WAGENINGEN

UNIVERSITY & RESEARCH

Generating domain models from natural language text using NLP: a
benchmark dataset and experimental comparison of tools

Software & Systems Modeling

Bozyigit, Fatma; Bardakci, Tolgahan; Khalilipour, Alireza; Challenger, Moharram;
Ramackers, Guus et al

https://doi.org/10.1007/s10270-024-01176-y

This publication is made publicly available in the institutional repository of Wageningen University
and Research, under the terms of article 25fa of the Dutch Copyright Act, also known as the
Amendment Taverne.

Article 25fa states that the author of a short scientific work funded either wholly or partially by
Dutch public funds is entitled to make that work publicly available for no consideration following a
reasonable period of time after the work was first published, provided that clear reference is made to
the source of the first publication of the work.

This publication is distributed using the principles as determined in the Association of Universities in
the Netherlands (VSNU) 'Article 25fa implementation' project. According to these principles research
outputs of researchers employed by Dutch Universities that comply with the legal requirements of
Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online
publication in the original published version and with proper attribution to the source of the original
publication.

You are permitted to download and use the publication for personal purposes. All rights remain with
the author(s) and / or copyright owner(s) of this work. Any use of the publication or parts of it other
than authorised under article 25fa of the Dutch Copyright act is prohibited. Wageningen University &
Research and the author(s) of this publication shall not be held responsible or liable for any damages
resulting from your (re)use of this publication.

For questions regarding the public availability of this publication please contact

openaccess.library@wur.nl

https://doi.org/10.1007/s10270-024-01176-y
mailto:openaccess.library@wur.nl

Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01176-y

THEME SECTION PAPER l‘)

Check for
updates

Generating domain models from natural language text using NLP: a
benchmark dataset and experimental comparison of tools

Fatma Bozyigit'? - Tolgahan Bardakci' - Alireza Khalilipour'2 . Moharram Challenger'? . Guus Ramackers3 -
Onder Babur*® . Michel R. V. Chaudron®

Received: 14 August 2023 / Revised: 10 January 2024 / Accepted: 14 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Software requirements specification describes users’ needs and expectations on some target system. Requirements documents
are typically represented by unstructured natural language text. Such texts are the basis for the various subsequent activities
in software development, such as software analysis and design. As part of software analysis, domain models are made that
describe the key concepts and relations between them. Since the analysis process is performed manually by business analysts,
it is time-consuming and may introduce mistakes. Recently, researchers have worked toward automating the synthesis of
domain models from textual software requirements. Current studies on this topic have limitations in terms of the volume
and heterogeneity of experimental datasets. To remedy this, we provide a curated dataset of software requirements to be
utilized as a benchmark by algorithms that transform textual requirements documents into domain models. We present a
detailed evaluation of two text-to-model approaches: one based on a large-language model (ChatGPT) and one building on
grammatical rules (txt2Model). Our evaluation reveals that both tools yield promising results with relatively high F-scores
for modeling the classes, attributes, methods, and relationships, with txt2Model performing better than ChatGPT on average.
Both tools have relatively lower performance and high variance when it comes to the relation types. We believe our dataset
and experimental evaluation pave to way to advance the field of automated model generation from requirements.

Keywords Software functional requirements - Software models - Text-to-model transformation - Benchmark dataset

1 Introduction

Communicated by Lano, Kolahdouz-Rahimi, Yassipour-Tehrani, Bur-

guefo, and Uma. Software functional requirements or functional case descrip-

tions can sometimes be ambiguous, and this ambiguity leads
to many different perceptions. By creating software mod-
els, such as diagrams, flowcharts, or UML diagrams, it is
possible to provide a clearer and more concrete representa-
tion of the functional requirements. This helps stakeholders,

Tolgahan Bardakci, Alireza Khalilipour, Moharram Challenger, Guus
Ramackers, Onder Babur, and Michel R. V. Chaudron have contributed
equally to this work.

B Fatma Bozyigit
fatma.bozyigit@uantwerpen.be

Tolgahan Bardakci
tolgahan.bardakci @uantwerpen.be Department of Computer Science, University of Antwerp,

Ant , Belgi
Alireza Khalilipour ntwerp, belgium

alireza.khalilipour @uantwerpen.be AnSyMo/Cosys core lab, Flanders Make Strategic Research

Center, Lommel, Belgium
Moharram Challenger

moharram.challenger @uantwerpen.be 3 Leiden Institute of Advanced Computer Science (LIACS),

Leiden University, Leiden, The Netherlands
Guus Ramackers

g.j.ramackers @liacs.leidenuniv.nl Information Technology Group, Wageningen University and

Onder Babur
onder.babur@wur.nl

Michel R. V. Chaudron
m.r.v.chaudron @tue.nl

Published online: 08 May 2024

Research, Wageningen, The Netherlands

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The
Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01176-y&domain=pdf

F.Bozyigit et al.

including developers, testers, and clients, better understand
the intended functionality and behavior of the software.
Although the analysis phase is generally considered a man-
ual task, the automatic generation of software models from
text-based functional requirements documents has become a
promising area of interest for researchers.

Recent studies have demonstrated that artificial intelli-
gence (Al) can automatically identify and categorize key
domain concepts from textual functional requirements using
techniques like machine learning and text mining [1-4].
Since Natural Language Processing (NLP) is the fundamen-
tal basis of today’s research on textual documents, NLP is
contributing to an enormous amount of work related to this
area of study.

Figure 1 shows a high-level overview of an NLP proce-
dure to create a domain model from textual requirements
documents [5]. This general procedure has an initial analysis
phase in which various analytical approaches such as Lexical,
Syntactic, Semantic, Discourse, and Pragmatic are applied
to the main text, yielding intermediate data. A final domain
model is then created from the intermediate data by utiliz-
ing various heuristic-based transformations such as Standard
Rule-based, Enhanced Rule-based, Ontology-based, and Pat-
tern Rule-based.

One can come up with intelligent tools that can be used
as an intelligent assistant alongside an expert to better ana-
lyze given the advancements in artificial intelligence and text
processing, especially in the areas of software engineering
where text is directly involved. More specifically, directions
including functional requirements are beneficial. Similar to
numerous other intelligent systems, this one also needs suffi-
cient data in this case, requirement texts—for the intelligent
engines to be trained and prepared for use. The absence of
appropriate datasets in this field is the research’s most diffi-
cult obstacle.

Currently, the evaluation of text-to-model studies is lim-
ited and ad hoc due to the small number of requirements
in the evaluation datasets used. The experimental evaluation
of such approaches will be more convincing and realistic
when performed on larger datasets. In particular, the exist-
ing datasets should be extended with gold annotations (i.e.,
solution models) and should be extended with more cases so
that they can be more useful for further studies.

An additional challenge is that many datasets that are
reported in published studies are not publicly shared. The
public sharing of datasets provides researchers with the
opportunity to evaluate and compare their proposed approaches
in a more objective and comparable manner. Consequently,
we anticipate that the outcomes of our research in this paper
will aid in dataset-sharing activities.

The main contributions of this paper are:

@ Springer

1. Publication of a dataset that is created using a sys-
tematic approach for use as a benchmark for text-
to-model approaches. Concretely, we created a well-
defined experimental dataset containing 120 software
functional requirements in English and have made it
publicly available on IEEEDataPort! to be used by other
researchers. Moreover, the provided dataset includes
gold annotation and statistic files that describe various
characteristics of the functional requirements such as the
number of sentences, words, classes, and so on.

2. An empirical comparison of two tools, txt2Model and
ChatGPT, based on the presented dataset and the pro-
posed evaluation method encompassing different crite-
ria.

The rest of this paper is structured as follows: Sect.2
reviews the related work on the available datasets and
approaches for text-to-model transformation. Section 3 illus-
trates the systematic methodology to create our benchmark-
ing dataset. We propose our evaluation method and elaborate
on the experimental results in Sect.4. Finally, Sect.5 con-
cludes and suggests future work.

2 Related work

With the penetration of Al into many scientific and indus-
trial fields, software engineering is also exploring the use
of intelligent methods for supporting software development
activities. Hence, the artificial intelligence for software engi-
neering (AISE) research area has recently emerged. In the
case of automated software development, we would like to
employ Al to reduce the time and effort required in software
development [6].

Qualified efforts have been made in AISE, such as for
cost management and estimation [7], effort estimation [8],
fault prediction [9], intelligent model management [10, 11],
and so on. In each of these areas, experimental data makes it
possible to develop descriptive or predictive models, enabling
an intelligent description of the data or future predictions.
Hence, the availability of appropriate datasets is crucial to
these activities.

