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A B S T R A C T   

Breeding is a promising greenhouse gas (GHG) mitigation option for the dairy sector that offers potential per
manent and cumulative effects. However, there is limited understanding of how genetic traits affect GHG 
emissions from the dairy production chain and how breeding indices could be used to find a balance between 
GHG emissions and farm profit. Using a typical Chinese dairy farm as a case study, we developed a novel method 
to address these gaps. The farm comprised of 1523 Holstein-Friesian dairy cows and 1429 young stock. The 
average milk yield at the farm was 11,533 kg per cow per year. Life cycle assessment was combined with an 
existing bio-economic model to determine the emission intensity values (IV) of six genetic traits: milk yield, 
protein yield, fat yield, calving interval, productive life, and incidence of clinical mastitis. The IVs and economic 
values of the traits were used to form different breeding indices, of which the economic and environmental 
consequences were assessed. Results showed that for the next generation, breeding animals with optimal indices 
could reduce carbon dioxide equivalents per ton of fat-and-protein-corrected milk by six to 10 kg, while 
increasing profitability by 822 to 1355 Chinese Yuan per cow unit. Different indices can balance farm profit and 
GHG emissions to different degrees. However, the indices with higher profit showed less potential in reducing 
GHG emissions. This study provides insights into how breeding strategies could contribute to GHG mitigation in 
the dairy sector.   

1. Introduction 

Dairy farming is responsible for approximately 20% of the green
house gas (GHG) emissions caused by all global livestock (Gerber et al., 
2013). These GHG emissions exacerbate the occurrence of extreme 
weather events, such as severe heat and drought (IPCC et al., 2022; 
Donnelly et al., 2024). Dairy production contributes to GHG emissions 
along the chain through several processes, which include feed produc
tion, enteric fermentation, manure management, and energy use (Van 
Middelaar et al., 2014). Major GHGs, i.e., carbon dioxide (CO2), 
methane (CH4) and nitrous oxide (N2O), are released during these pro
cesses, and GHG emission intensity (EI), which is defined as emissions 

per unit of milk produced, is usually used to express the climate impact 
of dairy production. 

To reduce GHG emissions from dairy production, several potential 
mitigation options have been proposed, such as dietary adjustments and 
manure management strategies (Hou et al., 2015; York et al., 2018; 
Vogel and Beber, 2022). However, the effects of most of these strategies 
are not cumulative in successive generations of dairy cows and require 
continuous efforts. Breeding, instead, is considered permanent and cu
mulative. Although it may take several generations to evaluate the 
effectiveness of selective breeding, incorporating GHG emissions into 
breeding programmes is seen as a promising tool to reduce the climate 
impacts from dairy cattle in the long run (González-Recio et al., 2020; De 
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Haas et al., 2021). 
Breeding programmes for cattle require a clearly defined breeding 

goal that determines the desired direction of change over generations 
and a breeding index that weights multiple genetic traits in its overall 
score (Hazel, 1943). Genetic traits refer to the heritable characteristics 
that are genetically transferred from one generation to another, such as 
milk yield and longevity. In practice, maximizing farm profit is often 
defined as the key breeding goal. In accordance with this, the relative 
importance of each trait (the weighting factor) in the breeding index is 
determined by its economic value (EV), i.e., the marginal profit change 
caused by the change of trait. The farm profit of the breeding index can 
be predicted for future generations. Pursuing high farm profit is a pri
ority in the breeding industry (Cole et al., 2021). However, the potential 
importance of GHG mitigation through selective breeding is now 
acknowledged due to the pressing environmental problems and there 
are more and more attempts to explore this potential (Van Middelaar 
et al., 2014; Richardson et al., 2021). 

Two approaches so far have been used for incorporating the reduc
tion of GHG emissions into breeding programs. The first extends the 
breeding index by introducing enteric CH4 emissions as a new trait and 
adding an economic weight to it. In this way, selective breeding could 
reduce CH4 production in future generations (González-Recio et al., 
2020; De Haas et al., 2021). However, this approach is hampered by 
difficulties in recording animal-specific emissions, in determining ge
netic correlations between enteric CH4 emissions and other traits, and in 
estimating the EV of CH4 emissions (De Haas et al., 2021; Hossein-Za
deh, 2022). In the second approach, the impacts of conventional genetic 
traits on GHG emissions are estimated, and environmentally favourable 
trait combinations (breeding index) have been developed without up
date of new traits (like enteric CH4) (Van Middelaar et al., 2014; 
Richardson et al., 2021). Instead of EV, this approach determines the 
intensity value (IV) of GHG emissions for conventional traits, which is 
defined as the marginal change of EI with change of the trait. 

