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ABSTRACT Ultrasound images are corrupted by a type of signal-dependent noise, called speckle, difficult
to remove or attenuate with the classical denoising methods. On the contrary, structural Magnetic Resonance
Imaging (MRI) is usually a high resolution low noise image modality that involves complex and expensive
equipment and long acquisition times. Herein, a deep learning-based pipeline for speckle removal in B-mode
ultrasound medical images, based on cross modality transfer learning, is proposed. The architecture of the
system is based on a pix2pix Generative Adversarial Network (GAN), D, able to denoise real B-mode
ultrasound images by generating synthetic MRI-like versions by an image-to-image translation manner. The
GANDwas trained using two classes of image pairs: i) a set consisting of authentic MRI images paired with
synthetic ultrasound images generated through a dedicated ultrasound simulator based on another GAN, S,
designed specifically for this purpose, and ii) a set comprising natural images paired with their corresponding
noisy counterparts corrupted by Rayleigh noise. The denoising GAN proposed in this study demonstrates
effective removal of speckle noise from B-mode ultrasound images. It successfully preserves the integrity
of anatomical structures and avoids reconstruction artifacts, producing outputs that closely resemble typical
MRI images. Comparative tests against other state-of-the-art methods reveal superior performance of the
proposed denoising strategy across various reconstruction quality metrics.

INDEX TERMS Ultrasound, denoising, deep learning, GANs, modality translation.

I. INTRODUCTION
Imaging modalities such as ultrasound, synthetic aperture
radar, LASER, and optical coherence tomography are
affected by a type of (pseudo) multiplicative noise, called
speckle, that results from constructive and destructive inter-
ference of the back-scattered radiation [1], [2]. A relevant
step in image processing is noise removal, to improve overall
image quality and better visualization of morphological
features [3]. In the case of ultrasound, the speckle noise
contaminating the Radio Frequency (RF) image is modeled
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as multiplicative and follows the Rayleigh statistical distribu-
tion [2], [4].

Many existing approaches rely on ultrasound images in
the RF domain rather than the displayed B-mode images [5],
[6]. However, RF data is not usually available in commercial
equipments, requiring its estimation, which introduces an
additional source of error. In this paper, we present a deep
learning-based denoising pipeline [7], [8] that eliminates the
intermediate step of estimating RF, streamlining the process
and mitigating potential sources of error. The proposed
method inputs the available B-mode data to generate its
corresponding MRI-like denoised image, as showcased in
Fig. 1. Deep learning autoencoders have been successfully
used to learn structures in clean natural images and remove
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FIGURE 1. Ultrasound image of a gallbladder and its denoised version obtained with the trained denoising GAN D,
showcasing its ability to remove speckle noise from ultrasound images, transforming them into an image with
characteristics similar to MRI.

noise [9], but require a training phase with ground truth data
consisting of pixel-wise pairs of noisy and clean images. Our
proposed pipeline addressed this requirement by generating
a synthetic dataset from a baseline dataset of a different
modality, which was used to train the denoising deep learning
model.

Generative Adversarial Networks (GANs) are a type of
neural network whose architecture comprises two networks:
the generator and the discriminator, that compete with each
other, in the sense that the generator tries to generate fake
data that the discriminator would find indistinguishable from
real data. Such network architecture can be applied for image-
to-image translation. Image-to-image translation is when the
task of the generator is to create an image from an input
image. In other words, translating the input image to the
output as a new different modality image.

Pix2pix [10] is a well-known GAN that has produced
impressive results in transformations between pixel-wise
paired images such as satellite images, maps or natural
images and their edges. This network is a conditional
adversarial network and learns its own loss function instead of
using only ℓ1 or ℓ2, which would lead to blurry results. Thus,
training this model with a set of noisy ultrasound images and
their corresponding noise-free images would provide a tool
that could be applied to a new noisy image and generate a
clean version as the (synthetic) output.