Requirement formalization and requirement engineering
using NLP have been thoroughly studied in the literature,
with two review articles presenting a comprehensive classi-
fication in this area [12, 13]. Falessi et al. [14] investigated
the impact of applying language processing techniques to
save the human effort required for the requirements document
classification. Based on BERT and graph attention networks,
Lietal. [15] provided a model for the classification of require-

! https://ieee-dataport.org/documents/dataset- text-requirements-
models.

https://ieee-dataport.org/documents/dataset-text-requirements-models
https://ieee-dataport.org/documents/dataset-text-requirements-models

Generating domain models from natural language text using NLP...

Lexical Syntactic Semantic Discourse Pragmatic
Textual Analysis Analysis Analysis Analysis Analysis
Requirements
Intermediate Data

Standard Enhanced Ontology- Pattern Rule-

Rule-based Rule-based based Model based Model
Model Model
Conceptual ‘*
Model

)
J

Fig.1 General framework of approaches in the reviewed concept identification studies [5]

ments. Since sentence structure and syntactic information in
requirements have also been taken into consideration, this
research stands out notably taking into account the sentence
structure and syntactic information in requirements as well.

One of the major challenges in the field of AISE is the
initial phase of requirement analysis. In this phase, require-
ment documents have the least structure and may have
noise in terms of grammar or terminology [16]. Accord-
ingly, there is a need for appropriate datasets to evaluate the
approaches in this area. There is a necessity to use text-to-
model transformation tools to benchmark and validate the
proposed datasets. Considerable effort has been made to
extract knowledge from requirements documents [17]. Due
to the textual nature of the data in this research field, rep-
resentation learning and NLP techniques [18] are employed
with some degree of success. However, approaches for auto-
matically extracting domain models from requirements need
further research. Hereupon, we present the related work sep-
arately on Datasets and Text to Model tools.

2.1 Datasets

A comprehensive dataset for benchmarking provides many
benefits for researchers. First of all, it can encourage the
study of a research problem. Moreover, many academics may
have an opportunity to compare their approaches with the
state of the art using common and well-designed input data—
thus improving objectivity. Therefore, benchmark datasets
are significant in building scientific studies and experiments.

With the advance of Al, applying such methods in the
software engineering domain, like extracting system func-
tional requirements from textual descriptions, domain model
generation, requirement categorization, and finding similar
requirement documents to enable reuse, has become more
popular. In Table 1, we present an overview of approaches for
extracting domain models from natural language text require-

ments. All datasets used in these studies are quite small and
not close to realistic datasets.

This table was created based on a systematic search
(using a keyword list—see Sect.4) to find publicly available
datasets of functional requirements. We will investigate fur-
ther (Table 2) the study with the most extensive dataset, the
PURE dataset [30], which includes 79 requirements docu-
ments. By reviewing the PURE dataset in a detailed manner,
we find that its requirements make it difficult to automatically
generate well-formed structural models.

Large heterogeneity within the documents is one of
the complications. For example, some documents include
images and include other types of explanations and descrip-
tions besides the systems’ functionality. Other forms of
heterogeneity are that some cases follow the format of
use-case templates while others are descriptions in natural
language, and yet others mix present and past tense.

2.2 Text-to-model approaches

The early studies of model extraction from functional
requirements documents were based on grammatical rules
and heuristics—similar to other text-processing research uti-
lizing rule-based techniques [27, 28]. More recently, large
language models (LLMs) have been successfully employed
for this task. Bragilovski et al. [29] developed an approach to
generate domain models from user stories. User stories are
one particular style of addressing the expression of require-
ments for systems. While “traditional” approaches more or
less factually state the functionalities expected from a system,
user stories describe the use of and interaction with a system
from the perspective of users that use one particular feature of
the system. Several templates exist for describing user stories.
Such templates provide a slightly more standardized input
which may be a modest advantage for the automated extrac-
tion of domain models. This study focuses on improving the

@ Springer

F.Bozyigit et al.

Table 1 Studies for generating UML Diagrams from requirements

Paper Supported Languages ~ Method UML Diagram Source code No of Reqr’s Avg. No of words ~ Evaluation
[5] English & Turkish Rule-based Object C# 20 94 Pr, Re, Fm
[19] English Rule-based Object - 1 94 -

[2] English Rule-based Class - 3 87 Pr, Re

[20] English Ontology-based Class - 1 97 -

[21] English Pattern-based Class - 1 78 -

[22] English Rule-based Class Java 5 102 Pr, Re

[23] English Rule-based Class Java, VB 1 85 Pr, Re

[24] English Rule-based Object Java 6 - -

[25] English Rule-based Class Java - - -

[26] English Rule-based Class Java - - -

[27] English Rule-based Conceptual models — — 2 - Pr, Re

[28] English Rule-based Conceptual models — — 49 16 Pr, Re, Fm
[29] English Rule-based Domain models - 7 - Pr, Re, Fm

The abbreviations are as follows—Pr: precision, Re: recall, Fm: F-measure

detection of relations between concepts, as this seems to be
the aspect where most improvement is needed. They applied
their approach to seven case studies. These case studies come
from assignments in software engineering courses at Utrecht
University. They conducted a detailed quantitative evalua-
tion but also proposed comparison with and feedback from
human users as future work.

Ramackers et al. [31] presented a vision for automati-
cally generating a UML specification from natural language
requirements—either in text or in spoken form. The note-
worthy point in this article is that by using components, the
user can interact with the transformation system to support
a “human-in-the-loop” approach. In this way, the user can
make changes in the created (visual) model or inform the
main component of the transformer through feedback. In
addition, it supports both behavioral and structural aspects
of modeling.

Sedrakyan et al. [32] presented a method (called TeToMo)
that integrates machine learning-based methods, word embed-
dings, heuristic rules, statistical and linguistic knowledge to
solve functional requirements analysis, and modeling prob-
lems. They evaluated their output with models designed by
an expert.

Hamza et al. [33] generated use case diagrams from four
case studies of English requirements, considering NLP tech-
niques. In the proposed method, using a spell checker, only
spelling mistakes are recognized and warned to the user for
modification.

Arora et al. [34] developed an automated generator of
the domain model that uses extraction rules and combines
those rules with complementary rules from the informa-
tion retrieval literature and rules obtained from modern NLP
dependency parsers. They applied their model generator to

@ Springer

four industrial requirements documents. As is typical for
industrial documents, these are not shared publicly. They
evaluated their approach by interviewing one expert on
the results produced, yielding qualitative insights into the
strengths and weaknesses of their approach.

The incorporation of Al into the field of software model-
ing is covered by Camara et al. [35]. This study has identified
several flaws, including grammatical issues, incorrect seman-
tic interpretation, inconsistent responses, and unscalability in
well-known systems like ChatGPT. In the work of Lano et
al. [36], an approach for automating the extraction of soft-
ware specifications from the requirements is described to
make model-based software engineering agile. The study
has employed text processing and machine learning tech-
niques to automatically identify the required data and system
components, hence facilitating their utilization in subsequent
development phases, particularly model-driven engineering.

In addition to the research done in the field of transform-
ing requirements into models, some researchers have also
exposed the results of their research as available tools. We
were able to access two tools, and since one of our goals in
this article is to benchmark datasets based on real tools, we
will discuss these tools in the next section.

2.2.1 txt2Model tool

To evaluate the quality of our benchmark dataset, we realize
an experimental study by applying two tools to the pro-
posed benchmark dataset. One of these tools, txt2Model,
was implemented by Bozyigit et al. [37] who is an author
in this study. txt2Model transforms functional software
requirements into UML class diagrams by employing NLP
techniques and a modified rule set containing twenty-six rules

Generating domain models from natural language text using NLP...

to find object-oriented design elements from requirements.
The current state of the user interface can be seen in the
screenshot provided in Fig. 2.

2.2.2 ChatGPT tool

The LLM-based tool that we use in this paper is from the
OpenAl organization and is called “ChatGPT” [38]. Chat-
GPT is a language model developed by OpenAl, built upon
the GPT (Generative Pre-trained Transformer) architecture.
It is designed to generate human-like text based on any tex-
tual input it receives. ChatGPT has been trained on a wide
variety of text sources from the internet, books, articles, and
more, up until its knowledge cutoff in September 2021.

The model’s primary strength lies in its ability to gener-
ate coherent and contextually relevant responses to a wide
range of prompts, making it suitable for tasks like answering
questions, providing explanations, offering creative writing
suggestions, and engaging in natural language conversations.
It does not possess genuine understanding or consciousness
but employs patterns it has learned from its training data
to produce text that often appears human-like. Some of the
things it can do include, but not limited to: answering ques-
tions, translating text, generating text, summarizing text, and
providing definitions.

