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Abstract

Background: Heterogeneity in ageing rates drives the need for research into lifestyle secrets of successful agers. Biological age,
predicted by epigenetic clocks, has been shown to be a more reliable measure of ageing than chronological age. Dietary habits
are known to affect the ageing process. However, much remains to be learnt about specific dietary habits that may directly
affect the biological process of ageing.
Objective: To identify food groups that are directly related to biological ageing, using Copula Graphical Models.
Methods: We performed a preregistered analysis of 3,990 postmenopausal women from the Women’s Health Initiative, based
in North America. Biological age acceleration was calculated by the epigenetic clock PhenoAge using whole-blood DNA
methylation. Copula Graphical Modelling, a powerful data-driven exploratory tool, was used to examine relations between
food groups and biological ageing whilst adjusting for an extensive amount of confounders. Two food group–age acceleration
networks were established: one based on the MyPyramid food grouping system and another based on item-level food group
data.
Results: Intake of eggs, organ meat, sausages, cheese, legumes, starchy vegetables, added sugar and lunch meat was associated
with biological age acceleration, whereas intake of peaches/nectarines/plums, poultry, nuts, discretionary oil and solid fat was
associated with decelerated ageing.
Conclusion: We identified several associations between specific food groups and biological ageing. These findings pave the
way for subsequent studies to ascertain causality and magnitude of these relationships, thereby improving the understanding
of biological mechanisms underlying the interplay between food groups and biological ageing.
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Key Points

• Biological age is considered a more all-encompassing measure of ageing than chronological age, as it covers not only time,
but also epigenetic, lifestyle and environmental factors.
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Food groups and biological ageing

• Data-driven approaches are suitable to indicate new interventional targets within the complex domain of diet and ageing.
• This study revealed multiple compelling interactions between food groups and biological age acceleration.
• Results provide a promising base for follow-up studies to determine causality and magnitude of relationships, thereby

improving the understanding of biological mechanisms underlying the interplay between food groups and biological ageing.

Introduction

Although the ageing process seems relatively homogeneous
at a population level, there are large differences in the pace
of ageing and consequential disease susceptibility amongst
individuals [1]. This heterogeneity makes biological age,
which is the result of progressive structural and functional
decline of tissues and organs because of damage accumu-
lation over time, more appropriate to represent the ageing
process than chronological age [2]. In order to find strategies
to extend lifespan and health span in the progressively ageing
population, an understanding of biological ageing and its
accurate measures is required.

Biological age can be measured by various molecular
or phenotypic biomarkers. Recent studies point towards
the significance of epigenetic clocks, representing one’s
biological age, and their ability to accurately quantify human
ageing [3]. Epigenetic clocks are powerful predictors of
age or age-related phenotypes, based on DNA methylation
(DNAm) values coupled with mathematical algorithms
[4]. The majority of DNAm occurs on sites where a
cytosine nucleotide is followed by guanine (CpG sites) [4].
Alterations in DNAm at specific sites across the genome
are associated with age-related diseases and decreased
functioning of cells, tissues and organs [5, 6]. Epigenetic
clocks primarily target those ‘predictable’ CpG sites, where
age-associated DNAm is relatively homogeneous between
individuals [7]. Epigenetic clocks are trained via machine
learning to predict an age-related outcome of interest, such
as chronological age, morbidity or mortality risk [4]. In
this process, the most predictive CpG sites are selected and
then combined with a mathematical algorithm, thereby
transforming the measured DNAm levels into an age
prediction.

With the help of epigenetic clocks, the degree of age accel-
eration or deceleration can be estimated (i.e. the difference
between biological and chronological age). Previous studies
showed a slower age acceleration in long-lived individuals [8,
9], indicating a relationship between age acceleration and
healthy ageing. Indeed, age acceleration is associated with
decreased physical and cognitive functioning, and increased
risk of cancer, cardiovascular diseases (CVD) and all-cause
mortality [10, 11]. The extent of age acceleration or decel-
eration can differ tremendously amongst individuals, which
raises the question of what the driving factors are behind this
heterogeneity. According to recent pedigree analyses, true
heritability of longevity is estimated at 10–16% [12, 13].
These relatively small numbers indicate that other factors,
such as lifestyle, environment and air pollution, rather than
genetics, play a dominant role in biological ageing. Notably,

whilst the proportion of variation because of genetics seems
relatively small at the population level, genetic disorders
(e.g. progeroid syndromes) can have significant effects at the
individual level, which makes it, independent of adherence
to a healthy lifestyle, impossible to grow old [14].