However, most previous studies that have been conducted using the 
above approaches only considered the enteric CH4 emissions from dairy 
cattle (e.g., Amer et al., 2018; De Haas et al., 2021; Richardson et al., 
2021). From the perspective of the entire dairy value chain, there are 
GHG emissions from other processes, such as feed production and 
manure management. Not accounting for these emissions may lead to 
bias on the assessment of mitigation options (Van Middelaar et al., 
2014). To date, there has only been one study conducted (Van Middelaar 
et al., 2014) that has investigated the IVs of genetic traits of dairy cattle 
by incorporating changes in GHG emissions along the entire production 
chain. Moreover, to date, no studies have incorporated both chain-level 
IVs and EVs into breeding indices, to the best of our knowledge. For this, 
the combination of bio-economic model and LCA analysis could provide 
a valuable tool, which could enable exploration of the maximum GHG 
mitigation potential of breeding indices, as well as to balance their 
economic and environmental consequences. 

As one of the major countries that contributes to global GHG emis
sions, China is committed to achieving peak carbon emissions before 
2030 and carbon neutrality before 2060 (SCPRC, 2021). Despite serious 
concern about the environmental impact of the growing dairy sector in 
China, little attention has been given to the role of breeding in GHG 
mitigation so far (Wang et al., 2016; Bai et al., 2018; Huang et al., 2021). 
The objective of this study, therefore, is to introduce a novel method to 
assess the economic- and environmental consequences of different 
breeding indices, using Chinese dairy farming as a case study. 

The IVs of important genetic traits of dairy cows were determined by 
combining an existing bio-economic model and a life cycle assessment 
(LCA) for a typical Chinese dairy farm. Following this, different breeding 
indices were developed based upon different breeding goals. The farm 
profit and EI of those indices were compared, and the indices that can 
balance farm profit and EI were identified. This study provides insight 
into how breeding indices could be used as a tool to achieve environ
mental and economic objectives. The whole framework and results 

could be useful for breeding organizations worldwide that want to 
contribute to a more environmentally friendly dairy sector. 

2. Materials and methods 

2.1. A typical Chinese dairy farm 

This study was modelled on data from a typical commercial Holstein 
dairy farm in Beijing, China (39.6◦ N, 116.2◦ E, within a warm 
temperate zone, with a half moist continental monsoon climate; Fig. S1). 
The data were collected in 2020. The farm was managed by Sunlon 
Livestock Development Co. Ltd. On this landless dairy farm with zero 
grazing, cows were housed in ventilated barns with a free stall design. 
The milk yield was 11,533 kg per cow per year, which was higher than 
the national average (7800 kg per cow per year) (Dou et al., 2020). 
Other important characteristics of the study farm are summarized in 
Table 1. 

Any diseased cows were transferred to an isolated group, and their 
milk was retained if antibiotic treatments were required (e.g., in the 
incidence of clinical mastitis). Oestrous synchronization strategies and 
artificial insemination were applied at this farm. Production data were 
collected via equipped Affifarm software (https://www.afimilk.com 
/afifarm/), which automatically records milking, reproductive infor
mation (e.g., birth, calving, and insemination), and health events (e.g., 
type of disease, and the number of days of milk retained) of each cow. 
Economic data were collected through consultation with the accoun
tants of the farm and details can be found in Shi et al. (2024). 

As for most intensive farms in China, the farm had no cropland area, 
and all feedstuffs had to be purchased. A total mixed ration was sup
plied, three times a day, and the animals were provided with ad libitum 
access to this ration and water. Data about feed composition consumed 
by animals in different age categories was collected from the farm 
(Table S1). The major feed ingredients fed to dairy cows were maize 
silage, maize, soybean meal, alfalfa hay, and by-products from crops and 
from food processing. The amount of feed consumed by different age 
categories was calculated based on the energy requirement of the ani
mals and ration composition (NRC, 2001). Manure was collected daily 
from the solid floor and separated into solid- and liquid parts. After
wards, solid manure was stored in the open air while liquid manure was 
stored in an open lagoon until being sold to either nearby crop farms or 
manure processors. 

2.2. Calculating greenhouse gas emissions 

An LCA was used to calculate the emissions of CO2, CH4 and N2O, 
along the dairy production chain ‘from cradle to farm-gate’. Sources of 
GHG emissions included: fertilizer manufacturing, field operations, 
processing and transportation of crops and concentrates, enteric 
fermentation from animals, manure management, and the production 
and combustion of energy. 

The emissions from fertilizer manufacturing were calculated based 
on the fertilizer application rate for each feed crop and the emission 
factors per unit of fertilizer. It was assumed that no animal manure was 
applied due to the decoupling of livestock and crop production and the 
low recycling rate of animal manure in China (Jin et al., 2020). The 

Table 1 
Characteristics of the study farm in Beijing, China.  