We utilize these capabilities of ChatGPT, specifically ver-
sion 3.5, to compare it with txt2Model [37]. For this, we
instruct ChatGPT to produce UML diagrams. In principle,
ChatGPT can produce class-like diagrams using characters
to create boxes and lines. However, we instruct ChatGPT
to generate textual lists of classes, associated attributes, and
relationships from the given requirements documents. This
allows us to quickly and accurately create a domain model
that represents the requirements. Moreover, this allows us
to process it efficiently, without the need for parsing UML
exchange formats such as XMI.

3 Creating the benchmark dataset

Assessing the performance of automatic text-to-model gen-
eration methods relies heavily on well-designed datasets.
However, constructing a large-scale and meaningful require-
ments dataset for software model generation is challenging.
The challenge lies mainly in the curation and application of
careful quality control of the data.

We follow the methodology described in Sect.3.1 to
design an organized dataset for software requirements inter-
pretation. We use a general definition of benchmark to ensure
wide applicability. It applies equally to benchmarking of
tools and techniques, as well as other technologies so we will
use these terms interchangeably. We define a benchmark as

a set of tests used to compare the performance of alternative
tools or techniques.

3.1 Methodology

For creating our dataset, we follow the guidelines and stan-
dards in the software engineering literature for creating
benchmarks [39, 40]. According to Sim et al. [39], a bench-
mark should have three elements: a motivating comparison
to advance the research area it is intended for, a representa-
tive test sample for the task that the tools or techniques are
expected to solve in practice, and performance measures.

Furthermore, Kistowski et al. [40] listed the following
five key characteristics of benchmarks: (KC1) relevance,
as discussed above by Sim et al. [39], (KC2) reproducibil-
ity, consistent use and generation of results, (KC3) fairness,
allowing different tests and tools to compete, (KC4) verifi-
ability, providing confidence on the accuracy of the results,
and (KC5) usability, facilitating and not hindering the use of
the benchmark.

We create our benchmark dataset to satisfy these charac-
teristics as much as possible. We explain the process of
constructing the dataset in Sect.3.2, as well as provide a
description and evaluation of the dataset in Sects. 3.3 and 3.4.

3.2 Process of constructing the dataset

During the process of constructing the dataset, we included
three aspects defined by Sim et al. [39], namely motivating
comparison, task sample, and performance measures.

Comparison: The first component, motivation compari-
son, encompasses two concepts: comparison and motivation.
It captures both the technical comparison to be made as
well as the research agenda that will be advanced by mak-
ing this comparison. Our motivation in this study is to build
a comprehensive and well-designed dataset to be used by
researchers in the software engineering field. To achieve this,
we analyzed all the similar studies in the literature with the
search strategy we defined (see Sect. 4.1), highlighting sev-
eral points in the current approaches to be improved. We
observed that most datasets in the current studies (except
a few, e.g., PURE [30]) are either inaccessible or are very
limited in the number and diversity of the requirements doc-
uments they contain. Although there is a substantial amount
of research on concept identification, there is a lack of a large-
scale benchmark dataset to be used in generating models from
requirements.

Task Sample: The tests in the benchmark should be a
representative sample of the tasks that the tool or technique
is expected to solve in actual practice. Since it is not possible
to include the entire population of the problem domain, a
selection of tasks acts as surrogates. To provide the criteria

@ Springer

F.Bozyigit et al.

Add/RemoveClass Add/RemoveAttribute

Add/Remove Method

Add/RemoveRelationship NewDesign

X truck.txt Upload

The Right-Way Rental Truck Company rents small |A |
moving trucks and trailers for local and one-way usagd
We have rental offices across the western United

States. Our rental stock includes various types of truct ™)

and trallers. We need to implement a system to track
our rental agreements and our vehicle assignments, N
Each rental office rents vehicies that they have In stocH
1o customers ready 10 take possession of the vehicle. | |
We don't take reservations. of speculate on whenthe |V

armetinme
asamerAdsess

Office o

Classes Vehicle -
RentalAggrement v)
Office-->officeName A

Attributes | Office-->officeNumber -
Office-->officeAddress v]

Methods No method extracted!

Fig.2 txt2Model [37]—A screenshot of its user interface

from this point of view, we designed a comprehensive data
search mechanism. This process will be detailed in Sect. 3.2.1

Performance Measures: These measurements can be
made by a computer or by a human, and can be quantita-
tive or qualitative. These are typically used to demonstrate
the features and capabilities of a new tool or technique and
are occasionally used to compare different technologies in an
exploratory manner. The criteria used as performance mea-
sures are explained later in the experimental part of our paper
in Sect.4.

3.2.1 Data collection

In the process of constructing the benchmark dataset, we use
different sources such as books, journals, publicly available
datasets, and online course materials.

We first conduct a review of relevant research papers, arti-
cles, conference proceedings, and other scholarly sources
to find publicly available requirements to be included in
our benchmarking dataset. In this regard, a search strat-
egy incorporating procedures for paper selection, including
the identification of search terms and the creation of search
queries, is devised. During the phase of study selection,
prominent digital databases such as Science Direct, IEEE
Explore, ACM, and Springer, as well as the Google Scholar
academic search engine, are utilized to identify papers of high
quality. The search encompasses journal papers and confer-
ence proceedings spanning from 2000 to 2023. We employ
specific search strings in our data collection process: “soft-

@ Springer

ware requirement,” “software requirement dataset,” “func-
tional requirement,” “software requirement document,” and
“software analysis document". Second, the search strings
are constructed based on specified search terms, includ-
ing population, intervention, and outcome. These search
strings are adjusted to accommodate advanced source-
searching methods within each selected digital library. For
instance, while crafting a search string like (TITLE-ABS-
KEY((“software requirements" or “software analysis doc-
ument” or “software requirement document" or “software
requirement,” “software requirement dataset,” “functional
requirement,” “software requirement document,” and ““soft-
ware analysis document”) AND LIMIT-TO (PUBYEAR,
2000))) for ScienceDirect, the equivalent query is entered as
(“software requirement document,” “software requirement,”
“software requirement dataset,” “functional requirement,”
“software requirement document””) AND (year>2000 AND
year<2023).

After completing the search on academic databases, we
use search strings on Google to find software requirements in
open educational resources (e.g., course materials), and Web-
based knowledge-sharing platforms (i.e., GitHub, Medium,
Kaggle). Also, we add 11 functional requirements of a soft-
ware company which one of the authors in the paper works
for (Fig. 3).

To decide whether these requirements are suitable to be
included in the proposed dataset, all the requirements col-
lected from different sources (203 cases) were analyzed by
the two researchers of the paper (Fatma Bozyigit and Tol-

99

Generating domain models from natural language text using NLP...

Fig.3 Sources we used for

creating our benchmark dataset

Search on academic databases (106)

ScienceDirect

el N

IEEE Xplore®

(acm)

+ @ Springer GO 8[6

S22
==

Search on open-educational resources

(39)

+

% Search on knowledge/data sharing

Medium

platforms (47) 0 kaggle

+ GitHub

el

Business cases (11)

gahan Bardakci). In this direction, the researchers eliminate
redundant (duplicate data stored in multiple places within
the same system), trivial (including the simple and limited
number of sentences), fully nonfunctional software require-
ments, and test cases. Consideringly, 83 of the selected cases
were eliminated. Finally, we identify 120 cases that remained
within scope. The whole process of selecting the require-
ments documents during the data collection is illustrated in
Fig.4.

3.2.2 Preprocessing

In the pursuit of developing a benchmark dataset compris-
ing software functional requirements, a systematic approach
is employed to ensure data quality. This process entailed
the collection of requirements documents from publicly
available sources, encompassing a diverse array of ori-
gins. As these requirements exhibited inherent variability,
including grammatical errors, vague descriptions, extrane-
ous elements such as images, and excessive details, a suite
of text preprocessing techniques was thoughtfully deployed.
This preprocessing phase aims to rectify the identified chal-
lenges, enhancing the overall quality and consistency of the
dataset.

To specifically address these challenges, we used the assis-
tance of a third-party proofreading service. This service was
instrumental in correcting grammatical mistakes and mis-
spelled words, thereby ensuring the linguistic correctness of
the dataset. Additionally, it played a crucial role in refining
the clarity of the requirements by rephrasing vague descrip-
tions and rearranging sentences for better coherence. After
preprocessing with this service, we manually deleted unre-
lated parts of these requirement datasets, like images. This
preprocessing phase was vital in maintaining a high standard
of data quality and ensuring that the dataset reflects accurate
and clear software functional requirements.