A. RELATED WORK
Existing methods for ultrasound despeckling include tech-
niques of different natures. Filter-based methods, such as the
Speckle Reducing Anisotropic Diffusion (SRAD) filter [11],
the non-local means filter [12], and the Block Matching 3D
filter (BM3D) [13], are among the used classical ultrasound
denoising methods in the field. In particular, Coupé et al.
[14] proposed an Optimized Blockwise Non-Local Means
(OBNLM) denoising filter, which was used for noise removal
in MRI images. In [13], cardiac and fetal ultrasound images
were denoised using the BM3D method [6] to group

similar image patches into a 3D grid, which was then
denoised using a thresholding operation on the brushlet
coefficients. A Non-Local Low-Rank (NLLR) filter-based
despeckling method, proposed in [15], selects significantly
speckled patches which are then refined using a low-rank
minimization using the truncated weighted nuclear norm and
structured sparsity. In more recent works, Wang et al. [16]
proposed a denoising formulation comprising a Kullback-
Leibler difference term and a sum of total variation terms of
different orders (denoted as TVHTVM). In [17], a filter-based
framework using anisotropic diffusion and total variation
was proposed. Yet another despeckling method Despeckling
by Quantum Interactive Patches (denoted as De-QuIP) from
Duta et al. [18], inspired by the quantum many-body theory.

More recent approaches focus on deep learning [7],
[8], which is rapidly emerging as the state-of-the-art
technique for several computer vision problems, especially
segmentation. Stacked denoising autoencoders, trained on
simulated ultrasound signals, were previously used for the
compression and reconstruction of ultrasound signals [19].
In [20], a trained Convolutional Neural Network (CNN) with
pairs of Inphase and Quadrature images and conventionally
despeckled images was reported to be able to despeckle
ultrasound images and also approximate the corresponding
CT image, by exploiting the fact that both X-ray CT and
ultrasound imaging are affected by physical properties of the
tissue [20].
A 3D U-Net architecture-based method was used in [21]

to filter clutter artifacts in echocardiographic images. A deep
learning-based despeckling method for liver ultrasound
volumes [22] used a 3D dense U-Net model to process 3D
ultrasound B-mode data, for 3D registration. A CNN was
proposed for Plane Wave Imaging (PWI) in [23], which
combines the image formation (beamforming) and speckle
reduction stages, with the parameters learned from training
on simulated data.

Among GAN-based works, MimickNet [24] is a cycle
GAN-based deep learning framework that approximates
post-processed images with reduced speckle, getting around
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FIGURE 2. Functioning of the ultrasound simulator, composed of a
preprocessing block and another GAN (S), able to generate synthetic
ultrasound images from MRI images, needed for the training of D.

the proprietary closed-source B-mode mappings used by
ultrasound equipment manufacturers [25]. In [26], GANs
trained on a dataset of cardiac images and their despeckled
versions obtained using the NLLR method [15], along with a
U-Net type of generator and a patch-wise discriminator, were
found to be able to learn to denoise speckle patterns even for
non-cardiac ultrasound images. GANs were also used in [27]
to improve lateral resolution in RF data in order to improve
strain image quality in quasi-static ultrasound strain elastog-
raphy. Finally, a GAN-based method was proposed in [28]
to recover multi-focus ultrasound images from blur, speckle,
and other artifacts during acquisition. This work improved
the realism of the ultrasound images by using adversarial
loss functions in addition to Mean Square Error (MSE)
as well as the boundary-seeking method for improving the
stability of training. Another recent work [29] used pix2pix
trained with ultrasound images and their denoised versions
obtained using existing denoising algorithms. An important
work by Kong et al. [30] is the RegGAN, which is composed
of pix2pix and cycle GANs designed for medical image-
to-image translation and speckle removal in ultrasound
images.

