how LiDAR data can improve ecological research into bird distributions in general. 

1.5 Previous research 
In prior research into the spatial distribution of birds, different metrics representing vegetation 
structure were calculated with the use of LiDAR data. Bakx et al. (2019) did research on which LiDAR 
metrics were most commonly used in 50 different papers. All papers had in common that LiDAR-
derived vegetation metrics were calculated in order to research the distribution of species (mostly 
bird species). 77 unique metrics were found and Bakx et al. (2019) divided these metrics into several 
categories: vegetation cover, vegetation height, horizontal variability and vertical variability (see 
Figure 1b). Additionally, the research showed that these metrics could be calculated for different 
vegetation layers. As metrics that are part of these categories are important in many previous 
research, these metrics could be used as a good starting point for this thesis research. Furthermore, 
in research of Burns et al. (2020), LiDAR data were used to create canopy structure variables. These 
variables, along with other variables such as climatic variables, were used as predictor variables in 
machine learning models. These models were combined in order to calculate the variable importance 
of the variables. The results showed that canopy structure variables were the most important when 
predicting bird distribution in coniferous forests. As canopy structure variables are important for 
predictive models, it could be useful to assess their importance in descriptive models as well, using 
already existing bird distribution data. Nevertheless, generally less focus is put on the vegetation 
surrounding the nesting trees. For example, there could be explored more if these nesting trees are 
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located in a dense forest or that they are more isolated. Also the influence of shrubs and bushes on 
the woodpeckers’ choice for nesting trees could be researched. 

1.6 Vector-based vegetation metrics 
In the earlier described research of Bakx et al. (2019), most of the 50 researched papers used an 
area-based approach to calculate the different metrics. In this approach, the point cloud is rasterized, 
meaning that raster layers are created by calculating a value using the LiDAR points located in the 
area of each raster cell and assigning this value to the cell. The disadvantage of this approach is that 
some detail is lost when point clouds are rasterized to cells with a certain cell size. As a solution, an 
object-based approach can be used. In this method, the point cloud is segmented directly into 
objects, such as trees and hedges. This results into layouts with vectors such as polygons 
representing trees. Nevertheless, in the 50 studied papers, this approach was rarely used. That is why 
there is much that can be explored when using an object-based approach (besides an area-based 
approach) to create vegetation metrics. For example, vector-layers in which polygons represent 
vegetation units can be used as the input for different new vegetation rasters. For example, rasters 
could be created based on tree polygons. 

1.7 Habitat preferences of different woodpecker species 
Besides that there is much to explore in what LiDAR data can add to research into the habitat 
preferences of the woodpecker family in general, there is also a knowledge gap on the differences in 
habitat preferences between the five woodpecker species. There are several preferences of the five 
species that could be explored more during this thesis. Some of these preferences will be described 
below.  
At first, the green woodpecker prefers to breed in trees close to open grass areas. In these open 
grass areas live ants, which are prey for this species (Villanúa et al., 2023). Moreover, snags are used 
by lesser spotted woodpeckers as both nesting and foraging site (Olsson et al., 1992). These are 
standing dead trees (Stitt et al., 2022). This species prefers areas with a higher density of snags 
(Olsson et al., 1992). The lesser spotted woodpecker is a small species, thus the wood of the trees 
needs to be soft in order to excavate holes (Smith & Charman, 2012). The dead wood of snags and 
dead branches located high in old trees are easier to excavate. For the middle spotted woodpecker, a 
deciduous forest with open canopies is preferred (Kosinski & Winiecki, 2004). There should be 
relatively isolated trees, preferably oak trees with a medium-sized crown. They prefer these types of 
habitats as open crowns increases the accessibility for birds. Moreover, a more open forest facilitates 
species with more sunlight. This attracts certain arthropods, which are hunted for by the middle 
spotted woodpeckers. Thus, the suitability for foraging is an important factor in the habitat selection 
of this species. The great spotted woodpecker forages in the trunks of trees, usually trees with a 
fissured bark in which arthropods can be found (Kosiński, 2006). The bird prefers older trees, as these 
have a bigger diameter and are therefore big enough for this bird to excavate nesting holes. Finally, 
the black woodpecker prefers trees that are more isolated, making the bird less prone to predators 
than when trees and the branches of trees would be located nearby (Puverel et al., 2019). 
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1.8 Overall research aim and research questions 
This research has several aims. At first, the three sub-questions (RQ1, RQ2 and RQ3) will be 
explained. Thereafter, the general aim of this research will be discussed. 
 
RQ1: Which metrics that provide information about vegetation structure and are potentially relevant 
for woodpeckers can be derived from LiDAR data? 
The first goal of this research is to calculate LiDAR-derived vegetation metrics, also called LiDAR 
metrics, that are relevant for acquiring information about aspects of vegetation structure. These 
LiDAR-derived vegetation metrics could be important for the habitat selection of the woodpeckers. 
That is why the potential relevance of the LiDAR metrics, when used in the next steps of the 
research, for giving information about the habitat preferences of woodpeckers is also taken into 
account during the creation of the metrics. 
 
RQ2: Which aspects of vegetation structure represented by LiDAR metrics have the biggest influence 
on the habitat selection of the woodpecker family? 
The second goal of this research is to determine which metrics representing aspects of vegetation 
structure are the most important in the habitat selection of the woodpecker family. In this sub-
question, several topics will be discussed. At first, it is described how the importance of certain 
metrics can be derived from the results and then ecological explanations for certain metrics being 
important will be discussed. Additionally, also the specific habitat preferences, the versions (values) 
of aspects (metrics) of vegetation structure, will be explained. For example, an aspect of vegetation 
might be vegetation height, but the version of this aspect could be a small vegetation height. 
 
RQ3: How do the habitat preferences of the five separate woodpecker species differ? 
In De Hoge Veluwe, different woodpecker species with potentially different habitat preferences are 
present. That is why besides the general habitat preferences of the woodpecker family (RQ2), also 
the habitat preferences of the five separate woodpecker species will be derived and compared. In 
RQ3, there will be focused more on describing the different habitat preferences of the woodpecker 
species and the importance of the different metrics will be explained less elaborately. This is done, as 
the general importance of the different metrics will already be explained in RQ2. Moreover, the 
specific habitat preferences of the separate woodpecker species can be supported by more in depth 
ecological literature than the habitat preferences of the woodpecker family in general. 
 
Main question: How can the use of airborne LiDAR data improve the understanding of the habitat 
preferences of five woodpecker species in De Hoge Veluwe, the Netherlands? 
The main aim of this research is to get more insight into the additional value of LiDAR data in 
ecological research into woodpeckers. It is researched how LiDAR data can be used to acquire 
information about aspects of vegetation structure. This information about vegetation structure can 
subsequently be used to derive information about the preferred versions of vegetation aspects of 
woodpeckers. In this way, the information derived from LiDAR could support already existing 
literature about the ecology of woodpeckers. Besides that this research could provide more 
information about the habitat preferences of woodpeckers in De Hoge Veluwe, the results of this 
research could also be an example of how LiDAR data can be applied in ecological research into bird 
species in general. 
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2. Methodology 

In this methodology section, at first, the study area and data used in this research will be described. 
Thereafter, the methodology for answering RQ1, RQ2 and RQ3 will be described. 

2.1 Study area 
Figure 2 shows the study area of this research: De Hoge Veluwe. There is distinguished between 
deciduous and coniferous trees using the LGN2022 dataset (4TU, 2022). This dataset shows the 
different land use classes in the Netherlands. In this case, the raster cells with only deciduous or 
coniferous trees are selected. This area has a relatively young soil and many areas with coniferous 
trees can be found. 

 
Figure 2: Study area in De Hoge Veluwe and its tree types. Dark green areas represent areas 
containing coniferous trees. Light green areas represent areas containing deciduous trees. 
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2.2 Data 

2.2.1 AHN4 
The ‘Actueel Hoogtebestand Nederland 4’ (AHN4) data were used in this research. This dataset is the 
most recent dataset showing elevation data of the Netherlands, measured between 2020 and 2022 
(AHN, n.d.a). In the study area in De Hoge Veluwe specifically, LiDAR data were obtained in February 
of 2022 (ArcGIS, 2024). AHN4 point clouds were downloaded from Geotiles (Geotiles, 2024). These 
data were provided in smaller tiles of 1 by 1.25 kilometer. In total, 60 of these smaller tiles were 
downloaded. A table of the used tiles can be found in appendix L. 

2.2.2 Woodpecker observation data 
The foundation Sovon, which is the Dutch Centre for Field Ornithology, has provided woodpecker 
observation data of the study area. Different types of observations were made in the field and these 
observation points were each given a label. If an observation point is indicated as ‘true’, the bird 
breeds or lives at that location. If a point is indicated as ‘false’, the bird was seen at that particular 
location but the bird did not breed or live there. Only observation points with the label ‘true’ were 
selected, as for these points can be acknowledged with the most certainty that they live at that 
location. The ‘false’ points could be the same birds as the birds at the locations of the ‘true’ points, 
but then these birds were spotted at a location where the bird does not live. Namely, a bird could be 
flying around and be spotted multiple times. In total, for the five woodpecker species, 2658 
observations were done in De Veluwe. When filtered, 712 observations remained. 

2.3 RQ1: LiDAR metrics  
In this part, the methodology of sub-question 1 will be described. In order to derive information 
about aspects of vegetation structure, 14 LiDAR metrics were eventually created. Table 1 shows 
these metrics and their division into three categories: vertical complexity metrics, horizontal 
heterogeneity metrics and vector-based metrics. For each metric, a short description is given. These 
metrics were selected with the use of literature (see ‘References’ column). In general, metrics were 
selected based on if they can give information about certain aspects of vegetation structure. Each 
metric represents a certain aspect of vegetation structure, such as the mean height of vegetation. 
While selecting these metrics, there was taken into account if their aspects of vegetation structure 
could potentially be useful to derive information about the habitat preferences of woodpeckers. 
Nevertheless, if the created metrics are useful for acquiring information about woodpeckers will be 
tested in RQ2 and RQ3. In RQ1, there will be solely researched which metrics are suitable/reliable for 
representing vegetation structure.  
In the methodology of RQ1, there will be described why these metrics were chosen and why they are 
relevant. There will be described which aspects of vegetation structure the created metrics are 
supposed to represent and why these metrics could be potentially important for acquiring 
information about the habitat preferences of woodpeckers. Moreover, the creation of the metrics 
will be discussed. In the results, there will be described what information the resulting layouts of 
these metrics give about vegetation structure and in the discussion, there will be discussed why 
certain metrics are reliable enough to be used in the species distribution models of RQ2 and RQ3. In 
previous research, such as in the papers of Adhikari et al. (2023), Bakx et al. (2019), Kissling et al. 
(2023) and Koma et al. (2022), most vertical complexity metrics (p25, p95, mean, SD, CV, kurtosis and 
skewness) have already been created or described. Also the created horizontal heterogeneity metrics 
(VR_total and VR_low) and the vector-based metric CCP  have been earlier implemented (Table 1). 
The other metrics, which have not been found to be calculated in previous research (distance_inside, 
distance_outside, distance_ST) were mainly created because their aspects of vegetation structure 
could give more insight into the habitat preferences of woodpeckers if they would be used in the 
next steps of this research (RQ2 and RQ3). In general, for the calculation of the metrics, several 
functions of the R package ‘lidR’ have been used.  
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Table 1: Overview of the 14 LiDAR metrics. The metrics are divided into three categories. For each 
metric, a description is given, as well as references that served as an inspiration for the creation of 
this metric. 

Metric Description References 

Vertical complexity metrics   

p25 25th percentile of vegetation 
height 

Adhikari et al., 2023; Bakx et 
al., 2019; De Vries et al., 2021; 
Hill & Broughton, 2009; Ioki et 
al., 2014; Kissling et al., 2023; 
Koma et al., 2022; Li et al., 
2022; Martinuzzi et al., 2009 

p95 95th percentile of vegetation 
height 

Adhikari et al., 2023; Bakx et 
al., 2019; De Vries et al., 2021; 
Hill & Broughton, 2009; Ioki et 
al., 2014; Kissling et al., 2023; 
Koma et al., 2022; Li et al., 
2022; Martinuzzi et al., 2009 

UC Understorey/crown ratio Adhikari et al., 2023; Bakx et 
al., 2019; De Vries et al., 2021; 
Hill & Broughton, 2009; Ioki et 
al., 2014; Kissling et al., 2023; 
Koma et al., 2022; Li et al., 
2022; Martinuzzi et al., 2009 

Mean Mean of vegetation height Adhikari et al., 2023; Bakx et 
al., 2019; Ioki et al., 2014; 
Kissling et al., 2023; Koma et 
al., 2022; Martinuzzi et al., 
2009; 

SD Standard deviation of 
vegetation height 

Adhikari et al., 2023; Bakx et 
al., 2019; Kissling et al., 2023; 
Koma et al., 2022; Martinuzzi 
et al., 2009 

CV Coefficient of variation of 
vegetation height 

Adhikari et al., 2023; Bakx et 
al., 2019; Kissling et al., 2023 

Kurtosis Kurtosis of vegetation height Adhikari et al., 2023; Bakx et 
al., 2019; Kissling et al., 2023; 
Koma et al., 2022; Martinuzzi 
et al., 2009 

Skewness Skewness of vegetation height Adhikari et al., 2023; Bakx et 
al., 2019; Kissling et al., 2023; 
Martinuzzi et al., 2009 

Horizontal heterogeneity 
metrics 

  

VR_low Low vegetation roughness De Vries et al., 2021; Koma et 
al., 2022 
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VR_total Total vegetation roughness De Vries et al., 2021; Koma et 
al., 2022 

Vector-based metrics   

distance_inside Distance to inside forest areas Kosinski & Winiecki, 2004 

distance_outside Distance to outside forest 
areas 

Kosinski & Winiecki, 2004 

distance_ST Distance to standalone trees Kosinski & Winiecki, 2004; 
Puverel et al., 2019 

CCP Canopy cover percentage Bakx et al., 2019; Kosinski & 
Winiecki, 2004; Davison et al., 
2023 

 

2.3.1 Vertical complexity metrics 
The following metrics all provide information about the vertical complexity of vegetation. Vertical 
complexity represents the variability of vegetation in the direction of the vegetation height (vertical 
direction) (De Vries et al., 2021; Koma et al., 2022). These metrics are all calculated with the use of 
the ‘pixel_metrics’ function in R. For each metric, a different formula is applied to a point cloud, 
resulting in an output raster. The function uses the vertical column above a 2D raster cell. For 
example, if the cell size used in the function is 1 meter, the function takes alle the points in areas of 1 
by 1 meter and applies the formula to these points. These per-cell operations are called local 
operations (ArcGIS Desktop, n.d.b). The entire calculation of all vertical complexity metrics can be 
found in appendix Aa01. 
 
