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Chapter 1

General introduction



2 General introduction

1.1 Background

Soil functions as the Earth’s living skin, serving as the substrate for numerous atmospheric

gases to undergo biogeochemical cycling and for water to be filtered and retained within

the global hydrological cycle. It represents a vast and constantly changing storehouse of

carbon and serves as the fundamental medium for much of our agricultural output. Pro-

found shifts, driven primarily by alterations in the climate, land use and agricultural prac-

tices, will inevitably impact these interconnected roles, potentially yielding far-reaching

consequences for society now and in the future. Ultimately, the manner in which we over-

see the management of Earth’s soil, both directly and indirectly, will influence the future

viability of humankind and other species (Amundson et al., 2015).

1.1.1 A brief history of soil science: a spatial perspective

For millennia, human knowledge of soils was linked to the development of agriculture and

entire civilizations, prompting efforts to understand and map soil spatial variation. Not

all areas have the same degree of soil spatial variation, but the soils of an area are rarely

completely homogeneous. The first known soil maps were created in China about 4000

years ago (Gong et al., 2003). The Aztecs developed a soil classification system with up

to 45 classes for purposes of taxation, soil management, medicinal usage and construction

(Williams, 1976; Williams & Jorge, 2008; Hartemink et al., 2013). The first scientific soil

map was created by Stanis law Staszic for Eastern Europe in 1806 based on ideas and

classification approaches from agrogeology (Grigelis et al., 2011). This was followed by

soil maps in Germany, France, Austria, the Netherlands, Belgium, Russia and the United

States in the second half of the 19th century (Hartemink et al., 2013). Towards the end

of the 19th century, Vasily V. Dokuchaev and other Russian researchers began examining

soil spatial variation on a continental scale, correlating differences in soil properties with

climatic variation by conducting soil surveys (Dokuchaev, 1899). A soil survey is the

systematic examination, description, classification and mapping of the soils in a given area

(Soil Science Society of America, 2008). Dokuchaev came to the conclusion that soil was

the result of five soil-forming factors: climate, organisms (including plants and humans),

relief (topography), parent material (geology), and time. The ideas of Dokuchaev were

gradually adopted and expanded by soil scientists elsewhere, including Hans Jenny, who

described the relationship between soil properties and the five soil-forming factors using

a generic mathematical relationship (Jenny, 1941):

s = f(cl, o, r, p, t) (1.1)

where the magnitude of a soil property s is determined by, or is a function of (f), the

climate cl, organisms o, topography r, parent material p and time t. Between the World

Wars, numerous governments launched regional soil survey and mapping initiatives, par-
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ticularly spurred by events like the ’dust bowl’ in the 1930s. As Franklin D. Roosevelt,

president of the United States, wrote in 1937: “The nation that destroys its soil destroys

itself” (Roosevelt, 1937).

After World War II, governments increasingly wanted to create soil maps and soil in-

ventories on a national scale. Soil surveys and maps were primarily aimed at enhancing

agricultural output and management in support of the growing post-war population (Ar-

rouays et al., 2021). Largely as a result of this, the Common Agricultural Policy was

launched in Europe in 1962 and large-scale land use planning and soil mapping activities

emerged (Arrouays et al., 2021).

Today, we acknowledge a broader array of needs concerning soil resources. While ensuring

food security for an expanding global population remains paramount, we also prioritize

soil health and a wide spectrum of soil-related ecosystem services, such as biodiversity

preservation, water retention and purification, and the soil’s potential to act as a carbon

sink to mitigate climate change (Keesstra et al., 2016; Lehmann et al., 2020). With these

additional ecosystem services on the agenda, the need for spatial soil information has

become even more important (Arrouays et al., 2021).

The broad range of needs concerning soils are in part due to a broader range of potential

uses of spatial soil information at different scales. For example, on a local scale, a farmer

may want to decide which crops to grow on which fields based on the water storage and

drainage capacity of the soil, among other factors. On a national scale, information on

soil texture and soil organic matter (SOM) are necessary for greenhouse gas reporting of

the Land Use, Land Use Change and Forestry sector for the United Nations Framework

Convention on Climate Change (Arets et al., 2020). In Europe, soil information is ben-

eficial for the successful implementation of policies and initiatives such as the Common

Agricultural Policy, Zero Pollution and the Green Deal (Panagos et al., 2022b). On the

global scale, soils play a crucial role for several of the United Nations Sustainable Devel-

opment Goals, such as “Zero hunger” and “Life on land” (United Nations, 2015). Soil

maps also serve as inputs for a variety of Earth system science models across all these

scales.

1.1.2 Soil mapping

The need for spatial soil information is apparent, but it is impossible to know what

the soil is like everywhere. Even if assuming that a measurement could fully capture

a given soil property, only a finite number of locations can be visited to conduct such

measurements. Therefore, the best option for predicting a soil property at all unvisited

locations, or mapping it, is to spatially interpolate by using a model informed by data

from measurement locations. However, it remains challenging to accurately predict a soil

property and quantify the associated uncertainty, or error, of predictions in space. This

challenge further increases when considering that soil is not two-dimensional (2D), but
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also varies across depth and over time. Soil properties are variable in three-dimensional

(3D) space and time (3D+T). In fact, soil often varies vertically more so than horizontally,

and certainly over much shorter distances. In addition, the degree to which soil properties

are dynamic mostly depends on the time-scale considered. While all soil properties are

dynamic over geological time-scales, soil properties related to soil texture, for example

clay content, can be considered static within the lifespan of a human. However, some

chemical soil properties like SOM and pH are dynamic within human lifespans, while some

hydrological soil properties such as soil moisture are dynamic even within one day.

With the establishment of national soil survey institutes and systematic soil mapping

throughout the 20th century, regional and national maps of soil classes were created using

soil classification systems with nomenclature designed to capture the soil spatial variation

in that country. Conventional soil mapping builds on the assumption that an area can

be divided into discrete units or subareas that have similar soil-forming factors and hence

have similar soil properties. Thus, the result of conventional soil mapping is a polygon

map that delineates these discrete units by drawing crisp boundaries between them and

assigning a soil type, or soil class, to each polygon (Fig. 1.1). Conventional soil mapping

makes use of external information such as aerial photographs and geological maps, but

it relies most on the soil surveyor’s expertise. Soil surveyors assembled existing informa-

tion, for example aerial photos and geological maps, conducted a preliminary field visit,

designed the field sampling campaign and collected field data via soil augering (bore-

holes) or soil pits, whereby pedogenetic soil horizons and soil classes were designated.

Thereafter, they created a soil map by delineating borders between soil classes on a paper

map (Fig. 1.1), described and sampled representative soil profiles and produced the final

map and report. Field estimations were sometimes coupled with soil samples that were

brought to the laboratory for more detailed analysis, which mostly involved measuring

soil properties using wet chemical analysis.

Beginning in the 1990s and over the past few decades, soil mapping has revolutionized and

is today mainly achieved through a process known as digital soil mapping (DSM), rather

than via conventional soil mapping. DSM is the computer-assisted mapping of soil classes

or soil properties, using mathematical and statistical models to infer the relationship

between a response, the soil class or soil property, and the predictors, the spatially ex-

haustive environmental explanatory variables, also termed covariates (McBratney et al.,

2003; Scull et al., 2003). The covariates are typically related to the main soil forming

factors (Dokuchaev, 1899; Jenny, 1941), although other soil information besides the re-

sponse, and the spatial position, or geographical space, can themselves also be used as

covariates (McBratney et al., 2003). The main steps of DSM can be summarized as fol-

lows: collect georeferenced soil point data, e.g. from a database, collect and prepare

covariates, create a regression matrix by extracting the covariate information at each soil

point location, calibrate a regression model, predict at all locations, thereby creating a soil

map and comparing observations with predictions using statistical validation (Fig. 1.2).
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Figure 1.1: A conventional soil map in the making, where lines mark the boundaries between

different soil classes and abbreviations indicate soil class codes. The map shows a region near

Cuijk, the Netherlands along the Meuse River (Wageningen Environmental Research archives).

DSM was sparked by technological advancements, digitization of paper maps, and new,

readily available geospatial data of the Earth’s surface, for example using remote sensing.

Thus, DSM relies on spatial databases, geographic information systems and availabil-

ity of covariates. Compared to DSM, conventional soil mapping has the advantage that

pedological knowledge of soil surveyors is easily incorporated. However, the advantages

of DSM over conventional soil mapping are numerous: mapping is more automated, less

laborious, more reproducible and easier to update and quantify map accuracy (Heuvelink

et al., 2010; Kempen et al., 2009, 2012b, 2015).

DSM relies strongly on statistical and mathematical models, or the function f ′ in Eq. 1.1,
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Figure 1.2: The general workflow in DSM consists of collecting georeferenced soil point data,

collecting and preparing covariates, creating a regression matrix by extracting the covariate

information at each soil point location, model calibration, predicting at all locations and com-

paring observations with predictions using statistical validation (adjusted from Hengl et al.,

2017b).

wherein results are typically expressed as numerical values. This stands in contrast to

conventional soil mapping, which primarily relies on qualitative descriptions mainly for

mapping soil classes. While Eq. 1.1 serves as a conceptual model in conventional soil

mapping, concrete mathematical functions are defined in DSM. Most DSM models use

an empirical, data-driven model for f ′ because the goal is usually prediction accuracy,

rather than model inference, or interpretation (James et al., 2021, Sect. 2.1.1). This
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means that predictive modelling DSM approaches can only detect correlations, not causal

relationships. To model causal relationships, a mechanistic model is needed for function

f ′. The most commonly used predictive models in DSM can be divided into geostatistical

models, such as ordinary kriging (e.g. Burgess & Webster, 1980a) or block kriging (e.g.

Burgess & Webster, 1980b), linear models (e.g. Walker et al., 1968; Jones, 1973), regres-

sion kriging (e.g. Knotters et al., 1995; Odeh et al., 1994, 1995; Goovaerts, 1999; Bishop &

McBratney, 2001; Hengl et al., 2004), nonlinear models and nonlinear models plus kriging

of residuals. Nonlinear models commonly use machine learning methods such as neural

networks (e.g. Behrens et al., 2005), random forest (e.g. Grimm et al., 2008), support

vector machine (e.g. Kovačević et al., 2010) and cubist (e.g. Viscarra Rossel et al., 2015;

Miller et al., 2015). However, nonlinear models also includes Bayesian models (e.g. Stein-

buch et al., 2018), Gaussian process regression (e.g. Ballabio et al., 2019) and integrated

nested Laplace approximation with stochastic partial differential equation (Poggio et al.,

2016; Huang et al., 2017). DSM has become a relatively common practice thanks to the

increasing availability of spatial data, soil databases, computer software and algorithms.

Today, DSM is a core discipline within pedometrics, the application of mathematical and

statistical methods to study the distribution and genesis of soils (de Gruijter et al., 1994;

McBratney et al., 2018). DSM has been widely adopted to meet the demands for accu-

rate and high-resolution soil information for a wide range of purposes from the field to

the global scale.

1.2 GlobalSoilMap

Besides technical advances, DSM has also been widely adopted thanks to the Global-

SoilMap (GSM) initiative launched in 2006 (Arrouays et al., 2014a). Due to the initia-

tive’s rapid success and arising opportunity to connect soil scientists internationally, GSM

soon also formed its own working group of the International Union of Soil Sciences and

was later adopted by the Global Soil Partnership of the Food and Agriculture Organiza-

tion of the United Nations. GSM was formed across eight geographic nodes around the

world to strive for a common goal: a high-resolution spatial soil information system of

selected soil properties and their uncertainties at six standard depths for the entire world

(Arrouays et al., 2014b).

Perhaps the most prominent GSM product on a global scale is SoilGrids, which provides

global maps of physical, chemical and derived soil properties and soil classes developed

by ISRIC – World Soil Information. SoilGrids has since its initial release (Hengl et al.,

2014) been improved and updated twice (Hengl et al., 2017b; Poggio et al., 2021). Other

examples of global soil maps include Global Gridded Surfaces of Selected Soil Characteris-

tics (IGBP-DIS; Global Soil Data Task Group, 2000), WISE30sec (Batjes, 2016), S-World

(Stoorvogel et al., 2017) and SoilKsatDB for soil saturated hydraulic conductivity (Gupta

et al., 2021). DSM approaches have also been used to map soils at the continental scale,
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for example in Africa (Hengl et al., 2015, 2017c, 2021) and Europe (Ballabio et al., 2016,

2019; Panagos et al., 2022c,a).

Much progress has also been made in mapping soils on a national scale. Examples of

countries with soil maps using DSM methods include Russia (Mukhortova et al., 2021;

Chinilin & Savin, 2023), China (Liang et al., 2019; Liu et al., 2020), the United States

(Hempel et al., 2014b; Ramcharan et al., 2018; Chaney et al., 2019), Brazil (Gomes et al.,

2019), Australia (Grundy et al., 2015; Viscarra Rossel et al., 2015), India (Dharumarajan

et al., 2019, 2020), Iran (Taghizadeh-Mehrjardi et al., 2020; Zeraatpisheh et al., 2020),

Nigeria (Akpa et al., 2014), Chile (Padarian et al., 2017), France (Mulder et al., 2016a,b),

Scotland (Poggio & Gimona, 2014, 2017b,a) and Denmark (Adhikari et al., 2013, 2014a,b).

A global soil organic carbon map (GSOC) was also created based on national soil organic

carbon maps from 110 countries (Brus et al., 2017; FAO, 2018), which are maintained

by the Food and Agriculture Organization of the United Nations (FAO, 2017). National

DSM products also contribute to GSM because if all countries develop national soil maps

then global coverage of spatial soil information can also be achieved.

1.3 Soils and soil maps in the Netherlands

1.3.1 Soil geography in the Netherlands

As elsewhere in the world, spatial soil information is also important in the Netherlands

(land area = 33 481 km2), which exhibits a number of distinct soil geographic regions

(Fig. 1.3). The soils in the Netherlands are comprised of sandy soils (42%), marine clays

(24%), fluvial clays and loams (8%), organic soils (15%) and soils that developed on loess

deposits (1.4%) (Edelmann, 1950; Jongmans et al., 2013; Hartemink & Sonneveld, 2013).

None of the soils in the Netherlands are derived from consolidated rock and more than 90%

have groundwater within 150 cm of the surface during the winter (Knotters et al., 2018;

Hartemink & Sonneveld, 2013). Generally, the soils in the Netherlands can be grouped

by their substrate material into clay, loam and peat in the low-lying areas stemming from

the Holocene epoch and sand and loess in the slightly elevated areas from the Pleistocene

epoch, although peat also formed in raised bogs and brook valleys during the Holocene

in the elevated areas.

Located in the midst of Europe’s largest delta, the Rhine-Meuse-Scheldt delta, most soils

in the low-lying areas of the Netherlands are naturally very fertile (Edelmann, 1950;

Römkens & Oenema, 2004). They feature river and marine clay zones, as well as thick

layers of peat that can measure several meters deep, or a mix of both clay and peat that

is a result of river flooding and marine transgressions (Brouwer et al., 2018, 2023). Over

centuries, drainage, excavation, and oxidation have diminished the widespread presence

of peat, often leaving marine clay at the surface which was originally at the base of the

peat (Erkens et al., 2016). These low-lying areas are separated from the North Sea by
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Figure 1.3: a) General soil types (Wageningen UR- Alterra, 2006) and b) the 2023 version

of the national soil map of the Netherlands at 1:50 000 scale (de Vries et al., 2003). The soil

map and detailed legend with all soil (sub-)classes is available at bodemdata.nl.

a relatively narrow strip of coastal sand dunes. The dunes not only protect the low

country from flooding, but also provide a barrier between the salt water of the North

Sea and the fresh groundwater inland. About half of the country is below sea level and

would be submerged in the absence of dunes, dikes and pumping stations (AHN, 2023).

Beginning with the “Beemster polder” in 1612, roughly 17% of the Dutch land area has

been reclaimed from water. Most notably the entire province of Flevoland was reclaimed

in the 1950s and 1960s, mainly for agricultural use.

Most areas with limited river, delta and coastal influences are marked by Pleistocene

aeolian sand and glacial deposits. These marginal and typically infertile, acidic (low

pH) podzol soils were utilized for agriculture in the Middle Ages, some of which over time

formed into plaggen soils (Blume & Leinweber, 2004). During the early Holocene, fen peat

filled the slightly undulating hills and brook valleys, while raised peat bogs were forming

on the plateaus (Kempen et al., 2009, 2012a, 2015). These raised bogs were drained and

excavated between the early 17th century and the mid-20th century, transforming them

into intensive agricultural lands for producing mainly grain, potato, sugar beet and dairy

products (Kempen et al., 2009, 2012a, 2015). The few remaining raised peat bog layers

are typically less than 1.5m thick (Kempen et al., 2015). In contrast, the aeolian loess

deposits found in the southernmost and highest regions of the Netherlands contributed

to the development of fertile soils predominantly composed of silt.



10 General introduction

1.3.2 Soil surveys and maps in the Netherlands

Historically, the Netherlands was at the forefront of soil mapping. Scientific soil investiga-

tions in the Netherlands were started by Winand C.H. Staring in the mid-1800s followed

by Jan van Baren and David J. Hissink in the early 1900s (Bouma & Hartemink, 2003).

The first publication of the spatial distribution of soil properties in the Netherlands dates

back to the 19th century (Felix, 1995). Systematic soil mapping became institutionalized

with the establishment of the Dutch Soil Survey institute, or “Stichting voor Bodemkar-

tering” (StiBoKa) in 1945 (Hartemink & Sonneveld, 2013). From 1950 to 1995, StiBoKa

conducted conventional soil surveys (Buringh et al., 1962; de Bakker & Schelling, 1989;

ten Cate et al., 1995) and produced regional maps (1:10 000 and 1:25 000 scale) and a

national map (1:50 000 scale) of soil classes (Fig. 1.3b; de Vries et al., 2003).

After the development of DSM as a research field, various studies used (geo-)statistical

methods to update several regions of the national soil map (Kempen et al., 2009, 2011,

2012a, 2014; de Vries et al., 2014, 2017, 2018; Brouwer et al., 2018; Brouwer & Walvoort,

2019, 2020; Brouwer et al., 2021, 2023). In addition, a variety of thematic maps were

derived, such as a map of re-worked soils (Brouwer & van der Werff, 2012), a peat thickness

map (Brouwer et al., 2018), a map of soil landscapes (van Delft & Maas, 2022, 2023) and

the soil physical units map of the Netherlands (BOFEK; Heinen et al., 2022).

1.4 Knowledge gaps and research challenges

1.4.1 Mapping soil properties at high-resolution using machine learning

While categorical maps of soil type and derived thematic maps are important, there is a

critical gap because many users require information on specific, numerical soil properties.

As one of Europe’s most densely populated countries, multi-functional land use decisions

made at a national or regional level need to be implemented at the field scale. This

involves a broad range of diverse stakeholders from multiple sectors, such as agriculture,

forestry, land and water management, spatial planning, infrastructure, transport and

nature conservation. For example, spatial information of soil properties can be used to

evaluate soil health on Dutch agricultural fields using tools such as the Open Soil Index

(OSI; Ros et al., 2022; Ros, 2023) and Soil Indicators for Agriculture (BLN 2.0; Ros et al.,

2023). In addition, data of basic soil properties serve as inputs for modelling agricultural

suitability (Mulder et al., 2022), crop precision agriculture (Been et al., 2023) and Soil-

Water-Atmosphere-Plant interactions (SWAP; van Dam et al., 1997; Kroes et al., 2017),

the latter of which is the underlying model for the Watervision Agriculture and Nature

initiative (Hack-ten Broeke et al., 2019). Furthermore, spatial soil property data is also

helpful for the Hydrological Instrumentations of the Netherlands (NHI, 2023) and the

Delta Program 2024 (Delta Programme, 2023).
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The few existing national-scale soil property maps in the Netherlands are at a coarse reso-

lution and do not use machine learning, which typically improves mapping accuracy when

large amounts of data are available. The most recent map of SOM was at a resolution of

250m (van den Berg et al., 2017), while the prototypes developed by Brus et al. (2009)

were at 1 km resolution. The maps of Schoumans & Chardon (2015) and Knotters et al.

(2022) were not in raster format, instead providing results at the scale of 94 strata based

on soil type and groundwater classes (Finke et al., 2001), or for general combinations of

a few soil types and land use categories. As covariates such as remote sensing products

and national maps of land use (Hazeu et al., 2023) and digital elevation models (AHN,

2023) are nowadays available at 5 - 25m resolution, useful information for modelling com-

plex relationships between soil-forming factors and soil properties is provided at these

scales. However, it is crucial to emphasize that resolution is not an indicator of accuracy

(Sect. 1.4.2) and should not be used solely to determine a map’s fitness for use (de Bruin

et al., 2001; Malone et al., 2013; Knotters & Walvoort, 2020; Szatmári et al., 2021). Fur-

thermore, soil mapping approaches in the Netherlands up to date used no or only a small

number of covariates. For example, van den Berg et al. (2017) only used latitude, soil

physical unit, soil horizon, land use category and topsoil texture in the trend component

of the model. For study areas where a large amount of soil point data and high-quality

covariates are available, which is the case in the Netherlands, machine learning has shown

to increase prediction accuracy (e.g. Hengl et al., 2015, 2017b; Nussbaum et al., 2018;

Keskin et al., 2019; Khaledian & Miller, 2020).

One pivotal soil property lacking high-resolution information at present is soil pH. Soil

pH provides information on soil acidity and alkalinity, nutrient availability and affects

biological activity, decomposition, metal dissolution and soil physical structure. Hence,

soil pH supports land management evaluation such as liming on croplands, acidity of

forest soils and the capacity to filter, bind and decompose pollutants (Thomas, 1996).

However, the currently available maps of soil pH do not meet many contemporary user

demands and map quality can be substantially improved. Brus et al. (2009) created a

national-scale soil pH map, but only for 0 - 25 cm at 1 km resolution, whereas many users

also require information below 25 cm depth and at higher resolution. In addition, Brus

et al. (2009) used co-kriging and only a soil type map as a covariate, but many other high-

quality covariates are now available which combined with machine learning can improve

map quality. Wamelink et al. (2019) predicted soil pH based on plant species occurrence

and three covariates and only in Dutch nature areas. Today, pedometricians can make

use of increasing amounts of available spatial data, an extensive toolkit of geostatistical

and machine learning approaches and a powerful computational infrastructure, but con-

siderably less effort has been invested in providing appropriate measures of the soil map

accuracy.
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1.4.2 Assessing map accuracy

Regardless of the study area, one major research challenge in pedometrics is how to

properly quantify and communicate the accuracy of soil maps. In response to an initiative

within the pedometrics research community, Wadoux et al. (2021b) proposed ten key

challenges in the research field of pedometrics. Two of the proposed ten challenges,

challenges five and nine, relate to improving ways of quantifying and communicating soil

map uncertainty.

Every map is erroneous because it is always a simplified representation of reality that

suffers from multiple error sources (Burrough et al., 2015; Heuvelink, 1998, 2014). In

DSM, soil maps are created through predictions from statistical or mathematical models

and inevitably, these predictions are not error-free, implying that there is associated

uncertainty. The uncertainty of maps can be assessed using external (model-free) and

internal (model-based) accuracy measures.

Assessing map accuracy using an external approach involves comparing map predictions

to independent observations, which is also referred to as statistical validation. Statistical

validation usually involves data-splitting, either using a single split involving a calibration

and validation set, or repeating this multiple times during n-fold cross-validation. In this

way, independent and separate observations not used in model calibration are compared

to the predictions at the observation locations (Chatfield, 1995).

Map uncertainty can also be quantified through internal accuracy measures. Although

based on the structure and assumptions of a model, the main advantage of internal accu-

racy measures is that they can provide information about the accuracy at each predicted

location. One way of internal accuracy assessment is by representing prediction uncer-

tainty as probability distributions. A probability distribution has the advantage that it

relies on statistical theory and enables quantitative characterization of uncertainty in great

detail, such as providing information on the shape, width and magnitude of the uncer-

tainty (Heuvelink, 2014). In geostatistical interpolation, prediction uncertainty is easily

quantified in the form of the kriging variance (Goovaerts, 2001). For non-geostatistical

methods, a probabilistic prediction model can be chosen, which estimates the entire con-

ditional probability distribution of a response variable, i.e. the target soil property. An

example of a commonly used probabilistic machine learning model is quantile regression

forest (QRF; Meinshausen, 2006), which was first used in DSM by Vaysse & Lagacherie

(2017).

Although external and internal accuracy assessment methods are available, a persisting

problem is that established methods are often not used, which means that the uncertainty

of soil maps is not quantified. Recent reviews showed that only 30 - 56% of studies map-

ping continuous soil properties estimated prediction uncertainty (Wadoux et al., 2020;

Piikki et al., 2021; Chen et al., 2022). Moreover, assessing map accuracy is not straight-
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forward and involves many demanding pre-requites, for example the sampling design of

the locations used for statistical validation. According to Piikki et al. (2021), only 13% of

studies used probability sampling for map validation, which according to sampling theory

(Cochran, 1977; de Gruijter et al., 2006; Gregoire & Valentine, 2007; Brus, 2022) is the

best approach for assessing map accuracy because it is unbiased (Brus et al., 2011). When

using a soil map in a model or analysis, the uncertainty may be so substantial that it com-

promises the quality of the outputs, posing risks of erroneous conclusions and decisions

for end users (Knotters & Vroon, 2015; Knotters et al., 2015a,b; Heuvelink, 2018). The

efficacy of uncertainty propagation analysis relies on quantifying input uncertainty real-

istically, emphasizing the consistent need to quantify uncertainty in soil maps. Without

providing the uncertainty of a map, users cannot determine its fitness for use.

Another challenge is to develop spatially explicit, standardized and simple ratings for

end-users to compare DSM products at different scales and across the globe. In order

to coordinate and guarantee a minimum quality for soil maps, specifications were made

regarding the uncertainty of GSM products (Arrouays et al., 2014a; Hempel et al., 2014a).

Increasing specifications must be fulfilled with increasing quality of a DSM product, which

were organized into so-called Tiers (Arrouays et al., 2015). The simple rating system spec-

ified in these tiered GSM specifications may provide a powerful measure to communicate

the quality of a soil map to end users for a specific purpose and region and make dif-

ferent DSM products more comparable. Although proposed, such ratings using accuracy

thresholds were to my knowledge never implemented.

1.4.3 Mapping in 3D

Another challenge in DSM is developing models that can accurately predict in 3D space.

Based on end-user needs, the GSM specifications stated that information is necessary at

various depth layers and defined six standard prediction depths: 0 - 5 cm, 5 - 15 cm, 15 -

30 cm, 30 - 60 cm, 60 - 100 cm and 100 - 200 cm. However, half of the studies reviewed by

Chen et al. (2022) focused on soil properties at less than 30 cm depth only.

With regards to dealing with soil variation over depth, DSMmodels can be loosely grouped

into 2D, 2.5D and 3D models (Nauman & Duniway, 2019; Roudier et al., 2020; Ma et al.,

2021; Chen et al., 2022). A 2D model does not account for vertical soil variation, meaning

that only one soil layer is mapped. So-called 2.5D models typically first harmonize soil

properties for designated depth layers by using methods such as weighted averaging or

equal-area splines (e.g. Adhikari et al., 2013; Mulder et al., 2016b; Viscarra Rossel et al.,

2015). Next, a separate prediction model is calibrated independently for each designated

depth layer. In contrast, 3D models either use a geostatistical approach (e.g. Poggio &

Gimona, 2014; Orton et al., 2016, 2020), a regression kriging approach wherein residuals

are interpolated using 3D kriging (e.g. Hengl et al., 2014, 2015), predict the parameters of

a depth function spatially (e.g. Meersmans et al., 2009a,b; Kempen et al., 2011; Liu et al.,
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2016; Ottoy et al., 2017; Rentschler et al., 2019) or use depth as a covariate in modelling

(e.g. Akpa et al., 2014; Filippi et al., 2019, 2020; Hengl et al., 2017b; Ramcharan et al.,

2018; Zhang et al., 2020). In a recent review, Chen et al. (2022) found that 64% of

DSM studies used 2D models and only 8% used 3D models. On a national scale in the

Netherlands, most studies mapped in 2D at a single depth layer alone (Brus et al., 2009;

Schoumans & Chardon, 2015; Wamelink et al., 2019).

In all modelling approaches discussed above, including 3D models, the covariates them-

selves were by definition 2D. Kempen et al. (2011) noted that soil type maps can be con-

sidered 3D models of soil properties, since soil types and individual pedogenetic horizons

(indirectly) contain information about the vertical variation of soil properties. However,

using soil type maps for 3D mapping with parametric depth functions is cumbersome,

the number of depth function parameters should remain within practical limits and it

requires many additional steps, full profile descriptions, expert knowledge, various as-

sumptions and calibrating many separate models (Kempen et al., 2011). Instead, the

simpler and more intuitive approach of deriving covariates that are variable in 3D space

and incorporating them in a regression matrix in which 3D covariates vary depending on

the sampled soil depth, has largely been ignored. To my knowledge, only Gasch et al.

(2015) used 3D covariates of soil parameters to predict soil water, temperature and elec-

trical conductivity on a field scale (37 ha). Machine learning has proven advantageous to

predict complex, non-linear relationships between soil-forming factors and soil properties

in 2D space (Wadoux et al., 2020), so including 3D covariates in machine learning models

may improve mapping accuracy in 3D space. Furthermore, although soil properties vary

continuously with depth in many areas, in regions under strong anthropogenic influence,

such as the Netherlands, sharp discontinuities in the depth distribution of soil proper-

ties frequently occur (Fig. 1.4; Kempen et al., 2011). Hence, using covariates variable

in 3D space may improve predictions at locations where sharp continuities occur com-

pared to using depth as a covariate, as the latter tends to produce predictions that vary

continuously over depth.

1.4.4 Space-time mapping in 3D+T

Dynamic soil properties not only vary over depth but also in space and time, i.e. in 3D+T.

However, the overwhelming majority of DSM studies ignore time. This is because space-

time mapping of soil properties remains a major challenge, with relatively few studies

having mapped temporal changes and mostly only at the field scale (Meersmans et al.,

2011, 2016; Sun et al., 2012; Stockmann et al., 2015; Gasch et al., 2015; Minasny et al.,

2016; Gray & Bishop, 2016, 2019; Yigini & Panagos, 2016; Schillaci et al., 2017; Hengl

et al., 2017a; Sanderman et al., 2017; Song et al., 2018; Stumpf et al., 2018; Reyes Rojas

et al., 2018; Adhikari et al., 2019; Huang et al., 2019; Szatmári et al., 2019; Zhou et al.,

2019; Heuvelink et al., 2020; Sun et al., 2021; OpenGeoHub et al., 2022; Yang et al.,

2022). These studies have used various space-time modelling approaches. One approach
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Figure 1.4: Soils under anthropogenic influence: a) deep plowing on arable land (Brouwer &

van der Werff, 2012, Photo 2), b) soil profile of a plow layer on top of podzol remains (Kempen

et al., 2011, Fig. 1) and c) soil profile of a deep-plowed and drained peat (organic) soil under

pea cultivation (Brändli et al., 2016).

is to develop a baseline map for a reference year and modifying that map based on

dynamic soil-forming factors such as land use or climate change. Another approach is

to map changes between two years by developing separate DSM models for both years

(Meersmans et al., 2011; Szatmári & Pásztor, 2019). Such an approach requires a sampling

design that is revisited, i.e. monitoring data, which most areas do not have. Another

approach is space-for-time-substitution (e.g. Adhikari et al., 2019; Yang et al., 2022),

although differences in a dynamic soil property due to temporal changes are not necessarily

comparable to differences due to spatial variation. Commonly, soil property changes

are mapped using a static model, by simply replacing covariates such as land use or

climate during prediction with a historic map or future scenario (Yigini & Panagos, 2016;

Meersmans et al., 2016; Gray & Bishop, 2016, 2019; Adhikari et al., 2019; Huang et al.,

2019; Reyes Rojas et al., 2018). A promising possibility is to derive dynamic covariates

that cover the time period in which the soil point data were collected, thereby developing

a model that is explicit in 2D+T during both calibration and prediction (Gasch et al.,

2015; Heuvelink et al., 2020; OpenGeoHub et al., 2022). Another approach is to use

(semi-) mechanistic models such as CENTURY (Parton et al., 1987), RothC (Coleman

& Jenkinson, 1996) and Millenial (Abramoff et al., 2018, 2022) for soil organic carbon

dynamics. A recent promising improvement is integrating the advantages of mechanistic

models for modelling temporal dynamics and the advantages of machine learning models

for spatial prediction (Zhang et al., 2024). However, this also requires point monitoring

data and applications for different soil and land use types are limited.

Besides one study on the field scale (Gasch et al., 2015), to the best of my knowledge,

DSM models have so far never been explicit in 3D+T. Moreover, although Gasch et al.
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(2015) predicted in 3D+T, covariates were variable in 2D+T and 3D, but no covariates

variable in 3D+T were used. Despite much demand for accurate soil information in 3D+T,

deriving covariates that are explicit and variable in 3D+T for DSM models using machine

learning has not been explored. Hence it is no surprise that one of the ten challenges

in the pedometrics research community relates to developing models in 3D+T (Wadoux

et al., 2021b).

In the Netherlands, with its far-reaching land surface changes in peatlands, reclaimed

land and highly anthropogenic landscapes (Sect. 1.3.1), one crucial soil property subject

to temporal changes is SOM. SOM enhances the availability of plant nutrients, improves

moisture retention, stabilizes soil structure, increases permeability and chemical buffering

and influences the biodegradability of organic molecules such as pesticides (Blume et al.,

2010; Noellemeyer & Six, 2015). In fact, the most recent map of SOM in the Netherlands

was specifically developed for its use in GeoPEARL, a model that assesses the leaching

potential of plant protection products (van den Berg et al., 2017). However, besides other

limitations (Sect. 1.4.1), the SOM map developed by van den Berg et al. (2017) was static

and the SOM content and carbon stock estimates provided by Knotters et al. (2022) were

at the scale of general soil type and land use classes and thus not spatially explicit. SOM

has also received considerable attention due to its relevance in the global carbon cycle

and climate change because it acts as a major sink and source of soil organic carbon

(Amelung et al., 2020; Moinet et al., 2023; Paul et al., 2023). Most soil organic carbon

is located in peatlands, or organic soils, which cover a substantially higher proportion of

the Netherlands than they do in most other countries (Sect 1.3.1). Based on the Climate

Agreement of the Netherlands, emissions must be reduced by 1Mton CO2-eq from peat

soils (Nol et al., 2010; van Beek et al., 2011) and by 0.4 - 0.6MtonCO2-eq from mineral

agricultural soils before 2030 (Government of the Netherlands, 2019). Initiatives like the

“Smart Land Use” project aim to sequester an additional 0.5Mton CO2-eq per year to

Dutch mineral agricultural soils (Slier et al., 2023). Hence, there is high demand for

accurate SOM information in 3D+T.

Space-time mapping of future scenarios

Modeling future scenarios is useful for strategic planning, risk management, innovation,

resource allocation, policy development, and stakeholder engagement, helping society an-

ticipate and adapt to future uncertainties effectively. However, few future scenarios map

soils, even though soil-related ecosystem services are an essential part of sustainable transi-

tions. When coupled with future scenarios, e.g. of land use or climate change, space-time

DSM models provide the tools necessary to bridge this gap. Nonetheless, few studies

have used DSM for predicting dynamic soil properties in the future (Meersmans et al.,

2016; Yigini & Panagos, 2016; Gray & Bishop, 2016, 2019; Reyes Rojas et al., 2018;

Adhikari et al., 2019). These studies used various future land use and/or climate sce-

narios. However, I am not aware of studies that have used the concept of nature-based
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solutions or nature-inclusive scenarios to predict soil properties in the future. This may

provide a powerful tool to spatially model soil health and related ecosystem services be-

cause envisioning nature-inclusive scenarios for the future helps resolve challenges we are

facing today (Keesstra et al., 2018; Sowińska-Świerkosz & Garćıa, 2022). Furthermore,

for transformative change to address the challenges that negatively affect our planet,

such as climate change and loss of biodiversity (IPBES, 2019; Pörtner et al., 2021), we

need approaches that address the interdependent challenges in an integrated way to avoid

negative trade-offs and feedbacks (Larrosa et al., 2016).

In the Netherlands, several future visions of nature-based solutions and nature-inclusive

scenarios have been developed (Baptist et al., 2019; Breman et al., 2022). Baptist et al.

(2019) developed a new vision for the Netherlands in 2120 through nature-based solutions

in the domains of water management, energy, agriculture, circular economy, urbanisation

and biodiversity. Although an image of the Netherlands was drawn, no georeferenced,

spatially explicit map was developed, which is a prerequisite for using it in space-time

DSM modelling. Instead, Breman et al. (2022) developed a national scenario of a nature-

inclusive society for 2050 within the framework of a geographic information system. The

goal of this vision was to tackle several urgent societal challenges, such as nature con-

servation and biodiversity, climate change, quality of living, farming transition, energy

transition and water quality (Breman et al., 2022). Coupling space-time DSM models

with future nature-inclusive scenarios can underscore the importance of soils, envision

potential futures and prompt pertinent questions and discussions on soil health and sus-

tainable transitions.

1.4.5 Operational mapping platforms for delivering soil information

Approximately 78% of articles reviewed by Chen et al. (2022) with study areas across

the globe mapped only three, closely related soil properties: SOM, carbon content or

carbon stocks. Many other key soil properties defined by GSM (Arrouays et al., 2014a;

Hempel et al., 2014a) are less frequently mapped. For example, besides soil pH and SOM,

additional information such as soil texture and cation exchange capacity is also crucial for

regulating plant nutrient availability and leaching for both agricultural and environmental

applications. This is particularly relevant in the Netherlands (Stokstad, 2019; Erisman,

2021; Aarts & Leeuwis, 2023), as it has the highest livestock density in the EU (Euro-

stat, 2022, p. 32) and ranks as the world’s second-largest agricultural exporter (Jukema

et al., 2023). Therefore, there are many businesses specialized in optimizing fertilizer and

manure applications for crop production, but also for environmental accounting. For ex-

ample, an estimated 1 300 000 ha are phosphate saturated soils, where phosphate loss due

to leaching exceeds ecologically tolerable limits (Römkens & Oenema, 2004). Hence, pro-

viding spatially explicit information of a broad range of soil properties is crucial to adhere

to Targets 4.2 and 4.3 of the Soil Deal for Europe, which aim to reduce fertilizer use by

at least 20% and reduce nutrient losses by at least 50% by 2030 (European Commission,
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2021).

To fill the gap of a large variety of different soil properties in the Netherlands and else-

where, another challenge is to develop operational, reproducible, standardised, largely

automated and efficient DSM workflows. Although various countries have provided soil

property maps using DSM (Sect. 1.2), the emphasis and evaluation criteria of these GSM

products typically revolves around the prediction maps and not on the DSM workflow,

even though the modelling workflow is one of the main advantages of DSM compared to

conventional soil mapping (Sect. 1.1). Heuvelink et al. (2010) proposed storing models

instead of maps, allowing for more flexibility according to user requirements and saving

storage capacity, among many other advantages. However, an operational soil informa-

tion system was never implemented in the Netherlands and, regardless of the area, is

typically not the focus of published scientific studies. Openly accessible tutorials eluci-

dating standard DSM workflows (e.g. Malone et al., 2017; Hengl & MacMillan, 2019; Brus

et al., 2017; Brus, 2019, 2022) have undoubtedly had a big impact on the increasing use

of DSM. While these are important for education and training, they are not intended for

routine use in a given area. Yet standardized and reproducible DSM workflows are not

only beneficial for research institutions and the DSM community as a whole. By creating

reproducible, standardised, largely automated and efficient workflow, DSM can contribute

to open science. Open science promotes transparency, collaboration, reproducibility, in-

novation, public engagement, efficiency and lead to more robust, impactful, and equitable

scientific research (Lowndes et al., 2017; Ferguson et al., 2023). Thereby, open science

is also linked to targets 17.6 and 17.8 of the Sustainable Development Goals, which aim

to improve global cooperation and access to science, technology, and innovation, while

enhancing the capacity of low- and middle-income countries through knowledge sharing.

Pedometrics and DSM are not exempt from these challenges and also have a role to

play.

1.5 Problem definition

To summarize the knowledge gap and research challenges previously discussed, firstly,

there is a need for high resolution maps of key soil properties using machine learning

methods that exploit the abundance of currently available data on a national-scale in the

Netherlands. Secondly, there are many remaining challenges in DSM related to assessing

map accuracy. Thirdly, predictions are needed in 3D, and for dynamic soil properties,

in the past, present and future in 3D+T, but doing so using the predictive power of

machine learning is largely unexplored. Lastly, a generic framework is needed to develop

operational, reproducible, standardised, largely automated and efficient DSM workflows

to facilitate the inclusion of soil spatial variability as a routine, on-demand and integral

part of decision support systems.
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1.6 Aim, objectives and research questions

The aim of this thesis is to develop a high-resolution soil modelling and mapping platform

for the Netherlands in 3D+T called “BIS-4D”. I have named it after the “Bodemkundig

Informatie Systeem”, the Dutch soil database, and since it predicts soil properties and

their uncertainties in four dimensions (3D+T). I aim to fill the gap of high-resolution

information of soil pH, SOM and other key soil properties on a national scale in the

Netherlands, thereby also contributing to the GSM project. I further defined the following

objectives and research questions related to specific research challenges:

1. Develop a high-resolution, national-scale DSM model of soil pH in 3D with improved

ways of assessing map quality

(a) How can we assess map quality using various statistical validation strategies,

including design-based inference of a probability sample in 3D space?

(b) How can we quantify and visualize prediction uncertainty in a simple, stan-

dardized and appealing way?

2. Develop a high-resolution, national-scale DSM model of SOM explicit in 3D+T

(a) How can we derive covariates that are variable in 2D+T and 3D+T as drivers

of spatio-temporal SOM dynamics?

(b) To what extent can mapping SOM in 3D+T serve as a new paradigm for

monitoring soil health?

3. Apply the high-resolution, national-scale DSM model explicit in 3D+T to map SOM

in 2050 based on a nature-inclusive land use scenario (Breman et al., 2022)

(a) To what extent is a nature-inclusive scenario for 2050 conducive to enhancing

SOM-related soil health in the future?

(b) What is the added value and what are potential applications of using DSM for

modelling future scenarios?

4. Develop an operational, reproducible, standardised, largely automated and efficient

workflow for modelling and mapping a broad range of soil properties and their

uncertainties at high-resolution on a national scale

(a) What are the strengths, limitations and potential applications of an operational

DSM modelling platform and produced maps?

(b) How can we contribute to open science and make DSM models reproducible

and easy to update?

Using BIS-4D, I expect to address the aim, objectives and research questions using various

methods outlined in Fig. 1.5. In the case of a dynamic soil property, the steps can be
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summarized as follows: 1) gather and prepare soil point data, where Y is a target soil

property that varies in 2D space (s), depth (d) and in time (t); 2) gather and prepare

covariates (X ) representing the soil forming factors and derive dynamic covariates in

2D+T and 3D+T; 3) overlay soil point observations explicit in 3D+T with covariates

in 3D+T to obtain a regression matrix; 4) use machine learning for model calibration

and prediction in 3D+T, creating a soil property prediction map at a given depth layer

and for a given year; and 5) assess map quality using statistical validation and prediction

uncertainty. Time t is represented using different colors. In the case of a soil property

considered to be static, the same steps are used but in 3D, not 3D+T. These methods

and steps are investigated and discussed further in Chapters 2 - 5 and provided here only

as a schematic overview.

Figure 1.5: Graphical abstract of the BIS-4D soil modelling and mapping platform, where

Y is a target soil property and X are covariates that vary in 2D space (s), depth (d) and in

time (t). Time t is represented using different colors.

1.7 Thesis structure

This thesis is organized in six chapters, including the general introduction. Chapters 2

- 5 address the four objectives and related research questions described above (Sect. 1.6)

and are peer-reviewed publications (Chapter 2), have been peer-reviewed and accepted for
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publication (Chapter 3) or are currently undergoing peer-review (Chapters 4 - 5). Hence,

Chapters 2 - 5 can also be read separately.

In Chapter 2, I develop a 3D model to predict soil pH at 25m resolution between 0 - 2m

depth in the Netherlands. I assess mapping accuracy using various statistical validation

approaches and introduce spatially explicit accuracy thresholds based on GSM specifica-

tions to visualize prediction uncertainty.

In Chapter 3, I extend the 3D mapping methodology to 3D+T by developing a model that

can predict SOM for any year between 1953 - 2022, also at 25m resolution and between 0 -

2m depth. To do so, I develop novel dynamic covariates explicit in 2D+T and 3D+T and

revisit soil sampling locations from the past throughout the Netherlands to statistically

validate SOM changes.