Item Unit Value 

Number of cows head 1523 
Number of youngstock head 1429 
Milk yield kg/cow/year 11,533 
Protein content of milk % 3.3 
Fat content of milk % 4.5 
Age at first calving month 26 
Replacement rate % per year 33.5  

R. Shi et al.                                                                                                                                                                                                                                      
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amount of artificial fertilizer used for each feed crop, i.e., nitrogen (N), 
phosphorus pentoxide, and potassium oxide, was derived from 
peer-reviewed articles (Table S2). The GHG emission factors for the 
production of one unit of artificial fertilizer were derived from Zhang 
et al. (2013) and the Ecoinvent 3.8 database. Emission factors for (direct 
and indirect) N2O emissions from the application of artificial N fertilizer 
are provided in Table S2. The parameters of CO2 emissions for the use of 
fossil fuels during field operations were derived from the Global Live
stock Environmental Assessment Model (GLEAM) (FAO, 2022). Eco
nomic allocation was used to assign the GHG emissions related to feed 
products that have been derived from multiple output processes. The 
economic allocation factors for the feed products are shown in Table S3. 
Emissions from feed processing originated mainly from energy 
consumed in activities such as milling, crushing and heating of the feed 
crops and from blending concentrate feed. The emission factors of these 
processes were taken from the GLEAM model (FAO, 2022). The emis
sions from feed transportation were estimated based on the transport 
distance, transport means (e.g., by ship or truck), and emission factors 
for transportation. More details can be found in Supplementary Note 1. 

For enteric CH4 fermentation from dairy cows, feed-specific emission 
factors were adopted from Vellinga et al. (2013) and Šebek et al. (2016) 
(Table S3). For enteric CH4 emissions from young stock, the IPCC Tier 2 
approach was used, in which emissions were calculated based on gross 
energy intake and a CH4 conversion factor (IPCC et al., 2019). The 
emissions of CH4 and N2O from manure management (i.e., housing and 
storage) in the farm were calculated following the IPCC Tier 2 method. 
The data on the total amount of annual on-farm energy use (i.e., diesel 
and electricity) were provided by the farm. The GHG emission factors of 
production and transport of energy were adopted from IPCC et al. 
(2019), and that of the combustion of fuel from Jiang et al. (2013) 
(Table S4). More details can be found in Supplementary Note 1. 

The emissions of different GHGs were converted to CO2 equivalents 
(CO2-eq) based on their global warming potential over 100 years, i.e., 1 
for CO2, 27.2 for biological CH4, 29.8 for fossil CH4, and 273 for N2O 
(IPCC et al., 2022). Economic allocation was used to separate GHG 
emissions between milk and meat. This was found to be 87% for milk at 
the baseline (current) situation for this type of farm. For this farm, the 
price of milk was set to be 3.8 CNY per kg of milk and the price of sold 
animals was from 4000 to 14,500 CNY per head, depending upon the life 
stage and weight of the animals. Emissions were expressed per ton of fat- 
and protein-corrected milk (FPCM) (4.46 % fat and 3.33 % protein), 
which can be referred to as the emission intensity (EI) or the carbon 
footprint of milk. 

2.3. Derivation of emission intensity values for genetic traits 

A total of six genetic traits were selected for analysis in this study; 
annual milk yield (MY, kg per cow per year), annual protein yield (PY, 
kg per cow per year), annual fat yield (FY, kg per cow per year), calving 
interval (CI, d), productive life (PL, d), and incidence of clinical mastitis 
(MAS, % of cows with at least one mastitis case per lactation). The first 
three traits describe the production level of cows, while the last three are 
indicators of reproduction, longevity and cow health, respectively. 
These six traits are economically important for dairy farms and are, 
therefore, usually included in breeding programmes in different coun
tries (Miglior et al., 2017). 

The EVs of those traits, defined as the marginal farm profit change 
per cow unit per year from a 1-unit change in the trait, were directly 
derived from the bio-economic model that was developed with data 
from the same dairy farm. A cow unit comprises of one dairy cow and the 
young stock kept to eventually replace this dairy cow. Two modules 
were incorporated in the bio-economic model, in which the biophysical 
module determines the effect of the traits on farm performance, and the 
economic module sums up revenues and costs. More details about the 
model and the set-up of the calculations of EVs could be found in Shi 
et al. (2024). 

The IVs, i.e., marginal GHG emission change per ton of FPCM from a 
1-unit change in the trait, were calculated in this study (Equation [1]). 
For each trait, the biophysical module of the bio-economic model was 
initially used to determine how the change of trait would affect farm 
performance in e.g., herd structure and production level. Subsequently, 
the results were combined with the LCA model to calculate the marginal 
effect of the change of the trait on EI. 

IVi =
ΔEIi

xi
[1]  

where IVi is the IV for the trait i, ΔEIi is the marginal GHG emission 
change per ton of FPCM from a unit change of the trait i, and xi is 1-unit 
change of the trait i. 

For production traits (MY, PY and FY), the marginal effect in GHG 
emissions was mainly reflected by the change of energy requirements of 
cows, which subsequently results in a change in feed intake and relevant 
emissions. For CI, a one-unit increase will affect GHG emissions along 
the chain by decreasing annual calving rate, changing herd composition, 
and decreasing MY. For PL, a one-unit increase will also affect the herd 
structure and increase MY. For both CI and PL, the marginal change of 
herd structure will affect the feed intake of the animals in different ages, 
and result in further changes in GHG emissions. For MAS, an 1% increase 
will result in reductions of MY, including discarded milk due to usage of 
antibiotics, and potential milk loss due to a lower milk yield after 
treatment. It was assumed that the feed intake of cows is not affected by 
disease due to lack of data on this. 