Although the precise contribution of nutrition to the age-
ing process remains unclear, increasing research has shown
the capacity of specific lifestyle interventions, such as the
Mediterranean diet [15], caloric restriction [16] or other
multimodal treatment programmes [17, 18], to slow down
or even reverse ageing clocks. However, associations have
been weak and inconsistent between studies. The use of small
sample sizes, different epigenetic clocks and the inability to
establish independent effects of lifestyle covariates because
of collinearity has led to inconclusive results. Moreover,
as nutrient databases often provide limited information on
bioactive compounds, food matrices and potential other
interactions amongst substances within foods, it is valuable
to explore whether specific food groups relate to biological
ageing. Therefore, the first step in the process of identifying
lifestyle secrets of successful agers is to find associations
between food groups and biological age in large databases.
Instead of focussing on single nutrients in a hypothesis-
driven way, as was done in previous studies, a data-driven
approach can be more suitable to explore the interactive
network of foods. Accordingly, in this study a large data
set containing lifestyle and methylation data will be anal-
ysed using Copula Graphical Models (CGMs). This statis-
tical method, with an emphasis on exploration and iden-
tification, as opposed to methods focused on magnitude
and causality, allows for a comprehensive understanding of
biological ageing. As CGMs enable independent analysis
of covariates, the statistical tool is highly relevant for this
type of complex and multivariate nutritional data [19].
The exploratory method can be applied to visualise condi-
tional dependence relations between variables in a graph-
ical network. To summarize, a data-driven approach in a
suitable data set is needed to identify specific dietary habits
in light of ageing in an objective and open-minded fash-
ion. Therefore, the aim of this study is to discover food
groups that are directly related to biological ageing, using
CGMs.

Methods

A summary of the methods is provided below; further details
of the study design, data collection and statistical analysis are
available in Appendix 1 (Supplementary Methods).
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Study design

The present study is a preregistered (Open Science Frame-
work; osf.io/r24pj) secondary analysis of the Women’s
Health Initiative (WHI), a large cohort study of post-
menopausal women based in North America. Baseline data
from two WHI subsamples with available DNAm data
(AS315 and BA23) were used in the present study for
exploratory analysis [20–22]. The cross-sectional nutritional,
lifestyle and socio-behavioural data were combined to
construct exploratory models of variables associated with
biological ageing.

The second-generation epigenetic clock PhenoAge is cho-
sen predictor of biological age in this study, as it incorporates
age-related and disease phenotypes in combination with
chronological age, thereby being able to estimate health span
outcomes and mortality (in contrast to the first-generation
clocks HorvathAge and HannumAge) [3, 17]. DNAm was
measured from whole-blood using the Illumina Infinium
HumanMethylation450 BeadChip [21, 22], and used to
calculate PhenoAge acceleration (DNAm PhenoAgeAccel)
via an online software (https://dnamage.genetics.ucla.edu/
new). This tool estimates DNAm PhenoAgeAccel adjusted
for chronological age, by calculating the relative difference
between chronological age and biological age estimated by
PhenoAge. Dietary intake was assessed at baseline using the
WHI Food Frequency Questionnaire (FFQ). For our analy-
sis, two data sets containing FFQ data were used: one data
set containing item-level data and the other one containing
MyPyramid Equivalents Database 2.0 (MPED) food groups
measures.

Statistical analysis

Descriptive statistics were stratified into quartiles of age
acceleration and presented as means ± SD for continuous
variables with normal distribution, as medians (25th–75th
percentile) for skewed continuous variable, or as numbers
(percentages) for categorical variables. Quartiles are used
for reporting subject characteristics, to show the potential
differences in characteristics for subjects with a decelerated
or accelerated ageing. Descriptive analyses were performed
using R version 4.1.3.

To examine the relations between the selected nutri-
tional, lifestyle, sociodemographic variables and epigenetic
age acceleration, CGMs were used. CGMs are probability
structures that infer conditional dependence relationships
between variables in a graph, where nodes (i.e. variables)
are connected by edges [23]. By adjusting every associa-
tion for all other variables in the data set, CGM deals
with an extensive number of confounders in an objective
way. This adjustment is especially important for examin-
ing the potential effects of lifestyle/demographic covari-
ates (especially age, smoking status, BMI, waist-to-hip ratio
(WHR), blood pressure and physical activity) on DNAm,
as it deals with the potential collinearity of the covariates.
The R package ‘nutriNetwork’ (version 0.1.2) was used to
reconstruct the food group–age acceleration networks, and

selectnet was used to select the most optimal (sparse) network
based on extended Bayesian information criteria. Bootstrap-
ping was performed to determine the uncertainty of each
found association, and a sensitivity analysis was performed
amongst BMI, physical activity level and data set-specific
strata.