Next, the 3D+T model from Chapter 3 is applied to predict SOM in 2050 based on

a nature-inclusive land use scenario (Chapter 4). Here, I investigate whether SOM-

related soil health and nature-inclusive transitions are mutually beneficial and discuss

the potentials and limitations of combining the 3D+T SOM model with the 2050 scenario

model.

In Chapter 5, I further build on previous chapters by developing BIS-4D into an opera-

tional, reproducible, standardised, largely automated and efficient modelling and mapping

platform. I predict soil texture (clay, silt and sand content), bulk density, SOM, pH, total

nitrogen, oxalate-extractable phosphorus, cation exchange capacity and their associated

uncertainties at 25m resolution between 0 - 2m depth on a national scale.

Finally, in Chapter 6, I discuss the general findings and implications of this thesis, rec-

ommend future research and conclude. All references of the literature are combined in a

bibliography at the end of the thesis.





Chapter 2

Tier 4 maps of soil pH at 25m resolution for

the Netherlands

This chapter is based on:

Helfenstein, A., Mulder, V.L., Heuvelink, G.B.M., Okx, J.P., 2022. Tier 4

maps of soil pH at 25 m resolution for the Netherlands. Geoderma 410, 115659.

https://doi.org/10.1016/j.geoderma.2021.115659
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Abstract

Accurate and high resolution spatial soil information is essential for efficient and sus-

tainable land use, management and conservation. Since the establishment of digital soil

mapping (DSM) and the goals set by the GlobalSoilMap (GSM) working group, great

advances have been made to attain spatial soil information worldwide. Highly populated

areas such as the Netherlands demand multi-functional land use, for which information

of key soil properties such as pH is essential to make decisions. We a) provide soil pH

prediction maps at six standard depth layers between 0m to 2m for the Netherlands at

25m resolution, whereby the calibrated Quantile Regression Forest (QRF) model allows

for prediction at any desired depth, and b) determine map accuracy using various statis-

tical validation strategies and evaluation of prediction uncertainty. This study is unique

among GSM products by including design-based inference of a probability sample as an

external accuracy assessment and providing Tier 4 maps with spatially explicit accuracy

thresholds for end-users based on GSM specifications.

QRF models were tuned and calibrated using 15 338 soil observations between 0m and

2m depth from 4230 locations and 195 covariates representing the soil-forming factors.

The following statistical validation strategies were used for external accuracy assessment

of map quality: out-of-bag, location-grouped 10-fold cross-validation, an independent

validation set (5677 observations, 1367 locations) and a stratified random sample of the

independent validation set separated by depth layer. Mean error (ME), root mean squared

error (RMSE), model efficiency coefficient (MEC) and the prediction interval coverage

probability (PICP) were calculated in all four strategies. In addition, the 90th prediction

intervals were used to categorize each 25m pixel into “none”, A, AA or AAA quality as

a measure of the internal accuracy assessment.

We obtained large differences depending on the four external accuracy assessment strate-

gies and depth layer (ME= -0.08 - 0.20, RMSE=0.41 - 0.83, MEC=0.64 - 0.90, PICP of

PI90=0.80 - 0.94). Design-based inference (LSK-SRS) was most indicative of map accu-

racy based on sampling theory (ME=0.09 - 0.17, RMSE=0.7 - 0.79, MEC=0.73 - 0.82).

QRF prediction uncertainty was slightly overestimated. Less than 10% of pixels were

designated with AA and AAA and therefore we recommend future studies to also test the

achievability of high quality thresholds for Tier 4 GSM maps. We believe these 3D soil

pH maps at 25m resolution are useful for a variety of end users and that our workflow can

be applied elsewhere and for other soil properties to further diminish the gap of missing

spatial soil information.
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2.1 Introduction

Soil is a vital part of the natural environment and essential for global ecosystem services,

including production of food and fiber, water infiltration, climate regulation, and main-

taining biodiversity. Decision makers therefore require accurate spatial soil information

to ensure that the soil and land are being used, managed and conserved in an efficient

and sustainable way. Digital soil mapping (DSM) is often used to attain spatially explicit

soil information. DSM is the computer-assisted production of soil type and soil prop-

erty maps, using statistical models to infer the relationship between a response, the soil

type or soil property, and the predictors, the spatially exhaustive environmental explana-

tory variables (McBratney et al., 2003; Scull et al., 2003). Usually, the predictors, also

termed covariates, are directly or indirectly related to the main soil forming factors: cli-

mate, organisms, relief or topography, parent material and time (Dokuchaev, 1899; Jenny,

1941).

The GlobalSoilMap (GSM) working group of the International Union of Soil Sciences

(IUSS) was formed across eight geographic “nodes” around the world to strive for a

common goal: a high-resolution spatial soil information system of selected soil properties

and their uncertainties at six standard depths for the entire world (Arrouays et al., 2014b).

In order to achieve this common goal, both top-down and bottom-up approaches have

been implemented. SoilGrids, perhaps the most prominent top-down approach, provides

global maps of key GSM soil properties developed by ISRIC – World Soil Information,

which have since its initial release (Hengl et al., 2014) been improved and updated twice

(Hengl et al., 2017b; Poggio et al., 2021). Other examples of global soil maps include

Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS; Global Soil Data

Task Group, 2000), WISE30sec (Batjes, 2016), S-World (Stoorvogel et al., 2017) and

SoilKsatDB for soil saturated hydraulic conductivity (Gupta et al., 2021).

In parallel, bottom-up approaches to create soil information systems (SIS) at regional,

national and continental scales have also been implemented. A few examples of countries

with SIS using DSM techniques include Denmark (Adhikari et al., 2014a), the United

States (Hempel et al., 2014b), Nigeria (Akpa et al., 2014), Australia (Viscarra Rossel

et al., 2015), France (Mulder et al., 2016a,b), Scotland (Poggio & Gimona, 2017a) and

more recently Brazil (Gomes et al., 2019), China (Liang et al., 2019; Liu et al., 2020) and

India (Dharumarajan et al., 2019, 2020). A global soil organic carbon map (GSOC) was

also created based on national soil organic carbon (SOC) maps from 110 countries (Brus

et al., 2017; FAO, 2018), which are maintained by the Food and Agriculture Organization

of the United Nations (FAO, 2017).

The first publication of the spatial distribution of soil properties in the Netherlands dates

back to the 19th century (Felix, 1995). Systematic soil mapping became institutionalized

with the establishment of the Dutch Soil Survey institute (StiBoKa) in 1945 (Hartemink &
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Sonneveld, 2013). From 1950 to 1995, StiBoKa conducted conventional soil surveys (Bur-

ingh et al., 1962) and produced national maps of soil types at a 1:50 000 scale. A review of

the history of soil mapping in the Netherlands and its different phases including the first

decade of the 21st century was conducted by Hartemink & Sonneveld (2013). Various

studies compared different (geo)statistical methods and developed prototypes of qualita-

tive and quantitative soil property maps for the Netherlands using the data collected by

StiBoKa (Brus & Heuvelink, 2007; Brus et al., 2009; Kempen et al., 2014). In addition, a

variety of DSM techniques were used to update the Dutch soil maps, with a focus on soil

organic matter (SOM) and peatland regions (Kempen et al., 2009, 2011, 2012a). More

recently, SOM was estimated at a national scale using a soil type and binary land use

map (arable land or grassland), at a resolution of 250m at four fixed depths (van den

Berg et al., 2017). On the basis of this SOM map, a Dutch contribution to the Global Soil

Organic Carbon (GSOC) map was also delivered for the topsoil (0 cm to 30 cm), which

was spatially aggregated to 1 km resolution (Walvoort & Hoogland, 2017). Nevertheless,

there is an increasing demand for accurate, 3D, and high resolution information of key

soil properties for the Netherlands. This is especially important for highly populated and

relatively small countries such as the Netherlands (land area=33 481 km2) because land

use decisions are often made on a field scale, e.g. per agricultural parcel.

Since the establishment of DSM as a research field, the main focus has been on im-

plementing new methods to improve the predictive performance of soil maps. Today,

pedometricians can make use of increasing amounts of available spatial data as well as an

extensive toolkit of geostatistical and machine learning approaches combined with a pow-

erful computational infrastructure. However, considerably less effort has been invested

in providing appropriate measures of the quality of soil maps. This is essential for DSM

products to be adopted by a broader community, for future research guidance and most

importantly, to ensure that the quantified accuracy is suitable to fulfill the map’s purpose

(Arrouays et al., 2020).

The quality of maps can be evaluated using internal and/or external accuracy assessment

measures. One way to quantify internal, or model-based accuracy assessment is using the

prediction uncertainty. In this regard, Quantile Regression Forest (QRF; Meinshausen,

2006) models are advantageous within the DSM toolkit not only due to their predictive

performance, but also for their ability to quantify prediction uncertainty. Ensemble deci-

sion tree models such as Random Forest (RF; Breiman, 2001) and QRF have repeatedly

outperformed other machine learning and non-machine learning approaches in DSM ap-

plications (e.g. Hengl et al., 2015; Nussbaum et al., 2017; Keskin et al., 2019). In addition,

QRF delivers a probability distribution of the soil property at each prediction location,

rather than a single (mean) prediction as with RF (Meinshausen, 2006). To the best of

our knowledge, this makes it unique among other machine learning approaches in that the

algorithm inherently also gives an indication of the prediction uncertainty. This may be

a reason for the increasing use of QRF in DSM in recent years (e.g. Vaysse & Lagacherie,
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2017; Lagacherie et al., 2019, 2020; Dharumarajan et al., 2020; Poggio et al., 2021).

Another advantage of QRF prediction uncertainty is that it can be incorporated in the

concept of accuracy thresholds for Tier 4 GSM products. In order to coordinate and

guarantee a minimum quality for soil maps, specifications were made regarding the spatial

entity, soil properties, date, uncertainty, validation, documentation and reproducibility of

GSM products (Arrouays et al., 2014a; Hempel et al., 2014a). Increasing specifications

have to be fulfilled with increasing quality of a DSM product, which are organized into

so-called Tiers (Arrouays et al., 2015). Tier 4 products, which have the strictest require-

ments, specify three levels of accuracy thresholds (A, AA and AAA) depending on the

soil property and depth layer (Appendix 2.6, Table 2.5), although note that also none of

these three levels can be met. These levels specify that prediction uncertainties should be

within certain ranges, with an increasingly narrow and therefore accurate range from A

to AAA. This may provide a powerful measure to communicate the quality of a soil map

to end users for a specific purpose and region. Expressing the uncertainty of predictions

in a meaningful way for end users was described as one of the ten major challenges for

pedometricians (Wadoux et al., 2021b). However, these accuracy thresholds have to our

knowledge not yet been used in DSM studies.

Internal accuracy assessment using QRF has the advantage that prediction uncertainty

and their respective GSM accuracy thresholds are spatially explicit. However, the disad-

vantage is that these are based on the model structure and model assumptions. Therefore,

there is also a need for model-free evaluation of the map’s accuracy, i.e. external accuracy

assessment.

For assessing the external accuracy, the vast majority of DSM studies use statistical

validation methods (Wadoux et al., 2020; Piikki et al., 2021). This usually involves data-

splitting, either using a single split involving a calibration and validation set, or repeating

this multiple times during n-fold cross-validation (CV). These validation methods are

a form of external accuracy assessment because the independent and separate observa-

tions not used in model calibration are compared to the predictions at the observation

locations (Chatfield, 1995). However, if the validation locations are not selected using a

probability sampling design, then the accuracy assessment may be biased (Brus et al.,

2011; Brus, 2014, 2019). In summary, external accuracy assessment without a probability

sample gives an indication of the accuracy at independent locations, but these locations

may not be indicative of the map itself. Therefore, Brus et al. (2011) conclude that,

when evaluating map quality, a probability sample and associated design-based statistical

inference should be used for the external accuracy assessment whenever possible. This

classical sampling theory method is statistically sound and has been extensively described

in statistics (Cochran, 1977) and environmental science (de Gruijter et al., 2006; Gregoire

& Valentine, 2007). However, in two recent systematic reviews, Wadoux et al. (2020)

reported that only two out of 150 studies used an additional probability sample for vali-
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dation (Subburayalu & Slater, 2013; Lacoste et al., 2014) and Piikki et al. (2021) reported

that only 13% of 188 studies used probability sampling. This is most likely because prob-

ability samples are often not available due to time and cost restraints (Domburg et al.,

1997; Hartemink & McBratney, 2008; Hartemink et al., 2010).

Given the strong demand for high-resolution 3D soil information in the Netherlands and

the need to properly assess map quality, this study has two main objectives. Firstly,

we aim to contribute to the GSM project by providing soil pH prediction maps for the

Netherlands at 25m resolution, at any desired depth between 0m and 2 m, using QRF.

We chose to focus on soil pH because it is an indispensable soil property to assess soil

processes and fertility: it not only provides information on acidity and alkalinity, but is

also an indication of nutrient availability, metal dissolution and (micro-)biological activity

(Miller & Kissel, 2010; Weil & Brady, 2017). Secondly, we aim to quantify map accuracy

using a) spatially explicit QRF prediction uncertainty and respective GSM Tier 4 accuracy

thresholds and b) statistical validation strategies.

2.2 Materials and methods

2.2.1 Soil point datasets

We used 21 015 pH measurements, or observations, from 5597 locations between 0m to

2m depth excluding the O horizon or humus layer (Table 2.1, Fig. 2.1). Excluding built-

up (urban) and water surface area, this approximately yields an average density of 1

soil sampling location per 5 km2. All observations were retrieved from the Dutch soil

database, or “Bodemkundig Informatie Systeem” (BIS; IenM & TNO, 2017; TNO, 2020).

We chose to use pH measurements conducted in KCl suspension (pH [KCl]) as opposed

to the internationally more frequently used H2O or CaCl2 suspension methods because

KCl suspension was the preferred measurement method in the Netherlands from 1950 to

2000 (Supplement S1, Fig. S11). There were less than 1000 measurements available using

the other methods and we refrained from converting between methods since this may

introduce substantial uncertainty.

Table 2.1: Descriptive statistics of soil pH [KCl] for calibration (PFB) and validation (LSK)

data.

Dataset Locations Observations Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness

Calibration (PFB) 4230 15338 0.90 4.20 4.80 5.20 6.10 9.00 0.52

Validation (LSK) 1367 5677 1.90 4.40 5.20 5.53 7.00 8.20 0.26

For model calibration, we used 15 338 pH [KCl] measurements from 4230 locations (Ta-

ble 2.1, Fig. 2.1). At these locations, profile descriptions, or “Profielbeschrijving” (PFB),

1Supplements of Chapter 2 are available at https://doi.org/10.1016/j.geoderma.2021.115659

under “Supplementary data”.
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Figure 2.1: Soil pH [KCl] sampling locations, histograms and boxplots grouped by depth

layer of calibration (PFB; left in black) and validation (LSK; right in blue) data. Observations

were grouped into depth layers using the midpoint of each sampled soil horizon.

were made, soil samples were collected from each horizon between 1953 and 2012 and

measured in the lab (Supplement S1, Fig. S1). This dataset was specifically chosen for

model calibration because it constitutes the majority of soil pH data in the Netherlands.

The somewhat clustered locations cover all regions of the Netherlands with the exception

of southwestern Flevoland (Fig. 2.1). The pH calibration data follow a bimodal distribu-

tion with the majority of values between 4 and 5 and a smaller peak around 7.5 (Fig. 2.1).

Bimodal distributions for soil pH are common and in the case of the Netherlands can be

attributed to the dominating Pleistocene sandy soils vs. Holocene clay soils. Grouped
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into the GSM depth layers by the respective midpoints of the sampled layers, the median

pH values are around 4.5 to 5 across all depth layers. Three unexpectedly low values were

measured between 15 cm and 60 cm depth (Fig. 2.1), but there was insufficient evidence

for them to be classified as outliers and removed.

The separate and independent validation data were gathered during the “Landelijke

Steekproef Kaarteenheden” (LSK) between 1993 and 2000 (5677 measurements from 1367

locations; Supplement S1, Fig. S1). Soil sampling locations were determined in the LSK

campaign using a probability sample, more specifically a stratified simple random sample

(SRS), wherein 94 strata were defined based on soil type and groundwater class (Finke

et al., 2001; Visschers et al., 2007). As with the calibration (PFB) data, observations were

made for each soil horizon, which indicates that it is only a SRS in 2D space. This has im-

plications for the statistical validation (Sect. 2.2.6). The validation set also has a bimodal

distribution, although the relative difference between the two peaks is much smaller than

for the calibration set (Fig. 2.1). Consequently and in contrast to the calibration data, the

overall median as well as the median of each grouped depth layer is above 5 (Table 2.1,

Fig. 2.1). Note that there are considerably fewer observations (n = 251) in the validation

set with a midpoint between 15 cm to 30 cm compared to the other depth layers.

2.2.2 Covariate selection

The covariates (total number P = 195) were chosen specifically to represent the soil

forming factors. The covariates are summarized in Table 2.2 and a complete list is included

in Supplement S2, Table S1.

As indicators of the soil forming factor climate, we used the long-term mean, minimum

and maximum temperature and precipitation between 1981 and 2010 from the Royal

Netherlands Meteorological Institute (Table 2.2; KNMI, 2020).

The majority of covariates used in this study are historical, agricultural or natural land

use and vegetation maps relating to the soil forming factor “organism” (Table 2.2). We

specifically chose a large number of these maps because there is profound anthropogenic

influence and high land use intensity in the Netherlands. Approximately 82% of the land

surface in the Netherlands is agricultural, urban or infrastructure (Hazeu et al., 2020).

Multiple versions covering different time spans were included.

We used the national digital elevation model (DEM) of the Netherlands, or “Actueel

Hoogtebestand Nederland” (AHN), and commonly used DEM derivatives for the soil

forming factor topography (Table 2.2). The standard deviation of the systematic as well

as random error of AHN 2 and 3 is ± 5 cm (AHN, 2023). With such high accuracy, we

considered topographic covariates to be informative not only for hilly regions but also for

the large majority of the Netherlands that is relatively flat. We computed the following

commonly used DEM derivatives: slope, profile curvature, deviation from the mean value
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Table 2.2: Summary of the main covariates used grouped by soil forming factor. For the

complete list of covariates, see Supplement S2, Table S1.

Soil form-

ing factor

Description Timespan/ ver-

sion

Source

Climate Long-term mean, minimum & maximum

temperature

1981-2010 KNMI (2020)

Climate Long-term mean precipitation 1981-2010 KNMI (2020)

Organism Land use (historical): “Historisch Grondge-

bruik Nederland” (HGN)

1900, 1960,

1970, 1980

Alterra (2004)

Organism Land use (recent): “Landelijk Grondge-

bruiksbestand Nederland” (LGN)

1986-2019 WENR (2020); Hazeu

et al. (2020)

Organism Land use (recent): “Bestand Bodemge-

bruik” (BBG), Top10NL

1993, 1996-

2019

CBS (2015); BRT

(2020)

Organism Copernicus land monitoring: CORINE

Land Cover (CLC), Riparian land cover,

water and wetness index, grassland vs. non-

grassland, tree cover density

1986, 2000,

2006, 2012,

2018

EEA (2018); Thunnis-

sen & Middelaar (1995);

Hazeu & Wit (2004);

EEA (2007)

Organism Nature land cover maps 1988, 1990,

2003, 2004,

2013

Bakker et al. (1989);

Kramer & Clement

(2015); Sanders & Prins

(2001)

Organism Agricultural crop parcels (“BRP

Gewaspercelen”)

2005-2019 EZK (2019)

Organism Agricultural management type, ammonia &

nitrogen emissions, manure application

1993, 2018,

2019

BIJ12 (2019); RIVM

(2020)

Organism Water drainage classes, areas behind dikes

or not

Maas et al. (2019)

Organism Vegetation maps: forest classified by age,

recreational use, tree species, tree height

de Vries & Al (1992);

Clement (2001)

Topography DEM: “Actueel Hoogtebestand Nederland”

(AHN) & hillshade

AHN1 (1997-

2004), AHN2

(2007-2012),

AHN3 (2014-

2019)

AHN (2023)

Topography AHN2 derivatives: slope, profile curva-

ture, deviation from mean, openness, Topo-

graphic Wetness Index (TWI), Multiresolu-

tion Valley Bottom Flatness (VBF), valley

depth

AHN2 (2007-

2012)

AHN (2023)

Parent ma-

terial

Geomorphology based on geomorphological

classes, genesis, form, formation begin and

end and relief

2004, 2008,

2019

Koomen & Maas

(2004); Maas et al.

(2019)

Parent ma-

terial

Physical geography and groundwater maps 2013, 2004 EZK (2013); KRW

(2004)

Parent ma-

terial

(Paleo-)geographical maps 9000-250B.C.

100-1850 A.D.

Vos (2015); Vos et al.

(2020)
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within a local neighborhood, positive and negative openness, Topographic Wetness Index

(TWI), Multiresolution Valley Bottom Flatness (MrVBF; Gallant & Dowling, 2003) and

valley depth (Wood, 1996, 2009). The deviation from the mean value was computed

within a radius of 11 cells (275m) to account for local changes in topography. AHN 2

was used to obtain these derivatives because it has a higher accuracy than AHN 1 and

because AHN 3 has not been thoroughly validated yet (AHN, 2023). A hillshade from

the AHN 2 was also downloaded and used.

We used geomorphological, paleo- and physical geography maps as indicators of parent

material (Table 2.2). The parent material for soils in the Netherlands consists almost

exclusively of geologically young material from fluvial and coastal lowlands of the Holocene

age as part of the Rhine-Meuse delta (60%) as well as Pleistocene sand (van der Meulen

et al., 2013). In this sense for the Netherlands there are no lithology or bedrock maps

commonly used in DSM studies in other parts of the world.

For many covariates, multiple versions from different years were included to account for

changes in soil forming factors over time. In addition, several of the covariates were based

on each other. For example, “Landelijk Grondgebruiksbestand Nederland” (LGN) uses

“Bestand Bodemgebruik” (BBG) and “Top10NL” data. This indicates that many of the

covariates are highly correlated. Ensemble decision tree models are robust against highly

correlated data; it does not cause an overfit or decrease prediction accuracy. However, it

is important to note that the higher the number of correlated covariates, the lower the

relative importance of each will become, which leads to a distorted variable importance

measure (Strobl et al., 2007; Kuhn & Johnson, 2013). For this study, we did not refrain

from using many highly correlated covariates because we deemed prediction accuracy more

important than model interpretability based on variable importance measures.

2.2.3 Covariate preprocessing

All covariates were first visually explored for inconsistencies. Rasters were exported at a

target resolution of 25m because this matches the resolution of the LGN land use maps

(WENR, 2020; Hazeu et al., 2020) and allows for land use decisions at a fine resolution,

e.g. within a small agricultural parcel.

The first step of covariate preparation and preprocessing was to project all covariates to

the Amersfoort or RD New coordinate reference system (EPSG:28992). Next, all covari-

ates were resampled to a common origin, extent and resolution. In this step, continuous

covariates were resampled using the cubic spline method whereas categorical covariates

were resampled using the nearest neighbor method. During reprojection and resampling,

the AHN2 was used as reference and the AHN2 “no-data” layer was used as a mask (water

and buildings).

Many of the categorical covariates were reclassified because some classes did not occur at
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observation locations. For example, the detailed classes (n = 15) of different cereals in

crop rotation covariates (“BRP Gewaspercelen”) were aggregated into one general cereals

class (Supplement S2, Table S1).

We stacked the covariates and extracted values at all calibration locations by overlaying

them with the covariate stack, resulting in a regression matrix used for model tuning

and calibration. Sampling depth information was also included as a predictor in the

regression matrix. Including depth along with spatial covariates in a so-called “3D”

modelling approach has been used before (Akpa et al., 2014; Filippi et al., 2019, 2020;

Hengl et al., 2017b; Ramcharan et al., 2018; Zhang et al., 2020) and is compared in detail

to so-called 2D and 2.5D approaches in Ma et al. (2021). More specifically, we included

the midpoint of each sampled layer or horizon, as well as the upper and lower boundary

to also account for horizon thickness. In summary, we chose to include depth information

so that predictions can easily be made at any chosen depth (user specific) and as a means

to account for changes in soil pH over depth.

2.2.4 Model tuning and calibration

For model tuning, calibration, and prediction, it is important to differentiate between

mean and median predictions when using QRF. During calibration, for each node in each

tree, RF keeps only the mean of the observations that fall into each node. In contrast,

QRF keeps the value of all observations in each node (Meinshausen, 2006). Based on this,

the fitted QRF can then be used to yield a cumulative probability distribution (i.e., quan-

tiles of the distribution) of the response pH at every sampled location and depth during

prediction. In predictive modelling, users are generally interested in the best possible pre-

dictions that are closest to the “truth”. It thus makes sense to go for the expected value,

i.e. the conditional mean. If the median is used, as e.g. retrieved from the 0.50 quantile

in QRF, predictions may be biased if the response is not symmetrically distributed. In

addition, median predictions are not additive, if e.g. soil organic carbon stocks need to be

calculated from a soil organic carbon map. However, the advantage of using the median

is that it is more robust to outliers. For model tuning, we grew RF (not QRF) models

with the goal of optimizing hyper-parameters for mean predictions; therefore, there was

no need to keep the value of all observations in each node as in QRF (Meinshausen, 2006),

which greatly decreased computation time and did not change the tuning results. How-

ever, for the final model calibration, a QRF was fitted so that predictions could thereafter

be made for both the mean and quantiles (including median).

Model tuning for RF was performed using a location-grouped 10-fold CV wherein all PFB

observations from the same location were grouped, abbreviated hereafter as PFB-CV. This

means that all observations from the same soil profile were either part of the hold-in or

hold-out fold across each of the 10 folds. We tested all combinations (full cartesian grid

search) of the following hyper-parameters (Boehmke & Greenwell, 2020):
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• Number of trees in the forest (ntree): 100, 150, 200, 250, 500 (ranger default),

750, 1000

• Number of covariates to consider at any given split (mtry):
√
P (ranger

default) and 25%, 33.3% (randomForest default) and 40% of P , i.e. 14, 49, 65, 78

• Complexity of each tree (minimal nodesize): 1, 3 and 5

• Sampling with replacement (replace): TRUE (sample with replacement) and

FALSE (sample without replacement)

• Fraction of observations to sample (sample.fraction): 0.5, 0.63 and 0.8

(based on recommendations from Boehmke & Greenwell (2020); this only applies if

replace =FALSE)

The final set of hyper-parameters was chosen based on the lowest root mean squared error

(RMSE) across the 10-fold CV. When the increase in RMSE was below 0.1%, the model

with fewer trees was chosen to reduce computation time. Besides the commonly tuned

ntree, mtry and nodesize hyper-parameters, we also tested different values related to the

sampling scheme. Sampling with replacement can lead to biased variable split selection

when there are many categorical covariates with varying numbers of levels (Janitza et al.,

2016; Strobl et al., 2007). Hence, we tested sampling without replacement because we

had many categories that were not balanced, hoping to achieve a less biased use of all

levels across the trees in the forest. In addition, decreasing the sample fraction size of

observations leads to more diverse trees and thus lowers between-tree correlation, which

can increase the prediction accuracy, especially if there are a few dominating covariates

(Boehmke & Greenwell, 2020). The splitting rule used during tree construction (splitrule)

was held constant at the default value of selecting the split at each node that minimizes

the variance of the response.

The final QRF used for model predictions was fitted using all soil observations in the

calibration set (n=15 338), covariates including depth indications (P = 195) and the

final set of optimized hyper-parameters. Permutation was used to assess relative variable

importance during model fitting. In this method, the mean squared error (MSE) is

compared to the MSE after permuting the values of a covariate, yielding a difference

in MSE per covariate. These MSE differences are normalized by the standard deviation

of the MSE differences over all covariates (Breiman, 2001).

2.2.5 Maps of predicted soil pH, uncertainty and accuracy thresholds

The calibrated QRF were used to derive the mean, median (0.50 quantile; q0.50), 0.05

quantile (q0.05) and 0.95 quantile (q0.95) at every 25m pixel and each standard depth layer

specified by GSM (0 - 5 cm, 5 - 15 cm, 15 - 30 cm, 30 - 60 cm, 60 - 100 cm and 100 - 200 cm)

over the Netherlands. Predictions were made at the same support as the observations, i.e.

at point support at the center of each pixel and the specified depth increment. Support is
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defined as the area or volume over which a measurement or prediction is made (Webster

& Oliver, 2007, Sect. 4.8).

In addition, spatially explicit 90% prediction intervals (PI90) were obtained at every 25m

pixel as a measure of prediction uncertainty as follows:

PI90 = q0.95 − q0.05 (2.1)

As an additional measure of map quality using internal accuracy assessment, we used

the PI90 to designate every 25m pixel at every predicted depth layer into one of four

thresholds: none, A, AA and AAA (Table 2.3). These accuracy thresholds are specified

by GSM Tier 4 products (Arrouays et al., 2015) and do not vary over depth in the case

of soil pH (Appendix 2.6, Table 2.5). From “none” to AAA, the PI90 (uncertainty) of

a given prediction gradually decreases, indicating that users can be very certain about

predictions at AAA locations and least certain about predictions at “none” locations. For

example, for a AAA pixel 9 out of 10 times the true value is less than ±0.5 pH units

from the mean prediction, and less than ±1.5 pH units from the mean prediction for a A

pixel.

2.2.6 Evaluation of map accuracy using statistical validation

Non-design-based inference

We also evaluated map quality using external accuracy assessment in the form of statistical

validation strategies (Table 2.3). Firstly, we used the out-of-bag (OOB) observations,

in other words the PFB observations not selected during bootstrapping when QRF is

calibrated (PFB-OOB; Breiman, 2001). This is commonly used in various disciplines to

assess accuracy of RF or other ensemble decision tree models. Secondly, we used location-

grouped 10-fold CV (PFB-CV; Sect. 2.2.4). Compared to PFB-OOB, this method was

chosen because it prevents observations from the same location in being both in the hold-

in and hold-out set, wherein the hold-in samples are used for model calibration and the

hold-out for model validation. PFB-OOB and PFB-CV both only make use of the PFB

calibration dataset (Sect. 2.2.1). Thirdly, we used the LSK dataset as an independent

validation set. The probability sampling design of the LSK cannot easily be utilized

when considering all depths because there are multiple observations from different depth

layers at the same locations. This means that in 3D, it cannot be considered a SRS. We

nevertheless included this strategy because we wanted to investigate whether there are

substantial differences between a non-design-based vs. design-based (see below) inference

of LSK.

To obtain commonly used accuracy metrics, mean predictions at all depths were used to

calculate residuals and estimate from them the mean error (ME or bias), the RMSE and
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Table 2.3: Five strategies to evaluate map quality, based on an internal or external (i.e.

statistical validation) accuracy assessment. ME, RMSE, MEC and their respective CI95s in

LSK-SRS were calculated using probability sampling theory for SRS (Eq. 2.5 - 2.11). *PI90

and PICP of LSK and LSK-SRS are identical, respectively, since the same observations are

compared to the respective PIs. **Accuracy metrics in LSK-SRS can only be computed for

separate layers in order to adhere to the probability sampling design, whereas they can also

be computed using observations at all depths for the other statistical validation strategies.

Accuracy

assess-

ment

Acronym Description
Statistical

validation
Dataset Accuracy metrics 2D space Depth**

Internal –

Tier 4 GSM

accuracy

thresholds

–
PI90 of

predictions

None (PI90 > 3.0 pH units)
explicit

(25m

pixels)

User

specific

A (PI90≤ 3.0 pH units)

AA (PI90≤ 2.0 pH units)

AAA (PI90≤ 1.0 pH units)

External PFB-OOB Out-of-bag

non-

design-

based

PFB ME, RMSE, MEC, PI90, PICP
point lo-

cations

All,

layers

External PFB-CV

Location-

grouped 10-fold

CV

non-

design-

based

PFB ME, RMSE, MEC, PI90, PICP
point lo-

cations

All,

layers

External LSK
Independent

validation

non-

design-

based

LSK
ME, RMSE, MEC, PI90*,

PICP*

point lo-

cations

All,

layers

External LSK-SRS
SRS of indepen-

dent validation

design-

based
LSK

ME, RMSE, MEC, CI95,

PI90*, PICP*

strata

weighed
Layers

the model efficiency coefficient (MEC):

M̂E =
1

n

n∑
i=1

(
Yi − Ŷi

)
(2.2)

̂RMSE =

√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2

(2.3)

M̂EC = 1 −

∑n
i=1

(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Y

)2 (2.4)

where n is the number of observations, Yi and Ŷi are the ith observation and prediction,

respectively, at a certain location and depth, and Y is the mean of all observations. The

MEC was originally used in hydrological modelling (Nash & Sutcliffe, 1970) and is also

referred to as the mean squared error skill score in other disciplines such as meteorology

(Wilks, 2011). In addition, all quantiles from 0 to 1 were predicted at all depths at all

observation locations for statistical validation to obtain the PI90 as well as the prediction

interval coverage probability (PICP) of all PIs. The PICP is the proportion of observations

that fall into the corresponding prediction interval (Papadopoulos et al., 2001). If the

model is able to accurately quantify the uncertainty, then the percentage of observations

within a PI should be close to the PICP.
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Design-based inference

In order to conduct a design-based inference of map accuracy using the SRS probability

sample, we grouped the LSK observations into the GSM depth layers so that there was

at most one observation at each location (LSK-SRS) for every depth layer. Observations

were grouped into GSM depth layers by allocating each observation to the layer in which

the midpoint of the sampled soil horizon lies. This means that some locations had no

observations for that particular depth layer while other layers had more than one. For

locations where there were more than one observation per depth layer, the observation

was chosen whose midpoint was closest to the midpoint of the GSM depth layer. This

meant that not every observation was used for LSK-SRS. If the distances were identical,

then the observations and predictions were averaged (mean). If there were no observations

for an entire stratum for a particular depth layer, then that stratum was removed from

the analysis. The number of observations that were left out or averaged as well the

left-out strata and the percentage of land they constituted were reported for each depth

layer (Table 2.4). The uppermost GSM depth layer cannot be validated using LSK (both

design- and non-design based inference) because there is only 1 observation from 0 - 5 cm

(Fig. 2.1 and Table 2.4).

Table 2.4: Metadata of the LSK-SRS method per depth layer, including number of removed

observations, number of averaged observation pairs, percentage of the strata that were removed

from the total (H = 94), which strata were removed and the percentage of the Netherlands

covered. *We refer to the strata codes from Finke et al. (2001), Appendix 1.

Depth layer
Observations Strata % NL

coverage#

removed

# averaged

pairs
% removed Removed*

0 - 5 cm - - - - -

5 - 15 cm 0 0 6.38 1904, 1910, 1915, 2007, 2108, 2114 98.51

15 - 30 cm 0 0 7.45 1913, 1914, 1917, 2102, 2116, 2117, 2901 95.66

30 - 60 cm 73 13 0 - 100

60 - 100 cm 417 56 0 - 100

100 - 200 cm 222 4 9.57
1502, 1503, 1504, 1505, 1915, 2201, 2401,

2601, 2701
97.15

For each depth layer (except 0 - 5 cm), the estimates of ME, RMSE and MEC (Eq. 2.2 -

2.4) were adjusted for LSK-SRS according to probability sampling theory. In addition, the

lower and upper 97.5% confidence limits, which together give the 95% confidence intervals

(CI95) of these metrics were also computed according to sampling theory (de Gruijter

et al., 2006, Sect. 7.2.4). The estimated mean error (M̂E), the associated estimation

error variance and the lower and upper confidence limits were computed as follows:

M̂E =
H∑

h=1

(
wh · 1

nh

nh∑
i=1

(
Yhi − Ŷhi

))
(2.5)
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V ar(M̂E −ME) =
H∑

h=1

w2
h ·

1

nh(nh − 1)
·

nh∑
i=1

(
Yhi − Ŷhi −

(
1

nh

nh∑
i=1

(
Yhi − Ŷhi

)))2


(2.6)

lower & upper CL = M̂E ± qt (0.95, n−H) ·
√
V ar(M̂E −ME) (2.7)

where H is the total number of strata, nh is the number of observations in stratum h

(h = 1, . . . , H), wh is the stratum weight, which equals the stratum area Ah divided

by the total area A, Yhi and Ŷhi are the ith observation and prediction in stratum h,

respectively, and qt(0.95, n−H) is the 0.95 quantile with n−H degrees of freedom.

The estimated mean squared error (M̂SE), its estimation error variance and respective

lower and upper confidence limits were computed in a similar manner:

M̂SE =
H∑

h=1

(
wh · 1

nh

nh∑
i=1

(
Yhi − Ŷhi

)2
)

(2.8)

V ar(MSE − M̂SE) =

H∑
h=1

w2
h ·

1

nh(nh − 1)
·

nh∑
i=1

((
Yhi − Ŷhi

)2

−

(
1

nh

nh∑
i=1

(
Yhi − Ŷhi

)2
))2

 (2.9)

lower & upper CL = M̂SE ± qt (0.95, n−H) ·
√
V ar(MSE − M̂SE) (2.10)

The RMSE and its respective CI95 were obtained by simply taking the square root of

the M̂SE and its lower and upper confidence limits. ME and RMSE and respective CI95

metrics are in units of the response variable (pH [KCl]).

The estimate of the model efficiency coefficient (M̂EC) and its CI95 for LSK-SRS were

calculated as follows:

M̂EC = 1− M̂SÊV ar(Y )
(2.11)

where ̂V ar(Y ) is defined in Eq. 7.16 in de Gruijter et al. (2006) as:

̂V ar(Y ) = ̂̄Y 2
st − ( ̂̄Y st)

2 + V̂ ( ̂̄Y st) (2.12)

where ̂̄Y 2
st =

H∑
h=1

(
wh · 1

nh

nh∑
i=1

Y 2
hi

)
(2.13)
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̂̄Y st =
H∑

h=1

(
wh · 1

nh

nh∑
i=1

Yhi

)
(2.14)

V̂ ( ̂̄Y st) =
H∑

h=1

w2
h · 1

nh(nh − 1)

nh∑
i=1

(
Yhi − 1

nh

nh∑
i=1

Yhi

)2
 (2.15)

The CI95 of the MEC was computed by taking a bootstrap sample from all observations

per stratum 1000 times and then retrieving the 0.025 and 0.975 quantile of the distribution.

For strata with just one observation per depth layer (nh = 1), a within-stratum variance

cannot be calculated in Eq. 2.6, 2.9 and 2.15 because a minimum of two observations

are required. For these strata, we took the average of the within-stratum variances of all

strata with two or more observations.

2.2.7 Software and computational framework

The computational framework was entirely based on open source software and performed

on a Ubuntu 20.04.1 operating system (OS) with 48 cores and 126 GB working memory

(RAM). QGIS (version 3.16.3) was used for covariate and soil prediction map visualiza-

tion (QGIS Development Team, 2023). All scripts, metadata, reclassification tables (the

original covariate values, a description of each class, the reclassified value and description

of the reclassified class) of the categorical covariates and model outputs (soil pH and their

associated uncertainty and accuracy threshold maps) are openly accessible (see code and

data availability below).

Resampling, reclassification of categorical covariates and masking covariates for buildings

and water bodies was done using the GDAL (version 3.1.3) functions gdalwarp, gdal calc

and gdal translate, respectively (GDAL/OGR contributors, 2023). Reclassification of

categorical covariates was automated as much as possible. First, a table was exported

from R with all the values within a raster. A short description of the original value

(e.g. 3) as well as a reclassified value (e.g. 2) were manually added where necessary (e.g.

“barley” and “cereals”). Lastly, each reclassification table was imported back into R,

converted into a string format necessary for GDAL’s gdal calc function and reclassified

accordingly. DEM derivatives were calculated using SAGA-GIS (version 7.3.0; Conrad

et al., 2015). Covariate preprocessing steps using GDAL and SAGA-GIS were run on the

OS as suggested in Hengl & MacMillan (2019) but parallelized in R (version 4.0.3; R Core

Team, 2023) using the doParallel (Wallig et al., 2022b) and foreach packages (Wallig

et al., 2022a). GDAL and SAGA-GIS were specifically chosen for these steps because

it massively decreased computation time compared to using similar functions in R using

the raster (Hijmans, 2020) or terra packages (Hijmans, 2023). All other covariate

preprocessing steps including extracting covariate values at calibration locations were

done in R using the raster or terra packages.
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All model tuning, calibration and evaluation using statistical analysis was done in R. The

indices necessary for the location-grouped 10-fold CV were made using the CAST package

(Meyer, 2023). The remaining model tuning and selection of hyper-parameters were done

using the caret package (Kuhn, 2019, 2022). We used the ranger package (Wright &

Ziegler, 2017) with the option “quantreg” to grow a QRF and without it to grow a RF (for

tuning). For predictions, the option “quantiles” was used to predict quantiles while the

option “response” was used to predict the mean. A combination of the ranger and terra

packages was used for predicting at all locations and depths. Finally, prediction maps were

visualized using the rasterVis package (Lamigueiro & Hijmans, 2023). The complete

computational workflow for 24 pH maps (mean and three quantiles for six depth layers)

took approximately 688 CPU-hours and included covariate preprocessing (96 CPU-hours),

model tuning and calibration (232 CPU-hours) and prediction (360 CPU-hours).
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2.3 Results

2.3.1 Model tuning, calibration and variable importance

Out of the 336 possibilities of hyper-parameter combinations tested, we chose ntrees =500,

mtry =49, minimal nodesize =1 and a sampling scheme without replacement with a sam-

ple fraction of 0.8. This set of hyper-parameters resulted in the lowest RMSE (0.713)

out of all combinations across the location-grouped 10-fold CV. Increasing the number

of trees above 500 decreased the RMSE by less than 0.1%. The range of RMSE values

obtained from all hyper-parameter combinations was 0.712 - 0.732. Slightly improved per-

formance with higher numbers of trees and 25% of the total covariates to consider at any

given split (mtry) align with the general recommendations of using ensemble decision tree

models. Sampling without replacement with sample fractions of 0.8 or lower generally led

to lower RMSE values. These results can be explained by the high number of categorical

covariates with large differences in the number of classes.

The most important variables of the final model calibration based on permutation were

physical geographical maps, followed by geomorphological maps, the AHN (DEM), forest

type, land use and temperature maps (Supplement S3, Fig. S2). However, these variable

importance measures are not reliable due to high correlation between a large proportion

of the covariates (Strobl et al., 2007; Kuhn & Johnson, 2013).

2.3.2 Soil pH maps: mean predictions

Mean prediction maps of soil pH at 25m resolution varied across the different GSM depth

layers (Fig. 2.2). High pH values indicating alkaline soils were found in the marine clay

regions, for example in the Southwest (Zeeland) and the regions where land was reclaimed,

or “polders” (e.g. Flevoland). Low pH indicating acidic soils were found in sandy areas,

e.g. the glacial moraines of the Saalien ice age such as the Utrechtse Heuvelrug and Veluwe

regions. In the very south of the Netherlands (Limburg), the model predicted neutral or

slightly alkaline soils. This is the only region in the Netherlands that contains calcareous

sediments. There was also a distinct pattern along rivers, such as along the Rhine, Maas

and IJssel River valleys. Here, the pH was also neutral, reflecting the riverine clays and

sediments being deposited along the river banks.

The spatial patterns of the mean predictions over all depth layers suggested that with

increasing depth, vegetation and land use played a smaller role (Fig. 2.2). QRF was able to

detect the large effect that forested and peatland regions had on soil pH for the uppermost

soil layers, revealing acidic conditions in general. With increasing depth, vegetation and

land use appeared to become less important and the spatial patterns at these depths

resemble geomorphological and parent material indicators. There were a few exceptions

to this general pattern in the deepest soil layer (100 - 200 cm) that showed distinct local

patterns of low pH values, which might be attributed to regions with thick peat layers.
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Figure 2.2: Soil pH [KCl] predictions (mean) for every 25m pixel over the Netherlands for

the six depth layers specified by GSM.

Predictions at a high resolution revealed differences in soil pH between and within small

agricultural parcels (Fig. 2.3, left).

2.3.3 Soil pH maps: quantiles, PI90 and accuracy thresholds

The maps of quantiles, PI90 and corresponding accuracy thresholds were regarded as a

spatially explicit internal accuracy assessment since it quantifies the prediction uncertainty

of the calibrated QRF model. For example, between 15 - 30 cm, q0.05 showed low (acidic)

values almost throughout the Netherlands except for the marine clay regions (Fig. 2.4).

q0.95 revealed high (alkaline) values of soil pH except for Pleistocene “coversand” regions,

which showed values around 6. This pattern was evident across all depth layers (Supple-

ment S4, Fig. S3). In contrast, the loamy riverine and peat areas in the Netherlands were

contrasted by much higher uncertainty (Fig. 2.5 and Supplement S4, Fig. S3).

