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1. Introduction

Anthropogenic emissions drastically altered the global ni-
trogen (N) cycle (Fowler et al., 2013; Galloway et al., 2003;
Vitousek et al., 1997), with human activities becoming the
dominant contribution to the annual release of reactive N to
the atmosphere (Fowler et al., 2015; Galloway et al., 2004).
The increase in anthropogenic emissions arose from accel-
erated fossil fuel burning since the industrial revolution, the
advent of the Haber-Bosch process to create reactive N from
inert atmospheric N2 at the start of the 20th century as well
as an increase in mass transportation and livestock numbers
(Engardt et al., 2017; Erisman et al., 2011). Today, 18% of
the global anthropogenic N fixation can be attributed to
combustion processes, 55% to fertilizer production, and
27% to biological N fixation in agriculture (Fowler et al.,
2015). These activities have created benefits, such as the
support of human nutrition by mineral fertilizers (Erisman
et al., 2008). On the other hand, the release of reactive N
causes considerable damages to human health (Van
Grinsven et al., 2013) and induces changes in natural and
seminatural ecosystems, such as N deposition being one of
the greatest threats to global plant diversity (Bobbink et al.,
2010; Brink et al., 2011; Clark et al., 2013; Erisman et al.,
2008; Soons et al., 2017; Vitousek et al., 1997).

In Europe N emissions and corresponding deposition
increased from preindustrial times till the mid-1980s, fol-
lowed by a decrease since the 1990s (Engardt et al., 2017).
The decline in N emissions is due to a combination of

emission abatement policies and economic transformation
(Erisman et al., 2003). In Europe’s forests, N deposition
caused a variety of changes, including impacts on tree
productivity (De Vries et al., 2006, 2017b; Kahle, 2008),
tree nutrition reflected in foliar nutrient concentrations
(Jonard et al., 2015; Sardans et al., 2016b; Waldner et al.,
2015), sensitivity of trees to biotic and abiotic stress
(Bobbink and Hettelingh, 2011), the composition of un-
derstory vegetation (Dirnböck et al., 2014; van Dobben and
De Vries, 2017) and ectomycorrhizal fungal communities
(van der Linde et al., 2018), to soil chemistry, and increased
leaching of N from forest soils to surface and ground waters
(Dise et al., 2009; Gundersen et al., 2006). In recent de-
cades, much discussion took place to identify the mecha-
nisms as well as the time frame by which forest ecosystems
are impacted by elevated N deposition. The concept of N
saturation (Aber et al., 1989, 1998; Ågren and Bosatta,
1988; De Vries and Schulte-Uebbing, 2019; Lovett and
Goodale, 2011) suggests a set of reactions including loss of
plant species diversity, N losses with seepage water, soil
acidification, and growth reduction. A recent perspective on
the stages of N saturation is depicted in Fig. 13.1.
Ecological understanding is used to determine critical loads
of N deposition defined as “a quantitative estimate of an
exposure to one or more pollutants below which significant
harmful effects on specified sensitive elements of the envi-
ronment do not occur according to present knowledge”
(Nilsson and Grennfelt, 1988). Critical loads underpin
emission protocols at the European scale such as the
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Revised National Emissions Ceilings Directive (NECD)
and are also applied for example in North America (Pardo
et al., 2011; Schindler and Lee, 2010) and Asia (Duan et al.,
2016). Exceedances of critical loads indicate risks of
adverse effects on various aspects of forests, such as tree
nutrition and forest biodiversity (De Vries et al., 2015;
Nordin et al., 2005; Waldner et al., 2015).

A large part of the ecological research in this context
focused on the responses of forest ecosystems to elevated N
deposition resulting in N saturation or the exceedance of
critical loads. However, much less attention was paid to the
potential dynamics of a “recovery” from high N loads
although a decline of N deposition to Europe can be
observed since the 1990s. The average deposition of inor-
ganic N across all land-use types in Europe decreased from
10.3 kg N ha�1 a�1 in 1990 to 6.6 kg N ha�1 a�1 in 2018
(after Engardt et al. (2017), data kindly provided by Mag-
nuz Engardt and David Simpson). The trends are distrib-
uted heterogeneously in space. While many forests in areas
with higher absolute levels of N deposition (e.g., in Central
and Western Europe) experienced a decrease in N inputs,
less clear trends have been reported for Northern Scandi-
navia and parts of Southern Europe (Figs. 13.2 and 13.3).
Note that despite these reductions, 62% of the European
ecosystem area was at risk of eutrophication in 2015 due to
the exceedance of the critical load for eutrophication
(Slootweg et al., 2015).

This chapter addresses the response of European forest
ecosystems to decreasing N deposition. We review pub-
lished results from observational and experimental studies
on well-monitored parameters: Soil acidification and
eutrophication, foliar chemistry, ground vegetation
composition, tree vitality, and tree growth. This set of in-
dictors covers a range between endpoint metrics, i.e., as-
pects of the environment that are directly relevant to people
(e.g., tree growth) and midpoint metrics, i.e., parameters

FIG. 13.1 Hypothetical relationship between the
stage of N saturation and the effects on terrestrial
ecosystems in terms of soil processes, vegetation
changes and growth. It illustrates the trade-off between
the initial positive impact of nitrogen enrichment on
tree growth and related carbon sequestration on the one
hand and the negative impact on ecosystem services
(e.g., water quality regulation by nitrogen retention)
and on biodiversity on the other hand. This figure
is adapted from De Vries and Schulte-Uebbing (2019),
being an update of the figure by Aber et al. (1998). The
figure is reused with permission.

FIG. 13.2 Relative change of throughfall deposition of inorganic N at
the intensive monitoring sites of the UNECE ICP forests program network
between 2000 and 2015 (redrawn after Schmitz et al., 2018). Large dots
indicate statistically significant trends; trends represented by small dots are
not statistically significant.
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that are well-suited to measure progress toward desired
environmental states (e.g., plant tissue concentrations)
(Rowe et al., 2017). While results are limited to Europe,
references have also been included relating to observations
and experiments in the United States (US). For a detailed
overview of impacts of decreased N deposition in the US,
we refer to (Gilliam et al., 2019, 2023).