2.4. Breeding goals and results of breeding indices 

The EVs or IVs of the traits calculated above were used to develop 
different indices under different goals. A breeding index is a linear 
combination of EV or IV and genetic gain in each trait, which can be 
obtained through Equation [2], where v is the vector of EV or IV, and 
Rtrait is the genetic gain of each trait (6 × 1 vector). The Rtrait was 
calculated using Equation [3], where P− 1 is the inverse matrix of 
phenotypic variance-covariance matrix for the target traits, G is the 
genetic variance-covariance matrix for the target traits. The information 
of P− 1 and G can be found in Fig. S2. 

Breeding index= v′Rtrait [2]  

Rtrait =

(
P− 1Gv

)′G
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
P− 1Gv

)′Gv
√ [3] 

Two breeding goals were set in this study, namely, maximizing profit 
(based on EV) and minimizing EI (based on IV), following Van Mid
delaar et al. (2014). The index maximizing profit was referred to as the 
most profitable index (MPI) and the index minimizing GHG emission 
was referred to as least emissions index (LEI). 

The farm profit and EI of MPI and LEI were calculated using Equation 
[4]. Moreover, the relative weight (w) of the trait was determined using 
Equation [5], where σa is the vector of genetic standard deviation of six 
target traits, σa− trait is the genetic standard deviation of individual trait 
(Table S5), vtrait is the EV (or IV) of the target trait. The theory assumes 
equal predicting accuracies for the studied traits, which is commonly 
applied in animal breeding (Kumar et al., 2022; Richardson et al., 
2022a). 

Profit or EI =
(
P− 1Gv

)′Gv
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
P− 1Gv

)′P(P− 1Gv
)

√ [4]  

w=

[
σa− MY × vMY

σ′
av

,…,
σa− MAS × vMAS

σ′
av

]′
[5]  
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2.5. Selection of breeding indices 

Solely aiming for maximum profit or minimum EI can result in un
desired responses in traits. For example, an increase in clinical mastitis 
cases. In addition, it may be of significance to find a balance between 
economic and environmental objectives rather than maximizing one or 
the other. To avoid undesired responses in traits and provide a range of 
options that represent a compromise between environmental and eco
nomic objectives, the following steps were conducted: (1) a large set of 
potential indices was created by manually changing the EVs that 
determine the relative importance of the traits (Brascamp et al., 1985). 
For each trait, ten values were uniformly selected from a range of − 5 ×
EV to 5 × EV (including the calculated EV) to construct more potential 
indices. This resulted in a total of one million indices based on the six 
target traits. The same process was also applied to IVs. Meanwhile, the 
relative weight and genetic gain of each trait, as well as the profit and EI 
of all the indices, were calculated using Equations [2–5]; (2) Con
strained indices were selected from the potential indices by constraining 
the genetic gain of each trait in only the desired direction, i.e., the Rtrait 
of MY, PY, FY and PL had to be positive, while that of CI and MAS had to 
be negative; (3) Optional indices on the frontier line between farm profit 
and EI were identified from the constrained indices. For a given farm 
profit, this line indicates the optional index with the lowest EI. Likewise, 
for a given EI, this line indicates the optional index with the highest farm 
profit; (4) A score (Scoreindex) was developed to rank all the optional 
indices on the frontier line using Equations [6–8]. ScoreEI was defined as 
the ratio between the EI of the assessed index and the lowest EI on the 
frontier line. Likewise, Scoreprofit was defined as the ratio between the 
profit of the assessed index and the highest profit on the frontier line. 
WeightEI and Weightprofit indicate the relative importance of EI and profit. 
For demonstration, WeightEI and Weightprofit were settled as 0/100, 
50/50, 100/0, respectively. The corresponding indices with the highest 
score were referred to as optimal indices (OI), i.e., OIprofit, OIbalance and 
OIemission, respectively. OIprofit indicates the optimization for (maximum) 
profit. OIemission indicates the optimization for (minimum) EI. OIbalance 
indicates the optimization for both profit and EI (equally weighted). 
Note that the OIbalance were selected based on EV and IV, respectively. 

Scoreindex = ScoreEI∗WeightEI + Scoreprofit∗Weightprofit [6]  

ScoreEI =
EI of index

Lowest EI on the frontier line
[7]  

Scoreprofit =
Profit of index

Highest profit on the frontier line
[8]  

2.6. Software and data accessibility 

The procedures of calculating genetic gains and optimizing of 
breeding goals were realized in Python 3.7, with packages NumPy and 
Pandas (Van Rossum and Drake, 2009; McKinney, 2010; Harris et al., 
2020). Figures were created by matplotlib (Caswell et al., 2021) and 
Plotly (Plotly Technologies Inc.https://plotly.com). The model and 
calculation steps of IVs were stored in the Excel sheets of Supplementary 
materials, the calculations of the IV of MY have been provided as an 
example. 