The steps in the preprocessing can be listed as follows:

1. Correcting grammatical mistakes,

2. Correcting misspelled words,

3. Re-arranging some sentences for clarity,

4. Deleting unnecessary items, such as images.

3.2.3 Categorization of the functional requirements
documents

Categorization in terms of complexity. To achieve our goals
of having arepresentative task sample and fairness for bench-
marking different tools (KC2), we aimed to have diversity
in terms of the complexity of the requirement. This is par-
ticularly important, for example, considering the scenario
where a tool designed for automatic model transformation
might perform poorly on complex requirements while work-
ing well on simple requirements documents. Realizing this
situation makes the system designer aware of fixing some
critical issues to make the tool more useful.

For measuring the complexity, we analyzed the require-
ments documents using the number of sentences (NoS),
the number of words (NoW), the number of words after
removing stop words (NoSW), and the number of unique
words (NoUW). We calculated these values using our Python
scripts and documented them in an Excel Sheet. We created
a formula for calculating requirement complexity values and
giving the labels simple, medium, and complex. We used the
following formula (Eq. 1) for the calculation:

Complexity
_(0,4%NoS) +(0,2% NoW) + (0,2 NoUW) + (0,2 x NoSW)

10
ey

After these calculations, we categorized the requirements
documents, a sample of which is depicted in Table 2. The final

@ Springer

F.Bozyigit et al.

Table 2 Requirement statistics

No Requirement Name Source Domain Complexity number of number of number of number of
sentences words unique words after
words eliminating
stop words
R1 Restaurant Course material (U Business Medium 20 255 125 176
Management Izmir Bakircay)
R2 Employee Course material (U Business Medium 22 277 122 179
Management Izmir Bakircay)
R3 Library Course material (U Education Medium 21 233 115 147
Izmir Bakircay)
R4 Computer Game | Course material (U~ Technology =~ Complex 39 714 275 432
(Galaxy Sleuth) Nevada)
RS Computer Game I ~ Course material (U~ Technology =~ Medium 19 410 198 230
(Spy-Robot) Sichuan)
R6 Academic Program Course material (U Education Simple 9 129 77 80
Izmir Bakircay)
R7 Supermarket Course material (U Business Complex 21 585 230 328
Izmir Bakircay)
RS Hotel Reservation Course material (U Business Medium 20 301 119 184
Izmir Bakircay)
R9 BeWell App Course material Health Medium 30 433 145 253
R10 File Manager Course material (U Technology Simple 7 83 46 55
Celal Bayar)
R11 Football Team Course material (U Entertainment Simple 12 136 67 84
Celal Bayar)
R12 Rented-car Gallery Course material (U Business Simple 7 120 70 83
Management Celal Bayar)
System
R13 Course Enrollment ~ Academic Education Medium 15 234 111 144
R14 ATM Rumbaugh Academic Finance Simple 10 164 89 103
R15 Video Rental Academic Entertainment Simple 17 221 98 137
R30 Wallet Application ~ Software Company Finance Medium 19 251 122 161
R31 Restaurant CourseMaterial (U Business Complex 62 808 270 544
Izmir Bakircay)
R32 Energy Management Business-Energy Energy Complex 30 519 156 357
System
R33 Travel System Academic Entertainment Complex 50 551 210 410
R34 Truck Academic Business Complex 32 494 205 314
R35 Unified University Academic Education Complex 16 524 189 352
Inventory System
R36 Video Rental Academic Business Complex 48 553 160 371
R37 LawFirm2 Academic [31] Business Complex 81 1457 438 891
R38 Law Firm Academic [31] Business Complex 38 858 344 570
R39 Insurance Academic [31] Finance Complex 49 781 234 451
R40 Dental Clinic Academic [31] Health Medium 22 330 187 204
R114 Clarus Low Pure Dataset [30] Business Medium 18 268 98 205
R115 Clarus High Pure Dataset [30] Business Complex 65 777 252 625
R116 Watcom Pure Dataset [30] Business Complex 66 446 207 319

@ Springer

Generating domain models from natural language text using NLP...

Search 203

* .

157

. = . Eliminating fully
quenies jr— documents Eicﬁ;i?ls lfilxifﬁfjs documents Removing trivial documents= nonfunctional [requirement
— expre:sions requirements requirements, test documents
— cases
Fig.4 Selection process during the data collection
Table 2 continued
No Requirement Name Source Domain Complexity number of number of number of number of
sentences words unique words after
words eliminating
stop words
R117 Watcom GUI Pure Dataset [30] Business Medium 13 323 176 214
R118 Sprat Pure Dataset [30] Business Medium 17 397 150 268
R119 Rics Pure Dataset [30] Business Complex 32 503 210 348
R120 Food Order App Software Company Business Simple 11 142 84 89

dataset comprises 13 simple, 66 medium, and 41 complex
requirements documents.

Categorization in terms of domain and source. A
benchmark dataset should provide diversity and include var-
ious requirements documents concerning different domains
(see KC1 relevance, and KC3 fairness in Sect.3.1). In this
study, we manually categorized the requirements documents
with respect to their domains. Our final dataset covers the
domains of business (systems that implement some type of
shop), education, entertainment, finance, travel, and health
(Table 2).

The other diversity point to consider is creating a dataset
using a wide range of sources. Our aim is primarily to create
a benchmark that is used by a technical research community.
The community of interest may include participants from
academia, industry, but they are all primarily interested in sci-
entific research. Thus, we collect different course materials
from various universities worldwide, the software require-
ments used in academic papers, and the requirements from a
software company (Table 2).

3.3 Data description and availability

To partially validate the dataset presented in terms of domain
diversity, the selected requirements have a suitable distribu-
tion and, according to Fig. 5, they are from various domains
such as Business, Education, Technology, Health, Entertain-
ment, Finance, Construction, and Transportation. The largest
category (42 cases) is associated with Business, while the
smallest category (4 cases) is tied to Transportation.
Moreover, the requirements documents in the benchmark
dataset are classified based on their sources like academia and

Construction
2%

Fig.5 Domains of the requirements documents

industry. Figure 6 shows that the data distribution between
academic (58 cases) and industry (62 cases) categories is
nearly equal. Hereby, it will be possible to achieve more
realistic results during the validation of the tools that perform
the model transformation from requirements to model.
When looking at the dataset from the criteria of com-
plexity, the majority of the data has medium complexity
(66 cases), then complex (44 cases), and 13 cases have
simple complexity (Fig.7). More specific statistical infor-
mation is presented in Tables 3, 4, and 5 for simple,
medium, and high complexity requirements, respectively.
Such quantitative data was collected in five different cate-
gories: Complexity number (CompNo), number of sentences
(NoS), number of words (NoW), number of unique words

@ Springer

F.Bozyigit et al.

48%

Academic Reqs = Industry Reqs

Fig.6 Comparing academic and industrial requirements

Simple Reqs
11%

Complex Reqs

Medium Reqs
55% .

34%

Fig.7 Complexity of the requirements documents

(NoUW), and number of words after stop words were elim-
inated (NoWESW). According to this statistical data, the
requirements collected had a mean of 26 sentences, 439
words, and 167 unique terms. After eliminating the stop
words, the total number of words ranged between 55 and
891. In terms of the number of items mentioned, the result-
ing deviations confirm the quality of the collected data.

The latest version of the proposed dataset and the bench-
mark evaluation scripts are available in IEEEDataPort [41].
The available manual includes instructions on extracting and
assessing data using the recommended benchmarks.

3.4 Benchmark dataset evaluation

We have sought to meet the key characteristics of benchmarks
proposed by Kistowski et al. [40] and Sim et al. [39]. In this

@ Springer

section, we elaborate on how our benchmark dataset meets
those characteristics, in addition to the remarks on the dataset
description and diversity in Sect. 3.3.

1. Relevance (KC1): Relevance involves ensuring that the
benchmark addresses current and significant challenges
in the field. In our benchmark, we focus on UML mod-
eling. For instance, our dataset includes a variety of
requirement data that reflects contemporary challenges
in software engineering.

2. Reproducibility (KC2): This implies consistent use and
generation of results. Our benchmark dataset has been
developed with reproducibility in mind and is readily
available on GitHub for anyone to access and use, as
well as in a persistent database.

3. Fairness (KC3): Fairness entails allowing different tests
and tools to compete on an equal footing. We ensure
fairness in our benchmark by gathering documents from
various resources, such as academia and industry, as well
as establishing a high diversity in terms of complexity.

4. Verifiability (KC4): Providing confidence in the accu-
racy of the results is meant with verifiability. Our
dataset supports verifiability through the experiments
we present in this paper, which are publicly available in
our replication package.

5. Usability (KCS5): Facilitating the use of the benchmark
without hindering it is an important characteristic. To
enhance usability, our dataset is publicly available, doc-
umented, and ready to use. We create our benchmark
dataset to satisfy these characteristics to the fullest extent
possible.