Percentiles of vegetation height  
In this research, two metrics were calculated by taking the quantiles out of the LiDAR point cloud and 
assigning to raster cells the value of the data point that is located at that specific quantile. In case of 
the 25th percentile, the 0.25th point was selected per raster cell and its height value was assigned. The 
same was done for the 95th percentile. These two metrics were created to gain more insight into 
different vegetation layers. Namely, also in similar research, percentile values were used to indicate 
vegetation layers (Koma et al., 2022). In this thesis research, the 25th percentile of height was 
determined (p25) as the percentile that represents understorey vegetation. Understorey vegetation 
is vegetation that does not have direct access to sunlight due to being located under the canopies of 
taller vegetation (Hill & Broughton, 2009). Examples are shrubs, bushes and young small trees. 
Vegetation that does have direct access to sunlight, mostly trees, is called overstorey vegetation. The 
25th percentile was chosen, as it already has been used earlier as a representation of lower 
vegetation (Adhikari et al., 2023). Moreover, the 95th percentile was calculated to represent 
overstorey vegetation (p95). The 95th percentile was used instead of all data points (100%) in order 
to remove big outliers from the dataset (Hill & Broughton, 2009; Koma et al., 2022). There was 
distinguished between understorey vegetation and the tree crown layer (overstorey layer), as 
understorey vegetation is important for many birds species regarding aspects such as foraging, 
whereas overstorey vegetation is often important when birds search for a tree to create a nest in 
(Davison et al., 2009).  
 
Understorey/Crown ratio 
Based on p25 and p95, the understorey/crown ratio (UC) was calculated. The goal of this metric is to 
show the ratio between understorey vegetation height and tree crown height. The metric was 
calculated by dividing the p25 raster by the p95 raster and could give an indication of where 
vegetation can be found under trees. An UC of close to 1 would indicate that there is either no 
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understorey layer and only trees or that there are no trees and only an understorey layer. 
 
Mean and standard deviation of vegetation height 
Variables that are often calculated in previous research is the mean and standard deviation of 
vegetation (Koma et al., 2022; Martinuzzi et al., 2009). These variables, similarly to p25 and p95, give 
information about the distribution of LiDAR points in the vertical direction. For their calculation, the 
‘mean’ and ‘sd’ functions were used. The standard deviation is a measure of the amount of variation 
around the mean value. A low standard deviation indicates that the elevation values of the LiDAR 
points are not very spread out and lie closer to the mean, meaning that there is less variation. Thus, if 
raster cells have a low standard deviation, this means that the LiDAR points representing biomass are 
located closer together and that vegetation is more densely distributed in the vertical direction than 
vegetation in cells with a high standard deviation.  
 
Coefficient of variation of vegetation height 
The coefficient of variation (CV) of vegetation height provides similar information as the standard 
deviation. The CV is the variability of the standard deviation from the mean and is calculated by 
dividing the standard deviation by the mean. If the mean is low and the standard deviation is high, 
this will result in a high CV. When CV values are between 0 and 1, the standard deviation is smaller 
than the mean. 
 
Kurtosis and skewness of vegetation height 
kurtosis and skewness are indicators of the shape of the vertical distribution of vegetation height 
values. Positive kurtosis values indicate that the distribution of height values is more tailed than a 
normal distribution, meaning that there is a higher quantity of outliers (Scribbr, 2024). This is often in 
combination with a higher peak. Lower kurtosis values indicate that there are less outliers in the 
distribution and commonly there is a flat peak. Commonly, a kurtosis value of 3 indicates that the 
distribution does not have more outliers than a normal distribution. This metric is relevant for this 
research, because it gives information about how close together the vegetation points lie. It could be 
assumed that trees with dense canopies have a higher kurtosis and a lower standard deviation, 
meaning that there are more outliers, than in areas where LiDAR pulses were able to penetrate the 
vegetation more and are more spread out. Moreover, skewness is metric that shows the asymmetry 
of a dataset (Scribbr, 2022). High skewness values (skewness > 0) indicate that the distribution of 
elevation values is skewed to the right (a peak to the left) and low values (skewness < 0) indicate that 
the distribution is skewed to the left (a peak to the right). Thus, skewness can give information about 
the location of the values in a distribution. 

2.3.2 Horizontal heterogeneity metrics 
Whereas vertical complexity metrics describe the distribution of vegetation points in the 
height/vertical direction, horizontal heterogeneity describes the distribution of vegetation points in 
the horizontal direction. The two types of metrics are calculated differently. Vertical complexity 
metrics are calculated by directly taking a point cloud as input and doing calculations based on the 
elevation values of the points. This has resulted in several raster layers. However, horizontal 
heterogeneity metrics are calculated by taking an already existing raster as input and calculating new 
values based on its raster values. In previous research, it was shown that horizontal heterogeneity 
has an influence on the distribution of other bird species such as the Savi’s warbler (Koma et al., 
2022). Moreover, besides in research on bird species, horizontal heterogeneity can also be applied in 
research on other species. In research on butterflies in the Netherlands was determined that 
horizontal heterogeneity, as well as vertical complexity, are important factors influencing the 
distribution of butterflies (De Vries et al., 2021). 
 
Vegetation roughness 
Both of the following metrics were based on research of De Vries et al. (2021). At first, VR_low was 
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created to show the differences in vegetation height for the understorey layer. Moreover, VR_total 
was created to show the differences in vegetation height in the tree crown layer. VR_low was 
created with the p25 raster layer as input. A window of 3x3 moved over the whole raster, doing the 
same calculation for each cell. This predefined window is called a kernel. A calculation where each 
cell receives the value of a calculation done for all cells in a certain neighbourhood (kernel), is called 
a focal operation (ArcGIS Desktop, n.d.a). In this case, for each cell, the difference of the central cell 
with its 8 neighbouring cells was calculated. This resulted in 8 difference values. From these 8 values, 
the highest value, which is the maximum difference, was selected. Then, this maximum difference 
value was assigned to the middle cell and subsequently the moving window moved onto the next 
cell. The same calculation was done for VR_total, but then the p95 raster was used as input. After the 
focal operations were done, the raster layers were smoothed with a window of 9x9. This was done to 
give more highlight to the areas with high heterogeneity. The entire calculation of both metrics can 
be found in appendix Aa01. 

2.3.3 Vector-based metrics 
 

 
Figure 3: General workflow of the creation of the following metrics: distance_ST, distance_inside, 
distance_outside and CCP. 
 
The following metrics were all calculated by taking polygons representing tree canopies as input 
(Figure 3). Trees were detected using several functions in the ‘lidR’ package. At first, a canopy height 
model was created. A canopy height model is a raster which values represent the height of the 
canopy of the vegetation. The raster is created by subtracting the digital terrain model (DTM) from 
the digital surface model (DSM) (Earth Lab, 2020). The CHM was created with the ‘pitfree’ algorithm.  
During the creation of LiDAR points, some pulses can penetrate through the canopy without giving a 
first return. This results in that first return points can be located at a too low elevation, resulting in 
pits in the canopy. The ‘pitfree’ algorithm fills many of these pits by creating multiple CHMs for 
different canopy layers, resulting in a CHM with fewer pits (Khosravipour et al., 2014). The created 
CHM was used as input into the ‘locate_trees’ function. With a window size of 5 meters, the function 
searches for the highest points in the area and selects the tree tops. Then, the Dalponte2016 
algorithm was used to create an algorithm representing the relationship between the presence of 
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the tree tops and the CHM (Dalponte & Coomes, 2016). This algorithm was chosen, because it can be 
derived from a CHM and can be used to group points clouds into tree units. Namely, the algorithm 
was applied to points clouds and the points were segmented into groups with the same ID, each 
group belonging to a separate tree. Using the segmented point cloud, the ‘crown_metrics’ function 
was used to create polygons representing trees. Then, this vector dataset was used as the input for 
the calculation of the metrics described below. 
 
Distance to standalone trees 
Literature has suggested that the black woodpecker and middle spotted woodpecker prefer more 
isolated trees (Kosinski & Winiecki, 2004; Puverel et al., 2019). That is why a metric was created that 
shows the distance to the nearest standalone/isolated tree (distance_ST). This metric was calculated 
by doing several steps. At first, it was taken into account that trees can have multiple tree tops. 
There are cases where multiple tree canopies are detected by the ‘locate_trees’ function that all 
belong to one tree. Therefore, tree crown polygons that are located within 1 meter of each other 
were merged in order that they would count as one tree. This was done by giving all trees a buffer of 
0.5 meter and creating a union of these buffered trees. Then, the surface area of all polygons was 
calculated and after having visually checked the general surface area of multiple trees with more 
than one crown, a threshold of 210 m2 was determined. All merged polygons with a higher surface 
area than 210 m2 were filtered out. After this, the ‘st_is_within_distance’ function was used to find 
the trees that were located within 10 meters of each other. This distance threshold of 10 meters was 
determined by visually analysing the more isolated trees and their minimum distances from other 
trees in the study area. Trees within 10 meters were defined as intersecting trees and trees with a 
distance greater than 10 meters were defined as standalone trees. Eventually, after all standalone 
tree polygons were rasterized, the ‘distance’ function was used to calculate for each raster cell the 
nearest distance to a standalone tree. This calculation of distance is called a global operation (ArcGIS 
Desktop, n.d.b). The entire calculation of standalone tree polygons can be found in appendix Aa02. 
The merging of the standalone tree rasters and the use of the distance function can be found in 
appendix Aa03. 
 
Canopy cover 
Before the next three metrics could be calculated, buffers were created around the tree objects. The 
size of the buffer was based on the height of the tree crowns. Taller trees received a bigger buffer 
around their crown. In this way, the effect of tree height in combination with its crown was taken 
into account. Namely, taller trees with the same crown area as smaller trees have a bigger shadow 
than smaller trees. In the next step, the crowns of the trees were rasterized and this raster was 
smoothed. The resulting raster represented the canopy cover of forest areas. This raster was used as 
the initial input of the calculation of the following three metrics. The entire calculation can be found 
in appendix Aa01. 
 
Distance to inside and outside forest areas 
Besides the presence of isolated trees, forest edges could also be an important factor for 
woodpeckers (Kosinski & Winiecki, 2004). For example, there is indicated that the green woodpecker 
lives and forages on the forest edge (BirdLife International, 2024a). That is why it is interesting to 
research this statement for the green woodpecker and also for the other woodpecker species. The 
distance_inside metric was calculated because it indicates how big distances birds are willing to fly to 
reach forest areas and it indicates if they prefer trees outside forest areas more than trees inside 
forest areas. The metric was calculated as follows. With the canopy cover layer as input, the ‘patches’ 
function was used to detect areas with connected tree canopies. Then, small open areas of less than 
3500 m2 were filled up and therefore counted as part of a bigger forest areas, whereas areas with a 
surface area higher than 3500 m2 were defined as open areas and were not filled up. Moreover, 
areas of trees smaller than 3500 m2 were deleted, as these tree areas were not big enough to count 
as a forest area. In this way, the study area was simplified into areas with forest and areas with no 
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forest. The thresholds were kept the same for defining forest areas as well as open areas, because 
then the simplification of the study area was kept consistent. After the simplification, the ‘distance’ 
function was used to calculate the nearest distance to forest areas for each raster cell (global 
operation). The same calculations were done for the distance_outside metric, except for that 
distances to open areas were calculated instead of distances to forest areas. This metric was created 
in order to get more insight into how deep inside the forest woodpeckers have their habitat 
locations. A low distance would indicate that a woodpecker prefers a habitat inside the forest that is 
close to the forest edge. The calculation of both metrics can be found in appendix Aa03. 
 
Canopy cover percentage 
The canopy cover percentage metric (CCP) is relevant due to that woodpeckers might have a 
preference for forests with a more open or more closed canopy. A reason for woodpeckers to prefers 
a habitat with less canopy cover could be that the trees in that habitat are more accessible when 
trees are standing less close together (Kosinski & Winiecki, 2004). Moreover, areas that are more 
open (more sunlight can shine through the canopy) could contain different plant species and food 
resources, which could be beneficial for some birds (Davison et al., 2023). Canopy cover percentage 
is calculated by assigning each raster cell the percentage of neighbouring cells that contain canopy 
cover for a certain area (focal operation). In this case, the moving window used is 41 by 41 meters. 
For the metrics entire calculation, see appendix Aa01. 