Results

Subject characteristics

The analytic sample consisted of 3,990 postmenopausal
women from diverse ethnic backgrounds. Mean chrono-
logical age was 63.3 ± 7.1 years. Characteristics of the
study population were stratified into quartiles of DNAm
PhenoAgeAccel, as presented in Table 1. Whilst character-
istics were comparable across quartiles, subjects with higher
DNAm PhenoAgeAccel had an increased BMI, WHR, ele-
vated blood glucose and insulin levels (P < 0.001; ANOVA),
and a lower level of education (P < 0.001; chi-squared test).
Average total energy intake was below the estimated calorie
needs range from 1,600 to 2,400 kcal/day for adult women
[24]. Notably, most subjects were overweight (median BMI
28.9 kg/m2 (IQR: 25.3–33.1 kg/m2)), had a relatively high
systolic blood pressure (SBP) (130.3 ± 18.0 mmHg) and
high prevalence of arthritis (49%). Most subjects had a
low level of physical activity, with a median moderate to
strenuous activity of 10 min per week.

Findings

The focus of this study was on partial correlations in the
main CGM networks with a certainty of ≥95%. Table 2
gives an overview of the associations between DNAm Phe-
noAgeAccel and food groups based on the MyPyramid food
group measure, lifestyle and sociodemographic variables and
blood biomarkers. Positive direct associations (detrimental;
red triangles) indicate that greater values of the variable (e.g.
higher intake of the food group) were related to accelerated
ageing, whereas negative direct associations (beneficial; green
triangles) were related to decelerated ageing (i.e. PhenoAge
deceleration). The partial correlation coefficients of the esti-
mated CGM (rho as selected via computational procedure
(Supplementary Methods) = 0.001) are presented in Sup-
plementary Figure S2. Decelerated ageing was associated
with poultry (96% certainty), nuts (96% certainty), discre-
tionary fat (solid and oil, with both 99% certainty), diastolic
blood pressure (DBP) (99% certainty), education (97%
certainty) and osteoporosis (97% certainty) (Supplemen-
tary Table S3). Accelerated ageing was associated with eggs
(96% certainty), organ meat (97% certainty), sausages (95%
certainty), cheese (96% certainty), legumes (97% certainty),
starchy vegetables (100% certainty), added sugar (97% cer-
tainty), SBP(97% certainty), BMI (100% certainty), WHR
(100% certainty), being American-Indian or Alaskan Native
(98% certainty), being Asian or Pacific Islander (96% cer-
tainty), having a race other than American-Indian/Alaskan
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Food groups and biological ageing

Table 1. Baseline characteristics and lifestyle variables, stratified by quartiles of PhenoAgeAccel. Values are mean (SD),
median (IQR) or n (%)

Decelerated ageing Accelerated ageing

Total Q1 Q2 Q3 Q4
(−33.0 to −4.4 years) (−4.4 to −0.3 years) (−0.3 to 3.9 years) (3.9–34.4 years)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N 3,990 998 997 997 997
Age (years) 63 (7) 63 (7) 63 (7) 63 (7) 63 (7)
PhenoAgeAccel (years) −0.2 (6.4) −8.1 (3.4) −2.3 (1.12) 1.6 (1.2) 8.0 (3.7)
Race/ethnicity (%)

American Indian or Alaskan Native 49 (1.2) 10 (1.0) 6 (0.6) 19 (1.9) 14 (1.4)
Asian or Pacific Islander 128 (3.2) 24 (2.4) 45 (4.5) 38 (3.8) 21 (2.1)
Black or African American 1,119 (28.0) 288 (28.9) 258 (25.9) 279 (28.0) 294 (29.5)
Hispanic/Latino 666 (16.7) 164 (16.4) 165 (16.5) 155 (15.5) 182 (18.2)
White (not Hispanic) 1,995 (50.0) 506 (50.7) 516 (51.8) 494 (49.5) 479 (48.0)
Other 33 (0.8) 6 (0.6) 7 (0.7) 12 (1.2) 8 (0.8)