4 Evaluation of text-to-model tools

In this section, we realize the evaluation of the benchmark
dataset using two different tools, namely txt2Model [37] and
ChatGPT. We feed the dataset into these tools and observe
their model generation performance considering the five cri-
teria we specified.

4.1 Selection of text-to-model tools

In this part of the study, we conduct a review of relevant
research papers, articles, conference proceedings, and other
scholarly sources to find publicly available tools to test their
functionality on the benchmarking dataset we create.

In the initial phase of the search process, the first step is
to identify keywords relevant to the research topic. Subse-
quently, these keywords are defined and organized based on
research questions using the PICOC framework (Population,
Intervention, Comparison, Outcome, Context), as introduced
by [42]. Population criteria establish the scope of converting

Generating domain models from natural language text using NLP...

Table 3 Descriptive statistics

h . CompNo NoS Now NoUW NoWESW
on the complexity metrics—for
the requirements with simple Mean 6.25 9.39 134.80 68.15 88.87
complexity .
Median 6.74 9 136 68 88
Variance 2.11 14.53 1187.23 229.51 581.30
Skewness 0.36 0.69 0.63 0.11 0.28
Minimum 3.96 5 33 46 55
Maximum 9.80 17 221 98 137
Sum (for all req.) 83.48 131 1807 908 1197
Table 4 DeSCI‘lPthC Sta..tISHCS CompNo NoS Now NoUW NoWESW
on the complexity metrics—for
the requirements with medium Mean 15.19 21.20 346.16 141.54 225.34
complexity .
Median 15.2 22 341.5 141 223
Variance 7.17 36.54 4626.98 833.82 2135.45
Skewness 0.07 0.28 0.12 0.23 0.26
Minimum 10.38 9 233 96 144
Maximum 19.98 37 483 204 322
Sum (for all req.) 1018.14 1456 23284 9533 15178
Table 5 Descrlptlve StétlStICS CompNo NoS Now NoUW NoWESW
on the complexity metrics—for
the requirements with high Mean 27.74 36.85 647.48 227.94 429.69
complexity .
Median 26.12 35 617 233 409
Variance 66.37 261.63 41646.48 3792.28 17787.12
Skewness 1.66 0.87 1.68 0.76 1.41
Minimum 20.46 16 446 111 284
Maximum 58.96 81 1457 438 891
Sum (for all req.) 1176.72 1634 27593 9669 18306

requirements into a conceptual model, covering areas like
“requirements transformation," “requirements analysis," and
“generating conceptual model." Intervention keywords refer
to the methodologies used in the process, such as “Natu-
ral Language Processing" (NLP) and “rule-based model."
Comparison keywords relate to studies analyzing require-
ments without employing automatic concept identification
methods. Outcome keywords concentrate on the concep-
tual models generated from software requirements, including
terms like “UML diagrams," “ontology model," and “source
code." Context keywords revolve around contextual aspects
within concept identification studies. Comparison criteria are
not employed in the formulation of search strings. Instead,
context criteria are utilized as exclusion criteria listed as
patents, presentations, workshop papers, technical notes,
informal papers, and tools not based on scientific study are
eliminated. Duplicate papers of the same study are neglected.
Paper that does not mention conceptual model in the title and
abstract content is not included.

The search strings are constructed based on specified
search terms, including population, intervention, and out-
come. These search strings are adjusted to accommodate
advanced source-searching methods within each selected
digital library (Science Direct, IEEE Explore, ACM, and
Springer).

After performing a literature search of available tools, we
list three different text-to-model tools developed by [31, 34],
and [37]. Since we could not execute the tools of [31] and
[34], we have only the txt2Model tool to utilize the evalua-
tion process. To complete the evaluation of benchmarking,
we choose ChatGPT which has shown good results in a
large variety of NLP tasks. Although the working mecha-
nisms of these two tools are different, the performances of
both tools on the dataset are quite consistent (see Sect.4.3).
This shows that the benchmarking dataset we created is suit-
able for testing and benchmarking the functionality of model
transformation tools.

@ Springer

F.Bozyigit et al.

4.2 Evaluation method

The evaluation of a tool transforming requirements into UML
models is a comprehensive process because there are various
criteria affecting the performance of the produced model.
Since the purpose of transformation tools is to determine:
classes, relationships, attributes, methods, and relationship
types, we defined five relative criteria as follows.

e Criterion 1 (C1): Finding the classes completely.

e Criterion 2 (C2): Finding the relationships between the
classes completely.

e Criterion 3 (C3): Finding the attributes of the classes
completely.

e Criterion 4 (C4): Finding the methods of the classes com-
pletely.

e Criterion 5 (C5): Specification of the relationship types
correctly.

To observe the performance of the tools, we specified
performance metrics considering the number of correct,
incorrect, and missing elements for each criterion as follows.

e C;C:the number of elements that are correct with respect
to C;.

e C;I: the number of elements that are incorrect with
respect to C;.

e C;M: the number of elements that are missing with
respect to C;.

The effectiveness of the system is assessed by compar-
ing the output of the system with class diagrams created by
experts. The set of design elements in the expert model is
referred to as E, and the set of elements identified by the
system is referred to as S. The comparison between S and
E is used to determine the number of correct, incorrect, and
missing elements. More such details are as follows:

1. The cardinality of the intersection of S and E is the
number of elements that are correctly identified by the
system. This is denoted as N¢orrect -

2. The cardinality of the difference between S and E is the
number of elements that are incorrectly identified by the
system in the generated class diagram. This is denoted
as Nincorrect-

3. The cardinality of the difference between E and S is the
number of elements that are missing from the output of
the system and could not be extracted. This is denoted
as N, missing -

Precision (Pr) is a measure of the accuracy of the proposed
system and reflects the proportion of the output that is correct.

@ Springer

It is calculated by dividing the number of correctly identified
elements (Ncorrect) by the total number of elements extracted
by the system (Ncorrect + Nincorrect)- The formula for precision
is (Eq.2):

Pr— N, correct (2)

Ncorrect + Nincorrect

Recall (R) is a measure of the completeness of the output
and gives information on how much of the total data was
extracted by the system. It is obtained by finding the ratio
of the correctly identified data to the total data in the expert
model. Its formula is (Eq. 3):

Re — Ncorrect (3)

Neorrect + Nmissing

F-measure (F) is a combination of precision and recall, which
takes into account both the accuracy and completeness of the
output. It is calculated using the harmonic mean of precision
and recall (Eq.4):

2 X Pr x Re
Fmeasure = W (4)

4.3 Evaluation results

In this section, we evaluate the performance of the tools
txt2Model and ChatGPT on 30 requirements documents
selected from our benchmark dataset. We analyze Ncorrect,
Nincorrect> and Nmissing values of each criterion for the tools
txt2Model and ChatGPT, respectively. The detailed experi-
mental results for each requirement are presented in Figs. 8
and 9. The x-axis represents each requirement with an id
ranging from 1 to 30, while the y-axis represents the percent-
age of correctly, incorrectly predicted, and missing design
elements in class diagrams generated by the tools. The bar
chart depicts the overall performance scores across differ-
ent requirements documents from various domains having
different complexity.

Precision, recall, and F-measure values of both tools
regarding each evaluation criterion are presented in Figs. 10, 11,
and 12. Figure 10’s five graphs illustrate the outcomes of the
precision evaluation for both tools, txt2Model and ChatGPT,
using the five criteria ranging from C1 to C5. The graphs
indicate that normal distribution is typically lacking and that
skewness is typically to the right or left. The txt2Model tool’s
median score is greater in C1 and C2, which indicates the
improved performance of this tool. On the other hand, Chat-
GPT is more precise in both C3 and C4. Although the median
is lower than that of ChatGPT, txt2Model’s performance in
C4 has a normal distribution. While both tools’ precision in
C5 is about the same, the ChatGPT skew is significantly to

Generating domain models from natural language text using NLP...

70.00

60.00

50.00 M n

40.00 M

30.00

20.00

No. of elements regarding C;(%)

10.00

R1 R2 R3 R4 RS R6 R7 R8 R9 R10 RI1 RI12 RI3 R14 RI15

m#Correct
Of#lIncorrect

#Missing

R16 R17 RI8 RI19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30

Requirements

Fig.8 Results for each criterion (C; C: number of correct elements regarding C;, C; I: number of incorrect elements regarding C; C, C; M: number

of missing elements regarding C; C) - txt2Model

100.00
90.00
80.00
70.00
60.00
50.00
40.00

30.00

20.00
10.00 W “ H
0.00 N ﬂ ﬂ M N H N

Rl R2 R3 R4 R5 R6 R7 R8 R9Y

No. of elements regarding C; (%)

il

Requirements

m#Correct
O#lncorrect

#Missing

RI0 RIl RI2 RI3 RI4 RI5 RI6

HHHH‘HHHL i

R17 RI8 RI19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30

HHH

——]

Fig.9 Results for each criterion (C; C: number of correct elements regarding C;, C; I: number of incorrect elements regarding C; C, C; M: number

of missing elements regarding C; C) - ChatGPT

the left. Thus, it can be concluded that the txt2Model tool’s
precision is better for C5 as well.