B. CONTRIBUTIONS
In this work, a method for denoising real B-mode ultrasound
images is proposed. It is based on a trained pix2pix GAN
model, denoted as D, which translates noisy (speckled)
input ultrasound images into clean images resembling
MRI, as shown in Fig. 1. To train D, another GAN,
S, was designed to produce realistic speckled synthetic
ultrasound data from iconic, simplified, and abstracted
representations of anatomical structures, obtained by a
preprocessing step of real MRI images. This pipeline,
termed as ultrasound simulator, is illustrated in Fig. 2.
The quality of the results, assessed through visual inspec-
tion and various quality metric functions, was outstanding
and outperformed the other methods used for comparison
purposes.

II. PROPOSED METHOD
The proposed method is based on two pipelines: i) a B-mode
ultrasound simulator, composed of a preprocessing block and
a GAN, called S; and ii) a B-mode ultrasound denoiser,
composed of another GAN, D. Each of these GANs consists
of a stand-alone pix2pix network trained appropriately.
The following sections will describe the datasets, strategies
and experimental setup used to train both networks. The
procedure to quantitatively and qualitatively evaluate the
denoising performance will also be discussed.

A. DATASETS
This work utilized three sets of data. The first set consisted of
clinical ultrasound images of the carotid, aiming to instruct
the system about the specific features characteristic of carotid
ultrasound images. The data used in this work (images
and frames of videos) comprised 1024 ultrasound images
of carotid arteries with different morphologies, in different
probe positions, along different anatomical segments and
some even displaying pathologies, more specifically arterial
plaques or stenosis. A subset of 670 images was selected after
a selection process that excluded images according to a list
of criteria: images with low quality, with several artifacts,
with toomany regions with very little ultrasound information,
images that included Doppler information and images taken
from a transverse viewpoint. This exclusion was based on the
lack of structural information, either caused by the presence
of the Doppler, or by the negligible amount of it in the
transverse images.

The second set comprised a collection of public natural
images that were corrupted with Rayleigh noise and log-
compressed according the model described in [4]. This set
was employed to familiarize the system with the statistical
distribution associated with speckle noise. To do that, a subset
of the Columbia Image Library (COIL-100) dataset [31] was
gathered as a source of images of natural objects, used to
train the ultrasound denoiser network D. COIL-100 consists
of 72000 color images of 100 different objects such as mugs
and other retail items, taken at different angles between 0 and
360 degrees, in steps of 5 degrees. These images have a
resolution of 128×128 pixels. From this set, 375 images were
randomly selected, which were then converted to grayscale
and resized to 256 × 256 pixels using linear interpolation of
neighboring points.

To train theGAN S that composes the ultrasound simulator,
as well as to train the denoising network (D), a dataset of
375 MRI images of the human heart [32] was used, each
image being of size 256 × 256 pixels. Data augmentation
was applied by rotating the images by random values between
−90 and 90 degrees, followed by random translations of
between −50 and 50 pixels in the x direction, and between
−25 to 25 pixels in the y direction. Finally, the images were
flipped randomly on the x and y axes. This is necessary to
avoid artifacts caused by overfitting, since higher pixel values
are concentrated near the center of the original MRI images
and the borders have lower values.
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FIGURE 3. Pipeline for the training of S, with an example image of a uterus and a zoomed-in detail to show the preprocessing effect. Each ultrasound
image from the dataset (used as target) was preprocessed (decompression, quantization to 3-bit values and two iterations of median filtering). After
preprocessing, a phantom-like image was obtained and used as input. S is trained using the original ultrasound image paired with its iconic/labeled
image counterpart.

To assess the performance of D, a test dataset of 148 MRI
images was collected from the aforementioned MRI image
dataset with images of the human heart not used during the
training phase [32].

B. GENERATING SYNTHETIC ULTRASOUND IMAGES FROM
MRI
The goal of the GAN S was to produce simulated
B-mode ultrasound images given labeled images representing
low complexity ‘‘phantoms’’ as input. In other words,
iconic/labeled images can be obtained from MRI images
(after preprocessing) and used as input, producing a synthetic
version with characteristics typical of ultrasound images. The
images produced by S will be crucial to create training pairs
to train the denoising GAN, D, as will be covered in the next
section.

