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1. Introduction

As a well-known greenhouse gas, atmosphere methane (CH4)
can absorb infrared radiation and has a global warming po-
tential that is 29.8 times higher than CO2 (Forster et al., 2021;
Houghton et al., 2001; Rodhe, 1990). Atmospheric CH4

concentrations have been increasing rapidly and causing a
growing concern of its contribution to climate warming
(Dlugokencky et al., 2011;Kirschke et al., 2013). Soil CH4 can
either be produced bymethanogens (LeMer and Roger, 2001;
Thauer et al., 2008) or oxidized to CO2 by methanotrophs
(Bosse and Frenzel, 1997; Le Mer and Roger, 2001). Under
aerobic conditions, the oxidization of CH4 generally exceeds
its production and thus results in a net soil CH4 sink (Bodelier
and Laanbroek, 2004). Covering nearly one third of the land
surface area (Keenan et al., 2015), forest soils are an important
sink of atmospheric CH4 (Dutaur and Verchot, 2007; Le Mer
andRoger, 2001).Anthropogenic nitrogen (N) emissions have
increased N deposition to global forests (Lamarque et al.,
2013; Schwede et al., 2018; Vet et al., 2014), resulting in
various ecological consequences (Bobbink et al., 2010;
Bowman et al., 2008; de Vries et al., 2011, 2017; Du et al.,
2019, 2020a; Gilliam, 2006; Midolo et al., 2019). However,
the response of soil CH4 flux to N deposition is less quantified
across global forest biomes in comparisonwith soilCO2fluxes
(Bodelier and Steenbergh, 2014; de Vries et al., 2017).

Nitrogen deposition affects both the activities of
methanogens and methanotrophs (Bodelier and Laanbroek,
2004; Schnell and King, 1994). In an N-deficient
ecosystem, N inputs might release the N limitation of
methanotrophic microorganisms and/or the biosynthesis of
enzymes involved in methane oxidation and thus benefit soil
CH4 uptake (Bodelier et al., 2000; Bodelier and Laanbroek,
2004; Reay and Nedwell, 2004). In addition, external N

inputs can stimulate tree growth (Du and de Vries, 2018;
Schulte-Uebbing and de Vries, 2018; Sonnleitner et al.,
2001) and increase evapotranspiration, indirectly favoring
microbial CH4 oxidation in soils. However, excess N inputs
may decrease soil CH4 uptake via a direct inhibition of CH4

oxidation due to either osmotic stress caused by increased
soil inorganic N concentrations or competitive inhibition of
the enzyme methane mono-oxygenase by ammonia (Bode-
lier and Laanbroek, 2004; Schnell and King, 1994; Sitaula
et al., 1995) and an indirect effect due to soil acidification
and an imbalance of N and P (Veraart et al., 2015). Theo-
retically, external N additions likely exert nonlinear effects
on soil CH4 uptake in N-limited forests, including an initial
stimulation of soil CH4 uptake and then an inhibition when
the N addition rate exceeds a certain threshold (see red
curve in Fig. 9.1). In non N-limited forests, N additions
generally decrease soil CH4 uptake or increase soil CH4

emissions (see blue line in Fig. 9.1).
Based on an earlier meta-analysis, Liu and Greaver

(2009) demonstrated that forest soil CH4 uptake was
significantly reduced by N additions but the analysis was
not conducted for each forest biome. In contrast, another
meta-analysis indicated an overall neutral effect of N ad-
ditions on forest soil CH4 uptake (Aronson and Helliker,
2010). This inconsistency might be caused by mixing
experimental results from all forest biomes and neglecting
the nonlinear effects of N additions in the meta-analyses
(Xia et al., 2020). Previous studies have indicated a pole-
ward increase in N limitation from tropical forest to boreal
forest (Du et al., 2020b; Elser et al., 2007), implying
distinct responses of soil CH4 flux to N addition across
forest biomes. Therefore, the biome-specific effects of N
deposition should be considered separately.
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According to an assessment conducted by the World
Meteorological Organization (WMO) Global Atmosphere
Watch program (GAW), ambient N deposition rarely
exceeded 60 kg N ha�1 yr�1 across the globe (Vet et al.,
2014). In view of an urban hotspot phenomenon, N depo-
sition is even lower in the widespread natural forests in
comparison with urban and rural forests (Du et al., 2022).
Current understanding of the effects of N deposition on
forest soil CH4 uptake is mainly derived from manipulated
N addition experiments. However, much higher N dosages
(e.g., >100 kg N ha�1 yr�1) have been frequently used in
existing N addition experiments (Aronson and Helliker,
2010; Bodelier and Steenbergh, 2014; de Vries et al., 2017;
Liu and Greaver, 2009; Xia et al., 2020). These experi-
ments might lead to biases when evaluating the effects of
actual N deposition on soil CH4 uptake.