2.3.4 Upscaling of LiDAR metrics 
Now that the calculation of all 14 metrics has been described, the workflow of upscaling these 
metrics to the whole study area will be explained (Appendix B). The squares represent process steps 
and the cylinders represent data. As mentioned earlier, 60 LiDAR tiles were downloaded in order to 
cover the whole study area. The grey parts of the workflow were repeated for each LiDAR tile. The 
white parts represent processes on the scale of the 60 LiDAR tiles all together. The workflow starts 
with one LiDAR tile as input. Then, the LiDAR tiles were split into 9 sub-tiles. This was done, as the 
calculation of point clouds for the whole LiDAR tile would be computationally too heavy for the 
laptop used in this thesis. For each sub-tile, a buffer of 10 meters was created. Namely, some metric 
calculations contained focal operations, which operations sometimes required the environment 
around the extent of the original sub-tiles. These buffers were created in order to be deleted after 
the calculations were done. The coloured parts of the workflow represent for-loops that were run for 
each sub-tile. Each colour represents a different for-loop. All in all, in the upscaling process, the same 
for-loop that includes the parts up to and including the grey parts in part 3 was run 60 times.  
Part 1 displays the process of creating all vertical complexity metrics except UC. Besides, tree crown 
polygons were created. At first, each sub-tile was normalized in a for-loop. Normalization was done 
with the ‘normalize_height’ function. The function’s output was a LASCatalog collection containing 
normalized all return points (nlas_AR). Thereafter, first return points were filtered out and a new 
collection, nlas_FR, was created. The point clouds used to calculate all 14 metrics were normalized. 
Besides that normalization is a common practice in previous research such as Kissling et al. (2023), 
this choice was made due to that insights are preferred to be obtained about the height of the 
different vegetation layers instead of heights that give information about the height of vegetation 
and the ground together. Moreover, metric layers would not be comparable with each other if some 
layers were normalized and others not. Additionally, some metrics are dependent on each other, for 
example UC is dependent on p25 and p95. Nevertheless, metrics were either calculated with all 
return data (nlas_AR) or first return data (nlas_FR). The input of p25 and p95 is nlas_AR, as all return 
points needed to be used in order to represent different vegetation layers. The mean, SD, CV, 
kurtosis and skewness only use first return points as these metrics were created to show the vertical 
complexity of the top of the vegetation. In part 2, the seven already created metrics (indicated as 
‘First metrics (7)’) were cropped per sub-tile, in order that the earlier created buffer was deleted. The 
raster layers of the sub-tiles were merged and smoothed with a moving window of 3 by 3 meters in 
order that the differences between areas with different values were highlighted more. For 
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smoothing, a median filter was used as this filter preserves the detail in the raster image, whereas 
when a mean filter is used, outliers can give a less realistic view of the neighbourhood cells. Besides 
these steps, UC, VR_low and VR_total were created with the p25 and p95 raster layers. After this, all 
the so far created metrics were cropped again by 10 meters. This was done because all downloaded 
LiDAR tiles initially had a buffer of 10 meters. Furthermore, the earlier created tree object polygons 
were used to create canopy cover rasters and the metric CCP. These two types of rasters were 
subsequently cropped by 20 meters. In part 3, the same tree objects were used to calculate 
distance_ST. Moreover, canopy cover was used to calculate distance_inside and distance_outside. 
These three metrics were directly calculated for the extent of the whole study area. Moreover, the 
remaining 11 metrics were merged to the extent of the study area. Thereafter, all 14 metrics were 
clipped to the exact borders of the study area and this resulted in the raster layers of the final 
metrics. All metrics except for distance_ST, distance_outside and distance_inside were calculated 
with a resolution of 1 meter. The three distance metrics got a lower resolution of 2 meters, because 
computationally the calculation would have been to heavy (for the laptop used in this thesis) when a 
resolution of 1 meter would be used. Eventually, also the other metrics were resampled to a 
resolution of 2 meters. All in all, the duration of running the scripts of all 60 tiles was in total 
approximately 60 hours (1 hour per tile). The scripts of the whole upscaling process can be found in 
appendix Aa01, appendix Aa02 and appendix Aa03. 

2.4 RQ2 and RQ3: Maxent model 
After all metrics were calculated, the created LiDAR metrics were used to derive information about 
the habitat preferences of the woodpecker family in general and the separate woodpecker species. 
At first, the methodology that RQ2 and RQ3 have in common will be explained. Thereafter, the 
differences between the two sub-questions will be described. In order to research the habitat 
preferences of woodpeckers, the Maxent model was used to get insight into the variable importance 
of the different metrics for the different woodpecker species. Maxent (Maximum Entropy) is a 
species distribution model that predicts the probability of a species being present at certain locations 
in a study area (Esri, 2024a). The model uses presence-only data and environmental data (in this case 
the metric rasters) and gives as output a probability distribution of a species being present for 
different environmental conditions (Phillips et al., 2006). This model was chosen over other possible 
models such as a GLM, because this model was specifically developed for situations where there is 
only presence data of a species available (which is the case in this research). 

2.4.1 Background points 
Besides presence data, the model also takes randomly generated background points as input. 
Background points, also called pseudo-absences, are points that show at which environmental 
conditions a species can either be present or absent (Barbet-Massin et al., 2012). This means that 
background points can either be located at the locations of woodpecker observations or at locations 
where the woodpecker was not observed. The following amount of observation and background 
points were used in the Maxent model. The background points were determined by multiplying the 
amount of observation points by 2, as then was made sure that a sufficient amount of background 
points would be potentially at the locations of the presence points and areas with no presences 
(absence areas). 
 
Table 2: The amount of observation points and background points used in the Maxent model of the 
black woodpecker, great spotted woodpecker, middle spotted woodpecker, lesser spotted 
woodpecker, green woodpecker and all woodpecker species. 

Species Observation points Background points 

Black woodpecker 44 88 

Great spotted woodpecker 537 1074 
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Middle spotted woodpecker 20 40 

Little spotted woodpecker 73 146 

Green woodpecker 38 76 

All woodpecker species 712 1424 

 

2.4.2 VIF 
Besides that background points were created, the values of the 14 different metrics were extracted 
for both the presence and the background points. A diameter of 50 meters was used in order to 
make sure that the surroundings of the points were taken into account but at the same time that the 
details of the metrics were not lost. Before the Maxent models could be run, variables with a high 
collinearity with other variables were excluded. To check if there is multicollinearity, the variance 
inflation factor (VIF) was calculated (Naimi et al., 2014). The VIF is an indicator of the inflation of the 
standard errors due to multicollinearity (Pradhan, 2016). When a variable has a VIF of 1, it means 
that there is no correlation between that variable and other variables. A VIF of 1 to 5 indicates a 
moderate correlation. A VIF of higher than 5 indicates a stronger correlation and a VIF higher than 10 
indicates a high correlation. A VIF of 3 or below is considered low enough for these variables to be 
used in the model and variables with a VIF higher than 3 were excluded. Metrics that were already 
deemed as unreliable beforehand (RQ1) were not included in the subset of variables to be tested on 
its VIF value. Why they were unreliable will be discussed in the discussion. On the other hand, 
priority was given to p95 and CCP, which meant that these two variables could not be excluded after 
the VIF test. This was done because these two variables were of interest to acquire more knowledge 
about. For example, p95 was chosen over mean as p95 filtered out big outliers and mean did not. 
Moreover, canopy cover percentage could show the influence of rasters that are derived from 
detected tree polygons. 

2.4.3 Model output 
After the metrics were prepared, the models were run. The Maxent model randomly changes the 
values of the presence points (Elith et al., 2011). By measuring the differences in accuracy of the 
model when metric values were changed, the relative variable importance, also called permutation 
importance, could be derived per metric. This specific accuracy measure, AUC, will be explained later 
in the methodology. All in all, before predicting new suitable areas, the model already looks at how 
much the variables contribute to the presence of the already known observation points. In this 
thesis, only this descriptive part of the Maxent model will be run, as a goal of the thesis is to explain 
the already known occurrences of the woodpeckers. Besides variable importance values, the model 
also produces response curves, which show the relationship between metric values and the 
probability of a species being present (Phillips, 2021). The x-axis shows the range of values to which 
the metric was randomly changed. The variable on the y-axis of the plot is called the ‘cloglog output’, 
which is an estimation of the probability of the woodpecker to be present between 0 and 1 (Phillips, 
2021). If the probability values stay approximately the same over the whole range of metric values 
(no preference for specific values), this indicates that this metric does not have a high importance. 
Response curves should be interpreted by looking at the steepness of the curve and the differences 
in probability values. When certain metric values have the highest probability values, while there is a 
big difference from the lowest probability values and there is a clear trend (steep curve), this 
indicates that this metric has a high importance and that there is a clear preference for specific 
metric values. Moreover, the Maxent model gives two different types of response curves as output 
(Phillips, 2021). The first one shows how the probability of the presence of a species changes when 
the values of a variable are randomly changed, while the values of the other variables stay at their 
mean values. Here, the influence of the variable is shown in combination with the influence of the 
other variables. This means that if other variables have a higher influence on the probability, this 
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could influence the probability values of that certain variable. This type of response curve shows the 
metric values that are preferred and the most suitable for the species. In this thesis, this type of 
response curve will be called a total response curve and its values will be called suitable preferred 
values. In the second type of response curve, the values are shown that a species prefers when it 
only takes one specific metric into account in its habitat selection. This type shows just like the total 
response curve probability values, but then only one variable is used in the Maxent model and 
dependencies between that variable and other variables are not included. This type will be called an 
individual response curve (as only one individual metric is taken into account) and its values will be 
called individual preferred values. In this thesis, the total response curves will be given the most 
importance, as these curves show the influence of the different variables when other variables are 
also taken into account and thus show what values a species will eventually choose for its habitat. All 
in all, the total response curves show a trade-off between the values of the different 
variables/metrics used in the Maxent model. The species might tolerate the less preferred individual 
values of the less important variables in order to still have the individual preferred values of the more 
important variables. Thus, the Maxent models give as output the metric value combinations that are 
overall the most suitable for the species. These values can differ from the values in the individual 
response curves. Big differences between total response curves and individual response curves could 
be an indication of that the variable has a low importance in the model compared to the other 
variables. That is why comparing total and individual response curve could give an additional view of 
the importance of certain variables for the habitat selection. Additionally, when translating the 
models to ecological terms, the total response curves show the eventual habitat preferences for 
different metric values, the individual response curves show the habitat preferences of the metrics 
while the preferences of other metrics are already taken into account (which means that there is no 
influence of other variables) and the habitat selection of a species could be represented by the 
combination of the most suitable preferred values of all metrics. 

2.4.4 Accuracy 
Before more information can be given on permutation importance, certain accuracy measurements 
of the model have to be explained. At first, the model automatically measures the amount of 
omissions and commissions. Omissions are presence points that are misclassified as non-presence 
points. Commissions are rightly classified presence points. The omission rate is the proportion of 
presence points that were misclassified (Esri, 2024a). Furthermore, the model creates a graph in 
which the receiver operation characteristic (ROC) is plotted (Wei et al., 2018). This graph describes 
the relationship between the sensitivity and 1 minus the specificity. The sensitivity (1 minus the 
omission rate) is the proportion of presence points that were correctly classified. This should be 
maximized for a good model accuracy. 1 minus the specificity is the background or absence points 
that were falsely classified as potential presence points. This value should be minimized. The area 
under the ROC curve (AUC) is a measure of accuracy of the Maxent model. The AUC value is an 
indicator of how good the model can discriminate between presence points and absence or 
background points (Elith et al., 2011). An AUC value of 0.5 is comparable to a random prediction. 
Higher values indicate that the presence of the points can be explained by the variables. According to 
Swets (1988), values between 0.5-0.6 are failing, 0.6-0.7 are poor, 0.7-0.8 are fair, 0.8-0.9 are good 
and 0.9-1 are excellent. Nevertheless, the AUC values calculated by the model could be more reliable 
when absence points are used instead of background points. Namely, for the calculation of 1-
specificity, background points that are located at the locations of presence points can be indicated as 
falsely classified presence points while they should be indicated as correctly classified presence 
points (Tesfamariam et al., 2022). When absence points are used, there is a certainty that the points 
can not be found at the location of the presence points and the indication of falsely classified 
presence point should then be true. Thus, when background points are used in Maxent, the AUC 
values can be lower than actually should be the case. That is why poor AUC values (0.6-0.7) could 
also still be acceptable. 
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2.4.5 Violin plots 
Besides variable importance plots and response curves, violin plots were created. Violin plots show 
the distribution of values with the use of density curves (Atlassian, 2024). A bigger density (wider 
curve) indicates that the frequency of points with values in that range is higher. Violin plots show just 
like individual response curves which metric values are more preferred individually (no other 
variables are taken into account). They give more insight into if the values found at the observation 
points differ from the values found at random background points in the study area. For the 
representation of the study area, the background points of all woodpecker species were used (1424 
points). Violin plots can not be used to infer information about the variable importance of the 
different metrics. They can only be used to get insight into the values species prefer for each variable 
individually and to compare the different woodpecker species with the general study area and with 
each other. If a specific metric has a high variable importance, the individual preferred values of this 
metric match more with its suitable preferred values, meaning that in this case its violin plot can also 
give more insight into the suitable preferred values of this metric. However, just like the individual 
response curves, if the values of the violin plot of a specific metric differ much from the suitable 
preferred values in the total response curves, it can indicate that that metric is not very important in 
the total habitat selection. To get more insight into the general differences between observation and 
background points (only in RQ2), it was tested for the collection of all woodpecker species if there 
are significant differences between the two groups. This was done using either a t-test or a Wilcoxon 
rank-sum test. The t-test was used if both groups have a normal distribution. The Wilcoxon rank-sum 
test was done if both groups do not have a normal distribution, for example a skewed distribution 
with the tail to the left or right. If the chosen test results in a p-value of smaller than 0.05, there is a 
significant difference between the two groups. 

2.4.6 Differences between RQ2 and RQ3 
In RQ2, there will be focused much on the importance of the different aspects of vegetation 
structure represented by LiDAR metrics. In the results, the variable importance values of each metric 
will be discussed. Thereafter, the total response curve of each metric will be described, resulting in 
information about the suitable preferred values of each metric. Moreover, the total response curve 
of each metric will be compared to its individual response curve and violin plot, in order to get more 
insight into the importance of the metrics. Then, in the discussion, the importance of the metrics will 
be discussed. Moreover, the suitable preferred values of each metric, which represent the habitat 
preferences of the woodpecker family, will be discussed. In RQ3, there will be given more importance 
to the differences in habitat preferences between the five woodpecker species. In the results, the 
derivation of the importance of the different variables will be analysed less elaborately. There will be 
focused more on describing the different suitable preferred metric values of the total response 
curves and the total response curves will only occasionally be compared with the individual response 
curves and violin plots if needed. Then, in the discussion, the suitable preferred values of each 
woodpecker species, which represent the habitat preferences of that species, will be discussed and 
in this way the habitat preferences of the different woodpecker species will be compared. Thus, RQ2 
and RQ3 are similar,  but the biggest differences between the two sub-questions is that in the results 
of RQ2 a more elaborate explanation of the importance of the metrics will be given and that in the 
discussion of RQ3 there will be focused more on the ecological explanations for the found habitat 
preferences of the different woodpecker species. 
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3. Results 

In this part, the results of RQ1, RQ2 and RQ3 will be described. At first, the layouts of the created 
metrics will be described (RQ1). Then, the results of the Maxent model of all woodpecker species will 
be displayed (RQ2). Finally, the results of the Maxent model of the separate woodpecker species will 
be described (RQ3). For both RQ2 and RQ3, occasionally the additional information of violin plots will 
be described. Finally, the accuracy results of the models used in RQ2 and RQ3 will be shown. 

3.1 RQ1: Layouts of LiDAR metrics  
In this section, an overview will be given of the resulting layouts of the 14 calculated metrics. In 
figure 4, layouts are displayed of the seven most important variables. These layouts are chosen, 
because they have the highest variable importance according to the results of the Maxent model of 
all woodpecker species combined. These model results will be explained in RQ2 and RQ3 of the 
results. For now, the values displayed on the layouts will be described and the metric values will be 
compared to the reference study area (Figure 4). The layouts of the seven remaining metrics will also 
be described in this part of the results and can be found in appendix C. The study area shown in 
figure 4 is a small part of the entire study area. This smaller area is chosen, as it displays a diverse 
area with dense forest, less dense forest and open areas. For example, in the south, a forest with 
dense canopies can be seen. Moreover, in the northeast, a forest containing trees with a less dense 
canopy (and thus more openings) is observed. Furthermore, in the west, there is a big open field and 
in the north, two smaller open fields with one containing water can be seen. 