The PI90 and accuracy thresholds thereof indicated large uncertainty of QRF predictions

(PI90 > 2.0, i.e quality “none” or “A”) for the majority of the Netherlands (Fig. 2.5 & 2.6).
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Figure 2.3: Two-stage zoom-in of mean predictions of pH [KCl] (left) and corresponding

accuracy thresholds (right) for the depth layer 15 - 30 cm in the southern part of the Nether-

lands.
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Figure 2.4: q0.05 (left), median (middle) and q0.95 (right) pH [KCl] for every 25m pixel over

the Netherlands for the depth layer 15 - 30 cm.
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Depending on the depth layer, the percentage of pixels for each accuracy threshold ranged

between 39.5% to 64.7% for “none”, 26.5% to 53% for A, 2.0% to 9.0% for AA and

less than 0.2% for AAA. In general, areas with marine clay soils or sandy soils showed

smaller PI90 and better accuracy thresholds. AAA quality was only achieved for a few

pixels in the marine clay soils in the depth layers 0 - 5 cm, 5 - 15 cm and especially 15 -

30 cm. With increasing depth, a larger part of the Netherlands did not even achieve the

lowest threshold A. However, many sandy soil regions improved from A to AA quality

with increasing depth (Fig. 2.6). When zooming in, the maps of accuracy thresholds also

revealed differences between and within agricultural parcels (Fig. 2.3, right). Areas with

high variation in accuracy thresholds were often not the same areas as areas with high

variation in pH predictions.
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Figure 2.5: The PI90 (left) and corresponding accuracy thresholds (none, A, AA and AAA;

right) for the depth layer 15 - 30 cm.

2.3.4 Evaluation of map accuracy using statistical validation

Non-design-based inference

The external accuracy assessment of soil pH maps using non-design-based statistical

validation techniques revealed different results between PFB-OOB, PFB-CV and LSK

(Fig. 2.7, 2.8 and 2.9). The accuracy plots and metrics of mean predictions over all

depth layers combined indicated the best performance using PFB-OOB (ME=0.01 pH,

RMSE=0.47 pH, MEC=0.88), followed by PFB-CV (ME= -0.01 pH, RMSE=0.71 pH,

MEC=0.72) and the worst performance using LSK (ME=0.11 pH, RMSE=0.79 pH,

MEC=0.68; Fig. 2.7). Statistical validation using PFB-OOB suggested much higher

map accuracy than both PFB-CV and LSK, where residuals were larger, RMSE higher
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Figure 2.6: pH [KCl] accuracy thresholds (none, A, AA and AAA) for the six depth layers

specified by GSM.

and MEC lower. However, we do not recommend the reader to choose the statistical

validation method based on apparent performance, as the metrics may not necessarily in-

dicate the “true” map accuracy (Sect. 2.4.1). Both strategies that used the PFB dataset

had a ME around zero, indicating an unbiased map, whereas the strategy using the in-

dependent validation set (LSK) indicated that QRF systematically under-predicted pH

by 0.11 units. For PFB-CV and LSK, observations in the low pH ranges were generally

predicted too high, while observations in the high pH ranges were generally predicted too

low.

We also found a clear discrepancy between PFB-OOB, PFB-CV and LSK based on ac-

curacy metrics of mean predictions over depth (Fig. 2.8). At PFB locations, the model

slightly overpredicted soil pH for the first 5 cm and slightly underpredicted soil pH from

60 cm to 200 cm but was unbiased for the depth layers in between. Statistical validation

using LSK resulted in positive ME values for all depth layers and the bias was highest

for the depth layers 15 to 30 cm (ME=0.20), followed by 30 - 60 cm (ME=0.14) and 60 -

100 cm (ME=0.11). In contrast to ME results, RMSE values of PFB-OOB and PFB-CV

indicated different results for all depth layers. PFB-OOB RMSE results indicated the
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pĤ [KCl]

pH
 [K

C
l]

LSK

PICP of PI90

PFB−OOB:

FALSE (0.137)

TRUE (0.863)

PFB−CV:

FALSE (0.071)

TRUE (0.929)

LSK:

FALSE (0.075)

TRUE (0.925)

Figure 2.7: Accuracy plot (predicted vs. observed) and metrics of soil pH [KCl] at all depths

for PFB-OOB, PFB-CV and LSK. The horizontal grey error bars are the PI90. Blue circles

indicate observations within the PI90 (i.e. error bars cross the 1:1 line) and orange crosses

indicate observations outside the PI90 (i.e. error bars do not cross the 1:1 line). The PICP

of PI90 specifies the percentage of the observations inside (TRUE) or outside (FALSE) the

PI90. Notice the different scale of the axes for LSK compared to PFB-OOB and PFB-CV.

best model performance at depths 15 cm to 60 cm (RMSE ≈ 0.4). PFB-CV also indicated

lower accuracy in depth layers below 60 cm (RMSE=0.77), but even for the upper 5 cm

revealed relatively poor results compared to PFB-OOB (RMSE=0.62 vs. RMSE=0.49).

In comparison to PFB-OOB and PFB-CV, RMSE values using the LSK were higher for

all depth layers but only varied slightly over depth between 0.76 and 0.83. MEC values

of PFB-OOB indicated best model fit for predicting at 15 cm to 60 cm (0.90) and lowest



2.3 Results 47
D

ep
th

 [c
m

]

0 cm to 5 cm

5 cm to 15 cm

15 cm to 30 cm

30 cm to 60 cm

60 cm to 100 cm

100 cm to 200 cm

1000 2000 3000 4000
n

0.0 0.1 0.2
ME

0.4 0.5 0.6 0.7 0.8
RMSE

0.7 0.8 0.9
MEC

0.80 0.85 0.90
PICP of PI90

PFB−OOB

PFB−CV

LSK

LSK−SRS

Figure 2.8: Total number of observations (n), ME, RMSE, MEC and PICP of PI90 of the

different strategies (PFB-OOB, PFB-CV, LSK and LSK-SRS) over depth. Dashed lines do

not represent actual data and are only for visual guidance. Gray error bars indicated the CI95

of LSK-SRS accuracy metrics.
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predictions are the same. Lines connecting the points do not represent actual data and are

only for visual guidance.
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for 100 - 200 cm (0.83). MEC values using PFB-CV were highest for 0 - 5 cm (0.78) and

gradually decreased to 0.69 in the deepest layer. As with ME and RMSE, LSK also indi-

cated relatively poor results of map accuracy over depth based on lower MEC values at

all depths between 0.64 and 0.70. Accuracy evaluation using the LSK dataset could not

be made for 0 - 5 cm, since there was only one observation with a midpoint within this

depth layer (Fig. 2.8).

The PFB-CV and LSK results of the PICP of PI90 (Fig. 2.7 and 2.8) and all other

PIs (Fig. 2.9) indicated that QRF prediction uncertainty was slightly overestimated. The

PICP of PI90 for PFB-CV and LSK were between 0.925 and 0.929 over all depths (Fig. 2.7)

and above 0.90 for most depth layers (Fig. 2.8). Only the uncertainty of the depth layer

0 - 5 cm for PFB-CV was underestimated. The prediction uncertainty based on PFB-CV

and LSK was also overestimated for all remaining PIs (Fig. 2.9). In contrast, the PICP of

PI90 for PFB-OOB revealed a clear underestimation of the prediction uncertainty (0.863;

Fig. 2.7), especially at depth layers 0 - 5 cm and 60 cm to 200 cm (Fig. 2.8). Based on

the PFB-OOB evaluation, the 0.70 PI of QRF was the most accurate, wherein lower PIs

overestimated the prediction uncertainty and higher PIs underestimated the prediction

uncertainty (Fig. 2.9).

Design- vs. non-design-based inference

The statistical validation of the design-based inference (LSK-SRS) resulted in ME values

between 0.09 and 0.17, RMSE values between 0.70 and 0.79 and MEC values between

0.73 and 0.82, depending on the depth layer (Fig. 2.8). LSK-SRS indicated higher map

accuracy compared to LSK (ME=0.05 - 0.14, RMSE=0.76 - 0.83 and MEC=0.64 - 0.70).

The small differences in the number of observations (n) used in the statistical validation

for LSK and LSK-SRS were because only one observation was used per depth layer for

LSK-SRS (Sect. 2.2.6, Table 2.4). Similarly to LSK, evaluation of the map using LSK-

SRS also showed biased results, following a similar pattern over depth. The ME values of

LSK were within the CI95 of the ME of LSK-SRS. RMSE values also followed the pattern

of LSK over depth. However, the values indicated a higher map accuracy and were closer

to the PFB-CV metrics. The RMSE values of LSK were outside the CI95 range except

for the depth interval from 100 - 200 cm, but the RMSE metrics of PFB-CV were mostly

within this range. The MEC metrics and their respective CI95s of LSK-SRS indicated

better mapping accuracy results than PFB-CV and LSK. The CI95 did not overlap with

MEC metrics from other approaches. Overall, the CI95 were narrow for both RMSE and

MEC metrics, indicating a high certainty of RMSE and MEC values. The PICP metrics of

LSK and LSK-SRS were identical because the observations and quantile predictions were

the same (Fig. 2.8 and 2.9). In summary, metrics across all four strategies (PFB-OOB,

PFB-CV, LSK and LSK-SRS) varied by respective minimum and maximum values over

all depths between ME= -0.03 and 0.20, RMSE=0.42 and 0.82, MEC=0.64 and 0.90

and PICP=0.80 and 0.93.
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2.4 Discussion

2.4.1 Map accuracy using statistical validation strategies

The large differences depending on the external accuracy assessment strategy used (PFB-

OOB, PFB-CV, LSK or LSK-SRS; Table 2.3) emphasize that map accuracy depends

largely on the statistical validation approach. Different approaches can yield substantially

different indications of the same map’s quality. Hence, the statistical validation strategy

needs to be chosen carefully. Based on sampling theory (Cochran, 1977; de Gruijter et al.,

2006; Gregoire & Valentine, 2007), maps should be validated with a design-based approach

using a probability sample whenever possible (Brus et al., 2011). Therefore, LSK-SRS

may be regarded as the best estimate of the “true” map accuracy in our study and

is further advantageous because the CI95 also quantifies the accuracy of the estimated

metrics (Fig. 2.8). Nonetheless, we acknowledge that even the uncertainty of design-

based metrics (CI95) are themselves imperfect and prone to uncertainty, as numerical

experiments using pseudo values have shown (Lagacherie et al., 2019).

However, a slight disadvantage of LSK-SRS in our study is that some observations had

to be removed or averaged and some depth layers had no observations for specific strata

(Table 2.4). The depth layer 0 - 5 cm was not evaluated and the metrics of depth layers

5 - 15 cm, 15 - 30 cm and 100 - 200 cm only pertain to between 95.66% and 98.51% of the

Netherlands. This may be avoided in other studies by considering the soil in 3D space

when planning the sampling design and deciding which target depth layers to map before-

hand. Such an approach may be planned in a similar way as for design-based inference

of spatio-temporal models, where the probability sample needs to include both locations

and time (Brus, 2014). In the case of the Netherlands, the LSK sampling campaign was

planned before the standard GSM depth layers were defined (Finke et al., 2001; Visschers

et al., 2007).

Both LSK and LSK-SRS strategies suggest that soil pH maps are positively biased, i.e.

systematically under-predicted pH, with ME=0.05 to 0.17 (Fig. 2.8). Depth layers be-

tween 15 cm to 60 cm showed the largest bias. This may be due to the difference in

distribution of the PFB (calibration) vs. LSK (validation) data (Fig. 2.1). The relatively

large peak in observations around 4.5 pH in PFB in comparison to the peaks for LSK

results in a lower average in the calibration data. Ensemble decision trees tend to predict

the average well while performance decreases towards the tails of the distribution. This

is most likely due to averaging of trees in the forest (e.g. Hengl et al., 2018). Hence,

the calibrated QRF using PFB data possibly led to overall biased predictions at LSK

locations. The values of ME for LSK-SRS according to sampling theory also indicate that

the predictions are not only biased at validation locations, but for all of the Netherlands.

Such a bias may be avoided by using a representative dataset of all of the Netherlands

(e.g. probability sample) also for calibration, not only for validation. On one hand, an-
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other possible reason for the bias may be that PFB and LSK data originate from different

time periods (Supplement S1, Fig. S1). On the other hand, field and lab methods and

protocols remained the same for both PFB and LSK data, so a bias solely due to the year

of soil sampling and analysis is unlikely.

We found that QRF was able to detect changes in pH over depth, as indicated by the

qualitative evaluation of the spatial patterns (Fig. 2.2 and Sect. 2.3.2), and that accuracy

slightly decreased over depth, as indicated by the design-based inference (Fig. 2.8). RMSE

increased from 0.70 (5 - 15 cm) to 0.73 - 0.74 (15 cm to 100 cm) to 0.79 (100 - 200 cm). How-

ever, the MEC and ME did not indicate lower accuracy over depth. Performance often

decreases with depth in DSM studies due to fewer observations and fewer covariates avail-

able indicative of soil conditions at lower depths (Keskin & Grunwald, 2018).

Using LSK-SRS as a reference, PFB-CV was most indicative of map quality out of the

non-design-based inference strategies. RMSE, MEC and PICP values of PFB-CV were

closest to those of LSK-SRS (Fig. 2.8 and 2.9). OOB validation for ensemble decision tree

models without grouping soil profile locations overestimated map accuracy. This is sup-

ported by Meyer et al. (2018), who show that without leaving out all observations from

entire locations, model accuracy metrics are overly optimistic. In contrast, validation

using the independent dataset (LSK) without design-based inference was too pessimistic

over all depth layers based on RMSE and MEC values (Fig. 2.8). This may be because

when ignoring the probability sample, observations from small (niche) strata, where the

predictive performance is likely worse, are oversampled and frequently occurring strata,

where predictive performance is likely better, are undersampled in comparison to their rel-

ative occurrence in the study area. In summary, using either PFB-OOB or not accounting

for the LSK sample design both resulted in misleading map accuracy metrics.

For other studies that do not have the resources to validate using a probability sample,

the location-grouped k -fold CV used here (PFB-CV) may be further refined to estimate

map accuracy. Random k -fold CV, even when grouped by location, potentially still leads

to biased estimates since the data are often clustered or unevenly distributed (Brenning,

2012; Schratz, 2019). When data are clustered or unevenly distributed, data dense ar-

eas are weighed more than sparsely sampled areas in random k -fold CV. Thus, the CV

indicates how accurate the model is at predicting the sampled data, but not necessarily

the area. To overcome these challenges, we recommend to use weighted CV: a form of

random k -fold CV where the dataset is resampled into multiple datasets based on point

density (van Ebbenhorst Tengbergen, 2021). Weighted CV was not tested here due to

the availability of a probability sample to perform design-based inference (LSK-SRS). We

do not recommend spatial partitioning, i.e. spatial CV, or the use of buffers in CV (e.g.

Brenning, 2005, 2012; Le Rest et al., 2014; Pohjankukka et al., 2017; Roberts et al., 2017;

Ploton et al., 2020; Hengl et al., 2021), as these are not theoretically sound and are likely

systematically and potentially severely over-pessimistic (Wadoux et al., 2021a).
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2.4.2 Comparison to other soil pH maps

The main improvements of our soil pH maps for the Netherlands compared to other GSM

products are a better estimation of the “true” map accuracy using design-based inference

and the high spatial resolution (25m). Here, we compare our design-based LSK-SRS

accuracy metrics with those of other studies. However, it is important to note that other

studies did not use probability samples and design-based inference for validation and so

results are not directly comparable. Accuracy metrics of studies using a non-probability

sample may be considered overly optimistic in the case of clustered data (Wadoux et al.,

2021a).

Our maps have similar patterns as previous soil pH maps of the Netherlands. Although

an initial map for soil pH from 0 cm to 25 cm was made for the Netherlands using a soil

type map and co-kriging, mean predictions are difficult to compare because no statistical

validation was done (Brus & Heuvelink, 2007; Brus et al., 2009). Nevertheless, qualitative

evaluation of the spatial patterns reveals strong resemblance of mean predictions (Fig. 2.4;

Brus et al., 2009, p. 19).

For Denmark, another Northern European country similar in both size and soil variability

to the Netherlands, Adhikari et al. (2014b) used a hybrid model consisting of Cubist

followed by local point kriging of the residuals and validated maps using 25% of samples.

Results were only reported for the depth layer with the best performance (5 - 15 cm),

for which an R2 of 0.46 and RMSE of 0.61 were achieved. Our MEC value, which is

comparable to R2, is better (0.78) while our RMSE is higher (0.70) for the same depth

layer using design-based inference.

On average, our results for map accuracy using design-based inference are also comparable

to other recent GSM products that used ensemble decision trees (RF or QRF) to model

soil pH. For example, Chen et al. (2019) predicted topsoil (0 cm to 20 cm) pH for China

using RF and assessed the accuracy with a random 10-fold CV (not grouped by location).

We attained comparable results for depths 5 cm to 30 cm in terms of RMSE (0.70 to 0.74)

compared to their study (0.72), but our MEC values were higher than their R2 values

(MEC=0.78 - 0.82 vs. 0.71).

We also compared our results to the recent SoilGrids version 2.0 (Poggio et al., 2021), for

which we compared global metrics as well as prediction performance in the Netherlands.

SoilGrids 2.0 also used QRF but assessed map accuracy using a CV procedure based

on spatial stratification. When comparing global metrics, we attained better results for

depths 5 cm to 100 cm (RMSE=0.70 to 0.74; MEC=0.73 - 0.82) compared to their val-

ues over all depths (RMSE=0.77 pH (water), MEC=0.66 - 0.69; Poggio et al., 2021),

although for the depth layer 100 - 200 cm, our RMSE was higher (0.79). We attained

identical PICP of PI90 results as SoilGrids 2.0 for depths 5 - 15 cm and 15 - 30 cm (0.91

and 0.90, respectively), but slightly poorer results for 30 cm - 200 cm (0.92 - 0.94 vs. 0.89 -
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0.91). However, we achieved much higher performance, for example for the depth layer

5 cm to 15 cm (ME=0.09, RMSE=0.70, MEC=0.78, PICP of PI90=0.91) compared to

SoilGrids (ME= -0.74, RMSE=1.23, MEC=0.34, PICP of PI90=0.71) when evaluating

prediction performance in the Netherlands using LSK-SRS design-based inference. These

magnitudes of differences in predictive performance between our maps and SoilGrids for

the Netherlands were consistent when comparing all depth layers. These results align

with Mulder et al. (2016b) and Chen et al. (2019), who compared their national prod-

ucts with the older version of SoilGrids (Hengl et al., 2017b) and also achieved higher

accuracy.

2.4.3 Uncertainty using QRF

The PICP obtained from the QRF quantiles reveal that PI’s are generally too large

and hence prediction uncertainty was overestimated. For applications, this means that

users can be slightly more certain than indicated because the PI90 in reality appears

to cover more than 90% of the observations (Fig. 2.8 and 2.9). Our maps of q0.05 and

q0.95 for depths 0 cm to 30 cm (e.g. Fig. 2.4) match those of Brus et al. (2009, p. 20),

who used co-kriging based on a soil type map of the Netherlands. This suggests that in

this case, the uncertainty quantification using QRF was similar to the kriging variance.

However, other studies have often found large differences in the spatial distribution of the

PI when comparing QRF and kriging (Vaysse & Lagacherie, 2017; Baake, 2018; Szatmári

& Pásztor, 2019).

A modelling approach using QRF can make use of the flexibility and predictive perfor-

mance of machine learning while still attaining an estimate of prediction uncertainty in

a general context. However, the limitations of prediction methods such as QRF are that

they do not deliver knowledge of the different sources of this uncertainty. Recent studies

have developed approaches to either quantify uncertainty of data used as model inputs in

DSM, such as the measurement errors of soil observations (van Leeuwen et al., 2021) or

covariates, or how these errors can be incorporated in machine learning algorithms such

as RF (van der Westhuizen et al., 2022).

There are many possible sources that may have contributed to the QRF prediction un-

certainty, such as the inability of the covariates to explain all soil pH variation, lab mea-

surement errors and the temporal variation of soil pH over time. We used legacy data

from 1953-2012 (Supplement S1, Fig. S1), but ignored time even though soil pH may have

changed over the decades. Even within one year, soil pH varies with season and soil mois-

ture content, with higher pH values associated with wetter soils and winter conditions and

lower pH values with drier soils and summer conditions (Miller & Kissel, 2010; Robinson

et al., 2017). However, differences that might be expected due to soil pH temporal varia-

tion (e.g. 0.5 pH units) are only a major source of uncertainty in areas for which the PI90

is very low (e.g. AAA pixels). Therefore, such temporal variation is smaller than the vast
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majority of uncertainty quantified here. In agreement with Arrouays et al. (2017), there is

a need to address soil measurement age and time in future DSM studies. Accounting for

time may potentially improve prediction accuracy by removing this source of uncertainty.

Moreover, it potentially estimates how pH has changed over time for different parts of the

Netherlands.

2.4.4 Accuracy thresholds for Tier 4 GSM maps and user applications

Using the GSM accuracy thresholds for Tier 4 products for the PI90, the large majority

of the Netherlands was designated A or “none” quality. We believe that there are several

reasons for this. Firstly, as indicated by the PICP of PI90 (Fig. 2.7, 2.8 and 2.9), the

uncertainty quantification using QRF was overestimated, meaning that overall, slightly

better accuracy threshold designation can be expected (e.g. less “none” and more AAA).

Secondly, the accuracy thresholds are also dependent on the spatial support. Uncertainty

of predictions at block support is typically smaller than for point predictions because

within-block variation is averaged out. The degree of uncertainty reduction depends on

the degree of within-block spatial variation and therefore uncertainty reduction by spatial

aggregation can only be computed if the spatial correlation is included in the model,

e.g. as in Szatmári et al. (2021). Thus, we expect more AAA areas with increasing

spatial support. Thirdly and most importantly, the achievability of AA or AAA accuracy

thresholds are largely dependent on the size and variability of soil observations in the

study area. Higher accuracy thresholds can generally be achieved in study areas where

there is less variation while mostly lower accuracy thresholds are achieved in areas where

there is a large variation. If users require AA or AAA accuracy for their intended use,

we recommend to conduct a local or regional mapping study where there is less variation

(e.g. sandy soils) and to increase the sampling density.

Based on our results, AA and AAA thresholds are difficult to achieve for national maps

and we are curious whether other countries will obtain similar results. We think it is

important that accuracy thresholds remain ambitious because thresholds below “none”

would imply such a high uncertainty that it would most likely be meaningless for user

applications. We hope that our results will lead to a discussion that includes end-users

about the uncertainty ranges of the GSM accuracy thresholds.

We believe that accuracy thresholds as used here have several advantages. Unlike sta-

tistical validation, which can only make use of observations at sampled locations, they

are spatially explicit and can be designated to each pixel, as is also the case for other

uncertainty measures (Heuvelink, 2014, 2018). Moreover, we believe accuracy thresholds

are easier to communicate with end-users than other widely used uncertainty metrics,

e.g. PI90. A user merely has to know the quality required for their specific applica-

tion and then look at the map of four possible thresholds. Note that maps are not only

useful where there are high quality pixels; many users may only require e.g. A quality.
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National-scale measures, legislation or projects that are based on soil information can

easily be applied specifically to areas above a certain threshold. For agricultural applica-

tions for example, our maps may potentially be useful in order to consider uncertainty for

liming recommendations (Libohova et al., 2019). Lark et al. (2014) used a similar idea to

communicate to users where critical trace element values might approach agronomically

important thresholds.

Our modelling framework is convenient for a variety of users that require spatially explicit

soil pH information and associated uncertainty with quantified accuracy at 25m resolution

for any desired depth anywhere in the Netherlands. If users are interested in the overall

pH map accuracy for the Netherlands, we recommend to use the LSK-SRS (and PFB-

CV if between 0 - 5 cm) metrics. If users are interested in a small target area within the

Netherlands or require spatially explicit accuracy measures, then we recommend the use of

PI90 and accuracy threshold maps. Given that the accuracy is within an acceptable range

(for a given target area), the high resolution maps may be used for local and small-scale

land use planning and management. In this regard, we hope that these soil pH maps are

useful for the Dutch Ministries for Agriculture, Nature and Food Quality, Economic Affairs

and Climate Policy, Infrastructure and Water Management, governmental water-boards,

as well as farmers, researchers from different fields and non-profit organisations. The

reproducible, efficient and flexible computational workflow may also make it attractive

to generate future maps of other target soil properties for the European Joint Program

(EJP) on agricultural soil management of the European Union (Keesstra et al., 2021)

or the Global Soil Partnership (GSP) of the Food and Agriculture Organization of the

United Nations (FAO).

2.5 Conclusion

This study contributed to the GSM project by providing soil pH prediction maps for the

Netherlands at 25m resolution, at six standard depth layers (0 - 5 cm, 5 - 15 cm, 15 - 30 cm,

30 - 60 cm, 60 - 100 cm and 100 - 200 cm), yet the calibrated model allows prediction at any

user-required depth. We compared non-design-based to design-based external accuracy

assessment strategies using ME, RMSE, MEC, PI90 and PICP metrics. Among these sta-

tistical validation methods, the probability sample available in the Netherlands presented

a unique opportunity for accuracy assessment using design-based inference (LSK-SRS).

Consequently, we were able to provide unbiased estimates of the “true” map quality and

quantify the accuracy of these estimates with confidence intervals. We used a robust,

reproducible and data-driven DSM workflow that uses QRF to quantify spatially explicit

uncertainty as an internal accuracy assessment. In addition, these are to our knowledge

the first Tier 4 GSM maps, since they also provide spatially explicit accuracy thresh-

olds as quality rankings. We attained A and “none” quality accuracy thresholds for the

large majority of the Netherlands and therefore, we call upon future studies to also test
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whether the highest Tier 4 GSM quality rankings are difficult to achieve for national scale

soil maps. We hope that our soil pH maps are useful for national agencies and initia-

tives and expect that with modest modification our workflow can be applied to other soil

properties and other areas in the world to meet the increasing demand for spatial soil

information.

2.6 Appendix A. GSM accuracy thresholds

Table 2.5: These tabular data are referred to in Arrouays et al. (2015) but to the best of our

knowledge has not been published. The specifications for the response of this study, soil pH

(multiplied by 10), is shown in bold.

Soil property Unit A AA AAA

Depth 0− 5

Depth to rock cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Plant Exploitable

(Effective) Depth

cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

SOC g/kg Mean± 60% (Mean) Mean± 35% (Mean) Mean± 15% (Mean)

pH x 10 (±) 15 (±) 10 (±) 5

Clay g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Silt g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Sand g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Coarse fragments m3/m3 Mean± 35% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

ECEC mmolc/kg Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Depth 5− 15

Depth to rock cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Plant Exploitable

(Effective) Depth

cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

SOC g/kg Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

pH x 10 (±) 15 (±) 10 (±) 5

Clay g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Silt g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Sand g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Coarse fragments m3/m3 Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

ECEC mmolc/kg Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Depth 15− 30

Depth to rock cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Plant Exploitable

(Effective) Depth

cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

SOC g/kg Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

pH x 10 (±) 15 (±) 10 (±) 5

Clay g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Silt g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Sand g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Coarse fragments m3/m3 Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

ECEC mmolc/kg Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)



56 Chapter 2. Tier 4 maps of soil pH

Depth 30− 60

Depth to rock cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Plant Exploitable

(Effective) Depth

cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

SOC g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

pH x 10 (±) 15 (±) 10 (±) 5

Clay g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Silt g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Sand g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Coarse fragments m3/m3 Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

ECEC mmolc/kg Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Depth 60− 100

Depth to rock cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Plant Exploitable

(Effective) Depth

cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

SOC g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

pH x 10 (±) 15 (±) 10 (±) 5

Clay g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Silt g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Sand g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Coarse fragments m3/m3 Mean± 50% (Mean) Mean± 40% (Mean) Mean± 20% (Mean)

ECEC mmolc/kg Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Depth 100− 200

Depth to rock cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

Plant Exploitable

(Effective) Depth

cm Mean± 50% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)

SOC g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

pH x 10 (±) 15 (±) 10 (±) 5

Clay g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Silt g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Sand g/kg Mean± 40% (Mean) Mean± 25% (Mean) Mean± 15% (Mean)

Coarse fragments m3/m3 Mean± 50% (Mean) Mean± 40% (Mean) Mean± 20% (Mean)

ECEC mmolc/kg Mean± 40% (Mean) Mean± 30% (Mean) Mean± 15% (Mean)
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Abstract

For restoring soil health and mitigating climate change, information of soil organic matter

is needed across space, depth and time. Here we developed a statistical modelling platform

in three-dimensional space and time as a new paradigm for soil organic matter monitoring.

Based on 869 094 soil organic matter observations from 339 231 point locations and the

novel use of environmental covariates variable in three-dimensional space and time, we

predicted soil organic matter and its uncertainty annually at 25m resolution between 0 -

2m depth from 1953 - 2022 in the Netherlands. We predicted soil organic matter decreases

of more than 25% in peatlands and 0.1 - 0.3% in cropland mineral soils, but increases

between 10 - 25% on reclaimed land due to land subsidence. Our analysis quantifies the

substantial variations of soil organic matter in space, depth, and time, highlighting the

inadequacy of evaluating soil organic matter dynamics at point scale or static mapping

at a single depth for policymaking.
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3.1 Introduction

Soil organic matter (SOM) plays a crucial role in achieving multiple Sustainable De-

velopment Goals (SDGs) (United Nations, 2015; Keesstra et al., 2016; Jónsson et al.,

2016; Lorenz et al., 2019; Smith et al., 2021), in particular SDG target 2.4 on sustainable

food production and resilient agricultural practices and target 15.3 on land degradation

neutrality by 2030. Furthermore, SOM is linked to six of the eight mission objectives

of the Soil Deal for Europe (European Commission, 2021), which aims to fulfill Euro-

pean and international commitments to the SDGs. In 2023, the European Commission

underscored its commitments through the Directive on Soil Monitoring and Resilience

(European Commission, 2023b), a legislative proposal where soil health is defined as

“the continued capacity of soils to support ecosystem services” (European Commission,

2021).

Besides being essential for soil health, SOM offers an opportunity for climate change

mitigation through carbon sequestration (Chabbi et al., 2017; Amelung et al., 2020).

Studies have shown that SOM increase is feasible under best management practices, and

consequentially, the “4 per mille Soils for Food Security and Climate” was launched with

the aspiration to increase global SOM stocks by 4 per 1000 (or 0.4%) per year (Minasny

et al., 2017). Coordinated efforts are underway to develop best practices for measuring,

reporting, and verifying SOM changes (Smith et al., 2020), while simultaneously adapting

agricultural systems to facilitate carbon farming as a means of mitigating greenhouse gas

emissions (Sharma et al., 2021).

However, while it is perhaps too early to determine the effectiveness of international com-

mitments, SOM continues to decrease in European croplands (Fernández-Ugalde et al.,

2020) and peatlands (Leifeld & Menichetti, 2018). It is therefore no surprise that the

increase of SOM and conservation of peat soils remains the main challenge related to soil

health (Vanino et al., 2023).

With its intensive agriculture, degraded peatlands, and highly anthropogenic landscapes,

the Netherlands is an ideal case for examining SOM changes to address the priority soil

health challenge, “4 per mille”, the Soil Deal and SDG targets. Situated in Europe’s

largest delta, the Rhine-Meuse-Scheldt delta, agriculture in the Netherlands is widely

regarded as the most intensive in Europe (Debonne et al., 2022). Before the start of

agriculture in the low lying regions less than 2000 years ago, more than 50% of what is

now the Netherlands was covered in peat (Vos et al., 2020; Erkens et al., 2016). Through

drainage, excavation and/or agricultural use of peatlands, this has now been reduced

to 15% (Fig. 3.1d & e; SI11). The Netherlands is largely composed of anthropogenic

1Supplementary information (SI) of Chapter 3 is available at https://doi.org/10.1038/

s43247-024-01293-y under “Supplementary information”.
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Figure 3.1: Land use map of the Netherlands in 1953 (a) and 2022 (b), main physical

geographic regions (c) and peat occurrence in 1987 at 5 - 15 cm (d) and 60 - 100 cm depth (e).

See Sect. 3.3.2 for how maps of dynamic covariates were derived for all years between 1953

and 2022 and SI1 for information on plaggen soils shown in c.

landscapes: historic land reclamation (17%2; Fig. 3.1c), conversion to urban areas (15%;

Fig. 3.1a & b) and re-landscaping of new nature and recreational areas have had a

tremendous impact on the soils.

The challenge of increasing SOM for restoring soil health and fulfilling international com-

mitments requires high resolution, spatio-temporally explicit SOM assessment to facilitate

management practices and land use decisions tailored to local soil conditions. To address

this challenge, we developed a modelling platform in 3D space and time (3D+T) as a new

paradigm for SOM monitoring and mapping. It provides annual predictions of SOM and

its uncertainty in the Netherlands, at 25m resolution at point support between 0m and

2m depth from 1953 (first measurements; Fig. 3.2) to 2022. We used machine-learning,

869 094 SOM observations from 339 231 point locations (approximately 10 locations per

km2; Fig. 3.2 & Table 3.1) and spatially explicit environmental covariates. Using quantile

regression forest (Meinshausen, 2006), the median of the predicted probability distribution

was taken as the predicted SOM value while the 90th prediction interval (PI90) indicates

prediction uncertainty (Sect. 3.3.8). The covariates were either static (2D), variable in

2Percentages of present day surface area
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Figure 3.2: Map showing the 339 231 locations with SOM observations (a) and their temporal

distribution (b). Laboratory measurements are shown in orange and field estimates are shown

green. Note log-scale of y-axis.

time (2D+T) (Heuvelink et al., 2020; OpenGeoHub et al., 2022) or variable in 3D+T, and

serve as proxies for soil-forming factors. While climate, relief, and parent material were

considered static, land use (Fig. 3.1a & b) and the occurrence of peat (Fig. 3.1d & e)

were considered dynamic due to their greater propensity to anthropogenic influence over

70 years compared to the other soil-forming factors (Borrelli et al., 2017). Besides predic-

tion uncertainty, we used statistical validation to assess mapping accuracy. Space-time

mapping of soil properties remains a major challenge, with relatively few studies having

mapped temporal changes on a regional to global scale (Stockmann et al., 2015; Gray

& Bishop, 2016; Yigini & Panagos, 2016; Hengl et al., 2017a; Sanderman et al., 2017;

Stumpf et al., 2018; Huang et al., 2019; Szatmári et al., 2019; Heuvelink et al., 2020;

OpenGeoHub et al., 2022). To the best of our knowledge, our approach is the first to use

a 3D+T dynamic covariate (Fig. 3.1d & e). Furthermore, these are the first SOM maps

in 3D+T on a national scale. As a convention of this paper, SOM and absolute changes

in SOM between two years (∆SOM) are expressed as mass percentages.

3.2 Results and Discussion

3.2.1 SOM decrease in peatlands

Our findings indicate that between 1953 and 2022 there was a decrease of more than 1% in

SOM on 14% of the land surface area of the Netherlands, which is equivalent to 4750 km2.

Furthermore, there was a decrease of over 10% in SOM on 4.5% of the land surface area,
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Table 3.1: Number of SOM laboratory measurements and field estimates used for model

tuning and calibration separated by depth layer.

Depth [cm] SOM lab measurement SOM field estimate

0 - 5 1049 18 873

5 - 15 5538 230 710

15 - 30 2500 117 800

30 - 60 5329 209 918

60 - 100 6170 138 122

100 - 200 2249 130 836

which amounts to 1520 km2, predominantly occurring in peatlands. In former peat layers

now classified as mineral soil layers, average SOM decreases at 0 - 30 cm depth ranged

between 9 - 21% (Table 3.2). For soils still classified as peat, average SOM decreases were

mostly greater than 2%. Regardless of peat oxidized or not, average SOM decreases in

croplands were substantially higher compared to grasslands and forests. A recent study

conducted in the Netherlands found that there were no substantial changes in SOM in

organic soils at 0 - 30 cm depth (Knotters et al., 2022). However, at 30 - 100 cm depth, the

study showed a decline of 7 - 9.5% between 1998 and 2018, which is consistent with our

research findings in organic and former organic soils across all depths. The prediction

maps also align with the spatial patterns of SOM in other studies (van den Berg et al.,

2017; Knotters et al., 2022).

Table 3.2: Predicted average changes in SOM [%] for 0 - 30 cm depth between 1953 (left) and

2022 (top) for combinations of soil type (peat vs. mineral) and land use (grass = grassland,

crop = cropland, forest).

2022

Peat, grass Peat, crop Peat, forest Mineral, grass Mineral, crop Mineral, forest

1953

Peat, grass −0.6 −2.1 −0.5 −10.0 −13.6 −10.9

Peat, crop −2.1 −3.5 −2.2 −15.1 −21.4 −17.2

Peat, forest −2.3 −2.8 −1.1 −9.4 −12.3 −10.1

Mineral, grass 5.2 11.7 10.6 0.0 −0.3 −0.1

Mineral, crop 16.2 23.3 18.3 0.3 −0.1 0.2

Mineral, forest 6.5 22.3 9.1 0.1 −0.2 0.0

3D spatial predictions of SOM changes (Fig. 3.3) were different for bog and brook-valley

peatlands, located mainly in the Northeast of the country, and fen peatlands, located

mainly in the low-lying West and Northwest of the country (Fig. 3.1c). In bogs and

brook-valleys, peat layers were often thinner than 1m (Fig. 3.3a, b & e, Supplementary

videos3) and SOM decreased by more than 10% or even more than 25% between 1953 and

2022 (Fig. 3.3c, d & f). Time-lapse maps spanning the entire 70-year period provide a

3Supplementary videos of Chapter 3 are available at https://doi.org/10.1038/

s43247-024-01293-y under “Supplementary information”.
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visualization of these gradual changes over time at different depth layers (Supplementary

videos). SOM decreases exceeding 25% were primarily predicted at depths below 20 cm

(Fig. 3f). This can be attributed to the fact that in peatlands, SOM predictions were

mainly confined to a range of 5 - 20% within the uppermost 20 cm, while deeper depths

had predictions surpassing 25% (Fig. 3.4a, b & e, Supplementary videos). Fig. 3.4c shows

a typical brook-valley region on a 1:25 000 map (left), where SOM decreased by 10 - 25%

at 5 - 15 cm depth due to peat oxidation. The center of this map depicts a location under

intensive grassland visited as part of the ∆SOM validation dataset (Sect. 3.3.1). Here,

yearly SOM predictions between 1953 and 2022 (lines) and measurements in 1965 and

2022 (points) from 9 - 18 cm and 23-30 cm depth also underline this trend of decreasing

SOM over time (Fig. 3.4c). Overall, our findings corroborate previous surveys in the

northeastern province of Drenthe, which indicated that peat layers less than 40 cm thick

are found in roughly 47% of the area previously classified as having thick peat soils, while

mineral soils cover approximately 55% of the area that was initially identified as shallow

peat soils (de Vries et al., 2009; van Kekem et al., 2005; Kempen et al., 2012a).

In fens, peat layers exceeding 1m within the predicted 0 - 2m depth range were found to be

less susceptible to SOM decrease compared to thinner layers (Fig. 3.3). Upon comparing

Fig. 3.3e & f, a noticeable trend emerges between 110 000 and 130 000 Easting: a decrease

in SOM is predicted in the thinner peat layers that are located adjacent to the thicker

ones. Typical for these fen meadow regions, Fig. 3.4d shows little to no SOM changes

between 1953 and 2022 at 30 - 60 cm depth. Here, yearly SOM predictions between 1953

and 2022 and measurements in 1971 and 2022 at 23 - 50 cm depth were above 40% and did

not change. SOM measurements increased from 40% to 49% in the upper 6 cm, perhaps

because the area was turned into a nature conservation area in the 1980s.

Although our predictions indicate limited SOM changes in peat layers exceeding 1m, it

is important to note that such areas may still experience a decline in carbon stocks or net

CO2 emissions. As our modelling was restricted to the top 2m, SOM changes beyond this

depth were not captured in our analysis. Therefore, it is crucial to exercise caution when

interpreting our findings with respect to carbon loss or gain in soils with peat layers thicker

than 2m. In fact, previous studies reported carbon losses up to 1 g/kg/year (Reijneveld

et al., 2009) and peat oxidation rates up to 1 cm/year in the fen meadow regions of the

Netherlands (van den Akker et al., 2008; Hoogland et al., 2012).

3.2.2 SOM changes in reclaimed lands due to land subsidence

Model predictions reveal SOM increases of more than 10% in large areas of reclaimed

land (Fig. 3.1c) below 80 cm depth between 145 000 - 170 000 Easting (Fig. 3.3d & f).

Time-lapse maps spanning 70 years visualize these gradual changes at 100 - 200 cm depth

(Supplementary video 6). Land subsidence due to clay ripening, peat oxidation and soil

compaction caused peat layers below 80 cm depth to shift upwards in terms of relative
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depth (Zuur, 1958; van den Akker et al., 2007, 2008; Brouwer et al., 2018) (Fig. 3.5),

leading to SOM increase. As a result of land subsidence, SOM also decreased by 10 - 25%

directly below thinner peat layers of approximately 50 cm (Fig. 3.3f between 155 000 -

170 000 Easting). Even at 0 - 30 cm depth, some soil layers changed from mineral to peat

as a result of land subsidence, which explains predicted increases of 5 - 23% SOM (Table

3.2). If peat layers closer to the surface rise above groundwater levels, oxidation and

carbon emissions will increase in the next decades. Carbon emissions as a result of land

subsidence have been confirmed not only in the Netherlands (Erkens et al., 2016; van

Asselen et al., 2018), but also other coastal plains and deltas worldwide (Törnqvist et al.,

2008; Syvitski et al., 2009).

3.2.3 Little SOM change in mineral soils

The model showed no substantial changes in SOM in the top 30 cm of mineral soils in

grasslands or forests between 1953 and 2022 (Table 3.2). However, an average decrease of

0.1% was predicted in croplands. When grasslands or forests were converted into crop-

lands, we predicted an average decrease of 0.1 - 0.3% in SOM, while the reverse scenario

resulted in an increase of a similar amount. The model’s predictions for 2022 indicated

that SOM levels in mineral soils in the top 30 cm were between 2.5 - 5% (Fig. 3.4a &

e). Below 30 cm, temporal changes in SOM were almost non-existent in mineral soils

(Fig. 3.3d & f, Supplementary videos 4 - 6). This outcome was expected because land

use, which was considered a dynamic 2D+T covariate in the model (Fig. 3.1a & b, Table

3.6, Sect. 3.3.2), had little effect on the subsoil. Below 30 cm depth, the model’s pre-

dictions ranged from 1 - 2.5% for clay and loamy soils along the rivers, delta, and loess

regions and less than 1% in the Pleistocene sandy areas (Fig. 3.4b & e, Supplementary

videos 4 - 6). These findings are reasonable because subsoils typically have lower SOM

than topsoils.

Despite its overall effectiveness, the model occasionally did not detect subtle temporal

changes in SOM, as demonstrated in Fig 3.4e (right). In this case, measurements indicated

a 1% decrease in SOM between 1968 and 2022 in a sandy soil currently used for maize

cultivation. However, the model’s predictions remained relatively constant. Analysis of a

1:25,000 map of the surrounding area revealed few predicted changes in SOM above 1%

at a depth of 5 - 15 cm, with the exception of a nearby brook valley located southeast of

the measurement site (Fig 3.4e; left). Small changes in SOM as a consequence of land use

changes can also be assumed based on the model’s variable importance, where dynamic

land use covariates were among the least important (Fig. S9).

While the general trends we found in mineral soil across different land uses are consistent

with other findings for the Netherlands and Europe, the average rate of SOM changes

were lower than in previous research. When converted to SOM changes (Sect. 3.3.7),

Reijneveld et al. (2009) found increases of 0.40% for grasslands (0 - 5 cm) and 0.32% for
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croplands (0 - 25 cm) in mineral soils in the Netherlands between 1984 and 2004. Chardon

et al. (2009) confirmed constant or slight increases in Dutch agricultural soils with SOM

less than 14%. However, Conijn & Lesschen (2015) found an overall increase in SOM

for permanent grassland but an overall decrease in SOM in croplands using a dynamic

soil-crop model (Wolf et al., 2003; Groenendijk et al., 2013). More recently, Knotters

et al. (2022) found a decrease in SOM of 0.38% and 0.86% in Dutch croplands in mineral

soils between 1998 and 2018 at 0 - 30 cm and 30 - 100 cm depth, respectively. However, for

Dutch grasslands, the same study found a decrease of 0.48% SOM for 30 - 100 cm, while

no substantial change was found for 0 - 30 cm depth. Between 2009 and 2015, converted

SOM changes (Sect. 3.3.7) on a European scale were approximately -0.09% on croplands,

0.24% on grasslands and -0.51% for grasslands converted to cropland (Fernández-Ugalde

et al., 2020).