Fig. 3 illustrates how S was trained. For the network to
learn characteristic patterns of ultrasound images, a dataset of
images of this type of modality must be used as target. First,
each original B-mode ultrasound image, denoted as y, was
converted to the RF domain, yRF , using the decompression
function for each pixel (i, j),

yRF (i, j) = e
y(i,j)−β

α − 1, (1)

following the method described in [4]. The mapping param-
eters α and β were calculated according to [33].
Images now in the RF domain were preprocessed in

two steps. First, the intensity depth (the number of bits to
represent each pixel value) was reduced by multiplying and
dividing each integer grayscale pixel by 32. This process
discards information from 5 of the bits, representing the
intensities in the remaining 3 bits, allowing for only 8 levels.
By discarding the 5 least significant bits, a coarser/iconic
representation of the original image was obtained. Finally,
the resulting image was smoothed by 2 iterations of median

filtering with a squared kernel of size 3 × 3 pixels. At the
end of this discretization process, each pixel gets assigned an
integer value, or label, between 0 and 7 proportional to its
original pixel intensity. Overall, the resulting labeled image
represents simplified anatomical structures with a phantom-
like appearance, as shown in Fig. 3.

The B-mode image and the corresponding 3 bit (or 8 level)
image pairs so obtained were used to train the GAN S.
The preprocessing was done to the full chosen dataset of
670 ultrasound images. The created pairs were divided into
500 training pairs and 170 validation pairs.

The pix2pix model trained this way can now be applied
on the 8-level version of a MRI image (prepared after the
decompression and preprocessing steps), producing an output
image that resembles a B-mode ultrasound image. This
process is shown on the top row of Fig. 4, as it was an
indispensable framework to train D.

C. DENOISING OF ULTRASOUND IMAGES
The GAN D aimed to despeckle input B-mode ultrasound
images by converting them to clean MRI-like versions. For
this, the GAN must learn i) the main characteristics of
MRI images, and ii) the statistical properties of speckle
noise. Therefore, two distinct datasets had to be designed for
training, to account for these two aspects. Fig. 4 illustrates
how D was trained.
First, the GAN must learn how to reproduce the main

characteristics and patterns of MRI images, including their
high resolution details and low noise. For this, a set of
375 synthetic B-mode ultrasound images were generated
from original MRI images using the trained S, as shown on
the process of the top half of Fig. 4. The labeled/iconic input
image generation for S was done using the preprocessing
steps described before with a single difference: MRI images
do not require decompression and are directly intensity depth
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FIGURE 4. Training of D. Each MRI image from the dataset was preprocessed (quantization to 3-bit and median filtering (x2)) to obtain its phantom
representation, used as input for the trained S, producing its synthetic ultrasound version. Additionally, each natural image from the COIL-100 dataset
was corrupted with speckle noise and log-compressed, obtaining a noisy result.

reduced and filtered as described in Section II-B. The labeled
image can now be inputted into S, producing the desired set of
simulated ultrasound images when applied to all 375 original
MRI images.

Second, the GAN must learn the appropriate statistical
models for speckle noise. For this, a set of 375 natural images
from the COIL-100 dataset [31] were contaminated with
noise, following the sequence of operations illustrated on
the bottom half of Fig. 4. First, grayscale images of natural
objects were selected from the COIL-100 dataset [31]. The
pixel values were normalized to one (by dividing by the
maximum pixel value), and then multiplied pixel-wise by
random values drawn from a Rayleigh distribution with a
scale factor of 1. Then, to simulate the interpolation process
performed by commercial ultrasound equipment the image
obtained in the previous step was decimated by a factor of
2 along both axes, and then interpolated back to the original
size using bilinear interpolation. This operation works as a
lowpass filter. Finally, logarithmic compression was applied
to each pixel (i, j) to compress the image obtained in the
previous step, denoted as k , using

y(i, j) = α log(k(i, j) + 1) + β , (2)

according to the B-mode image generation model in [4].
The parameters α and β in this step were randomly chosen
between the values of 10 and 50 for α and 0 and 50 for
β. Thus, several different equipment settings were taken
into account and presented to the network. This sequence of

TABLE 1. Hyperparameters and information related to training, for the
two GANs.

operations produced a set of paired images of real-life objects
and their statistically simulated B-mode counterparts, with
the parameter variation mimicking the real-life scenario that
these parameters are not typically known.

