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ARTICLE INFO ABSTRACT

Handling editor: Biagio Giannetti Breeding is a promising greenhouse gas (GHG) mitigation option for the dairy sector that offers potential per-
manent and cumulative effects. However, there is limited understanding of how genetic traits affect GHG
emissions from the dairy production chain and how breeding indices could be used to find a balance between
GHG emissions and farm profit. Using a typical Chinese dairy farm as a case study, we developed a novel method
to address these gaps. The farm comprised of 1523 Holstein-Friesian dairy cows and 1429 young stock. The
average milk yield at the farm was 11,533 kg per cow per year. Life cycle assessment was combined with an
existing bio-economic model to determine the emission intensity values (IV) of six genetic traits: milk yield,
protein yield, fat yield, calving interval, productive life, and incidence of clinical mastitis. The IVs and economic
values of the traits were used to form different breeding indices, of which the economic and environmental
consequences were assessed. Results showed that for the next generation, breeding animals with optimal indices
could reduce carbon dioxide equivalents per ton of fat-and-protein-corrected milk by six to 10 kg, while
increasing profitability by 822 to 1355 Chinese Yuan per cow unit. Different indices can balance farm profit and
GHG emissions to different degrees. However, the indices with higher profit showed less potential in reducing
GHG emissions. This study provides insights into how breeding strategies could contribute to GHG mitigation in
the dairy sector.
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1. Introduction

Dairy farming is responsible for approximately 20% of the green-
house gas (GHG) emissions caused by all global livestock (Gerber et al.,
2013). These GHG emissions exacerbate the occurrence of extreme
weather events, such as severe heat and drought (IPCC et al., 2022;
Donnelly et al., 2024). Dairy production contributes to GHG emissions
along the chain through several processes, which include feed produc-
tion, enteric fermentation, manure management, and energy use (Van
Middelaar et al.,, 2014). Major GHGs, i.e., carbon dioxide (COy),
methane (CH4) and nitrous oxide (N2O), are released during these pro-
cesses, and GHG emission intensity (EI), which is defined as emissions

* Corresponding author.
** Corresponding author.

per unit of milk produced, is usually used to express the climate impact
of dairy production.

To reduce GHG emissions from dairy production, several potential
mitigation options have been proposed, such as dietary adjustments and
manure management strategies (Hou et al., 2015; York et al., 2018;
Vogel and Beber, 2022). However, the effects of most of these strategies
are not cumulative in successive generations of dairy cows and require
continuous efforts. Breeding, instead, is considered permanent and cu-
mulative. Although it may take several generations to evaluate the
effectiveness of selective breeding, incorporating GHG emissions into
breeding programmes is seen as a promising tool to reduce the climate
impacts from dairy cattle in the long run (Gonzalez-Recio et al., 2020; De
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Haas et al., 2021).

Breeding programmes for cattle require a clearly defined breeding
goal that determines the desired direction of change over generations
and a breeding index that weights multiple genetic traits in its overall
score (Hazel, 1943). Genetic traits refer to the heritable characteristics
that are genetically transferred from one generation to another, such as
milk yield and longevity. In practice, maximizing farm profit is often
defined as the key breeding goal. In accordance with this, the relative
importance of each trait (the weighting factor) in the breeding index is
determined by its economic value (EV), i.e., the marginal profit change
caused by the change of trait. The farm profit of the breeding index can
be predicted for future generations. Pursuing high farm profit is a pri-
ority in the breeding industry (Cole et al., 2021). However, the potential
importance of GHG mitigation through selective breeding is now
acknowledged due to the pressing environmental problems and there
are more and more attempts to explore this potential (Van Middelaar
et al., 2014; Richardson et al., 2021).

Two approaches so far have been used for incorporating the reduc-
tion of GHG emissions into breeding programs. The first extends the
breeding index by introducing enteric CH4 emissions as a new trait and
adding an economic weight to it. In this way, selective breeding could
reduce CH4 production in future generations (Gonzalez-Recio et al.,
2020; De Haas et al., 2021). However, this approach is hampered by
difficulties in recording animal-specific emissions, in determining ge-
netic correlations between enteric CH4 emissions and other traits, and in
estimating the EV of CH4 emissions (De Haas et al., 2021; Hossein-Za-
deh, 2022). In the second approach, the impacts of conventional genetic
traits on GHG emissions are estimated, and environmentally favourable
trait combinations (breeding index) have been developed without up-
date of new traits (like enteric CH4) (Van Middelaar et al., 2014;
Richardson et al., 2021). Instead of EV, this approach determines the
intensity value (IV) of GHG emissions for conventional traits, which is
defined as the marginal change of EI with change of the trait.