2. Soil acidification and eutrophication

Atmospheric deposition of reactive N compounds such as
nitrate (NO3

�) and ammonium (NH4
þ) contributes to acidi-

fication and eutrophication of forest soils (Driscoll et al.,
2006). Soil acidification involves accelerated losses of
mineral nutrients (base cations, i.e., Ca2þ, Kþ and Mg2þ)
and potential for the mobilization of toxic aluminum (Al),
both of which can compromise tree health (Driscoll et al.,
2006; Boudot et al., 1994; De Vries et al., 2014; De Wit
et al., 2010; Cecchini et al., 2019). N deposition contributes
to elevated soil solution NO3

� concentrations and soil N
stocks (Driscoll et al., 2001; Wessel et al., 2021). This
enrichment can have a variety of effects on trees and
ground vegetation, covered in the other chapters of the
volume. NO3

� concentrations in soil solution are a good
indicator for the soil N status. Important determinants of
NO3

� leaching are the C/N ratio of the forest floor

(Gundersen et al., 1998a) and N deposition rates (Dise and
Wright, 1995), as well as a variety of other site and stand
characteristics controlling the ecosystem N cycling (Lovett
and Goodale, 2011). Generally, elevated NO3

� concentra-
tions in soil solution are an indication of N availability in
excess of biotic demand. Spatial patterns of soil solution
NO3

� are highly variable but partly reflect spatial patterns in
N deposition, with higher levels in the Netherlands,
Belgium, parts of Germany, Switzerland, Northern Italy
and Denmark and lower levels in parts of France, Norway,
Northern Sweden, and Finland (Balestrini et al., 2019;
Boxman et al., 2008; Braun et al., 2020; De Vries et al.,
2007; Evans et al., 2001; Gundersen et al., 1998a; Jonard
et al., 2012; Mellert et al., 2008; Moffat et al., 2002; Pan-
natier et al., 2011; Pihl Karlsson et al., 2011; Rothe et al.,
2002; Ukonmaanaho et al., 2014; van der Heijden et al.,
2011; Verstraeten et al., 2012). There are relatively fewer
reports of elevated NO3

� in soil solution in Southern and
Eastern Europe, and N deposition is mostly lower in these
regions (Waldner et al., 2014).

2.1 Observational studies

At the European scale, studies examining trends in soil
solution N show weak or nonsignificant trends. For
example, Johnson et al. (2018) found a weakly significant
(P < .1) reduction in NO3

� concentrations at 40e80 cm
depth corresponding to a decrease of 30% over 10 years
when analyzing data from 162 plots across Europe between
1995 and 2012. They found no significant trend in
10e20 cm depth. An earlier analysis (from the early 1990s
to 2006) using a similar dataset found mostly nonsignificant
trends in soil solution inorganic N concentrations (Iost
et al., 2012). On the other hand, decreasing trends of
inorganic N in runoff water were found to be more common
than increasing trends at 17 plots across Europe between
1990 and 2017 (Forsius et al., 2021). These studies did not
focus specifically on areas with high N deposition and
included many sites from N limited areas of Northern
Europe. Within Europe, national and regional studies show
variable results. For example, in the Netherlands, Flanders,
Northern Italy and Switzerland soil solution NO3

� declined
in response to decreasing N deposition (Balestrini et al.,
2019; Boxman et al., 2008; Braun et al., 2020; Verstraeten
et al., 2012). In contrast, an intensive study at the site
Solling in Germany found NO3

� continued leaching from a
spruce (Picea abies) stand and increased at a beech (Fagus
sylvatica) stand despite decreasing N deposition between
1973 and 2013, indicating a reduction of the N retention
capacity of the soil over time (Meesenburg et al., 2016).
Other studies found no trends in NO3

� soil solution con-
centrations during periods of stable N deposition
(e.g., Alewell et al., 2000; Johnson et al., 2013; Pannatier
et al., 2011). At heavily acidified forests in the Czech

FIG. 13.3 Average deposition of oxidized, reduced and total N between
1900 and 2050 to the EU28, Norway and Switzerland according to EMEP
model results (after Engardt et al. (2017), data kindly provided by Magnuz
Engardt and David Simpson). Vertical dashed lines indicate the years 1990
and 2018. Future reductions are expected to be small and inorganic N
deposition is likely converging to a level approximately twice as high
compared to 1900.
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Republic, NO3
� concentrations in soil solution and inor-

ganic N stream export declined despite no decrease in N
deposition. This was due to an increase in N uptake by
vegetation and changes in organic matter cycling as the soil
became less acidic, related to decreasing S deposition
(Oulehle et al., 2011; �Svik et al., 2020).

Where soil solution NO3
� decreased, it is often accom-

panied by a decrease in base cations and total Al concen-
trations, while soil solution pH and acid neutralizing
capacity (ANC) showed no uniform trends in recent de-
cades (Iost et al., 2012; Johnson et al., 2018). Recovery
from acidification primarily occurs on poorly buffered,
acidic soils while acidification progresses on better buffered
soils despite large decreases in sulfur (S), and to a lesser
degree, N deposition (Johnson et al., 2018). The absence of
a uniform recovery of soil solution from acidification
agrees with trends in bulk soil chemistry. Cools and De Vos
(2011) found that base saturation increased in soils with
low buffering capacity but decreased in soils with initially
higher base saturation across Europe. A similar result was
found for the Netherlands between 1990 and 2015 (De
Vries et al., 2017a). Table 13.1 summarizes results on
trends of soil solution eutrophication and acidification sta-
tus from studies across Europe.

2.2 Experimental studies

In addition to observational studies, field experiments also
provide information on changes of the soil chemical
status under decreasing N deposition. In this context,
the NITREX and EXMAN N manipulation experiments
at several sites in Europe are a valuable source of infor-
mation (Wright and Rasmussen, 1998). At three NITREX
sites, throughfall N deposition was decreased from
36e50 kg N ha�1 a�1 to 5e16 kg N ha�1 a�1 by roofing.
A decline in N leaching became apparent within the first
3 years of treatment at all three sites (Beier et al., 1998;
Boxman et al., 1998; Emmett et al., 1998; Gundersen et al.,
1998b). A similarly fast response in N leaching has been
observed from a roofing experiment in southern Norway
(Wright et al., 1993). These results indicate that continuous
high N inputs are required to sustain N leaching in most
forest ecosystems, suggesting that decreasing deposition
quickly translates into improvements in soil water quality
(Emmett et al., 1998). This, however, also implies that
considerable amounts of N deposited over the last decades
are retained and that the return of the ecosystem to the
original N status is potentially slow (Gundersen et al.,
1998b). In contrast to these findings, also unchanged or
increased N leaching despite decreased deposition was
occasionally reported from observational (Meesenburg
et al., 2016) and experimental studies (Emmett et al., 1998).