3.1.1 Vertical complexity metrics 
In figure 4, there are two vertical complexity metrics. At first, p95 shows low values in the open fields 
and high values in the forest areas. Individual trees can be observed in the open fields and in the 
east, taller trees are located than in the west. Moreover, CV shows that low values can be found in 
the middle of the tree canopies and that at the edges of the trees and other vegetation units, higher 
CV values are found. For example, in the northeast, the forest seems to be more yellow than the area 
in the south. This indicates that higher standard deviations are found compared to the mean 
vegetation height at the edges of vegetation units such as trees and bushes. This also indicates that 
the points are more spread out at these locations. Additionally, NA values can be found at locations 
with no vegetation, such as the open fields, openings between canopies and areas with water, as 
dividing the standard deviation by 0 leads to NA values. In appendix C, the SD metric shows a similar 
pattern as CV, with higher values in more open vegetation areas and lower values in the middle of 
vegetation units. Nevertheless, unlike CV, SD shows values of 0 meter in open fields and openings 
instead of NA values. The fact that SD does not have NA values at these locations is due to the fact 
that even though the mean at these locations is 0 meter, the standard deviation can still be higher 
than 0 meter. Moreover, the mean shows similar patterns as p95, but in general a bit lower values. 
Furthermore, p25 has high values in the denser forests, which values are quite similar to the values 
of p95, in the range of 10 to 20 meters. Moreover, in the less dense vegetation areas, many areas 
with a height of 0 meter are found. This resulted in that UC shows values close to 1 in the areas with 
dense canopies and values of 0 in the more open areas where p25 also has values of 0 meter. 
Moreover, in the layout of the metric kurtosis can be seen that high values (higher values than 3) can 
be found at locations were the point density is high. This is usually at locations with a low standard 
deviation. The lowest standard deviations can be found in open areas with very low vegetation such 
as grass. Most raster cells there have a mean height of 0 meter. Also p95 showed values of 0 meter 
as the outliers are cut off by the 95th percentile. Nevertheless, as the points are very densely 
distributed near the ground, the outliers will be bigger and if a maximum height layout of the area 
was made, values that are a bit higher than 0 meter would be seen due to the presence of these 
outliers. In the canopies of trees, the points are also densely distributed but still less dense and with 
higher standard deviations than in grasslands, with the highest values on the edges of the canopies. 
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The points are still spread out enough in order that less outliers are observed than in a normal 
distribution, resulting in that lower kurtosis values than 3 are most commonly found in the canopies 
of trees. Overall, the highest kurtosis values can be found at locations with very low vegetation such 
as grass. Close to the edges of vegetation units such as trees and shrubs, some very low vegetation 
can be found and this results in that higher kurtosis values can be observed just outside the edges of 
vegetation units. Thus, high standard deviations can be found on the edge of vegetation units and 
high kurtosis values can be found just outside the edge of vegetation units and in general in areas 
with very low vegetation such as grass. In most open areas with no vegetation, many NA values can 
be found. Furthermore, the skewness layout shows that inside denser forests, there are values 
around 0, meaning that the distribution is not more skewed than a normal distribution. Nevertheless, 
just like for kurtosis, very low vegetation such as grass has a higher skewness, which indicates that 
the distribution has a peak in elevation values to the left and a tail to the right in these areas. This 
means that most points in these areas have elevation values close to 0 meter. Besides this, stripes 
with higher kurtosis and skewness values can be observed. Why this is the case will be explained in 
the discussion.   

3.1.2 Horizontal heterogeneity metrics 
The VR_total layout shows that higher roughness values are found in the areas containing less 
vegetation. Especially at the edges of the vegetation units and in between the units, higher values 
are found. A high roughness means that the height differences are bigger, meaning that at the edges 
of the trees and shrubs, bigger height differences are found. VR_low shows similar results, only that 
much more areas with a roughness of 0 meter can be found (Appendix C). 

3.1.3 Vector-based metrics 
In the second row of figure 4, three vector-based metrics can be seen. At first, distance_ST displays 
the distances to the nearest standalone tree. Raster cells with a distance value of 0 meter indicate 
that they are at the location of a standalone tree. In the layout, it can be seen that several 
standalone trees are present in the open fields while in the forests higher distances from standalone 
trees can be found. Furthermore, distance_outside shows that the highest distances to outside the 
forest can be found deeper inside the forest and the lowest values are found closer to the open 
fields. This also means that in the open field areas, the distance values are 0 meter. The opposite is 
the case for the distance_inside metric, where higher distances away from the forests are found in 
the middle of the fields and distances of 0 meter can be found in the forest areas. Finally, the last 
vector-based metric is CCP. The layout displays the highest values in the forest, where the most 
canopy cover is present. Intermediate values can be found at the edges of the forest or areas with 
more openings in the canopy. Values of 0% can be found in open areas with no trees.  

 



28 
 

 
Figure 4: Layouts showing the seven most important LiDAR metrics, as well as the study area as a 
reference area. The metrics displayed, from left to right and top to bottom, are: VR_total, p95, 
distance_ST, distance_outside, distance_inside, CV and CCP. 
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3.2 RQ2: Model results of woodpecker family 
After metric values were extracted for all woodpecker observations, VIF values were calculated in 
order to derive if there is multicollinearity between the metrics. In general, the following variables 
were excluded from the subsets used in the Maxent models: mean, SD, skewness, kurtosis, p25, 
VR_low and UC. The mean and SD were excluded due to high collinearity with other metrics (see 
correlation plots in appendix D). The other metrics were not included due to that they were deemed 
not reliable enough to be used in the model. Why this is the case will be explained in the discussion 
of RQ2. Eventually, 11 variables were excluded and for most species, seven variables remained: 
VR_total, p95, distance_ST, distance_outside, distance_inside, CV and CCP. 
In this part of the results, the results of the Maxent model of the collection of all woodpecker species 
will be described. There will be focused on the differences in importance between the variables used 
in the model. At first, the permutation/variable importance results of the model will be described. 
Moreover, the total response curve of each metric will be analysed in order to derive the suitable 
preferred values (habitat preferences) of the woodpecker family. Furthermore, the total response 
curve of each metric will be compared with its individual response curve and violin plot. This is done 
to show how much the individual preferred values (of the individual response curve and the violin 
plot) of certain metrics are affected by the other variables in the model. If, for a certain metric, the 
individual preferred values of the individual response curve and violin plot are very similar to the 
suitable preferred values of the total response curve, this could indicate that this variable is quite 
important in the model. If there are many differences, other variables could be more dominant in the 
model.  
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Figure 5: (a) Variable importance of each metric for the collection of all woodpecker species. (b) Total 
response curves of the four most important metrics for the collection of all woodpecker species. (c) 
Individual response curves of the four most important metrics for the collection of all woodpecker 
species. 
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3.2.1 Variable importance 
Figure 5a shows the permutation importance values resulting from the Maxent model run for the 
presence points of all five woodpecker species combined. The barplot shows that the metric p95 has 
the highest variable importance out of all metrics (59.4%). The second most important variable is CV 
(20.9%). Besides these metrics, VR_total and CCP have a smaller but still considerable importance of 
9.1% and 6.9% respectively. The remaining variables, distance_ST, distance_outside and 
distance_inside have a low significance in this model with importance values ranging from 0.15 to 
2.8%. The results of this Maxent model show that the biggest change in AUC value occurs when the 
values of p95 are changed randomly, meaning that p95 contributes the most out of all variables to 
the presence of the five woodpecker species at their chosen habitat locations. Figure 5b shows the 
total response curves and figure 5c shows the individual response curves of the four most important 
metrics. Moreover, in figure 13 in appendix G, violin plots are displayed of the four most important 
variables used in the Maxent model. Each plot contains a violin plot of the background points, 
representing the whole study area, and a violin plot of all woodpecker observations. The violin plots 
of the separate woodpecker species are also added for comparison and will be discussed in the 
results of RQ3. Furthermore, in appendix H, an overview is given of the statistical tests used to test if 
there is a significant difference between observation and background points for each metric. 
Moreover, the median and mean values of the observation and background points, as well as the p-
values resulting from the statistical tests, are included.  

3.2.2 VR_total 
In the total response curve of VR_total, the highest probability can be observed for VR_total values in 
a range from 0 to 6 meters. Even though values close to 0 meter are preferred in the total response 
curve, they are not preferred in the individual response curve. Additionally, the violin plot of this 
metric shows that VR_total values are significantly but only slightly higher for observations compared 
to background points. The median is 2.92 compared to 2.69 meters. Thus, for VR_total, its individual 
preferred values are slightly higher than the study area and are not close to 0. Moreover, it can be 
observed that the suitable preferred values are the same, but differ slightly as values close to 0 are 
also still suitable. This difference between the total response curve and the individual response 
curve/violin plot shows that VR_total does not have a very big variable importance in the model. 
Overall, from all this information can be inferred that areas with some vegetation roughness (0-6 
meters) are preferred by woodpeckers.  

3.2.3 p95 
For p95, the total response curve shows a clear preference for higher values. p95 has its highest 
probability around 25 meters. Compared to the other metrics, the biggest differences in probability 
values (the curve has the steepest line) is observed for this metric, showing the specific preference 
for certain metric values, in this case higher p95 values, and thus also the importance of this metric. 
Other metrics have less steep lines and show a less specific preference. Moreover, in general, the 
total response curves of metrics with a high variable importance do not differ much from their 
individual response curves, as their individual preferred values have a higher importance and are 
therefore also more suitable when other variables are taken into account. This can be observed for 
p95, which has a high variable importance. The individual response curve of p95 shows not much 
difference from the total response curve, which means that the individual preferred values match 
the suitable preferred values. Also in its violin plot, this preference for higher elevation values can be 
clearly seen. Namely, the density of the observation points is the biggest for higher values compared 
to the peak density of the background points, meaning that woodpecker observations are generally 
located at a higher 95th percentile of vegetation height than random points in the area. The density 
of the violin plot of the background points has two peaks, one at the bottom (close to 0) and one 
around the median of 9.4 meters, whereas the density of the observation points only has only one 
peak, around the median of 11.5 meters. Moreover, the observation points have a significantly 
higher median. 
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3.2.4 CV 
CV has the highest probability values at CV values ranging from 0.5 to 3.5, meaning that the suitable 
preferred values are: 0.5-3.5. In this total response curve, also values higher than approximately 1.7 
are deemed as suitable, while the values in the individual response curve have a decreasing 
probability after 1.7. In the violin plot of CV, a significant difference between observation and 
background points is displayed, with a median of 0.7848 compared to 0.7867 and a mean of 0.86 
compared to 1.01. This means that the individual preferred CV values of the woodpecker are a bit 
smaller than the study area. Overall, from these three plots can be derived that the most suitable 
preferred CV values have a broad range. Only values close to 0 are not preferred. Just like VR_total, 
this difference between total and individual response curves shows that CV does not have a very big 
importance compared to the other variables. 

3.2.5 CCP 
The fourth most important metric, CCP, does not show much differences in probability when values 
are changed. The probability slightly goes down but only near 100%, the probability makes a spike 
down. In its individual response curve, it can be seen that when CCP is independently used in the 
model, there is a more clear preference for higher values. In its violin plot, woodpecker observations 
were also found at higher canopy cover percentage values than the study area. Namely, the median 
(80.20 compared to 78.05%) is significantly higher. From all this can be inferred that all CCP values 
except for values close to 100% can be seen as suitable preferred values. Just like VR_total and CV, 
the difference between suitable preferred values and individual preferred values confirms the lower 
importance of CCP. Finally, besides that p95 has the highest variable importance out of all metrics, 
p95 is the only metric that does not display much difference in suitable and individual preferred 
values, indicating that this metric is the most important/dominant in the model. 

3.2.6 Remaining metrics 
In figure 10 in appendix E, the total response curves of the remaining metrics are displayed. 
Additionally, in figure 14 in appendix G, the remaining violin plots can be found. distance_ST has 
suitable preferred values for all distances from standalone trees except for 0. Moreover, the total 
response curve of distance_outside displays all distances up to 260 meters from forest edges. Also for 
distance_inside, a broad range of distances from the forest edge (0-340 meters) are suitable. 
Nevertheless, these three metrics have a low variable importance and that is why broad ranges and 
not specific values are preferred in the total response curves. Furthermore, the violin plots of the 
remaining variables all show significant differences between observation points and background 
points. The values of distance_outside are higher and of distance_inside are lower than the 
background points. Finally, distance_ST values are higher compared to the background points. 
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3.3 RQ3: Model results of separate woodpecker species 
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Figure 6: (a) Variable importance of the black woodpecker, great spotted woodpecker, middle spotted 
woodpecker, lesser spotted woodpecker and green woodpecker. If a variable has a value of -1 , it 
indicates that this variable was not used in the Maxent model due to high collinearity with other 
variables. (b) Total response curves of the four most important metrics for the black woodpecker, 
great spotted woodpecker, middle spotted woodpecker, lesser spotted woodpecker and green 
woodpecker. 
 
In the results of RQ2, much information was given about the importance of certain metrics by 
displaying their variable importance values and describing the differences between total response 
curves and individual response curves/violin plots. In this part of the results (RQ3), the importance of 
the variables will be described less elaborately and there will be focused more on the differences in 
suitable preferred values between the different woodpecker species. This means that mostly the 
variable importance plots and the total response curves will be described and that the individual 
response curves and violin plots are only occasionally mentioned if needed. 

3.3.1 Black woodpecker 
The black woodpecker has the highest variable importance value for p95 (Figure 6a). Its total 
response curve shows a peak at approximately 25 meters. Also the individual preferred values in its 
violin plot match these suitable preferred values, showing peak densities at higher p95 values than 
the background points (Figure 13 in appendix G). CCP also has a high importance. Its total response 
curve shows a slightly decreasing probability for almost all values except for values around 100%. 
Moreover, VR_total , distance_outside, distance_ST and CV have similar importances that are all 
lower but still considerable. From the total response curve of VR_total can be inferred that a broad 
range of values are suitable from 0 to 6 meters. The total response curve of distance_outside shows 
that the black woodpecker has no preference for locations either closer or further away from the 
forest edge. Also the violin plot shows a distribution over all values, which is different than the other 
species, which have a more specific individual preference of distance values (Figure 14 in appendix 
G). Furthermore, no specific preference for distances from standalone trees can be observed in the 
total response curve of distance_ST (Figure 11 in appendix E). Additionally, most CV values (except 
for values close to 0) would be suitable for the black woodpecker, but higher CV values are the most 
suitable for the species. 