To summarize, our study and most recent research conducted in the Netherlands and

Europe indicate that there is a decrease in SOM in croplands, particularly when converted

from grassland, and an increase in SOM in grasslands. When accounting for the differences

in time periods across the compared studies, the predicted changes in SOM we found were

about 10-fold lower compared to actual measurement analyses at point or field-scale in

other studies. Future studies should investigate this further, but one reason for this

difference might be that random forest and other regression models smoothen predictions

(Hengl et al., 2018), possibly leading to smaller predicted SOM changes. In addition, our

model included both mineral and peat soils with SOM values up to 100% (Table 3.5),

potentially decreasing the model’s sensitivity to detect changes of smaller magnitude in

mineral soils. To improve the accuracy of 3D+T mapping specifically for mineral soils, we

suggest mapping them separately from organic soils or choosing a hierarchical approach

(Nussbaum et al., 2023), investing in repeated measurements at the same locations for

model calibration, and deriving covariates related to agricultural management practices.

Future studies should investigate whether performance of our 3D+T modelling approach

improves when monitoring data (more repeated measurements) are used during model

calibration.

3.2.4 Model accuracy assessment

Model accuracy was assessed using a 10-fold cross-validation with data from 1953 - 2011

(MEC = 0.64; Fig. 3.4a) and design-based inference from 1993 - 2000 (MEC = 0.50)

and 2018 (Table 3.3; Sect. 3.3.8). The relatively high proportion of peat samples with

SOM values up to 100% (Table 3.5) may explain relatively high RMSE values around

10%. The predicted SOM content at 0 - 30 cm depth was underestimated (ME > 1 for

all methods; Table 3.3), which probably also relates to smaller predicted SOM changes

in mineral topsoils compared to other studies (see above). Inaccuracies in the 30 - 100 cm

layer in 2018 may be due to positional errors, differences in sampling support, or changes

in laboratory methods between the calibration and validation data (Knotters et al., 2022).
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Furthermore, the use of the same data for model calibration and the national soil map

generation, from which dynamic peat covariates were derived (Fig. 3.5), may have biased

our predictions. The overall spatial patterns of predicted SOM align with previous SOM

mapping studies in the Netherlands (van den Berg et al., 2017; Knotters et al., 2022).

Table 3.3: Model accuracy metrics of SOM [%] predictions using 10-fold cross-validation

with laboratory measurements from 1953 - 2011 and design-based inference of an independent

probability sample using measurements from 1993 - 2000 and 2018, respectively (Sect. 3.3.8).

The lower and upper 97.5% confidence limits of the accuracy metrics were computed using

design-based inference according to de Gruijter et al. (2006), which together give the 95%

confidence intervals (CI95; Sect. 3.3.8).

Years Depth (cm) n ME CI95 of ME RMSE CI95 of RMSE MEC CI95 of MEC PICP

1953-2011 0 - 30 6264 1.97 - 9.04 - 0.65 - 0.88

1953-2011 30 - 100 7526 0.38 - 10.02 - 0.65 - 0.87

1953-2011 100 - 200 1509 0.00 - 10.33 - 0.29 - 0.88

1993-2000 0 - 30 1185 1.29 1.05, 1.54 4.87 4.23, 5.44 0.49 0.36, 0.59 0.76

1993-2000 30 - 100 1172 0.20 -0.34, 0.74 9.79 8.36, 11.03 0.50 0.18, 0.65 0.91

1993-2000 100 - 200 808 0.82 0.04, 1.60 9.63 6.82, 11.79 0.52 0.39, 0.67 0.96

2018 0 - 30 1143 1.15 0.89, 1.42 5.58 4.85, 6.22 0.44 0.27, 0.56 0.85

2018 30 - 100 1139 -4.28 -4.89, -3.67 15.28 14.05, 16.43 -0.93 -1.39, -0.53 0.96

Our estimates of prediction uncertainty (PI90) in 3D space (SI2) and time (Fig. 3.4c-e)

were reliable based on the evaluation of prediction interval coverage probability (PICP;

SI2; Sect. 3.3.8). However, when divided by depth, design-based inference from 1993 - 2000

and 2018 revealed that prediction uncertainty was overly-optimistic at 0 - 30 cm depth

and slightly pessimistic below 30 cm depth (Table 3.3). Areas with high SOM values

(peatlands) and urban areas had the highest prediction uncertainty, which was overall

greater at lower depths (SI2). Fig. 3.4c confirms that uncertainty decreased as predictions

decreased over time. Mineral soils had lower uncertainty (SI2 & Fig. 3.4e).

An important limitation of our modelling approach is that it does not quantify the uncer-

tainty of differences in SOM (∆SOM) and of spatial aggregates (e.g. Table 3.2). These

uncertainties can only be obtained if cross- and spatial correlation in prediction errors

are quantified. For instance, the prediction error variance of ∆SOM at some location and

depth is given by the sum of the variances of the SOM prediction errors at the two points

in time for that location and depth, minus twice their covariance. Computation of the

covariance requires the correlation between the two prediction errors. In case of spatial

aggregation one must first quantify the spatial correlation of the SOM prediction errors,

for instance by semivariograms, after which the uncertainty of the spatial aggregate can

be computed using a block kriging of the residuals. Wadoux and Heuvelink (Wadoux &

Heuvelink, 2023) did this in 2D space, but it is unclear how this should be efficiently done

in 3D space and time (four dimensions). Semivariogram fitting in 3D+T is extremely chal-

lenging given that space-time and lateral-vertical anisotropies would have to be accounted

for, while also the conventional geostatistical assumptions on multivariate normality and
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second-order stationarity would have to be questioned. There are also considerable com-

putational challenges when conducting block kriging in a 3D+T context at high spatial

resolution. We know of only one study that estimated 3D+T semivariograms and applied

3D+T kriging (Gasch et al., 2015), but this study assumed normality and used a sim-

plified metric space-time semivariogram, which might not be appropriate for SOM in the

Netherlands. Uncertainty quantification of SOM changes and spatial aggregates in 3D+T

at scales relevant to management and policy is a critical task to investigate in future re-

search, since the uncertainty related to soil monitoring has prompted widespread doubts

about the feasibility of measuring and verifying SOM and soil organic carbon changes

(Moinet et al., 2023; Paul et al., 2023). Thus, we advocate that future research should

investigate the uncertainty quantification of SOM changes and SOM spatial aggregates,

but given the challenges and complexity of such analysis this was beyond the scope of

this research.

Temporal SOM changes (∆SOM) were difficult to predict (Fig. 3.4b). The model some-

times failed to detect ∆SOM (Fig. 3.4b-e). However, prediction errors at point support

tend to average out when increasing spatial and temporal support (Webster & Oliver,

2007; Szatmári et al., 2021; Wadoux & Heuvelink, 2023), e.g. by averaging over larger

areas, depth layers and years, making the 3D+T maps useful for many applications. For

instance, predictions of samples c1 and c2 (lines in Fig. 3.4c) showed an unrealistic de-

crease of more than 10% SOM between 1972 and 1973, but when averaged over several

years, the trend of decreasing SOM was confirmed by measurements in 1965 and 2022

(points in Fig. 3.4c). In general, temporal SOM variation was often lower than 3D spa-

tial variation. However, the limited ∆SOM validation data (127 measurements from 63

locations; Fig. 3.3c) highlight the need for long-term soil monitoring using consistent

methodologies in the field and laboratory (Smith et al., 2020). For additional validation

of ∆SOM predictions beyond the dataset used here, future studies could compare our

predicted SOM changes with measured changes at individual locations of long-term field

experiments (Kooistra & Kuikman, 2002) for different soils and land uses. This would

allow evaluation of the model’s ability to predict temporal changes, while currently the

accuracy assessment was based on changes both in space and time.

3.2.5 3D+T mapping: a new paradigm for SOM monitoring

Our study demonstrated that SOM is highly variable over depth and time, which is in-

sufficiently captured by non-spatially explicit (Schrumpf et al., 2011; Fernández-Ugalde

et al., 2020; Knotters et al., 2022) or 2D mapping methods (Heuvelink et al., 2020; Poggio

et al., 2021) that are currently used for reporting SOM changes for soil health and climate

mitigation commitments. In the Netherlands, approaches to assess SOM changes encom-

pass long-term field experiments conducted at specific locations, summarized by Kooistra

and Kuikman (Kooistra & Kuikman, 2002), some of which served as the basis for process-

based models (Wolf et al., 2003; Chardon et al., 2009; Groenendijk et al., 2013; Conijn
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& Lesschen, 2015). Reijneveld et al. (2009) assessed changes of agricultural parcels using

farm data. Knotters et al. (2022) assessed changes on the scale of four selected domains

of interest, categorized by mineral soil, organic soils, grasslands and croplands. Unlike

our research, none of the above studies explicitly account for spatial variation when mod-

elling SOM dynamics. Furthermore, process-based models are often constrained by soil

type (e.g. mineral) or land use (Coleman & Jenkinson, 1996). In contrast, our 3D+T

model accounts for SOM variation in space, depth and time and can predict for mineral

and organic soils under any land use. In addition, the 3D+T model does not require

repeated measurements from the same location, although prediction accuracy is likely to

increase with better monitoring data. This is a major advantage because most areas in

the world do not have monitoring data beyond individual field trials.

Previous digital soil mapping studies used spline depth functions (Adhikari et al., 2014a),

geostatistical methods (Poggio & Gimona, 2014; Orton et al., 2016, 2020), parametric

depth functions (Kempen et al., 2011) or depth as a covariate (Chapter 2; Poggio et al.,

2021) to map a soil property at different depths. Gasch et al. (2015) used 3D covariates

(soil parameters) and a 2D+T covariate (crop type) to predict soil water, temperature and

electrical conductivity in 3D+T on a field scale (37 ha). However, to our knowledge this

is the first study to use a 3D+T covariate. Machine learning has proven advantageous to

predict complex, non-linear relationships between soil-forming factors and soil properties

in 2D space (Wadoux et al., 2020). Our study represents a next step in extending the

predictive power of machine learning to 3D+T. In doing so, the 3D+T model was able to

detect complex relationships between SOM and peat occurrence, which varied consider-

ably in space, depth and time. The 3D+T covariate was the most important covariate in

the model (Fig. S9). As a result, we found major changes in SOM not only in space but

also over depth and time, especially in peatlands and reclaimed land. Therefore, we rec-

ommend that 3D+T modelling approaches be incorporated in SOM reporting alongside

point monitoring networks to provide spatially explicit information. This is key for fa-

cilitating multi-functional land use policies and management practices based on local soil

conditions. The 3D+T SOM maps with quantified uncertainty can aid decision-making.

It can support decision-making on where to implement measures to increase SOM stocks

to address the 4 per mille initiative and incorporate carbon farming in agricultural prac-

tices. They are also an important first step towards providing spatially explicit changes

in soil carbon stocks and CO2 emissions from soils. As stated in the Climate Agreement

of the Netherlands, the emissions of peat soils must be reduced with 1 Mton CO2-eq and

of mineral agricultural soils by 0.4 - 0.6 Mton CO2-eq before 2030 (Government of the

Netherlands, 2019). Moreover, these maps identify where SOM-related soil health has

declined most in the past 70 years and where restoration potential is highest and most

urgent. Finally, the 3D+T SOM maps can serve as visual tools to raise awareness of the

importance of soils for society, which is the Soil Deal’s eighth mission objective.

This research goes beyond the mere mapping of SOM between 1953 and 2022, as it has
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far-reaching implications for the future. With advancements in the explainable machine

learning research domain, models using algorithms such as quantile regression forest are

no longer considered black-box models. Recently, these methods have been applied in

soil science to gain new insights into the complex relationship between covariates and

soil properties (Wadoux & Molnar, 2022; Wadoux et al., 2023). Future studies could

identify potential local drivers of SOM dynamics by using explainable machine learning

methods (Wadoux & Molnar, 2022; Wadoux et al., 2023) to study the relationship between

covariates and changes in SOM over time using the 3D+T methodology. Furthermore, this

will allow the prediction of potential future changes in SOM. For example, by considering

various scenarios involving groundwater levels, land use changes, or climatic indicators

(van Dorland et al., 2023), we can forecast changes in SOM (Yigini & Panagos, 2016),

providing crucial insights into the measures necessary to restore soil health.

The implications of the findings reported in this study also extend beyond the Netherlands.

Peatland conversion (Murdiyarso et al., 2010; Dohong et al., 2017), land reclamation

(Mart́ın-Antón et al., 2016), and agricultural intensification (Kopittke et al., 2019) are

ongoing in many parts of the world, but there is a lack of spatio-temporal soil and land

use data in many of these regions. Moreover, the mechanisms underlying SOM dynamics

apply to other bioclimatic zones as well, suggesting that the changes observed in the

Netherlands may be relevant to less data-rich regions across the globe. These findings are

particularly relevant to deltas worldwide, which often share similar geographic features

and are home to approximately 350 million people (Ericson et al., 2006; Edmonds et al.,

2020).
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Figure 3.3: a) SOM [%] predictions for 2022 at 5 - 15 cm depth (a) and 60 - 100 cm depth (b);

∆SOM [%] (1953 - 2022) at 5 - 15 cm (c) and 60 - 100 cm depth (d); SOM [%] predictions for

2022 (e) and ∆SOM [%] predictions for 1953 - 2022 (f). Predictions shown in e and f were

made from 0 to 200 cm depth with 5 cm depth increments along the transect shown in b and

d. The crosses in c show the ∆SOM validation locations (Sect. 3.3.1).
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Figure 3.4: Accuracy plot and accuracy metrics using 10-fold cross-validation of SOM [%]

laboratory measurements between 1953 - 2011 (a) and validation of SOM [%] temporal changes

(∆SOM) at 63 locations shown in Fig 3.3c (b, Sect. 3.3.8). Zoom-in maps [1:25 000] of three

∆SOM validation locations (c-e; left) and time series plots from these locations sampled at

two or three depths (c-e; right). Time series plots depict SOM [%] laboratory measurements

(points), model predictions [%] (line) and prediction uncertainty [%] (PI90, background) be-

tween 1953-2022. Time series of samples in c-e are also indicated in b.
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3.3 Materials and Methods

3.3.1 Soil point data

We obtained 869 094 observations of SOM from 339 231 point locations using different

datasets, most of which are part of the Dutch soil database (BIS; Fig. 3.2 & Table

3.4). SOM observations consist of either measurements in the laboratory using loss on

ignition at 550 ◦C (NEN 5753, 2020) or field estimates. Regarding the latter, soil surveyors

estimated SOM in the field by looking and touching the soil sample for its color and

texture. An expert estimation is then made, also based on their extensive, regional

pedological knowledge of the soil forming factors, soil texture, expected soil type and

using SOM laboratory measurements at nearby locations. In instances where multiple soil

surveyors made estimates at the same location and depth, the individual estimates were

merged and the median value recorded (ten Cate et al., 1995; de Bakker & Schelling, 1966,

1989). Based on approximately eight thousand paired laboratory measurements and field

estimates, and assuming that the laboratory measurement error is negligible compared

to the field estimation error, the mean error, mean absolute error and standard deviation

of the field estimation error were 0.23%, 2.09% and 4.6% SOM, respectively. Hence,

these errors were within an acceptable range for our purpose, considering that laboratory

measurements themselves are also subject to errors (van Leeuwen et al., 2021). Field

estimates were discarded from all modelling steps whenever laboratory measurements

from the same 3D location were available. Only the PFB and BPK datasets of BIS

were used for model calibration because the probability sampling design of the LSK and

CCNL datasets was ideal to independently assess mapping accuracy (Chapter 2; Finke

et al., 2001; Visschers et al., 2007) (Table 3.4).

Soil point data for model calibration

For model calibration, we used 15 312 laboratory measurements from 4298 locations (PFB)

and 840 638 field estimates from 334 668 locations (PFB and BPK; Fig. 3.2a; Table 3.4).

The locations with laboratory measurements, arranged in a purposive sampling design,

were selected in the past to create the national soil map (1:50 000) (de Vries et al., 2003),

meaning that soil variability is well covered. Soil samples measured in the laboratory were

collected by genetic soil horizon between 1953 and 2011 (PFB; Fig. 3.2b).

In contrast to the laboratory measurements, the majority of field estimates (BPK) were

spatially clustered in specific areas for regional soil mapping purposes. SOM field esti-

mates were removed if there was a laboratory measurement available from the same loca-

tion and genetic soil horizon. We decided to include field estimates in model calibration

due to the additional spatio-temporal coverage (1953-2022), especially in recent years

(Fig. 3.2b). However, since field estimates are less accurate than laboratory measure-

ments and due to their clustered spatial distribution, we tested excluding field estimates
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Table 3.4: Overview of datasets used for modelling. With the exception of ∆SOM, dataset

names are those used in BIS, but in this study we refer to them by their temporal coverage.

Pure panel is synonymous to static-synchronous (Brus, 2022). “Horizon” indicates that soil

samples were observed by genetic soil horizon, whereas “fixed” indicates that observations were

made at fixed depth intervals. See Table 3.1 for the number of laboratory measurements in

PFB and field estimates in BPK and Table 3.3 (n) for the number of laboratory measurements

for LSK (1993 - 2000) and CCNL (2018) across fixed depth intervals. Obs. = observations;

Field = field estimates; CV = cross-validation.

Dataset Sampling

design

Space-time

design

Statistical

validation

Locations Obs. Depth [cm] Temporal

coverage

References

PFB Purposive - 10-fold CV 4298 15 312 0 - 200

(horizon)

1953-2011 de Vries et al. (2003);

van den Berg et al.

(2017); Chapter 2

BPK

(field)

Purposive - - 334 668 840 638 0 - 200

(horizon)

1953-2022 van den Berg et al.

(2017)

LSK ProbabilitySupplemented

panel (Fuller,

1999; Brus,

2022)

Design-

based

inference

1185 4952 0 - 200

(horizon)

1993-2000 Finke et al. (2001);

Visschers et al. (2007);

Knotters et al. (2022);

Chapter 2

CCNL ProbabilitySupplemented

panel (Fuller,

1999; Brus,

2022)

Design-

based

inference

1144 2295 0 - 30, 30 -

100 (fixed)

2018 van Tol-Leenders

et al. (2019); van den

Elsen et al. (2020);

Teuling et al. (2021);

Knotters et al. (2022)

∆SOM Purposive Pure panel

(Fuller, 1999;

Brus, 2022)

Non-

design

based

63 127 0 - 200

(horizon)

1953-1999;

2022

SI3

and assigning them lower weights during model tuning (see below).

Soil point data for model accuracy assessment

Four different datasets were used for statistical validation to assess model accuracy (Table

3.4). The first dataset (PFB) consisted of the same 15 312 laboratory measurements

used during model calibration. For model tuning and accuracy assessment purposes, this

dataset was used for cross-validation (see below).

We further had the LSK and CCNL datasets available specifically collected for validation

purposes of the national soil map (1:50 000) (de Vries et al., 2003). The LSK consisted

of 4952 SOM laboratory measurements from 1185 locations sampled by horizon between

1993 and 2000. These soil sampling locations were determined using a national probability

sample, more specifically a stratified simple random sample. The dataset is described in

more detail in Finke et al. (2001) and Visschers et al. (2007) and its use for validating

digital soil maps in Sect. 2.2.1.

All LSK locations that were still accessible were re-sampled at two fixed depth increments

(0 - 30 cm and 30 - 100 cm) in 2018 (van Tol-Leenders et al., 2019; van den Elsen et al., 2020;
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Table 3.5: Descriptive statistics of SOM observation datasets shown in Table 3.4. Min. =

minimum; Qu. = quartile; Max. = maximum.

Dataset Temporal coverage Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness

PFB 1953-2011 0.00 0.60 2.00 8.39 5.10 99.90 3.29

BPK 1953-2022 0.00 1.50 4.00 15.47 10.00 99.00 1.82

LSK 1993-2000 0.00 0.90 2.30 7.70 5.10 95.00 3.47

CCNL 2018 0.50 1.80 3.40 7.51 6.80 78.70 3.09

∆SOM 1953-1999; 2022 0.00 0.60 1.80 10.07 5.40 96.90 2.84

Teuling et al., 2021; Knotters et al., 2022). This so-called CCNL dataset consists of 2295

laboratory measurements from 1144 locations. In terms of space-time design, the LSK and

CCNL datasets are therefore a supplemented panel because only a subset of the sampling

locations of the first survey were re-visited approximately 20 years later (Brus, 2022).

Despite the supplemented panel design, substantial methodological differences in the LSK

and CCNL datasets prevents a temporal assessment at point scale (Cavero Panez, 2021),

as described in more detail in Sect. 2.1 and Appendix C of Knotters et al. (2022), who used

these data to study temporal SOM changes within domains (not at point scale).

We will refer to the three datasets described above by their measurement years, i.e. 1953 -

2011, 1993 - 2000 and 2018.

In order to also assess changes in SOM over time (∆SOM) at point locations, we re-

sampled the same 1 - 3 uppermost genetic soil horizons from 63 PFB locations in 2022,

leading to a total of 127 samples (Fig. 3.3c; Table 3.4). These PFB locations were first

sampled between 1953-1999 (depending on the location) and because all locations were

re-sampled in 2022, it can be termed a pure panel space-time design (Brus, 2022). In

contrast to LSK and CCNL, we sampled identical legacy soil horizons as in the past to

the best of our abilities. The purposive sampling design of ∆SOM locations is described in

detail in SI3. The 127 samples used for statistical validation of ∆SOM were removed from

the PFB dataset to avoid their use during model calibration and 10-fold cross-validation

(see above).

3.3.2 Covariates

In line with the digital soil mapping methodology (McBratney et al., 2003), we used

covariates as model independent variables (i.e. explanatory variables or features) that

were representative of the soil-forming factors: climate, organisms, relief (topography),

parent material (geology) and time (Dokuchaev, 1899; Jenny, 1941). In order to map

SOM in 3D space and time, we extended upon established methods by using covariates

that were static (2D), variable in time (2D+T) (Heuvelink et al., 2020; OpenGeoHub

et al., 2022) and variable over depth and time (3D+T). All covariates were prepared at

25m resolution, for the standard depth layers specified by GlobalSoilMap (Arrouays et al.,
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2015) (GSM; 0 - 5 cm, 5 - 15 cm, 15 - 30 cm, 30 - 60cm, 60 - 100 cm and 100 - 200 cm) in the

case of the 3D+T covariate, and for every year from 1953 to 2022 for 2D+T and 3D+T

covariates.

Static covariates

Covariates were designated as static based on limited temporal variation or unavailable

data over the 70-year period. Specifically, climate, relief, and parent material exhibited

little temporal variability, while satellite-derived land cover indices were incomplete for the

entire 70-year period. Although climate change may have impacted SOM, its effects were

considered smaller than that of the dynamic covariates we selected (see below). Table 2.2

and Supplement S2 of Chapter 2 provide an overview of the static covariates. Additionally,

we obtained monthly mosaics of Sentinel 2 RGB and NIR bands from 2015 onwards,

removing monthly mosaics with more than 1% clouds. We computed eight indices from

these mosaics: Brightness Index (BI), Saturation Index (SI), Hue Index (HI), Coloration

Index (CI), Redness Index (RI), Carbonate Index (CaI), Grain Size Index (GSI), and

Normalized Difference Vegetation Index (NDVI), following Loiseau et al. (2019). To

improve the signal-to-noise ratio and reduce data volume, we further processed the spectral

indices into the first three principal components over all months and years (long-term

yearly aggregates), as well as the long-term monthly mean and standard deviation. In

total, we considered 318 static covariates for further model selection.

Dynamic 2D+T and 3D+T covariates

In recent decades and perhaps even centuries, anthropogenic activity has arguably altered

soil characteristics more than any natural soil-forming factor (Amundson et al., 2015). To

account for SOM changes between 1953 and 2022 in the Netherlands, we chose land use

and the occurrence of peat as dynamic covariates due to their important link to SOM and

high temporal variability.

Acquiring harmonized and spatially exhaustive information on land use changes from

the 1950s to the present is difficult, as high-resolution remote sensing products are not

available prior to the 1980s. However, in the Netherlands, the main land use categories

were carefully mapped using topographic maps since the 1900s. Largely based on these

maps, digital historical land use maps were created for around 1900, 1960, 1970, 1980,

and 1990 (Kramer et al., 2010) (Table 3.6). Since the 1980s, national land use maps have

been developed by combining information from the Dutch key registries for topography,

land cover, agricultural parcels, urban areas, and nature, as well as remote sensing data,

to provide greater detail (Hazeu, 2014). These maps have been regularly updated using

the latest data and improved methods and since 2018 are updated annually. In total, we

used five historical land use maps (1900, 1960, 1970, 1980, and 1990) and eleven recent

land use maps from 1984 to 2021 to derive dynamic land use covariates.
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Table 3.6: Table of the dynamic covariates variable in time (2D+T) related to land use (LU).

Names denote the names used in the model code. Note that categories in more recent land

use maps (1984 - 2021) (Hazeu, 2014) were aggregated to the nine classes of the historical land

use maps (Kramer et al., 2010) shown here.

Name Categories Derived from

LU xyt
Grassland

Cropland Historical land use maps

LU xyt delta5
Fruit orchards & tree nurseries (Kramer et al., 2010):

Forest 1900, 1960, 1970, 1980, 1990

LU xyt delta10
Heathland

Sand & dunes Land use maps (Hazeu, 2014):

LU xyt delta20
Swamps, marshes & fens 1984-2021

Bogs (since 2018 annual)

LU xyt delta40 Built-up

All land use maps were reclassified into nine general classes (Fig. 3.1a & b; Table 3.6),

which were limited by the classes contained in the historical land use maps. We obtained

the land use for every location, with coordinates x and y for every year t between 1953

and 2022 (LUxyt), by assigning the same class as in the temporally nearest year for which

a map was available. If t was exactly in between two years for which a map was available,

the older map was used. In the same manner, we further defined LUxyt ∆5, LUxyt ∆10,

LUxyt ∆20 and LUxyt ∆40 by assigning the land use class that occurred most frequently

in the 5, 10, 20 and 40 years prior to and including year t, respectively. These modal

classes were assigned to account for the delayed response of SOM to land use change. An

example of a 2D+T dynamic land use covariate (LUxyt) is shown in Fig. 3.1a & b for the

years 1953 and 2022, respectively. Previous studies have employed comparable approaches

to derive dynamic covariates that serve as proxies for land cover and land cover changes,

however, they utilized continuous covariates sourced from Landsat, MODIS or AVHRR

products from more recent years (Heuvelink et al., 2020; OpenGeoHub et al., 2022).

Furthermore, we derived dynamic covariates for peat occurrence, considering that the

majority of SOM in the Netherlands is found in soils with a peat layer. Peat soils have

undergone substantial changes over time due to historical excavation, drainage, com-

paction, and agricultural management (de Vries et al., 2009; van Kekem et al., 2005;

Kempen et al., 2012a; van den Akker et al., 2008; Hoogland et al., 2012; van Asselen

et al., 2018; Knotters et al., 2022). In order to account for temporal changes in peat

soil horizons, we used the original and updated version of the national soil map of the

Netherlands (1:50 000) (de Vries et al., 2003) (Fig. 3.5), which is available at BROloket

and bodemdata.nl. We included 2D+T dynamic covariates of different peat classes and a

3D+T covariate of peat occurrence because the combination of both helped explain SOM

variability.
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Figure 3.5: Maps of sub-classes of soils containing peat in the original (left) and updated

(right) national soil map of the Netherlands (1:50 000) (de Vries et al., 2003). Following

the Dutch soil classification (ten Cate et al., 1995; de Bakker & Schelling, 1966, 1989), soils

containing peat can be classified according to the starting depth and thickness of the peat

horizon. These maps were used to derive eight fuzzy subsets of peat classes (one for each class)

as 2D+T dynamic covariates and one fuzzy subset of peat occurrence as a 3D+T dynamic

covariate. Note that the national soil maps exclude urban areas (white). The national soil

map of the Netherlands can be downloaded and viewed at broloket.nl and bodemdata.nl.

For deriving 2D+T dynamic covariates of the occurrence of different peat classes, we used

the concept of fuzzy membership (Zadeh, 1965), which has also been widely used in soil

classification and mapping (McBratney & Odeh, 1997). Let p(x, y, t) denote the peat class

at a location with coordinates x and y at time t, where t is any year between 1953 and

2022. In the Dutch soil classification system, used in the national soil map, soils containing

peat can be designated into eight sub-classes, based on the starting depth and thickness of

peat horizons (Fig. 3.5). Thus, each p(x, y, t) ∈ {1, 2, 3, 4, 5, 6, 7, 8}, where the first seven
classes refer to different peat soils and where class 8 contains no peat within 0 - 120 cm

(i.e., mineral soil). The information about which peat class occurs at a particular location

was limited to a maximum of two points in time, to for the original mapping year, and tu
for the year the map was updated. to and tu varied in space and tu was only available for

part of the country, since the soils of the Netherlands were systematically mapped, region

by region, between the 1960s and 1990s, and some regions were updated once between

2014 - 2021. Many of the updated regions were areas with less than 2m of peat within

the top 2m and reclaimed land, where soil characteristics or the depths at which these

characteristics occur have substantially changed since the original map was made due to

peat oxidation, compaction and land subsidence. For regions that were not updated, the
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old and updated maps were the same. For t < to, we assumed p(x, y, t) = p(x, y, to),

i.e. for years between 1953 and the first mapping campaign we designated the same peat

class as in the original map. For t > tu, we assumed p(x, y, t) = p(x, y, tu), i.e. for years

between which a region was updated and 2022, we designated the same peat class as in

the updated map. However, for to ≤ t ≤ tu, peat class was designated a fuzzy membership

value that was a combination of the classes at to and at tu. We let the membership of the

class at to linearly decrease from one to zero in the period from to to tu, and similarly we

let it linearly increase from zero to one for the observed class at tu, so that the sum of

the memberships was always one. We used the 2D+T membership values for each of the

eight peat classes as covariates in the random forest model.

For deriving the 3D+T dynamic covariate of peat occurrence, we used the peat starting

depth and thickness information contained in the peat classes to derive another fuzzy

variable of the occurrence of peat depending on location, depth and time. The fuzzy

membership that was derived was as before a number between 0 and 1, where 0 means

that peat does not occur, and 1 means that peat occurs. Any membership value in between

0 and 1 means that the soil at that location, depth and time was in a transition period

from peat to non-peat or vice versa, in accordance with the soil peat class membership

value at that location and time.

Note that some assumptions were needed to derive 3D+T peat occurrence depending on

the peat class, depth and expert knowledge. For example, if p(x, y, t) = 4, which is the

peat class for peat starting between 15 and 40 cm and having a thickness between 15 -

40 cm (Fig. 3.5), we assumed that peat occurs between 15 ≤ d ≤ 80 cm because the exact

depth range of peat between this minimum and maximum depth were not known more

precisely. Likewise, for p(x, y, t) ∈ {1, 3, 5, 7}, where peat thickness was greater than

40 cm, we assumed that peat occurs for the entire depth range between the minimum

starting depth for each class, that is 0, 15, 40 and 80 cm, respectively, and the maximum

depth modelled (200 cm; Fig. 3.5). We made this assumption based on explanations from

soil surveyors, who informed us that areas mapped with peat layers thicker than 40 cm

tend to have substantially greater thicknesses. In order to predict at the standard depth

layer specified by GSM (Arrouays et al., 2015), the upper and lower depth boundaries of

0 - 5 cm, 5 - 15 cm, 15 - 30 cm, 30 - 60cm, 60 - 100 cm and 100 - 200 cm layers were used for

each year to derive peat occurrence according to t and d. During this step, assumptions

were made regarding the overlap between GSM depth layers and defined depths of peat

classes. When peat occurrence was greater than 0, the GSM depth layer needed to overlap

by ≥ 1 cm with the peat layer, whereas when peat occurrence was equal to 0, we permitted

no overlap with the peat layer. These assumptions were made because even if there is only

a small overlap of peat, it will lead to substantially higher SOM values than on purely

mineral soils.

Depending on the peat class in the original and updated national soil map, d, t and the
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location, this ultimately resulted in one of three possible outcomes: no changes in peat

occurrence, peat “appearing” or peat “disappearing”. An example of the 3D+T dynamic

peat occurrence covariate is shown in Fig. 3.1d & e for the year 1987 for depths 5 - 15 cm

(d) and 60 - 100 cm (e).

3.3.3 Overlay and regression matrix

We created a regression matrix containing SOM and covariate values by performing a

spatial overlay for static covariates, a space-time overlay for 2D+T covariates and a

space-depth-time overlay for 3D+T covariates. t was equal to the year at which a SOM

observation was made. For deriving peat occurrence according to t and d, the upper and

lower sampled horizon boundaries were used, whereby the same assumptions were made

regarding the overlap of depth layers as when deriving peat occurrence for the GSM depth

layers (see above).

Sampling depth information, more specifically the upper and lower boundary and mid-

point of each sampled horizon, were included as covariates in the regression matrix so

that predictions could easily be made at any chosen depth and depth interval. Including

these as covariates also supported accounting for changes in SOM over depth, in addition

to the other 3D covariate. See Ma et al. (2021) for an overview of models using depth as

a covariate in comparison to non-3D digital soil mapping methods.

3.3.4 Model selection, tuning and calibration

For model selection, defined here as selecting the best model based on their performance

(Hastie et al., 2009), we first reduced the number of static covariates (n = 318). We

removed covariates in a two-step procedure using de-correlation followed by recursive

feature elimination as in Poggio et al. (2021). From any pair of covariates for which the

Pearson correlation coefficient was greater than 0.85 or less than −0.85, the covariate

that was more correlated with all remaining covariates was removed. Recursive feature

elimination (Guyon et al., 2002) was implemented using the caret package (Kuhn, 2019).

This resulted in a set of 16 static covariates. These, in addition to the three depth

covariates, the five 2D+T covariates of land use, eight 2D+T covariates of peat classes

and the 3D+T covariate of peat occurrence, were selected for model tuning and calibration

and can be found in the variable importance plot (SI2).

For model tuning, we grew random forest models (Breiman, 2001) with the goal of op-

timizing hyper-parameters for mean predictions. Model tuning was performed using a

location-grouped 10-fold cross-validation of the calibration data, wherein all observations

from the same location were forced to be in the same fold. Each hold-in fold contained a

random selection of 90% of the laboratory measurements and all field observations. Each

hold-out fold contained the remaining 10% of laboratory measurements. In this way,

models were calibrated using both laboratory measurements and field estimates, while



80 Chapter 3. Three-dimensional space and time mapping

performance to optimize hyperparameters was assessed only using laboratory measure-

ments. We evaluated all combinations of the same hyper-parameters as in Sect. 2.2.4 and

selected the combination with the best performance.

In order to account for the lower accuracy of field estimates compared to laboratory

measurements, we assigned larger weights to the laboratory measurements. Weight values

of two, five, ten and fifteen times the weight of field estimates were tested. The final set

of weights and other hyper-parameters was chosen based on the lowest root mean squared

error (RMSE; Eq. 3.3) across the cross-validation. When the increase in RMSE was below

0.1%, the model with fewer trees was chosen to reduce computation time. Note that an

alternative way to account for differences in observation quality would be to derive the

weights from the measurement error and residual variance, as in error-filtered machine

learning (van der Westhuizen et al., 2022).

The final quantile regression forest used for model prediction was fitted using all soil

observations in the calibration set (n = 15 312 laboratory measurements and 840 638 field

estimates), 33 covariates and the final set of hyper-parameters, as optimized using random

forest. We used the ranger package (Wright & Ziegler, 2017) with the option “quantreg”

to grow a quantile regression forest and without it to grow random forest models.

3.3.5 Variable importance

During model fitting, we used impurity as a measure of variable importance (SI2). Im-

purity assesses the total reduction in heterogeneity that a covariate generates on the

response variable. It is calculated by summing up all the reductions in the heterogeneity

index in the tree nodes where a covariate was selected for splitting (Breiman, 2002). It is

important to note that impurity has a bias towards covariates with more distinct values,

making it negatively biased towards categorical covariates, as they have a finite number

of binary splits due to their limited number of classes (Sandri & Zuccolotto, 2008, 2010).

While impurity was used in this study, the more appropriate permutation measure to

assess variable importance is dependent on the out-of-bag error (Breiman, 2002). As we

assigned larger weights to lab measurements, there were not enough unselected soil sam-

ples available to calculate the out-of-bag error, making it impossible to use permutation

to measure variable importance.

3.3.6 Prediction maps

The calibrated quantile regression forest was used to derive the median (0.50 quantile;

q0.50), 0.05 quantile (q0.05) and 0.95 quantile (q0.95) at every 25m pixel and each standard

depth layer specified by GSM (Arrouays et al., 2015) for every year t from 1953 to 2022

over the Netherlands. In addition, spatially explicit 90% prediction intervals (PI90) were

obtained at every 25m pixel as a measure of prediction uncertainty as follows:

PI90 = q0.95 − q0.05 (3.1)
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Absolute mass percentage changes in SOM (∆SOM) over the 70 year period were mapped

by subtracting the 2022 and 1953 SOM [%] median prediction maps. For prediction,

the depth covariates were equal to the upper and lower boundary and midpoint of each

standard depth layer specified by GSM (Arrouays et al., 2015). However, note that the

model can predict at any depth, so in order to analyze changes in SOM over smaller depth

increments, we also predicted SOM [%] at 5 cm depth intervals between 0 and 2m along

a transect (Fig. 3.3e & f). The location of this transect was chosen such that it contained

fen and bog peat soils of varying thickness, reclaimed land and mineral soil under different

land use types.

3.3.7 SOM changes based on soil type and land use

In order to gain insight into average changes in peat vs. mineral soils and the domi-

nant land uses in the Netherlands (grassland, cropland and forest), we computed average

∆SOM values between 1953 and 2022 for each combination of these soil types and land

uses for the top 30 cm (Table 3.2). This depth interval was chosen because the top-

soil is usually most relevant for agricultural and ecological purposes. Weighted averages

were computed for the upper layers using the ∆SOM maps from 0 - 5 cm, 5 - 15 cm, 15 -

30 cm.

In order to compare our findings with other studies (Fernández-Ugalde et al., 2020; Rei-

jneveld et al., 2009; Chardon et al., 2009; Conijn & Lesschen, 2015; Knotters et al., 2022),

conversions from soil organic carbon to SOM were necessary. We used the same con-

version factor that was used for soils in the Netherlands in Knotters et al. (2022), so

soil organic carbon values reported in other studies were multiplied by 2.000. Note that

this conversion ratio depends on the soil type and we did not account for its uncertainty,

as shown for soils in the Netherlands in Fig. 53 of van Tol-Leenders et al. (2019). If

other studies reported values in g/kg, values were divided by 10 to obtain absolute mass

percentages.

3.3.8 Model accuracy assessment

In order to assess model accuracy, we used prediction uncertainty, cross-validation (1953 -

2011), design-based inference (1993 - 2000 & 2018) and non-design based inference to

evaluate SOM temporal changes (∆SOM; Table 3.4).

Prediction uncertainty

At the location, depth and year of a SOMmeasurement, all quantiles from 0 to 1 at steps of

0.01 were predicted to obtain the PI90 (Eq. 3.1) as well as the prediction interval coverage

probability (PICP) of all prediction intervals. The PICP is the proportion of observations

that fall into the corresponding prediction interval (Papadopoulos et al., 2001). It is an

indication of how accurately quantile regression forest quantifies uncertainty. Prediction
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uncertainty using PI90 is an example of model internal accuracy assessment since it is

model (quantile regression forest) dependent.

Cross-validation (1953 - 2011)

In order to obtain an overall indication of 3D+T SOM mapping accuracy, we used a

location-grouped 10-fold cross-validation with only laboratory measurements from the

1953 - 2011 dataset in the hold-out folds, similar as during model tuning (see above).

Cross-validation is commonly used for digital soil mapping assessment (Piikki et al., 2021)

and was also used in other space-time soil mapping studies (Heuvelink et al., 2020).

To obtain commonly used accuracy metrics, median predictions were used to calculate

residuals. From these residuals we estimated the mean error (ME or bias), the RMSE

and the model efficiency coefficient (MEC):

M̂E =
1

n

n∑
i=1

(yi − ŷi) (3.2)

̂RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (3.3)

M̂EC = 1 −
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − y)2
(3.4)

where n is the number of observations, yi and ŷi are the ith observation and prediction,

respectively, at a certain location, depth and year, and y is the mean of all test set

observations. We computed these accuracy metrics for all observations (Fig. 3.4a) and

separated into observations in 0 - 30, 30 - 100 and 100 - 200 cm depth layers (Table 3.3),

as the latter was necessary for design-based inference (see below). The midpoint of the

depth layer was used to designate it into the corresponding depth layer. For example,

an observation from 20 - 60 cm, having a midpoint of 40 cm, was designated to the depth

layer 30 - 100cm.

Design-based inference (1993 - 2000 and 2018)

Since the 1993 - 2000 and 2018 datasets are probability samples over 2D space (Sect. 3.3.1),

we used design-based inference to compute accuracy metrics for 0 - 30, 30 - 100 and 100 -

200 cm depth layers (Table 3.3), in the same manner as in Sect. 2.2.6. This included the

lower and upper 97.5% confidence limits of the accuracy metrics, which together give the

95% confidence intervals (de Gruijter et al., 2006, Sect. 7.2.4). Design-based inference

using a probability sample is recommended for map validation because it yields unbiased

estimates of the accuracy metrics and allows computing confidence intervals (Brus et al.,

2011; Wadoux et al., 2021a; Brus, 2022).
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Evaluation of SOM temporal changes (∆SOM)

Using the ∆SOM validation dataset (Sect. 3.3.1 and locations in Fig. 3.3c), we computed

the difference between a SOM measurement in 2022 and a legacy SOM measurement

called ∆y as follows:

∆y = y(x, y, d, t2022) − y(x, y, d, ti) (3.5)

where y is a SOM observation, x and y are the coordinates of a location, d is the sampled

depth and ti is the year between 1953 and 1999 when the legacy soil sample was collected

before at that location and depth. We compared predictions to observations and also

computed accuracy metrics using Eq. 3.2 - 3.4, except that yi and ŷi were the ith ∆SOM

measurement and prediction, respectively (Fig. 3.4b).

3.4 Code and data availability

An adapted version of the code and data used in this scientific manuscript is available at

the following repository: https://git.wur.nl/helfe001/bis-4d_masterclass, which

also includes a hands-on tutorial (00 TUTORIAL guide.html) and an extensive readme

describing the code scripts and datasets. In the interest of facilitating reproducibility in

the modelling workflow and decreasing the computational demand, some minor adjust-

ments were made compared to the original code and data used for the research presented

herein. These adjustments within the code and data repository encompass the follow-

ing:

(a) The resolution of covariates and prediction maps were aggregated to 1 km, as op-

posed to the 25m resolution utilized in the paper.

(b) SOM field estimates from the BPK dataset (Table 3.4) were not included in model

calibration (Sect. 3.3.1).

(c) The LSK and CCNL datasets (Table 3.4) are not included in the repository, as they

are not publicly available.

Due to these changes, the results (e.g. prediction maps and accuracy metrics) are also

slightly different than in the paper. However, besides these adjustments, the underlying

code remains unaltered.

For an overview of soil data in the Netherlands from the Dutch National Key Registry

of the Subsurface (BRO, in Dutch), please visit bodemdata.nl. Soil data in the Nether-

lands is maintained within the BIS database by Wageningen Environmental Research

(Bodemkundig-Informatie-Systeem-BIS-Nederland.htm).
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Abstract

Nature-inclusive scenarios of the future can help address numerous societal challenges

related to soil health. As nature-inclusive scenarios imply sustainable management of

natural systems and resources, land use and soil health are assumed to be mutually

beneficial in such scenarios. However, the interplay between nature-inclusive land use

scenarios and soil health has never been modelled using digital soil mapping. We predicted

soil organic matter (SOM), an important indicator of soil health, in 2050, based on a

recently developed nature-inclusive scenario and machine learning in 3D space and time

in the Netherlands. By deriving dynamic covariates related to land use and the occurrence

of peat for 2050, we predicted SOM and its uncertainty in 2050 and assessed SOM changes

between 2022 and 2050 from 0 - 2m depth at 25m resolution. We found little changes

in the majority of mineral soils. However, SOM decreases of up to 5% were predicted

in grasslands used for animal-based production systems in 2022, which transitioned into

croplands for plant-based production systems by 2050. Although increases up to 25%

SOM were predicted between 0 - 40 cm depth in rewetted peatlands, even larger decreases,

on reclaimed land even surpassing 25% SOM, were predicted on non-rewetted land in peat

layers below 40 cm depth. There were several limitations to our approach, mostly due to

predicting future trends based on historic data. Furthermore, nuanced nature-inclusive

practices, such as the adoption of agroecological farming methods, were too complex to

incorporate in the model and would likely affect SOM spatial variability. Nonetheless,

3D-mapping of SOM in 2050 created new insights and raised important questions related

to soil health behind nature-inclusive scenarios. Using machine learning explicit in 3D

space and time to predict the impact of future scenarios on soil health is a useful tool

for facilitating societal discussion, aiding policy making and promoting transformative

change.
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4.1 Introduction

International organisations such as the Intergovernmental Panel on Climate Change

(IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosys-

tem Services (IPBES) call for urgent action and transformative change to address the

challenges that negatively affect our planet, such as climate change and loss of biodiversity

(IPBES, 2019; Pörtner et al., 2021). For transformative change, we need approaches that

address the interdependent challenges in an integrated way to avoid negative trade-offs

and feedbacks (Larrosa et al., 2016). One such approach is envisioning nature-inclusive

scenarios for the future in order to help us resolve challenges we are facing today (Keesstra

et al., 2018; Sowińska-Świerkosz & Garćıa, 2022).