2.3 Summary

Long-term monitoring data provides information on NO3
�

concentrations in soil solution as an indicator for the soil N
status. Despite considerable heterogeneity, indications for a
decreasing trend in soil solution NO3

� concentrations at the
European scale exist. Experimental studies tend to report a
faster and more pronounced reaction of soil solution NO3

�

concentrations compared to the findings from large-scale
observational studies. In the experiments the magnitude
and speed of decrease in N supply was larger compared to
trends in N deposition in most parts of Europe. Further-
more, longer-term changes in soil microbial activity
(e.g., mineralization rates) might be reflected to a larger
degree in the observational studies compared to experi-
mental studies which often focus on the time period
immediately after the onset of the artificial decrease of N
supply. Nevertheless, both types of studies suggest in-
dications of a response in soil solution NO3

� concentrations
to decreases in N deposition. Soil acidification shows
nonuniform tendencies across Europe despite large-scale
decreases in N, and especially S, deposition.

3. Understory vegetation

Forests provide habitat for understory vegetation, bryo-
phytes, lichens as well as microbial and animal commu-
nities. While N is a limiting resource for many organisms
(Vitousek and Howarth, 1991), the efficiency with which
it is used is species-specific (Chapin, 1980). As a
consequence, more N causes some species to thrive on
the expense of others, usually causing a net loss in spe-
cies diversity (Suding et al., 2005). Besides this effect on
interspecific competition, changes in N deposition can
also modify herbivory, interactions with fungi, and
invasibility by exotic species, thereby affecting under-
story species composition (Gilliam, 2006). In managed
forests these mechanisms are rarely reflected in the
composition of the main tree species for they are typically
intentionally chosen by forest managers. In contrast,
forest understory vegetation, bryophytes, lichens, my-
corrhiza, and soil fauna can be expected to be affected by
N availability in addition to other environmental factors
such as light availability, temperature, moisture, and nu-
trients other than N. The responses of these groups to
elevated N deposition encompass changes in the abun-
dance of species, alteration in the identity of species
(species composition), and pauperization of local and
regional species diversity (Bobbink et al., 2010; Farrer
and Suding, 2016; Hautier et al., 2009; Nijssen et al.,
2017). Fig. 13.4 exemplifies effects of N deposition for
lichen diversity.
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TABLE 13.1 Summary of trends in soil solution chemical characteristics indicative for eutrophication and acidification status (concentration of NO3
L, base

cations (BC, i.e., Ca2D, KD and Mg2D) and total aluminum (Altot), pH, equivalent ratio of BC and Altot (BC:Altot), acid-neutralizing capacity

(ANC) and ionic strength) from studies across Europe. Arrows indicate the direction of the trend (increase, mixed/complex results with a

tendency for increase, no trend, mixed/complex results with a tendency for decrease, decrease).

Effect

Trend

[ [/4 4 4/Y Y

NO3
� Meesenburg et al. (2016)

(Germany)
Johnson et al. (2013) (Ireland),
Löfgren and Zetterberg
(2011), Pihl Karlsson et al.
(2011) (Sweden), Vanguelova
et al. (2010) (UK)

Pannatier et al. (2011)
(Switzerland), Sawicka et al.
(2016) (UK), Ukonmaanaho
et al. (2014) (Finland)

Boxman et al. (2008)
(Netherlands), Oulehle et al.
(2011) (Czech Republic), Ver-
straeten et al. (2012), Jonard
et al. (2012) (Wallonia), Ver-
straeten et al. (2017) (Flan-
ders), Balestrini et al. (2019)
(Italy), Braun et al. (2020)
(Switzerland)

pH Akselsson et al. (2013), Löfg-
ren et al. (2011) (Sweden),
Verstraeten et al. (2016)
(Flanders)

Vanguelova et al. (2010),
Sawicka et al. (2016) (UK),
Fölster et al. (2003), Löfgren
and Zetterberg (2011), Pihl
Karlsson et al. (2011) (Swe-
den), Johnson et al. (2013)
(Ireland)

Boxman et al. (2008)
(Netherlands), Jonard et al.
(2012) (Wallonia)

BC Vanguelova et al. (2010)
(UK), Johnson et al. (2013)
(Ireland)

Pannatier et al. (2011)
(Switzerland), Sawicka et al.
(2016) (UK), Cecchini et al.
(2019) (Italy)

Jonard et al. (2012) (Wallo-
nia), Verstraeten et al. (2012)
(Flanders), Boxman et al.
(2008) (Netherlands), Fölster
et al. (2003), Akselsson et al.
(2013) (Sweden)

Altot Jonard et al. (2012) (Wallo-
nia), Fölster et al. (2003)
(Sweden)

Sawicka et al. (2016) (UK) Vanguelova et al. (2010),
Löfgren et al. (2011), Löfgren
and Zetterberg (2011), Pihl
Karlsson et al. (2011) (Swe-
den), Johnson et al. (2013)
(Ireland)

Verstraeten et al. (2012) (Flan-
ders), Boxman et al. (2008)
(Netherlands)

BC:Altot Meesenburg et al. (2016)
(Germany)

Pannatier et al. (2011)
(Switzerland)

Verstraeten et al. (2012) (Flan-
ders), Braun et al. (2020)
(Switzerland)

ANC Akselsson et al. (2013), Löfg-
ren et al. (2011) (Sweden),
Verstraeten et al. (2012)
(Flanders)

Fölster et al. (2003), Löfgren
and Zetterberg (2011), Pihl
Karlsson et al. (2011)
(Sweden)

Ionic
strength

Löfgren and Zetterberg (2011)
(Sweden)