3.3.2 Great spotted woodpecker 
In the variable importance plot of the great spotted woodpecker can be seen that p95 has a very 
dominant presence in the model. The total response curve shows that, similarly to the black 
woodpecker, values around 25 meters give the highest probability of presence. Also in its violin plot, 
it can be seen that most observations were found at higher elevation values compared to the 
background points, which matches the suitable preferred values (Figure 13 in appendix G). 
Moreover, VR_total and CCP have little importance, while distance_outside and distance_inside have 
almost redundant influence on the model. CV still has a considerable importance and has as similar 
total response curve for this metric as the other woodpecker species. Furthermore, the total 
response curves of VR_total and CCP show that both metrics have high probability values for a broad 
range of values. The most suitable preferred values of VR_total are just like the black woodpecker in 
the range of 0-6 meters. Its highest values can be found closer to 0 meter. Moreover, CCP values are 
suitable for the whole range of values but slightly decrease in probability for values close to 100%. 

3.3.3 Middle spotted woodpecker 
Just like the other woodpecker species, p95 has the highest importance. This species has a similar 
total response curve with the highest probability values for higher p95 values. Furthermore, 
distance_outside has the second highest importance. In its total response curve, the highest 
probability was found from 0 to 100 meters. Also distance_inside has a high importance. For this 
metric, the response curve shows that the highest probabilities are found at lower distances. 
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Moreover, similarly to the other species, a broad range of VR_total values (0-5 meters) are 
important. The total response curve shows and unexpected vertical peak near 5. This spike looks like 
a big change in probability. Nevertheless, the range of probability values on the y-axis is relatively 
small compared to other VR_total reponse curves. That is why it can be derived that the total 
response curve of this species shows relatively low probability values for approximately the whole 
range of VR_total values. Furthermore, distance_ST plays a role in the model and for this metric, 
higher distances from standalone trees are preferred (Figure 11 in appendix E). Besides these 
metrics, CCP has very little influence in this model. 

3.3.4 Lesser spotted woodpecker 
For the lesser spotted woodpecker, similar to the other species, p95 has the highest importance, with 
preferences for high p95 values. CCP and CV also have a considerable contribution while 
distance_outside and VR_total have small contributions. The total response curve of CCP shows that 
a broad range of values are suitable, but that lower values are the most suitable. Moreover, similar 
to the other species, higher CV values have a higher probability. Meanwhile, similar probability 
values can be seen for most VR_total values, as the change in probability values is not very big for the 
range of VR_total values. Just like the other species, the roughness values range from 0 to 6 meters. 
Additionally, the total response curve of distance_outside shows that probabilities are relatively low 
over a broad range, but that the highest probabilities can be found closer to 0  meter (Figure 11 in 
appendix E). 

3.3.5 Green woodpecker 
The most important metric for the green woodpecker is p95. Besides this metric, distance_outside 
also has a high influence on the model. CCP, CV and distance_ST have a similar moderate influence. 
Moreover, VR_total has a low influence. Compared to the other woodpecker species, the total 
response curve of p95 shows slightly different results. Namely, in the response curve, high 
probability values can also be observed at lower vegetation height values, with a range of high 
probability values from 2 to 25 meters. Additionally, the violin plots of p95 show that the green 
woodpecker observations have lower p95 values compared to the other species, which means that 
the individual preferred values (which in this case match the suitable preferred values due to high 
variable importance) also show that green woodpeckers can be found at lower vegetation heights 
(Figure 13 in appendix G). Furthermore, in the total response curve of distance_outside, a clear high 
probability for low distance values can be observed. Additionally, in its violin plot, the biggest density 
is located at low distance values (Figure 14 in appendix G). It is also observed that, compared to the 
other woodpecker species, the green woodpecker has observations with the lowest distance values. 
Moreover, the total response curve of distance_ST displays that higher distance values have a higher 
probability. Furthermore, the total response curve of CCP shows that all CCP values are suitable. Just 
like for the VR_total metric of the middle spotted woodpecker, the range of the probability axis is 
small. That is why the big spike observed at 100% does not represent a big change in probability. 
From this can be derived that there seems to be a high probability for all CCP values. Finally, from the 
total response curve of CV can be inferred that the green woodpecker has similar probability values 
as the other species (Figure 11 in appendix E).  
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3.4 Accuracy 
Table 3: Accuracy results of the Maxent models run for the black woodpecker, great spotted 
woodpecker, middle spotted woodpecker, lesser spotted woodpecker, green woodpecker and all 
woodpecker species combined. This table shows the AUC values, amount of observation points and 
amount of background points per model. 

Maxent model AUC Observation points Background points 

Black woodpecker 0.718 44 88 

Great spotted woodpecker 0.645 537 1074 

Middle spotted woodpecker 0.759 20 40 

Lesser spotted woodpecker 0.713 73 146 

Green woodpecker 0.750 38 76 

All woodpecker species 0.648 712 1424 

The Maxent models gave as output AUC values, which are a measure for the accuracy of the model. 
Table 3 shows these results. The AUC values of all woodpecker species combined and the great 
spotted woodpecker are in the category of ‘poor’. The other individual species are in the category of 
‘fair’. Moreover, it is observed that there seems to be a trend between the amount of observation 
points and the AUC values. Namely, models run with less observation points have the highest AUC 
values. In the model, the AUC values were derived by calculating the area under the ROC curve. The 
ROC curves of all six Maxent models can be found in appendix I.  
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4. Discussion 

In this part, the results of RQ1, RQ2 and RQ3 will be discussed. At first, the creation and reliability of 
the LiDAR metrics will be discussed. Then, the results of the Maxent model of the woodpecker family 
will be explained. Thereafter, the differences in Maxent results of the separate woodpecker species 
will be discussed. Finally, the accuracy and limitations of the results will be analysed. 
 
4.1 RQ1: LiDAR metrics 
In the results, the values displayed in the layouts of the 14 LiDAR metrics were described and they 
were compared to vegetation structure aspects observed in a reference area. Based on these 
observations, in this part of the discussion, there will be discussed how to interpret the values of the 
14 metrics in order to derive information about vegetation structure. Furthermore, the reliability of 
the metrics for usage in the Maxent models of RQ2 and RQ3 will be discussed and there will be 
explained how certain metrics could have been improved.  

4.1.1 Vertical complexity metrics 
The results have shown that the metric p95 provides information about the height of vegetation in 
the study area. Higher values indicate a higher vegetation height. From this metric, areas with trees 
(high values) can be derived well. Also for the mean, different vegetation areas can be distinguished 
well. Furthermore, it was observed that SD values are higher in vegetation areas that are more open. 
For example, forest areas in which the tree canopies are not very closed displayed higher SD values. 
This could be explained by that most LiDAR points are located in the middle of the trees and less at 
the edges of the trees, resulting in less densely distributed points at the edges and higher standard 
deviations. Moreover, LiDAR pulses could more easily hit the ground in between trees than straight 
through the canopy, which could result in bigger height differences of the points located around the 
edges of the trees and thus bigger standard deviations. As CV represents the proportion of standard 
deviation compared to the mean, both CV and SD could be used as indicators for areas in which there 
are openings in between vegetation units, such as trees and shrubs. The calculations of p95, mean, 
SD and CV are not very complex and are very similar to calculations done in previous research. For 
example, in Kissling et al., 2023, the exact same calculations were done to create these metrics. This 
gives these metrics enough reliability to be used in the Maxent models of RQ2 and RQ3. The results 
of both kurtosis and skewness have shown that areas with higher values indicate that the vegetation 
is more open. Even though the two metrics could be reliable due to that their calculations in this 
thesis research match with calculations done in previous research, the two metrics were not deemed 
as reliable enough. Namely, vertical stripes with a width of approximately 300 to 400 meters with 
higher kurtosis and skewness values were observed in the whole study area. Between each stripe, 
there is approximately a distance of 850 meters. This occurrence could be explained by the way 
LiDAR data are created. The plane flies in straight lines (AHN, n.d.b). If the plane flies lower or higher 
relative to the surface of the study area, this has an influence on the width of the stripes and the 
amount of LiDAR points created. Due to overlap between flight routes, higher point densities can be 
found in these areas (see appendix K). kurtosis and skewness are dependent on the distribution of 
points in the vertical direction. For example, for kurtosis, the amount of outliers in the point 
distribution are the highest in areas with not much vegetation, as there is a high point density in a 
small range of values and divergent point more easily become outliers. In those areas with very low 
vegetation, other metrics such as p95 give values close to 0 meter and are not affected by this higher 
point density. Thus, more outlier points are present in the flight overlap areas, resulting in higher 
kurtosis values. CV and SD are dependent on the values of the points and not specifically on the 
shape of the distribution (for example the normality or skewedness of a distribution) That is why 
these two metrics were kept. Another metric that was not included in Maxent models is p25. p25 has 
similar height values in denser forests and more values of 0 in less dense vegetation areas compared 
to p95. While p95 seems to give a reasonable representation of overstorey vegetation, p25 values 
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are either much higher or much lower than expected. There could be multiple explanations. It seems 
that during the creation of the AHN4 (LiDAR) data, the pulses did not penetrate all the way through 
tree crowns. This could have resulted in that most of the created points were located in the canopy 
of the trees and that 25th percentile points were still located almost as high as 95th percentile points. 
This could explain why the p25 values in trees with denser crowns have similar elevation values as 
p95. Research of Martinuzzi et al. (2009) could support this statement about AHN4 data. Namely, it 
was mentioned that understorey vegetation calculated with LiDAR data is commonly less accurate 
than other methods, due to that the amount of points that reach lower vegetation layers decreases 
when they are located under thicker canopies. Other research also confirms this statement (Hill & 
Broughton, 2009). Besides the thickness of the canopy, the percentile threshold chosen to represent 
understorey vegetation also plays a role, although in this thesis, a higher or lower threshold would 
still give unreliable results. Namely, if a higher threshold is chosen, most likely higher values would 
appear at the locations where understorey vegetation was falsely indicated as 0, but then also even 
higher values would appear at the locations where understorey vegetation already has unrealistically 
high values. Moreover, the period in which planes have flown to create LiDAR point clouds can 
influence the ability to map understorey vegetation. Namely, in leaf-on season, canopies are thicker 
and less penetrable than in leaf-off season. The data used in this thesis were obtained in February of 
2022 (ArcGIS, 2024). Even though it was leaf-off season, it was not managed to map a realistic 
representation of understorey vegetation. This could be explained by that De Veluwe contains much 
area with coniferous trees (see figure 2). Coniferous trees lose their needles over a longer period of 
time and still have a dense canopy in the winter, whereas deciduous trees have already lost their 
leaves in the winter. When observing the p25 layout, areas with coniferous trees tend to have higher 
values than areas with deciduous trees, as the thicker canopies of the coniferous trees are less 
penetrable. This could explain why understorey vegetation still could not be correctly mapped in this 
area. Additionally, in appendix J, a table with a comparison between the density of first and all return 
points per tile is given. In all 3 tiles, a dominant proportion of all points consists of first return points. 
This shows that, even though all return points were used for the calculation of these metrics, most of 
the pulses did not go through canopies and only gave one return. As the 25th percentile height raster 
was supposed to be a representation of understorey vegetation and was used to calculate UC and 
VR_low, these three metrics were deemed as not very reliable. That is why the metrics were not 
included in the Maxent models of RQ2 and RQ3.  

4.1.2 Horizontal heterogeneity metrics 
From the results can be derived that higher VR_total values indicate forest areas with openings in its 
canopy. Namely, the biggest height differences are found between the top of trees and the ground of 
openings in the forest. When a canopy is more closed, less height differences are present and 
VR_total values are lower. This metric seems suitable for further use in Maxent models, as from its 
values information is provided about which areas are more or less heterogeneous. The calculation of 
this metric was based on De Vries et al. (2021). An alternative method for the calculation of this 
metric could be that the standard deviation of the 95th percentile of vegetation height is calculated 
per cell for a certain window size (Koma et al., 2022). This is also a focal operation, but instead of 
looking at the biggest height differences between a cell and its neighbouring cells, the standard 
deviation of the elevation values of the middle cell and all neighbouring cells together is calculated. 
Subsequently, this value is assigned to the middle cell. This method might give a similar view of 
heterogeneity of vegetation, except for that the range of output values is different. 

