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Abstract 
The developmental origins of health and disease hypothesis suggest early-life environment impacts health outcomes throughout the life course. 
In particular, epigenetic marks, including DNA methylation, are thought to be key mechanisms through which environmental exposures pro-
gramme later-life health. Adequate maternal folate status before and during pregnancy is essential in the protection against neural tube defects, 
but data are emerging that suggest early-life folate exposures may also influence neurocognitive outcomes in childhood and, potentially, there-
after. Since folate is key to the supply of methyl donors for DNA methylation, we hypothesize that DNA methylation may be a mediating mech-
anism through which maternal folate influences neurocognitive outcomes. Using bisulphite sequencing, we measured DNA methylation of five 
genes (Art3, Rsp16, Tspo, Wnt16, and Pcdhb6) in the brain tissue of adult offspring of dams who were depleted of folate (n = 5, 0.4 mg folic 
acid/kg diet) during pregnancy (~19–21 days) and lactation (mean 22 days) compared with controls (n = 6, 2 mg folic acid/kg diet). Genes were 
selected as methylation of their promoters had previously been found to be altered by maternal folate intake in mice and humans across the life 
course, and because they have potential associations with neurocognitive outcomes. Maternal folate depletion was significantly associated with 
Art3 gene hypomethylation in subcortical brain tissue of adult mice at 28 weeks of age (mean decrease 6.2%, P = .03). For the other genes, no 
statistically significant differences were found between folate depleted and control groups. Given its association with neurocognitive outcomes, 
we suggest Art3 warrants further study in the context of lifecourse brain health. We have uncovered a potential biomarker that, once validated 
in accessible biospecimens and human context, may be useful to track the impact of early-life folate exposure on later-life neurocognitive health, 
and potentially be used to develop and monitor the effects of interventions.
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Introduction
There has been much support for the developmental origins 
of health and disease (DOHaD) hypothesis, through which it 
is postulated that early-life exposures impact health outcomes 
throughout the life course [1, 2]. Within this paradigm, it is 
suggested that pre- and peri-natal factors alter early program-
ming of the offspring which is manifest as altered health in 
later life, although it is still not fully clear through what mech-
anisms this is achieved.

One set of key mechanisms suggested to play a role in 
early-life programming are epigenetic modifications [2]. 
These genome modifications do not involve changes to the 
DNA sequence but are able to influence gene expression. 
DNA methylation, the most well-studied of the epigenetic 
marks, is an important gene regulatory mechanism through 

which methylation of CpG-rich regions can lead to gene silen-
cing via the inhibition of binding of the regulatory machinery 
for transcription [3]. It has been well established that these 
DNA methylation marks are readily influenced by environ-
mental factors, and as such can be considered the interface 
between the social and physical environment, the genome, 
and health outcomes [4, 5]. Furthermore, as they are estab-
lished during foetal and early life, this is considered a critical 
period through which environmental cues may program these 
regulatory marks [3]. Indeed, some animal studies have con-
comitantly reported altered epigenetic, gene expression, and 
phenotypic outcome measures in response to early-life envir-
onmental cues. For example, Nguyen et al. reported global 
DNA hypermethylation and altered expression of some 
genes involved in epigenetic processes in the whole brain and 
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hippocampus in offspring whose mothers were exposed to 
tobacco smoke continuously during pregnancy, whilst also 
observing neurological deficits in offspring [6]. Additionally, 
a study investigating the influence of maternal alcohol con-
sumption during pregnancy in mice reported altered ex-
pression of 23 genes at 28 days of age together with altered 
methylation of some of these selected as candidates for fur-
ther investigation in the hippocampus [7]. The same study 
also observed that the left hippocampal volume was increased 
whilst the left olfactory bulb was decreased at 60 days of age 
in response to maternal ethanol exposure [7]. While some 
early-life environmentally regulated epigenetic changes may 
be transient, and likely to influence long-term health through 
structural and physiological changes, other persistent changes 
may be latent, with their impact revealed only at a later point 
in the life course [3]. The long-term impact of such persistent 
epigenetic changes may be triggered by intrinsic or external 
factors such as the biological changes associated with ageing 
or due to the gradual biological impact of long-term expos-
ures to environmental factors such as smoking or diet [8, 9].