Löfgren et al. (2011) (Swe-
den), Verstraeten et al. (2012)
(Flanders), Vanguelova et al.
(2010) (UK)
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3.1 Observational studies

While there are several observational studies on the reac-
tion of forest understory diversity to elevated N deposition,
to our knowledge, none of them focused specifically on the
response to declining N deposition. These studies confirm
an increase in nitrophilic forest understory plant species on
the expense of oligotrophic species both in European-wide
(Dirnböck et al., 2014; van Dobben and De Vries, 2017) as
well as regional contexts (Bobbink and Hettelingh, 2011;
Heinrichs and Schmidt, 2016; Keith et al., 2009; Roth et al.,
2015). Besides N deposition, litter quality, light availabil-
ity, density of large herbivores, and differences in forest
management were also important drivers of change in un-
derstory plant communities (Bernhardt-Römermann et al.,
2015; Perring et al., 2017; Verheyen et al., 2012). These
changes in species composition do not, however, seem to
be accompanied by a broad scale, synchronized decline in
plant diversity in European forests (Dirnböck et al., 2014;
van Dobben and De Vries, 2017; Verheyen et al., 2012).

In contrast, elevated N deposition has clearly contrib-
uted to a dramatic diversity loss in epiphytic lichens in
many European forests (Bobbink and Hettelingh, 2011;
Giordani et al., 2014; Hauck et al., 2013; Mayer et al.,
2013). Similarly, major impacts in the community
composition and diversity of mycorrhiza were identified at
the European level (Suz et al., 2014; van der Linde et al.,
2018) and in various regional studies (Bobbink and Het-
telingh, 2011, references therein). Furthermore, diversity

effects of N deposition on one receptor can indirectly
affect others such as soil fauna and mammals because
effects cascade from e.g., plants to animal species (Nijssen
et al., 2017) or from soil microbes to plants (Farrer and
Suding, 2016). However, studies detailing the link be-
tween N deposition and animal diversity in Europe’s
forests are scarce, partly due to the complex dynamics of
animal populations and corresponding food-webs (Nijssen
et al., 2017).

3.2 Experimental studies

In addition to these findings from observational studies, a
limited number of N manipulation experiments report on
changes in understory vegetation in response to decreasing
N input. Strengbom et al. (2001) compared vascular plant,
fungi, and bryophyte communities between control and
treatment plots at two experimental forest sites in Sweden
where N fertilization was canceled nine and 47 years prior
to the analyses, respectively. They found differences in the
vascular plant community at the site where treatment ended
9 years ago but no longer at the site where treatment was
canceled 47 years ago. Nevertheless, the fungi and bryo-
phyte communities deviated from the control plots at both
sites. Sujetovien _e and Stak _enas (2007) report on changes in
pine forest understory plant community in response to
drastic emission reductions from a close-by fertilizer plant
in Lithuania. They found a decrease in nitrophilous species
within the 16 years between two ground vegetation studies
(1988 and 2004). It should be noted that also the light
conditions and the acidity status of the respective forest
stands changed over the same time. In one of the NITREX
experiments, N-indicating fern cover significantly
decreased after 5 years of reduction of N deposition from
60 to 5 kg N ha�1 a�1 by roofing. A recovery of other
species was not recorded (Boxman et al., 1998).

Findings from grassland vegetation experiments might
also be informative for the question of forest understory
vegetation response to decreasing N deposition. Stevens
et al. (2012) found significant differences in Ellenberg N
values between control and treatment plots 15 years after
cessation of N fertilization in mesotrophic grassland in the
UK. Shi et al. (2014) report on the vegetation composition
3 years after cessation of N fertilization at a sandy grassland
site in Northeast China. They found that the vegetation at
the control and the formerly treated plots still differed
although indications for an ongoing process of recovery
were apparent. Storkey et al. (2015) report that grassland
biodiversity largely recovered over a period of 20 years of
decreasing ambient N deposition, based on observations
from the control plot of a fertilization experiment in the
UK. The pronounced recovery was potentially supported
by the regular export of N from the ecosystem by haying
(Tilman and Isbell, 2015).

FIG. 13.4 Examples for the effects of N deposition on lichen diversity
(proportion of macrolichen species among all lichen species) based on 83
forest plots across Europe. Reused from Giordani et al. (2014) with
permission.
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3.3 Summary

Recent studies based on large-scale monitoring data find
shifts in understory community composition in response to
high levels of N deposition but do not report on responses
to decreasing N deposition. Results from experimental
studies suggest that while the recovery of understory
vegetation from high N inputs is possible, time-lags in
the order of decades are to be expected. One mechanism
causing these delays is that in regions where high
N deposition eradicated source populations, back-
colonization will be particularly difficult (Clark and
Tilman, 2010; Dullinger et al., 2015). The complex con-
sequences of such effects have already been shown for land
management legacies’ impact on dispersal dynamics and
subsequent community alterations (e.g., Burton et al.,
2011). Strong recovery delay due to dispersal limitation can
be expected for epiphytic lichens because regional species
extinctions were particularly pronounced (Hauck et al.,
2013). We hypothesize that this delay in the response of
understory vegetation to decreases in N deposition partly
explains the absence of corresponding trends in Europe-
scale observational studies. In addition, changes in other
environmental conditions like light availability, forest
management, sulfur deposition, habitat loss and fragmen-
tation, climate impact, and nonnative species invasion (see
e.g., Perring et al., 2017) superimpose on the signal of N
deposition in forest understory communities.

4. Tree nutrition

Foliar element concentrations and their ratios reflect the
nutritional status of trees. Unbalanced N:P ratios in foliar
tissues are frequently associated with defoliation (Bontemps
et al., 2011; Ferretti et al., 2015; Veresoglou et al., 2014;
Waldner et al., 2015) and an increasing risk of attacks by
parasites (Flückiger and Braun, 1998) and herbivores (Pöyry
et al., 2016) as well as decreasing plant capacity to respond
to abiotic stressors such as drought, warming, and frost
(Fangmeier et al., 1994; Sardans and Peñuelas, 2012).
Furthermore, changes in N:P ratio in foliar tissues can have
several consequences in forest trophic chains (Peñuelas
et al., 2013). For example, increases in foliar-litter N:P ratios
have been associated with shifts in community composition
and decreases in species richness in soil communities and
understory vegetation in some European forests (Peñuelas
et al., 2013). Unbalanced plant N:P ratios can reduce the
resistance to biotic stressors such as the competition against
invasive species (Sardans et al., 2016a).