Forest soil CH4 flux is regulated by several climate
factors (Borken et al., 2006; Ni and Groffman, 2018) and
soil properties (Benstead and King, 2001; Boeckx et al.,
1997; Castro et al., 1995). Compared to methanogens,
methanotrophs have a lower optimum temperature and are
thus less sensitive to temperature (Borken et al., 2006;
Dunfield et al., 1993). Under low temperature conditions
(e.g., boreal forest), methanotrophs are likely more active
than methanogens, resulting in lager soil CH4 sinks. Pre-
cipitation has a strong control of soil moisture, which not
only affects the activity of methanotrophs but also affects
the diffusion rates of CH4 and O2 molecules (Smith et al.,
2003). In soils with low moisture, CH4 is more easily to
diffuse into methanotrophs, which in turn promote a high

oxidation rate. Soil pH affects the physiological functions
of methanogens and methanotrophs directly (Benstead and
King, 2001) and may interact with other factors (e.g., water
stress, terpenes, and ammonium inputs) to limit methano-
trophs activity (Amaral et al., 1998a; King, 1997). How-
ever, the reported effects of soil pH on soil CH4 flux vary
largely among sites and studies (Hütsch et al., 1994; Saari
et al., 2004; Weslien et al., 2009).

Based on a synthesis of experimental results in litera-
ture, we evaluated the impacts of N additions on soil CH4
uptake in global forests. Specifically, the effects of low-
level N addition (�60 kg N ha�1 yr�1) and high-level N
addition (>60 kg N ha�1 yr�1) on soil CH4 flux were
assessed separately. Moreover, we explored the key factors
affecting the spatial variation in the responses of soil CH4

flux to N additions, including experimental duration, N
addition rate, N addition form, mean annual temperature
(MAT), mean annual precipitation (MAP), ambient N
deposition, soil pH and forest type. This chapter extends a
previous meta-analysis by Xia et al. (2020) on the effects of
low and high level N deposition on soil CH4 uptake in
forest biomes, by using an updated literature database and
quantifying the response of soil CH4 uptake per kg N
addition for major forest biomes and the global-scale
impact of N deposition on forest soil CH4 uptake.

2. Materials and methods

2.1 Data set

By conducting a survey via the online library of ISI Web of
Science (http://isiknowledge.com), Google Scholar (http://
scholar.google.com) and China National Knowledge
Infrastructure (http://www.cnki.net), we collected field
experimental data on the effect of N addition on soil CH4

flux in forest ecosystems across the globe. The key words
“methane (or CH4)”, “nitrogen addition (or nitrogen
deposition, nitrogen fertilization)” and “forest” were used.
The database recorded the means and standard deviations
of soil CH4 fluxes in control plots and treatment plots, as
well as information on site location (longitude and latitude),
experimental treatments (the experimental duration, N
addition rate, N addition form, i.e., NO3

�-N, NH4
þ-N,

NH4NO3eN or urea), climate (mean annual temperature,
MAT, and mean annual precipitation, MAP), ambient N
deposition, soil pH and forest type (i.e., boreal, temperate,
subtropical or tropical forests) (Table 9.1).

Experimental and climate data were either directly
extracted from tables or digitized from figures by using a
GetData Graph Digitizer (Version 2.18, http://www.
getdata-graph-digitizer.com). Soil pH was retrieved from
SoilGrids (http://soilgrids.org) and ambient N deposition
was retrieved from a multiple-model estimate of N depo-
sition (Tan et al., 2018) if it was not reported. In boreal and

FIG. 9.1 Conceptual responses of soil CH4 flux to N additions in N-
limited (in red) and non N-limited forests (in blue). f1 and f2 indicate the
soil CH4 fluxes under ambient condition (N addition ¼ 0) in non N-limited
forests and N-limited forests, respectively. n1 and n2 indicate the thresholds
of N addition that result in a shift from soil CH4 sinks to soil CH4 sources
in non N-limited forests and N-limited forests, respectively. n3 indicates
the threshold of N addition that shift from positive to negative effects on
soil CH4 uptake in the N-limited forests.
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TABLE 9.1 Information on location, climate, forest type, and design of the manipulated N addition experiments in forest ecosystems.