Hence, training the pix2pix model with the described
combined set as per the scheme shown in Fig. 4 allowed it to
learn typical features of MRI images (using the paired MRI -
simulated ultrasound subset) and the common statistical
models for speckle noise (using the natural - corrupted images
subset). After training D, it can be applied to a noisy B-mode
ultrasound image to obtain a denoised (despeckled) image as
its output, resembling a MRI image, as illustrated in Fig. 1.

D. EXPERIMENTAL SETUP
The setup used to train the pix2pix networks was Google
Colab environment with GPU and PyTorch. The default
U-Net architecture and patch GAN were used for the
generative and discriminator networks, respectively, for both
the simulator (S) and denoising (D) networks. The set of
hyperparameter values, train/validation image split, number
of epochs, and total training times for each of the networks
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are presented in Table 1. Colab was also used on the same
system to perform statistical evaluations and apply histogram
matching to assess the results of ultrasound simulation and
denoising.

The image preprocessing operations, namely the com-
pression of the ultrasound and MRI images to 3 bits and
corruption of the natural images with Rayleigh noise was
done in MATLAB version R2020a on a Windows Intel i7
system with 8 GB of RAM.

E. EVALUATION CRITERIA
Speckle noise in the RF domain is a multiplicative type
of noise, following the Rayleigh distribution [4]. According
to this image formation model, the ultrasound RF image
yRF (N × M pixels) which is related to the respective log-
compressed B-mode image, y through (1), is corrupted by a
truly multiplicative model of noise. According to this model,
the RF speckled image is obtained by multiplying the noise
free image, x, by a statistically independent field of Rayleigh
distributed random variables, η. Thus, having the clean x,
and the noisy RF image, yRF , the Rayleigh noise field can
be obtained by pixel-wise division, η(i, j) = yRF (i, j)/x(i, j)
[34]. The normalized histogram of this noise field, h, was
compared against the analytical Rayleigh distribution fitted
to the data, with the following Probability Density Function
(PDF)

p(η) =
η

σ 2 e
−η2

2σ2 ,

where σ is the distribution parameter [2]. This parameter
defines the position of the maximum of this function, which
should coincide or at least lay on a small neighborhood
around the (experimental) maximum of the noise field
histogram to guarantee the best fit and lower KL(p||h). The
Kullback-Leibler divergence [35] between the analytical and
experimental density functions, KL(p||h), was computed (in
dB) to assess the similarity of both distributions, using

KL(p∥h) =

∑
i

p(bi) log
(p(bi)

hi

)
, (3)

where hi and bi are the bin counts and centers, respectively,
and i represents the i’th intensity value bin.
The performance of the proposed denoising method was

tested by comparing its results with those obtained with
other state-of-the-art algorithms, such as RegGAN [30], De-
QuIP [18], OBNLM [14], and TVHTVM [16]. For this,
each method was applied on the test dataset of 148 MRI
images of longitudinal and transversal slices of the human
heart dataset [32]. Each test MRI image (ground truth)
was used to generate a speckled ultrasound version with
the ultrasound simulator proposed herein. This synthetic
ultrasound image is the input of the proposed denoiser and the
result is compared with the original noise free MRI image.
In order to compare images with different dynamic ranges
and intensity distributions, the Nyúl’s histogram matching
normalization technique was applied to the set of MRI,