3. Results and discussion 

3.1. Greenhouse gas emissions of the typical farm 

Total GHG emissions per ton of FPCM under current circumstances 
were 1317 and 1141 kg CO2-eq, without and with economic allocation 
between milk and meat respectively. This result is comparable to some 
previous work, in which a value was found of approximately 1300 kg 
CO2-eq per ton FPCM in North China (Zhang et al., 2017; Wang et al., 

2018). The values were lower than that of a nationwide study in China 
with a result of 1950 kg CO2-eq per ton FPCM (Dong and Wei, 2020), 
which could be mainly explained by the relatively high milk yield in the 
farm studied compared to the national average (Dou et al., 2020). 
Emissions of CH4, CO2 and N2O were responsible for 50%, 37% and 13% 
of the total emissions, respectively. Feed production and enteric 
fermentation contributed almost equally to the total GHG emissions, 
with a respective share of 36% and 33%, followed by manure manage
ment (20%) and energy use (11%) (Fig. 1). 

3.2. Emission intensity values of genetic traits 

The results of this study showed that negative IVs were obtained for 
all target traits except for MAS (Table 2), which means that increasing 
target traits results in less GHG emissions per unit of milk in the 
following generation. Increasing MY by one kg per cow per year, for 
instance, decreased GHG emissions by 0.045 kg CO2-eq per ton of FPCM 
at entire production chain level. This is comparable with results found 
for Dutch dairy farming, i.e., 0.039–0.071 kg CO2-eq per ton of FPCM at 
entire production chain level (Van Middelaar et al., 2014). 

Increasing PY, FY, and PL by one unit led to a decrease of 0.322, 
0.075, and 0.362 kg CO2-eq per ton of FPCM at entire production chain 
level, respectively. These values were found to be larger than the ones 
found by Amer et al. (2018) for Ireland (i.e., 0.047 for PY and 0.008 for 
FY). The smaller values found by Amer et al. (2018) can be explained by 
the fact that only enteric emissions from animals were considered, 
whereas all major GHG sources along the entire value chain were 
considered in our study. This indicates that it matters at what level of the 
production system the mitigation effects of genetic traits are assessed. In 
the study of Amer et al. (2018), the IV of PY was approximately five 
times higher than that of FY, which is in line with the results of this 
study. A Canadian study reported IVs of 0.005 for PY, 0.004 for FY, and 
0.012 for PL, respectively (Richardson et al., 2021), with only enteric 
emissions from animals considered and use of a different functional unit 
(kg CO2-eq per kg of protein equivalent). These differences partly 
explain the differences between reported IVs in Richardson et al. (2021) 
and this study. Note that the protein-equivalent based unit has been 
recommended by studies to better support the local milk payment sys
tems, which encourages more milk proteins but penalizes higher milk 
volume (e.g., Richardson et al., 2022b). Nevertheless, our study used 
FPCM as the unit because it has been widely used in the carbon footprint 
analysis of milk production, and can be compared across different con
texts (IDF, 2015). In addition, it simultaneously allows increases in MY, 
FY and PY (Richardson et al., 2022b), which is in line with the milk 
payment systems of developing countries, such as China (Shi et al., 
2024). 

Despite differences in the values of IVs, all the above studies showed 
that increase of these traits (i.e., MY, FY, PY, and PL) were beneficial for 
GHG emissions. The result of increasing CI on GHG emissions, however, 
was found to be different from previous studies. Our results show that a 
1-d increase in CI lead to a decrease of 0.038 kg CO2-eq per ton of FPCM, 
whereas Amer et al. (2018) found that the increase of CI results in more 
GHG emissions. The increase of CI reduced the annual calving rate of 
cows and milk production. Based on our assumptions, the decrease of 
the annual calving rate reduced the number of on-farm young stock, 
which resulted in a decrease of emissions along the chain from young 
stock. The reduction of EI from these emission processes outweighed the 
increase of that from reduced milk yield and resulted in an overall 
negative IV. It should be noted that all female calves were assumed to be 
raised on the farm in this study, irrespective of the calving rate and 
according to the general protocols of dairy farms in China. However, the 
number of on-farm young stock may remain constant with a 1-d increase 
in CI in farms where surplus female calves are sold. This would probably 
result in a positive IV for a 1-d increase in CI, which was solely due to the 
reduction of milk production (Bell et al., 2013). 

The increase in incidence of MAS led to an increase of 0.276 kg CO2- 
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eq per ton of FPCM (Table 2), which is much higher than the result from 
Richardson et al. (2021) (0.001 kg, enteric emission only). Mostert et al. 
(2019) considered several contributory factors to the emissions caused 
by MAS at chain level that include culling (39%), retained milk (38%), 
milk loss after mastitis (17%), and prolonged CI (6%), and reported a 
result of 0.480 kg CO2-eq per ton of FPCM for 1% increase in incidence 
of MAS. In our study, only the effects of retained milk and milk loss were 
considered due to the lack of data. Therefore, the IV of MAS (0.275) in 
our study was around 55% of the reported value (0.480) in Mostert et al. 
(2019). In general, our results were more comparable to studies that 
have also adopted an LCA approach than those that have only focused on 
one or a few emission processes. 