4.1.3 Vector-based metrics 
In order to create tree crown polygons, tree tops were detected by using a commonly used window 
size of 5 meters in the ‘locate_trees’ function. Nevertheless, the detection of tree tops could have 
been more accurate if a variable window size was used (Roussel et al., 2023). Namely, it is more 
suitable to detect taller trees with a bigger window size and to detect smaller trees with a smaller 
window size. A function could be developed in which the window size is dependent on the elevation 
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of raster cells. In this way, variable window sizes could have been used to detect trees. Nevertheless, 
the creation of such as function is a topic for further research. Moreover, the layout of the metric 
distance_ST shows clearly the distances to trees that are located minimally 10 meters from other 
trees. This metric was initially based on the idea that black woodpeckers prefer more isolated trees. 
Nevertheless, the literature should have been interpreted a bit differently. In the paper of Puverel et 
al. (2019), isolated trees were defined differently than implemented in this thesis. The distance to 
the nearest neighbouring trees of each cavity tree was measured from trunk to trunk and not from 
tree crown edge to tree crown edge. Moreover, much smaller distances between trunks were 
already used as indicators of isolated trees. Namely, the distance between the cavity tree trunk that 
was labelled as an isolated tree and the nearest tree was on average 5 meters. This means that the 
distance of 10 meters between tree crowns chosen in this thesis might have been too high in order 
to find the isolated trees that black woodpeckers would prefer. In this thesis, standalone trees were 
defined as trees that were located outside big areas of forest. After these new revelations, it can be 
said that standalone trees should have been defined as trees inside forest areas that do not have 
closely neighbouring trees. In further research, distances between canopies in the range of 1 to 3 
meters seem more suitable. Moreover, distance_outside displays the distances to open areas. Raster 
cells with higher values are located deeper inside the forest. distance_inside displays the opposite, 
which is distances to forest areas. For this metric, raster cells with higher values are located deeper 
inside open areas and further away from forest areas. The values of both metric are quite reliable, as 
they simply show the proximity to certain raster cells. Nevertheless, the detection of open areas and 
forest areas could be improved. In this thesis, the study area was simplified into bigger areas with 
forest and bigger open areas. Open areas with a surface area smaller than 3500 m2 were filled up and 
became part of the bigger forest areas. Moreover, forest areas smaller than 3500 m2 were counted 
as part of bigger open areas. These thresholds were chosen based on trial and error. It was tested for 
which threshold forest areas were entirely filled up. Additionally, the same was tested for when open 
areas were entirely open. Nevertheless, these tests were done for a small part of the forest, resulting 
in that the threshold was based on a specific part of the study area. For other parts, this threshold 
might have been too small or too large. That is why in future research, more time could be spent on 
defining a suitable threshold. Furthermore, the metric CCP showed the differences in canopy cover in 
the study area. Canopy cover percentage was calculated using a focal operation. For a moving 
window of 41 by 41 meters, the percentage of cells containing canopy cover was calculated. 
Nevertheless, in previous research also other methods were used to calculate canopy cover metrics. 
In Kissling et al. (2023), a local operation was done instead of a focal operation. Per raster cell, the 
percentage of points above the mean height was calculated in order to show the density of the upper 
vegetation layer. Higher percentages above the mean height would indicate that the upper layer is 
more dense and that there is more canopy cover. Nevertheless, this metric also takes other 
vegetation than trees into account, such as shrubs. However, the method for CCP used in this thesis 
only takes detected trees into account. Thus, the canopy cover metric of this thesis gives a different 
type of information than the metric described in Kissling et al. (2023). The window size used for the 
focal operation in this thesis, could be adjusted more. Namely, now a window size was chosen that 
was not too big but also not too small, in order to take the closer environment into account but also 
not loose detail. Even though the window size could be adapted more, the metric still shows a 
representation of canopy cover. Even if another window size was used and a different range of 
values was displayed for this metric, the areas indicated as having more or less canopy cover would 
still be comparable and informative. 
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4.2 RQ2: Habitat preferences of woodpecker family 
In the results section of RQ2, the total and individual response curves of the Maxent model of the 
collection of all woodpecker species were analysed, as well as violin plots of the different metrics. It 
was derived which metrics were the most important and which metrics were less important. 
Moreover, information was acquired about the suitable preferred values of each metric. In this part, 
it will be discussed why the most important metrics of the Maxent model could be important for the 
habitat selection of the woodpecker family. Moreover, it will be explained more concretely what 
information the suitable preferred metric values give about woodpeckers’ habitat preferences 
(certain versions (values) of aspects (metrics) of vegetation structure). Additionally, ecological 
explanations will be given for why woodpeckers could have these specific habitat preferences. 

4.2.1 p95 
The 95th percentile of vegetation height, p95, has a very dominant variable importance (59.43%), 
which is more than three times as high as the second most important variable, CV. The total response 
curve showed that woodpeckers have higher probability values to be present at a higher vegetation 
height, with a peak around 25 meters. Additionally, as the values in its individual response curve and 
violin plot match with the values in its total response curve, the violin plot of p95 can be used to infer 
information about the preferences of the woodpecker family compared to the general study area. In 
this case, the differences in violin plot densities and in medians between observation and 
background points indicate that the vegetation heights found at the observation points were most 
commonly in the range of tree heights and that woodpeckers prefer taller trees than the trees at the 
locations of the background points. Moreover, less points were found in the range of shrubs/bushes 
(closer to 0). Thus, these results indicate that the woodpecker family prefers areas containing taller 
trees (around 25 meters). Davison et al. (2023) did research into the importance of vegetations 
structure on bird species in Denmark. The results of this research showed that canopy height is the 
most important vegetation structure metric and that a positive correlation was found between 
canopy height and forest bird species richness. This preference for higher trees could be explained by 
that taller trees provide a bigger habitat than smaller trees (Davison et al., 2023). Furthermore, 
woodpeckers often select trees with a trunk that has a higher diameter than other trees in the area 
(Basile et al., 2020). The woodpeckers in this research, located in the Black Forest of Germany, 
preferred a diameter at breast height (DBH) of approximately 15-20 cm bigger than other trees. They 
also preferred old trees, as the wood of old trees has decayed more and therefore is softer and more 
suitable for cavity excavation. The fact that the woodpeckers can have a preference for trees with a 
big DBH and trees that are older could indicate that they could have a preference for taller trees, as 
taller trees often have a trunk with a bigger diameter and often are older. Furthermore, Menon et al. 
(2021) did research on woodpeckers in the Himalaya and the results showed that most woodpecker 
species preferred trees that have a large DBH, as well as that most woodpecker species preferred 
trees that are taller than the surrounding area. Although the study area of this research is very 
different than De Veluwe, it does still give an indication about woodpeckers and cavity excavating 
birds in general. Thus, research supports that the height of vegetation and in this case p95 has a high 
importance in the habitat selection of woodpeckers.  

4.2.2 CV, VR_total and CCP  
Compared to p95, CV, VR_total and CCP have a much lower variable importance in the Maxent 
model. This means that the preferences derived from these metrics that will be described in this 
section are less important than the preferences derived from p95. It is important to take into 
consideration that p95 is much more important for the habitat selection of woodpeckers. The second 
most important metric is CV. As earlier explained, CV is a metric representing the vertical complexity 
of vegetation. Literature indicates that vertical complexity is an important factor for the distribution 
of birds. For example, for certain bird species, the mean of vegetation height in combination with the 
vertical variability of vegetation are important factors for their spatial distribution (Moudrý et al., 
2023). A commonly used metric for vertical variability is the standard deviation. This would mean 
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that the combination of the mean and standard deviation of vegetation height could be important in 
researching bird species distribution. The metric CV was calculated by dividing the standard deviation 
by the mean of vegetation height. This could explain why CV has a some importance in the model. 
The results of CV showed that values between 0.5 and 3.5 are preferred. When CV values are higher 
than 1, the standard deviation is higher than the mean, meaning that there is quite some variability 
in vegetation height at locations with these values. From this can be inferred that woodpeckers 
prefer areas that are vertically complex. As explained earlier in the discussion, higher CV values and 
thus more vertically complex vegetation can be found in the edges of vegetation units with open 
areas. For example, in a forest with small openings in its canopy, the highest CV values are found in 
the edges of these canopies. Thus, the results of CV indicate that the woodpecker prefers areas with 
vegetation, such as trees or bushes, that is not too densely located to each other and has some 
openings.  
Furthermore, as earlier explained, VR_total shows the maximum differences in 95th percentile 
vegetation height between neighbouring raster cells. It is a measure of horizontal heterogeneity. As 
earlier discussed, in previous research, horizontal heterogeneity was calculated differently but 
provided similar information. In Koma et al. (2022), the metric representing total vegetation 
roughness had a small but still considerable importance for the Savi’s warbler. This bird preferred 
homogeneous reedbeds and thus a low horizontal heterogeneity. Even though woodpeckers breed in 
trees and not in reedbeds, this example shows that horizontal heterogeneity metrics can be 
important for birds. The results of VR_total in this thesis showed that roughness values up to 6 
meters are preferred by the woodpecker. Even though smaller roughness values are preferred the 
most, this broad range of preferred values showed that woodpeckers prefer habitats with many 
height differences between trees and the ground or shrubs, indicating that these areas are not 
densely populated with trees and have some openings in between tree canopies. Thus, in contrast to 
the Savi’s warbler, woodpeckers prefer areas that are more horizontally heterogeneous. 
Moreover, CCP displays the openness of the canopy of a forest. There are several ecological 
explanations for the importance of this metric. At first, openings in canopies provide sunlight to areas 
under the forest canopy (Moudrý et al., 2023). This results in the presence of certain vegetation, such 
as grass, that attracts insects (Kosinski et al, 2004). These insects could be prey for woodpeckers that 
forage on the ground. Moreover, a more open canopy gives birds more space to fly from and to their 
cavity, making the tree more accessible (Kosinski & Winiecki, 2004; Puverel et al., 2019). The results 
of the CCP metric showed that generally all canopy cover percentages except values very close to 
100% are preferred by the woodpecker. From this can be inferred that woodpeckers prefer areas 
with canopy cover and thus areas with trees, but the canopy cover should not be too closed off.  
Overall, from CV, VR_total and CCP can be inferred that the woodpecker family prefers forest areas 
with a canopy that is not too closed. The canopy of these forest areas should still have some 
openings. Besides the earlier mentioned explanations for this preference, the fact that woodpeckers 
generally prefer breeding in old or dead trees could also be an explanation (Basile et al., 2020; 
Kosiński, 2006; Nijssen et al., 2020; Olsson et al., 1992). The wood of dead trees is softer and 
therefore easier to excavate (Smith & Charman, 2012). Dead trees have a less dense canopy than 
younger trees. That is because some dying branches and leaves have fallen off. The preference of 
woodpeckers for dead trees could have contributed to the found preferences of woodpeckers in this 
thesis. Namely, dead trees results in a more open forest, with more space between tree canopies. 
Finally, compared to forest areas in general in the study area, it does not seem to be the case that 
woodpeckers prefer a forest that is more open than the general forest areas in the study area. 
Namely, normal forest most of the time do not have an entirely closed canopy. There are always 
some openings. With this taken into consideration, it can be said that the woodpecker family prefers 
forest areas with a quite normal canopy cover. The only big difference from normal forest areas is 
that taller trees are preferred compared to the average trees in the study area. 
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4.2.3 Remaining metrics 
Metrics that had a low influence on the model were distance_outside, distance_inside and 
distance_ST. The metric distance_outside showed that in general the woodpecker family does not 
have a specific preference for habitat locations deeper or less deep inside the forest. Moreover, from 
distance_inside can be derived that the most preferred habitat locations can be found closer to the 
forest edge if woodpeckers would be located outside forest areas. From distance_ST can be derived 
that woodpeckers prefer forest areas over standalone trees. The total response curve of distance_ST 
showed that woodpeckers could find their most suitable habitat for a big range of distances, as long 
as the habitat is further away from standalone trees. Thus, these tree low importance variable show 
that woodpeckers in general prefer breeding in forest areas and not in trees in open fields. 

4.3 RQ3: Habitat preferences of separate woodpecker species 
Now that the importance of the different aspects of vegetation structure for the woodpecker family 
are discussed, as well as the habitat preferences of the woodpecker family, there will be focused on 
the differences in habitat preferences of the five woodpecker species. Compared to RQ2, there was 
focused more in the results of RQ2 on the differences in suitable preferred metric values between 
the five species. Moreover, there was explained less elaborately why certain metrics were more 
important than others. In the discussion of RQ3, for each species, possible explanations will be given 
for the found suitable metric values. Namely, literature describing the ecology of certain woodpecker 
species can give explanations for these species’ preference for certain versions of aspects of 
vegetation structure. For example, factors such as the preferred foraging locations of woodpeckers 
could influence their habitat selection. One aspect that all separate woodpecker species have in 
common is that p95 has the highest variable importance. The total response curves show for all 
species that higher vegetation heights/taller trees are the most suitable. This means that just like the 
collection of all species, all separate species prefer locations with taller trees. In a similar research 
about the black woodpecker in Poland, the species created cavities in taller trees, around 28 meters 
tall (Zawadzki & Sławski, 2023). These results are similar to the results of the five woodpecker 
species, which most suitable heights range from 22 to 25 meters. So, the results of this paper confirm 
the trends observed in this thesis research. Moreover, the explanations given in the discussion of p95 
in RQ2 can also be applied on the separate woodpecker species’ preference for taller trees. 

4.3.1 Black woodpecker 
The earlier described results of the black woodpecker are similar to the results of the collection of all 
woodpecker species. Just like for all species, a broad range of roughness values (VR_total) are 
preferred, especially higher values. Furthermore, the total response curve of CV indicates that there 
is a preference for vertically complex vegetation. Moreover, from the CCP results can be inferred that 
forests with a too high canopy cover percentage are not preferred. From all this information can be 
derived that more open forests are preferred by the black woodpecker. Results that stood out were 
that distance_outside and distance_ST have quite high importance values. These two metrics indicate 
that black woodpeckers are found inside forest areas and that inside forests, they have no specific 
preference for locations closer or further away from the forest edge. Research was done in a study 
area in Poland on the habitat preferences of black woodpeckers regarding vegetation structure 
(Zawadzki & Sławski, 2023). The results indicated that the black woodpecker has a preference for 
more isolated trees, whereas in this thesis research, no indication of this was found. Nevertheless, as 
earlier mentioned, the definition of standalone trees used in this research does not match the 
definition of standalone trees that are suitable for black woodpeckers. Moreover, the fact that 
VR_total, CCP and CV indicate that the black woodpecker likes forests with more openings and thus 
more space in between vegetation, could support the preference of black woodpeckers for more 
isolated trees. There are several explanations for this preference. At first, research of Nijssen et al. 
(2020) indicates that black woodpeckers prefer a more open vegetation structure. The given 
explanation was that woodpeckers prefer to forage in dead wood that is either still standing or laying 
on the ground. Dead trees usually have a less dense crown, resulting in more open forests and more 
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isolated trees. Furthermore, the species prefers to make cavities in trees that are less connected with 
the branches of other trees in order to be able to reach its cavity faster and to reduce predation risk 
(Puverel et al., 2019). Additionally, also the results of Zawadzki and Sławski (2023) showed that black 
woodpeckers prefer cavity trees with a lower crown density surrounding these trees, because they 
want to have space in between trees to fly around. 

4.3.2 Great spotted woodpecker 
The results of the great spotted woodpecker showed that p95 is very important for its habitat 
selection and that compared to the other woodpecker species, p95 is the most important for the 
great spotted woodpecker. Research in Poland showed that great spotted woodpeckers prefer large 
trees to nest and forage in (Piacentini & Chiatante, 2022). This matches with the p95 results. The 
other metrics have much lower importance values. When looked at the total response curve of 
VR_total, even though it has a different shape, the probability values are similar to that of the black 
woodpecker. Also the total response curve of CV, as well as p95, are very similar to the black 
woodpecker. Only for CCP, also values of 100% are suitable. Moreover, VR_total does not have a 
spike in probability values at the same higher VR_total values. All these results indicate that the great 
spotted woodpecker prefers a little bit denser (less open) forest than the black woodpecker. 
Moreover, this species does not seem to have a preference for standalone trees or forest edges, as 
the total response curves have their highest probable values at distances further away from 
standalone trees and spread out all over the forest compared to the edge. These findings can be 
explained by that the species prefers mature trees (Woodland Trust, 2021a). They forage by 
excavating tree bark, for example they eat beetle larvae, caterpillars and spiders. As this species 
breeds and forages in trees and does not make much use of the ground, it could be possible that the 
species is most commonly found deeper inside the forest compared to other species. Compared to 
the black woodpecker, which species occasionally forages in wood on the ground besides in trees, 
the great spotted woodpecker has to fly around less commonly from the ground to its cavity and thus 
needs a less open forest in order to have space to fly around. This could explain why the black 
woodpecker prefers a more open forest with less vegetation that blocks its flight path. 