Education (%)
Did not go to school 5 (0.1) 2 (0.2) 1 (0.1) 1 (0.1) 1 (0.1)
Grade school (1–4 years) 30 (0.8) 4 (0.4) 5 (0.5) 10 (1.0) 11 (1.1)
Grade school (5–8 years) 124 (3.1) 36 (3.6) 29 (2.9) 24 (2.4) 35 (3.5)
Some high school (9–11 years) 260 (6.6) 65 (6.6) 63 (6.4) 61 (6.2) 71 (7.2)
High school diploma or GEDa 735 (18.6) 166 (16.8) 189 (19.1) 184 (18.6) 196 (19.8)
Vocational or training school 505 (26.6) 133 (13.5) 119 (12.0) 136 (13.8) 117 (11.8)
Some college or associate degree 1,052 (26.6) 245 (24.8) 266 (26.9) 266 (26.9) 275 (27.8)
College graduate or baccalaureate 347 (8.8) 91 (9.2) 89 (9.0) 91 (9.2) 76 (7.7)
Some post-graduate or professional 339 (8.6) 91 (9.2) 85 (8.6) 86 (8.7) 77 (7.8)
Master’s degree 481 (12.2) 136 (13.8) 123 (12.4) 113 (11.4) 109 (11.0)
Doctoral degree 77 (1.9) 18 (1.8) 21 (2.1) 16 (1.6) 22 (2.2)

Smoking pack-years 0.0 (0.0–12.5) 0.0 (0.0–7.5) 0.0 (0.0–12.5) 0.0 (0.0–12.5) 0.0 (0.0–12.5)
Alcohol intake (servings/week) 0.0 (0.0–1.1) 0.0 (0.0–1.1) 0.0 (0.0–1.4) 0.0 (0.0–1.0) 0.0 (0.0–1.1)
Physical activityb 10.0 (0.0–100.0) 10.0 (0.0–105.0) 10.0 (0.0–100.0) 10.0 (0.0–100.0) 10.0 (0.0–90.0)
BMI (kg/m2) 29.6 (6.1) 28.8 (5.5) 29.4 (6.1) 29.9 (6.2) 30.6 (6.4)
Energy intake (kcal/day) 1,572 (1,180–2,028) 1,579 (1,192–1,984) 1,556 (1,170–2,083) 1,580 (1,164–1,989) 1,575 (1,177–2.071)
Total vegetable intakec 1.4 (0.7) 1.4 (0.7) 1.4 (0.6) 1.4 (0.6) 1.3 (0.7)
Total fruit intakec 1.4 (0.7) 1.5 (1.0) 1.4 (1.0) 1.4 (0.9) 1.4 (0.9)
Total dairy intakec 1.6 (1.2) 1.5 (1.1) 1.6 (1.3) 1.6 (1.3) 1.6 (1.3)
Total meat intaked 3.9 (2.4) 3.8 (2.2) 3.9 (2.6) 3.9 (2.4) 4.0 (2.3)
Total grain intaked 5.2 (2.8) 5.2 (2.8) 5.2 (2.8) 5.2 (2.9) 5.1 (2.8)
Systolic blood pressure (mmHg) 130.3 (18.0) 130.0 (17.9) 130.0 (17.8) 130.0 (18.5) 131.7 (17.6)
Diastolic blood pressure (mmHg) 76.2 (9.2) 76.2 (9.3) 76.2 (9.2) 76.2 (9.3) 76.2 (9.0)
WHR 0.83 (0.1) 0.82 (0.1) 0.82 (0.1) 0.83 (0.1) 0.83 (0.1)
Blood biomarkers (mg/dL)e

n 2,200 562 565 562 511
Glucose 103.1 (31.7) 99.3 (28.0) 101.7 (27.0) 104.3 (34.1) 107.3 (36.7)
Insulin 12.2 (8.8) 10.6 (5.7) 11.8 (7.1) 12.3 (9.2) 14.4 (12.0)
Total cholesterol 223.9 (39.3) 228.2 (42.1) 225.1 (40.1) 221.8 (36.0) 220.0 (38.0)
HDL cholesterol 57.8 (15.0) 59.4 (14.8) 58.7 (16.0) 57.0 (14.4) 56.0 (14.5)
LDL cholesterol 136.0 (35.7) 139.7 (36.5) 135.2 (37.1) 134.4 (33.7) 134.1 (35.4)
Triglycerides 151.2 (85.2) 144.6 (77.5) 156.5 (104.0) 153.4 (82.9) 150.1 (71.1)

aGeneral Educational Development programme (alternative to traditional high school programme). bIn minutes per week of moderate to strenuous activity. cIn
number of cup equivalents. dIn ounce equivalents. eBlood biomarkers were measured in only 55% of the subjects (n = 2,200).