Figure 11 depicts the comparison of two tools across the
five criteria (C1, C2, C3, C4, and C5) and the recall per-
formance metric. Nearly always, txt2Model performs better
than ChatGPT and has a higher median. ChatGPT has a lower
minimum in each example, but a larger maximum in C4.
Although ChatGPT’s skew in C4 is to the right, txt2Model’s
minimum and first quartile are substantially higher. The
performance of the txt2Model tool was superior in these cir-
cumstances as evidenced by the fact that in the C5 the first
quartile of txt2Model, it is practically identical to the third
quarter of ChatGPT. In other words, the txt2Model tool’s
skew is entirely to the right and the skew of ChatGPT is
completely to the left.

In Fig.12, the tools have been compared with the F-
measure or F1 score according to the five conditions C1 to
C5. In C2 and C4, txt2Model’s tool has a normal distribu-
tion. In C2, the txt2Model tool has a higher mean, and in C4,
the performance of ChatGPT is relatively better, although
it is skewed to the left. In C1, txt2Model has both a higher

mean and a skew to the right. In C3, the medians are almost
the same, while in ChatGPT, the dispersion of data is more
in the first quarter. In C5, both tools are skewed to the left,
although the mean of txt2Model is higher and has a better
performance.

5 Conclusion and future work

In this section, we reflect on conclusions and possible direc-
tions for future work.

5.1 Conclusions

A conceptual model is a simplified representation of a com-
plex system or process. It is used to understand essential
features and relationships of the system and ease commu-
nication between stakeholders. Conceptual models are used
in fields such as science, engineering, and business and they
are typically created using a visual diagram considering the
textual requirements between the customers. Since generat-

@ Springer

F.Bozyigit et al.

Criterion 1 (C1)

[Bozyigit etal. [OpenAl

Criterion 2 (C2)

[Bozyigit etal. [OpenAl

Criterion 3 (C3)

[Bozyigit etal. [J OpenAl

o
0.9 0.9 = 0.9 ; X
X X ° X)
° o o o o o
0.8 0.8 3 0.8 °
07 i 0.7 0.7
0.6 _ 06 06
] =) S
-2 Z B
4 05 ° g 05 5 05
(] — —
£ = =
0.4 0.4 04
03 0.3 0.3
0 0.2 02
0.1 0.1
0.1
0 0
0
Tools Tools
Tools
b c
@ ®) ©
Criterion 4 (C4) Criterion 5 (C5)
[Bozyigitetal. [J OpenAl [Bozyigit et al. [J OpenAl
1 - 1 ————
0.9 of 0.9 9 o
o
0.8 0.8 ° 3
j o o
0.7 - 0.7
X °
0.6 0.6 5%
5 £
205 ° E 05 °
2 &
) =™
04 0.4 o
o
03 0.3
02 0.2
0.1 0.1
0 0 o
Tools Tools
(d) (e)

Fig. 10 Comparing the precision of txt2Model and ChatGPT tools

ing these models helps to understand and explain the complex
system, transforming textual documents into visual diagrams
automatically has attracted great attention from researchers
in the recent decade.

We realized a need for better benchmarks for evaluating
text-to-model approaches. Moreover, we realized a lack of
realistic use cases in the existing datasets: their requirements
are mostly trivial and include simple formatted sentences that
could be easily analyzed by the transformation systems. In
contrast, sophisticated statements may be required in real-life
situations.

@ Springer

The main contributions of this paper are:
(1) Construction of a dataset using a systematic approach
for use as a benchmark for text-to-model approaches. Con-
cretely, we have created a well-defined benchmark dataset
containing 120 software requirements in English and have
made it publicly available on IEEEDataPort.”> The dataset
includes gold annotation and statistics files that describe var-
ious characteristics of the requirements, such as the number

2 https://ieee-dataport.org/documents/dataset-text-requirements-
models.

https://ieee-dataport.org/documents/dataset-text-requirements-models
https://ieee-dataport.org/documents/dataset-text-requirements-models

Generating domain models from natural language text using NLP...

Criterion 1 (C1)

[Bozyigit et al. [] OpenAl

Criterion 2 (C2)

[Bozyigit et al. [OpenAl

Criterion 3 (C3)

[Bozyigit etal. [J OpenAl

1
o
0.9 0.9 9 0.9 S
S X
o o
0.8 0.8 9 0.8 :
0.7 0.7 0.7 j
0.6 0.6 0.6
g 05 g 05 g 05
o~ =4 ~ o
0.4 0.4 0.4 o
o
0.3 0.3 0.3 =
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0
Tools Tools Tools
(a) (b) (c)
Criterion 4 (C4) Criterion 5 (C5)
[Bozyigit et al. [] OpenAl [Bozyigit etal. [OpenAl
1 -+ 1
0.9 o 0.9 °
b'd
0.8 & 0.8 ° !
- o
0.7 X 0.7 S
o
o
0.6 0.6
= =
g 05 o ° g 05 %
~ ~
o
0.4 o 0.4 o
o
o o
0.3 0.3 o
0.2 0.2
o
0.1 0.1
0 0
Tool Tools
(d) (e)

Fig. 11 Comparing the recall of txt2Model and ChatGPT tools

of sentences, words, classes, and also various measures of
complexity of the requirements.

(2) Providing a benchmark for the proposed dataset has been
one of the novelties of this article. By evaluating the dataset
with the proposed benchmarks, it can be ensured that the
proposed dataset can be used in a wide range of machine
learning algorithms.

(3) We provide an empirical comparison of two tools based
on the presented dataset and the proposed evaluation method.

5.2 Future work
In the future, for generating UML diagrams, we can take a

more data-driven approach to understanding and determining
relationship types. By using advanced data analysis tech-

@ Springer

F.Bozyigit et al.

F-Measure

F-Measure

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Criterion 1 (C1)

[Bozyigitetal. [J OpenAl

b © Ogpoo

Tools

(a)

Criterion 4 (C4)

[0 Bozyigit etal. [J OpenAl

T %

$—o6|0 0 X 90
o Xo

Tools

(d)

F-Measure

F-Measure

0.9

0.8

0.7

0.6

0.5

0.4

0.9

0.8

0.7

0.6

Criterion 2 (C2) Criterion 3 (C3)
[0 Bozyigit etal. [OpenAl [Bozyigit etal. [OpenAl
- 1 s
)
o S
5 0.9 g 8
% %
o [
0.8 - o
0.7 I
0.6
° e
=
172}
5 05
=
3
0.4 o p
0.3
0.2
0.1
0
Tools Tools
(b) (c)

Criterion 5 (C5)

[0 Bozyigit et al.

[OpenAl

o o oo ¢gef

oo

o

Tools

(e)

Fig. 12 Comparing the F-measure of txt2Model and ChatGPT tools

niques and machine learning algorithms, we can build more
accurate models of relationship dynamics that can help us
better predict and understand the various types of relation-
ships that exist within a given system or software architecture.

@ Springer

This serves to assist us in finding new design aspects and pat-
terns that might be applicable to the system being modeled
in addition to improving the accuracy of our relationship
types. One potential application of this approach is to use

Generating domain models from natural language text using NLP...

machine learning algorithms to identify similar requirements
within a given dataset. By analyzing the requirements and
their relationships to one another, the system can suggest
similar UML diagrams that may be relevant to the require-
ments being analyzed. This can be a useful tool for system
designers, as it can help them save time and effort by provid-
ing them with pre-designed UML diagrams that are tailored
to their specific needs. Furthermore, one characteristic of
the proposed dataset is that it can be used to develop models
using machine learning algorithms that cluster data, catego-
rize data according to particular attributes, or assist the user
in creating models by creating recommender systems that
recommend class, link, feature, cardinality, etc., to the user.
Consequently, developing these kinds of data will open up
novel opportunities for research.

In this paper, we focused on conceptual diagrams that cap-
ture the structural relations of the domain. Indeed, require-
ments also include information about the dynamic behavior
of the system. Additional types of analyses can be devel-
oped that target the construction of behavior models, such
as UML activity and sequence diagrams from requirements.
This would require the addition of the benchmark data as
well as the evaluation criteria.