4.1 Observational studies

The status and trends of tree nutrition are highly variable
across Europe. At the European scale, two recent studies

report tendencies of decreasing foliar N concentrations for
beech and oak, covering the periods 1992e2009 and
2000e2015, respectively (Jonard et al., 2015; Sanders
et al., 2017b). To a lesser extent, decreases are also indi-
cated for spruce, while stable or slight increasing foliar N
concentrations are reported for pine (Pinus sylvestris). At
the same time, however, the mass per needle/leaf signifi-
cantly increased for spruce and beech, causing an overall
increase in the N content per needle/leaf despite the
decreasing concentrations (“dilution effect”, Jonard et al.,
2015), frequently related to a rise in atmospheric CO2
concentration (Penuelas et al., 2020; Sardans et al., 2021a).
At the local or regional level, studies based on data from
1990 onward report stable N concentrations or moderate
changes in both directions (Jonard et al., 2012; Verstraeten
et al., 2017; Wellbrock et al., 2016). Analysis restricted to,
or including data from before 1990 frequently (Duquesnay
et al., 2000; Hippeli and Branse, 1992; Mellert et al., 2004
for pine; Prietzel et al., 1997; Sauter, 1991) but not always
(Braun et al., 2010; Mellert et al., 2004) report increasing
foliar N concentrations or contents across Europe.
Although not focused on temporal trends, other studies
suggest a general effect of N deposition on foliar N con-
centrations based on analyses of large-scale spatial data (De
Vries et al., 2003; Sardans et al., 2016b, 2021b).

Foliar P concentrations decreased continuously ac-
cording to studies analyzing data from 1990 onward in the
important forest species in central and northern Europe,
such as pine, spruce, beech, and sessile oak (Quercus pet-
raea), resulting in low or deficient foliar P status on 22%
e74% of the plots depending on tree species (Ferretti et al.,
2015; Jonard et al., 2012, 2015; Talkner et al., 2015). For
N:P, increasing ratios have been observed in several studies
at European scale based on data after 1990 (Du et al., 2021;
Jonard et al., 2015; Sanders et al., 2017a; Talkner et al.,
2015). Apart from N:P imbalances, also trends toward
increasing N:K and N:S ratios have been observed in a
Europe-wide study while the N:Mg ratio was decreasing
(Jonard et al., 2015). N deposition can cause deficiencies in
other nutrients than N and nutrient imbalances due to a
range of effects, including stimulation of plant growth
(dilution effect) and negative effects on tree nutrient
acquisition by modifying mycorrhizal associations (De
Witte et al., 2017; Jonard et al., 2015; Peñuelas et al., 2013;
Sardans et al., 2016b). Du et al. (2021) observed an in-
crease in the proportion of P limited plots from 25% to 33%
when comparing tree nutrition data from 163 European
forest sites between the periods 1995e97 and 2015e17. In
the same study, the number of plots with N limitation was
negligible. In addition to N deposition, there are also other
drivers of global change underlying the foliar nutritional
shifts of European forests. A more recent study on Euro-
pean forests showed that the increase in atmospheric CO2

concentrations was well correlated with decreasing foliar N,
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P, K, Mg and S concentrations (dilution effect) and
increasing N:P ratio (Penuelas et al., 2020). These trends
have a great variability mainly depending on latitude and
climate, to the point that foliar N, S and Ca concentrations
increased in northern Europe associated with increasing
mean annual precipitation and temperature in the last de-
cades (Penuelas et al., 2020). The European forests at mid
(temperate forests) and low (Mediterranean forests) lati-
tudes have experienced, instead, a decrease of the foliar
concentration of most nutrients but not, or less, of N with
the consequent imbalance in the N:other nutrients ratios.
These decreasing tendencies in foliar concentrations of
nutrients other than N and increasing N:other element ratios
suggest that N availability is still high in many regions
across Europe and do not imply a recovery from high N
deposition yet.

4.2 Experimental studies

Besides observational studies, a number of experiments
provide indication on the reaction of foliar element con-
centrations to decreased N supply. In one of the above-
mentioned NITREX roofing experiments, a decrease in
needle N concentrations and an improvement (reduction) of
the N:Mg and N:K ratio is documented after 3 years
(Boxman et al., 1998). At the other two sites, no significant
reductions in foliar N concentrations were observed 6 years
after the treatment started (Emmett et al., 1998). Högberg
et al. (2006) report average foliar element concentrations
for the time period seven to 12 years after the cessation of
an N addition treatment. Foliar N concentration clearly
decreased and other elements showed minor increases.
Twenty years after termination of the N fertilization at the
same site, foliar N concentrations were still slightly
elevated compared to the control (Högberg et al., 2014).
Similarly, Bla�sko et al. (2013) report a recovery (decrease)
of foliar N concentrations based on measurements 17 and
19 years after the termination of an N fertilization experi-
ment, while also still slightly exceeding the levels at the
control plot. Results from grassland and moorland fertil-
ization experiments report that foliar N concentrations had
decreased when measured 7e15 years after cessation of the
N addition (Clark et al., 2009; Edmondson et al., 2013;
Stevens et al., 2012). These findings from experiments
indicate that decreases in N deposition can be expected to
be reflected in foliar N concentrations with a lag time of a
several years.

4.3 Summary

Despite the large heterogeneity in trends in tree nutrition,
studies based on large-scale long-term monitoring data
report tendencies of decreasing foliar N concentrations for
beech, oak and to a lesser extent for spruce. The degree to

which the decrease in N deposition contributes to these
trends is not clear. On the one hand, decreasing tendencies
of NO3

� concentration in soil solution (see “Soil acidifica-
tion and eutrophication”), findings from experimental
studies as well as large-scale studies documenting the
relation between spatial patterns of N deposition and foliar
N concentrations suggest that the decrease in N deposition
could have affected foliar N concentrations. On the other
hand, the cutback in N deposition across Europe is typically
far smaller compared to experimental treatments and might
not yet have led to a widespread decrease in N availability
for tree nutrition in a relevant magnitude (Braun et al.,
2010; Mellert et al., 2017; Riek et al., 2016). The increase
in foliar mass (dilution effect, Jonard et al., 2015), in the
context of rising CO2 concentrations (Penuelas et al.,
2020), likely explains a considerable proportion of the
decrease in foliar N concentrations. Furthermore,
decreasing tendencies in other elements and increasing
N:other element ratios do not indicate recovery from high
N availability. Further analyses are required to gain a better
understanding where and to what extent changes in N
deposition or other mechanisms control tree nutrition across
Europe and which time lags are involved.