In the Netherlands, a scenario of a nature-inclusive society for the National Nature Out-

look 2050 was jointly developed by the Netherlands Environmental Assessment Agency

and Wageningen University & Research (Breman et al., 2022). In this scenario, a narrative

was developed in which more nature-inclusive types of land use could help to tackle several

topical and urgent societal challenges, such as 1) nature conservation and biodiversity, 2)

climate change, 3) quality of living, 4) farming transition, 5) energy transition and 6)

water quality. Nature-inclusive transformations could have a big potential in the Nether-

lands. For example, a farming transition has the potential to increase the functioning of

ecosystem services and improve the quality of life. In the Netherlands, historic land use

changes were mainly conducted with the aim to intensify agriculture. 17% of the present

day land surface was reclaimed from water and 70% of peatlands have disappeared in

the last 2000 years (Erkens et al., 2016; Vos et al., 2020). Today, the Netherlands is the

second largest exporter of agricultural products in the world (Jukema et al., 2023) and

has the highest livestock density of all EU member states (Eurostat, 2022, p. 32). While

this resulted in short-term economic growth, it had numerous negative effects for the

environment and human well-being, such as nitrogen pollution and water eutrophication

(Stokstad, 2019; de Vries et al., 2021). Consequently, parts of society are demanding a

transformation to more sustainable practices (Erisman, 2021; Aarts & Leeuwis, 2023).

The nature-inclusive scenario for 2050 addresses these and other challenges in an inte-

grated way and would allow an increase in the provision of multiple ecosystem services

and the quality of the human environment (Breman et al., 2022).

Soils play a pivotal role in the delivery of ecosystem services and the quality of the human

environment. An increase in the provision of multiple ecosystem services largely depend on

the soil’s capacity to function within natural or managed ecosystem boundaries, to sustain

plant and animal productivity, maintain or enhance water and air quality and promote

plant and animal health (Lehmann et al., 2020; Creamer et al., 2022). Understanding

the spatial variability, the current condition and the potential of the soil is essential for

adopting nature-inclusive planning. In return, more nature-inclusive land use could also

enhance soil health, defined as the continued capacity of soils to support ecosystem services
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(European Commission, 2021), as such an approach implies sustainable management of

and investing in natural systems and resources (Doorn et al., 2016). Thus, nature-inclusive

scenarios may be beneficial for implementing pressing soil health initiatives like the Soil

Deal for Europe and the recent Directive on Soil Monitoring and Resilience (European

Commission, 2021, 2023b). In summary, soil health and nature-inclusive land use are

deemed mutually beneficial.

To the best of our knowledge, the interplay between soil health and nature-inclusive

land use scenarios has not been studied using digital soil mapping (DSM). DSM is the

computer-assisted production of soil type and soil property maps, using statistical models

to infer the relationship between a soil property and spatially exhaustive environmental

explanatory variables (McBratney et al., 2003; Scull et al., 2003). While some studies have

mapped temporal changes in soil properties (Chapter 3; Gasch et al., 2015; Stockmann

et al., 2015; Hengl et al., 2017a; Sanderman et al., 2017; Stumpf et al., 2018; Huang et al.,

2019; Szatmári et al., 2019; OpenGeoHub et al., 2021, 2022), few have used DSM for

modelling future scenarios. Gray & Bishop (2016, 2019) used DSM to map soil properties

in south-eastern Australia until 2070 based on projected climate change scenarios. Yigini

& Panagos (2016) mapped soil organic carbon stocks in Europe in 2050 based on climate

and land use scenarios. These studies were based on likely climate, and for the latter,

land use projections, as opposed to scenario modelling based on future visions assuming

the immediate adoption of sustainable practices.

In this study, we used the nature-inclusive land use scenario for 2050 (Breman et al.,

2022) and a DSM model in 3D space and time (3D+T; Chapter 3) to predict soil organic

matter (SOM) and its uncertainty at 25m resolution between 0 - 2m depth for 2050 in

the Netherlands. SOM is linked to six of the eight mission objectives of the Soil Deal

for Europe (European Commission, 2021), increasing SOM is one of the main challenges

related to soil health (Vanino et al., 2023). Moreover, in this study we demonstrate how

it also links to various societal priorities addressed in the National Nature Outlook 2050.

SOM and absolute changes in SOM between 2022 and 2050 (∆SOM) were expressed as

mass percentages. Our aim was to explore whether a nature-inclusive scenario for 2050 is

conducive to enhancing SOM-related soil health.

4.2 Methods

4.2.1 Nature-inclusive scenario for 2050

The nature-inclusive outlook was one of three scenarios that were developed to explore the

future of nature and related ecosystem services in the Netherlands (Hinsberg et al., 2020;

Breman et al., 2022). In contrast to the other scenarios that focused mainly on biodiversity

goals by protecting natural habitats and species, in the nature inclusive scenario, nature

and its related ecosystem services were to be enhanced as much as possible throughout the
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entire country, not only in protected nature areas. The starting point was the upscaling

of existing and promising nature-inclusive practices, such as:

• Greening of cities and ecological design and management of urban green spaces;

• Rewetting peatlands to mitigate further land subsidence and CO2 emissions

(Fig. 4.1c);

• Stream valley restoration for increasing water storage, reducing flood risk, improving

water quality and enhancing biodiversity;

• Transition to more agroecological and plant-based production systems where possi-

ble, in order to improve the efficiency of food production, enhance biodiversity (at

soil, crop, parcel and landscape level) in agricultural systems and reduce emissions

from animal-based production systems;

• Adding trees, hedges and ponds to the landscape to sequester carbon, store water

and create corridors and stepping stones for biodiversity;

• Increasing plant biodiversity along river dikes, roadsides and train tracks to enhance

drought resistance, strengthen natural corridors and biodiversity as a whole;

In the nature-inclusive scenario, these existing nature-based solutions were upscaled and

implemented to a national level in 2050, based on detailed knowledge of landscapes and

soils and the overarching principle that “function follows form”. For example, peatlands

were mainly rewetted where the starting depth of a peat layer was within the uppermost

40 cm depth (Fig. 4.1d), based on the soil landscape map (van Delft & Maas, 2022, 2023).

Plant-based agricultural production was concentrated in areas with fertile soils suitable

for crop growth, whereas animal-based production was concentrated in less productive

areas where it can often be combined with other functions (Breman et al., 2022).

4.2.2 3D+T SOM model

In this study, we used an existing high-resolution soil modelling and mapping platform for

the Netherlands. Over the last few years, we have developed 3D maps for a wide range

of soil properties, such as soil pH (Chapter 2). More recently, we extended the model

to predict changes in SOM between 1953 - 2022 in 3D+T (Chapter 3). The 3D+T SOM

model is based on well-established DSM practices, while also developing innovative and

improved methods, such as assessing map accuracy using design-based statistical inference

(Chapter 2) and developing novel covariates, or spatial-explicit environmental variables,

to map SOM in 3D+T (Chapter 3). In the 3D+T SOM model, some of the covariates are

static, such as soil-forming factors representing climate, topography and parent material.

However, other covariates in the model are dynamic in 2D space and time (2D+T) or

3D+T. For example, land use change and peat occurrence were covariates which have a

greater propensity for change over several decades than climate, topography and parent
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Figure 4.1: Land use in 2022 derived from Hazeu et al. (2023) (a) and in 2050 derived from

Breman et al. (2022) (b), rewetted peatland areas (c), peat classes based on the 2021 version

of the national soil map of the Netherlands (1:50 000; de Vries et al., 2003) (d), peat classes

in 400 years (e), and peat occurrence in 2050 for 0 - 5 cm depth (f) and 100 - 200 cm depth

(g). Land use in 2050 and rewetted peatlands are based on the nature-inclusive vision for the

Netherlands in 2050 (Breman et al., 2022). Land use and rewetting in 2050 were in turn used

to modify the map of peat classes for 400 years from now (e) and derive 3D+T dynamic peat

occurrence covariates for 2050 (f & g).

material and were important for quantifying temporal SOM dynamics. In the model, land

use (Fig. 4.1a & b) and peat classes (Fig. 4.1d & e) were variable in 2D+T, while peat

occurrence was variable in 3D+T (Fig. 4.1f & g).

The 3D+T SOMmodel was calibrated using 869 094 SOM observations from 339 231 point

locations in the Netherlands (approximately 10 locations per km2) and 33 covariates, the

latter of which were selected based on rigorous model tuning of hundreds of covariates

relating to the soil-forming factors (Chapter 3). We used quantile regression forest (QRF;

Meinshausen, 2006) to infer the relationship between SOM observations and the covari-

ates. Ensemble decision tree models such as QRF have repeatedly outperformed other

DSM models (e.g. Nussbaum et al., 2018) and QRF has the unique advantage that it

delivers a probability distribution of the modelled response. Thus, the 90th prediction

interval (PI90), i.e. the 95th quantile minus the 5th quantile, can be used as a measure of

the prediction uncertainty. All information about the soil point data, covariates, model

selection, tuning and calibration and model accuracy assessment using design-based sta-
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tistical inference and spatially explicit prediction uncertainty is described in Chapter 3.

In this study, we take the 3D+T SOM model a step further and explore to what extent

it has the potential to simulate a future scenario.

4.2.3 2050 scenario modelling

Using the 3D+T SOM model, we predicted SOM in 2050 by deriving simulated, dynamic

land use and peat covariates based on the nature-inclusive land use scenario for 2050. The

nature-inclusive land use map for 2050 (Breman et al., 2022) needed to be reclassified to

the same general land use classes that were used when calibrating the 3D+T SOM model

(Fig. 4.1a, Chapter 3, Table 3.6), which resulted in the map shown in Fig. 4.1b. The 3D+T

SOM model uses dynamic covariates of land use variable in 2D+T during year t, as well

as the land use class that occurred most frequently in the 5, 10, 20 and 40 years prior to

and including t. These modal classes were assigned to account for the delayed response of

SOM to land use change (Chapter 3). However, since the land use between 2022 and 2050

was unknown in this simulated future scenario, we simply used the re-categorized nature-

inclusive land use map for 2050 for all dynamic 2D+T land use covariates. This assumes

that the envisioned land use changes were implemented already several years prior to

2050. More importantly, reclassifying land use led to the oversimplification of nuanced,

nature-inclusive practices envisioned for 2050, particularly with regards to crop diversity

and management practices. For example, it was not possible to distinguish land use and

management practices such as strip cropping, biodiversity strips and alternative crops

within the general “cropland” and “grassland” classes used in the 3D+T SOM model. In

general, we were not able to incorporate numerous aspects of the nature-inclusive practices

(Sect. 4.2.1) if they were not directly linked to land use, peat classes or peat occurrence

as these were the only dynamic covariates used in the 3D+T SOM model.

Deriving simulated peat classes in 2D +T and future peat occurrence in 3D+T for 2050

proved more challenging than deriving land use and required making several general as-

sumptions. In the 3D+T SOM model, covariates of 2D+T peat classes and 3D+T peat

occurrence were derived from the peat class categories found in the national soil map of

the Netherlands (1:50 000; de Vries et al., 2003). In the national soil map, soil type was

mapped region by region between the 1960s and 1990s. Some regions, especially areas with

peat soils, were updated between 2014 and 2021. For the 2050 scenario, we used the 2021

updated map of peat classes (Fig. 4.1d) as a starting point and assumed a peat growth

rate of 1mm/yr only in areas subject to peatland rewetting strategies in the nature-

inclusive scenario for 2050 (Fig. 4.1c). A detailed comparison between the 2021 map of

peat classes and the rewetting areas chosen based on the soil landscape map (Sect. 4.2.1;

van Delft & Maas, 2022, 2023) revealed some discrepancies. For example, while all areas

with peat starting at a depth between 0 - 15 cm and 15 - 40 cm were rewetted, only part of

areas with peat starting between 40 - 80 cm depth and thicker than 40 cm were rewetted.

Furthermore, none of the areas with peat starting between 40 - 80 cm depth and between
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15 - 40 cm thick and peat starting between 80 - 120 cm depth were rewetted. In summary,

peat growth was assumed only in areas where both of the following conditions were true:

there already was a peat layer (Fig. 4.1d) and where rewetting occurred (Fig. 4.1c).

Based on literature, peat accumulation rates vary between 0.5 - 10mm/yr (Witte &

Van Geel, 1985; Charman, 2002; Joosten & Clarke, 2002; Höper et al., 2008; Stivrins

et al., 2017; Craft, 2022), but 1mm/yr is most commonly used as a general estimate.

Hence, in order to change from peat starting between 15 - 40 cm depth to 0 - 15 cm depth

(Fig. 4.1d), up to 25 cm of peat would need to grow under rewetted circumstances, which

would take approximately 250 years. Similarly, to change from peat class starting be-

tween 40 - 80 cm depth to 15 - 40 cm depth, up to 40 cm of peat would need to form over

approximately 400 years. As the latter was the longest time needed of any change be-

tween classes, a map of peat classes in 2420 was made (Fig. 4.1e). The 1mm/yr peat

accumulation rate is itself highly uncertain, partly because the estimated rate is based on

natural peatland growth. Also, the land use oversimplification contributes to uncertainty,

as some areas in the rewetted peatlands in the nature-inclusive scenario could be used

for the production of crops suitable to these conditions, such as cattail, cranberries, reed

and rice (Breman et al., 2022). Although crop growth under water saturated conditions

would decrease the rate of or hinder peat mineralization, it is generally thought unlikely

to lead to additional peat growth (Tanneberger et al., 2022).

Using the 2021 updated and the 2420 simulated peat classes maps (Fig. 4.1d & e), we

derived 2D+T peat class covariates and 3D+T peat occurrence covariates of any year

up to 2420 using fuzzy memberships, in the same manner as during model calibration

between 1953 - 2022 and explained in Sect. 3.3.2. For our purpose, we thus derived 2D+T

peat class covariates and 3D+T peat occurrence for 2050, the latter of which are shown

for 0 - 5 cm depth and 100 - 200 cm depth in Fig. 4.1f & g.

The calibrated model from 1953 - 2022, the static covariates and the dynamic 2D+T and

3D+T land use and peat covariates for 2050 were used to predict SOM and its uncertainty

for 2050 across six standard depth layers (0 - 5 cm, 5 - 15 cm, 15 - 30 cm, 30 - 60cm, 60 -

100 cm and 100 - 200 cm).

4.3 Results

4.3.1 SOM trends at the national scale

We predicted decreases of more than 1% SOM on 22% of the land surface (7390 km2) and

corresponding increases of more than 1% SOM on 14% of the land surface (4740 km2)

between 2022 and 2050 based on the nature-inclusive scenario. Additionally, we predicted

decreases of more than 10% SOM on 4% of the land surface (1300 km2) and concurrent

increases of more than 10% SOM on 2% of the land surface (670 km2) over these 28



4.3 Results 93

years. Thus, under the nature-inclusive land use scenario for 2050, the prevalence of

areas predicted to experience SOM decreases exceeds those showing an increase. ∆SOM

maps shown for 0 - 5 cm (Fig. 4.2c), 15 - 30 cm (Fig. 4.3a) and 100 - 200 cm (Fig. 4.3b)

support these findings.

Figure 4.2: Predicted SOM [%] from 0 - 5 cm depth in 2022 (a), 2050 (b) and the difference

in SOM between 2050 and 2022 (∆SOM; c); zoom-in maps from the same depth layer and

years (d-f) alongside land use (g & h) for an area in the province of Friesland.

4.3.2 SOM trends in mineral soils

For the majority of the regions with mineral soils in the Netherlands (Fig. 4.1d & e), there

was little to no change in SOM between 2022 and 2050 (Figs. 4.2c, 4.3a & b). However,

in the uppermost centimeters of some mineral soils, SOM decreased by up to 5%, for

example in the northern province of Friesland (Fig. 4.2). These were usually areas where

grassland was turned into cropland based on the reclassified land use categories of the

3D+T SOM model. In areas where cropland in 2022 was also cropland in 2050, SOM
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Figure 4.3: Predicted difference in SOM between 2050 and 2022 (∆SOM) at 15 - 30 cm depth

(a) and 100 - 200 cm depth (b); the 90th prediction interval (PI90) for SOM predictions [%]

at 100 - 200 cm depth as a measure of uncertainty (c); ∆SOM depicted over depth [cm] vs.

Northing [EPSG: 28992] in a region in the low-lying fen peatlands (d) and on reclaimed land

in the province of Flevoland (e). The location of the depth transects (d & e) are shown in

map a.

remained constant or decreased by less than 2.5%. However, along narrow strips bordering

crop parcels designated as grassland, SOM mostly remained constant or increased slightly

if it was cropland in 2022. In the nature-inclusive scenario, these narrow borders were

mostly envisioned as buffer and biodiversity strips along the edges of agricultural parcels

(Breman et al., 2022). In addition, SOM increased up to 10% between 2022 and 2050

in areas turned into nature reserves such as swamps and marshes in stream valleys and

along waterways in the nature-inclusive scenario. Furthermore, SOM remained constant

or slightly increased in built-up areas such as towns, cities and infrastructure, which can

be explained by land use change from built-up to either grassland or forest as a result of

greening in cities and alongside roads (Breman et al., 2022).
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4.3.3 SOM trends in peatlands

In peatlands (Fig. 4.1d & e), we predicted more changes in SOM between 2022 and 2050

than in mineral soils (Figs. 4.2c, 4.3a & b). In peatlands that were rewetted in the nature-

inclusive scenario (Fig. 4.1c), SOM increased by up to 25% in the upper 40 cm (Fig. 4.3a

& d). However, below 40 cm in rewetted peatlands, there was no clear pattern of SOM

changes; SOM sometimes decreased and sometimes increased (Fig. 4.3b & d).

The 3D+T SOM model predicted the largest changes in SOM in areas with peat layers

that were not rewetted (Figs. 4.1c, 4.3b & e). More specifically, these were in some of the

areas where peat started between 40 - 80 cm depth and all areas where peat started below

80 cm depth (Fig. 4.1d). For example on reclaimed land in the province of Flevoland

(Chapter 3, Fig. 3.1c), land subsidence caused peat layers below 80 cm to shift upwards

(Brouwer et al., 2018), leading to SOM increase below 150 cm (Fig. 4.3e). However, above

150 cm depth, this shifting up of peat layers resulted in large decreases of SOM above 10%

and even above 25% farther North along the transect in Fig. 4.3e.

4.3.4 Model uncertainty

Prediction uncertainty, provided by the PI90 of the predicted probability distribution of

QRF, was very high for 2050 (Fig. 4.3c). Uncertainty was especially high where SOM

predictions were high, e.g. in peatlands, and generally increased with increasing depth.

One of the main limitations of the 3D+T SOM model is that it cannot provide uncertainty

of ∆SOM because it does not account for cross- and spatial correlation in prediction

errors (Chapter 3). These correlations can be accounted for by choosing a multivariate or

geostatistical approach (Szatmári et al., 2021; van der Westhuizen et al., 2022; Wadoux &

Heuvelink, 2023), but this was beyond the scope of this research. Nonetheless, while not

demonstrated using our approach, we expect the uncertainty of ∆SOM to be high where

the PI90 of SOM predictions for 2050 were also high (Fig. 4.3c).

4.4 Discussion

This study found that a majority of the nature-inclusive practices led to increases in SOM

and were therefore beneficial for soil health (Table 4.1). SOM increased in areas designated

as grasslands, forests, swamps, marshes, fens or bogs in 2050 as a result of the greening

of cities, stream valley restoration and adding trees, hedges and ponds to the landscape.

However, rewetting peatlands and transitioning to agroecological and plant-based farming

systems were only partially beneficial for SOM-related soil health, as SOM increased and

decreased as a result of these practices (Table 4.1). For example, SOM increased by as

much as 25% in the top 40 cm where peatlands were rewetted, but this effect varied at

lower depths. Similarly, the conversion of cropland to grassland in mineral topsoils showed

an increase in SOM, whereas the reverse land use change during the farming transition
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resulted in a notable decreases up to 5% SOM. It is crucial to acknowledge that the

partially beneficial outcomes observed in rewetting peatlands and farming transitions

may be influenced by limitations inherent in our scenario modelling method, as discussed

further below. Additionally, the 3D+T SOM maps unveiled substantial SOM losses,

sometimes exceeding 25%, in expansive regions with peat layers below 40 or 80 cm depth.

Largely located on reclaimed land, these areas were not rewetted and the subsoil was not

influenced by other nature-inclusive practices, resulting in SOM loss due to factors such

as land subsidence and peat oxidation. In summary, model predictions underscore the

importance of implementing nature-inclusive practices for sustainable soil management.

Moreover, SOMmaps in 3D+T emphasize the potential consequences of neglecting nature-

inclusive practices and their limitations for positively contributing to soil health at lower

depths in the soil profile.

Table 4.1: Overview of the impact of nature-inclusive practices on SOM changes in 2050,

based on the nature-inclusive land use scenario (Breman et al., 2022) and the 3D+T SOM

model (Chapter 3). Based on these findings, we assessed whether nature-inclusive land use

was beneficial for SOM-related soil health.

Nature-inclusive practice ∆SOM Beneficial

Greening of cities Increase Yes

Rewetting peatlands Increase/decrease Partially

Stream valley restoration Increase Yes

Transition to agroecological & plant-based produc-

tion systems

Increase/decrease Partially

Adding trees, hedges and ponds to the landscape Increase Yes

Increasing plant biodiversity along river dikes &

transportation infrastructure

Unknown Unknown

The nature-inclusive practices related to rewetting peatlands and transitioning to more

agroecological and plant-based farming systems require a more nuanced evaluation. In the

rewetted, low-lying, fen peatlands in the West of the Netherlands (Fig. 4.3d), increases up

to 25% SOM above 40 cm were due to dynamic peat class and peat occurrence covariates,

which indicated that peat was accumulating (Fig. 4.1d-g). However, since peat started

below 15 or 40 cm in these areas already in 2022, dynamic peat occurrence remained

constant and indicated the presence of peat below these depth thresholds in 2050, while

dynamic peat class covariates in 2050 were changing because of increasing peat thickness

as a result of slow peat growth. Consequently, SOM decreases below 40 cm depth are

likely attributed to the dynamic peat class covariates and are deemed implausible within

this scenario. While the validity of this assumption could be examined by excluding

2D+T peat class covariates and relying solely on 3D+T peat occurrence, such an analysis

was not conducted in this study, as the inclusion of both peat class and peat occurrence

improved model performance during the calibration period (Chapter 3). When considering
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these constraints, the modelling results support the notion that rewetting peatlands tends

to increase SOM, a conclusion supported by numerous empirical field experiments (e.g.

Ballantine & Schneider, 2009; Negassa et al., 2019).

Another major limitation was the 3D+T SOMmodel’s inability to incorporate agroecolog-

ical farming methods in plant-based production systems envisioned in the nature-inclusive

scenario for 2050 (Breman et al., 2022). Methods such as conservation tillage, mulching,

cover crops and especially growing crops where less soil disturbance is needed, such as

perennial crops, have shown to achieve improvements in maintaining SOM in croplands

compared to conventional methods (Crews & Rumsey, 2017). However, crop type and

management practices such as tillage were not included as covariates. Moreover, the

model was calibrated without accounting for sustainable management practices, as such

practices were not the standard during the model calibration period (1953 - 2022; Chap-

ter 3, Table 3.2). Extrapolating this conventional farming scenario into the future likely

caused an overestimation of SOM losses in croplands and with the conversion of forest or

grassland into cropland. In essence, the model represented a simplified version of the past

reality, limiting its ability to predict a highly complex vision of a potential future reality.

Yet, it also shows that if we do not transition to nature-inclusive farming systems, on

the long term our soils will be less capable to provide multiple ecosystem services needed

to sustain plant and animal productivity, maintain or enhance water and air quality and

promote plant and animal health.

Limitations related to land use and management practices also applied to peatlands. Some

rewetted peatlands areas in the nature-inclusive scenario would be used for paludiculture

or crops suitable for growth under water saturated conditions (Breman et al., 2022). While

this may prevent peat mineralization and lead to constant SOM levels, it is unlikely that

new peat grows in these areas (Tanneberger et al., 2022). In summary, in its limited ability

to account for nature-inclusive land use practices, our approach may have overestimated

SOM decrease in mineral croplands and SOM increase in rewetted peatlands.

Another methodological limitation in our study was that climate was a static covariate.

We included long-term minimum, maximum and average temperature and precipitation

data between 1981 and 2010 as static covariates in our modelling approach (Chapter 2,

Table 2.2). Hence, the temporal dynamics inherent in climate covariates, such as precip-

itation and temperature, were not accounted for in either the model calibration period

(1953 - 2022) or the projection for the 2050 scenario, even though climate change affects

carbon dynamics in the soil (Beillouin et al., 2022, 2023). While other DSM studies mod-

elling future scenarios accounted for climate change (Gray & Bishop, 2016, 2019; Yigini

& Panagos, 2016), we posited that, within our specified timeframe and under the pre-

vailing conditions, the impacts of temperature and precipitation on SOM dynamics were

of lesser consequence compared to changes in land use, peat class, and peat occurrence.

The current time-frame is less than 30 years in the future, with an expected increase of
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1.6◦C and decrease of 17mm (-2%) in rainfall under a high emissions and dry scenario

projected for the Netherlands (KNMI, 2023; van Dorland et al., 2023). Nonetheless, we

recommend studies, especially ones over longer scenario timeframes, to include dynamic

changes in covariates related to the climate. For our model, it would have required deriv-

ing dynamic covariates based on temperature and precipitation maps between 1953 - 2050

and recalibration of the model, which was outside of the scope of this study.

Despite the limitations in the model, mapping SOM in 3D space in 2050 and assess-

ing SOM changes compared to 2022 in the context of a nature-inclusive scenario yielded

valuable insights. Although regional soil conditions were considered for developing the

nature-inclusive outlook for 2050 (Breman et al., 2022), this study creates new insights

and raises important questions related to soil health about some of the notions and as-

sumptions behind the scenario. For example, switching from animal-based to plant-based

production systems is expected to bring many advantages for the environment and human

well-being (Breman et al., 2022). Yet even with the adoption of agroecological practices,

achieving SOM levels akin to those in permanent grasslands (e.g. pastures) within crop-

lands presents a formidable challenge (Crews & Rumsey, 2017). Conversely, the conversion

of less suitable croplands into grazing lands for extensive animal production systems is

expected to offset this challenge.

Another valuable insight is that rewetting peatlands as a nature-inclusive practice pre-

vented the continuation of substantial SOM decreases in expansive areas in the majority

of fen peatlands in the West and bogs and brook valleys in the East that were predicted

between 1953 - 2022 (Chapter 3). The major potential in rewetting peatlands lies in its

potential to impede rapid and sustained SOM decrease, as we found that SOM mainly

decreased where soils were not rewetted (Fig. 4.3b & e). Although preventing further

SOM loss can be immediate or within a few years, peat growth in rewetted peatlands

takes decades to centuries, operating on time-scales over multiple generations. Moreover,

it is also dependent on the land use, for example natural peatland vs. peatland under

paludiculture. The modelled scenario is only around 25 years in the future, but for some

aspects of soil health to substantially change, so that humans and other organisms in

return benefit from the ecosystem services that soils provide, a longer time window might

be necessary.

Consistent with mapping SOM in 3D+T between 1953 - 2022 (Chapter 3), we also pre-

dicted substantial decreases in SOM on reclaimed land in the nature-inclusive scenario

for 2050. It is improbable that nature-inclusive farming methods alone will suffice to

prevent SOM decrease in these regions, given ongoing land subsidence, compaction and

upward shifting of peat layers, and lower groundwater levels for part of the year, all of

which contribute to SOM mineralization. Soils in areas with deep peat layers, not desig-

nated as peat soils in the soil landscape map (Sect. 4.2.1; van Delft & Maas, 2022, 2023),

may currently by suitable for crop production. However, our 3D+T approach showed
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that nature-inclusive scenarios only based on the dominating soil conditions in the topsoil

may have severe consequences and lead to soil health deterioration if adopted by policy

makers. In line with Chapter 3, this highlights the strengths of the 3D+T approach and

inadequacy of evaluating soil health at point scale or static mapping at a single depth for

policymaking.

Although negative trends in SOM-related soil health found over the last 70 years (Chap-

ter 3) continued up to 2050 on reclaimed land, nature-inclusive practices benefited SOM

in many areas, suggesting that, as opposed to a “business as usual” scenario, a nature-

inclusive transition can improve soil health, thereby also benefiting society. The quan-

titative modelling of prospective scenarios, facilitated by our innovative 3D+T method,

yields insights that may be valuable for guiding strategic spatial planning decisions. This

is particularly relevant in the context of aligning with targets delineated in national poli-

cies such as the Climate Agreement of the Netherlands (Government of the Netherlands,

2019), as well as adhering to international frameworks like the European Soil Deal (Eu-

ropean Commission, 2021), Green Deal (European Commission, 2023a), and Sustainable

Development Goals (United Nations, 2015). Our findings underscore the potential of en-

visioning nature-inclusive transitions as a proactive and impactful approach to address

soil health concerns and contribute to broader sustainability goals.

4.5 Conclusion

In this study, we demonstrated that 3D+T mapping of SOM for a future scenario is a

pivotal tool to move from soil health-related proceedings to actions on a national scale.

Beyond functioning as visual aids to underscore the societal importance of soils, our ap-

proach generated novel insights and prompted pertinent questions within the context of

nature-inclusive scenarios. These insights require thoughtful consideration for the en-

hancement of soil health and the facilitation of broader societal transformations. By

linking the nature-inclusive outlook to soils and thereby capturing the potential benefits

and overlooked opportunities within spatial planning for soil-based ecosystem services,

we have introduced an innovative and indispensable tool for policymakers. Space-time

scenario modelling of soils not only aids in developing future plans but also provides a

framework for gauging the temporal efficacy of implemented practices. However, it is

equally imperative to emphasize the necessity of field monitoring and measurement to

ensure the effectiveness of these practices over time.

In alignment with Breman et al. (2022), adopting nature-inclusive forms of spatial plan-

ning across the entirety of the Netherlands represents a major challenge. Key factors in

realising this agenda will include a clear spatial policy strategy, sustainable business mod-

els, and a structured behavioural change. Despite the recognized challenges, we contend

that ambitious visions stimulate a broader dialogue on the significance of soil health in the

context of sustainable development and are catalysts for societal transformation.
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Abstract

In response to the growing societal awareness of the critical role of healthy soils, there is

an increasing demand for accurate and high-resolution soil information to inform national

policies and support sustainable land management decisions. Despite advancements in

digital soil mapping and initiatives like GlobalSoilMap, quantifying soil variability and

its uncertainty across space, depth, and time remains a challenge. Therefore, maps of

key soil properties are often still missing on a national scale, which is also the case in

the Netherlands. To meet this challenge and fill this data gap, we introduce BIS-4D, a

high resolution soil modelling and mapping platform for the Netherlands. BIS-4D deliv-

ers maps of soil texture (clay, silt and sand content), bulk density, pH, total nitrogen,

oxalate-extractable phosphorus, cation exchange capacity and their uncertainties at 25m

resolution between 0 - 2m depth in 3D space. Additionally, it provides maps of soil or-

ganic matter and its uncertainty in 3D space and time between 1953 - 2023 at the same

resolution and depth range. The statistical model uses machine learning informed by

soil observations numbering between 3815 - 855 950, depending on the soil property, and

366 environmental covariates. We assess the accuracy of mean and median predictions

using design-based statistical inference of a probability sample and location-grouped 10-

fold cross-validation, and prediction uncertainty using the prediction interval coverage

probability.

We found that the accuracy of clay, sand and pH maps was highest, with the model

efficiency coefficient (MEC) ranging between 0.6 - 0.92 depending on depth. Silt, bulk

density, soil organic matter, total nitrogen and cation exchange capacity (MEC=0.27 -

0.78), and especially oxalate-extractable phosphorus (MEC= -0.11 - 0.38), were more dif-

ficult to predict. One of the main limitations of BIS-4D is that prediction maps can-

not be used to quantify the uncertainty of spatial aggregates. A step-by-step manual

helps users decide whether BIS-4D is suitable for their intended purpose, an overview

of all maps and their uncertainties can be found in the supplementary information

(SI1), openly available code and input data enhance reproducibility and future updates,

and BIS-4D prediction maps can be easily downloaded at https://doi.org/10.4121/

0c934ac6-2e95-4422-8360-d3a802766c71 (Helfenstein et al., 2024a). BIS-4D fills the

previous data gap of a national scale GlobalSoilMap product in the Netherlands and will

hopefully facilitate the inclusion of soil spatial variability as a routine and integral part

of decision support systems.

1Supplementary information of Chapter 5 is available at https://doi.org/10.5194/essd-2024-26

under “Assets”.



5.1 Introduction 103

5.1 Introduction

Life on Earth, including that of humans, relies fundamentally on the availability and

quality of air, water, and soil. These essential resources exhibit spatial variations in ac-

cordance with Tobler’s first law of Geography, asserting that “Everything is related to

everything else, but near things are more related than distant things” (Tobler, 1970).

However, the spatial heterogeneity of soil properties stands out prominently over short

distances compared to air and water. This disparity arises from the multifaceted nature

of soil, comprising solid, liquid, and gaseous phases, rendering it less mobile and unable

to create homogeneous mixtures akin to air or water. Moreover, soil formation is a grad-

ual process unfolding over hundreds to millions of years, shaped by intricate interactions

between the climate, organisms (including humans), topography, and parent material

(Dokuchaev, 1899; Jenny, 1941). Some of these soil-forming factors themselves exhibit

high heterogeneity over short distances. Consequently, achieving a comprehensive under-

standing of soil spatial variability demands a high sampling density, a task hindered by the

inherent difficulty, time consumption, and expense associated with collecting soil samples.

These challenges underscore the complexity of quantifying soil variation, highlighting the

formidable task of mapping soils in 3D space and time (3D+T).

With the rising awareness of soil health among diverse stakeholders such as governmental

bodies and value chains (Lehmann et al., 2020), soil scientists are increasingly dedicated to

deliver high-resolution, accurate soil maps. Internationally prominent examples of policies

for which spatio-temporal soil information is essential include several of the Sustainable

Development Goals, such as “Zero hunger” and “Life on land” (United Nations, 2015)

and, in Europe, the Green Deal, Common Agricultural Policy and Zero Pollution (Panagos

et al., 2022b). The importance of soil information for these policies has led to the EU

Soil Strategy for 2030, the Soil Deal (European Commission, 2021) and most recently,

the Proposal for a Directive on Soil Monitoring and Resilience (European Commission,

2023b). For such policies to have an impact, it is essential that soil scientists deliver

information required to facilitate land use decisions and management practices at multiple

scales.

In the Netherlands (land area = 33 481 km2), the demand for soil information is also

large. Located in the midst of Europe’s largest delta, soils in the Netherlands are natu-

rally very fertile (Edelmann, 1950; Römkens & Oenema, 2004). As one of Europe’s most

densely populated countries, multi-functional land use decisions made at national or re-

gional level, need to be implemented at the field level, involving a broad range of diverse

stakeholders. This spectrum of stakeholders collaborates on initiatives like the “Smart

Land Use” project, which aims to sequester an additional 0.5Mton CO2-eq per year to

Dutch mineral agricultural soils (Slier et al., 2023). Spatial information of soil properties

can be used to evaluate soil health on Dutch agricultural fields using tools such as the

Open Soil Index (OSI; Ros et al., 2022; Ros, 2023) and Soil Indicators for Agriculture
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(BLN 2.0; Ros et al., 2023) and for assessing soil functions at different scales (Schulte

et al., 2015). Information on soil texture and soil organic matter (SOM) are necessary

for greenhouse gas reporting of the Land Use, Land Use Change and Forestry (LULUCF)

sector for the United Nations Framework Convention on Climate Change and the Dutch

LULUCF submission under the Kyoto Protocol (KP-LULUCF; Arets et al., 2020). Data

of basic soil properties serve as inputs for modelling agricultural suitability (Mulder et al.,

2022), crop precision agriculture (Been et al., 2023) and Soil-Water-Atmosphere-Plant in-

teractions (SWAP; van Dam et al., 1997; Kroes et al., 2017). Furthermore, soil property

maps contribute to initiatives such as the Watervision Agriculture and Nature (Hack-ten

Broeke et al., 2019), Hydrological Instrumentations of the Netherlands (NHI, 2023) and

Delta Program 2024 (Delta Programme, 2023).

Soil maps can also be used to identify and prioritize threats to soil health, as reviewed

for the Netherlands by Römkens & Oenema (2004) and Hack-ten Broeke et al. (2009).

Specific threats to soil health in the Netherlands include soil compaction (van den Akker

& Hoogland, 2011; van den Akker et al., 2012), subsidence of peat due to oxidation and

compaction (Brouwer et al., 2018; van Asselen et al., 2018), subsidence of young clay

soils due to ripening on reclaimed land (Brouwer et al., 2018), and soil erosion (Hessel

et al., 2011). Recently, Chapter 3 mapped SOM in 3D+T, which identified decreases in

SOM at high resolution in 3D space. Spatial soil information is also crucial for agricultural

businesses, both for optimizing fertilizer and manure applications for crop growth, but also

for environmental accounting. The demand for such information is especially high in the

Netherlands (Stokstad, 2019; Erisman, 2021; Aarts & Leeuwis, 2023), as it has the highest

livestock density in the EU (Eurostat, 2022, p. 32) and ranks as the world’s second-largest

agricultural exporter (Jukema et al., 2023). An estimated 1 300 000 ha are phosphate

saturated soils, where phosphate loss due to leaching exceeds ecologically tolerable limits

(Römkens & Oenema, 2004). Hence, providing spatially explicit soil information is crucial

to adhere to Targets 4.2 and 4.3 of the Soil Deal for Europe, which aim to reduce fertilizer

use by at least 20% and reduce nutrient losses by at least 50% by 2030 (European

Commission, 2021). In summary, the pressure of using soils sustainably in the Netherlands

is immense.

Between the 1950s and 2000, conventional soil maps were completed in many countries.

Today, the well-established discipline of digital soil mapping (DSM) has been widely

adopted to meet the demands for accurate and high-resolution soil information for a wide

range of purposes. Since DSM was first conceptualized (McBratney et al., 2003; Scull

et al., 2003), maps of soil properties and soil types have been produced from local to

global scales. These advances were propelled by initiatives like GlobalSoilMap (GSM)

under the support of the International Union of Soil Sciences (Arrouays et al., 2014a;

Hempel et al., 2014a; Arrouays et al., 2015) and the availability of openly accessible

tutorials elucidating standard DSM workflows (Malone et al., 2017; Hengl & MacMillan,

2019; Brus et al., 2017; Brus, 2019, 2022).
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Historically, the Netherlands was at the forefront of soil mapping. Scientific soil investiga-

tions in the Netherlands were started by Winand C.H. Staring in the mid-1800s followed

by Jan van Baren and David J. Hissink in the early 1900s (Bouma & Hartemink, 2003).

The first publication of the spatial distribution of soil properties in the Netherlands dates

back to the 19th century (Felix, 1995). Systematic soil mapping became institutionalized

with the establishment of the Dutch Soil Survey institute, or “Stichting voor Bodemkar-

tering” (StiBoKa) in 1945 (Hartemink & Sonneveld, 2013). From 1950 to 1995, StiBoKa

conducted conventional soil surveys (Buringh et al., 1962; de Bakker & Schelling, 1989;

ten Cate et al., 1995) and produced regional maps (1:10 000 and 1:25 000 scale) and a na-

tional map (1:50 000 scale) of soil types (de Vries et al., 2003). After the development of

DSM as a research field, various studies used (geo-)statistical methods to map qualitative

and quantitative soil properties using the data collected by StiBoKa (Chapters 2 - 3; Brus

& Heuvelink, 2007; Brus et al., 2009; Kempen et al., 2014; van den Berg et al., 2017).

Several regions of the national soil map have since been updated (Kempen et al., 2009,

2011, 2012a; de Vries et al., 2014, 2017, 2018; Brouwer et al., 2018; Brouwer & Walvoort,

2019, 2020; Brouwer et al., 2021, 2023) and a variety of thematic maps were derived,

such as a map of re-worked soils (Brouwer & van der Werff, 2012), a peat thickness map

(Brouwer et al., 2018), a map of soil landscapes (van Delft & Maas, 2022, 2023) and the

soil physical units map of the Netherlands (BOFEK; Heinen et al., 2022).

DSM has established itself and is routinely implemented across the world, but various

challenges remain (Chen et al., 2022; Wadoux et al., 2021b). Maps of basic chemical,

physical and especially biological soil properties are often missing (Chen et al., 2022;

Wadoux et al., 2021b, challenge 8). Approximately 78% of articles reviewed by Chen

et al. (2022) mapped SOM, carbon content and carbon stocks. If a DSM product is avail-

able, predictions are often only made for one depth layer. Half of the studies reviewed by

Chen et al. (2022) focused on soil properties at less than 30 cm depth only. However, users

also require soil information at deeper depths and could benefit from models being able

to predict at any desired depth in 3D, and for dynamic soil properties, in 3D+T (Chen

et al., 2022; Wadoux et al., 2021b, challenge 5). In addition, there are numerous challenges

relating to the accuracy of soil maps (Wadoux et al., 2021b, challenges 5 and 9). With

regards to the accuracy, a major challenge is that the uncertainty of soil maps are often

not quantified. A recent review showed that only 35% of studies mapping continuous soil

properties estimated prediction uncertainty (Piikki et al., 2021). Without providing the

uncertainty of a map, users cannot determine its fitness for use. Moreover, assessing map

accuracy is not straightforward and involves many demanding pre-requites, for example

the sampling design of the locations used for statistical validation. According to Piikki

et al. (2021), only 13% of studies used probability sampling for map validation, which is

the best approach for assessing map accuracy (Brus et al., 2011; Wadoux et al., 2021a;

de Bruin et al., 2022). When using a soil map in a model or analysis, the uncertainty

may be so large that it compromises the quality of the outputs of the model or analysis,
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posing risks of erroneous conclusions and decisions for end users (Knotters & Vroon, 2015;

Knotters et al., 2015a,b; Heuvelink, 2018). The efficacy of uncertainty propagation anal-

ysis relies on quantifying input uncertainty realistically, emphasizing the consistent need

to quantify uncertainty in soil maps. The above challenges also apply to the Netherlands,

where there is not yet a product that meets all these requirements.

To meet these challenges and demands, we introduce a high resolution soil modelling and

mapping platform for the Netherlands called BIS-4D (Fig. 5.1). It delivers maps of key soil

properties according to GSM specifications and assesses their accuracy using prediction

uncertainty and statistical validation. The platform provides maps of soil texture (clay,

silt and sand content), bulk density (BD), pH, total nitrogen (Ntot), oxalate-extractable

phosphorus (Pox) and cation exchange capacity (CEC) at 25m resolution between 0 and

2m depth in 3D space (Table 5.1). Furthermore, we provide maps of SOM in 3D+T

between 1953 - 2023 at the same resolution and depth range, since SOM has changed sub-

stantially over time. Note that for soil pH and SOM, specific updates were made compared

to previous versions (Sect. 5.2.7; Chapters 2 - 3). These nine soil properties were chosen

based on those prioritized by GSM (Arrouays et al., 2014a; Hempel et al., 2014a; Arrouays

et al., 2015), end-user needs in the Netherlands and data availability. In collaboration

with soil surveyors, database maintainers and experts on Dutch soils from Wageningen

University and Research, we assess the strengths and limitations of the BIS-4D maps and

recommend potential map applications. Finally, model inputs, outputs (BIS-4D maps)

and code, using free and open source software, are made available, easily accessible and

well documented so that BIS-4D can be updated for future applications.

5.2 Materials and Methods

We predicted soil properties Ŷ in 3D space, and SOM in 3D+T, using well established

DSM methods (Fig. 5.1). BIS-4D uses machine learning to model the relationship between

a soil property measured at point locations as the model response Y (Tables 5.1 - 5.3)

and environmental covariates as the explanatory variables X (Table 5.5).

5.2.1 Soil point data

BIS-4D uses laboratory measurements and field estimates of soil properties from point

locations collected in the Dutch soil database, or “Bodemkundig informatie systeem”

(BIS). Definitions and laboratory measurement and field estimation methods for the soil

properties mapped using BIS-4D are described in Table 5.1. We only included observations

between 0 and 2m depth excluding the O horizon (humus layer).