Native, Asian/Pacific Islander, Black/African-American, His-
panic/Latino or White (96% certainty), smoking pack-years
(99% certainty), CVD (97% certainty) and arthritis (97%
certainty).

Supplementary Figure S3 shows the estimated main
CGM network (rho as selected via computational procedure
(Supplementary Methods) = 0.01) including food items,
DNAm PhenoAgeAccel and lifestyle and sociodemographic
variables. Corresponding partial correlation matrix is pre-
sented in Supplementary Figure S4. Based on bootstrapping,

negative direct associations between DNAm PhenoAgeAccel
and peaches, pizza and butter were found, with 99, 97
and 96% certainty, respectively (Supplementary Table S3).
Positive direct associations were found between DNAm
PhenoAgeAccel and lunch meat, fat, BMI and WHR, with
certainty level of 97, 100, 100 and 99%, respectively.

After stratifying for BMI, physical activity, disease status
and data set found associations with DNAm PhenoAgeAccel
kept recurring in most of the sub-analyses (Tables 2 and 3),
indicating high sensitivity of the food group–age acceleration
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Table 2. Overview of the food groups based on MPED 2.0, lifestyle and demographic variables, and blood biomarkers
associated with PhenoAgeAccel, depicted for the main CGM and subgroups of the sensitivity analyses. The green/downward-
pointing and red/upward-pointing triangles indicate a negative (beneficial) and positive (detrimental) association with
PhenoAgeAccel, respectively. The probability of being present in all bootstrap samples is shown per association, where 1
means that the association was consistent in all bootstrap samples (i.e. a certainty of 100%).

Main model Sensitivity analyses

Direction of
association

Certainty Low BMI High BMI Low PAa High PAa Diseasedb Non-
diseased

AS315c BA23c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Food groups Eggs 0.96 0.97 0.99 0.95 0.97 0.97 0.99 0.99 0.96
based on MPED Organ meat 0.97 1 0.95 1 0.98 0.98 0.99 1 0.98
2.0 Sausages 0.95 – – 0.96 0.99 0.94 0.96 – –

Poultry 0.96 0.97 0.94 0.95 0.93 0.96 1 0.98 0.96
Nuts 0.96 0.99 0.96 0.98 0.99 0.97 – 0.98 0.92
Cheese 0.96 – 0.97 – 0.96 1 – 0.94 0.95
Legumes 0.97 0.95 0.95 0.95 0.99 – 0.96 0.96 0.96
Starchy vegetables 0.98 0.95 0.99 0.96 0.93 0.96 0.98 0.97 0.96
Discretionary oil 0.99 – 0.99 – – 0.96 0.93 0.99 0.97
Discretionary solid fat 0.99 0.98 0.96 0.95 1 0.98 0.96 0.98 0.91
Added sugar 0.99 – 1 – 0.97 – 0.98 0.96 0.94

Lifestyle and BMI 1 0.94 1 0.99 1 1 1 1 0.99
demographics WHR 1 1 1 1 1 0.98 1 1 1

Systolic blood pressure 0.99 0.99 0.98 0.99 – 0.95 1 1 –
DBP 0.99 0.97 0.94 0.98 0.98 0.92 0.97 0.99 0.99
Smoking pack-years 1 0.95 1 0.95 0.98 1 0.95 0.97 0.99
Education 0.97 1 – 1 0.98 – 0.98 0.98 –
American-Indian race 0.97 – 0.98 – 0.93 0.97 – 0.93 –
Asian race 0.98 – 0.98 – 0.94 0.96 – 0.99 –
Other race 0.99 – 0.98 – – 0.98 – 0.94 –
Osteoporosis 0.97 0.95 0.97 0.97 0.98 0.97 0 0.98 0.98
CVD 0.96 – 0.94 – – 0.94 0 0.95 0.91
Arthritis 0.95 0.94 0.97 0.97 0.98 – 0 0.99 –