However, most previous studies that have been conducted using the
above approaches only considered the enteric CH4 emissions from dairy
cattle (e.g., Amer et al., 2018; De Haas et al., 2021; Richardson et al.,
2021). From the perspective of the entire dairy value chain, there are
GHG emissions from other processes, such as feed production and
manure management. Not accounting for these emissions may lead to
bias on the assessment of mitigation options (Van Middelaar et al.,
2014). To date, there has only been one study conducted (Van Middelaar
et al., 2014) that has investigated the IVs of genetic traits of dairy cattle
by incorporating changes in GHG emissions along the entire production
chain. Moreover, to date, no studies have incorporated both chain-level
IVs and EVs into breeding indices, to the best of our knowledge. For this,
the combination of bio-economic model and LCA analysis could provide
a valuable tool, which could enable exploration of the maximum GHG
mitigation potential of breeding indices, as well as to balance their
economic and environmental consequences.

As one of the major countries that contributes to global GHG emis-
sions, China is committed to achieving peak carbon emissions before
2030 and carbon neutrality before 2060 (SCPRC, 2021). Despite serious
concern about the environmental impact of the growing dairy sector in
China, little attention has been given to the role of breeding in GHG
mitigation so far (Wang et al., 2016; Bai et al., 2018; Huang et al., 2021).
The objective of this study, therefore, is to introduce a novel method to
assess the economic- and environmental consequences of different
breeding indices, using Chinese dairy farming as a case study.

The IVs of important genetic traits of dairy cows were determined by
combining an existing bio-economic model and a life cycle assessment
(LCA) for a typical Chinese dairy farm. Following this, different breeding
indices were developed based upon different breeding goals. The farm
profit and EI of those indices were compared, and the indices that can
balance farm profit and EI were identified. This study provides insight
into how breeding indices could be used as a tool to achieve environ-
mental and economic objectives. The whole framework and results
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could be useful for breeding organizations worldwide that want to
contribute to a more environmentally friendly dairy sector.

2. Materials and methods
2.1. A typical Chinese dairy farm

This study was modelled on data from a typical commercial Holstein
dairy farm in Beijing, China (39.6° N, 116.2° E, within a warm
temperate zone, with a half moist continental monsoon climate; Fig. S1).
The data were collected in 2020. The farm was managed by Sunlon
Livestock Development Co. Ltd. On this landless dairy farm with zero
grazing, cows were housed in ventilated barns with a free stall design.
The milk yield was 11,533 kg per cow per year, which was higher than
the national average (7800 kg per cow per year) (Dou et al., 2020).
Other important characteristics of the study farm are summarized in
Table 1.

Any diseased cows were transferred to an isolated group, and their
milk was retained if antibiotic treatments were required (e.g., in the
incidence of clinical mastitis). Oestrous synchronization strategies and
artificial insemination were applied at this farm. Production data were
collected via equipped Affifarm software (https://www.afimilk.com
/afifarm/), which automatically records milking, reproductive infor-
mation (e.g., birth, calving, and insemination), and health events (e.g.,
type of disease, and the number of days of milk retained) of each cow.
Economic data were collected through consultation with the accoun-
tants of the farm and details can be found in Shi et al. (2024).

As for most intensive farms in China, the farm had no cropland area,
and all feedstuffs had to be purchased. A total mixed ration was sup-
plied, three times a day, and the animals were provided with ad libitum
access to this ration and water. Data about feed composition consumed
by animals in different age categories was collected from the farm
(Table S1). The major feed ingredients fed to dairy cows were maize
silage, maize, soybean meal, alfalfa hay, and by-products from crops and
from food processing. The amount of feed consumed by different age
categories was calculated based on the energy requirement of the ani-
mals and ration composition (NRC, 2001). Manure was collected daily
from the solid floor and separated into solid- and liquid parts. After-
wards, solid manure was stored in the open air while liquid manure was
stored in an open lagoon until being sold to either nearby crop farms or
manure processors.

2.2. Calculating greenhouse gas emissions

An LCA was used to calculate the emissions of CO,, CH4 and N0,
along the dairy production chain ‘from cradle to farm-gate’. Sources of
GHG emissions included: fertilizer manufacturing, field operations,
processing and transportation of crops and concentrates, enteric
fermentation from animals, manure management, and the production
and combustion of energy.

The emissions from fertilizer manufacturing were calculated based
on the fertilizer application rate for each feed crop and the emission
factors per unit of fertilizer. It was assumed that no animal manure was
applied due to the decoupling of livestock and crop production and the
low recycling rate of animal manure in China (Jin et al., 2020). The

Table 1

Characteristics of the study farm in Beijing, China.
Item Unit Value
Number of cows head 1523
Number of youngstock head 1429
Milk yield kg/cow/year 11,533
Protein content of milk % 3.3
Fat content of milk % 4.5
Age at first calving month 26
Replacement rate % per year 33.5
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amount of artificial fertilizer used for each feed crop, i.e., nitrogen (N),
phosphorus pentoxide, and potassium oxide, was derived from
peer-reviewed articles (Table S2). The GHG emission factors for the
production of one unit of artificial fertilizer were derived from Zhang
et al. (2013) and the Ecoinvent 3.8 database. Emission factors for (direct
and indirect) N2O emissions from the application of artificial N fertilizer
are provided in Table S2. The parameters of CO, emissions for the use of
fossil fuels during field operations were derived from the Global Live-
stock Environmental Assessment Model (GLEAM) (FAO, 2022). Eco-
nomic allocation was used to assign the GHG emissions related to feed
products that have been derived from multiple output processes. The
economic allocation factors for the feed products are shown in Table S3.
Emissions from feed processing originated mainly from energy
consumed in activities such as milling, crushing and heating of the feed
crops and from blending concentrate feed. The emission factors of these
processes were taken from the GLEAM model (FAO, 2022). The emis-
sions from feed transportation were estimated based on the transport
distance, transport means (e.g., by ship or truck), and emission factors
for transportation. More details can be found in Supplementary Note 1.