Note that clay, silt and sand content are particle size fractions (PSF) which together

constitute soil texture. Thus, soil texture is a compositional variable: each PSF must be

non-negative and together they must add up to 100% (Pawlowsky-Glahn & Buccianti,
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Figure 5.1: Graphical abstract of the BIS-4D soil modelling and mapping platform, where

Y is a target soil property and X are covariates that vary in 2D space (s), depth (d) and, for

SOM, in time (t). RFE = recursive feature elimination; QRF = quantile regression forest; PI90

= 90th prediction interval width; PICP = prediction interval coverage probability (Sect. 5.2.3 -

5.2.6).

2011; Pawlowsky-Glahn et al., 2015). In order to achieve this, soil texture can be spa-

tially interpolated as a compositional variable using geostatistical models (Odeh et al.,

2003; Lark & Bishop, 2007; Wang & Shi, 2017), e.g. compositional kriging (de Gruijter

et al., 1997; Walvoort & de Gruijter, 2001), machine learning (Akpa et al., 2014; Amirian-

Chakan et al., 2019; Poggio & Gimona, 2017a; Poggio et al., 2021; Malone et al., 2021;

Varón-Ramı́rez et al., 2022), and other techniques (Buchanan et al., 2012; Román Do-

barco et al., 2017). Most commonly, these studies used the additive log-ratio transfor-

mation with the Gauss-Hermite quadrature (Aitchison, 1986). When not modelled as a

compositional variable, other approaches include estimating two of the three PSFs and

calculating the third by subtracting the sum of the two estimates from 100% (Adhikari

et al., 2013) or modelling all three PSF separately (Viscarra Rossel et al., 2015; Chagas

et al., 2016; Mulder et al., 2016a; Taghizadeh-mehrjardi et al., 2016; Pahlavan-Rad &

Akbarimoghaddam, 2018) and post-processing the predictions to ensure that they are

all non-negative and sum to 100%. For BIS-4D, we decided to model PSFs separately

followed by post-processing (Sect. 5.2.5) for three reasons. Firstly, we wanted to use the

additional locations where only one or two PSFs were observed (Table 5.2). Secondly,
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Table 5.1: Acronyms, units and description of methods used for laboratory measurements

and field estimates of target soil properties. *Mineral soil is defined as the dried soil fraction

(105°C) put through a 2mm sieve after removal of SOM and CaCO3.

Soil property Acronym Unit Description

Clay - % Soil particles < 2 µm as a mass percentage of the

mineral soil* fraction. Measured in the laboratory

using the pipette method (NEN 5753, 2020) and es-

timated in the field following ten Cate et al. (1995);

de Bakker & Schelling (1966, 1989).

Silt - % Soil particles 2 - 50 µm as a mass percentage of the

mineral soil* fraction measured in the laboratory us-

ing the pipette method (NEN 5753, 2020).

Sand - % Soil particles 50 - 2000 µm as a mass percentage of

the mineral soil* fraction measured in the laboratory

using the pipette method (NEN 5753, 2020).

Bulk density BD g/cm3 Dry bulk density of the oven-dry fine earth fraction.

Soil organic

matter

SOM % Measured in the laboratory using loss on ignition at

550°C as a mass percentage of the mineral soil* frac-

tion; or estimated in the field following ten Cate et al.

(1995); de Bakker & Schelling (1966, 1989).

pH [KCl] pH - Measured in the laboratory using pH in 1M KCl soil

suspension.

Total N Ntot mg/kg Measured in the laboratory mainly using Jodlbauer

method (Maring et al., 2009, Appendix E, p. 79).

Oxalate-

extractable

P

Pox mmol/kg Measured in the laboratory mainly using extraction

with NH4-oxalate at pH 3 (Maring et al., 2009, Ap-

pendix E, p. 81).

Cation ex-

change capac-

ity

CEC mmol(c)/kg Measured in the laboratory mainly using extraction

with silverthioureum or Ca-acetate at pH 6.5 (Mar-

ing et al., 2009, Appendix E, p. 81).

modelling soil texture as a compositional variable does not necessarily improve model

performance (Amirian-Chakan et al., 2019). Thirdly, modelling separately followed by

post-processing is easy to implement.

Soil point data for model calibration

We used laboratory measurements and field estimates from the “Boring Bodemkundig

pakket” (BPK) and “Profielbeschrijving” (PFB) datasets in BIS for model selection, tun-

ing and calibration (Tables 5.2 & 5.3, Fig. 5.3). Observations in BPK and PFB were

made by soil horizon. Laboratory measurements and field estimates were available for

all depths between 0 and 2m (Table 5.3). All laboratory measurements were made at

PFB locations. These locations are arranged in a purposive sampling design selected in

the past to create the national 1:50 000 scale soil type map (de Vries et al., 2003). For

the majority of the target soil properties, these locations covered soil variability in the
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Netherlands well (Fig. 5.2). The majority of field estimates are part of the BPK dataset

and are spatially clustered in specific areas for regional soil mapping purposes or specific

projects (Chapter 3, Fig. 3.2). Most soil properties follow a skewed distribution, espe-

cially SOM, Ntot, Pox and CEC (Fig. 5.3). However, pH, sand and to a lesser extent,

silt, followed bimodal distributions. The distributions of the target soil properties likely

affected model predictions (Sect. 5.3.1).

Table 5.2: Descriptive statistics of soil point data used for model calibration (field estimates

and laboratory measurements) across all depths. Obs. = observations; Min. = minimum;

Max. = maximum; Year = years during which observations were made. Minimum, median,

mean and maximum values are in units of measurement of each soil property (Table 5.1). Soil

point data used for model calibration is publicly available (Sect. 5.4).

Soil

property
Dataset Method Locations Obs. Min. Median Mean Max. Year

Clay
PFB Lab 3489 13 140 0 7 14.82 90.3 1953-2012

PFB, BPK Field 200 427 618 586 0 18 20.47 95 1955-2022

Silt PFB Lab 3376 12 912 0 17.8 24.29 97.5 1953-2002

Sand PFB Lab 3386 12 918 0 73.95 60.68 100 1953-2007

BD
PFB Lab 951 3362 0.1 1.43 1.33 1.96 1957-1988

PFB, BPK Field 2586 12 509 0.1 1.5 1.49 2 1955-2002

pH PFB Lab 4216 15 248 0.9 4.8 5.2 9 1953-2010

SOM
PFB Lab 4298 15 312 0 2.1 7 99.9 1953-2011

PFB, BPK Field 334 668 840 638 0 4 15.33 99 1954-2022

Ntot PFB Lab 2511 5739 0 1300 3287.38 36 700 1953-2003

Pox PFB Lab 1655 6084 0 3.44 8.34 95.2 1955-2011

CEC PFB Lab 1332 3815 0 103 165.73 1541 1955-2010

Table 5.3: Number of laboratory measurements (lab) and field estimates (field) used for

model calibration per standard GSM depth layer for each soil property.

Observation

type
Depth [cm] Clay Silt Sand BD pH SOM Ntot Pox CEC

Lab

0-5 400 299 299 65 919 1049 765 311 556

5-15 3844 3838 3840 3080 4524 5538 3258 2967 933

15-30 1803 1794 1802 632 2519 2500 1200 961 502

30-60 3731 3723 3725 2568 5392 5329 1192 3308 824

60-100 4397 4294 4291 3630 5228 6170 1667 3972 728

100-200 1262 1261 1258 1328 2329 2249 149 1566 272

Field

0-5 12 184 - - 1547 - 18 873 - - -

5-15 124 749 - - 1372 - 230 710 - - -

15-30 57 050 - - 1360 - 117 800 - - -

30-60 134 156 - - 2242 - 209 918 - - -

60-100 129 640 - - 2395 - 138 122 - - -

100-200 171 859 - - 3593 - 130 836 - - -
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Figure 5.2: Observation density of locations with laboratory measurements used for model

calibration of all BIS-4D target soil properties. All of these locations are part of the PFB

dataset.

The laboratory measurements were deemed more important than field estimates because

they are more accurate and locations with laboratory measurements were less spatially

clustered. Nevertheless, field estimates from BPK and PFB also provide valuable informa-

tion, expanding spatial coverage and, for SOM, also temporal coverage from 1953 - 2022

(Table 5.2). In addition, since around 2000, most observations that were added to the

BIS are field estimates, a trend which is likely to continue into the future due to limited

budgets for laboratory measurements. Other national mapping studies have also used
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Figure 5.3: Histograms of soil property observations used for model calibration, colored by

observation type.

field estimates in the past (van den Berg et al., 2017). We accounted for differences in

data quality between laboratory measurements and field estimates using rigorous model

tuning based on optimizing model performance (Sect. 5.2.3). Field estimates were re-

moved if there was a laboratory measurement available from the same location and soil

horizon (and year, in case of SOM). Methods for estimating clay content, BD and SOM in

the field are described in ten Cate et al. (1995); de Bakker & Schelling (1966, 1989).

Soil point data for statistical validation

For clay, silt, sand and CEC, no separate dataset with laboratory measurements was

available for statistical validation. Therefore, statistical validation of these four soil prop-

erties was conducted using PFB laboratory measurements and a cross-validation approach

(Sect. 5.2.6).

For BD, pH, SOM, Ntot and Pox, laboratory measurements from either the “Landelijke

Steekproef Kaarteenheden” (LSK) or “Carbon Content NL” (CCNL) dataset were avail-

able for model validation (Table 5.4). LSK is a separate and independent dataset gathered
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between 1993 and 2000, where locations were determined using probability sampling. The

stratified simple random sample contains 94 strata defined based on soil type and ground-

water class (Finke et al., 2001; Visschers et al., 2007), with the original purpose to validate

the national soil type map (de Vries et al., 2003). Observations were made for each soil

horizon. Statistical validation of BD, pH, SOM, Ntot and Pox maps was conducted using

LSK because map accuracy should preferably be estimated with design-based statistical

inference using a probability sample (Brus et al., 2011). LSK data were also used to

validate earlier versions of soil pH (Chapter 2) and SOM maps (Chapter 3).

Table 5.4: Descriptive statistics of separate soil point datasets used for statistical validation

across all depths. Note that for statistical validation only laboratory measurements were used.

Separate datasets were not available for clay, silt, sand and CEC. Obs. = observations; Min.

= minimum; Max. = maximum; Year = periods during which observations were made.

Soil property Dataset Locations Obs. Min. Median Mean Max. Year

BD LSK 1363 5644 0.17 1.43 1.29 1.69 1993-2000

pH LSK 1363 5663 1.9 5.2 5.54 8.2 1993-2000

SOM

CCNL 1144 2284 0.5 3.4 7.51 78.7 2018

LSK 1185 4952 0.1 2.5 6.52 93.6 1993-2000

∆SOM 63 276 0 1.9 9.97 96.9 1953-1995

Ntot CCNL 1145 2286 0 1360 2784.85 24690 2018

Pox LSK 1480 6220 0 3.98 7.05 96.55 1989-2000

For SOM and Ntot, the CCNL dataset was used for statistical validation (Table 5.4).

The CCNL dataset consists of all LSK locations that were still accessible in 2018. In

contrast to LSK, CCNL locations were re-sampled at two fixed depth layers (0 - 30 cm

and 30 - 100 cm) instead of by soil horizon. LSK and CCNL datasets were also used

and their methodological sampling differences were explained in van Tol-Leenders et al.

(2019); van den Elsen et al. (2020); Knotters et al. (2022). Since LSK was sampled by

soil horizon, at more locations and also below 1m depth, it is preferential to use it rather

than CCNL.

For 3D+T maps of SOM, four different datasets were used for statistical validation with

the specific purpose to assess SOM maps for specific years (Chapter 3): location-grouped

10-fold cross-validation of PFB data (1953 - 2011; lab measurements shown in Table 5.2

and Fig. 5.3), design-based inference using LSK (1993 - 2000), design-based inference using

CCNL (2018) and a separate set of PFB locations that were re-sampled in 2022, used to

assess changes in SOM over time (Table 5.4). Design-based inference and cross-validation

procedures are explained in Sect. 5.2.6.

5.2.2 Covariates

In line with the DSM methodology (McBratney et al., 2003; Scull et al., 2003), we used

366 covariates as explanatory variables that were representative of the soil-forming factors:
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climate, organisms, relief (topography), parent material (geology) and time (Dokuchaev,

1899; Jenny, 1941). Accounting for Tobler’s first law of Geography (Tobler, 1970) and

spatial auto-correlation, Easting (x-coordinate) and Northing (y-coordinate) were also

included as covariates. Numerous studies have used spatial position and geographical

distances as covariates (Li et al., 2011; Behrens et al., 2018b; Hengl et al., 2018; Møller

et al., 2020; Sekulić et al., 2020). Sampling depth information, more specifically the upper

and lower boundary and midpoint of each sampled horizon, were included as covariates

so that predictions could be made at any chosen depth and depth interval. See Ma et al.

(2021) for an overview of models using depth as a covariate in comparison to non-3D

DSM methods. The majority of static covariates used in BIS-4D were previously used to

map soil pH (Chapter 2). Others, mainly derivations of monthly mosaics from Sentinel

2 RGB and NIR bands, were added to map SOM (Chapter 3). In order to map SOM in

3D+T, we extended upon established methods by also deriving covariates variable in time

(2D+T) and variable over depth and time (3D+T), as described in detail in Chapter 3.

All covariates were resampled at 25m resolution.

We created a regression matrix containing the BIS-4D target soil property observations

and static covariate values by performing a spatial overlay. For SOM, this was extended

to a space-time overlay for 2D+T covariates and a space-depth-time overlay for 3D+T

covariates (Chapter 3).

5.2.3 Model selection, tuning and calibration

For model selection as defined by Hastie et al. (2009), we removed covariates in a two-

step procedure using de-correlation followed by recursive feature elimination (RFE) as

in Poggio et al. (2021). From any pair of covariates for which the Pearson correlation

coefficient was > 0.85 or < −0.85, the covariate that was more correlated with all re-

maining covariates was removed. RFE (Guyon et al., 2002) was implemented using the

caret package (Kuhn, 2019) and the number of covariates was chosen with the lowest

root mean squared error (RMSE; Eq. 5.3). From 366 covariates, this resulted in a set of

20 - 50 covariates depending on the target soil property (Table 5.5), further used in model

tuning, calibration and prediction.

For model tuning, we grew random forest (RF) models (Breiman, 2001) and optimized

hyper-parameters for mean predictions. We tuned the model using a location-grouped 10-

fold cross-validation, meaning that all measurements from the same soil profile location

were forced to be in the same fold. Field estimates were excluded from the hold-out fold.

We assessed all combinations of the same hyper-parameters as in Sect. 2.2.4 (Chapter 2)

and chose the combination with the lowest RMSE (Eq. 5.3, Table 5.6).

For soil properties where both laboratory and field estimates were available (clay, silt,

sand, BD and SOM), we also tuned whether designating a larger case weight for laboratory

measurements improved model performance, in order to account for the lower accuracy of
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Table 5.5: Covariates used during model calibration and prediction for different responses

(soil properties), i.e. after covariate removal based on de-correlation and recursive feature

elimination (RFE; Sect. 5.2.3). “All” implies that a covariate was used in tuning, calibration

and prediction of all soil properties. Further information can be found in the metadata files

and description of the provided covariates (Sect. 5.4).

Soil form-

ing factor

Description Source Soil property

Soil
Peat classes starting depth and thickness National soil map (de Vries et al.,

2003)

Clay, BD, pH, Ntot, CEC

Groundwater classes in agricultural areas; sub-

surface material in groundwater zones

de Gruijter et al. (2004); Hoogland

et al. (2014); Knotters et al. (2018)

All

Climate
Long-term mean, min. & max. temperature KNMI (2020) BD, Ntot, Pox, CEC

Long-term mean precipitation KNMI (2020) Clay, silt, BD, SOM, Ntot,

Pox

Organism

Land use 1900, 1960, 1970, 1980 & 1986–2022 HGN (Alterra, 2004); LGN (WENR,

2020; Hazeu et al., 2020)

Clay, silt, sand, pH, SOM,

Ntot

Sentinel 2 RGB & NIR bands & spectral in-

dices (2015-2022) as in Loiseau et al. (2019)

Roerink & Mücher (2023) All

Manure application, ammonia & total N emis-

sions, management type

Besluit Gebruik Dierlijke Meststoffen

(BGDM; RIVM, 2020); BIJ12 (2019)

Clay, silt, sand, BD, pH,

Pox, CEC

Land cover & vegetation types Bakker et al. (1989) Clay, pH, CEC

Forest vegetation types, tree species & age de Vries & Al (1992); Clement (2001) Clay, silt, sand, pH, Pox,

CEC

Water drainage classes, areas behind dikes or

not, riparian zone land cover

Maas et al. (2019) Clay, silt, sand, pH

Relief
Digital elevation model (DEM) & derivatives AHN (2023) All

Low- vs. high-elevation regions (binary) Knotters et al. (2018) Clay, silt, sand, pH

Parent

material

Geological units/classes & chronostratigraphic

formation period

Kombrink et al. (2012); van der

Meulen et al. (2013)

Clay, silt, sand, pH, CEC

Geomorphology based on geomorphological

classes, genesis, form, formation time & relief

Koomen & Maas (2004); Maas et al.

(2019)

Clay, silt, sand, BD, pH,

SOM, Ntot, CEC

Physical geographic regions & landscape types EZK (2013) Clay, silt, sand, BD, pH,

SOM, Ntot, CEC

(Paleo-) geographical maps (9000–250 B.C.,

100–1850 A.D.)

Vos (2015); Vos et al. (2020) Clay, silt, sand, BD, pH,

SOM, Ntot

Spatial

position

Easting & Northing - Clay, silt, sand, BD, pH,

SOM, Pox, CEC

Upper, midpoint & lower boundary of soil

layer

- All

Time

2D+T dynamic covariates of land use (Chap-

ter 3)

HGN (Alterra, 2004); LGN (WENR,

2020; Hazeu et al., 2020)

SOM

2D+T & 3D+T dynamic covariates of peat

classes & peat occurrence (Chapter 3)

Original (1960-1995) & updated (2014-

2021) national soil map (de Vries et al.,

2003)

SOM
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Table 5.6: Final covariate count (post de-correlation and RFE) and optimized hyper-

parameters for each modelled soil property. In instances without case weights, optimal per-

formance was achieved excluding field estimates (silt and sand) or when the property was not

estimated in the field (pH, Ntot, Pox, and CEC).

Soil

property

Number of

covariates

Number of

trees
Mtry

Min.

node size

Sample

fraction

Split

rule

Case

weight

Clay 50 500 12 1 0.8 Variance 5

Silt 50 500 10 1 0.8 Variance -

Sand 50 500 10 1 0.8 Variance -

BD 30 250 8 1 0.8 Variance 5

pH 50 500 12 1 0.8 Variance -

SOM 33 500 7 1 0.8 Variance 10

Ntot 20 500 4 1 0.8 Variance -

Pox 30 500 6 1 0.8 Variance -

CEC 50 500 10 1 0.63 Variance -

field estimates compared to laboratory measurements. Values of two, five, ten and fifteen

times the weight of field estimates were tested for laboratory measurements (Table 5.6).

In addition, we also tested excluding field estimates entirely. The final set of hyper-

parameters was chosen based on the lowest RMSE (Eq. 5.3) across the cross-validation.

When the increase in RMSE was below 0.1%, the model with fewer trees was chosen to

reduce computation time during prediction. For silt and sand, model performance was

highest when using only laboratory measurements, so field estimates were excluded in

model calibration (Table 5.6).

For model calibration and prediction, we used RF to predict the mean and quantile

regression forest (QRF) due to its ability to predict the entire conditional distribution

(Meinshausen, 2006). The final QRF used for model prediction was fitted using all soil

observations in the calibration set (Table 5.2), the selected covariates (Table 5.5) and the

final set of hyper-parameters (Table 5.6).

5.2.4 Variable importance

During model calibration, we assessed variable importance using the permutation method

for pH, Ntot, Pox, CEC, silt and sand, and the impurity method for clay, BD and SOM.

Permutation gives a better estimate of the variable importance than impurity because

impurity has a bias towards covariates with more distinct values, making it negatively

biased towards categorical covariates as they have a finite number of binary splits due

to their limited number of classes (Sandri & Zuccolotto, 2008, 2010). However, the per-

mutation measure is dependent on the out-of-bag error (Breiman, 2002). As we assigned

larger weights to laboratory measurements for clay, BD and SOM models, there were not
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enough unselected soil samples available to calculate the out-of-bag error.

5.2.5 Prediction maps

The calibrated RF and QRF and final set of covariates were used to estimate the mean,

median (0.50 quantile; q0.50), 0.05 quantile (q0.05) and 0.95 quantile (q0.95) at every 25m

pixel and each standard depth layer specified by GSM (0 - 5 cm, 5 - 15 cm, 15 - 30 cm, 30 -

60 cm, 60 - 100 cm and 100 - 200 cm) over the Netherlands. In addition, spatially explicit

90% prediction interval widths (PI90) were obtained at every 25m pixel as a measure of

prediction uncertainty as follows:

PI90 = q0.95 − q0.05 (5.1)

We post-processed the mean and median PSF prediction maps to ensure that the three

PSF maps summed to 100%. The predictions of clay, silt and sand were divided by the

sum of the three at that location and multiplied by 100 for every 25m pixel.

5.2.6 Accuracy assessment

We evaluated map quality using internal (model-based) and external (model-free) accu-

racy assessment. At the location and depth, and year in the case of SOM, of a soil

property measurement, all quantiles from 0 to 1 at steps of 0.01 were predicted to ob-

tain the PI90 (Eq. 5.1) as well as the prediction interval coverage probability (PICP) of

prediction intervals between 0.02 and 1. The PICP is the proportion of independent ob-

servations that fall into the corresponding prediction interval (Papadopoulos et al., 2001).

We refer to the PICP of the PI90 as the PICP90. The PICP is an indication of how

accurately QRF quantifies uncertainty. Prediction uncertainty using PI90 is an example

of a model internal accuracy assessment since it is QRF-dependent, whereas PICP is an

external accuracy metric.

Besides PICP, we used two different statistical validation methods for an external accuracy

assessment: 1) design-based inference (Brus et al., 2011; Brus, 2022), using either LSK or

CCNL laboratory measurements, and 2) non-design-based inference using PFB laboratory

measurements (Sect. 5.2.1, Table 5.4). We used the same approach as described in detail

in Chapter 2 to adapt design-based inference for statistical validation of prediction maps

at different depth layers. However, design-based inference was not used to assess clay,

silt, sand and CEC predictions, as it was not measured in LSK or CCNL. For non-design-

based inference, we used location-grouped 10-fold cross-validation of the PFB laboratory

measurements, similar as during model tuning.

To obtain commonly used accuracy metrics, both mean and median predictions were used

to calculate residuals. From these residuals we estimated the mean error (ME or bias),
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the RMSE and the model efficiency coefficient (MEC):

M̂E =
1

n

n∑
i=1

(yi − ŷi) (5.2)

̂RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (5.3)

M̂EC = 1 −
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − y)2
(5.4)

where n is the number of validation observations, yi and ŷi are the ith observation and

prediction, respectively, at a certain location, depth and year (for SOM), and y is the

mean of all validation observations. Eq. 5.2 - 5.4 apply for non-design-based inference.

The adapted equations for design-based inference are Eq. 2.5, 2.8 and 2.11. We computed

these accuracy metrics for all observations and separated into observations pertaining to

each depth layers, as the latter was necessary for design-based inference (Chapter 2).

In addition to rigorous quantitative accuracy assessment, we also evaluated the spatial

patterns of BIS-4D prediction maps qualitatively by comparing them to existing soil maps

in the Netherlands (de Vries et al., 2003; Brus et al., 2009; Schoumans & Chardon, 2015;

van den Berg et al., 2017; Heinen et al., 2022; Knotters et al., 2022) and based on expert

judgement. We acknowledge that qualitative evaluation was not definitive and indicative

only.

5.2.7 BIS-4D updates: pH and SOM

Previous map versions of soil pH in 3D and SOM in 3D+T have recently been published

using BIS-4D (Chapters 2 - 3). For soil pH, this version contains several important

updates. Firstly, covariates of peat classes (de Vries et al., 2003), groundwater classes

in agricultural areas (Knotters et al., 2018) and Sentinel 2 RGB and NIR bands and

spectral indices (Roerink & Mücher, 2023) were added, all of which were selected and

thus used for model calibration and prediction of the updated version (Table 5.5). We

also included de-correlation and RFE to increase the signal to noise ratio and make models

more parsimonious (Sect. 5.2.3). For 3D+T maps of SOM, we included the latest national

land use map (year 2022) to derive the dynamic 2D+T land use covariates and predict

SOM for the year 2023.

5.2.8 Software and computational framework

The computational framework of BIS-4D is entirely based on open source software and was

operationalized on a Ubuntu 22.04 operating system with 48 cores and 128 GB working

memory (RAM). Model input data (soil point data and covariates), scripts and model



118 Chapter 5. BIS-4D: Mapping soil properties

outputs (BIS-4D soil property prediction maps and their associated uncertainty maps)

are openly accessible (Sect. 5.4).

BIS-4D is mostly based on R (version 4.3.1; R Core Team, 2023), although GDAL (ver-

sion 3.7.2; GDAL/OGR contributors, 2023) and SAGA-GIS (version 7.8.4; Conrad et al.,

2015) were used during covariate preparation and processing because this massively de-

creased computation time compared to using similar functions in R. Further details about

resampling, masking and processing of covariates and reclassification of categorical co-

variates can be found in Sect. 2.2.7 (Chapter 2). The indices necessary for the location-

grouped 10-fold CV were made using the CAST R package (Meyer, 2023). The caret

package (Kuhn, 2008, 2019, 2022) was used for tuning and selection of hyper-parameters.

We used the ranger package (Wright & Ziegler, 2017) with the option “quantreg” to grow

a QRF during calibration and without it to grow a RF during RFE and tuning. For pre-

dictions, the option “quantiles” was used to predict quantiles while the option “response”

was used to predict the mean. A combination of the ranger and terra packages was

used for predicting at all locations and depths. We used QGIS (version 3.32.3; QGIS De-

velopment Team, 2023) and the rasterVis (Lamigueiro & Hijmans, 2023) and mapview

(Appelhans et al., 2023) R packages for exploratory and qualitative analysis and visual-

ization of covariates and prediction maps. The computational workflow for all BIS-4D

maps took approximately 5700 CPU-hours.

5.3 Results and Discussion

BIS-4D prediction maps for every GSM depth layer at 25m resolution can be downloaded

at https://doi.org/10.4121/0c934ac6-2e95-4422-8360-d3a802766c71 (Helfenstein

et al., 2024a). These include predictions of the mean, 0.05, 0.50 (median) and 0.95

quantiles and the PI90 of clay, silt, sand, BD, pH, Ntot, Pox and CEC. For SOM, these

prediction maps are available for the years 1953, 1960, 1970, 1980, 1990, 2000, 2010, 2020

and 2023 (Sect. 5.4). An overview of all prediction maps together with the associated

accuracy metrics (ME, RMSE, MEC, PICP) and variable importances can be found in

the supplementary information (SI), which is organized by target soil property.

5.3.1 Accuracy assessment

Quantitative accuracy assessment

The accuracy of the produced maps varied considerably depending on the soil property

(Table 5.7, 5.8 & SI). Based on 10-fold cross-validation (Table 5.7), the accuracy of mean

predictions over all depths for clay, sand, BD, pH and Ntot maps was highest (MEC> 0.70),

followed by SOM and silt (MEC> 0.60). Mean predictions for Pox and CEC were least

accurate (MEC=0.54 and 0.49, respectively). Design-based inference separated by depth

layer confirms the high accuracy of pH prediction maps (Table 5.8). MEC values computed
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for mean and median predictions using design-based inference were lower for BD (0.34

- 0.78) and Ntot (0.27 - 0.52) than when using 10-fold cross-validation. Mean and median

Pox maps were very inaccurate (MEC= -0.11 to 0.38) based on design-based inference.

The large differences in accuracy between 10-fold cross-validation using PFB laboratory

measurements and design-based inference using LSK laboratory measurements for BD

and Pox may be due to the clustered and limited spatial distribution of calibration data

for those soil properties (Fig. 5.2d & h). Therefore, for BD and Pox, metrics using 10-fold

cross-validation are likely overly optimistic.

Table 5.7: Accuracy metrics of BIS-4D soil property maps using mean and median predic-

tions, computed using 10-fold cross-validation (Sect. 5.2.6). Units of ME and RMSE are in

units of the measured soil property (Table 5.1).

Soil

property

ME

(mean)

ME

(median)

RMSE

(mean)

RMSE

(median)

MEC

(mean)

MEC

(median)
PICP90

Clay -0.23 0.42 8.1 7.7 0.77 0.78 0.84

Silt -0.28 0.59 12 13 0.62 0.57 0.91

Sand 0.35 -1.2 17 17 0.74 0.74 0.92

BD -0.011 -0.032 0.21 0.22 0.71 0.68 0.86

pH -0.010 -0.023 0.71 0.72 0.73 0.72 0.93

SOM -1.0 0.97 9.5 9.7 0.64 0.64 0.88

Ntot -37 390 2800 2900 0.72 0.69 0.91

Pox -0.33 1.5 7.5 7.7 0.54 0.52 0.92

CEC -3.6 26 130 140 0.49 0.46 0.92

The RMSE and ME were low for most soil properties (Table 5.7 and SI). The RMSE of

sand was higher than for clay and silt, even though the MEC of sand indicates higher

model performance for sand than for silt. This can be explained by the high proportion

of regions in the Netherlands with very high sand content (> 75%), i.e. the Pleistocene

sandy areas shown in pink in Fig. 5.4d & h. In comparison, laboratory measurements of

clay and silt content were rarely > 75% (Fig. 5.3).

The differences in accuracy between mean and median prediction maps varied between

soil properties. Based on 10-fold cross-validation, mean predictions were less biased than

median predictions for all soil properties except SOM (Table 5.7). For soil properties

where calibration data were positively skewed (Fig. 5.3), i.e. all soil properties except

sand, BD and pH, the bias of mean predictions was negative, whereas the bias of median

predictions was positive (Table 5.7). However, in contrast to the findings based on 10-fold

cross-validation, design-based inference of Ntot revealed that median predictions were less

biased (between -609 and 120 mg/kg; SI) than mean predictions (between -511 and -1408

mg/kg; SI). Higher accuracy of median predicted Ntot was also reflected in lower RMSE

(Table S7) and higher MEC values (Table 5.8).
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Table 5.8: MEC for mean and median predictions of BIS-4D soil property maps, separated

by depth layer and computed using either 10-fold cross-validation (CV) of PFB laboratory

measurements, or design-based inference (DBI) using LSK or CCNL data (Table 5.4). DBI

for Ntot at 100 - 200 cm depth was not possible because soil samples were not collected below

100 cm in CCNL (Sect. 5.2.1 & 5.2.6). However, for this depth layer, CV metrics are included

in the supplementary information (Table S7).

Statistical validation method CV CV CV DBI DBI DBI DBI DBI CV

Prediction Depth [cm] Clay Silt Sand BD pH SOM Ntot Pox CEC

Mean

0-15 0.84 0.70 0.80 0.39 0.71 0.52 0.44 0.25 0.59

15-30 0.84 0.68 0.81 0.78 0.91 0.53 0.44 0.17 0.49

30-60 0.77 0.62 0.75 0.54 0.73 0.34 0.27 -0.11 0.47

60-100 0.69 0.54 0.67 0.49 0.74 0.46 0.27 0.04 0.38

100-200 0.60 0.51 0.61 0.47 0.77 0.44 - 0.04 0.16

Median

0-15 0.84 0.67 0.79 0.34 0.71 0.48 0.52 0.20 0.56

15-30 0.85 0.65 0.82 0.78 0.92 0.68 0.52 0.38 0.43

30-60 0.79 0.58 0.75 0.54 0.72 0.27 0.41 0.05 0.42

60-100 0.72 0.48 0.67 0.44 0.74 0.53 0.41 0.00 0.36

100-200 0.63 0.44 0.61 0.41 0.76 0.54 - 0.11 0.26

Mean predictions are more sensitive to extreme values and outliers than median predic-

tions. For instance, in mineral soils, the predicted conditional distribution of SOM, Ntot,

Pox and CEC was positively skewed and median predictions were usually smaller than

mean predictions (e.g. von Hippel, 2005, Fig. 1). In peat soils, the opposite was the case.

Here, the predicted conditional distribution of SOM, Ntot, Pox and CEC was negatively

skewed and median predictions were larger than mean predictions. For these soil proper-

ties, mean predictions were thus systematically higher than median predictions in mineral

soils, whereas mean predictions were systematically lower than median predictions in peat

soils.

The maps of prediction uncertainty (PI90) for every GSM depth layer revealed that un-

certainty was high when mean and median predictions fell within a range with limited

calibration data (SI). This meant that for most soil properties, uncertainty was high in

areas where predictions were high due to the positively skewed distribution of observation

data (Fig. 5.3). For example, the positive correlation between increasing uncertainty with

increasing predictions can be clearly observed for clay and silt in Fig. 5.4e, f, i and j. The

same positive correlation between predictions and uncertainty was observed for Ntot over

depth (Fig. 5.5e & f). We found a similar pattern of high uncertainty in peatlands due

to high predictions in these areas for SOM, Pox and CEC. However, given its bimodal

distribution, the uncertainty for sand was highest in areas where predictions ranged be-

tween 25 – 75% (for example in the river areas) and uncertainty was comparatively low

in marine clay areas (< 25% sand) and Pleistocene areas (> 75% sand) (Fig. 5.4c, g &

k). Prediction uncertainty for most soil properties increased with increasing depth (e.g.
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Figure 5.4: Mean predicted clay [%] (a & e), silt [%] (b & f) and sand [%] content (c & g)

at 60 - 100 cm depth and associated prediction uncertainty (PI90 = 90th prediction interval)

and the soil physical units map of the Netherlands (BOFEK, Heinen et al., 2022, d & h) in

comparison. The soil physical unit codes can be found in Heinen et al. (2022); here grouped

into the main categories (1xxx = peat, 2xxx = peaty, 3xxx = sand, 4xxx = loam/clay and

5xxx = loess). The zoom-in area around Wageningen was chosen since this area contains all

main soil physical categories except loess.

Fig. 5.5f), except if mean and median predictions decreased substantially over depth,

as was the case for Pox (SI, Figs. S78 - S85). Higher uncertainty at lower depths is in

line with worse accuracy metrics at lower depths (Table 5.8; SI) and this tendency was

found in the majority of recently reviewed DSM studies (Chen et al., 2022). Finally,

prediction uncertainty of most soil properties was also higher in urban areas, which can

be attributed to limited soil samples and heavily disturbed soils in urban areas. With

increasing population growth in an already densely populated country, this highlights the

need to map urban soils (Römkens & Oenema, 2004; Vasenev et al., 2014, 2021; Kortleve

et al., 2023).

The PICP90 (Table 5.7) and the PICP (SI) indicated that prediction uncertainty was

estimated relatively accurate using QRF, but small differences were found among the pre-
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Figure 5.5: Median predicted BD [g/cm3] (a), Ntot [mg/kg] (b), Pox [mmol/kg] (c), and CEC

[mmol(c)/kg] (d) at 0 - 5 cm depth; and median predicted Ntot (e) and PI90 (90th prediction

interval) as a measure of the associated prediction uncertainty (f) along the depth transect

shown in b.

dicted soil properties. For clay content, the PICP90 was between 0.82 - 0.86 (Table S1)

and hence less than 0.90, indicating that the uncertainty of clay predictions was under-

estimated. The uncertainty of BD based on PFB laboratory measurements was slightly

underestimated (0.86; Table 5.7), but was slightly overestimated based on LSK labora-

tory measurements (0.88 - 0.95; Table S4). For SOM, the PICP90 varied strongly with

depth (0.75 - 0.96; Table S5), but the PICP overall was very accurate for all depths com-

bined (Fig. S53). In our study, the soil properties for which field estimates were included

during calibration were the only ones for which the PI90 was sometimes underestimated.

Similarly, Chen et al. (2023) found that increasing the proportion of spectral estimates

combined with conventional laboratory measurements decreased the PI90. Hence, if cali-
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bration data are a smoothed version of the truth, which may be the case with predictions

of spectral models and field estimates, this tends to lead to underestimation of the “true”

uncertainty. The aim of sharp, i.e. narrow, conditional probability distributions by includ-

ing various types of observational data is desirable only if ensuring that the uncertainty

is still reliable, e.g. by computing the PICP (Schmidinger & Heuvelink, 2023). This is

important to avoid presenting overoptimistic results to end users. Besides clay, BD and

SOM, prediction uncertainty for the remaining target soil properties was accurate but

marginally overestimated (0.89 - 0.97) based on the independent datasets used for sta-

tistical validation (LSK and CCNL; SI). Hence, the PICP indicates that silt, sand, pH,

Ntot, Pox and CEC maps are somewhat more accurate than suggested by the prediction

uncertainty (PI90).

Qualitative accuracy assessment

The BIS-4D maps of the nine predicted soil properties align with the national soil map

of the Netherlands (de Vries et al., 2003). This can be seen when comparing our maps

(Figs. 5.4 & 5.5, SI) with the soil physical units map (BOFEK; Fig. 5.4d & h; Heinen

et al., 2022), derived from the national soil map of the Netherlands. Further information

on the comparison of BIS-4D maps to previous soil pH maps (Brus et al., 2009) can be

found in Sect. 2.4.2 (Chapter 2), and to previous SOM maps (Brus et al., 2009; van den

Berg et al., 2017; Knotters et al., 2022) in Chapter 3. Nonetheless, visual evaluation of

the maps also revealed several limitations.

The maps of soil texture or particle size fractions (clay, silt and sand) of the mineral soil

component should be used with caution in peatlands, since natural peat only consists

of organic matter without a mineral component. However, the low-lying fen peatlands,

located mostly in the West and Northwest of the Netherlands, typically also contain some

clay, silt or sometimes even sand due to past flooding events (Edelmann, 1950; de Bakker

& Schelling, 1966, 1989; Brouwer et al., 2023). Drained organic soils, particularly when

under agricultural use, can also contain mineral components introduced or mixed in from

mineral soil horizons from below or above the organic soil horizon. Nonetheless, 30%

clay content in a soil composed mostly of peat in absolute terms contains less clay than

a mineral soil with 30% clay content.

Visual examination of the BIS-4D maps reveals artifacts from the covariates. Although

water and buildings were cropped out, some mapping artifacts remained, such as small

buildings, roads and railways. For instance, the road on top of the dike, parallel to and

South of the Rhine River is clearly visible in Fig. 5.4e-k. This highlights the difficulty of

spatial modelling approaches such as DSM that rely strongly on remote sensing products.

Other artifacts were due to the combination of several Sentinel 2 images from different

days in one month to obtain one monthly mosaic (Sect. 5.2.2). Image mosaicing created

artificial lines from images with more clouds, although overall, images contained very
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few to no clouds. Finally, there were also orthogonal artifacts most likely due to using

Northing and Easting coordinates as covariates, which can be largely removed by also

including oblique axes in many additional directions (Møller et al., 2020).

5.3.2 Strengths

BIS-4D maps fill the missing data gap of spatial soil property information on a national

scale in the Netherlands and bring substantial improvements to previously mapped soil

properties. The main strengths of BIS-4D are: 1) the ability to provide information of

soil properties as opposed to soil types; 2) the high spatial resolution (25m); 3) accuracy

and uncertainty assessment based on best practices; 4) the benefits of machine learning

combined with large amounts of data; 5) the flexibility to predict in 3D and 3D+T; and

6) model code and data are openly available, making BIS-4D fully reproducible and easy

to update.

The BIS-4D maps have several advantages compared to previous soil maps of the Nether-

lands. While categorical maps of soil type (de Vries et al., 2003) and derived thematic

maps (Brouwer & van der Werff, 2012; Brouwer et al., 2018; van Delft & Maas, 2022,

2023; Heinen et al., 2022) are important and useful, many users require information on

specific, numerical soil properties (Sect. 5.1). We acknowledge that clay content (Brus

et al., 2009), SOM (Brus et al., 2009; van den Berg et al., 2017; Knotters et al., 2022),

pH (Brus et al., 2009) and soil properties related to soil texture (Heinen et al., 2022) and

Pox (Schoumans & Chardon, 2015) have previously been mapped on a national scale in

the Netherlands. However, these maps were at much coarser resolution, accuracy was

either not assessed, or not assessed using design-based statistical inference, quantification

and evaluation of uncertainty were missing, mapping approaches did not include machine

learning, used only a few covariates, and predictions for one or several depth layers were

modelled separately and only Knotters et al. (2022) assessed changes over time. The only

standard GSM soil properties that we did not map are SOC, plant exploitable (effective)

depth, depth to rock and coarse fragments (Arrouays et al., 2014a; Hempel et al., 2014a;

Arrouays et al., 2015). We mapped SOM instead of SOC because, in the Netherlands,

SOC was not included in routine soil analyses until recent years. However, SOC can be

derived from SOM, as investigated in other studies in the Netherlands (van Tol-Leenders

et al., 2019; van den Elsen et al., 2020; Teuling et al., 2021; Knotters et al., 2022). Plant

exploitable (effective) depth is mostly limited by high groundwater levels in most regions

of the country. Since groundwater levels have been extensively mapped in the Nether-

lands (de Gruijter et al., 2004; Hoogland et al., 2014; Knotters et al., 2018), mapping

plant exploitable (effective) depth was not deemed necessary. Depth to rock and coarse

fragments are not relevant on a national scale in the Netherlands, as the substrate materi-

als of Dutch soils are almost exclusively either Pleistocene sand, fine-grained Quaternary

sediments or peat.
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Another strength of BIS-4D is that maps are at a high spatial resolution of 25m. As

covariates such as remote sensing products and national maps of land use (Hazeu et al.,

2023) and digital elevation models (AHN, 2023) are nowadays available at 5 - 25m resolu-

tion, useful information for modelling complex relationships between soil-forming factors

such as land cover and topography and soil properties is provided at these scales. The

increasing availability of high resolution information in soil-related domains has also in-

creased the demand for high resolution soil maps. While high resolution products such

as BIS-4D bring many advantages, it is crucial to emphasize that resolution is not an

indicator of accuracy and should not be used solely to determine a map’s fitness for use

(de Bruin et al., 2001; Malone et al., 2013; Knotters & Walvoort, 2020; Szatmári et al.,

2021).

One of the main advantages of BIS-4D is the rigorous map quality evaluation using

design-based statistical inference and prediction uncertainty. Based on sampling the-

ory (Cochran, 1977; de Gruijter et al., 2006; Gregoire & Valentine, 2007), map accuracy

should be assessed with design-based statistical inference using a probability sample when-

ever possible, as this provides a better estimate of the “true” map accuracy compared to

non-design-based approaches (Brus et al., 2011). Moreover, it also produces confidence

intervals (Tables S4 - S8), so that we know how close the estimate of the map accuracy is to

the true map accuracy. We were able to use design-based inference for BD, pH, SOM, Ntot

and Pox maps due to the availability of the LSK and CCNL datasets. We are not aware of

any other GSM products that used design-based inference to evaluate map accuracy on a

national scale. For soil properties for which design-based inference was not possible, i.e.

for clay, silt, sand and CEC, we used location-grouped 10-fold cross-validation, as recom-

mended in the case of non-clustered data (Wadoux et al., 2021a; de Bruin et al., 2022).

In addition, BIS-4D maps provide spatially explicit estimations of prediction uncertainty

(PI90), including GSM accuracy thresholds for soil pH (Chapter 2), and we evaluated the

accuracy of the uncertainty using PICP.

Another strength of BIS-4D, for example when compared to previous soil property maps

in the Netherlands (e.g. Brus & Heuvelink, 2007; Brus et al., 2009; van den Berg et al.,

2017), is that machine learning leads to more accurate predictions than other geostatistical

and regression techniques. Ensemble decision tree models such as RF and QRF have

repeatedly outperformed other spatial interpolation methods (e.g. Hengl et al., 2015;

Nussbaum et al., 2017; Keskin et al., 2019; Khaledian & Miller, 2020). Ensemble decision

tree models are able to capture complex, non-linear relationships between the covariates

and soil properties and are widely used in recent DSM studies (Vaysse & Lagacherie, 2017;

Heuvelink et al., 2020; Poggio et al., 2021; Baltensweiler et al., 2021; Nussbaum et al.,

2023).