ID

Lon

(8E)

Lat

(8E)

MAT

(8C)

MAP

(mm)

Soil

pH

N deposition

(kg N haL1 yrL1)

Forest

type

N addi-

tion form

N addition rate

(kg N haL1 yrL1)

Experimental

duration (yr) References

1 �148.30 64.75 �2.8 284 5.80 0 BF NH4NO3 0, 171 4 Gulledge and
Schimel (2000)

2 �148.30 64.75 �2.8 284 5.80 0 BF NH4NO3 0, 143 4 Gulledge and
Schimel (2000)

3 29.37 61.85 3.8 582 4.07 4 BF NH4NO3 0, 31 28 Saari et al. (2004)

4 25.62 61.32 3.3 680 3.60 5 BF NH4NO3 0, 200 3 Maljanen et al.
(2006)

5 125.48 51.37 �2.4 489 5.15 4 BF NH4NO3 0, 25, 50, 75 3 Yan et al. (2016b)

6 121.51 50.83 �5.4 580 5.50 9 BF NH4NO3 0, 10, 20, 40 0.5 Xu et al. (2014)

7 121.88 50.42 �5.4 500 5.50 10 BF NH4Cl/
KNO3

0, 10, 40 1 Gao et al. (2013)

8 129.11 48.12 �0.5 718 5.50 9 TemF NH4NO3 0, 50, 100, 150 1 Yan et al. (2016a)

9 128.89 47.18 �0.3 676 5.67 13 TemF NH4NO3 0, 20, 40, 80 3 Song et al. (2017)

10 141.33 43.10 9.5 995 4.21 10 TemF NH4NO3 0, 50 1 Kim et al. (2012)

11 128.10 42.40 4.1 855 5.90 23 TemF NH4Cl/
KNO3

0, 45 0.25 Xu et al. (2011)

12 �85.40 42.40 9.7 890 5.47 6 TemF NH4NO3 0, 10 2 Ambus and Rob-
ertson (2006)

13 �85.40 42.40 9.7 890 4.63 6 TemF NH4NO3 0, 10 2 Ambus and Rob-
ertson (2006)

14 127.63 41.70 3.6 745 5.30 11 TemF Urea 0, 10, 20, 40, 60, 80,
100, 120, 140

0.5 Geng et al. (2017)

15 �80.03 41.60 9.8 1125 4.00 15 TemF NH4NO3 0, 100 1 Chan et al. (2005)

16 116.22 39.99 11.6 630 6.72 33 TemF NH4NO3 0, 50, 100, 150 1 Wang (2012)

17 �74.58 39.92 12.3 1143 4.80 15 TemF NH4NO3 0, 5, 67 0.33 Aronson et al.
(2012)

18 112.15 36.69 8.6 662 7.08 31 TemF NH4NO3 0, 50, 100, 200, 400 3.33 Yu et al. (2019)

19 118.70 32.18 15.5 1020 4.50 48 STF NH4NO3 0, 50, 100, 150 1.5 Hu et al. (2011)

20 110.45 31.60 10.6 1650 5.70 27 STF NH4NO3 0, 50 0.42 Pan (2013)

21 119.70 30.23 15.9 1450 6.50 40 STF NH4NO3 0, 40, 120 2 He (2019)
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TABLE 9.1 Information on location, climate, forest type, and design of the manipulated N addition experiments in forest ecosystems.dcont’d

ID

Lon

(8E)

Lat

(8E)

MAT

(8C)

MAP

(mm)

Soil

pH

N deposition

(kg N haL1 yrL1)

Forest

type

N addi-

tion form

N addition rate

(kg N haL1 yrL1)

Experimental

duration (yr) References

22 115.06 26.74 17.9 1505 4.26 33 STF NH4Cl/
NaNO3

0, 40, 120 1 Li et al. (2015)

23 115.07 26.75 18.0 1489 5.50 23 STF NH4NO3 0, 50, 100 0.75 Zhang (2013)

24 117.47 26.18 19.4 1700 5.40 36 STF NH4NO3 0, 40, 80 6 Wu (2018)

25 112.54 23.18 21.0 1927 4.07 44 STF NH4NO3 0, 100 1.5 Gao et al. (2017)

26 112.17 23.17 21.0 1927 3.80 33 STF NH4NO3 0, 50, 100, 150 1 Zhang et al.
(2008)

27 112.17 23.17 21.0 1927 3.90 33 STF NH4NO3 0, 50, 100 1 Zhang et al.
(2008)