The EVs of target traits are also listed in Table 2, from which the 
direction of the change in both emissions and profitability after genetic 
selection can be evaluated. As a result, the improvements in all selected 
traits are contributing to profit and GHG mitigation simultaneously, 

except for CI, i.e., reduction of CI (favourable direction) is contributing 
to higher profit, but also is resulting in more GHG emissions. Never
theless, this does not imply that CI needs to be excluded from breeding 
selections. In practice, multiple traits are included in a breeding scheme 
(Miglior et al., 2017; Shi et al., 2024), and the trade-offs among traits is 
dealt with by considering correlations in the computations. Still, lining 
up and comparing IVs and EVs can be helpful for breeders to identify the 
individual traits that may lead to trade-offs between economic- and 
environmental consequence, and, if necessary, to further adjust the 
weighting of the trait in the breeding index. 

3.3. The impact of changing genetic traits on greenhouse gas emissions 
along the chain 

Different traits affected chain processes and their emissions in 
different ways (Fig. 2). For MY and PY (Fig. 2a and b), the EI was 
reduced mainly due to the dilution effect of increasing FPCM. The 
reduction of enteric CH4 and feed N2O emissions contributed most to the 
reduction of EI. A distinctive pattern was observed for FY (Fig. 2c), i.e., 
the reduction of EI was mainly through a reduction in CO2 emissions 
from energy use. This could be explained by the dilution of maintenance 
being especially apparent in emissions from energy used for milking as 
increased FY increased FPCM but not the absolute milk volumes. In case 
of feed-related emissions (from feed cultivation, enteric fermentation, 
manure), however, dilution of maintenance was partly compensated by 
an increase in feed intake, resulting in increased EIs for these processes. 
Thus, the final IV of FY is relatively small compared to the IV of PY. The 
increase of CI affected all the emission processes along the chain through 
the reduced number of young stock and decreased milk yield (Fig. 2d). 
With a 1-d increase in PL, relatively more multiparous cows were kept 
on the farm, and the average milk production was increased due to an 
increase in the average parity. Thus, the emissions from all processes 
were diluted by higher FPCM (Fig. 2e). For MAS, the increase of EI was 
mostly due to retained milk and milk loss after curation (Fig. 2f). 

Compared to Van Middelaar et al. (2014) and Richardson et al. 
(2021), the current approach, which combines a bio-economic model 
and an LCA, simultaneously traces the emission changes of different 
GHGs, emission processes along the chain, and their internal 

Fig. 1. Relative contribution of different processes to greenhouse gas emissions from the typical dairy farm. Greenhouse gases are expressed in CO2-eq based 
on 100-years GWP factors from IPCC AR6. Feed production refers to processes that included fertilizer manufacturing, field operations, processing, and transportation 
of crops and concentrates. Enteric fermentation refers to methane production during the digestive process of cattle. Manure management refers to on-farm manure 
excretion and storage. On-farm energy refers to electricity and diesel use on the farm. Note that emissions of CH4 and N2O from energy use are not displayed in the 
figure due to their minor proportions. 

Table 2 
Emission intensity values (IV) and economic values (EV) for target traits.  

Trait Unit IV (kg CO2-eq/ton FPCM/ 
trait unit)b 

EVa (CNY/trait 
unit)c 

Annual milk yield kg/cow/ 
yr. 

− 0.045 2.39 

Annual protein 
yield 

kg/cow/ 
yr. 

− 0.322 89.60 

Annual fat yield kg/cow/ 
yr. 

− 0.075 32.85 

Calving interval d − 0.038e − 93.03 
Productive life d − 0.362 4.14 
Clinical mastitis %d 0.276 − 11.15  

a The results of EVs are derived from Shi et al. (2024). 
b FPCM is fat- and protein-corrected milk. 
c CNY is Chinese Yuan. 
d % is the percentage of cows with at least one mastitis case per lactation. 
e The negative result of calving interval was because that all female calves 

were assumed to be raised at the farm, irrespective of the calving rate, and ac
cording to the general protocols of dairy farms in China. This result may be 
specific for the Chinese context. 

R. Shi et al.                                                                                                                                                                                                                                      



Journal of Cleaner Production 451 (2024) 142099

6

interactions for target traits. Moreover, the current approach is flexible 
and enables update of environmental parameters or inclusion of more 
traits. It may, therefore, be possible to implement this approach in farms 

with different conditions and different breeding goals. 

Fig. 2. The impact of a 1-unit increase for each target trait on greenhouse gas emissions along the chain (intensity value) for the next generation. 
Greenhouse gases are expressed in kg CO2-eq per ton of fat-and protein-corrected milk. Panel (a) to (f) displayed the results for annual milk yield (MY, kg per cow per 
year), annual protein yield (PY, kg per cow per year), annual fat yield (FY, kg per cow per year), calving interval (CI, d), productive life (PL, d), and clinical mastitis 
(MAS, %), respectively. Green indicates a reduction in emissions, while red indicates an increase in emissions. Note that the increase of CI results in lower emissions 
due to the decrease of emissions from on-farm young stock. 