For enteric CH4 fermentation from dairy cows, feed-specific emission
factors were adopted from Vellinga et al. (2013) and Sebek et al. (2016)
(Table S3). For enteric CH4 emissions from young stock, the IPCC Tier 2
approach was used, in which emissions were calculated based on gross
energy intake and a CH4 conversion factor (IPCC et al., 2019). The
emissions of CH4 and NoO from manure management (i.e., housing and
storage) in the farm were calculated following the IPCC Tier 2 method.
The data on the total amount of annual on-farm energy use (i.e., diesel
and electricity) were provided by the farm. The GHG emission factors of
production and transport of energy were adopted from IPCC et al.
(2019), and that of the combustion of fuel from Jiang et al. (2013)
(Table S4). More details can be found in Supplementary Note 1.

The emissions of different GHGs were converted to CO3 equivalents
(CO2-eq) based on their global warming potential over 100 years, i.e., 1
for CO4, 27.2 for biological CHy, 29.8 for fossil CHy, and 273 for No,O
(IPCC et al., 2022). Economic allocation was used to separate GHG
emissions between milk and meat. This was found to be 87% for milk at
the baseline (current) situation for this type of farm. For this farm, the
price of milk was set to be 3.8 CNY per kg of milk and the price of sold
animals was from 4000 to 14,500 CNY per head, depending upon the life
stage and weight of the animals. Emissions were expressed per ton of fat-
and protein-corrected milk (FPCM) (4.46 % fat and 3.33 % protein),
which can be referred to as the emission intensity (EI) or the carbon
footprint of milk.

2.3. Derivation of emission intensity values for genetic traits

A total of six genetic traits were selected for analysis in this study;
annual milk yield (MY, kg per cow per year), annual protein yield (PY,
kg per cow per year), annual fat yield (FY, kg per cow per year), calving
interval (CI, d), productive life (PL, d), and incidence of clinical mastitis
(MAS, % of cows with at least one mastitis case per lactation). The first
three traits describe the production level of cows, while the last three are
indicators of reproduction, longevity and cow health, respectively.
These six traits are economically important for dairy farms and are,
therefore, usually included in breeding programmes in different coun-
tries (Miglior et al., 2017).

The EVs of those traits, defined as the marginal farm profit change
per cow unit per year from a 1-unit change in the trait, were directly
derived from the bio-economic model that was developed with data
from the same dairy farm. A cow unit comprises of one dairy cow and the
young stock kept to eventually replace this dairy cow. Two modules
were incorporated in the bio-economic model, in which the biophysical
module determines the effect of the traits on farm performance, and the
economic module sums up revenues and costs. More details about the
model and the set-up of the calculations of EVs could be found in Shi
et al. (2024).
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The IVs, i.e., marginal GHG emission change per ton of FPCM from a
1-unit change in the trait, were calculated in this study (Equation [1]).
For each trait, the biophysical module of the bio-economic model was
initially used to determine how the change of trait would affect farm
performance in e.g., herd structure and production level. Subsequently,
the results were combined with the LCA model to calculate the marginal
effect of the change of the trait on EI.
1V, = AEL [1]

Xi
where IV; is the IV for the trait i, AEL is the marginal GHG emission
change per ton of FPCM from a unit change of the trait i, and x; is 1-unit
change of the trait i.

For production traits (MY, PY and FY), the marginal effect in GHG
emissions was mainly reflected by the change of energy requirements of
cows, which subsequently results in a change in feed intake and relevant
emissions. For CI, a one-unit increase will affect GHG emissions along
the chain by decreasing annual calving rate, changing herd composition,
and decreasing MY. For PL, a one-unit increase will also affect the herd
structure and increase MY. For both CI and PL, the marginal change of
herd structure will affect the feed intake of the animals in different ages,
and result in further changes in GHG emissions. For MAS, an 1% increase
will result in reductions of MY, including discarded milk due to usage of
antibiotics, and potential milk loss due to a lower milk yield after
treatment. It was assumed that the feed intake of cows is not affected by
disease due to lack of data on this.

2.4. Breeding goals and results of breeding indices

The EVs or IVs of the traits calculated above were used to develop
different indices under different goals. A breeding index is a linear
combination of EV or IV and genetic gain in each trait, which can be
obtained through Equation [2], where v is the vector of EV or IV, and
Ry is the genetic gain of each trait (6 x 1 vector). The Ry, was
calculated using Equation [3], where P! is the inverse matrix of
phenotypic variance-covariance matrix for the target traits, G is the
genetic variance-covariance matrix for the target traits. The information
of P! and G can be found in Fig. S2.