4.3.3 Middle spotted woodpecker 
Besides p95, the metrics distance_outside, distance_inside and distance_ST have a high importance. 
The species prefers habitats close to the forest edge when the species is inside the forest and also 
when the species is outside the forest. Moreover, the species prefers locations far away from 
standalone trees. Furthermore, the most preferred habitats for middle spotted woodpeckers are 
found at lower VR_total values compared to the other metrics, meaning that these habitats might be 
less horizontally heterogeneous than the habitats of the other species. These lower values could 
indicate that they prefer a more closed canopy compared to the other woodpecker species. 
However, it can also mean that the suitable areas contain areas with no vegetation or lower 
vegetation. This is more likely due to that the species can be found close to forest edges (low 
distance_outside values) according to the results and due to that the species prefers less closed off 
vegetation areas according to literature. Research of Kosinski and Winiecki (2004) gives information 
about the different habitat preferences of middle spotted woodpeckers and great spotted 
woodpeckers. Middle spotted woodpeckers select their habitat based on if they are close to areas 
where they can forage, whereas great spotted woodpeckers give more priority in their selection to 
the availability of suitable nest sites. The research shows that middle spotted woodpecker have a 
preference to nest at forest edges, as they like to forage in more open vegetation and more open 
vegetation can be found more at forest edges. Also in the Netherlands, middle spotted woodpeckers 
prefer open areas in forests (Vogelbescherming Nederland, n.d.c). They search for food in horizontal 
branches of trees. A less dense forest gives the branches of trees more exposure to sunlight and this 
can increase the amount of arthropods found in the branches (Kosinski & Winiecki, 2004). Namely, 
arthropods are important food for middle spotted woodpeckers. Nevertheless, the CCP metric does 
not convincingly explain the species’ preference for areas with lower canopy cover percentage, as 
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the metric has a low importance and the total response curve showed the same relatively low 
probability values for the whole range of percentages, with the lowest values for percentages close 
to 0. Maybe the fact that no specific suitability can be observed for higher CCP values can indicate 
that the suitable area does not specifically contain dense forest but can contain a variety of more 
open and denser forest. Moreover, besides this species, the great spotted woodpecker can find its 
food at a higher diversity of places in the forest and is therefore less dependent on the forest edge 
(Kosinski & Winiecki, 2004). Which could explain the earlier discussed preference for distances 
further away from the forest edge. 

4.3.4 Lesser spotted woodpecker 
The lesser spotted woodpecker has higher probability values for lower CCP values. This indicates that 
this species prefers a forest with a more open canopy cover. Furthermore, just like for the other 
species, higher CV values and a broad range of VR_total values are preferred. This all indicates that 
forests with a not too high density of vegetation units are preferred. Just like for the other species, 
the canopy of the forest should not be entirely closed. Furthermore, although having a low 
importance, the most suitable habitat is found to be at a broad range of distances, but the most 
suitable locations are closer to the outside of the forest edge when the species is inside the forest 
(lower distance_outside). This could be explained by that the lesser spotted woodpecker prefers 
similarly to the middle spotted woodpecker open forest areas and forest edges (BirdLife 
International, 2024b). Lesser spotted woodpeckers forage in tree trunks and branches, looking for 
invertebrates and insects (Vogelbescherming Nederland, n.d.b; Woodland Trust, 2021c). It is 
uncertain why the results showed that they have a preference for locations closer to the edge. A 
reason could be that, similarly to the middle spotted woodpecker, more open forests let in more 
sunlight and results in a higher abundance of invertebrates and insects in the branches of trees 
(Kosinski & Winiecki, 2004). Especially because the preferred CCP values of this species are lower 
compared to the other species, this could be an explanation for their location at the forest edge. 

4.3.5 Green woodpecker 
Similar to the middle spotted woodpecker, distance_outside and distance_ST are important for the 
green woodpecker. distance_outside has the second highest importance, besides p95. The total and 
individual response curves of distance_outside, as well as its violin plot, showed that green 
woodpeckers have a preference for habitats close to the forest edge. Moreover, the results showed 
that the species prefers locations further away from standalone trees. Additionally, CCP and CV 
results indicate that the green woodpecker prefers similarly to the other species a less dense/more 
open forest. The violin plot of CCP displayed that observations were found at lower CCP values 
compared to the other species. This makes sense, as there is less canopy cover at the edge of the 
forest. Moreover, higher CV values are preferred. This can be explained by the fact that the edge of 
the forest is the transition zone between trees/shrubs and open areas. As mentioned earlier, the 
edges of forests and the edges of vegetation units such as trees have higher CV values due to that 
there is a lower points density at these locations. Thus, the green woodpecker prefers a forest that is 
not too densely populated with vegetation, with its habitat close to the edge of the forest. These 
results can be explained by that literature suggests that the green woodpecker prefers semi-open 
habitats (BirdLife International, 2024a). Examples of these habitats are parks, orchards but also forest 
edges. In large forest areas, green woodpeckers often create nests near the edge of the forest 
(Vogelbescherming Nederland, n.d.a). Namely, the primary food of green woodpeckers is ants that 
they find on the ground (Woodland Trust, 2021c). They prefer to breed close to the location where 
they can find food resources, which is in this case open ground areas near forests. Especially the 
amount of ants in an area is an important factor for the habitat selection of green woodpeckers 
(BTO, 2020). Many ants can be found in grasslands. Out of all five species, the green woodpecker is 
the only species that forages in open fields. This could explain why the results showed that also lower 
p95 values are preferred by the green woodpecker, whereas for the other species a more clear 
preference for higher p95 values was observed. 
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4.4 Reliability of results 

4.4.1 Accuracy 
Table 3 showed the AUC values of the six different Maxent models. The AUC values, ranging from 
0.645 to 0.759, are not very high for all models but are still sufficient enough, as they all have AUC 
values of at least 0.645, while an AUC of 0.5 is similar to random sampling. As mentioned in the 
methods, when background points are used instead of absence points, AUC values tend to be lower 
than actually should be the case due to that background points can be wrongly classified as ‘falsely 
classified presence points’. If this problem would be taken into account in the accuracy assessment of 
the Maxent models, the AUC values would be a bit higher. Therefore, even though the AUC values of 
the six models are not very high, they are still deemed accurate enough. Besides that the use of 
background points instead of absence points has likely influenced the AUC values, there are also 
other factors that could have had an influence on the accuracy assessment of the model. Namely, it 
was observed that models that have the biggest amount of observation points and background 
points as input, gave the lowest AUC values as output. This could be explained by that for the species 
with higher sample sizes a higher number of background points were created. If there are more 
observation/presence points and more background points, there is a higher chance that presence 
and background points overlap, resulting in that more background points are wrongly labelled as 
‘falsely classified presence points’. For species with a small sample size, there is more space for the 
presence and background points in the study area, resulting in less overlap. Additionally, species with 
a narrower range in metric values, which is more likely to be found at lower sample sizes, can have 
higher AUC values than species with a bigger range (Phillips, 2021; Tesfamariam et al., 2022). This all 
could explain why the woodpecker species with lower sample sizes, such as the medium spotted 
woodpecker (n = 20), have the highest AUC values and why the species with the most observations, 
such as the great spotted woodpecker (n = 712), have the lowest AUC values. Moreover, even though 
Maxent models can handle small sample sizes, the differences in sample sizes between the species 
are high. It can be assumed that the results of the species with the highest sample sizes are the most 
reliable due to that more observation points result in more information about the suitable preferred 
metric values of the species. 

4.4.2 Great spotted woodpecker 
Out of the five woodpecker species, the results of the great spotted woodpecker are the most similar 
to the results of the woodpecker family in general. This is because this species has by far the biggest 
sample size (537). This means that out of all 712 observations of the woodpecker family, 537 
observations belonged to the great spotted woodpecker. This most likely has led to that the results 
of the collection of woodpecker species are influenced much by the great spotted woodpecker. If 
each of the five woodpecker species had the same sample size, the influence of each species would 
have been represented more in the Maxent model and a better view would have been created of the 
habitat preferences of the woodpecker family in the Netherlands. Nevertheless, the fact that the 
great spotted woodpecker is observed so much more than the other species also means that most 
woodpeckers in this study area most likely behave similar to the great spotted woodpecker. Thus, 
even though not all species are evenly represented, the overall results of this thesis research do 
represent the average woodpecker in this study area. 

4.4.3 Response curves 
The total response curves of the woodpeckers with the lowest sample sizes, which are the middle 
spotted woodpecker and green woodpecker, displayed some high spikes. For both species, these 
spikes could probably be observed due to that the specific metrics had some small changes in 
probability values over the range of the metric values. For example, for the green woodpecker, it 
seems like there is a high increase in CCP probability very close to 100%. This seems like a big change, 
but when looked at the y-axis, a relatively small change in probability compared to the other species 
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is observed. The fact that these curves are not very smooth might be because these woodpecker 
species have quite small sample sizes. An increase in sample size would make the curves smoother. 

4.4.4 Extraction buffer  
An extraction buffer with a 50 meter diameter was used to extract metric values for the observation 
and background points. This size was chosen in order to take the environment of each observation 
into account while also making sure that not too much detail is lost. Namely, some metrics, such as 
vegetation roughness, are more detailed than other metrics, such as distance to forest edge. 
Nevertheless, it is uncertain which diameter would be the most suitable for extracting metric values. 
This will be discussed more in the recommendations. 
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5. Conclusion 

5.1 RQ1 
Which metrics that provide information about vegetation structure and are potentially relevant for 
woodpeckers can be derived from LiDAR data? 
 
The first aim of this research was to create metrics in order to retrieve information about aspects of 
vegetation structure. While selecting and creating the metrics, it was kept in mind that the metrics 
should be potentially useful for deriving information about woodpeckers in RQ2 and RQ3. Eventually, 
14 different metrics were calculated with the use of LiDAR data. These metrics were placed in the 
following categories: vertical complexity metrics, horizontal heterogeneity metrics and vector-based 
metrics. The results showed that there are several metrics, such as p95 and CCP, that are a reliable 
representation of vegetation structure. Nevertheless, p25, UC, VR_low, kurtosis and skewness were 
deemed unreliable to be used in the next steps of this research. Namely, thicker canopies prevented 
LiDAR beams from penetrating deeper through the vegetation, influencing the values shown in p25, 
UC and VR_low. Moreover, due to overlap in flight routes during the creation of LiDAR points, the 
metrics kurtosis and skewness displayed higher values at these overlap areas compared to other 
areas. Furthermore, other metrics that are more reliable could still be improved. distance_ST did not 
entirely serve the purpose for which it was created and a too big distance threshold of 10 meters was 
used to detect standalone trees. Thus, the metric still gives reliable information about distances from 
certain trees, but not the trees that could be most useful for the woodpecker. In the future, a smaller 
range of distances, for example 1-3 meters, would be more suitable. Additionally, for the metrics 
distance_inside and distance_outside, the threshold for forest areas and open areas was based on a 
smaller part of the study area. In further research, the threshold could be tested in multiple parts of 
the study area. All in all, even though some metrics are less reliable for providing information about 
vegetation structure, they still give an insight into what aspects of vegetation structure potentially 
could be calculated with LiDAR data if improvements were made. Besides the specific metrics, the 
methodology of upscaling the LiDAR metrics that was showed in this thesis could serve as an example 
for similar research in which LiDAR metrics are calculated. 

5.2 RQ2 
Which aspects of vegetation structure represented by LiDAR metrics have the biggest influence on the 
habitat selection of the woodpecker family? 
 
The goal of the second sub-question was to derive information about the importance of the different 
aspects of vegetation structure for the habitat selection of the woodpecker family. The metrics that 
were deemed as reliable in RQ1 for representing vegetation structure and being potentially 
informative about the habitat preferences of woodpeckers were tested on multicollinearity. This 
resulted in that metrics that correlated too much with other metrics were excluded. Then, the 
extracted metric values at the locations of the observation and background points were used in a 
Maxent model. The model had the following outputs for each metric: a variable importance value, a 
total response curve and an individual response curve. The total response curves showed the suitable 
preferred metric values, representing the habitat preferences of woodpeckers, whereas individual 
response curves, as well as external violin plots, showed the individual preferred metric values. The 
results showed that higher variable importance values and much similarity between on the one hand 
total response curves and on the other hand individual response curves and violin plots indicate that 
the concerning metric has a high importance. Out of all metrics, p95 had the highest importance in 
the model. It was derived that woodpeckers prefer trees that are taller than the average tree in De 
Veluwe. Moreover, metrics that have a less but still considerable importance in the model and thus 
in the habitat selection of the woodpecker family are CV, VR_total and CCP. CV results showed that 
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woodpeckers prefer areas with some vertical complexity. Areas with vegetation units, such as trees 
and shrubs, which canopy is not too closed off are preferred. VR_total showed that horizontally 
heterogeneous areas are preferred. This metric indicated, just like CV, that the canopy of forests 
should not be too closed off. Finally, CCP values showed that woodpeckers prefer areas with canopy 
cover and thus areas with trees, as long as the forest canopy is not too open or too closed. It should 
be taken into consideration that the variable importance values of CV, VR_total and CCP are much 
lower than the values of p95, meaning that the 95th percentile of vegetation height is by far the most 
dominant aspect of vegetation structure in the habitat selection of the woodpecker family in De 
Veluwe. From all this information was inferred that woodpeckers most likely prefer areas containing 
vegetation, preferably taller trees, which canopy is not too closed off. Overall, this description of the 
most preferred habitat of the woodpecker family is quite similar to normal forest areas in De Veluwe. 
The only big difference is that woodpeckers have a preference for taller trees.  