Fig. 3. The economic and environmental consequences of different breeding indices. The light shadowed area represents one million indices under different 
combinations of EVs or IVs of the traits. The orange cloud indicates all favourable indices with constraints on genetic gain. Optional indices indicate ones that balance 
economic and environmental consequences to different extents. OIprofit , OIemission, OIEV

balance, and OIIV
balance refer to the optimal indices (OI) that were selected from 

optimal indices, where the subscript refers to different emphasis on emission and profit (See Methods). EV refers to economic values of the traits, and IV refers to 
emission intensity values (IV) of traits. 
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3.4. Breeding indices under different objectives or constraints 

The profit and EI of the million indices are shown in Fig. 3 (light 
shadowed area). Broadly, within the area, this shows that for a given 
amount of farm profit, there were various possibilities of GHG intensity 
under different indices, and vice versa. This indicates a synergy between 
farm profit and GHG mitigation. 

The LEI was observed at the lowest boundary of the shadowed area, 
which indicates the index with the greatest potential capacity to reduce 
GHG emissions, i.e., by 22 kg CO2-eq per ton of FPCM. The MPI was 
observed at the rightmost boundary of the shadowed area, which in
dicates the index with the greatest potential capacity to improve farm 
profitability, i.e., by 1645 CNY per cow unit. However, neither LEI nor 
MPI were considered practically desirable as they increase CI and MAS 
(Table S6), which could be explained by the positive correlations with 
production traits (Fig. S2). 

The orange cloud within the shadowed area in Fig. 3 represents all 
constrained indices that prevent undesired responses in traits. The grey 
frontier line represents the optional indices that balance profit and GHG 
emissions to different extents, and provide multiple options for the 
stakeholders or policymakers. The profitability of the optional indices 
ranged from 822 to 1355 CNY per cow unit. The reduction of EI of the 
optional indices ranged from six to 10 kg CO2-eq per ton of FPCM. The 
higher the EI of the indices, the lower the GHG reduction potential the 
indices had. OIEV

balance and OIIV
balance produced similar results in both profit 

(about 1200 CNY per cow unit) and EI reduction (about − 9 kg CO2-eq 
per ton of FPCM). Note that changing the relative importance of profit 
and EI (in this case 50/50) leads to a different result. It is also obvious 
that the constraints on genetic gain for the traits limits the space for both 
improving profit and reducing EI to some extent, which is the basic 
property of constrained indices (Brascamp et al., 1985). Some discon
tinuities can be observed in the orange cloud, which is mainly due to the 
limited number of settings (10 values generated based on EV or IV for 
each trait). If the number of settings were larger, the cloud would have 
been fully solid, and the frontier line would have been smoother. 
However, larger settings would require higher computation loads, but 
would not alter the main insights of our analysis. 

Another approach to integrate economic and environmental assess
ments is to assume a carbon price on GHG emissions (Mosnier et al., 
2019; De Haas et al., 2021). Nevertheless, by summing up farm profit 

and GHG emissions into one value, the actual consequences of GHG 
emissions are still hidden. Thus, to have a clear and detailed under
standing about the synergies and trade-offs between economic and 
environmental consequences, it is important to keep them separate. 

The relative weighting of each trait that integrates the (extended) 
EVs or IVs and genetic potential is shown in Fig. 4. This could be used for 
investigating the balance among target traits. In general, the summed 
weights of production traits (MY, PY and FY) accounted for at least half 
of the indices as a whole, except for that in OIprofit (37%). In practice, it is 
recommended that the weighting of production traits accounts for 40%– 
60% of the index, while that of other functional traits or body confor
mation traits comprises 20%–30% (LPI, 2022; NVI, 2023; Sørensen 
et al., 2018; TPI, 2021; Van Raden et al., 2021). It can be seen that the 
optimal indices are better aligned with the recommendation compared 
with LEI and MPI. 

For individual traits, LEI put the highest weight on MY (57%), while 
OIprofit put the least (21%). Placing too much emphasis on MY, however, 
can lead to deterioration of fertility traits in the long-run, which may 
affect the farm profits negatively due to the negative genetic correlation 
between MY and fertility traits (Gonzalez-Recio et al., 2004; Liu et al., 
2017; Shi et al., 2024). In some national indices (e.g., in Canada), more 
emphasis has been placed on functional traits or efficiency traits (e.g., 
feed efficiency) than on MY (LPI, 2022). Nevertheless, MY will take a 
large part in the breeding index of China, at least in the near future, due 
to the increasing demand for milk and the potential to increase MY, 
especially in small-scale farms (Dou et al., 2020; Wang et al., 2022). The 
share of PY also differed among indices (from 8% in OIIV

balance to 25 % in 
MPI), as did FY (from 4% in OIprofit to 18% in OIemission). It was observed 
that OIprofit put 40% emphasis on CI, whereas OIemission put less than 30% 
emphasis on CI and PL together. In addition, OIEV

balance tended to put more 
weighting on PL (34%), while OIIV

balance tended to put more weight on CI 
(30%). The weightings of MAS were much lower compared with other 
traits given a small genetic standard deviation (Table S5). 