Breeding index =v Ryqi (2]
PGy G

Riraic = Q (3]
(P'Gv)Gy

Two breeding goals were set in this study, namely, maximizing profit
(based on EV) and minimizing EI (based on IV), following Van Mid-
delaar et al. (2014). The index maximizing profit was referred to as the
most profitable index (MPI) and the index minimizing GHG emission
was referred to as least emissions index (LEI).

The farm profit and EI of MPI and LEI were calculated using Equation
[4]. Moreover, the relative weight (w) of the trait was determined using
Equation [5], where o, is the vector of genetic standard deviation of six
target traits, 64_qi is the genetic standard deviation of individual trait
(Table S5), Viqi is the EV (or IV) of the target trait. The theory assumes
equal predicting accuracies for the studied traits, which is commonly
applied in animal breeding (Kumar et al., 2022; Richardson et al.,
2022a).

, (P~'Gv) Gy
Profit or E] = ————ctee—— [4]
\/ (PT'Gy) P(P'Gy)
we O‘u—MY/ X VM}'7 ...7(7a—MAS/ X VMAS:|/ [5]
A (A
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2.5. Selection of breeding indices

Solely aiming for maximum profit or minimum EI can result in un-
desired responses in traits. For example, an increase in clinical mastitis
cases. In addition, it may be of significance to find a balance between
economic and environmental objectives rather than maximizing one or
the other. To avoid undesired responses in traits and provide a range of
options that represent a compromise between environmental and eco-
nomic objectives, the following steps were conducted: (1) a large set of
potential indices was created by manually changing the EVs that
determine the relative importance of the traits (Brascamp et al., 1985).
For each trait, ten values were uniformly selected from a range of —5 x
EV to 5 x EV (including the calculated EV) to construct more potential
indices. This resulted in a total of one million indices based on the six
target traits. The same process was also applied to IVs. Meanwhile, the
relative weight and genetic gain of each trait, as well as the profit and EI
of all the indices, were calculated using Equations [2-5]; (2) Con-
strained indices were selected from the potential indices by constraining
the genetic gain of each trait in only the desired direction, i.e., the Ry
of MY, PY, FY and PL had to be positive, while that of CI and MAS had to
be negative; (3) Optional indices on the frontier line between farm profit
and EI were identified from the constrained indices. For a given farm
profit, this line indicates the optional index with the lowest EI. Likewise,
for a given EIJ, this line indicates the optional index with the highest farm
profit; (4) A score (Score;q..) was developed to rank all the optional
indices on the frontier line using Equations [6-8]. Scorez; was defined as
the ratio between the EI of the assessed index and the lowest EI on the
frontier line. Likewise, Score,s was defined as the ratio between the
profit of the assessed index and the highest profit on the frontier line.
Weightz; and Weight,,g, indicate the relative importance of EI and profit.
For demonstration, Weighty; and Weight,s were settled as 0/100,
50/50, 100/0, respectively. The corresponding indices with the highest
score were referred to as optimal indices (OI), i.e., Olyrfir, Olpgiance and
Olemission, respectively. Ol,o5 indicates the optimization for (maximum)
profit. Ol,mssion indicates the optimization for (minimum) EL Olyggnce
indicates the optimization for both profit and EI (equally weighted).
Note that the Olygqn. Were selected based on EV and IV, respectively.

Score;ue; = ScoregxWeightg + Score,,omx Weight,,p [6]

EI of index
Lowest EI on the frontier line

[7]

Scoreg; =

Profit of index
Highest profit on the frontier line

(8]

Score,on =

2.6. Software and data accessibility

The procedures of calculating genetic gains and optimizing of
breeding goals were realized in Python 3.7, with packages NumPy and
Pandas (Van Rossum and Drake, 2009; McKinney, 2010; Harris et al.,
2020). Figures were created by matplotlib (Caswell et al., 2021) and
Plotly (Plotly Technologies Inc.https://plotly.com). The model and
calculation steps of IVs were stored in the Excel sheets of Supplementary
materials, the calculations of the IV of MY have been provided as an
example.

3. Results and discussion
3.1. Greenhouse gas emissions of the typical farm

Total GHG emissions per ton of FPCM under current circumstances
were 1317 and 1141 kg CO»-eq, without and with economic allocation
between milk and meat respectively. This result is comparable to some
previous work, in which a value was found of approximately 1300 kg
CO2-eq per ton FPCM in North China (Zhang et al., 2017; Wang et al.,
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2018). The values were lower than that of a nationwide study in China
with a result of 1950 kg CO2-eq per ton FPCM (Dong and Wei, 2020),
which could be mainly explained by the relatively high milk yield in the
farm studied compared to the national average (Dou et al., 2020).
Emissions of CH4, CO3 and N,O were responsible for 50%, 37% and 13%
of the total emissions, respectively. Feed production and enteric
fermentation contributed almost equally to the total GHG emissions,
with a respective share of 36% and 33%, followed by manure manage-
ment (20%) and energy use (11%) (Fig. 1).