Before conducting an analysis, like in our study, it is
important to ensure that the dataset is clean and accurate.
We have invested significant effort in cleaning and curat-
ing the dataset—by correcting grammar errors, clarifying
ambiguous wording, and eliminating any incorrect or mis-
leading information. In the future, we can also consider
adding functionality to tools that can automatically prepro-
cess the requirements and prepare them for analysis, making
the tool more robust and potentially more practical for a wider
range of datasets.

Finally, due to the restricted number of tools now avail-
able, we propose comparing more tools in the future. By
doing this, we will enhance the evaluation’s accuracy and
overall quality.

Acknowledgements We acknowledge the sharing of cases by Jorg
Kienzle and Giinter Mussbacher. Ultimately the cases they provided
were not included in our final dataset.

References

1. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.E.,
et al.: Objectoriented Modeling and Design, vol. 199. Prentice-hall
Englewood Cliffs, NJ (1991)

2. Sagar, V.B.R.V., Abirami, S.: Conceptual modeling of natural lan-
guage functional requirements. J. Syst. Softw. 88, 25-41 (2014)

3. Ozdagoglu, A., Ozdagoglu, G.: Comparison of ahp and fuzzy ahp
for the multi-criteria decision making processes with linguistic
evaluations. Istanbul Ticaret Universitesi Fen Bilimleri Dergisi
6(11), 65-85 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. LandhiduBer, M., Korner, S.J., Tichy, W.F.: From requirements to

UML models and back: How automatic processing of text can sup-
port requirements engineering. Softw. Qual. J. 22, 121-149 (2014)

. Bozyigit, F., Aktas, O., Kiling, D.: Linking software requirements

and conceptual models: a systematic literature review. Int. J. Eng.
Sci. Technol. 24(1), 71-82 (2021)

. Satapathy, S.C., Jena, A.K., Singh, J., Bilgaiyan, S.: Auto-

mated Software Engineering: A Deep Learning-Based Approach.
Springer (2020)

. Jadhav, A., Kaur, M., Akter, F.: Evolution of software development

effort and cost estimation techniques: five decades study using auto-
mated text mining approach. Math. Probl. Eng. 2022, 1-17 (2022)

. Mahmood, Y., Kama, N., Azmi, A., Khan, A.S., Ali, M.: Software

effort estimation accuracy prediction of machine learning tech-
niques: a systematic performance evaluation. Software Practice and
Experience 52(1), 39-65 (2022)

. Giray, G., Bennin, K.E., Koksal, O., Babur, O., Tekinerdogan, B.:

On the use of deep learning in software defect prediction. J. Syst.
Softw. 195, 111-537 (2023)

Khalilipour, A., Bozyigit, F., Utku, C., Challenger, M.: Machine
learning based model categorization using textual and structural
features. In: European Conference on Advances in Databases and
Information Systems. Springer, pp. 425-436 (2022)

Khalilipour, A., Bozyigit, F., Utku, C., Challenger, M.: Categoriza-
tion of the models based on structural information extraction and
machine learning. In; International Conference on Intelligent and
Fuzzy Systems. Springer, pp. 173-181 (2022)

Rahimi, S., Lano, K.C., Lin, C.: Requirement formalisation using
natural language processing and machine learning: A systematic
review. In: International conference on Model-Based Software
and Systems Engineering, SCITEPRESS Digital Library, pp. 1-
8(2022)

Zhao, L., et al.: Natural language processing for requirements engi-
neering: a systematic mapping study. ACM Comput. Surv. 54(3),
1-41 (2021)

Falessi, D., Cantone, G.: The effort savings from using NLP to
classify equivalent requirements. IEEE Softw. 36(1), 48-55 (2018)
Li, G., Zheng, C., Li, M., Wang, H.: Automatic requirements
classification based on graph attention network. IEEE Access 10,
30080-30090 (2022)

Ahmed, S., Ahmed, A., Eisty, N.U.: Automatic transformation of
natural to unified modeling language: a systematic review. In: 2022
IEEE/ACIS 20th International Conference on Software Engineer-
ing Research, Management and Applications (SERA), IEEE, pp.
112-119 (2022)

Habibullah, K.M., Gay, G., Horkoff, J.: Non-functional require-
ments for machine learning: Understanding current use and chal-
lenges among practitioners. Requirem. Eng. pp. 1-34 (2023)

Liu, Z., Lin, Y., Sun, M., Liu, Z., Lin, Y.: Representation learning
and NLP. Representation Learning for Natural Language Process-
ing, pp. 1-11 (2020)

Mich, L.: Nl-oops: From natural language to object oriented
requirements using the natural language processing system lolita.
Nat. Lang. Eng. 2(2), 161-187 (1996)

Ibrahim, M., Ahmad, R.: Class diagram extraction from tex-
tual requirements using natural language processing (nlp) tech-
niques. In: Second International Conference on Computer Research
and Development, pp. 200-204 (2010). https://doi.org/10.1109/
ICCRD.2010.71

Zhou, X., Zhou, N., Zhou, N.: Auto-generation of class dia-
gram from free-text functional specifications and domain ontology
(2004)

Bajwa, L.S.: Object oriented software modeling using NLP based
knowledge extraction (2009)

@ Springer

https://doi.org/10.1109/ICCRD.2010.71
https://doi.org/10.1109/ICCRD.2010.71

F.Bozyigit et al.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Tripathy, A., Agrawal, A., Rath, S.K.: Requirement analysis using
natural language processing. In: Fifth International Conference on
Advances in Computer Engineering, vol. 26, p. 27 (2014)

Dori, D., Korda, N., Soffer, A., Cohen, S.: Smart: system model
acquisition from requirements text. In: Proceedings of Business
Process Management: Second International Conference, BPM:
Potsdam, Germany, pp. 179-194. Springer (2004)

Abdelnabi, E.A., Maatuk, A.M., Abdelaziz, T.M., Elakeili, S.M.:
Generating UML class diagram using nlp techniques and heuristic
rules. In: 2020 20th International Conference on Sciences and Tech-
niques of Automatic Control and Computer Engineering (STA),
IEEE, pp. 277-282 (2020)

Deeptimahanti, D.K., Babar, M.A.: An automated tool for gen-
erating UML models from natural language requirements. In:
2009 IEEE/ACM International Conference on Automated Soft-
ware Engineering, IEEE, pp. 680-682 (2009)

Robeer, M., Lucassen, G., Van DerWerf, J.M.E., Dalpiaz, F.,
Brinkkemper, S.: Automated extraction of conceptual models from
user stories via NLP. In: IEEE 24th International Requirements
Engineering Conference (RE), pp. 196-205. IEEE (2016)
Lucassen, G., Robeer, M., Dalpiaz, F., Van Der Werf, J.M.E.,
Brinkkemper, S.: Extracting conceptual models from user stories
with visual narrator. Requir. Eng. 22, 339-358 (2017)
Bragilovski, M., Dalpiaz, F., Sturm, A.: From user stories to domain
models: recommending relationships between entities (2023)
Ferrari, A., Spagnolo, G.O., Gnesi, S.: Pure: a dataset of public
requirements documents. In: IEEE 25th International Require-
ments Engineering Conference (RE), pp. 502-505. IEEE (2017)
Ramackers, G.J., Griffioen, P.P.,, Schouten, M.B., Chaudron,
M.R.V.: From prose to prototype: synthesising executable UML
models from natural language. In: 2021 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C), pp. 380-389. IEEE (2021)
Sedrakyan, G., Abdi, A., Van Den Berg, S.M., Veldkamp, B.P., Van
Hillegersberg, J.: Text-to-model (tetomo) transformation frame-
work to support requirements analysis and modeling. In: MOD-
ELSWARD, pp. 129-136 (2022)

Hamza, Z.A., Hammad, M.: Generating UML use case models
from software requirements using natural language processing. In:
2019 8th International Conference on Modeling Simulation and
Applied Optimization ICMSAO), pp. 1-6, IEEE (2019)

Arora, c., Sabetzadeh, M., Briand, L., Zimmer, F.: Extracting
domain models from natural-language requirements: approach and
industrial evaluation. In: Proceedings of the ACM/IEEE 19th Inter-
national Conference on Model Driven Engineering Languages and
Systems, pp. 250-260 (2016)

Céamara, J., Troya, J., Burguefio, L., Vallecillo, A.: On the assess-
ment of generative Al in modeling tasks: an experience report with
chatgpt and uml. Softw. Syst. Model, pp. 1-13 (2023)

Lano, K., Yassipour-Tehrani, S., Umar, M.: Automated require-
ments formalisation for agile MDE. In 2021 ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), pp. 173-180. IEEE (2021)
Bozyigit, F., Aktas, O., Kiling, D.: Automatic concept identification
of software requirements in Turkish. Turkish Journal of Electrical
Engineering and Computer Sciences (2019)

Wu, T., etal.: A brief overview of chatgpt: the history, status quo and
potential future development. IEEE/CAA Journal of Automatica
Sinica 10(5), 1122-1136 (2023)

Sim, S.E., Easterbrook, S., Holt, R.C.: Using benchmarking to
advance research: a challenge to software engineering. In: Proceed-
ings of 25th International Conference on Software Engineering, pp.
74-83. IEEE (2003)

Kistowski, J.v., Arnold, J.A., Huppler, K., Lange, K.-D., Henning,
J.L., Cao, P.: How to build a benchmark. In: Proceedings of the 6th

@ Springer

41.