Blood Glucose 0.99
biomarkersd HDL cholesterol 0.95

Insulin 1
Total cholesterol 0.95
Triglycerides 1

aPA refers to physical activity. bThe diseased subgroup includes subjects (ever) diagnosed with diseases that might influence DNAm levels, including cancer, arthritis,
osteoporosis and CVD. cAS315 and BA23 refer to cohort subsamples. dThe CGM network with blood biomarkers included only 55% of the subjects (n = 2,200),
therefore sample size was too small for bootstrapping. Values in bold indicate the certainties of the main model, values in italics indicate certainties <0.95, empty
boxes (−) indicate the absence of a partial correlation.

networks. Especially the relationships between DNAm
PhenoAgeAccel and eggs, organ meat, WHR, smoking
pack-years and osteoporosis showed a certainty of ≥0.95
in all subgroups. Conversely, certainty of associations
between DNAm PhenoAgeAccel and sausages, butter, pizza,
American-Indian race, Asian race, other race and CVD did
not meet the certainty threshold of 0.95 in the majority of
the sensitivity analyses.

Discussion

This study aimed to discover food groups that are directly
associated with biological ageing in a multi-ethnic cohort of
postmenopausal women. In contrast to previous

hypothesis-driven studies, this study used CGM as a
powerful exploratory statistical tool. CGM is able to
reconstruct complex associations amongst variables in
multivariate data, whilst adjusting for all other variables
in the data set. We found that peaches, poultry, nuts, butter,
discretionary oil and discretionary solid fat were associated
with decelerated ageing. Eggs, organ meat, sausages, cheese,
legumes, starchy vegetables, added sugar, lunch meat and
fat added after cooking were associated with accelerated
epigenetic ageing.

The relationships between increased PhenoAgeAccel and
intake of eggs and organ meat were consistent in all sensitiv-
ity analyses. Both eggs and organ meat are high in choles-
terol, protein and fat. Cholesterol and (saturated) fat are
associated with negative health outcomes and play a critical
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Table 3.Overview of the food items, lifestyle and demographic variables, and blood biomarkers associated with PhenoAgeAc-
cel, depicted for the main CGM and subgroups of the sensitivity analyses. The green/downward-pointing and red/upward-
pointing triangles indicate a negative (beneficial) and positive (detrimental) association with PhenoAgeAccel, respectively.
The probability of being present in all bootstrap samples is shown per association, where 1 means that the association was
consistent in all bootstrap samples (i.e. a certainty of 100%).

Main model Sensitivity analyses

Direction of
association

Certainty Low BMI High BMI Low PAa High PAa Diseasedb Non-diseasedAS315c BA23c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Food items Peaches,

nectarines, plums
0.99 0.81 0.99 0.99 0.84 0.99 0.85 0.96 0.83

Lunch meat 0.97 – 1 0.98 0.84 0.98 0.86 0.98 0.74
Pizza 0.97 0.78 0.94 0.68 0.89 0.82 0.81 0.89 0.83
Butter 0.96 0.98 0.82 0.98 0.83 0.82 0.91 0.89 0.89
Fatd 1 1 0.88 1 0.94 0.87 0.98 0.99 0.96

Life-style BMI 1 0.59 1 0.91 1 1 0.96 1 0.75
WHR 0.99 1 0.86 0.98 0.95 0.86 0.97 0.99 0.7

aPA refers to physical activity. bThe diseased subgroup includes subjects (ever) diagnosed with diseases that might influence DNAm levels, including cancer, arthritis,
osteoporosis and CVD. cAS315 and BA23 refer to cohort subsamples. dThe CGM network with blood biomarkers included only 55% of the subjects (n = 2,200),
therefore sample size was too small for bootstrapping. dFats added after cooking (incl. butter, margarine, sour cream, oils added to vegetables, beans, rice and
potatoes). Values in bold indicate the certainties of the main model, values in italics indicate a certaintycertainties <0.95, empty boxes (−) indicate the absence of
a partial correlation.