28 112.17 23.17 21.0 1927 4.00 33 STF NH4NO3 0, 50, 100 1 Zhang et al.
(2008)

29 112.17 23.17 21.0 1927 5.50 40 STF NH4NO3 0, 150 2.66 Zheng et al.
(2016)

30 112.17 23.17 21.0 1927 5.50 40 STF NH4NO3 0, 150 2.66 Zheng et al.
(2016)

31 112.17 23.17 21.0 1927 5.50 40 STF NH4NO3 0, 150 2.66 Zhang et al.
(2011)

32 112.83 22.57 22.5 1534 3.87 43 STF NH4NO3 0, 50, 100 1 Zhang et al.
(2012)

33 107.60 22.38 21.8 1200 3.95 22 STF Urea 0, 48, 167, 334 2 Zhang et al.
(2017)

34 �79.83 9.10 27.2 2715 5.10 9 TroF Urea 0, 125 12 Veldkamp et al.
(2013)

35 �82.25 8.75 20.3 5461 4.70 5 TroF Urea 0, 125 4 Veldkamp et al.
(2013)

36 117.39 5.37 25.2 3098 4.70 3 TroF Urea 0, 100 4 Mori et al. (2017)

37 �79.20 �4.08 19.4 2230 4.20 5 TroF Urea 0, 50 4.67 Martinson et al.
(2020)

38 �79.20 �4.08 15.7 1950 3.70 5 TroF Urea 0, 50 4.67 Martinson et al.
(2020)

39 �79.20 �4.08 9.4 4500 3.80 5 TroF Urea 0, 50 4.67 Martinson et al.
(2020)

Abbreviations: BF, boreal forest; STF, subtropical forest; Tem, Temperate forest; TroF, tropical forest.
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temperate forests, soil CH4 fluxes were generally measured
during the growing season, while in subtropical and trop-
ical forests, the measurements were conducted the whole
year round. During the nongrowing season, temperature of
boreal and temperate forests is relatively low and mea-
surements of soil CH4 fluxes are lacking. Therefore, our
analysis ignored the part of soil CH4 flux in boreal and
temperate forests during the nongrowing season.

Overall, our database included experimental results of 74-
N addition trials across 39 forests from 30 sites (Fig. 9.2).
Specifically, 52 trials were conducted by using NH4NO3 in
28 forests, 17 trials by using urea in eight forests, and five
paired trials by using both nitrate (KNO3 or NaNO3) and
ammonium (NH4Cl) based N forms in three forests (Ta-
ble 9.1). For the paired trials, the rates of soil CH4 flux were
averaged for each N dosage and used as one treatment for
further analysis. Finally, there were 12, 28, 28 and six
fertilization trials from seven boreal forests, 11 temperate
forests, 15 subtropical forests and six tropical forests,
respectively (Table 9.1). However, the tropical forest studied
by Martinson et al. (2020) was a mountain rain forest with
low soil mineral N availability and a closed soil N cycle,
which was different frommost tropical forests. Therefore, we
considered this study as a special case and excluded the 3 N
addition trials. Afterward, data of tropical forests were
combined with those of subtropical forests for further anal-
ysis since there were too few trials in tropical forests for a
robust statistical analysis (n ¼ 4).

2.2 Statistical analysis

To qualify the effect of N additions on soil CH4 flux,
we defined a response ratio (RR, g CH4 kg

�1 N) as given in
Eq. (9.1),

RR ¼ ðFluxt � FluxcÞ
Nadd

� c (9.1)

where Fluxt and Fluxc indicate the mean soil CH4 fluxes in
the treatment plots and control plots (mg CH4 m�2 h�1),
Nadd indicates the N addition for each treatment (kg N
ha�1 yr�1), and the constant c is a unit correction factor
from mg CH4 m

�2 h�1 to g CH4 ha
�1 yr�1. In subtropical

and tropical forests, the unit correction factor (c ¼ 87,600)
was calculated based on the duration of a whole year. The
unit correction factors (c ¼ 29,200 for boreal forest and
51,100 for temperate forest) were estimated using durations
of 4 months (mid-May to mid-September) for boreal forest
and 7 months (April to October) for temperate forest (Piao
et al., 2007) while neglecting the remaining time of the
year. A positive value of the response ratio indicates a
reduction in soil CH4 uptake or an increase in soil CH4

emission due to N addition, while a negative value indi-
cates an opposite effect.