3.5. Contribution of individual traits in optimal indices 

The contributions of individual traits to profits and EI in the optimal 
indices are shown in Fig. 5. Overall, the profits were mainly from MY, CI 
and PL (Fig. 5a). The profit of increasing MY for OIemission was higher 
(507 CNY per cow unit) than that of reducing CI (183 CNY per cow unit), 

Fig. 4. Relative weight of genetic traits in different indices. OIprofit , OIemission, OIEV
balance, and OIIV

balance refer to the optimal indices (OI) that were selected from 
optional indices (See Materials and Methods), where the subscript refers to different emphasis on emission and profit, EV refers to economic values of the traits, and 
IV refers to emission intensity values (IV) of traits. 
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while the reverse was observed for OIprofit . For OIEV
balance and OIIV

balance, the 
contributions of MY and CI to profits were relatively comparable. 
Meanwhile, the profits of PY were much higher for OIprofit , OIEV

balance, and 
OIIV

balance (236, 138 and 121 CNY per cow unit, respectively) than those 
for OIemission (9 CNY per cow unit). The variations among indices could be 
attributed to different weightings for the traits in different indices 
(Fig. 4), and the correlations among the traits (Fig. S2). In addition, for 
all the indices, the contributions from FY were less than 100 CNY per 
cow unit, and the contributions from MAS were less than 1 CNY per cow 
unit. 

Regarding EI, MY contributed to a reduction of around 4.2–9.5 kg 
CO2-eq per ton of FPCM across the indices (Fig. 5b). The GHG reductions 
of PL were from 1.3 to 2.3 kg CO2-eq per ton of FPCM, while those of PY, 
FY, and MAS were below 1 kg CO2-eq per ton of FPCM for all the indices. 
In contrast, results showed that reducing CI will emit more GHG (from 
0.7 to 2.1 kg CO2-eq per ton of FPCM), although it was always recog
nized as a more profitable strategy with higher annual calving rate and 
more MY (Samaraweera et al., 2022; Van Knegsel et al., 2022; Shi et al., 
2024). This negative effect in EI, however, can be compensated by the 
significant positive effect of MY in the index, making the overall EI of the 
index to decrease. 

3.6. Limitations and future work 

We see potential in our approach for improvement beyond the results 
demonstrated in this study. For instance, the diet composition of cows 
and the milk price were assumed to be unchanged for the next genera
tion. The inclusion of these factors would require an upgrade of the 
existing bio-economic model through incorporation of more parameters 
in e.g., animal nutrition and market dynamics, which was beyond the 
scope of this work. Only six traits were considered in this study in its 
conceptual development. However, there are more traits (e.g., udder 
health, lactose, feed efficiency) that could be included (De Haas et al., 
2021). In practice, the step of generating and selecting candidate indices 
in this study could also be simplified if undesired changes are not 
observed using the calculated EV or IV. In addition, more complex 
equations could be included to obtain accurate genetic gains. For 
example, the expected genetic gain in CI may be somewhat smaller when 

accounting for the low prediction accuracy of estimated breeding values 
of CI (Zhang and Amer, 2021). Moreover, regarding the environmental 
sustainability, this study solely used GHG emissions as an indicator, but 
there are various other environmental aspects, such as nutrient pollution 
and food-feed competition, that are relevant for the Chinese dairy sector 
and that could be incorporated in future studies (Bai et al., 2018; Wang 
et al., 2022). It is also worth noting that the values of GWPs change over 
time (updated every seven years), which will affect the results for 
different generations of dairy cattle. In addition, the analysis was con
ducted based on one typical dairy farm in North China. Although the 
approach and general trend may be generalized, the absolute values are 
subject to farm-specific conditions. Nevertheless, we believe that our 
method combining bio-economic farm models and LCA could also be 
applied in other contexts (either at different farm types or in different 
regions) in future studies. 

4. Conclusions 

This study has important implications in both scientific methods and 
practice. Firstly, by linking LCA analysis with a bio-economic model, we 
provide novel insights into how to determine the IVs for six important 
traits of dairy cows. GHG emissions along the chain have been taken into 
consideration (instead of merely enteric CH4 emissions), which gives a 
more holistic understanding of how the change of the traits would affect 
GHG emissions from different processes. Furthermore, a set of optional 
indices that compromise environmental and economic consequences has 
been identified. These results provide options for Chinese dairy farms to 
reduce EI while still maintaining economic benefits. We also believe that 
the approach we have introduced could be potentially applied or 
adapted to different contexts, and that our results provide a valuable 
reference to the dairy sector worldwide. 
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González-Recio, O., López-Paredes, J., Ouatahar, L., Charfeddine, N., Ugarte, E., 
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