3.2. Emission intensity values of genetic traits

The results of this study showed that negative IVs were obtained for
all target traits except for MAS (Table 2), which means that increasing
target traits results in less GHG emissions per unit of milk in the
following generation. Increasing MY by one kg per cow per year, for
instance, decreased GHG emissions by 0.045 kg CO»-eq per ton of FPCM
at entire production chain level. This is comparable with results found
for Dutch dairy farming, i.e., 0.039-0.071 kg CO5-eq per ton of FPCM at
entire production chain level (Van Middelaar et al., 2014).

Increasing PY, FY, and PL by one unit led to a decrease of 0.322,
0.075, and 0.362 kg CO2-eq per ton of FPCM at entire production chain
level, respectively. These values were found to be larger than the ones
found by Amer et al. (2018) for Ireland (i.e., 0.047 for PY and 0.008 for
FY). The smaller values found by Amer et al. (2018) can be explained by
the fact that only enteric emissions from animals were considered,
whereas all major GHG sources along the entire value chain were
considered in our study. This indicates that it matters at what level of the
production system the mitigation effects of genetic traits are assessed. In
the study of Amer et al. (2018), the IV of PY was approximately five
times higher than that of FY, which is in line with the results of this
study. A Canadian study reported IVs of 0.005 for PY, 0.004 for FY, and
0.012 for PL, respectively (Richardson et al., 2021), with only enteric
emissions from animals considered and use of a different functional unit
(kg COg-eq per kg of protein equivalent). These differences partly
explain the differences between reported IVs in Richardson et al. (2021)
and this study. Note that the protein-equivalent based unit has been
recommended by studies to better support the local milk payment sys-
tems, which encourages more milk proteins but penalizes higher milk
volume (e.g., Richardson et al., 2022b). Nevertheless, our study used
FPCM as the unit because it has been widely used in the carbon footprint
analysis of milk production, and can be compared across different con-
texts (IDF, 2015). In addition, it simultaneously allows increases in MY,
FY and PY (Richardson et al., 2022b), which is in line with the milk
payment systems of developing countries, such as China (Shi et al.,
2024).

Despite differences in the values of IVs, all the above studies showed
that increase of these traits (i.e., MY, FY, PY, and PL) were beneficial for
GHG emissions. The result of increasing CI on GHG emissions, however,
was found to be different from previous studies. Our results show that a
1-d increase in CI lead to a decrease of 0.038 kg CO-eq per ton of FPCM,
whereas Amer et al. (2018) found that the increase of CI results in more
GHG emissions. The increase of CI reduced the annual calving rate of
cows and milk production. Based on our assumptions, the decrease of
the annual calving rate reduced the number of on-farm young stock,
which resulted in a decrease of emissions along the chain from young
stock. The reduction of EI from these emission processes outweighed the
increase of that from reduced milk yield and resulted in an overall
negative IV. It should be noted that all female calves were assumed to be
raised on the farm in this study, irrespective of the calving rate and
according to the general protocols of dairy farms in China. However, the
number of on-farm young stock may remain constant with a 1-d increase
in CI in farms where surplus female calves are sold. This would probably
result in a positive IV for a 1-d increase in CI, which was solely due to the
reduction of milk production (Bell et al., 2013).

The increase in incidence of MAS led to an increase of 0.276 kg CO»-
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CH,

Feed production Manure management
N,O [C] Feed production
CH, . .
EO2 CH, [] Enteric fermentation
Enteric fermentation N,O [E] Manure management

[[] On-farm energy use
On-farm energy use

CO;

Fig. 1. Relative contribution of different processes to greenhouse gas emissions from the typical dairy farm. Greenhouse gases are expressed in CO,-eq based
on 100-years GWP factors from IPCC AR6. Feed production refers to processes that included fertilizer manufacturing, field operations, processing, and transportation
of crops and concentrates. Enteric fermentation refers to methane production during the digestive process of cattle. Manure management refers to on-farm manure
excretion and storage. On-farm energy refers to electricity and diesel use on the farm. Note that emissions of CH4 and N»O from energy use are not displayed in the

figure due to their minor proportions.

Table 2
Emission intensity values (IV) and economic values (EV) for target traits.

Trait Unit IV (kg CO5-eq/ton FPCM/ EV® (CNY/trait
trait unit)” unit)®
Annual milk yield  kg/cow/ —0.045 2.39
yr.
Annual protein kg/cow/ —-0.322 89.60
yield yr.
Annual fat yield kg/cow/ —-0.075 32.85
yr.
Calving interval d —0.038° —93.03
Productive life d —0.362 4.14
Clinical mastitis % 0.276 -11.15

@ The results of EVs are derived from Shi et al. (2024).

b FPCM is fat- and protein-corrected milk.

¢ CNY is Chinese Yuan.