role in the development of non-alcoholic fatty liver disease
and CVD [25–27]. Protein is shown to be detrimental
for metabolic health and longevity by stimulation of the
mechanistic target of rapamycin [28]. Lunch meat showed
an association with increased PhenoAgeAccel, which was
consistent in half of all sensitivity analyses. These lunch meats
are all processed, relatively fat and salty and commonly made
of pork or beef. Consumption of processed meat is associated
with telomere attrition, increased risk of cancer, type 2
diabetes, CVD and mortality [29, 30]. Further research is
needed to investigate which processing factors (e.g. smoking,
curing, dehydration of meat, use of additives and fillers) con-
tribute most significantly to the detrimental health effects.
Potatoes and starchy vegetables (e.g. corn, sweet potatoes,
yams and cassava) showed a direct positive association with
biological age acceleration. Although separately grouped in
our study, potatoes and starchy vegetables can be classified in
the same category, according to the USDA [31]. Compared
with non-starchy vegetables, starchy vegetables contain less
fibre, leading to less satiety and higher caloric intake [31]. In
addition, starchy vegetables have a relatively high glycaemic
load, which is related to several adverse health outcomes,
such as higher insulin responses [32], weight gain [32], CVD
[33], type 2 diabetes [34], certain cancer types [35] and
mortality [33]. Besides, starchy vegetables such as corn often
have a reduced antioxidant activity, because of industrial
processing by canning [36]. Worth mentioning, in our study
no distinguishment was made for preparation method of
potatoes and/or starchy vegetables, making it difficult to
draw firm conclusions about their relation with biological
ageing.

An interesting finding is the direct association between
decreased PhenoAgeAccel and the food group ‘peaches’,
‘nectarines’ and ‘plums’. These three stone fruits are sources
of vitamin A, C, E and phenolic compounds [37], which
all act as antioxidants, thereby protecting cells from oxida-
tive damage [38]. In addition, as visualised in Supplemen-
tary Figure S3, the variable ‘PEACH’ act as a hub for intake
of other fruits. Since peach is not the most commonly
eaten fruit, it can be argued that eating peaches represents
a phenotype with high fruit intake, or even with a healthy
lifestyle in general. The beneficial effects of poultry and nuts
on healthy ageing were in line with previous studies [39–
41]. The association between decelerated ageing and solid
fats, such as butter and dairy-derived fats, that comprise
primarily saturated fatty acids (SFAs), was rather unexpected.
However, recent evidence has questioned the dietary rec-
ommendations to minimise SFA intake, as reducing SFA
intake seems to have no beneficial effects on CVD and
mortality [42, 43]. Rather, a multi-ethnic study in the USA
showed that blood levels of pentadecanoic acid, the SFA
that is strongly associated with self-reported butter intake,
was associated with reduced CVD and CHD risk [44].
Notably, fat added after cooking (e.g. butter, margarine, sour
cream, oils added to vegetables, beans, rice and potatoes)
was associated with increased PhenoAgeAccel. This aligns
with the findings that excessive intake of high-fat foods may
contribute to higher body weight and metabolic dysfunction
[45]. However, discerning the specific components of fats
that impact biological ageing is challenging, since our study
did not differentiate between various fat types. Different
fatty acid profiles should be taken into account in future
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research into fats and biological ageing. Lastly, the opposite
direction of the SBP and DBP associations with PhenoAge
on one hand, and blood glucose and lipids on the other hand,
deserves some attention. The former might be explained by
the increase in pulse pressure (i.e. the difference between SBP
and DBP) with age, because of arteriosclerosis and vascular
stiffening [46]. The latter is expected given how PhenoAge
is estimated, as glucose is one of the nine clinical biomarkers
of phenotypic age [3].

Strengths and limitations

To our knowledge, this is the first study that used network
analyses to identify relationships between dietary habits
and biological age acceleration. A major strength of this
study is the use of an epigenetic clock to study the complex
process of ageing. The first-generation clocks, HorvathAge
and HannumAge, were strong predictors of chronological
age, but showed only weak associations with age-related
clinical phenotypes, such as physical function and cognitive
performance [17]. Therefore, in this study we used the
second-generation epigenetic clock PhenoAge, which
incorporates age-related and disease phenotypes in com-
bination with chronological age, enabling the estimate of
health span outcomes and time-to-death [3]. The strong
involvement of the epigenome in age-related diseases makes
the epigenetic clock useful for clinical purposes: profiling
of DNAm patterns may be used as an emerging tool to
facilitate diagnosis, prognosis and prediction of pathological
outcomes [47].