TABLE 2. Average values obtained for the reconstruction quality
evaluation metrics applied to the test dataset. MAE = Mean Average
Error; RMSE = Root Mean Squared Error; PSNR = Peak Signal-to-Noise
Ratio; BRISQUE = Blind/Referenceless Image Spatial Quality Evaluator.
Values in bold correspond to the best results for each metric.

noisy and denoised images [36] using the Python package
intensity-normalization (version 2.2.4) [37]. This
harmonization technique aims to align MRI images acquired
from different scanners and imaging protocols, ensuring
that variations in image acquisition do not confound the
results and allowing more accurate and reliable comparisons.
Normalized images could now be visually compared and
using the four objective metrics adopted in this work to assess
the results. Denoting x as the original (MRI) image and x̂
as the denoised image, the metrics extracted were the Mean
Average Error (MAE), Root Mean Squared Error (RMSE)
and Peak Signal to Noise Ratio (PSNR) [38], according to
the following equations, respectively:

MAE =
1
MN

M∑
i=1

N∑
j=1

|x(i, j) − x̂(i, j)|, (4)

RMSE =
√
MSE, (5)

PSNR = 10 log10
(max x̂
MSE

)
, (6)

where MSE is the mean squared error, defined as

MSE =
1
MN

M∑
i=1

N∑
j=1

(x(i, j) − x̂(i, j))2 . (7)

The last metric considered was the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [39], computed
with the Python package brisque (version 0.0.15). The
average values of these metrics were used to quantitatively
compare the performance of each denoising method on this
test dataset.

III. RESULTS AND DISCUSSION
In this section, experimental results regarding the generation
of synthetic ultrasound images (using S) and the denoising of
B-mode ultrasound images (usingD and other state-of-the-art
methods) are presented and discussed.

A. GENERATION OF SYNTHETIC B-MODE ULTRASOUND
DATA
The process of obtaining a simulated B-mode ultrasound
image from an input MRI image applied to our ultrasound
simulator is shown in Fig. 2. This example shows that
S is capable of generating characteristics typical of real
ultrasound images, particularly the speckled noise profile and
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FIGURE 5. (a) Block diagram illustrating the decompression process to
convert a B-mode image to the RF domain [4] (see (1)). With the image
now in the RF domain, the noise field can be estimated by element-wise
division of both noisy (simulated ultrasound in RF domain) and original
(MRI) images. (b) Simulated B-mode obtained with the ultrasound
simulator from the source MRI image in Fig. 2. The histograms refer to the
intensity distribution of the noise field estimated within three regions of
interest (1, 2 and 3). The fitted analytical Rayleigh distributions are also
plotted in blue. Regions of interest contain distinct organs: (1) ribs, with
KL1(p||h) = 1.24 · 10−1 dB; (2) heart, with KL2(p||h) = 7.95 · 10−2 dB; (3)
other organs, with KL3(p||h) = 8.86 · 10−2 dB. h refers to the histogram of
the estimated noise field, while p refers to the fitted analytical Rayleigh
distribution.

low overall resolution, since the contours lose definition and
anatomical structures are roughly preserved.

Our ultrasound simulator has an advantage over other
ultrasound image conversion strategies such as Field II [40]
in terms of computational speed. To produce one ultrasound
image, Field II took 12 hours on a MATLAB cluster of
ten 3 GHz CPUs, whereas our simulator took on average
0.25 seconds per image.