BIS-4D maps for clay, silt, sand, BD, pH, Ntot, Pox and CEC are in 3D (between 0 - 2m

depth) and for SOM, also dynamic (3D+T; SI and Chapter 3). This fills a largely missing
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gap of soil information in deeper layers (Chen et al., 2022). In addition, BIS-4D can

predict at any depth, as opposed to recalibrating models when mapping individual depth

layers separately (Ma et al., 2021). This improves model flexibility and efficiency and a

larger amount of data can be leveraged during model tuning and calibration. For example,

routine agronomic soil sampling depths in the Netherlands are 0 - 10 cm for grasslands and

0 - 25 cm for croplands, thereby deviating from the GSM standard depths (Arrouays et al.,

2014a; Hempel et al., 2014a; Arrouays et al., 2015). Predictions and associated uncertainty

for those depths can be provided using BIS-4D without recalibrating models. This is

particularly useful for uncertainty, which, unlike mean and median predictions, cannot

be aggregated using e.g. weighted averaging over depth layers (Sect. 5.3.1). Finally,

we developed innovative covariates explicit in 3D+T, presenting a novel opportunity to

extend the predictive power of machine learning to 3D+T (Chapter 3). This provided a

new opportunity for monitoring SOM-related soil health using a method that is explicit

in 3D space.

Lastly, compared to the time-consuming effort of updating conventional soil maps, DSM

products such as BIS-4D can easily be extended to other soil properties in BIS and can

be updated and delivered on demand (Heuvelink et al., 2010; Kempen et al., 2009, 2012b,

2015). In comparison to an earlier version for soil pH (Chapter 2), the number of covari-

ates has been substantially decreased during model selection (Sect. 5.2.3), which benefits

reproducibility and possibilities to update maps. The model code, workflow, inputs and

outputs are well documented and openly available, making procedures reproducible and

easy to update (Sect. 5.4).

5.3.3 Limitations and improvements

Uncertainty in DSM products such as BIS-4D can be linked to three overarching sources:

1) the quantity and quality of soil point data, 2) the quantity and quality of covari-

ates, and 3) the model structure (Heuvelink, 2014, 2018). Consequently, we discuss the

limitations of BIS-4D maps with regard to uncertainties linked to soil point data, covari-

ates, and model structure and suggest improvements to minimize these three sources of

uncertainty.

Soil point data

Measurement errors and differences in measurement methods of the soil point data may

have contributed to the uncertainty of BIS-4D maps. For example, Fe, Al and P extracted

by oxalate extraction are considered to consist of amorphous Fe- and Al-(hydr)oxides and

P bound to those oxides. However, a fraction of oxalate-extractable P in peat soils likely

consist of P bound to organically complexed Fe and Al, since those are also partially

extracted during the oxalate extraction (McKeague, 1967; McKeague et al., 1971; van der

Zee et al., 1990; Schoumans, 2013; Schoumans & Chardon, 2015). Recent research has de-
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vised methods to quantify the uncertainty of soil laboratory measurements (van Leeuwen

et al., 2021) and to incorporate these errors into machine learning algorithms (van der

Westhuizen et al., 2022). Furthermore, several slightly different methods, standards and

laboratory facilities were used to measure Ntot, Pox and CEC (Maring et al., 2009, Ap-

pendix E). This introduced uncertainty that can be minimized by standardizing laboratory

measurements and procedures.

There were several limitations related to the spatial and spatio-temporal distribution of

the soil point data used in BIS-4D. The calibration data of BD, Pox and, to a lesser extent,

CEC, were spatially clustered (Fig. 5.2), which most likely affected mapping accuracy of

those soil properties (Sect. 5.3.1). In addition, no wet-chemical laboratory measurements

were available as part of a probability sample (LSK and CCNL) for design-based statistical

inference of clay, silt, sand and CEC prediction maps (Sect. 5.2.1). As most of the soil

point data were collected between 1950 and 2000, soil measurement age and time should

be addressed also for other soil properties besides SOM (Arrouays et al., 2017). Ntot and

CEC are strongly linked to SOM and thus temporal changes may be similar to mapped

SOM changes (Chapter 3). BD, pH, Ntot, Pox and CEC likely changed due to land use and

management. However, yearly variation in Pox is relatively small since P binds strongly to

soil particles and the plant available fractions of P with short turnover times are less than

15% of the total reversibly bound P pool (Withers et al., 2014, Fig. 3), which is what is

measured with Pox (Lookman et al., 1995; Neyroud & Lischer, 2003). Large quantities of

topsoil data are collected for agronomic surveys every four years in the Netherlands (BZK,

2022; Eurofins Agro, 2024a,b), but only a small part of these are not privacy-protected,

making it challenging to incorporate in DSM approaches. Although the point data suggest

good spatial coverage of most of the basic soil properties in the Netherlands, there is

a major lack in repeated laboratory measurements collected using identical sampling

strategies over time, as discussed in Knotters et al. (2022) and Chapter 3. A consistent

national soil monitoring scheme would be beneficial for modelling dynamic soil properties

in 3D+T, updating static BIS-4D maps and for accuracy assessment with more recent

data.

Covariates

Although BIS-4D was able to make use of a large range of high-quality, country-specific co-

variates (Table 5.5), the main variable missing in our modelling approach is more detailed

land management data, which is a common challenge in DSM (Finke, 2012; Arrouays

et al., 2021). Land cover and land use covariates only indirectly provided information on

land management. From 2005 onwards, annual data on the specific crop type for every

agricultural parcel in the Netherlands was available (“BRP Gewaspercelen”; EZK, 2019),

but these were never selected among the final covariates used for model calibration (and

therefore not shown in Table 5.5). This implies that they did not provide additional

useful information for the spatial distribution of the target soil properties at the national
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scale, although different drivers may be relevant at regional and local scales (Sect. 5.3.4).

However, regardless of the scale, national crop parcel data do not capture information on

management decisions such as fertilizer inputs, liming and ploughing frequency on agri-

cultural lands and maintaining forests and nature areas. These management decisions are

highly relevant for many of the mapped soil properties, with the exception of particle size

fractions. For example, BD is strongly dependent on the size and driving frequency of

tractors on agricultural fields (Stettler et al., 2014).

As another example, Pox exhibits considerable small-scale spatial variability, as discussed

and made evident by the high nugget in the semivariogram in Fig. 6 of Lookman et al.

(1995). As P in the form of phosphate is bound in the soil much stronger than N or

other plant nutrients affected by the base cation saturation and CEC, there are large

legacy effects due to historic management not captured in the covariates currently used

in BIS-4D. In our study, the three most important covariates for modelling Pox were the

covariates related to soil horizon sampling depth (Fig. S88). The relationship of Pox to soil

depth is supported by empirical findings of the maximum P sorption capacity decreasing

with soil depth, especially in sandy soils. Moreover, given that Pox map quality was poor

(Table 5.8 and SI), the relative importance of depth suggests that the other covariates did

not explain the spatial variation of Pox well, likely due to missing (historic) management

data. Although not solving the problem of missing management data, one easy step to

improve the accuracy of BD and Pox and other management-dependent soil properties is

to only map them for agricultural areas, as was done in the Netherlands for amorphous

Iron- and Aluminium-(hydr)oxides (van Doorn et al., 2024). We expect that including

dynamic covariates of land management and climate, as discussed in Chapter 3, would

likely also improve modelling dynamic soil properties in 3D+T.

Model structure

Despite the many advantages of using QRF for DSM (Sect. 5.3.2), predictions may be

further improved using methods such as convolutional or recursive neural networks (deep

learning; Behrens et al., 2005, 2018a; Padarian et al., 2019b; Wadoux, 2019; Wadoux

et al., 2019) or transfer learning (Liu et al., 2018; Padarian et al., 2019a; Seidel et al.,

2019; Helfenstein et al., 2021; Baumann et al., 2021), defined as the process of sharing

intra-domain information and rules learned by general models to a local domain (Pan &

Yang, 2010). We recommend future research to investigate the use of deep learning and

transfer learning in the Netherlands for SOM, due to the large amount of SOM data and

more opportunities in accounting for differences in observational quality (field estimates

and laboratory measurements) using more complex models. However, to the best of our

knowledge, deep learning has only outperformed ensemble decision tree models when using

a small number of covariates covering only some of the soil-forming factors, from which

hyper-covariates are then derived (Wadoux, 2019). Hence, deep learning may not improve

predictions in the Netherlands, where large amounts of high-quality covariates are readily
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available for all soil-forming factors. In addition, quantifying model-based uncertainty

using deep learning remains a challenge. Although model-free approaches of estimating

uncertainty using deep learning have been used, e.g. involving bootstrapping (Padarian

et al., 2019b; Wadoux, 2019), we are not aware of studies that have compared the accuracy

of these uncertainty estimations to QRF-based uncertainty (PI90).

One of the main limitations of the BIS-4D modelling approach is that QRF predictions

cannot be used to compute the uncertainty of spatial aggregates, for example when ag-

gregating prediction maps of different depth layers or computing average values of a soil

property for a specific land use or province. This requires quantifying cross- and spatial

correlation in prediction errors, which can be accounted for by taking a multivariate or

geostatistical approach (Szatmári et al., 2021; van der Westhuizen et al., 2022; Wadoux

& Heuvelink, 2023).

5.3.4 Assessment scale

We recommend using BIS-4D maps on a national scale, as long as the map quality based on

the provided accuracy metrics (Tables 5.7 & 5.8; SI) and prediction uncertainty (Figs. 5.4i-

k & 5.5f; SI) is sufficient for the intended use. The model was developed for the national

scale for multiple land uses. Foremost, BIS-4D maps contribute to the GSM project by

delivering high-resolution, 3D (and 3D+T for SOM) maps of key soil properties with

quantified uncertainty according to GSM specifications for the Netherlands. The BIS-4D

maps may be especially useful for initiatives that require spatially explicit soil information

across all land uses and soil types of the Netherlands. This may include national con-

tributions to United Nations and pan-European directives and policies (Panagos et al.,

2022b), such as the Green Deal, the Common Agricultural Policy, Zero Pollution, the EU

Soil Strategy for 2030, the Soil Deal (European Commission, 2021) and the Proposal for a

Directive on Soil Monitoring and Resilience (European Commission, 2023b). For example,

clay, silt, sand and SOM maps can be used to improve estimates of soil-derived greenhouse

gas emissions from the LULUCF sector for the Netherlands (Arets et al., 2020).

Many potential users of BIS-4D soil property prediction maps on a national scale may

require information specifically for one land use and soil type. Perhaps most commonly,

users may need information for agricultural soils. For example, maps of clay, silt, sand

and SOM can provide information used to estimate the carbon sequestration potential

for the “Smart Land Use” project (Slier et al., 2023), which is focused specifically on

mineral soils under agricultural use on a national scale. As policy makers are mostly

more interested more complex soil information, such as soil health, soil functions or soil-

based ecosystem services, BIS-4D maps of several soil properties separately or combined

can serve as inputs for a variety of tools that assess soil health or ecosystem services.

For agricultural soils, these tools include OSI (Ros et al., 2022; Ros, 2023) and BLN 2.0

(Ros et al., 2023). Although pH, Ntot, Pox and CEC can be used as approximations on
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a national scale, pH, plant-available N and P and CEC are part of routine agronomic

soil analyses. Therefore, maps of these soil properties may be more useful for forests

and nature areas, where the base cation occupation of the CEC and pH should generally

remain above a certain threshold to prevent Al-toxicity. For soil pH, BIS-4D predictions

should be compared to predictions in Wamelink et al. (2019), who mapped soil pH in

Dutch nature areas. As soil variability is linked to soil type (e.g. mineral vs. organic)

and land use, we expect that BIS-4D model predictions would improve when modelling

only one land use or soil type separately. However, this was not the scale of assessment

aimed for with BIS-4D.

BIS-4D maps may also be used on a regional scale, as long as the accuracy allows and

no better product is available. By regional scale we mean the level of provinces, regional

water authorities, which are typically composed of one or more polders or watersheds,

or large municipalities. These recommendations hold true especially for clay, sand and

pH, which were predicted with higher accuracy than the other soil properties. However,

regional management decisions come with social and economical risks. The costs of poor

management decisions due to the use of inaccurate or not detailed enough soil informa-

tion are often several magnitudes larger than investments for conducting a more detailed

regional soil survey (Knotters & Vroon, 2015; Keller et al., 2018). In agreement with

Chen et al. (2022), more research is necessary in relating DSM performance indicators

such as uncertainty to cost-benefit and risk assessment analysis for improving decision

support. We do not recommend the use of BIS-4D maps on a farm or field scale, as the

uncertainty of predictions is most likely too high for the precision required by the farmer.

Drivers of soil variation vary locally and were presumably not captured at this scale by

the soil point data, covariates and model structure. As shown in Chapter 2, even for a

soil property like soil pH, which was relatively easy to predict, less than 10% of the map

pixels were designated with one of the highest two GSM accuracy thresholds (AA and

AAA). On such a local scale, we expect that the time and costs invested in a new soil

survey outweigh the risks of using inaccurate soil data (Lemercier et al., 2022).

5.3.5 BIS-4D user manual

Based on the accuracy assessment of BIS-4D maps (Sect. 5.3.1), clay, sand and pH maps

were most accurate. This is in agreement with Chen et al. (2022), who found that pH was

the best predicted standard GSM soil property, followed by BD, PSFs (i.e. clay, silt and

sand) and SOM, based on a review of 244 articles. BIS-4D map quality of silt, BD, SOM,

Ntot and CEC were lower. For Pox, we only recommend it as a baseline for an overview

of the distribution of this soil property in the Netherlands.

Beyond these general recommendations, we have summarized the following simple chrono-

logical steps for users to help decide whether BIS-4D maps may be suitable for their

intended purpose:
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1. Choose one or multiple soil properties of interest.

2. Choose the depth layer(s) (0 - 5 cm, 5 - 15 cm, 15 - 30 cm, 30 - 60 cm, 60 - 100 cm and

100 - 200 cm) and, in the case of SOM, the year (1953, 1960, 1970, 1980, 1990, 2000,

2010, 2020, 2023), for which soil information is needed.

3. Consult the accuracy metrics of mean and median predictions of the soil property

and depth layer of interest (Tables 5.7 & 5.8; SI), keeping in mind that the accuracy

in the intended area of use may differ from the overall accuracy of the map. If the

overall map quality based on these accuracy metrics is within an acceptable range

for its purpose, continue to step 4. Use accuracy metrics based on design-based

statistical inference for the soil properties for which it is available, i.e. BD, pH,

SOM, Ntot and Pox (Table 5.8; SI).

4. Choose whether to use mean or median prediction maps by comparing accuracy

metrics of mean and median predictions (Tables 5.7 & 5.8; SI). Consult Sect. 5.3.1

for differences in mean and median predictions found using BIS-4D.

5. Download the mean and/or median prediction maps for the chosen soil property

and depth layer as well as maps of the associated uncertainty (0.05 quantile, 0.95

quantile and/or PI90) and open them using GIS software. If soil information is

required for a specific area, continue to step 6.

6. Prediction uncertainty is only useful for end-users if it is reliable (Schmidinger &

Heuvelink, 2023). Therefore, check whether the prediction uncertainty is reliable by

consulting the PICP. If the PICP90 is close to 0.90 (Table 5.7) and the PICP plot

close to the 1:1 line (SI), then the provided prediction uncertainty map is reliable.

7. Ideally, prediction uncertainty should also be sharp, i.e. the PI90 should be as

narrow as possible (Schmidinger & Heuvelink, 2023). Decide whether the PI90

is within an acceptable range for its purpose. If possible, fitness for use can be

determined by analyzing how uncertainties in BIS-4D maps propagate through the

intended usage, for example for an environmental model that uses BIS-4D maps as

input. Commonly used uncertainty propagation methods include the Taylor Series

or Monte Carlo methods (Heuvelink, 2018).

5.4 Data and code availability

The BIS-4D soil property prediction maps at 25m resolution can be downloaded

at https://doi.org/10.4121/0c934ac6-2e95-4422-8360-d3a802766c71 (Helfenstein

et al., 2024a). Prediction maps of the mean, median, 0.05 and 0.95 quantiles and the

PI90 are available for each standard depth layer specified by GSM (0 - 5 cm, 5 - 15 cm, 15 -

30 cm, 30 - 60 cm, 60 - 100 cm and 100 - 200 cm). For SOM, maps at the same resolution
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and for the same depth layers are available for the years 1953, 1960, 1970, 1980, 1990,

2000, 2010, 2020 and 2023.

Regarding BIS-4D model inputs, the soil point data of laboratory measurements and

field estimates used during model calibration (PFB and BPK data) are publicly available

at https://doi.org/10.4121/c90215b3-bdc6-4633-b721-4c4a0259d6dc (Helfenstein

et al., 2024c). The georeferenced soil point data of PFB and BPK can also be viewed at

https://bodemdata.nl/bodemprofielen. LSK and CCNL data used for design-based

inference are not open due to privacy agreements. The pre-processed covariates that were

openly available can be downloaded at 25m resolution at https://doi.org/10.4121/

6af610ed-9006-4ac5-b399-4795c2ac01ec (Helfenstein et al., 2024b). This includes the

majority of the covariates used for BIS-4D, with the main exception being the covariates

related to the national forestry inventory, since these data are closed. A public repository

of the BIS-4D code is available here: https://git.wageningenur.nl/helfe001/bis-4d.

The GitLab code repository is complete with the exception of BIS database credentials

and the LSK and CCNL data. All data and code is available under the CC BY 4.0

license, except for the covariates (Helfenstein et al., 2024b), which are available under the

CC BY-NC-SA 4.0 license.
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Synthesis
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6.1 Introduction

In this thesis, I have developed BIS-4D, a high-resolution soil modelling and mapping

platform for the Netherlands in 3D+T. In Chapter 2, I first directed attention towards

a crucial part of DSM: how to best quantify the accuracy of a produced map, in this

case for soil pH. Using established sampling theory, I developed an approach to statis-

tically validate prediction maps at various depths using design-based inference based on

a probability sample. In doing so, I provided unbiased accuracy metrics with associated

confidence intervals, making the maps unique compared to other national-scale GSM prod-

ucts. Also in Chapter 2, I implemented GSM accuracy thresholds, which were devised in

GSM specifications (Arrouays et al., 2015) but to my knowledge never used. I discussed

the potentials of using GSM accuracy thresholds as ratings to communicate the quality

of soil maps in a simple approach with tiers. Lastly, I developed a 3D DSM model that

can predict at any user-defined depth.

In Chapter 3, I added the temporal dimension to BIS-4D, allowing for predictions of a

dynamic soil property like SOM in 3D+T. Using machine learning in 3D+T, I predicted

SOM for every 25m pixel at any depth between 0 - 2m for each year between 1953 - 2022.

This allowed me to assess changes in SOM-related soil health in 3D+T, presenting a

new paradigm compared to monitoring at the point scale or static soil maps at a single

depth.

In Chapter 3, I stated that the 3D+T approach would also allow for predictions into

the future, which is what I next investigated in Chapter 4. Using the same model,

I predicted SOM in 2050 based on a nature-inclusive land use scenario. I found that

nature-inclusive land use changes were mostly beneficial for SOM-related soil health, but

that SOM decreased in areas overlooked in the nature-inclusive scenario. I discussed how

using DSM in 3D+T for future scenarios might aid policymakers and spark discussions

on sustainable transitions.

In Chapter 5, I demonstrated that BIS-4D can be used to fill the missing data gap of

soil properties in the Netherlands by mapping nine different physical and chemical soil

properties and their uncertainties: clay, silt and sand content, BD, SOM, pH, Ntot, Pox and

CEC at 25m resolution between 0 - 2m depth. By using standardised, highly automated

and efficient workflows and making BIS-4D model inputs, code and outputs publicly

available, I made BIS-4D more reproducible and easy to update.

In this last chapter, the synthesis, I will discuss whether the objectives of this thesis were

achieved (Sect. 6.2), compare the findings and their implications with the literature and

suggest future research directions and practical implementations (Sect. 6.3). Finally, I will

relate this thesis within a broader, historical and contemporary context, add a personal

reflection, and conclude (Sect. 6.4).
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6.2 Overview and implications of findings

The aim of this thesis was to develop an operational, high-resolution, national-scale soil

modelling and mapping platform that delivers predictions of soil properties and their

uncertainties in 3D, and for dynamic soil properties, in 3D+T. By developing and applying

this platform, BIS-4D, I expected to contribute to filling the gap of spatially explicit soil

property information in the Netherlands, deliver a state-of-the-art product for GSM, while

also addressing research challenges and answering pertinent questions (Sect. 1.6). In this

section, I will discuss whether the objectives and research questions were achieved and

adequately answered based on the findings from Chapters 2 - 5 and discuss their broader

implications.

6.2.1 Assessing map accuracy

In Sect. 1.4.2, I outlined that there are several research gaps and challenges related to the

best way to quantify map quality. These challenges relate to accuracy assessment methods

that are either a) external, for example model-free, statistical validation, or b) internal,

for example model-based, prediction uncertainty. For the soil pH maps in Chapter 2, I

determined map accuracy by comparing various statistical validation strategies and by

evaluating the prediction uncertainty. I compared the accuracy metrics derived from

out-of-bag, location-grouped 10-fold cross-validation, an independent validation set and

a stratified random sample of the independent validation set separated by depth layer. I

obtained large differences depending on the four external accuracy assessment strategies

and the depth layer. Design-based inference was most indicative of map accuracy based

on sampling theory. Prediction uncertainty was slightly overestimated. Using the GSM

accuracy thresholds, fewer than 10% of pixels were designated with the highest ratings

(AA and AAA) and therefore I recommended future studies to also test the feasibility of

high quality thresholds for Tier 4 GSM maps.

Although design-based statistical inference is well-established in sampling theory

(Cochran, 1977; de Gruijter et al., 2006; Gregoire & Valentine, 2007; Brus, 2022), Chap-

ter 2 marked an additional step by applying the theory to soil layers at multiple depths, i.e.

in 3D space (Research question 1a). To my knowledge, the few studies that used design-

based inference with a probability sample elsewhere were at the regional scale (Malone

et al., 2011; Lacoste et al., 2014). More importantly, these studies ignored the fact that

the criteria of a probability sample were only met in 2D, but not 3D space. Hence, the

approach of using design-based inference in 3D space developed in Chapter 2 bridged the

gap between established sampling theory and much needed 3D DSM models. The soil pH

maps for the Netherlands serve as a best-practice approach for other national-scale GSM

products, in that they provide unbiased accuracy metrics including confidence intervals

for maps in 3D space. In addition, although Brus et al. (2011) explained that using

probability sampling for statistical validation of soil maps provides unbiased estimates
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of map accuracy, comparing accuracy metrics of the same map based on design-based

and various non-design based methods was rarely done (Research question 1a). Besides

Chapter 2, one recent exemption is Wadoux et al. (2021a), which used a numerical ex-

periment to show that differences in design-based and non-design-based, commonly used

cross-validation approaches lead to substantially different conclusions about map quality.

Finally, Chapter 2 identified accuracy thresholds delineated in the GSM specifications

proposing tiered DSM products (Arrouays et al., 2015) as an additional powerful tool of

communicating map quality (Research question 1b). The implemented spatially explicit

ratings (none, A, AA and AAA) have the advantage that they can serve as a simple

tool for communicating uncertainty with end-users and provide a standardized and easy

way to directly compare DSM products across scales and study regions. In summary, I

successfully fulfilled objective 1 to develop a high-resolution, national-scale DSM model

of soil pH with improved ways of assessing map quality (Sect. 1.6).

The findings of Chapter 2 imply that a probability sample serves as the foundation for

spatial soil information systems, in that they provide the basis for properly quantifying

map accuracy. This has also been recognized in other studies. For example, van Doorn

et al. (2024) recently assessed maps of amorphous iron- and aluminium-(hydr)oxides at

various depths in agricultural soils in the Netherlands using the approach developed in

Chapter 2. Findings of map quality obtained using design-based compared to other sta-

tistical inference methods need to be investigated in other study regions as well. However,

based on established theory (Cochran, 1977; de Gruijter et al., 2006; Gregoire & Valentine,

2007; Brus et al., 2011; Brus, 2022), the results I found are likely study area independent.

Thus, investing in a probability sample so as to assess map accuracy using design-based

statistical inference is always advisable, also in other regions of the world. Considering

the potential risks involved of subsequent map applications when accuracy is poorly es-

timated, investments in a probability sample for soil map validation are an added value

and worthwhile, especially in the long-term. However, soil sampling is no doubt a costly

and time-consuming affair and many areas do not have probability samples available. If

resources are not available, it is advisable to use weighted cross-validation (de Bruin et al.,

2022), not spatial cross-validation (Wadoux et al., 2021a), to assess mapping accuracy. If

the sampling locations used for statistical validation are not spatially clustered, regular

(random) cross-validation can also provide relatively unbiased metrics of map accuracy

(de Bruin et al., 2022).

Also in Chapter 2, I addressed the question of how to quantify and visualize prediction

uncertainty in a simple, standardized and appealing way by using GSM accuracy thresh-

olds (Research question 1b). I found that GSM accuracy thresholds are a powerful and

simple way to differentiate map quality, but that the GSM specifications possibly need to

be revised. Even in the Netherlands, a study region with a large amount of high-quality

data, and for soil pH, which had the highest prediction accuracy out of the soil properties

mapped in Chapter 5, fewer than 10% of the map pixels were designated with one of
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the highest two GSM accuracy thresholds (AA and AAA). Lilburne et al. (2023) recently

applied the GSM accurracy thresholds to clay, silt and sand predictions from SoilGrids

(Poggio et al., 2021) in the Netherlands and New Zealand. Out of the three predicted soil

properties at the six standard GSM depth layers in both countries, only predictions of

sand from 5 - 15 cm depth met even the lowest accuracy threshold (A), and only for fewer

than 20% of the Netherlands. Recently, Nussbaum et al. (2023) found that approximately

50% of predictions fall within one of the three accuracy thresholds (A, AA, AAA) when

using a hierarchical modelling approach to predict soil pH in Swiss forests on a national

scale. This was a large improvement compared to approximately only 10% falling within

the rating without the hierarchical modelling approach. The findings of Nussbaum et al.

(2023) suggest that hierarchical predictions better reflected the conditional distribution

of the response and prediction intervals were narrower. However, Nussbaum et al. (2023)

did not assess whether the uncertainty was still reliable, for example using PICP or other

uncertainty evaluation methods (Schmidinger & Heuvelink, 2023). Thus, prediction un-

certainty using a hierarchical model may have decreased, but without an indication of the

reliability, it unknown whether the “true” uncertainty of the map was also lower. The

simplicity and ease of comparing rating achievements of A, AA and AAA from these three

studies alone (Chapter 2; Lilburne et al., 2023; Nussbaum et al., 2023) highlights their

advantage for end-users and comparing map quality across scales and study areas. Easy

comparison of DSM products is much needed as an increasing number of maps become

available at different scales (Mulder et al., 2016b; Lemercier et al., 2022).

Probabilistic models are paramount for providing spatially explicit uncertainty of soil

maps, but assessment methods and metrics of varying degrees of complexity are neces-

sary to directly compare, summarize and easily communicate prediction uncertainty of

DSM products (Fig. 6.1). In this thesis, I used QRF due to its ability to predict condi-

tional probabilities, used the PI90 as a measure of prediction uncertainty and the PICP

to assess the reliability of the prediction uncertainty. However, the PICP used in this

thesis and other DSM studies is ignorant of potential one-sided bias of its boundaries

(Schmidinger & Heuvelink, 2023), which is for example apparent in soil texture maps

(Lilburne et al., 2023). Therefore, improved ways to evaluate probabilistic predictions

include the quantile coverage probability (QCP) and the probability integral transform

(PIT) histogram (Schmidinger & Heuvelink, 2023). In addition, proper scoring rules for

relative comparisons of competing probabilistic models include the Kolmogorov-Smirnov

test statistic D and Anderson-Darling two sample test used by Nussbaum et al. (2023),

or the interval score (IS) and continuous ranked probability score (CRPS), which can

be decomposed into a reliability part (RELI)(Fig. 6.1; Schmidinger & Heuvelink, 2023).

Although these evaluation methods offer improved ways of evaluating the magnitude and

reliability of probabilistic predictions, I believe simple ratings, such as the GSM accu-

racy thresholds used in Chapter 2 are also needed to convey uncertainty in a simplified

manner.
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Figure 6.1: Probabilistic predictions expressed as conditional probability distributions are

the basis of providing spatially explicit uncertainty. However, although metrics such as pre-

diction intervals (PI), the 90th prediction interval width (PI90), and particularly the accuracy

thresholds of GlobalSoilMap, reduce the amount of information related to prediction uncer-

tainty, they have the advantage that they are simpler and easier to compare.

6.2.2 Mapping in 3D

Besides improved ways of assessing map quality, the first objective in Sect. 1.6, also ad-

dressed in Chapter 2, was to develop a DSM model for predicting soil pH in 3D space.

This objective was achieved by using depth as a covariate. Compared to 2.D approaches,

this had the advantage that sampling depth information was an important covariate and

improved model performance. Furthermore, only one model needed to be calibrated to

predict at any depth. Despite these practical and computational advantages, in the liter-

ature there is no general consensus on whether 2.5D models or 3D models are better and

the choice between approaches is probably case-specific, depending on the soil property,

its vertical variation and the sampling density (Nauman & Duniway, 2019; Roudier et al.,

2020; Ma et al., 2021; Chen et al., 2022). However, according to the extensive review of

Chen et al. (2022), the accuracy of 3D models for most soil properties was greater than

that of the 2.5D models, except for bulk density. Moreover, compared to other 3D meth-

ods (Poggio & Gimona, 2014; Orton et al., 2016, 2020; Hengl et al., 2014, 2015; Meersmans

et al., 2009a,b; Kempen et al., 2011; Liu et al., 2016; Ottoy et al., 2017; Rentschler et al.,

2019), it is easier to implement, requires less steps, does not require tedious derivation of

parameter depth functions and uses the predictive performance of machine learning. In

summary, including depth as a covariate brings with it more practical advantages than

2.5D and other 3D methods, and perhaps leads to slightly more accurate maps.

Nonetheless, using depth as a covariate has become relatively common (e.g. Akpa et al.,

2014; Filippi et al., 2019, 2020; Hengl et al., 2017b; Ramcharan et al., 2018; Zhang et al.,

2020). In Chapter 2, one limitation was that the covariates used to predict soil pH
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themselves were only variable in 2D space. The challenge of deriving covariates variable

in more than 2D was next investigated in Chapter 3.

6.2.3 Mapping in 3D+T

In Sect. 1.4.4, I outlined that space-time DSM is a major challenge, especially in 3D+T,

and that finding solutions to this challenge is important because many soil properties

are highly variable in 3D+T. In Chapter 3, I developed a statistical modelling platform

informed by 869 094 SOM observations from 339 231 point locations and the novel use of

environmental covariates variable in 2D+T and 3D+T. The DSM model predicted SOM

and its uncertainty annually at 25m resolution between 0 - 2m depth from 1953 - 2022

in the Netherlands. SOM decreased by more than 25% in peatlands and on average by

0.1 - 0.3% in cropland mineral soils. In addition, the model predicted increases between

10 - 25% on reclaimed land due to land subsidence and vertical shifting of peat layers.

The DSM model explicit in 3D+T quantified the substantial variations of SOM in space,

depth, and time, highlighting the inadequacy of evaluating SOM dynamics at point scale

or static mapping at a single depth for policymaking.

Chapter 3 successfully fulfilled Objective 2 of this thesis, to develop a high-resolution,

national-scale DSM model of SOM explicit in 3D+T (Sect. 1.6). I was able to derive

covariates variable in 2D+T, namely land use and peat classes, and in 3D+T, namely

peat occurrence, as drivers of spatio-temporal SOM dynamics (Research question 2a). I

believe Chapter 3 marks a pivotal next step in the field of predictive, spatial modelling by

extending the advantages of machine learning to 3D+T. SOM enhances the availability

of plant nutrients, improves moisture retention, stabilizes soil structure, increases perme-

ability and chemical buffering and influences the biodegradability of pollutants. Hence,

while a comprehensive evaluation of soil health requires consideration of various soil prop-

erties, amongst basic soil properties commonly mapped using DSM, SOM stands out as a

fundamental indicator of soil health. Moreover, as SOM is highly variable in 3D space and

time, the developed 3D+T model marks a new paradigm for not only mapping, but also

monitoring soil health (Research question 2b). Even though successfully addressing Ob-

jective 2 of this thesis and introducing a new methodology to DSM, the 3D+T modelling

approach also has several limitations.

By mapping SOM in 3D+T, it became apparent that an important limitation of the mod-

elling approach used in BIS-4D is that it does not quantify the uncertainty of differences

in SOM (∆SOM), relevant for Chapters 3 and 4, and of spatial aggregates, relevant in all

chapters throughout the thesis. This was discussed in detail in Sect. 3.2.4, but to summa-

rize, these uncertainties can only be obtained if cross- and spatial correlation in prediction

errors are quantified. These correlations can be accounted for by taking a multivariate or

geostatistical approach (e.g. Gasch et al., 2015; Szatmári et al., 2021; van der Westhuizen

et al., 2022; Wadoux & Heuvelink, 2023). Given the challenges and complexities such
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analysis would involve (Sect. 3.2.4), this was no longer within the scope of this thesis,

but should be investigated in future research. Investigating how to quantify uncertainty

of SOM changes and spatial aggregates in 3D+T at scales relevant to management and

policy is a critical task, since the uncertainty related to soil monitoring has prompted

widespread doubts about the feasibility of measuring and verifying SOM and soil organic

carbon changes (Moinet et al., 2023; Paul et al., 2023). The range of the estimated trend

should be compared with the uncertainty to determine if trends are plausible or at the

same order of magnitude as the cumulative errors linked to the spatial predictions at dif-

ferent dates (Chen et al., 2022). Thus, I advocate that future research should investigate

the uncertainty quantification of SOM changes and SOM spatial aggregates.

Chapter 3 showed that predicting changes over time at point support is still a major

challenge in DSM. This was also the case in other space-time DSM approaches using

random forest (Heuvelink et al., 2020). Although using random forest with large amounts

of point observations and covariates has repeatedly shown to outperform other mapping

approaches (e.g. Hengl et al., 2015, 2017b; Nussbaum et al., 2018; Keskin et al., 2019;

Khaledian & Miller, 2020), mechanistic models may capture temporal dynamics better.

However, the practicality and performance of mechanistic models such as CENTURY

(Parton et al., 1987), RothC (Coleman & Jenkinson, 1996) and Millenial (Abramoff et al.,

2018, 2022) for spatial prediction tasks is poor. The respective limitations of both machine

learning and process-based models highlight the challenge of accurately predicting in space

and time, especially in 3D+T. However, a promising development is the combination of

process-based with machine-learning models for space-time predictions (e.g. Zhang et al.,

2024), or scientific machine learning (SciML; Iwema, 2023). While combining process-

based and machine-learning models may improve predictions in cases for which it can

be applied, one of the limitations is that it is considerably less flexible than the 3D+T

approach used in Chapter 3. For example, for the calibration and statistical validation of

process-based combined with ML models, repeated measurements at point locations are

necessary. These were not available at point support for the Netherlands (Knotters et al.,

2022, Sect. 2.1 and Appendix C) and are likely also not available in many other regions of

the world. In addition, most process-based models are applicable for mineral soils under

agricultural land use. This makes them difficult to apply on a national scale for all land

uses, and in particular for the Netherlands, since 15% of the soils are organic soils.

Another finding of the 3D+T model in Chapter 3 is that there was very limited data for

statistical validation of SOM temporal changes (∆SOM), implying that investments are

needed for soil monitoring. Furthermore, for many applications such as BIS-4D, monitor-

ing is only useful if conducted using identical sampling techniques that minimize errors at

point support. Even though the LSK probability sample locations were revisited in 2018

(CCNL), substantial methodological differences and positional uncertainty in the LSK and

CCNL datasets prevented a temporal assessment at point scale (Sect. 3.3.1; Cavero Panez,

2021; Knotters et al., 2022, Sect. 2.1 and Appendix C). In light of the major advantages
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of using a probability sample for design-based statistical inference (Chapter 2), the accu-

racy of 3D+T DSM models is ideally assessed using a a supplemented panel probability

sample (Brus, 2022, Sect. 15.1). In other words, repeated sampling of the same 3D lo-

cations determined using a probability sample will allow design-based inference in four

dimensions, i.e. space, depth and time. The benefits of monitoring these locations using

identical procedures outweigh the costs in the long-term and is necessary for assessing soil

health under the new proposed soil monitoring directive in the EU (European Commis-

sion, 2023b).

6.2.4 3D+T mapping for scenario modelling

In Sect. 1.4.4, I outlined that, to my knowledge, space-time DSM has never before been

applied for future nature-inclusive land use scenarios and that combining these approaches

may be a powerful way to link soil-related ecosystem services with sustainable transitions.

In Chapter 4, I investigated the interplay between nature-inclusive land use scenarios and

SOM using a DSM model in 3D+T. SOM was predicted in 2050 based on a recently

developed nature-inclusive scenario (Breman et al., 2022) and machine learning in 3D+T

on a national scale in the Netherlands. In contrast to Chapter 3, 2D+T and 3D+T

covariates of land use, peat classes and peat occurrence were derived for 2050 based on

nature-inclusive spatial planning decisions rather than historic land use and peat class

maps. I predicted SOM and its uncertainty in 2050 and assessed SOM changes between

2022 and 2050 from 0 - 2m depth at 25m resolution.

In Chapter 4, I addressed Objective 3 of this thesis by applying the 3D+T SOM model for

a future scenario. In doing so, Chapter 4 further demonstrated the flexibility of BIS-4D,

since, given covariates are available, predictions can also be made in the future. Space-

time modelling has rarely been applied for future scenarios (Meersmans et al., 2016; Yigini

& Panagos, 2016; Gray & Bishop, 2016, 2019; Reyes Rojas et al., 2018; Adhikari et al.,

2019). Furthermore, none of these studies used an approach explicit in 3D+T or scenarios

based on nature-based solutions. Findings indicated that overall, nature-inclusive land

use was conducive to enhancing SOM-related soil health (Research question 3a). For

example, increases up to 25% SOM were predicted between 0 - 40 cm depth in rewetted

peatlands. However, the model also predicted SOM decreases in several areas throughout

the Netherlands. For instance, SOM decreases up to 5% were predicted in grasslands used

for animal-based production systems in 2022, which transitioned into croplands for plant-

based production systems by 2050. In addition, substantial decreases surpassing 25%

SOM were predicted on non-rewetted land in peat layers below 40 cm depth on reclaimed

land. However, these decreases in SOM can mostly be attributed to the model’s limitation

to predict future trends based on historic data and to capture nuanced nature-inclusive

practices, such as the adoption of agroecological farming methods. Nonetheless, there

were several added values of using DSM for modelling SOM based on this future scenario

(Research question 3b). For example, the findings from Chapter 4 pinpointed areas where
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the nature-inclusive scenario overlooked potential threats to soil health in 3D space and

at high resolution, such as deep peat layers. Furthermore, the findings also highlighted

that, supported by the literature (Crews & Rumsey, 2017), achieving SOM levels akin

to those in permanent grasslands within croplands presents a formidable challenge even

with the adoption of agroecological practices. In summary, 3D-mapping of SOM in 2050

created new insights, raised important questions related to soil health behind nature-

inclusive scenarios and may facilitate societal discussion, aid policy-making and promote

transformative change.

Besides the difficulty of including nuanced nature-inclusive practices, another limitation,

in both Chapter 3 and 4, was that climate was a not a dynamic covariate. Empirical

evidence shows that climate change affects carbon dynamics in the soil (Beillouin et al.,

2022, 2023). While long-term minimum, maximum and average temperature and precipi-

tation between 1981 and 2010 were included as static covariates in the model (Chapter 2,

Table 2.2), the temporal dynamics inherent in climate covariates were not incorporated

during model calibration and prediction between 1953 - 2022, or during prediction for the

2050 scenario. While other DSM studies modelling future scenarios accounted for cli-

mate change (Gray & Bishop, 2016, 2019; Yigini & Panagos, 2016), I argued that, based

on projected national climate scenarios for the Netherlands (KNMI, 2023; van Dorland

et al., 2023), the impacts of temperature and precipitation on SOM dynamics were of

lesser consequence compared to changes in land use, peat class, and peat occurrence.

Nonetheless, I recommend space-time DSM studies to include dynamic changes in co-

variates related to the climate, for example through the combination with process-based

climate models.

6.2.5 An operational platform for high-resolution soil property mapping

In Sect. 1.4.1 and 1.4.5, I described that there is a large gap and need for high-resolution

maps of a broad range of soil properties, not only soil pH (Chapter 2) and SOM (Chap-

ters 3 and 4), further highlighting the many advantages of creating an operational and

efficient national-scale GSM product. Therefore, I next addressed the fourth and final

objective of this thesis: to map a broad range of soil properties and their uncertainties us-

ing an operational, reproducible, standardised, largely automated and efficient workflow.

In Chapter 5, I predicted clay, silt and sand content, BD, Ntot, Pox, CEC, and updated

versions of soil pH and SOM, and their uncertainties at 25m resolution between 0 - 2m

depth. The accuracy of clay, sand and pH maps was highest, while silt, BD, SOM, Ntot,

CEC and especially Pox were more difficult to predict.

Based on the findings in Chapter 5, I further assessed the strengths and limitations of the

BIS-4D prediction maps (Research question 4a). The main strengths of BIS-4D were: 1)

the ability to provide information of soil properties as opposed to soil types; 2) the high

spatial resolution (25m); 3) accuracy assessment based on best practices; 4) the benefits
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of using machine learning combined with large amounts of data; and 5) the flexibility

to predict in 3D and, for SOM, in 3D+T. The main limitations of BIS-4D prediction

maps were linked to uncertainty in the soil point data, covariates and model structure.

With regards to the soil point data, the main limitations were that the calibration data

of BD, Pox and CEC were spatially clustered and that clay, silt, sand and CEC maps

were not evaluated using design-based inference because they were not measured as part

of a probability sample (LSK and CCNL). Despite having a wide range of high-quality

covariates available in the Netherlands, the main limitations related to the covariates

used in BIS-4D was limited information on detailed land management and that none of

the covariates explained the spatial variation of Pox well. Although it can be explored

if slight improvements are achieved if using deep learning or transfer learning, the main

limitation of the BIS-4D modelling structure was that probabilistic predictions cannot be

used to compute the uncertainty of spatial aggregates and temporal differences (Sect. 3.2.4

and 6.2.3).

One main focus of Chapter 5 was the potential applications of BIS-4D, which was also a

key part of answering Research questions 4a. I recommended the use BIS-4D maps on a

national scale, as long as the quantified and provided map uncertainty was sufficient. I

further outlined applications for a wide range of national contributions to international

and EU policies such as the Green Deal and the Proposal for a Directive on Soil Monitoring

and Resilience (European Commission, 2023b). In fact, the BIS-4D soil texture and SOM

maps are currently already being used as inputs to improve the estimates of soil-derived

greenhouse gas emissions for the Land Use, Land Use Change and Forestry (LULUCF)

sector for the United Nations Framework Convention on Climate Change and the Dutch

LULUCF submission under the Kyoto Protocol (Arets et al., 2020). However, besides

modellers, many end-users are more interested in information derived from basic soil

properties, such as soil health, soil functions or soil-based ecosystem services. I believe

BIS-4D has made a substantial contribution for acquiring more complex information and

knowledge about soil spatial variation in the Netherlands and similar regions of the world.

Their application in tools such as the Open Soil Index (OSI; Ros et al., 2022; Ros, 2023)

and Soil Indicators for Agriculture (BLN 2.0; Ros et al., 2023) to improve soil health is one

example. Finally, I warned potential users against using BIS-4D when the uncertainty is

too high for their intended use and discouraged from using the maps on a field scale.

The findings from Chapter 5 revealed that BIS-4D contributed to open science and pro-

vided a framework for making DSM models reproducible and easy to update (Research

question 4b). One of the main advantages of DSM compared to conventional soil map-

ping is that mapping is more automated, less laborious, more reproducible and easier to

update. Yet exploiting these advantages demands the scientific community to direct as

much attention to making workflows findable, accessible, interoperable and reusable as

to the results themselves. In the form of a data description manuscript (Chapter 5), I

included a step-by-step user manual (Sect 5.3.5) and made model code and input data
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openly available in publicly accessible and permanent repositories (Sect 5.4). Only a few

parameters, such as the desired target soil property, prediction depth and year, need to

be specified once in the beginning of a BIS-4D script, after which all computations run

automatically. Moreover, BIS-4D was developed in close collaboration with soil surveyors

and scientists, programmers and database maintainers from Wageningen Environmental

Research, who can use BIS-4D in the future. BIS-4D prediction maps are already in the

process of being uploaded to the national online soil portal (bodemdata.nl), where they

will reach a different audience of potential users than the manuscript (Chapter 5) and

published dataset (Helfenstein et al., 2024a). BIS-4D may serve as an example of open

science, serving as an example for scientific projects to contribute to Targets 17.6 and

17.8 of the Sustainable Development Goals, which aim to improve global cooperation and

access to science, technology, and innovation through knowledge sharing.