The variance (vi) of the response ratio is estimated ac-
cording to Eq. (9.2) as given below (Schulte-Uebbing and
de Vries, 2018),

vi ¼
�
nt þ nc
nt � nc

þðnt � 1Þ � sd2
t þ ðnc � 1Þ � sd2

c

nt þ nc � 2

�

�
�

c

Nadd

� (9.2)

where sdt, sdc, nt, nc indicate the standard deviation and
number of replicates for the treatment plots and control
plots, respectively. Using a random effect model (Boren-
stein et al., 2009), we estimated the mean response ratios
and corresponding standard errors for the forest biomes
with weight (wi) equal to the inverse of the sum of the
within-study variance (vi, due to sampling error) and
between-study variance (s2, due to variations in experi-
mental conditions) according to Eq. (9.3),

wi ¼ 1
vi þ s2

(9.3)

FIG. 9.2 Geographical distribution of nitrogen addition experiments from 39 forests across 30 sites. Green shadows indicate the distribution of global
forest.
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We conducted one-way ANOVA analysis and a post-
hoc test to compare the response ratio of soil CH4 flux to
N addition among boreal, temperate, as well as subtropical
and tropical forests. In addition, we used the Student’s t test
to compare the response ratio between low-level N addition
(�60 kg N ha�1 yr�1) and high-level N addition
(>60 kg N ha�1 yr�1) in different forest biomes respec-
tively. The low-level N addition is in the range of N
deposition over the world (Vet et al., 2014). Moreover,
biome-scale effects of N deposition on soil CH4 sink were
estimated based on the response ratio of soil CH4 flux to
low-level N addition, mean forest-specific total N deposi-
tion (base year 2010) (Schwede et al., 2018) and the area of
each forest biomes (base year 2010) (Keenan et al., 2015).

Then we used the “glmulti” package to conduct a model
selection analysis for the potential driving factors affecting
the variation of response ratios of soil CH4 flux to low-level
N addition (�60 kg N ha�1 yr�1) based on the corrected
Akaike information criterion (Calcagno and de Mazan-
court, 2010). The relative importance value of each driving
factor was estimated as the sum of the Akaike weights for
the models in which the variable appeared. A cut-off rela-
tive importance value of 0.8 was used to differentiate be-
tween the important and unimportant variables (Calcagno
and de Mazancourt, 2010). Conditional regression analysis
(Breheny and Burchett, 2013) was conducted to visualize
the role of each driving factor on response ratio while
holding all the other important variables constant (by
default the median for numeric variables). The variance
inflation factor (VIF <3 indicates weak collinearity) was
computed to diagnose the multicollinearity of the driving
factors for the final model (Zuur et al., 2010). The variance
explained by each driving factor was estimated by aver-
aging sequential sums of squares over all orderings of re-
gressors using the “relaimpo” package (Groemping, 2006).
All analyses were conducted by R software (version 4.0.0,

R Development Core Team, http://www.r-project.org/) us-
ing a significance level of P ¼ .05. Values were mean -
� standard error, if not specially noted.

3. Results and discussion

3.1 Variation in ambient soil methane uptake
across forest biomes

Forest soils in control plots were significant CH4 sinks, on
average taking up 0.07 � 0.02, 0.04 � 0.01 and
0.02 � 0.00 mg CH4 m

�2 h�1 in boreal (n ¼ 7), temperate
(n ¼ 11) as well as subtropical and tropical (n ¼ 18) for-
ests, respectively. The rate of soil CH4 uptake in boreal
forest was higher than those in temperate (P ¼ .08) and
subtropical and tropical forests (P ¼ .003). The rate of soil
CH4 uptake in temperate forest showed no significant dif-
ferences from subtropical and tropical forests (P ¼ .15).
Compared with boreal forest, the lower rates of soil CH4
uptake in other forest biomes might be attributed to a
suppression of CH4 oxidation by higher temperature
(Dutaur and Verchot, 2007), more precipitation (Le Mer
and Roger, 2001), higher background N availability (Vet
et al., 2014; Schwede et al., 2018; Du and de Vries, 2018),
and/or a stronger phosphorus limitation to methanotrophic
microorganisms (Veraart et al., 2015).

By multiplying the average rate of soil CH4 uptake in
control plots with the area of each forest biome (Keenan et al.,
2015), annual soil CH4 fluxes were estimated to be
�2.49� 0.68, �1.38� 0.45 and �3.71� 0.56 Tg CH4

yr�1 in global boreal, temperate as well as subtropical and
tropical forest biomes, respectively (Table 9.2). Overall, our
results showed that global forest soils contributed to a CH4
sink of 7.55� 1.68 TgCH4 yr

�1, accounting for only a half of
the estimated annual forest soil CH4 sink (13.9 Tg CH4 yr

�1)
in a model-based study by Murguia-Flores et al. (2018).