5.3 RQ3 
How do the habitat preferences of the five separate woodpecker species differ? 
 
In RQ3, the aim was to acquire information about the habitat preferences of the five separate 
woodpecker species in De Veluwe. Unlike in RQ2, there was focused less on the importance of the 
different metrics and more on the specific habitat preferences of the woodpeckers. This means that 
the variable importance was explained less elaborately and more research was done into explaining 
the suitable preferred values of each metric. The results showed that, just like the woodpecker 
family, all species have in common that p95 has a big importance in their habitat selection. All 
species preferred areas containing vegetation, preferably taller trees. Nevertheless, the species 
prefer different locations regarding the edge of the forest. The green woodpecker prefers to breed 
near forest edges due to the ability to forage in the open area close to its nesting tree. Moreover, the 
lesser spotted woodpecker and middle spotted woodpecker also prefer forest edges. This is possibly 
due to that the canopy is more open at these edges, which creates more suitable conditions for prey 
to live, such as insects and invertebrates. Furthermore, the results of the black woodpecker and great 
spotted woodpecker showed that they can be found at most locations in the forest. No specific 
preferences for locations deeper inside the forest or closer to the edge were found. The great 
spotted woodpecker might only differ from the black woodpecker due to its preference for slightly 
denser forest areas. Namely, due to that the black woodpecker also occasionally forages on the 
ground besides in trees, this species might need more space to fly from the ground to their cavity 
than the great spotted woodpecker. 

5.4 Main question 
How can the use of airborne LiDAR data improve the understanding of the habitat preferences of five 
woodpecker species in De Hoge Veluwe, the Netherlands? 
 
Now that the three sub-questions have been discussed, the main research question can be 
answered. The goal of this research was to acquire knowledge about the additional value of LiDAR 
data in ecological research into woodpeckers. This research has shown that LiDAR data indeed have 
an additional value in woodpecker research. Namely, the calculated LiDAR derived metrics gave 
information about vegetation structure, which eventually led to the acquirement of information 
about the habitat preferences of woodpeckers. Especially the use of tree segmentation in order to 
derive metrics from vectors is a method that has not been used much yet in ecological research. 
Namely, besides that more general metrics such as p95 have given information about the habitat 
preferences of woodpeckers, also less common metrics derived from tree polygons, such as 
distance_outside have given valuable insights. Even though improvements could be made in the 
calculation of certain metrics in order that more reliable inputs were used in the Maxent models, this 
research has shown what can be done with LiDAR data in research on bird species distributions and 
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can be used as inspiration for further research. Moreover, although the accuracy values of the 
Maxent models were not very high, the results are still accurate enough in order to derive 
information about the habitat preferences of woodpeckers. Overall, the methodology of this 
research, which includes the calculation and upscaling of the LiDAR metrics, as well as the use of the 
Maxent models, could be used for research in other study areas. This thesis has shown that even 
though several aspects of the overall workflow could be improved, much information about the 
habitat preferences of woodpeckers and thus also of birds in general can be derived from LiDAR data. 
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6. Recommendations 

As not all calculated LiDAR metrics were reliable and the modelling of the relationship of these 
metrics with the presence of woodpecker species could be improved, several recommendations can 
be done. 

6.1 Vegetation density 
Four metrics representing vegetation density were first created and eventually not used in this 
research. Each raster layer would represent the vegetation density in a different height interval. In 
examples in literature, the different height intervals were based on values in meters. For example, 
research of Koma et al. (2022) used height intervals of 0-1, 1-2 and 2-3 meters to calculate vegetation 
density for a reed landscape. In this research, it was estimated how high the reed vegetation would 
be before defining these intervals. Eventually, the vegetation density metrics would give information 
about the vertical variability of the vegetation. For this thesis research in De Veluwe, it was unclear 
what the absolute intervals should be, as it beforehand was unclear what the maximum vegetation 
height values of the vegetation were. This resulted in that a division into percentiles was chosen to 
represent different layers. The calculations were as follows. All the points in a certain percentile 
interval were selected and divided by the total amount of points. Later in the thesis process, it was 
discovered that the calculation of these four metrics would not give the information that was desired 
beforehand. Namely, an error was made by using percentiles for the layers instead of values in 
meters. Namely, if intervals of 25% are used, 25% of the points are divided by the total amount of 
points and this results in density values around 0.25. This error has led to that these metrics were not 
suitable to be used for inferring information about the vegetation density in different layers. The 
calculations of these metrics can be found in appendix Aa01. In future research, it is still very relevant 
to calculate vegetation density metrics, as these metrics are often used to give information about the 
vertical complexity of vegetation (De Vries et al., 2022; Koma et al., 2022). Instead of using percentile 
intervals, absolute intervals should be decided in order to get reliable values. Nevertheless, as earlier 
discussed, less points can be found closer to the ground under canopies of trees. This means that 
intervals representing understorey vegetation could still be not very reliable. That is why it is 
recommended to focus more on the upper layers of vegetation when calculating vegetation density. 

6.2 Other metrics 
Besides the metrics discussed in this thesis, there are also other metrics that can have influence on 
the habitat selection of woodpeckers but are difficult to calculate with LiDAR data. In papers such as 
Ćiković et al. (2014), much is described about the trunk of the nesting tree, such as the elevation of 
the cavity (its location on the tree), the diameter of the tree at breast height, wood hardness and the 
presence of fungi. At first, the diameter of tree trunks at breast height has been indicated in previous 
research as a factor that could influence the habitat selection of woodpeckers (Basile et al., 2020; 
Menon et al., 2021). It was found that when the diameter of a tree is bigger compared to the 
surrounding trees, that tree is more suitable for woodpeckers to create cavities in. Furthermore, 
literature has indicated that woodpecker prefer older trees, because the wood of these trees is softer 
and easier to excavate (Basile et al., 2020; Kosiński, 2006; Smith & Charman, 2012). Nevertheless, the 
age of trees has not been mapped much with the use of LiDAR data, mostly due to that other metrics 
such as tree height already give an indication of the age of a tree. Still, creating a method to calculate 
the age of trees with LiDAR data would be an interesting topic for future research. 

6.3 Extraction buffer 
As earlier mentioned, buffer circles with a 50 meter diameter were used to extract metric values. 
This diameter was chosen, because it is big enough to take the environment into account, but small 
enough to keep some detail. Nevertheless, there is still uncertainty about which buffer size is the 
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most reliable for certain metrics. In research of McNeil et al. (2023), buffers with a diameter of 100, 
200, 500 and 1000 meters were used. Different diameters were suitable for different calculated 
metrics, as for some metrics, detail is more important than other metrics. The research showed that 
different buffer sizes were suitable for different metrics. For this thesis research, this same method 
could also have been applied, as the metrics differ in detail. That is why in future research, in order 
to test the effect of the size of the buffer, different buffer sizes could be used to extract the values of 
LiDAR metrics and to eventually run a species distribution model. It could be tested which buffer 
sizes are the most suitable for a certain set of LiDAR metrics.  

6.4 Accuracy and models 
In the methodology and discussion was discussed how the use of background points can lower the 
AUC values of Maxent models. Therefore, Maxent models could give more reliable results if absence 
points are created. SDMs that make use of presence-absence points are more likely to have a better 
performance according to previous comparisons between different SDMs (Barbet-Massin et al., 
2012). However, it is difficult to create absence points that are just as reliable as presence points. 
Absence points can be created in different ways. That is why it can be explored in future research 
what the best method is for the creation of absence points. Furthermore, in this research, a Maxent 
model was used, because this model seemed to be the most suitable when only presence data is 
available. Nevertheless, when also absence points are created, other statistical models such as a 
Generalized Linear Model (GLM) could also be suitable models for research into the distribution of 
bird species. Finally, in the discussion was described that the amount of observation points and 
background points could have influenced the AUC values of the Maxent models. The results of this 
research indicate that there could be a positive relationship between sample size and AUC values. In 
future research, the influence of sample size on the accuracy of a Maxent model, or another 
statistical model, could be explored more. 
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8. Appendix 

Appendix A: Overview of digital appendix 
A zip file with the following files: 
 
Overview document (PDF): Explanation of appendix A 
 
Appendix_Aa (Folder): 

- Appendix_Aa01 (R script): Upscaling of LiDAR metrics 
- Appendix_Aa02 (R script): Calculation of standalone tree polygons 
- Appendix_Aa03 (R script): Script 3: Merging of metric rasters of all tiles. Calculation of 

distance_ST, distance_inside and distance_outside 
- Appendix_Aa04 (R script): Script 4: Extraction of metric values and running of Maxent models 

 
Appendix_Ab (Folder): Figures of report 
 
Appendix_Ac (Folder): Layouts of LiDAR metrics 
 
Appendix_Ad (Folder): Raster files of LiDAR metrics 
 
Appendix_Ae (Folder): Woodpecker observation data and other used data 
 
Appendix_Af (Folder): PDF files of the scientific papers that were used in the report 
 
Appendix_Ag (Folder): Thesis proposal and Powerpoint of midterm presentation 
 
Appendix_Ah (Folder): Final report and Powerpoint of final presentation (the Powerpoint will be 
added after the final presentation)  
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Appendix B: Upscaling workflow 

 
Figure 7: Workflow of the upscaling the LiDAR metrics. Grey parts of the workflow indicate processes 
that happened at the scale of one whole LiDAR tile. Coloured parts indicate processes that happened  
at the scale of one sub-tile. White parts indicate processes that happened at the scale of all 60 tiles 
together (containing whole study area). 
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Appendix C: Layouts of remaining metrics 

 
Figure 8: Layouts of the remaining metrics. This figure contains from top-left to bottom-right: mean, 
SD, kurtosis, skewness, VR_low, p25 and UC. 
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Appendix D: Correlation plots 

 
Figure 9: Correlation plots of all woodpecker species and separate woodpecker species. AW: all 
woodpecker species, BW: black woodpecker, GSW: great spotted woodpecker, MSW: middle spotted 
woodpecker, LSW: lesser spotted woodpecker and GW: green woodpecker. 
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Appendix E: Total response curves 

 
Figure 10: Remaining total response curves of all woodpecker species. This figure contains the metrics 
distance_ST, distance_outside and distance_inside. 
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Figure 11: Remaining total response curves of separate woodpecker species. For each woodpecker 
species, the total response curves that are less important for the habitat selection of the species are 
displayed. 
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Appendix F: Individual response curves 

 
Figure 12: Individual response curves of four most important metrics of separate woodpecker species. 
For each woodpecker species, the individual response curves of the four most important metrics in its 
habitat selection are displayed. 
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Appendix G: Violin plots 

 
 
Figure 13: Violin plots of the four most important metrics of all woodpecker species. For each metric, 
a violin plot showing the distribution of the values of all woodpecker species, a violin plot showing the 
background points and a separate violin plot for each woodpecker species are displayed. AW: all 
woodpecker species, BW: black woodpecker, GSW: great spotted woodpecker, MSW: middle spotted 
woodpecker, LSW: lesser spotted woodpecker and GW: green woodpecker. 
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Figure 14: Violin plots of the remaining metrics of all woodpecker species. For each metric, a violin 
plot showing the distribution of the values of all woodpecker species, a violin plot showing the 
background points and a separate violin plot for each woodpecker species are displayed. AW: all 
woodpecker species, BW: black woodpecker, GSW: great spotted woodpecker, MSW: middle spotted 
woodpecker, LSW: lesser spotted woodpecker and GW: green woodpecker. 
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Appendix H: Results of statistical tests 
Table 4: Comparison of metric values of observation points with metric values of background points. 
This table contains the following calculated statistics and information for each metric: the median of 
observation points, the median of background points, the mean of observation points, the mean of 
background points, the used statistical test, the resulting p-value of the statistical test. 

Metric Median: 
observatio
n 

Median: 
backgroun
d 

Mean: 
observatio
n 

Mean: 
backgroun
d 

Statistica
l test 

p-value 

VR_total 2.92 2.70 3.02 2.59 t-test 6.692*10
-11 

p95 11.49 9.43 11.47 8.81 t-test 2.2*10-16 
CV 0.7848 0.7867 0.86 1.01 t-test 5.517*10

-11 
CCP 80.21 78.05 73.75 64.51 Wilcoxon 

rank-sum 
2.979*10
-5 

distance_ST 169.80 162.64 195.40 183.73 t-test 0.03494 
distance_outsid
e 

41.11 29.63 63.77 57.33 Wilcoxon 
rank-sum 

4.482*10
-5 

distance_inside 0 0 4.42 33.20 Wilcoxon 
rank-sum 

3.853*10
-6 

 

 

 

 

 

 

 

 

 



67 
 

Appendix I: ROC curves 

 
Figure 15: ROC curves of the Maxent models run for the collection of all woodpecker species and the 
separate woodpecker species. The red line is the ROC curve and the straight black line indicates the 
line of a random prediction. The area under the red line (AUC) was calculated in order to retrieve the 
accuracy of the model. 
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Appendix J: Comparison of first and all return data 
Table 5: Comparison between first return and all return point density (points/m2) for three different 
LiDAR tiles. 

LiDAR tile First return (points/m2) All returns (points/m2) 

33CN1_25.LAZ 19.26 33.98 

33CZ2_03.LAZ 15.02 15.27 

33CZ2_01.LAZ 20.7 26.53 
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Appendix K: Flight overlap in kurtosis layout 
 

 
Figure 16: Layout showing higher kurtosis values at the locations where flight routes overlap. The 
orange stripes indicate these overlap areas. 
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Appendix L: LiDAR tiles 
The following 60 LiDAR tiles were downloaded from Geotiles in order to cover the whole study area 
in De Hoge Veluwe (Geotiles, 2024): 
 
33CN1 
33CN1_13 
33CN1_14 
33CN1_15 
33CN1_18 
33CN1_19 
33CN1_20 
33CN1_23 
33CN1_24 
33CN1_25 
 
33CN2 
33CN2_11 
33CN2_12 
33CN2_13 
33CN2_14 
33CN2_16 
33CN2_17 
33CN2_18 
33CN2_19 
33CN2_21 
33CN2_22 
33CN2_23 
33CN2_24 
 
33CZ1 
33CZ1_02 
33CZ1_03 
33CZ1_04 
33CZ1_05 
33CZ1_07 
33CZ1_08 
33CZ1_09 
33CZ1_10 
33CZ1_13 
33CZ1_14 
33CZ1_15 
33CZ1_19 
33CZ1_20 
33CZ1_24 
33CZ1_25 
 
33CZ2 
33CZ2_01 
33CZ2_02 
33CZ2_03 
33CZ2_04 
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33CZ2_06 
33CZ2_07 
33CZ2_08 
33CZ2_09 
33CZ2_11 
33CZ2_12 
33CZ2_13 
33CZ2_14 
33CZ2_16 
33CZ2_17 
33CZ2_18 
33CZ2_21 
33CZ2_22 
33CZ2_23 
33CZ2_24 
 
40AN1 
40AN1_05 
 
40AN2 
40AN2_01 
40AN2_02 
40AN2_03 
40AN2_04 
 
 
 

 

 

 

 

 

 

 

 

 

 