42.

ACM/SPEC International Conference on Performance Engineer-
ing, pp. 333-336 (2015)

Bozyigit, F., Bardakci, T., Khalilipour, A., Challenger, M.,
Ramackers, G., Babur, O., Chaudron, M.R.V.: Dataset for: Text
requirements to models. (2023). https://doi.org/10.21227/r9j6-
nd62

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil,
M.: Lessons from applying the systematic literature review process
within the software engineering domain. J. Syst. Softw. 80(4), 571—
583 (2007). https://doi.org/10.1016/].jss.2006.07.009

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

T—

Fatma Bozyigit received her B.Sc.
degree in Computer Engineering
from Eskisehir Osmangazi Uni-
versity in 2013 and went on to
earn her M.Sc. and Ph.D. in Com-
puter Engineering from Dokuz
Eyliil University in 2015 and 2019,
respectively. Her scholarly pur-
suits are centered around natu-
ral language processing, text min-
ing, and machine learning, includ-
ing deep learning methodologies.
Over her academic career, she has
authored more than 30 peer-
reviewed publications in these

domains. Dr. Bozyigit’s commitment to advancing the field of Com-
puter Engineering extends beyond academia into industry, where she
has applied her expertise as a research consultant for several high-
profile software companies in Turkey. In 2023, she assumed the role
of Valorization Manager in the Department of Computer Science at
the University of Antwerp. Her current mission is to enhance the
department’s valorization efforts, actively promoting and increasing
the engagement of researchers in valorization activities.

Tolgahan Bardakci is a Ph.D.
holder and a member of the spe-
cial academic staff at the Uni-
versity of Antwerp. His area of
expertise is software engineering
and testing. Before joining the
university, he worked at Getir Tech-
nology as a Senior Software Test
Engineer. With over 40,000
employees, Getir Technology is
an international firm where he
developed automation tests for back-
end and mobile applications, show-
casing his technical expertise in
the field. As a Senior Test Engi-

neer at Getir Technology, he was involved in various facets of testing
beyond functional testing, including writing scripts for performance
and security testing. In addition to his technical expertise, Tolgahan

https://doi.org/10.21227/r9j6-nd62
https://doi.org/10.21227/r9j6-nd62
https://doi.org/10.1016/j.jss.2006.07.009

Generating domain models from natural language text using NLP...

has worked at culturally diverse and international companies from the
beginning of his career. He has gained valuable experience in work-
ing with teams from various cultural backgrounds. Tolgahan has lived
and worked in Turkey, Spain, and Belgium and has observed that
continuous learning in a diverse and inclusive environment enhances
productivity and engagement and promotes personal and professional
well-being.

Alireza Khalilipour is a Ph.D.
researcher in the Computer Sci-
ence Department of the Univer-
sity of Antwerp. He has a B.Sc.
and an M.Sc. degree in Software
Engineering. His research inter-
ests include Code Refactoring, Soft
Modeling, and Automated soft-
ware Engineering. As an academic
study, he could provide a Super
Compiler to automatically trans-
form sequential code to be dis-
tributed based on CORBA MICO-
CCM middleware. He currently
works on Intelligent Model Man-
agement in the MICSS-Laboratory and Flanders Make projects.

Moharram Challenger received his
Ph.D. in IT from the International
Computer Institute at Ege Univer-
sity in February 2016. From 2010
to 2013, he was a researcher and
team leader of a bilateral project
between Slovenia and Turkey
(TUBITAK). From 2012 to 2016,
he was the R&D director of UNIT
IT Ltd., leading one national project
funded by TUBITAK and two inter-
national software intensive projects
in Europe called ITEA Model
Writer and ITEA Assume. In 2017
and 2018, he has been a mem-
ber of the faculty as an assistant professor at Ege University. From
2019 to 2020, he was a post-doc researcher at the University of
Antwerp, working on Flanders Make projects. He is currently a tenure-
track assistant professor in the Department of Computer Science at
the University of Antwerp. His research interests include domain-
specific modeling languages, multi-agent systems, cyber-physical sys-
tems, internet of things, and digital twins. Prof. Challenger is also a
member of the IEEE and ACM.

Guus Ramackers is Assistant Pro-
fessor at the Leiden Institute of
Advanced Computer Science
(LIACS) at Leiden University. He
is the research lead of the AI4AMDE
project which investigates the appli-
cation of Al in model driven sys-
tems development. Previously, he
has worked for 20 years at Ora-
cle as Senior Principal Techni-
cal Product Manager on complex
projects in R&D of software devel-
opment tools, including UML,
Components and Web Services.
He has represented Oracle at stan-

dard bodies, most notable as Chair of the UML group and Lead Author
of Activity modeling, and later Component modeling in the UML
standard. He received a “Most Valuable Chair” award from OMG for

his work on UML 2.0.

Onder Babur is an assistant-
professor (tenure-track) in the
Information Technology Group at
Wageningen ~ University and
Research, The Netherlands. He
holds a Ph.D. from Eindhoven
University of Technology, M.Sc.
from RWTH Aachen, Germany
and B.Sc. from METU, Turkey.
He was employed as a post-doctoral
researcher in the Software Engi-
neering and Technology group at
Eindhoven University of Technol-
ogy from 2019 to 2021, with which
he is still affiliated as a guest
researcher. He has further experience as a Software Engineer in Ger-
many and as a researcher in Spain. His main research interests lie in
the fields of model-driven engineering, systems modeling, software
analytics, Al for software engineering and empirical software engi-
neering. Over the years, he has participated in a number of research
projects on automotive software engineering, digitalization and indus-
trial automation, precision agriculture, and multiscale modeling. He
has initiated and co-chaired the International Workshop on Analytics
and Mining of Model Repositories, and the International Conference
on Systems Modeling and Management. Around the main research
lines, he has been collaborating with many international research
groups and high-tech companies. With a career spanning over two
decades.

Michel R. V. Chaudron With a
career spanning over two decades.
Michel R. V. Chaudron has made
contributions to the field of Soft-
ware Engineering, with a special
focus on Software Architecture,
(Component-based) Software
Design and Modeling. His research
is aimed at advancing the under-
standing of principles and prac-
tices of designing, modeling and
using software architecture. His
recent research looks at Al for
Software Engineering and the archi-

: tecture of digital twin systems.
His academic career started during his M.Sc. where he spent one year
as visitor in the Programming Research Laboratory of Oxford Uni-
versity. Subsequently, Dr. Chaudron earned his Ph.D. in Computer
Science from the University of Leiden, The Netherlands by develop-
ing a methodology of formal program derivation using separation of
coordination and computation for highly parallel computation. Since
then, he has held various academic positions in Leiden, Gothenburg
and Eindhoven. Currently he is a Professor of Software Engineering
at the Department of Mathematics and Computer Science at Eind-
hoven University of Technology and has an adjoint professorships at
ITB Bandung in Indonesia. Dr. Chaudron is a regular PC member and
reviewer of respected software engineering conferences and journals.
He is on the Steering Committee of Euromicro SEAA. In addition to
his academic pursuits, Dr. Chaudron actively engages with the indus-
try, collaborating with leading technology companies and participating
in advisory roles for software development projects.

@ Springer

	Generating domain models from natural language text using NLP: a benchmark dataset and experimental comparison of tools
	Abstract
	1 Introduction
	2 Related work
	2.1 Datasets
	2.2 Text-to-model approaches
	2.2.1 txt2Model tool
	2.2.2 ChatGPT tool

	3 Creating the benchmark dataset
	3.1 Methodology
	3.2 Process of constructing the dataset
	3.2.1 Data collection
	3.2.2 Preprocessing
	3.2.3 Categorization of the functional requirements documents

	3.3 Data description and availability
	3.4 Benchmark dataset evaluation

	4 Evaluation of text-to-model tools
	4.1 Selection of text-to-model tools
	4.2 Evaluation method
	4.3 Evaluation results

	5 Conclusion and future work
	5.1 Conclusions
	5.2 Future work

	Acknowledgements
	References