TABLE 9.2 Biome-scale estimates of soil CH4 fluxes and the effects of nitrogen deposition in global forest biomes.

Forest

biome

Area

(million ha)

Soil CH4 flux

rate (mg CH4

mL2 hL1)

Biome CH4 flux

(Tg CH4 yr
L1)

Mean N

deposition (kg

N haL1 yrL1)

Response

ratio (g CH4

kgL1 N)

Biome

effect (Tg

CH4 yrL1)

Boreal 1225 �0.07 � 0.02b �2.47 � 0.68 1.2 �11.49 � 7.94b �0.02� 0.01

Temperate 673 �0.04 � 0.01ab �1.38 � 0.45 7.3 4.89 � 7.57ab 0.02 � 0.04

Subtropical
and tropical

2118 �0.02 � 0.00a �3.71 � 0.56 8.3 10.39 � 6.57a 0.18 � 0.12

Total 4016 �7.55 � 1.68 0.18 � 0.17

Note: The area of each biome (base year 2010) was derived from FAO Global Forest Resources Assessment (Keenan et al., 2015). Mean N deposition (base
year 2010) of each forest biome was derived from Schwede et al. (2018). Different lowercase letters (e.g., a, b) mean significant difference of mean soil
CH4 flux between forest biomes (P < .05), and same letters mean no significant difference. The average response ratio of soil CH4 flux to low-level N addi-
tion (�60 kg N ha�1 yr�1, reasonably indicative to the effects of N deposition) were used to indicate the effect of N deposition.
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3.2 Biome-specific effects of nitrogen additions
on soil methane flux

Our results showed that the response of soil CH4 flux to N
addition varied across forest biomes, and the effect of low-
level N addition (�60 kg N ha�1 yr�1) on soil CH4 flux
was different from that of high-level N addition
(>60 kg N ha�1 yr�1) (Fig. 9.3). When both low and high-
level were combined, N addition increased soil CH4 uptake
in boreal forest (�6.12 � 5.99 g CH4 kg�1 N), while it
decreased soil CH4 uptake in temperate forest
(6.79 � 5.31 g CH4 kg�1 N) as well as subtropical and
tropical (8.55 � 3.27 g CH4 kg

�1 N) forests (Fig. 9.3a). The
response of soil CH4 flux to low-level N addition, being in
the range of atmospheric N deposition, however, was
�11.49 � 7.94 g CH4 kg�1 N in boreal forest, 4.89 �
7.57 g CH4 kg�1 N in temperate forest and 10.39 �
6.57 g CH4 kg�1 N in subtropical and tropical forests,
respectively. The difference in response to low-level and
high-level N additions was significant in boreal forest
(P ¼ .04), but insignificant in temperate (P ¼ .26) as well as
subtropical and tropical (P ¼ .31) forests (Fig. 9.3b).
Overall, these results indicate a necessity to distinguish
among forest biomes and separately assess the effect of low-
level N addition from that of high-level N addition in boreal
forest. However, many previous meta-analyses did not
differentiate the effect of low-level N deposition from that of
high-level N addition (Liu and Greaver, 2009; Aronson and
Helliker, 2010), which might have overestimated the nega-
tive effect of the natural N deposition on forest soil CH4 sink.

Based on the average response ratio of soil CH4 flux to
low-level N addition (�60 kg N ha�1 yr�1), the average N
deposition (Schwede et al., 2018) and the area of each forest
biome (Keenan et al., 2015), we roughly estimated the
biome-scale effects of N deposition on soil CH4 sink in

global forests. Specifically, N deposition increased CH4 up-
take by 0.02 � 0.01 Tg CH4 yr

�1 in boreal forest, while it
decreased soil CH4 uptake by 0.02 � 0.04 and
0.18 � 0.12 Tg CH4 yr

�1 in temperate as well as subtropical
and tropical forests, respectively (Table 9.2). Since there is
no significant difference of the response ratio between low
and high-level N deposition for temperate forest and sub-
tropical/tropical forests, we also estimated the biome-scale
effects using mean response ratios for all N addition exper-
iments, being 6.79 and 8.55 g CH4 kg�1 N for temperate
forest and subtropical/tropical forests, respectively.