4 9 is the percentage of cows with at least one mastitis case per lactation.

¢ The negative result of calving interval was because that all female calves
were assumed to be raised at the farm, irrespective of the calving rate, and ac-
cording to the general protocols of dairy farms in China. This result may be
specific for the Chinese context.

eq per ton of FPCM (Table 2), which is much higher than the result from
Richardson et al. (2021) (0.001 kg, enteric emission only). Mostert et al.
(2019) considered several contributory factors to the emissions caused
by MAS at chain level that include culling (39%), retained milk (38%),
milk loss after mastitis (17%), and prolonged CI (6%), and reported a
result of 0.480 kg COy-eq per ton of FPCM for 1% increase in incidence
of MAS. In our study, only the effects of retained milk and milk loss were
considered due to the lack of data. Therefore, the IV of MAS (0.275) in
our study was around 55% of the reported value (0.480) in Mostert et al.
(2019). In general, our results were more comparable to studies that
have also adopted an LCA approach than those that have only focused on
one or a few emission processes.

The EVs of target traits are also listed in Table 2, from which the
direction of the change in both emissions and profitability after genetic
selection can be evaluated. As a result, the improvements in all selected
traits are contributing to profit and GHG mitigation simultaneously,

except for CI, i.e., reduction of CI (favourable direction) is contributing
to higher profit, but also is resulting in more GHG emissions. Never-
theless, this does not imply that CI needs to be excluded from breeding
selections. In practice, multiple traits are included in a breeding scheme
(Miglior et al., 2017; Shi et al., 2024), and the trade-offs among traits is
dealt with by considering correlations in the computations. Still, lining
up and comparing IVs and EVs can be helpful for breeders to identify the
individual traits that may lead to trade-offs between economic- and
environmental consequence, and, if necessary, to further adjust the
weighting of the trait in the breeding index.

3.3. The impact of changing genetic traits on greenhouse gas emissions
along the chain

Different traits affected chain processes and their emissions in
different ways (Fig. 2). For MY and PY (Fig. 2a and b), the EI was
reduced mainly due to the dilution effect of increasing FPCM. The
reduction of enteric CH4 and feed N2O emissions contributed most to the
reduction of EIL. A distinctive pattern was observed for FY (Fig. 2¢), i.e.,
the reduction of EI was mainly through a reduction in CO5 emissions
from energy use. This could be explained by the dilution of maintenance
being especially apparent in emissions from energy used for milking as
increased FY increased FPCM but not the absolute milk volumes. In case
of feed-related emissions (from feed cultivation, enteric fermentation,
manure), however, dilution of maintenance was partly compensated by
an increase in feed intake, resulting in increased Els for these processes.
Thus, the final IV of FY is relatively small compared to the IV of PY. The
increase of CI affected all the emission processes along the chain through
the reduced number of young stock and decreased milk yield (Fig. 2d).
With a 1-d increase in PL, relatively more multiparous cows were kept
on the farm, and the average milk production was increased due to an
increase in the average parity. Thus, the emissions from all processes
were diluted by higher FPCM (Fig. 2e). For MAS, the increase of EI was
mostly due to retained milk and milk loss after curation (Fig. 2f).

Compared to Van Middelaar et al. (2014) and Richardson et al.
(2021), the current approach, which combines a bio-economic model
and an LCA, simultaneously traces the emission changes of different
GHGs, emission processes along the chain, and their internal
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(a) Intensity value = -0.045 (b) Intensity value = -0.322 (c) Intensity value = -0.075

MY

FY
(d) Intensity value = -0.037 (f) Intensity value = 0.275
a MAS

Fig. 2. The impact of a 1-unit increase for each target trait on greenhouse gas emissions along the chain (intensity value) for the next generation.
Greenhouse gases are expressed in kg CO5-eq per ton of fat-and protein-corrected milk. Panel (a) to (f) displayed the results for annual milk yield (MY, kg per cow per
year), annual protein yield (PY, kg per cow per year), annual fat yield (FY, kg per cow per year), calving interval (CI, d), productive life (PL, d), and clinical mastitis
(MAS, %), respectively. Green indicates a reduction in emissions, while red indicates an increase in emissions. Note that the increase of CI results in lower emissions
due to the decrease of emissions from on-farm young stock.

interactions for target traits. Moreover, the current approach is flexible with different conditions and different breeding goals.
and enables update of environmental parameters or inclusion of more
traits. It may, therefore, be possible to implement this approach in farms

20
Z 0 ,
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% — Optional indices
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Fig. 3. The economic and environmental consequences of different breeding indices. The light shadowed area represents one million indices under different
combinations of EVs or IVs of the traits. The orange cloud indicates all favourable indices with constraints on genetic gain. Optional indices indicate ones that balance
economic and environmental consequences to different extents. Olrofit, Olemissions Olﬂance’ and OI{,‘;IWC refer to the optimal indices (OI) that were selected from

optimal indices, where the subscript refers to different emphasis on emission and profit (See Methods). EV refers to economic values of the traits, and IV refers to
emission intensity values (IV) of traits.
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3.4. Breeding indices under different objectives or constraints

The profit and EI of the million indices are shown in Fig. 3 (light
shadowed area). Broadly, within the area, this shows that for a given
amount of farm profit, there were various possibilities of GHG intensity
under different indices, and vice versa. This indicates a synergy between
farm profit and GHG mitigation.