5. Tree vitality

Tree vitality can be defined as the plant’s capacity to grow
and reproduce at a specific site (Körner, 2018), or as its
capacity to restore the physiological efficiency after a
disturbance (resilience, Lloret et al., 2011). Trees, as sessile
long living organisms, are subjected to recurrent and fluc-
tuating environmental stress factors, both biotic and abiotic,
including pests, frost, drought, storms, soil fertility loss etc.
Trees living in a sustainable forest ecosystem can overcome
such disturbances by restoring their physiological effi-
ciency, eventually through acclimatization processes
(Bussotti and Pollastrini, 2021). Tree crown condition is
often interpreted as an aggregated measure of tree vitality
because it reflects the impacts of different environmental
stressors (Eichhorn et al., 2016). Defoliation is the most
important diagnostic parameter to assess crown condition
and tree vitality in large scale forest monitoring pro-
grammes (Sanders et al., 2016). Defoliation, however, is an
unspecific parameter, integrating the intrinsic genetic vari-
ability of trees, site effects, including soil fertility, climatic
features, stand structure, and composition, and external
factors, such as abiotic and biotic disturbances (Toïgo et al.,
2020) as well adaptive processes, e.g., decreased crown
volume in beech (Fagus sylvatica L.) trees. Defoliation is
not necessarily equivalent to physiological damage and can
be considered indicative of the dynamic equilibrium of a
tree in its own environment (Pollastrini et al., 2016). In a
context of global change, the occurrence of external,
anthropogenic additional disturbing factors can irreversibly
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alter the ecological equilibrium of trees within communities
and then ecosystems. Several fertilizer experiments and
observational studies highlighted the relevance of N
deposition as a factor potentially modifying the overall
physiological status of trees and their responses to envi-
ronmental pressures and disturbances over time.

5.1 Observational studies

Data from the pan-European forest monitoring network ICP
Forests (Sanders et al., 2016) allow to explore the re-
lationships between atmospheric N deposition and tree
specific attributes, including crown condition. Analyzing
this continental dataset, Seidling et al. (2015) found a high
interannual dynamic of defoliation, resulting in difficulties
to interpret correlation analyses, regressions, and other
statistical approaches. Subtle effects, like those due to long-
term N inputs, are masked by other stronger influences,
such as climate and site factors. Ferretti et al. (2015) found
that defoliation could be partly explained by N-related
variables based on data from 71 monitoring sites across
Europe: Higher N deposition in throughfall led to a higher
percentage of defoliated trees for Fagus sylvatica and Picea
abies (L.) Karst., while the opposite effect was found in
Pinus sylvestris L. Vitale et al. (2014) found defoliation
being related to N deposition for Quercus ilex L., Pinus
sylvestris L. and Q. Petraea (Matt.) Liebl. stands, in addi-
tion to other factors like meteorology and age. Klap et al.
(2000) only found a weak relationship for the impact of
NO2 on the defoliation of deciduous oaks (Quercus robur
L. and Q. petraea (Matt.) Liebl.) and Fagus sylvatica. In a
modeling exercise conducted by De Marco et al. (2014), N
deposition was again identified as an important predictor
for crown defoliation for several tree species. At national
and regional level, Solberg and Tørseth (1997) found in
Norway, Thimonier et al. (2010) in Switzerland, Hendriks
et al. (2000) in the Netherlands, Staszewski et al. (2012) in
Southern Poland, no or little effects of N deposition on
crown conditions along N deposition gradients. Armolaitis
and Stakenas (2001) report on the crown condition of a
pine forest in relation to decrease of N emissions from a
close-by fertilizer plant in Lithuania. Decreasing defoliation
in damaged trees began 6e7 years after the decrease of air
pollution.

5.2 Nitrogen-induced effects on vitality

Depending on the availability of N (and other nutrients) in
forest ecosystems, increasing or decreasing N deposition
can have different net effects on tree vitality. For example,
improved N supply can enhance the photosynthetic activity
and the synthesis of defense compounds, such as
nonstructural carbohydrates (Huang et al., 2021). There-
fore, in some experiments N counteracted damage and

promoted plant recovery after the impact of stress factors
(Fusaro et al., 2017). On the other hand, excess N supply
can cause a net decrease in tree vitality via complex,
interlinked and potentially only episodically apparent
mechanisms, including increased susceptibility to insect
attacks, pathogens, frost and storm damages (Bobbink and
Hettelingh, 2011; Jönsson et al., 2004; Li et al., 2016;
Walter et al., 2021), changes in mycorrhiza (Arnolds, 1991;
Braun et al., 2010; De Witte et al., 2017; Duquesnay et al.,
2000; Jaenike, 1991; Kjøller et al., 2012; van der Linde
et al., 2018), changes in the rooting system and aluminum
toxicity to roots (Dziedek et al., 2017; Godbold and Kett-
ner, 1991; Haynes, 1982; Jonard et al., 2012; Ostonen et al.,
2007), depletion of base cations due to NO3

� leaching
(Jonard et al., 2012; Prietzel et al., 1997), increased
vulnerability to tropospheric ozone (Marzuoli et al., 2018)
and drought (Dziedek et al., 2016) as well as deficient P
supply (Jonard et al., 2015; Mellert and Ewald, 2014;
Neirynck et al., 1998; Ochoa-Hueso et al., 2013; Peñuelas
et al., 2013; Sardans et al., 2015; Sardans and Peñuelas,
2012; Thelin et al., 1998). Tree species, stand age, soil, and
meteorological conditions as well as other local factors
codetermine these symptoms. Under decreasing N deposi-
tion, tree response in terms of vitality will depend on the
progressive reduction of N availability in the soil and the
recovery of soil chemical, physical and microbial charac-
teristics. These processes are very slow (Clark et al., 2009;
From et al., 2015; Stevens, 2016).