Furthermore, the synthetic RF-ultrasound image confirms
to the statistical characteristics of the modality. Speckle noise
in ultrasound images is multiplicative and follows a Rayleigh
distribution when in the RF domain [4]. Since S outputs
images in B-mode, an RF conversion was performed as
described in Section II-B and illustrated in Fig. 5 (a). The
mapping parameters α and β were estimated as a function
of the simulated B-mode image according to [33]. Since

in the RF image the noise is pixel-wise multiplicative, the
noise field can be estimated by element-wise division of
the RF image and the original (MRI) image. To assess
how close the intensity distribution of the noise field is
from the analytical Rayleigh distribution, the PDF of the
former was roughly estimated using a normalized histogram
and compared to the latter by fitting the histogram data.
To fit the analytical distribution, the intensity bin associated
with the histogram’s maximum was identified. Then, three
distribution parameters were tested: the center of the intensity
bin corresponding to the maximum value, as well as the
centers of the intensity bins to the left and right of this
particular bin. From this set of three distribution parameters,
the one of the fitted analytical distribution was chosen to
minimize the KL divergence. Fig. 5 (b) shows the distribution
of the estimated noise field inside 3 regions of interest and
their respective Rayleigh fits and KL divergences (computed
using (3)). The estimated PDFs and the fitted Rayleigh
distributionswere similar. To confirm this finding, an uniform
image with the same size as Figure 5 was created, where each
pixel intensity was generated from a Rayleigh distribution.
When analyzed within similar regions of interest, the KL
divergence between this noise field’s histogram and the fitted
Rayleigh distribution was around 10−2 (−40 dB). From
this, we confirmed quantitatively that the values obtained in
Figure 5 (KL1(p||h) = 1.24 · 10−1 (−18 dB), KL2(p||h) =

7.95 · 10−2 (−22 dB) and KL3(p||h) = 8.86 · 10−2 (−21 dB)
are considered low.

B. COMPARISON WITH OTHER DENOISING METHODS
To be able to compare the performances of the different
methods, Nyúl’s histogram matching method [36] was
applied to the set of ground truth, noisy and the five denoised
versions (one from the proposed and four from the other
methods described in the literature). This was a crucial step
to guarantee that different sources were appropriately aligned
in terms of intensity values. These different sources refer
to the proposed and other methods used for comparison,
which interfered with the dynamic range of the input
image due to different image processing strategies, causing
different histogram shifts, posteriorly aligned using Nyúl’s
normalization [36].

In this section, we show the comparison results with
the following state-of-the-art methods described in the
literatute: RegGAN [30], De-QuIP [18], OBLNM [14] and
TVHTVM [16].

The average values for theMAE, RMSE, PSNR (computed
with (4), (5) and (6), respectively) and BRISQUE metrics
were evaluated using the whole test dataset of 148 images,
and the results are shown in Table 2. MAE and RMSE mea-
sure pixel-to-pixel intensity similarities. Low values point to
similar intensity distributions of the original and denoised
images. PSNR, in (6), measures in dB the ratio between
the maximum value of the denoised image and the MSE,
comparing the denoised image with the original one. High
PSNR values indicate successful denoising processes [38].
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FIGURE 6. Pipeline to compare the performance of the various denoisers applied to an example image of the test dataset. With the ultrasound
simulator, the ground truth MRI image was preprocessed and converted to its synthetic B-mode ultrasound representation using the GAN S. Then, using
this image as input, the proposed denoising method was tested (using the D network) and compared with the clean images obtained using the other
4 methods. The set of images shown was subject to Nyúl histogram matching to allow their comparison.

FIGURE 7. Eight examples of real B-mode ultrasound images and their denoised versions obtained using the proposed method: (a) carotid artery,
(b) bladder, (c) breast, (d) pancreas, (e,f) uterus, (g,h) gallbladder. Denoised images resulting from the other 4 state-of-the-art methods can be found in
Appendix A.

Finally, BRISQUE is a no-reference image quality assess-
ment algorithm designed to evaluate the perceptual quality

of images without relying on a reference (original) image:
low values indicate better image quality [39]. Table 2
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FIGURE 8. Real ultrasound image of a carotid artery, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

FIGURE 9. Real ultrasound image of a bladder, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

suggests that the proposed method outperformed all the
others in the four evaluations metrics adopted for comparison
purposes.