The LEI was observed at the lowest boundary of the shadowed area,
which indicates the index with the greatest potential capacity to reduce
GHG emissions, i.e., by 22 kg CO3-eq per ton of FPCM. The MPI was
observed at the rightmost boundary of the shadowed area, which in-
dicates the index with the greatest potential capacity to improve farm
profitability, i.e., by 1645 CNY per cow unit. However, neither LEI nor
MPI were considered practically desirable as they increase CI and MAS
(Table S6), which could be explained by the positive correlations with
production traits (Fig. S2).

The orange cloud within the shadowed area in Fig. 3 represents all
constrained indices that prevent undesired responses in traits. The grey
frontier line represents the optional indices that balance profit and GHG
emissions to different extents, and provide multiple options for the
stakeholders or policymakers. The profitability of the optional indices
ranged from 822 to 1355 CNY per cow unit. The reduction of EI of the
optional indices ranged from six to 10 kg COz-eq per ton of FPCM. The
higher the EI of the indices, the lower the GHG reduction potential the
indices had. OFY,.... and OLY, . produced similar results in both profit
(about 1200 CNY per cow unit) and EI reduction (about —9 kg CO,-eq
per ton of FPCM). Note that changing the relative importance of profit
and EI (in this case 50/50) leads to a different result. It is also obvious
that the constraints on genetic gain for the traits limits the space for both
improving profit and reducing EI to some extent, which is the basic
property of constrained indices (Brascamp et al., 1985). Some discon-
tinuities can be observed in the orange cloud, which is mainly due to the
limited number of settings (10 values generated based on EV or IV for
each trait). If the number of settings were larger, the cloud would have
been fully solid, and the frontier line would have been smoother.
However, larger settings would require higher computation loads, but
would not alter the main insights of our analysis.

Another approach to integrate economic and environmental assess-
ments is to assume a carbon price on GHG emissions (Mosnier et al.,
2019; De Haas et al., 2021). Nevertheless, by summing up farm profit

Most profitable index Olp; o

’

Least emission index

Olgmission
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and GHG emissions into one value, the actual consequences of GHG
emissions are still hidden. Thus, to have a clear and detailed under-
standing about the synergies and trade-offs between economic and
environmental consequences, it is important to keep them separate.

The relative weighting of each trait that integrates the (extended)
EVs or IVs and genetic potential is shown in Fig. 4. This could be used for
investigating the balance among target traits. In general, the summed
weights of production traits (MY, PY and FY) accounted for at least half
of the indices as a whole, except for that in OL,5 (37%). In practice, it is
recommended that the weighting of production traits accounts for 40%—
60% of the index, while that of other functional traits or body confor-
mation traits comprises 20%-30% (LPI, 2022; NVI, 2023; Sgrensen
et al., 2018; TPI, 2021; Van Raden et al., 2021). It can be seen that the
optimal indices are better aligned with the recommendation compared
with LEI and MPL.

For individual traits, LEI put the highest weight on MY (57%), while
Ol put the least (21%). Placing too much emphasis on MY, however,
can lead to deterioration of fertility traits in the long-run, which may
affect the farm profits negatively due to the negative genetic correlation
between MY and fertility traits (Gonzalez-Recio et al., 2004; Liu et al.,
2017; Shi et al., 2024). In some national indices (e.g., in Canada), more
emphasis has been placed on functional traits or efficiency traits (e.g.,
feed efficiency) than on MY (LPI, 2022). Nevertheless, MY will take a
large part in the breeding index of China, at least in the near future, due
to the increasing demand for milk and the potential to increase MY,
especially in small-scale farms (Dou et al., 2020; Wang et al., 2022). The
share of PY also differed among indices (from 8% in OIV;.... to 25 % in
MPI), as did FY (from 4% in Ol to 18% in Olemssion). It was observed

that Ol put 40% emphasis on CI, whereas Olpmission put less than 30%

empbhasis on CI and PL together. In addition, OIZ,

baiance tennded to put more
weighting on PL (34%), while OI}Y,.., tended to put more weight on CI
(30%). The weightings of MAS were much lower compared with other

traits given a small genetic standard deviation (Table S5).