6.3 Future research and practical implementation

6.3.1 Improving predictions in 3D

A cornerstone of improving the accuracy of soil maps is improving predictions over depth,

which requires developing better 3D models. Based on the implications from Chapter 3,

one area of future research is deriving covariates that allow machine learning to capture soil

variability over depth. One way of achieving this with covariates already available today

is using maps of soil classes, as they are in essence 3D models of several soil properties

(Kempen et al., 2011). However, rather than enforcing parametric depth functions (e.g.

Meersmans et al., 2009a,b; Kempen et al., 2011; Liu et al., 2016; Ottoy et al., 2017;

Rentschler et al., 2019), I suggest to simply derive the necessary covariate information

from soil maps so that the machine learning algorithm can define these depth functions

based on the error loss function during model calibration. Besides the example of peat

occurrence (Chapter 3), another example that may be useful for mapping SOM and closely

related soil properties is the presence of pedogenetic soil horizons that constitute sharp

discontinuities in the soil profile (Fig. 1.4). For example the “O” or “Ah”, “E” and “Bh”

horizons in podzols or increasing clay content with increasing depth in vertisols (IUSS

Working Group WRB, 2014). A starting point to determine what kind of covariates can

be derived explicitly in 3D space may be found in the studies that defined parametric

depth functions, e.g. Kempen et al. (2011) for the case of the Netherlands. If choosing

such an approach, one disadvantage will be the bias introduced by using soil point data

for calibration that were also used to develop the soil class map, as discussed in Chapters 2

and 3.

3D predictions may also be improved by applying random forest spatial interpolation

(RFSI; Sekulić et al., 2020) for 3D DSM. Using synthetic data and meteorological datasets,

Sekulić et al. (2020) included nearby observations and their distances as covariates in a
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random forest model. Machine learning models do not account for spatial autocorrelation,

and although other studies have included geographic space as covariates (Li et al., 2011;

Behrens et al., 2018b; Hengl et al., 2018; Møller et al., 2020), by including the observations

and their distances, RFSI uses the core idea behind deterministic geostatistical methods

like kriging. Although initial tests of applying RFSI for DSM in 3D space for soil pH in the

Netherlands did not improve model predictions (Helfenstein et al., 2022), I recommend

further testing for different soil properties and case studies. This approach may be promis-

ing for 3D modelling because presumably, no covariate can better detect vertical variation

and depth discontinuities than observations from nearby profiles themselves.

6.3.2 A new paradigm: scalable soil estimation services

Over the course of history, our knowledge of soil and its spatial variation has advanced:

from the rudimentary soil map crafted some 4000 years ago, to Dokuchaev’s descrip-

tion of soil-forming factors around 1900, and the meticulous work of soil surveyors for

conventional soil mapping throughout the 20th century. However, the development and

widespread adoption of DSM in the past three decades has catalyzed a profound trans-

formation in pedology and soil mapping, propelling the research field forward at an as-

tonishing pace. While I believe this thesis has contributed to the pedometrics and DSM

research fields, this thesis has also made evident that major challenges still remain. These

challenges, together with the ever increasing importance of spatio-temporal soil informa-

tion, technological advances and a society in transition, will prompt a further paradigm

shift in delivering soil information in 3D+T.

To meet the challenges of monitoring soil health in 3D+T, I believe DSM needs a paradigm

shift: from maps to scalable soil estimation services. To date, most DSM studies produce

maps for one target scale with a fixed spatial extent. For example, BIS-4D was specifically

designed to provide users with soil information on a national level, whereas, in consid-

eration of the prediction uncertainty and accuracy metrics, I did not recommend its use

on a field scale (Sect. 5.3.4). I also discussed that different covariates may be relevant

at different scales (Sect. 5.3.3). For example, covariates of detailed crop data or plowing

data may not be useful for improving predictions on a national level across various land

uses. On the other hand, a covariate representing geology will likely not be useful on a

local level, as the substrate material of soil formation on a farm will likely exhibit little

to no spatial variability. Another issue is that if other countries also develop similar plat-

forms to BIS-4D, for example neighboring countries to the Netherlands, there will likely

be national border artifacts since different models were used. This challenge applies to all

“bottom-up” GSM approaches by mapping across the globe region by region. Therefore,

to address these challenges, I think the potential of DSM to meet future user demands

is in developing scalable modelling and mapping platforms that can tailor predictions

on-the-fly to any target region.
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One potential of achieving scalable soil estimation services is by combining DSM with

soil spectroscopy models. Using soil spectroscopy models, large soil spectral libraries

can be efficiently mined based on a few local samples, so that relevant information from

the spectral library is employed for improving local predictions (Lobsey et al., 2017; Liu

et al., 2018; Padarian et al., 2019a; Seidel et al., 2019; Helfenstein et al., 2021; Baumann

et al., 2021). Future research should investigate whether a similar approach can be used

in DSM using several steps. Firstly, a minimum number of representative samples from

a local target region are collected in the field. Secondly, using soil spectroscopy, the

spectral signals of newly collected local samples are compared to data in large soil spectral

libraries via data mining algorithms. Since soil spectral libraries also contain reference

wet-chemistry measurements of soil samples, the reference measurements determined as

representative for the local study area based on their spectral signal are subsequently

used in a DSM model. The requirements for such an approach are soil spectral libraries

and covariates at different scales. However, soil spectral libraries are already available

at regional (e.g. Wetterlind & Stenberg, 2010), national (e.g. Baumann et al., 2021) and

global scale (Viscarra Rossel et al., 2016; Shepherd et al., 2022), and many covariates,

such as digital elevation models and remote sensing data, are useful from the field to

the global scale. By comparing soils from the local target region with soils in a soil

spectral library, the idea is comparable to the concept of using “Homosoils”, or locations

sharing similar soil-forming factors (Mallavan et al., 2010), for DSM (e.g. Nenkam et al.,

2022). However, whereas “Homosoil” is based around similarity of soil-forming factors,

i.e. covariates, soil-spectroscopy allows a more promising approach by rapidly comparing

the soil itself. Soil spectral signatures are indicative of a variety of biological, chemical

and physical soil properties (Viscarra Rossel et al., 2006, 2008) and are thus a holistic

fingerprint of multiple soil properties. One project already underway to monitor soils

using soil spectral libraries and hyperspectral satellites is the “WORLDSOILS” project

of the European Space Agency (Yagüe et al., 2023; Dvorakova et al., 2021, 2023; Francos

et al., 2023).

However, scalable soil estimation services will bring about new challenges and new research

opportunities. For example, instead of calibrating one DSM model for one specific scale,

predicting soil properties for any user-defined scale will require flexible platforms in which

models are constantly re-tuned, re-calibrated and predicted. Solutions for these technical

challenges may already be available from other fields, for example in computer science

and agro-environmental applications, such as robotics and precision farming. However, the

main challenge will not be in the tuning, calibration or prediction steps, but in accurracy

assessment, posing a new challenge for spatial sampling theory. For example, how can

predictions from scalable soil estimation services be evaluated, e.g. using design-based

inference, without one fixed sample population? These and other challenges related to this

paradigm shift will hopefully lead to closer collaboration between soil surveyors, modellers

(pedometricians), trans-disciplinary scientists and a broad range of stakeholders interested
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in increasingly accurate soil information.

6.3.3 Modern soil surveys to meet modern demands

Most DSM research uses legacy soil data collected by national soil survey institutes be-

tween World War II and the 1990s (Sect. 1.1). Besides a field campaign in 2022 (SI3 of

Chapter 31), BIS-4D is no exception to that, using mostly data collected by the StiBoKa,

the former national soil survey institute of the Netherlands. Recall from Sect. 1.1.2 that

due to their key role, soil surveying was a relatively common profession in the field of

environmental and agricultural sciences. In 1998, there were on average 23 soil surveyors

per 1000 km2 agricultural land in the Netherlands, although numbers were lower, rang-

ing between three and six, in France, Denmark and the United Kingdom (van Baren

et al., 2000). National soil surveys were used to develop conventional soil maps, but after

completion, or in many countries also before completion, funding for national soil survey

institutes was ceased. Ever since, soil surveys of such scale and magnitude have to my

knowledge not been undertaken. In the Netherlands, one exception was the CCNL field

campaign, but recall from Chapter 3 the numerous limitations and lack of soil monitoring

data at point scale. Other recent soil surveys are relatively small, regional scale projects

with limited budget, which also means that new data are usually field estimates rather

than expensive, but more accurate laboratory measurements (e.g. Fig. 3.2b). Finally,

there are numerous general limitations revolving around the use of soil legacy data. For

example, soil legacy data exhibit uncertainty related to the age of the soil sample and

their geographic position, which was determined before the use of GPS.

We cannot expect to solve modern-day and future challenges alone with legacy soil data,

prompting the necessity of large-scale soil surveys using state-of-the-art techniques. The

transition from DSM to scalable soil estimation services will be key (Sect. 6.3.2), but is

only one part of the puzzle. One practical “bottleneck” is collecting soil samples and

preparing them for subsequent analysis. For example, drying, milling and sieving soil

samples is necessary for almost any kind of subsequent analysis, including for soil spec-

troscopy measurements, as the accuracy of on-site spectral measurements is limited (e.g.

Greenberg et al., 2022a,b). However, while sensing and statistical modelling methods

have rapidly advanced, soil preparation techniques have remained largely the same over

the last few decades. An additional challenge is that measuring, reporting and verifying

(MRV) changes in soil properties are not standardized between individual laboratories and

nations (Smith et al., 2020). In summary, solving practical issues are pivotal for monitor-

ing and mapping soils in 3D+T and the Proposal for a Directive on Soil Monitoring and

Resilience all across Europe (European Commission, 2023b).

Lastly, soil surveying, mapping and monitoring is also a societal and political challenge

1Supplementary information (SI) of Chapter 3 is available at https://doi.org/10.1038/

s43247-024-01293-y under “Supplementary information”.
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that ultimately requires investment. It is difficult to estimate the amount of public spend-

ing for obtaining soil information, but currently, only 6% of environmental protection

investments are in the domain soil and groundwater (Eurostat, 2023). However, soil is

directly linked to a wide array of ecosystem services and human well-being (Fig. 6.2).

Therefore, although requiring substantial investment, detailed soil surveys that can pro-

vide accurate soil information can save costs in a multitude of sectors, such as for drinking

water preparation, optimizing irrigation and agricultural inputs, infrastructure planning

and mitigating pollution. In Switzerland, conservative estimates based on an in-depth

analysis showed that every Swiss franc invested in acquiring soil information generates

an added value of 2 - 13 Swiss francs (Keller et al., 2018, Sect. 4.2). Hence, future scien-

tific research is important, but the potential of using accurate soil information for human

well-being also requires society at broad to recognize the importance of soils.

Figure 6.2: The larger context: soil properties predicted using BIS-4D contribute to the

ability of soil resources to provide important functions and services for society, ecosystems

and human well-being (adjusted from Keller et al., 2018, Fig. 2).
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6.4 Conclusion

In this thesis, I have successfully developed BIS-4D, a high-resolution soil modelling and

mapping platform for the Netherlands in 3D+T. Spatial information of soil properties

obtained using BIS-4D provides the basis for deriving more complex soil information,

such as soil functions, and links to soil-related ecosystem services (Fig. 6.2). Therefore,

by developing BIS-4D, I have not only addressed several scientific challenges, but also

produced new information, which will hopefully lead to better knowledge of the world

around us and wisdom in the choices that we make.

As the skin of the earth, soil acts as a substrate for the cycling of water, gases and

nutrients, all of which we depend on for a healthy living environment. Humans are

altering the environment at an unprecedented rate, but soil is a precious resource that is

non-renewable within human lifespans and terrestrial life without it is unimaginable. As

any other resource, sustainable use of soils requires that we quantify and understand its

spatial variation across the land surface, but also over depth and time. The well-being of

humanity, echoing the needs of early civilizations, hinges upon the health and preservation

of this fundamental resource.
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I., Kretzschmar, R., Stahr, K., & Wilke, B.-M. (2010). Scheffer/Schachtschabel: Lehrbuch der Bo-

denkunde. (16th ed.). Heidelberg: Springer, Spektrum, Akademischer Verlag. OCLC: 506415938.

Boehmke, B., & Greenwell, B. (2020). Hands-On Machine Learning with R. Taylor & Francis.

Borrelli, P. et al. (2017). An assessment of the global impact of 21st century land use change on soil

erosion. Nature Communications , 8 , 2013. doi: 10.1038/s41467-017-02142-7. Number: 1 Publisher:

Nature Publishing Group.

Bouma, J., & Hartemink, A. E. (2003). Soil science and society in the Dutch context. Netherlands

Journal of Agricultural Science, 50 , 133–140. Number: 2.

Breiman, L. (2001). Random Forests. Machine Learning , 45 , 5–32. doi: 10.1023/A:1010933404324.

Breiman, L. (2002). Manual on Setting Up, Using, and Understanding Random Forests v3.1 . Technical

report ftp://ftp.stat.berkeley.edu/pub/users/breiman/Using random forests v3.1.pdf, University of

Berkeley Berkeley. ftp://ftp.stat.berkeley.edu/pub/users/breiman/Using_random_forests_

v3.1.pdf.

Breman, B. et al. (2022). Natuurverkenning 2050 – Scenario Natuurinclusief . Technical Report 136,

Wettelijke Onderzoekstaken Natuur & Milieu Wageningen. https://library.wur.nl/WebQuery/

wurpubs/594007 iSSN: 1871-028X.

Brenning, A. (2005). Spatial prediction models for landslide hazards: review, comparison and evaluation.

Natural Hazards and Earth System Sciences, 5 , 853–862. doi: 10.5194/nhess-5-853-2005. Publisher:

Copernicus GmbH.

Brenning, A. (2012). Spatial cross-validation and bootstrap for the assessment of prediction rules in

remote sensing: The R package sperrorest. In 2012 IEEE International Geoscience and Remote Sensing

Symposium (pp. 5372–5375). doi: 10.1109/IGARSS.2012.6352393 iSSN: 2153-7003.

Hack-ten Broeke, M., van Beek, C. L., Hoogland, T., Knotters, M., Mol-Dijkstra, J. P., Schils, R., Smit,

A., & de Vries, F. (2009). Kaderrichtlijn Bodem; Basismateriaal voor eventuele prioritaire gebieden.

Alterra-rapport 2007, Alterra Wageningen, the Netherlands.

Hack-ten Broeke, M. J. D. et al. (2019). Quantitative land evaluation implemented in Dutch water

management. Geoderma, 338 , 536–545. doi: 10.1016/j.geoderma.2018.11.002.

Brouwer, F., Assinck, F., Harkema, T., Teuling, K., & Walvoort, D. (2023). Actual-

isatie van de bodemkaart in degemeente Vijfheerenlanden: herkartering van de verbreiding van

veen. WOt-rapport 151, WOT Natuur & Milieu Wageningen. https://research.wur.nl/en/

publications/actualisatie-van-de-bodemkaart-in-degemeente-vijfheerenlanden-her pub-

lisher: WOT Natuur & Milieu.

Brouwer, F., Maas, G., Teuling, K., Harkema, T., & Verzandvoort, S. (2021). Bodemkaart en Ge-

omorfologische Kaart van Nederland: actualisatie 2020-2021 en toepassing: deelgebieden Gelderse

Vallei-Zuid en -West en Veluwe-Zuid . WOt-rapport 134, WOT Natuur & Milieu Wageningen.

https://doi.org/10.18174/557455 publisher: WOT Natuur & Milieu.

Brouwer, F., de Vries, F., & Walvoort, D. J. J. (2018). Basisregistratie Ondergrond (BRO) actualisatie

bodemkaart : Herkartering van de bodem in Flevoland . WOt technical report 143, WOT Natuur &

Milieu, WUR Wageningen. https://library.wur.nl/WebQuery/wurpubs/549064 iSSN: 2352-2739.

Brouwer, F., & Walvoort, D. (2019). Basisregistratie Ondergrond (BRO) - actualisatie bodemkaart :

Herkartering van de bodem in Eemland . WOt-technical report 155, WOT Natuur & Milieu Wagenin-



REFERENCES 155

gen. https://doi.org/10.18174/494728. doi: 10.18174/494728 iSSN (Print): 2352-2739.

Brouwer, F., & Walvoort, D. (2020). Basisregistratie Ondergrond (BRO) Actualisatie bodemkaart :

Herkartering van de veengebieden aan de flanken van de Utrechtse Heuvelrug . WOt-technical re-

port 177, WOT Natuur & Milieu Wageningen. https://doi.org/10.18174/521574 iSSN (Print):

2352-2739.

Brouwer, F., & van der Werff, M. M. (2012). Vergraven gronden : inventarisatie van ’diepe’ grondbew-

erkingen, ophogingen en afgravingen. Alterra-rapport 2336, Alterra Wageningen. https://edepot.

wur.nl/217669 publisher: Alterra.

BRT (2020). Basisregistratie Topografie (BRT): Catalogus en Productspecificaties . Kadaster Versie 1.2.0.3,

BRT.

de Bruin, S., Bregt, A., & Ven, M. v. d. (2001). Assessing fitness for use: the expected value of spatial

data sets. International Journal of Geographical Information Science, 15 , 457–471. doi: 10.1080/

13658810110053116.

de Bruin, S., Brus, D. J., Heuvelink, G. B. M., van Ebbenhorst Tengbergen, T., & Wadoux, A. M. J.-C.

(2022). Dealing with clustered samples for assessing map accuracy by cross-validation. Ecological

Informatics, 69 , 101665. doi: 10.1016/j.ecoinf.2022.101665.

Brus, D., Hengl, T., Heuvelink, G., Kempen, B., Mulder, T. V., Olmedo, G. F., Poggio, L., Ribeiro, E.,

& Omuto, C. T. (2017). Soil Organic Carbon Mapping Cookbook . (1st ed.). Rome: FAO.

Brus, D. J. (2014). Statistical sampling approaches for soil monitoring. Euro-

pean Journal of Soil Science, 65 , 779–791. doi: 10.1111/ejss.12176. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12176.

Brus, D. J. (2019). Sampling for digital soil mapping: A tutorial supported by R scripts. Geoderma,

338 , 464–480. doi: 10.1016/j.geoderma.2018.07.036.

Brus, D. J. (2022). Spatial sampling with R. The R Series. CRC Press.

Brus, D. J., & Heuvelink, G. B. M. (2007). Towards a Soil Information System with quantified accuracy:

Three approaches for stochastic simulation of soil maps. Statutory Research Tasks Unit for Nature

and the Environment 58, Alterra Wageningen.

Brus, D. J., Kempen, B., & Heuvelink, G. B. M. (2011). Sampling for validation of digital soil maps.

European Journal of Soil Science, 62 , 394–407. doi: https://doi.org/10.1111/j.1365-2389.2011.01364.x.

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2389.2011.01364.x.
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Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model

Development , 8 , 1991–2007. doi: 10.5194/gmd-8-1991-2015. Publisher: Copernicus GmbH.

Craft, C. (2022). 1 - Introduction. In C. Craft (Ed.), Creating and Restoring Wetlands (Second Edition)

(pp. 1–24). Elsevier. doi: 10.1016/B978-0-12-823981-0.00013-7.

Creamer, R. E., Barel, J. M., Bongiorno, G., & Zwetsloot, M. J. (2022). The life of soils: Integrating

the who and how of multifunctionality. Soil Biology and Biochemistry , 166 , 108561. doi: 10.1016/j.

soilbio.2022.108561.

Crews, T. E., & Rumsey, B. E. (2017). What Agriculture Can Learn from Native Ecosystems in Building

Soil Organic Matter: A Review. Sustainability , 9 , 578. doi: 10.3390/su9040578. Number: 4 Publisher:

Multidisciplinary Digital Publishing Institute.

van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., & Kabat, P. (1997). Theory of SWAP version

2.0; Simulation of waterflow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant

environment . Technical document 45, Wageningen Agricultural University and DLO Winand Star-

ing Centre Wageningen, the Netherlands. https://library.wur.nl/WebQuery/wurpubs/fulltext/

222782.

Debonne, N., Bürgi, M., Diogo, V., Helfenstein, J., Herzog, F., Levers, C., Mohr, F., Swart, R., & Verburg,

P. (2022). The geography of megatrends affecting European agriculture. Global Environmental Change,

75 , 102551. doi: 10.1016/j.gloenvcha.2022.102551.

van Delft, B., & Maas, G. (2023). Landschappelijke Bodemkartering (LBK) : Achtergronden, toepassingen

en technische documentatie. WOt-technical report 248, Wettelijke Onderzoekstaken Natuur & Milieu

Wageningen. https://doi.org/10.18174/641887. doi: 10.18174/641887 iSSN: 2352-2739.

van Delft, S. P. J., & Maas, G. J. (2022). De Landschappelijke Bodemkaart van Nederland; versie 2022.

Delta Programme (2023). National Delta Programme 2024: Now for the Future. Technical Report,

Ministry of Infrastructure and Water Management, the Ministry of Agriculture, Nature and Food

Quality, and the Ministry of the Interior and Kingdom Relations Den Haag. https://english.

deltaprogramma.nl/.

Dharumarajan, S., Hegde, R., Janani, N., & Singh, S. K. (2019). The need for digital soil mapping in

India. Geoderma Regional , 16 , e00204. doi: 10.1016/j.geodrs.2019.e00204.

Dharumarajan, S., Kalaiselvi, B., Suputhra, A., Lalitha, M., Hegde, R., Singh, S. K., & Lagacherie,

P. (2020). Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau.

Geoderma Regional , 20 , e00250. doi: 10.1016/j.geodrs.2019.e00250.

Dohong, A., Aziz, A. A., & Dargusch, P. (2017). A review of the drivers of tropical peatland degradation

in South-East Asia. Land Use Policy , 69 , 349–360. doi: 10.1016/j.landusepol.2017.09.035.

Dokuchaev, V. (1899). Report to the Transcaucasian Statistical Committee on Land Evaluation in General

and Especially for the Transcaucasia. Horizontal and Vertical Soil Zones. (In Russian.). Tiflis, Russia:

Off. Press Civ, Affairs Commander-in-Chief Cacasus.

Domburg, P., de Gruijter, J. J., & van Beek, P. (1997). Designing efficient soil survey schemes with

a knowledge-based system using dynamic programming. Geoderma, 75 , 183–201. doi: 10.1016/

S0016-7061(96)00090-0.

Doorn, A. v., Melman, D., Westerink, J., Polman, N., Vogelzang, T., & Korevaar, H. (2016). Food-for-

thought : natuurinclusieve landbouw . Technical Report, Wageningen University & Research Wagenin-

gen. https://doi.org/10.18174/401503 publisher: Wageningen University & Research.

van Doorn, M., Helfenstein, A., Ros, G. H., Heuvelink, G. B., van Rotterdam-Los, D. A., Verweij, S. E.,

& de Vries, W. (2024). High-Resolution Digital Soil Mapping of Amorphous Iron- and Aluminium-

(hydr)oxides to Guide Sustainable Phosphorus and Carbon Management. . Under review for Geoderma.

van Dorland, R. et al. (2023). KNMI National Climate Scenarios 2023 for the Nether-

lands. Scientific report WR-23-02, Royal Netherlands Meteorological Institute (KNMI);

Ministry of Infrastructure and Water Management (I & W) De Bilt, the Netherlands.

https://cdn.knmi.nl/system/data_center_publications/files/000/071/902/original/



158 REFERENCES

KNMI23_climate_scenarios_scientific_report_WR23-02.pdf.

Dvorakova, K., Heiden, U., Pepers, K., Staats, G., van Os, G., & van Wesemael, B. (2023). Improving

soil organic carbon predictions from a Sentinel–2 soil composite by assessing surface conditions and

uncertainties. Geoderma, 429 , 116128. doi: 10.1016/j.geoderma.2022.116128.

Dvorakova, K., Heiden, U., & van Wesemael, B. (2021). Sentinel-2 Exposed Soil Composite for Soil

Organic Carbon Prediction. Remote Sensing , 13 , 1791. doi: 10.3390/rs13091791. Number: 9 Publisher:

Multidisciplinary Digital Publishing Institute.

van Ebbenhorst Tengbergen, T. (2021). Critical evaluation and improvement of cross-validation strategies

for accuracy assessment of digital soil maps. Thesis Report GIRS-2021-13 Wageningen University

Wageningen.

Edelmann, C. (1950). Soils of the Netherlands volume 53. Amsterdam: North-Holland Publishing

Company. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jpln.19510530307.

Edmonds, D. A., Caldwell, R. L., Brondizio, E. S., & Siani, S. M. O. (2020). Coastal flooding will

disproportionately impact people on river deltas. Nature Communications, 11 , 4741. doi: 10.1038/

s41467-020-18531-4. Number: 1 Publisher: Nature Publishing Group.

EEA (2007). CLC2006 technical guidelines. EEA Technical Report 17, European Environment Agency

(EEA) Copenhagen. https://data.europa.eu/doi/10.2800/12134.

EEA (2018). CORINE Land Cover — Copernicus Land Monitoring Service: 1986, 2000, 2006, 2012,

2018. European Environment Agency (EEA).

van den Elsen, E., van Tol-Leenders, D., Teuling, K., Römkens, P., de Haan, J., Korthals, G., & Rei-
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generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ , 6 , e5518.

doi: 10.7717/peerj.5518.

Hessel, R., Stolte, J., & Riksen, M. J. P. M. (2011). Huidige maatregelen tegen water- en winderosie in

Nederland. Bodem, 21 , 11–12. Publisher: Wolters Kluwer.

Heuvelink, G., Brus, D., De Vries, F., Kempen, B., Knotters, M., Vasat, R., & Walvoort, D. (2010).

Implications of digital soil mapping for soil information systems. In 4th Global Workshop on Digital

Soil Mapping (p. 6). Rome, Italy. doi: https://edepot.wur.nl/160764.

Heuvelink, G. B. M. (1998). Error Propagation in Environmental Modelling with GIS . CRC Press.

Google-Books-ID: C XWjSsboeUC.

Heuvelink, G. B. M. (2014). Uncertainty quantification of GlobalSoilMap products. In GlobalSoilMap:

Basis of the global spatial soil information system (pp. 335–340). CRC Press. Google-Books-ID:

3OPKBQAAQBAJ.

Heuvelink, G. B. M. (2018). Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling.

In A. B. McBratney, B. Minasny, & U. Stockmann (Eds.), Pedometrics Progress in Soil Science (pp.

439–461). Cham: Springer International Publishing. doi: 10.1007/978-3-319-63439-5 14.

Heuvelink, G. B. M., Angelini, M. E., Poggio, L., Bai, Z., Batjes, N. H., Bosch, R. v. d., Bossio, D.,

Estella, S., Lehmann, J., Olmedo, G. F., & Sanderman, J. (2020). Machine learning in space and



REFERENCES 163

time for modelling soil organic carbon change. European Journal of Soil Science, (pp. 1–17). doi:

10.1111/ejss.12998. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejss.12998.

Hijmans, R. J. (2020). Geographic Data Analysis and Modeling: package ’raster’.

Hijmans, R. J. (2023). Spatial Data Analysis: package ’terra’.

Hinsberg, A. v., Egmond, P. v., Pouwels, R., Dirkx, G. H. P., & Breman, B. C. (2020). Referentiesce-

nario’s Natuur : Tussenrapportage Natuurverkenning 2050 . Technical Report 3574, Planbureau voor

de Leefomgeving (PBL) Den Haag. https://library.wur.nl/WebQuery/wurpubs/569486.

von Hippel, P. T. (2005). Mean, Median, and Skew: Correcting a Textbook Rule. Journal of Statis-

tics Education, 13 . doi: 10.1080/10691898.2005.11910556. Publisher: Taylor & Francis eprint:

https://doi.org/10.1080/10691898.2005.11910556.

Hoogland, T., van den Akker, J. J. H., & Brus, D. J. (2012). Modeling the subsidence of peat soils in

the Dutch coastal area. Geoderma, 171-172 , 92–97. doi: 10.1016/j.geoderma.2011.02.013.

Hoogland, T., Knotters, M., Pleijter, M., & Walvoort, D. J. J. (2014). Actualisatie van de grondwater-

trappenkaart van holoceen Nederland: resultaten van het veldonderzoek . Alterra-rapport 2612, Alterra

Wageningen UR Wageningen. https://edepot.wur.nl/339780 publisher: Alterra.

Huang, J., Hartemink, A. E., & Zhang, Y. (2019). Climate and Land-Use Change Effects on Soil Carbon

Stocks over 150 Years in Wisconsin, USA. Remote Sensing , 11 , 1504. doi: 10.3390/rs11121504.

Number: 12 Publisher: Multidisciplinary Digital Publishing Institute.

Huang, J., Malone, B. P., Minasny, B., McBratney, A. B., & Triantafilis, J. (2017). Evaluating a Bayesian

modelling approach (INLA-SPDE) for environmental mapping. Science of The Total Environment ,

609 , 621–632. doi: 10.1016/j.scitotenv.2017.07.201.
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Summary

Humans and most life on land depends on soil for clean air, water, food, natural resources

and a living environment. Yet soils vary in space and time, prompting efforts to under-

stand and map soils ever since the development of agriculture and rise of civilizations.

Even today, soil mapping is a major challenge because it is only possible to make obser-

vations or measurements at a finite number of locations. Consequently, predicting soil

properties in space and time requires spatial interpolation, or mapping, using models in-

formed by observations from visited locations. Digital soil mapping (DSM) is the process

of mapping soil properties by inferring the relationship between soils and variables repre-

sentative of soil-forming factors, or covariates, using mathematical and statistical models.

DSM has rapidly advanced since its origins in the 1990s, largely due to scientific and

technical advances and initiatives such as GlobalSoilMap (GSM), which aims to deliver

information of key soil properties and their uncertainties at high-resolution for the entire

world.

Even though DSM has rapidly evolved, many areas in the world still lack high-resolution

soil information with quantified accuracy. One such area is the Netherlands, where infor-

mation of key soil properties is crucial to support a broad range of diverse stakeholders

from multiple sectors, such as agriculture, forestry, land and water management, spatial

planning, infrastructure, transport and nature conservation. In addition, regardless of the

study area, there are also major challenges related to assessing map accuracy, mapping

in three-dimensional space and time (3D+T) and developing efficient workflows for pre-

dicting a large variety of soil properties. Therefore, the aim of this thesis is to develop a

high-resolution soil modelling and mapping platform for the Netherlands in 3D+T, which

I named “BIS-4D”.

To address this aim, Chapter 2 deals with developing a three-dimensional (3D) model to

predict soil pH between 0 - 2m on a national scale in the Netherlands at 25m resolution.

Soil pH is an essential soil property because it provides information on soil acidity and

alkalinity, nutrient availability and affects biological activity, decomposition, metal disso-

lution and soil physical structure. I use quantile regression forest (QRF), not only due

to its predictive performance as a machine learning algorithm, but also because it allows

for probabilistic predictions, which means that (model-based) prediction uncertainty can

be quantified. In this chapter, I first explore a pivotal aspect of DSM: how to evaluate

map quality using external (model-free) and internal (model-based) accuracy assessment.

Firstly, I build upon established sampling theory by applying design-based statistical in-

ference using a probability sample in 3D space. Secondly, I investigate how GSM accuracy

thresholds can be used as a simple rating system to visualize map uncertainty at all pre-

diction locations. Findings from Chapter 2 reveal large differences in map quality when

comparing design-based statistical inference to other, more commonly used statistical val-
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idation strategies. These findings underline the importance of properly quantifying map

quality using design-based statistical inference. In doing so, the 3D soil pH maps for the

Netherlands are unique among national-scale GSM products in that unbiased accuracy

metrics are provided. Findings from implementing GSM accuracy thresholds reveal that

less than 10% of pixels were designated with one of the highest ratings, suggesting that

further research is needed to investigate the feasibility of these ratings. Nevertheless,

the ratings are promising for easily communicating map quality and comparing soil maps

across scales and study areas.

In Chapter 3, I extend the mapping methodology from 3D to 3D+T for soil organic mat-

ter (SOM). SOM is a fundamental indicator of soil health since it enhances the availability

of plant nutrients, improves moisture retention, stabilizes soil structure, increases perme-

ability and chemical buffering and influences the biodegradability of pollutants. Moreover,

among dynamic soil properties, SOM is particularly sensitive to temporal changes in the

Netherlands due to large-scale excavation, drainage and cultivation of peatlands, unprece-

dented land reclamation projects and highly anthropogenic landscapes. In this Chapter,

the main objectives are to derive covariates that are variable in two-dimensional space

and time (2D+T) and 3D+T as drivers of spatio-temporal SOM dynamics and explore

how 3D+T mapping can serve as a new paradigm for monitoring SOM-related soil health.

I calibrate a QRF model using 869 094 SOM observations from 339 231 point locations

and covariates explicit in 2D+T and 3D+T related to land use and the occurrence of

peat. The 3D+T model predicts SOM and its uncertainty annually at 25m resolution

between 0 - 2m depth from 1953 - 2022 in the Netherlands. Expressed as absolute changes

in mass percentages, predictions suggest that SOM decreased by more than 25% in many

peatland areas and by 0.1 - 0.3% in mineral soils under cropland. In contrast, SOM in-

creased by 10 - 25% below 80 cm depth on vast areas of reclaimed land. Supported by the

literature, predicted SOM increases on reclaimed land suggest that land subsidence due

to clay ripening, peat oxidation and soil compaction caused peat layers to shift upwards

in terms of their depth from the surface. The analysis quantifies the substantial variations

of SOM in space, depth, and time, highlighting the inadequacy of evaluating SOM-related

soil health at point scale or static mapping at a single depth for policymaking.

Next, the 3D+T machine learning model is applied to predict SOM in 2050 based on a

nature-inclusive land use scenario in Chapter 4. Nature-inclusive scenarios of the future

can help address numerous societal challenges related to soil health. As nature-inclusive

scenarios imply sustainable management of natural systems and resources, land use and

soil health are assumed to be mutually beneficial in such scenarios. However, the interplay

between nature-inclusive land use scenarios and soil health has never been modelled using

DSM. By deriving dynamic covariates related to land use and the occurrence of peat for

2050, I predict SOM and its uncertainty in 2050 and assess SOM changes between 2022

and 2050 from 0 - 2m depth at 25m resolution. I find little changes in the majority of

mineral soils. However, SOM decreases of up to 5% are predicted in grasslands used for
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animal-based production systems in 2022, which transitioned into croplands for plant-

based production systems by 2050. Although increases up to 25% SOM are predicted

between 0 - 40 cm depth in rewetted peatlands, larger decreases, on reclaimed land even

surpassing 25% SOM, are predicted on non-rewetted land in peat layers below 40 cm

depth. There are several limitations to the approach, mostly due to predicting future

trends based on historic data. Furthermore, nuanced nature-inclusive practices, such as

the adoption of agroecological farming methods, are too complex to incorporate in the

model and would likely affect SOM spatial variation. Nonetheless, 3D mapping of SOM

in 2050 creates new insights and raises important questions related to soil health behind

nature-inclusive scenarios. Using machine learning explicit in 3D+T to predict the impact

of future scenarios on soil health is a useful tool for facilitating societal discussion, aiding

policy making and promoting transformative change.

Besides soil pH and SOM, Chapter 5 develops BIS-4D into an operational, reproducible,

standardised, largely automated and efficient modelling platform for mapping a broad

range of soil properties on a national scale in the Netherlands. BIS-4D delivers maps of

soil texture (clay, silt and sand content), bulk density, total nitrogen, oxalate-extractable

phosphorus, cation exchange capacity, and updated versions of soil pH and SOM, and

their uncertainties at 25m resolution between 0 - 2m depth. Depending on the specific

soil property, the statistical model is informed by a range of 3815 - 855 950 observations

and selects from a total of 366 environmental covariates. I assess the accuracy of mean

and median predictions using design-based statistical inference of a probability sample and

location-grouped 10-fold cross-validation. As in previous chapters, I also assess prediction

uncertainty using the prediction interval coverage probability. I find that the accuracy of

clay, sand and pH maps is highest, while silt, BD, SOM, Ntot, CEC and especially Pox are

more difficult to predict. One of the main limitations of BIS-4D is that prediction maps

cannot be used to quantify the uncertainty of spatial aggregates. A step-by-step manual

helps users decide whether BIS-4D is suitable for their intended purpose, openly available

code and input data enhance reproducibility and future updates and BIS-4D prediction

maps can be easily downloaded. BIS-4D fills the previous data gap of a national scale

GSM product in the Netherlands and will hopefully facilitate the inclusion of soil spatial

variation as a routine and integral part of decision support systems.

In the last chapter, Chapter 6, I discuss the main findings from Chapters 2 - 5 and

broadly discuss their implications, suggest future research and bridge science to much-

needed practical implementations. BIS-4D fills the previous gap of high-resolution soil

property maps on a national scale in the Netherlands and delivers state-of-the-art 3D and

3D+T maps with quantified accuracy for the GSM project. Furthermore, BIS-4D maps

are being uploaded on the national online soil portal (bodemdata.nl) and are already

being used for various purposes, such as estimating soil-derived greenhouse gas emissions

for the Land Use, Land Use Change and Forestry sector for the United Nations Framework

Convention on Climate Change.
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DSM has revolutionized soil mapping at a unprecedented rate since the first soil maps were

crafted more than 4000 years ago. However, I believe a new paradigm shift lies ahead.

Digital soil assessment is underway towards scalable soil estimation services that combine

the advantages of proximal and remote soil sensing to monitor soil health on-demand

for a tailored target area. In changing times ahead, it is paramount that attention and

resources are not only directed towards research, but also towards practical solutions and

successful implementation of scientific ideas. Only then will soils also benefit society as a

whole and contribute to human well-being.



Acknowledgements

In the scorching 40◦C heat, the gentle breeze offered little respite on the rooftop. Below,

Red-whiskered Bulbuls flitted through the treetops, while a proud peacock perched on

pink walls nearby, surrounded by a garden ablaze with lush greenery and vibrant blooms.

In the distance, a dog’s bark mingled with the rhythmic breaths of a cow by the building’s

entrance, chewing dry hay. Here I sat in Tiruvannamalai, Tamil Nadu, India, moments

away from an online PhD interview for Wageningen University and Research. Despite the

sweltering conditions and shaky internet, my two-month journey through Karnataka, Ker-

ala, and Tamil Nadu had offered me distance from my daily life, presenting a promising

path ahead. The freedom to choose one’s trajectory often hinges on the people encoun-

tered along the way, and for that, I am grateful to those who have journeyed with me

over the years.

First and foremost, I extend my gratitude to my PhD supervisors: Titia, Gerard, Mirjam

and Joop. Titia, your expertise and guidance as my daily supervisor and co-promoter

has been invaluable. During moments of doubt, you provided unwavering support. You

challenged my perspectives with thought-provoking questions, fostering both personal and

professional growth. Your mentorship has empowered me to navigate my own path, while

underscoring the collaborative and team-work essence of science and research. Gerard,

having you as a promotor makes it seem easy to do a PhD. Your knack for simplifying

complex concepts, refining my writing, and nurturing objectivity has shaped me into a

more adept and well-rounded scientist. Mirjam, I am deeply grateful for my seamless

integration into the Bodem, Water en Landgebruik (BWL) team and the invaluable con-

nections you’ve facilitated. Your encouragement has been a constant source of resilience

during challenging times. I’ll always cherish the memory of our unexpected midnight en-

counter on one of my first dates with Maria Giovanna, during which you casually sat down

next to us and joined our conversation! Joop, without you and Titia this PhD would not

have happened. Even from my very first day at WUR, I always felt tremendous support

from you. The privilege of speaking at your retirement ceremony remains a cherished

highlight, and even post-WUR, your insights shared through “Bodem en Kunst” articles

and our ongoing correspondence continue to inspire me.

I am immensely thankful for the enriching experiences shared with my colleagues in the

Soil Geography and Landscape (SGL) group, spanning coffee breaks, lunches, leisurely

walks, team outings, and insightful discussions. Among these cherished moments, my

interactions with fellow (and former) PhDs stand out prominently. Jasper and Marijn,

your assistance with integration and moving apartments eased transitions and fostered a
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oral presentation; Tübingen, Germany (2019)

• Post-graduate research conference at the University of Agricultural and Horticul-

tural Sciences; poster presentation; Shivamogga, India (2019)

• Pedometrics webinar; oral presentation; online (2021)

• Pico presentation at EGU 2021; online (2021, 2022)

• World Congress of Soil Science; poster presentation; Glasgow, Scotland (2022)

• NAC; oral presentation; Utrecht, the Netherlands (2022)

• Soil Mapping for a Sustainable Future; oral presentation; Orleans, France (2023)

• Wageningen Soil Conference; oral & poster presentation; Wageningen, the Nether-

lands (2023)

• Healthy Soils Conference; oral presentation; Basel/Muttenz, Switzerland (2023)



Societally relevant exposure (1.5 ECTS)

• WIMEK and soil cluster video pitch (2021)

• Presentation stand and oral pitch at WUR digital innovation expo (2023)

• Podcast/audio recording of research article and PhD thesis (2023)

Lecturing/supervision of practicals/tutorials (11.4 ECTS)

• Spatial and temporal analysis for earth and environment (2020-2023)

• Geology, soils and landscapes of the Northwest European lowlands (2021)

• Introduction to soil geography (2021-2023)

MSc thesis supervision (3 ECTS)

• Cristina Cavero Panez: The impact of temporal land use variability on soil organic

carbon changes: a case study at point level in the Netherlands from 1998-2018

(2021)



The research described in this thesis was financially supported by the Dutch Ministry of

Agriculture, Nature and Food Quality (WOT-04-013-010 and KB-36-001-014).

Financial support from Wageningen University for printing this thesis is gratefully

acknowledged.

Cover design by Anatol Helfenstein

Printed by ProefschriftMaken on FSC-certified paper






	Contents
	Chapter General introduction
	Background
	A brief history of soil science: a spatial perspective
	Soil mapping

	GlobalSoilMap
	Soils and soil maps in the Netherlands
	Soil geography in the Netherlands
	Soil surveys and maps in the Netherlands

	Knowledge gaps and research challenges
	Mapping soil properties at high-resolution using machine learning
	Assessing map accuracy
	Mapping in 3D
	Space-time mapping in 3D+T
	Operational mapping platforms for delivering soil information

	Problem definition
	Aim, objectives and research questions
	Thesis structure

	Chapter Tier 4 maps of soil pH at 25m resolution for the Netherlands
	Introduction
	Materials and methods
	Soil point datasets
	Covariate selection
	Covariate preprocessing
	Model tuning and calibration
	Maps of predicted soil pH, uncertainty and accuracy thresholds
	Evaluation of map accuracy using statistical validation
	Software and computational framework

	Results
	Model tuning, calibration and variable importance
	Soil pH maps: mean predictions
	Soil pH maps: quantiles, PI90 and accuracy thresholds
	Evaluation of map accuracy using statistical validation

	Discussion
	Map accuracy using statistical validation strategies
	Comparison to other soil pH maps
	Uncertainty using QRF
	Accuracy thresholds for Tier 4 GSM maps and user applications

	Conclusion
	Appendix A. GSM accuracy thresholds

	Chapter Three-dimensional space and time mapping reveals soil organic matter decreases across anthropogenic landscapes in the Netherlands
	Introduction
	Results and Discussion
	SOM decrease in peatlands
	SOM changes in reclaimed lands due to land subsidence
	Little SOM change in mineral soils
	Model accuracy assessment
	3D+T mapping: a new paradigm for SOM monitoring

	Materials and Methods
	Soil point data
	Covariates
	Overlay and regression matrix
	Model selection, tuning and calibration
	Variable importance
	Prediction maps
	SOM changes based on soil type and land use
	Model accuracy assessment

	Code and data availability

	Chapter A nature-inclusive future with healthy soils? Mapping soil organic matter in 2050 in the Netherlands
	Introduction
	Methods
	Nature-inclusive scenario for 2050
	3D+T SOM model
	2050 scenario modelling

	Results
	SOM trends at the national scale
	SOM trends in mineral soils
	SOM trends in peatlands
	Model uncertainty

	Discussion
	Conclusion

	Chapter BIS-4D: Mapping soil properties and their uncertainties at 25m resolution in the Netherlands
	Introduction
	Materials and Methods
	Soil point data
	Covariates
	Model selection, tuning and calibration
	Variable importance
	Prediction maps
	Accuracy assessment
	BIS-4D updates: pH and SOM
	Software and computational framework

	Results and Discussion
	Accuracy assessment
	Strengths
	Limitations and improvements
	Assessment scale
	BIS-4D user manual

	Data and code availability

	Chapter Synthesis
	Introduction
	Overview and implications of findings
	Assessing map accuracy
	Mapping in 3D
	Mapping in 3D+T
	3D+T mapping for scenario modelling
	An operational platform for high-resolution soil property mapping

	Future research and practical implementation
	Improving predictions in 3D
	A new paradigm: scalable soil estimation services
	Modern soil surveys to meet modern demands

	Conclusion

	References
	Summary
	Acknowledgements
	About the author
	PE&RC Training and Education Statement 
	Lege pagina
	Lege pagina