The objective explorative approach makes our study
unique and of added value to existing literature. We used
the mathematical method CGM for efficient network
estimation. This method enabled us to use an extensive
set of multivariate data. The large data set of almost 4,000
postmenopausal women has only strengthened these results.
The associations between increased PhenoAgeAccel and
BMI, WHR, smoking pack-years, systolic blood pressure
and also sugar, were as expected and in accordance with
previously reported findings [3, 40, 48–52], thereby being
a form of validation of our CGM model. Our results
revealed conditional dependencies between food groups and
biological ageing. For each direct association, corrections
were made to account for the influence of all other variables
in the model. Since nutritional variables are often correlated
with each other, this proposed exploratory tool is of great
relevance in nutrition research, as it allows us to reveal the
exact food groups that have an effect on ageing. Although
we believe CGMs represent an excellent methodology to
optimise extraction of information from cross-sectional data,
this method is accompanied by some inevitable limitations.
One of the main limitations of CGMs is the inability to
infer causality or direction of relationships, as the edges
lack orientation. However, the drifts in epigenetic age
in these postmenopausal subjects likely reflect years of
adherence to a particular lifestyle. The WHI-FFQ was

developed to assess habitual intake over the past 3 months,
which has been shown to correlate well with habitual intake
over a longer period of time in the past [53]. Therefore, the
likelihood of reverse causality, where changes in epigenetic
age would alter dietary intake, appears to be limited. Still,
causal GMs or interventions are needed to infer causality
and direction of relationships. The second limitation of
the CGM method is the presence of residual confounding.
CGMs adjust every relationship between two variables for
all other variables present in the model. This minimises
subjective selection of confounders, which is a great
advantage over alternative statistical methods. However,
only the confounders that are measured are taken into
account. Since there might be other variables influencing
the relationships, such as processing of food, eating rate or
level of income, inevitable residual confounding remains
present. Therefore, investigating the replicability of our
findings in an independent cohort is highly warranted. Even
though we assessed robustness through bootstrapping and
sensitivity analyses, including the analysis per WHI ancillary
cohort, there remains a chance that our findings could be
cohort-specific. Third, a limitation is present in the absence
of not recalculating PhenoAgeAA by the residual method
for different splits in our sensitivity analyses. Despite this,
we maintain that this methodological limitation likely had
minimal impact on our study’s conclusions, given the large
sample size and the division of the data set into only two
groups, factors that, alongside the central limit theorem,
suggest that variability in PhenoAgeAA calculations across
the cohort would be minimised. Fourth, a limitation of
the CGM method is the inability to acquire magnitude
of relationships, as there will not be any beta coefficient
of the observed associations. For these reasons, in contrast
to other statistical methods such as regression analyses, it
is difficult to understand the clinical value that can be
attributed to the observed relationships. Importantly, CGMs
offer a suitable tool to identify associations between dietary
habits and epigenetic ageing, which may comprise a first
step in developing targeted health-promoting interventions.
Validation studies in which the WHI-FFQ was compared
with other dietary assessment methods, such as food records
or 24-h recalls, showed similar nutrient estimates. Moreover,
the WHI-FFQ is considered to be a similar or even better
measurement of nutrient intake compared with other FFQs
in similar populations [53], and is highly feasible in large
populations as in our study. Biomarkers of nutritional
status might be a more objective and robust measure of
dietary intake than questionnaires relying on self-report
[54]. The study of Lu et al . [55] showed more robust
associations between biological age and plasma biomarkers
measuring dietary intake, than with self-reported dietary
assessment methods. In our sample, some plasma nutritional
biomarkers were assessed (e.g. cholesterol, triglycerides), but
only in 55% of the subjects. In addition, as nutrient intake
via supplements and medication use (e.g. lipid-lowering
drugs) was not taken into account in this study, the plasma
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biomarkers may not capture the complete dietary intake
profile. Also the presence of diseases (e.g. osteoporosis and
rheumatoid arthritis) was based on self-report. Therefore,
further research in this area should focus on more objective
markers of nutritional status and diseases, whether or not in
combination with dietary assessment methods.

Conclusion

In conclusion, we identified several compelling associations
between food groups and biological ageing, using CGMs
as a powerful data-driven exploratory tool. Intake of eggs,
organ meat, sausages, cheese, legumes, starchy vegetables,
added sugar, lunch meat and fat added after cooking was
associated with accelerated biological ageing, whereas intake
of peaches/nectarines/plums, poultry, nuts, discretionary oil
and solid fat was associated with decelerated ageing. Most
results remained similar after stratifying for BMI, physi-
cal activity, data set or disease status, and were congruent
with previous literature, indicating high sensitivity of the
food group–age acceleration networks. Our findings pro-
vide a promising base for regression and intervention stud-
ies to determine causality and magnitude of relationships,
thereby improving the understanding of biological mech-
anisms underlying the interplay between food groups and
biological ageing.
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