3.5. Contribution of individual traits in optimal indices

The contributions of individual traits to profits and EI in the optimal
indices are shown in Fig. 5. Overall, the profits were mainly from MY, CI
and PL (Fig. 5a). The profit of increasing MY for Olemission Was higher
(507 CNY per cow unit) than that of reducing CI (183 CNY per cow unit),

EV
balance

Annual milk yield

Annual protein yield

Annual fat yield
BN Calving interval
BN Productive life

or” EE Clinical mastitis

balance

Fig. 4. Relative weight of genetic traits in different indices. Olofi, Olemissions Olfgance> and OlIbvy,. ., refer to the optimal indices (OI) that were selected from
optional indices (See Materials and Methods), where the subscript refers to different emphasis on emission and profit, EV refers to economic values of the traits, and

IV refers to emission intensity values (IV) of traits.
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(b) Emission intensity from target traits

(kg CO,-¢q per ton of FPCM per cow unit per generation)
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Fig. 5. Economic and environmental contributions from target traits of different optimal indices. Panel (a) displays the profitable contributions of target traits
in Chinese yuan per cow unit per generation in different indices, while panel (b) displays the contributions of reducing emission intensity for the traits in optimal
indices in kg CO,-eq per ton of fat- and protein-corrected milk per cow unit per generation. The red ring in panel (b) indicates O contributions. The traits included are
annual milk yield (MY), annual protein yield (PY), annual fat yield (FY), calving interval (CI), productive life (PL), and clinical mastitis (MAS). Olrofit, Olemission,

OIY, .., and OIlV, refer to the optimal indices (OI) that were selected from optional indices, where the subscript refers to different emphasis on emission and profit,
EV refers to economic values of the traits, and IV refers to emission intensity values (IV) of traits. The selection of optimal indices could be found in the Materials

and Methods.

while the reverse was observed for Ol For Olfy,.., and OLv.. ., the
contributions of MY and CI to profits were relatively comparable.
Meanwhile, the profits of PY were much higher for Ol, Olft‘l/lance’ and
oY, . (236, 138 and 121 CNY per cow unit, respectively) than those

balance
for Olemission (9 CNY per cow unit). The variations among indices could be
attributed to different weightings for the traits in different indices
(Fig. 4), and the correlations among the traits (Fig. S2). In addition, for
all the indices, the contributions from FY were less than 100 CNY per
cow unit, and the contributions from MAS were less than 1 CNY per cow
unit.

Regarding EI, MY contributed to a reduction of around 4.2-9.5 kg
CO4-eq per ton of FPCM across the indices (Fig. 5b). The GHG reductions
of PL were from 1.3 to 2.3 kg CO2-eq per ton of FPCM, while those of PY,
FY, and MAS were below 1 kg CO2-eq per ton of FPCM for all the indices.
In contrast, results showed that reducing CI will emit more GHG (from
0.7 to 2.1 kg COz-eq per ton of FPCM), although it was always recog-
nized as a more profitable strategy with higher annual calving rate and
more MY (Samaraweera et al., 2022; Van Knegsel et al., 2022; Shi et al.,
2024). This negative effect in EI, however, can be compensated by the
significant positive effect of MY in the index, making the overall EI of the
index to decrease.

3.6. Limitations and future work

We see potential in our approach for improvement beyond the results
demonstrated in this study. For instance, the diet composition of cows
and the milk price were assumed to be unchanged for the next genera-
tion. The inclusion of these factors would require an upgrade of the
existing bio-economic model through incorporation of more parameters
in e.g., animal nutrition and market dynamics, which was beyond the
scope of this work. Only six traits were considered in this study in its
conceptual development. However, there are more traits (e.g., udder
health, lactose, feed efficiency) that could be included (De Haas et al.,
2021). In practice, the step of generating and selecting candidate indices
in this study could also be simplified if undesired changes are not
observed using the calculated EV or IV. In addition, more complex
equations could be included to obtain accurate genetic gains. For
example, the expected genetic gain in CI may be somewhat smaller when

accounting for the low prediction accuracy of estimated breeding values
of CI (Zhang and Amer, 2021). Moreover, regarding the environmental
sustainability, this study solely used GHG emissions as an indicator, but
there are various other environmental aspects, such as nutrient pollution
and food-feed competition, that are relevant for the Chinese dairy sector
and that could be incorporated in future studies (Bai et al., 2018; Wang
et al., 2022). It is also worth noting that the values of GWPs change over
time (updated every seven years), which will affect the results for
different generations of dairy cattle. In addition, the analysis was con-
ducted based on one typical dairy farm in North China. Although the
approach and general trend may be generalized, the absolute values are
subject to farm-specific conditions. Nevertheless, we believe that our
method combining bio-economic farm models and LCA could also be
applied in other contexts (either at different farm types or in different
regions) in future studies.

4. Conclusions

This study has important implications in both scientific methods and
practice. Firstly, by linking LCA analysis with a bio-economic model, we
provide novel insights into how to determine the IVs for six important
traits of dairy cows. GHG emissions along the chain have been taken into
consideration (instead of merely enteric CH4 emissions), which gives a
more holistic understanding of how the change of the traits would affect
GHG emissions from different processes. Furthermore, a set of optional
indices that compromise environmental and economic consequences has
been identified. These results provide options for Chinese dairy farms to
reduce EI while still maintaining economic benefits. We also believe that
the approach we have introduced could be potentially applied or
adapted to different contexts, and that our results provide a valuable
reference to the dairy sector worldwide.
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