Overall, N deposition was estimated to decrease soil CH4

sink by 0.18 � 0.17 Tg CH4 yr
�1 in global forests using the

low N deposition responses (Table 9.2). The results showed
that when the response ratios to low and high-level N addi-
tions were combined in the analysis, CH4 uptake decreased
by 0.03 � 0.03 Tg CH4 yr�1 in temperate forest and
0.15 � 0.06 Tg CH4 yr

�1 in subtropical and tropical forests.
The overall estimates of biome-scale effects, using the mean
response ratios to all N additions, were thus slightly lower
than those based on the response ratios to low-level N ad-
ditions in global temperate, subtropical and tropical forests
(0.18 � 0.09 and 0.20 � 0.16 Tg CH4 yr

�1, respectively).
Comparison of the mean N deposition induced decrease

in soil CH4 sink of 0.18 Tg CH4 yr
�1 with the total soil CH4

sink of 7.55 Tg CH4 yr�1 in global forest (see Table 9.2)
implies that this reduction is nearly negligible (2%).
Considering that CH4 is 29.8 times more effective, on a per-
unit-mass basis, than CO2 in absorbing long-wave radiation
on a 100-year time horizon (Forster et al., 2021), the
warming effect of N deposition induced reduction of soil
CH4 sink in global forest is equivalent to an emission of
4.68 Tg CO2 yr�1. This effect on climate warming is
negligible in view of the large carbon sink (2.4 Pg C yr�1)
in global established forest (Pan et al., 2011).

FIG. 9.3 Response ratios of soil CH4 flux to all N additions (a), low-level (�60 kg N ha�1 yr�1) and high-level N additions (>60 kg N ha�1 yr�1) (b) in
boreal (BF), temperate (TemF), and subtropical and tropical forests (S&TroF). Error bars are standard errors. Same lowercase letters mean no significant
difference and different letters mean significant difference between forest biomes (P < .05). The asterisk (*) indicates a significant difference between low-
level and high-level N additions (P < .05).
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3.3 Main drivers of response ratio of soil
methane flux to low-level nitrogen
addition

The spatial variation in the response ratio of soil CH4 flux
to low-level N additions (�60 kg N ha�1 yr�1), reasonably
indicative to the effects of actual N deposition, was mainly
explained by soil pH and N addition rate (Fig. 9.4a).
Conditional regression analysis indicates that the response
ratio increased with both higher soil pH (variance explained
17.3%, P ¼ .02) (Fig. 9.4b) and N addition rate (variance
explained 18.7%, P ¼ .01) (Fig. 9.4c). Other factors,
including experimental duration, N addition form, MAT,
MAP, N deposition and forest type had an unimportant role
in shaping the variation of the response ratio of soil CH4

flux to N addition.
Soil pH plays an important role in the dynamics of soil

CH4 uptake because soil acidity directly affects the physi-
ological functions of organisms, and determines the form
and concentration of toxic elements and nutrients (Benstead
and King, 2001). Aerobic CH4 oxidation is mainly driven
by methanotrophs in the topsoil (Le Mer and Roger, 2001),
which are most active under low soil pH (Amaral et al.,
1998b; Saari et al., 2004). Therefore, as soil pH increases,
the activity of methanotrophs decreases, thereby inhibiting
the absorption/oxidation of soil CH4, and changing the
response ratio from a negative to a positive value. In
addition, soil pH can interact with ammonium inputs to
affect the growth and activity of methanotrophs (Amaral
et al., 1998a; King, 1997). Nitrification increases with an
increase in soil pH, implying a decrease in NH4 concen-
tration (Dancer et al., 1973; Katyal et al., 1988). However,
experimental studies indicate that the ammonium toxicity to
soil CH4 consumption does not vary substantially with pH
in moderately acidic soils (pH < 5), but the ammonium
toxicity increases with soil pH when pH > 5 (Benstead and
King, 2001). This interaction may also account in part for

the shift from positive to negative effects on soil CH4 up-
take with changes in soil pH (Fig. 9.4b).

Nitrogen addition rate also affected the spatial variation
in the response ratio of soil CH4 flux to N additions. Soil
CH4 uptake decreased with increasing N addition rate,
resulting in response ratio shift from negative value to
positive value, i.e., a nonlinear effect on soil CH4 uptake
(Fig. 9.4c). Low-level dosages of N addition may release the
N limitation of methanotrophic microorganisms and thus
increase soil CH4 uptake in N-deficient conditions (Bodelier
et al., 2000; Bodelier and Laanbroek, 2004; Reay and
Nedwell, 2004). In contrast, excess N inputs may decrease
soil CH4 uptake via a direct inhibition of CH4 oxidation due
to increased soil inorganic N concentrations (Bodelier and
Laanbroek, 2004; Schnell and King, 1994; Sitaula et al.,
1995) and an indirect effect due to soil acidification and an
imbalance of N and P (Veraart et al., 2015).