5.3 Summary

Tree crown condition provides an aggregated measure of
tree vitality. Studies evaluating spatial and temporal pat-
terns of crown condition based on long-term monitoring
data come to different conclusions regarding the relative
importance and direction of the effect of N deposition. To
our knowledge, no large-scale response to decreasing N
deposition has been reported. N deposition can have both a
positive (fertilizing) effect on tree vitality (crown condition)
but also contribute to a range of adverse effects. We assume
that the high complexity and spatio-temporal variability of
these mechanisms is partly causing the difficulty to detect
signals of decreasing N deposition in tree vitality. In
addition, factors like site, stand age, drought, and frost can
have strong effects on vitality independent of N deposition
(e.g., Eickenscheidt et al., 2016; Klap et al., 2000).

6. Tree growth

Tree growth provides the primary economic benefit from
most forest sites and is an important process in forest CO2

budgets. Aber et al. (1998) hypothesized that net primary
production of trees will show an increasing followed by a
decreasing (unimodal) response with ongoing N saturation
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(comp. Fig. 13.1). The underlying assumption is that low to
moderate levels of N deposition will relieve trees from
growth limitation due to originally widespread N shortage
(Aber et al., 1995; De Vries et al., 2009; Kahle, 2008;
Schulte-Uebbing and De Vries, 2017; Solberg et al., 2009;
Sutton et al., 2008; Vitousek and Howarth, 1991). How-
ever, when N deposition exceeds a certain level, the stim-
ulating effects diminish due to the antagonistic effects
applying to overall tree vitality (see above), e.g., of soil
acidification, nutrient imbalances and increased suscepti-
bility to biotic and abiotic stress (Aber et al., 1998; De
Vries et al., 2014; Dobbertin, 2005). For example, benefi-
cial effects for tree growth by recovery from acidification
have been documented in Europe and the US (Mathias and
Thomas, 2018; Juknys et al., 2014).

6.1 Observational studies

There are various broad-scale and regional studies investi-
gating the effect of N deposition on tree growth, while ac-
counting for the impacts of other drivers, such as changes in
temperature and precipitation (e.g., Braun et al., 2017; Kint
et al., 2012; Kolá�r et al., 2015; Solberg et al., 2009). In these
studies, changes in growth patterns have rarely been
explicitly linked to declining trends in N deposition. In some
cases, a simultaneous decrease in S and N deposition
complicated the separation of effects (Juknys et al., 2014;
Nellemann and Thomsen, 2001). However, the results of
these studies provide indications for the threshold level of N
deposition at which growth enhancement and growth re-
ductions can be expected (Braun et al., 2017; Kint et al.,
2012). For example, field monitoring data of forest growth
at more than 300 plots in Europe suggest a nonlinear growth
response to N deposition between 3 and 60 kg N ha�1year�1

with a threshold near 35 kg N ha�1year�1 (Solberg et al.,
2009). Similarly, Etzold et al. (2020) report a unimodal
response of forest increment to N deposition, with a change
from positive to negative effects above around 30 kg N ha�1

year�1. Their analyses is based on data from 442 forest plots
from 23 European countries. Kint et al. (2012) documented
a nonlinear growth response, in terms of basal area incre-
ment (BAI), to increasing N availability for 180 oak and
beech plots in Flanders throughout the 20th century (the
period 1901e2008). They found positive effects of N
deposition on BAI up to 20e30 kg N ha�1 year�1 and
declining growth above these levels. Etzold et al. (2014)
found a nonlinear relation between NPP and N deposition,
with the positive effect flattening off at sites with an N
deposition above 20 kg N ha�1year�1, based on data from
intensive monitoring plots in Switzerland. In experimental
and observational studies in forests in Switzerland, Flück-
iger et al. (2011) found a growth-stimulating effect of N
which turned into no effect or a decrease of growth with

increasing duration or magnitude of the N input. Anders
et al. (2002), in Bobbink and Hettelingh (2011), reported
growth-reducing effects of N deposition on Scots pine
stands in the north-east of the German Northern Lowland in
the vicinity of N emission sources with deposition rates
exceeding 35 kg N ha�1 a�1, while for other locations and
tree species, accelerated growth was observed at open field
deposition rates exceeding 10e15 kg N ha�1 a�1. Flechard
et al. (2020) analyzed the effect of N deposition on forest
growth with a mechanistic model based on data from 22
CO2 forest flux towers in Europe. They concluded that forest
productivity decreases at N deposition rates above around
25 kg N ha�1 a�1.

6.2 Experimental studies

Further information on the growth response of trees to
different levels of N deposition originates from field ex-
periments. For example, in one of the NITREX experi-
ments, Boxman et al., 1998 report a significant increase in
growth after 3 years of artificially decreasing N deposition
rates by roofing. It should be noted, however, that in this
experiment not only N but also S deposition decreased.
Högberg et al. (2006) found that very high rates of N
addition (90e180 kg N ha�1 a�1) led to an increase in
tree growth only until a cumulative amount of approxi-
mately 1 ton N ha�1 while further N addition lowered the
gain in wood volume. In a similar experimental setup,
Bla�sko et al. (2013) observed that a strongly fertilized
plot (90e180 kg N ha�1 a�1) had a lower long-term
average productivity than other fertilization levels
(30e120 kg N ha�1 a�1) but still more than the control
plot. These results support the perspective that improved N
supply has a positive effect on growth in case of N limi-
tation and can act negatively in case of excess N (Flückiger
et al., 2011).