Fig. 6 depicts an example MRI image (top left) from the
test dataset, then preprocessed and converted to its synthetic
B-mode representation (with the ultrasound simulator) in
order to test the proposed and the other 4 state- of-the-
art denoising methods. Notably, this example showed, once
again, the ability of the ultrasound simulator to generate
realistic synthetic ultrasound images. These synthetic ultra-
sound images were then used as input to test the denoising
performance of the proposed and other methods. Indeed,
the other methods did not achieve the same despeckle
degree and contour maintenance capacity as compared to
the proposed method. RegGAN, another GAN designed for
medical image-to-image translation and noise removal in
medical images, was the method that surprisingly produced
the worst results. With this method, the distribution of
intensities was completely altered compared to the original
image, as reinforced by the high MSE and RMSE. The
anatomical contours lost coherence and the image lacked
overall quality, as indicated by the high BRISQUE score
and low PSNR. It must be noted that the trained model
provided by the authors was used, without training on our
dataset. The results of the remaining three methods were very
similar to each other quantitatively, and none outperformed
the proposed one. In these examples, De-QuIP, a despeckling
algorithm, seemed to spread the noise by smearing the image,
rather than removing it. OBNLM did not remove speckle

noise well enough, on visual inspection. Finally, TVHTVM
was also not capable of removing speckle noise and keep
smooth organ contours.

The proposed method stands out from the others due
to its ability to recover and highlight the integrity of
some organs and other anatomical structures, while at the
same time drastically reduced speckle noise. Although it
is very difficult to recover a resolution at the level typical
of MRI images, the improvement in quality of denoised
images compared to synthetic ultrasound images is evident,
as proven by quantitative evaluation criteria and by visual
inspection.

C. DENOISING RESULTS
The proposed denoising method aimed to translate noisy
(speckled) input ultrasound images into clean images resem-
bling MRI. Fig. 7 depicts examples of original ultrasound
images and their denoised versions, obtained with the
proposed method. Notably, the coherent morphological
structures appeared clear whereas the speckle noise pattern
was greatly reduced across all examples. Ultrasound images
included several organs of the human body, including
the carotid artery, bladder, breast, pancreas, uterus, and
gallbladder, thus highlighting the robustness of the denoiser
GAN.

The proposed pipeline was capable of producing denoised
images of good visual quality, in the absence of training data
for the modality without knowing parameters associated with
the ultrasound sensor.
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FIGURE 10. Real ultrasound image of a breast, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

FIGURE 11. Real ultrasound image of a pancreas, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

FIGURE 12. Real ultrasound image of a uterus, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

FIGURE 13. Real ultrasound image of a uterus, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

IV. CONCLUSION
This paper proposed a trained pix2pix GAN model for
B-mode ultrasound image despeckling. The GANwas trained

with datasets of paired natural - speckled images and
MRI - simulated B-mode ultrasound images to learn the
statistical model of speckle noise and MRI features. Thus,
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FIGURE 14. Real ultrasound image of a gallbladder, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

FIGURE 15. Real ultrasound image of a gallbladder, along with the denoised versions obtained from each studied state-of-the-art method. Images were
normalized with Nyúl histogram matching.

this methodology comprised a GAN-based denoising method
for speckled images in a cross modality manner between
ultrasound and MRI. Denoising results of several real and
simulated ultrasound images show that the GAN is capable
of efficiently remove speckle noise, while maintaining the
integrity of anatomical structures and avoiding reconstruction
artifacts. It generates outputs that resemble typical MRI
images due to the cross modality transfer property. The
proposed method also outperforms other 4 state-of-the-art
methods under several reconstruction quality metrics. Con-
cluding, this denoising method may ultimately aid diagnosis,
clinical decision-making or further image processing tasks.
Generalizing the proposed pipeline to use other methods
for generating synthetic images such as stable diffusion,
transformers, and unpaired approaches will be addressed in
future work.

APPENDIX A
DENOISING OF REAL ULTRASOUND IMAGES WITH
STATE-OF-THE-ART METHODS
See Figures 8–15.
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