4. Uncertainties and implications

Uncertainties remain in our analysis of the effects of N
deposition on soil CH4 sink across global forest biomes.
First, there were limited numbers of manipulated N addi-
tion experiments by using low-level dosage of inorganic N
addition, especially in tropical forests. Our search of the
literature only gave experimental results for six tropical
forests at four sites. Moreover, the three low-level N
addition trials that we excluded from our database were all
carried out in an atypical tropical forest site (Martinson
et al., 2020). Therefore, further efforts are needed to eval-
uate the effect of N deposition on soil CH4 flux in tropical
forests by conducting N addition experiments with low-
level addition of inorganic N. The advantage of the N
addition trials in tropical forests is, however, that they were
carried out during a whole year. In contrast, the estimates of
soil CH4 uptake and its response to N addition ignored
nongrowing season soil CH4 flux in boreal and temperate

FIG. 9.4 The relative importance of potential drivers of the spatial variation in the response ratio of soil CH4 flux to low-level N additions
(�60 kg N ha�1 yr�1) (a) and the conditional regression plots for soil pH (b) and N addition rate (c). The gray shadows represent 95% confidence intervals
for the fitted curves.
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forests. This likely underestimated the annual soil CH4 flux
in boreal and temperate forests. If the amount of soil CH4
sink in nongrowing season is accounted, forest soils may
contribute a higher proportion of global soil CH4 sink, but
it will not affect the estimated nearly negligible (2%) N
induced impact on this sink.

A recent literature review indicates that the forest soil
CH4 sink in the northern hemisphere has significantly
declined during the past three decades and this trend has
been attributed to an increase of precipitation (Ni and
Groffman, 2018). Our analysis implies that increasing N
deposition in developing countries (e.g., China and India)
(Abrol et al., 2017; Liu et al., 2013) may partially
contribute to the reduction of the soil CH4 sink. However,
N deposition in Europe and the United States has shifted
from an increase to a decrease since early or middle 1990s
(Du, 2016; Waldner et al., 2014), implying a possible
decrease in the effect on soil CH4 sink since then.

The findings also have implications for improving the
performance of process-based models to simulate and
quantify the effect of global N deposition on soil CH4

sinks. So far, the existing models simply account for a
negative effect of N inputs on soil CH4 uptake by involving
an inhibition factor (Curry, 2007; Murguia-Flores et al.,
2018; Ridgwell et al., 1999). However, our analysis in-
dicates that N addition below a certain threshold level can
exert a positive effect on soil CH4 uptake in boreal forest,
implying that existing models most likely overestimate the
negative effect of N deposition on forest soil CH4 sinks,
especially in boreal regions. This indicates a necessity of
models to separately consider the effect of low-level N
addition from that of high-level N addition and distinguish
the effects across forest biomes.

5. Conclusions and outlook

Our synthesis of experimental results indicates that soil
CH4 flux was significantly affected by N additions in global
forest biomes. On a global scale, N deposition was esti-
mated to induce a significant reduction of forest soil CH4

sink, although it is negligible (2%) compared with the total
soil CH4 sink in global forest. In boreal forest, we found a
shift from a positive to a negative effect on soil CH4 uptake
with increasing N addition, while N addition consistently
decreased soil CH4 uptake in temperate as well as sub-
tropical and tropical forests.

Compared with previous assessments based on a meta-
analysis approach (Liu and Greaver, 2009; Aronson and
Helliker, 2010), our work improves current understanding
of actual N deposition effect on soil CH4 sinks in global
forests. It shows that the response of soil CH4 flux at low-
level N additions increases with soil pH and N addition
rate, confirming current insights that higher pH values and
N availability may reduce soil CH4 uptake by inhibiting the

activity of methanotrophs and possibly increasing the
toxicity of ammonium. Furthermore, the observed biome-
specific effects of N deposition on soil CH4 sinks con-
firms that the poleward increase in N limitation from
tropical forest to boreal forest affects CH4 oxidation.

Across all forest biomes, the effect of N deposition on
soil CH4 flux is poorly understood in tropical forest due to a
lack of experimental studies. This leads to a major uncer-
tainty in the overall effect of N deposition on soil CH4 sink
in global forest. To better understand future trend of soil
CH4 sink in global forest, more experimental and modeling
efforts are needed to incorporate the effects of N deposition
and other global changing factors.
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