Global meta-analyses also confirm thresholds in the
growth response of trees to N deposition. For example, Tian
et al. (2016) analyzed a dataset of 44 experimental studies
from wetland, grassland, temperate, and boreal forest
(most data are from temperate forest). They found that
the effect of N input on aboveground net primary production
switches from increase to decrease at approximately
50e60 kg N ha�1 a�1. Schulte-Uebbing and de Vries (2017)
found that the N-induced increase in carbon sequestration
was significantly lower at higher ambient N deposition rates
(above 15 kg N ha�1 a�1), reviewing results from forest
fertilization experiments in temperate, boreal, and tropical
forests. Field data of maximum rates of photosynthesis
against N deposition for 80 forested plots over the world
indicated an increase in photosynthesis up to an N deposition
near 10e15 kg N ha�1 a�1 followed by no further change up
to 35 kg N ha�1 a�1 (Fleischer et al., 2013).
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6.3 Summary

We did not find an indication for a large-scale response in
tree growth to decreasing N deposition. However, results
from observational and experimental studies corroborate
the concept of a unimodal response of tree growth to N
deposition. Estimates of thresholds above which N depo-
sition negatively affects tree growth range from as low as
15e20 kg N ha�1 a�1 to very high levels only relevant
under experimental conditions. This suggests that particu-
larly polluted forest stands (mostly located in Central and
Western Europe) might have benefitted from declining N
deposition, as decreases have been strongest in the formerly
most polluted regions. Few trends of decreasing N depo-
sition have been observed in less polluted areas like
Northern Scandinavia, suggesting that a growth decline due
to decreased N deposition in these areas is less likely.

7. Conclusions and outlook

Results from observational studies across Europe for re-
sponses in soil, ground vegetation, and trees (nutrition,
growth and vitality) to decreasing N deposition indicate
considerable spatial variability in the trends published for
these parameters. For soil solution NO3

� concentrations,
indications for a reaction to decreased N deposition exist.
The extent to which the observed reductions in foliar N
concentrations are caused by decreasing N deposition is not
clear, because increasing foliar mass (dilution effect in the
context of rising CO2 concentrations) also contributes to
this trend. We found several studies reporting on the effects
of N deposition on understory vegetation, tree growth or
tree vitality, but none of them focused specifically on re-
sponses to declining N deposition. For tree growth, these
studies suggest a positive effect at low to moderate levels of
N deposition and no or adverse effects at high levels. In line
with these findings from observational studies, experi-
mental studies also report more pronounced responses of
soil solution and foliar N concentrations to decreased N
deposition compared to other parameters. Stevens (2016)
reviewed experimental and observational studies in grass-
lands, heathlands, wetlands, and forests for information on
the speed of recovery from high N deposition. Mainly in
line with our findings, they report a relatively rapid
response for mobile or plant-available forms of N in soil
chemistry and for N contents in plant tissues across habitats
(with the exception of forests showing a slower response in
foliar element concentrations compared to other habitats).
Similarly, Rowe et al. (2017) suggest N leaching rates and
(moss) tissue N concentrations as midpoint-metrics, i.e., as
indicators for effects-based monitoring of progress toward
pollution reduction targets, due to their dynamic response
to changing N deposition rates.

Linking results from observational and experimental
studies is problematic due to the more controlled conditions
and the typically faster and stronger cutback of N supply
rates in experimental settings compared to real-world de-
creases in N deposition (Bebber, 2021). A multitude of
confounding factors, including the joint decrease of N and
S deposition (e.g., Armolaitis and Stakenas, 2001)
complicate the interpretation of results from observational
studies. Furthermore, many of the large-scale observational
studies reviewed in this chapter are based on plots which
are not distributed representatively across Europe. The
larger monitoring efforts in Central and Western Europe
likely led to an overrepresentation of plots where N depo-
sition remained on a high level despite comparatively large
decreases of N deposition.

Future decrease of N deposition to forests in Europe and
associated ecosystem responses will most likely be limited
(Fig. 13.3). Simpson et al. (2014) expect only minor re-
ductions in the European ecosystem area with exceedances
of the critical load for nutrient N (from 64% in 2005 to 50%
in 2050). Under the assumption that soil solution NO3

�

concentrations and potentially also foliar N concentrations
track changes in N inputs with a delay of only a few years
(see above), limited changes of these parameters in
response to declining N deposition would be expected for
the future. For tree vitality and vitality-related growth ef-
fects, time-lags in the recovery from excess N deposition
might be expected due to slow reversal of N-induced soil
acidification and changes in mycorrhizal association. For
understory vegetation community composition it has to be
questioned whether full recovery can be expected at all
since forest biodiversity is facing a number of additional
“extinction debts” such as habitat loss and fragmentation,
climate impact, and nonnative species invasion (see
e.g., Perring et al., 2017) likely causing further decline in
biodiversity (Essl et al., 2015). Projections of understory
plant species occurrence indicate that oligotrophic species
will further decrease under current clean air legislation in
Europe (Dirnböck et al., 2018). If at all, recovery processes
will become apparent in regions with sufficient absolute
magnitude of the cutback in N deposition and responses
will likely be highly heterogeneous in space, controlled by
site-specific conditions (Hedwall et al., 2021).

In view of our results, a simple reversal of the stages of
the classical N saturation concept (Fig. 13.1) does not seem
to reflect the observed and expected responses to
decreasing N deposition appropriately. Instead, several
forest ecosystem properties seem to react with varying
degrees of delay to cutbacks in N deposition. Corre-
spondingly, the overall forest ecosystem state develops on a
different trajectory during the process of N desaturation
compared to N saturation. This hysteresis behavior is in line
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with findings from Gilliam et al. (2019), who reviewed
results for soil acidification, plant biodiversity, soil micro-
bial communities, forest carbon and N cycling, and surface
water chemistry focusing on the US. A hysteresis behavior
is also expected for the reaction of mycorrhizal fungi to
changing N deposition (Suz et al., 2021). In view of the
high variability of forest ecosystems, a set of “recovery
types” could potentially serve to roughly classify the
development of major strata of forest sites under decreasing
N deposition. For analytic and predictive purposes, more
detailed models will be required to adequately represent
processes of N (de-)saturation. In particular, dynamic
modeling approaches taking complex microbial soil N
processes into account may provide insights into the de-
velopments of forest ecosystem N pools accumulated over
the last decades (Akselsson et al., 2016; Bonten et al.,
2016; Dirnböck et al., 2017; Fleck et al., 2017; Lucander
et al., 2021; Rizzetto et al., 2016; Yu et al., 2016). Under
the expected limited future decrease in N deposition, other
controlling factors like climate change, rising atmospheric
CO2 concentrations, and forest management strategies will
probably dominate the changes in N-enriched forests (Clark
et al., 2019; González de Andrés, 2019).
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