Folate, a B vitamin found in green leafy vegetables, is essential 
for healthy foetal development, with deficiency during preg-
nancy being associated with an increased risk of neural tube 
defects [10], isolated orofacial clefts, and neurodevelopmental 
disorders [11]. Other health or disease outcomes have been 
associated with maternal folate intake or status during preg-
nancy, including child BMI [12], asthma [13, 14], and child-
hood cancers, including leukaemia [15–18], neuroblastoma 
[19–23] and brain tumours[24–27]. In addition, several child-
hood outcomes associated with brain function and develop-
ment have been associated with maternal folate intake or 
status during pregnancy including cognition [28, 29], motor 
skills [30], language and communication [28, 31–33], resili-

ence and emotional intelligence [34], neurodevelopment and 
autism [35–37]. As several early-life neurocognitive param-
eters including cognitive and academic performance [38–41] 
are predictive for later life neurocognitive disorders such as 
Alzheimer’s disease [42], it is highly plausible that maternal 
folate intake or status during pregnancy can have a life-long 
influence on brain health. However, while there is evidence 
to suggest that higher folate status in adulthood is protective 
against adverse neurocognitive outcomes in later life [43–45], 
it is not yet known if early life, particularly maternal, folate 
intake or status influences cognitive outcomes in later years.

Folate is a key player in one-carbon metabolism, that is 
required for the production of the universal methyl donor, 
S-adenosylmethionine, the substrate required for the methyla-
tion of DNA [46]. Therefore, folate availability influences the 
establishment and maintenance of DNA methylation patterns. 
Indeed, maternal folate levels during pregnancy have been as-
sociated with variation in offspring DNA methylation in the 
offspring in both short and long term [47–51]. More specif-
ically, methylation of genes involved with neurodevelopment 
has been associated with folate intake during pregnancy in 
rats and humans [52, 53], as well as in vitro [54], suggesting 
a key mechanism through which folate may influence brain 
health.

Previously we uncovered five gene promoters (Art3, 
Rsp16, Tspo, Wnt16, and Pcdhb6) which were modestly 
hypermethylated in response to low maternal folate during 
early development and in adulthood across both mouse (liver) 
and human studies (cord blood and/or saliva) [55]. The func-
tion of most of these genes implies that they are involved in 
neurocognition (see Table 1 for details), and therefore may 
represent persistent, latent epigenetic changes that have the 
potential to influence neurocognitive outcomes in later life. 

Table 1. Description of genes studied.

Gene symbol Gene name Protein function Evidence for a role in neurological conditions, 
neurocognition and other brain-related parameters

Art3 ADP-ribosyltransferase 3 Adds/removes ADP-ribose to/from an argi-
nine residue to regulate protein function

Hypomethylated in established schizophrenia [56] and 
maltreated children [57] compared to controls. SNPs 
within this gene have been associated with educational 
attainment [58] and hippocampal volume [59].

Pcdhb6 Protocadherin beta 6 Neural cadherin-like cell adhesion protein Likely to play a role in the establishment and function of 
specific cell–cell neural connections. Disruption of cell 
adhesion pathways involving Pcdhb6 occur in Ms5Yah 
mice which exhibit motor coordination deficits, and 
spatial learning and memory impairments [60].

Rps16 Ribosomal protein S16 Component of the 40S ribosomal subunit, 
therefore plays a role in protein syn-
thesis.

No current evidence found.

Tspo Translocator protein Facilitates the movement of cholesterol 
into mitochondria to permit the initia-
tion of steroid hormone synthesis

Associated disorders include hepatic encephalopathy and 
generalized anxiety disorder. The TSPO protein may 
be a predictive marker of amyloid pathology linked to 
Alzheimer’s disease [61].

Wnt16 Wingless-type MMTV 
integration site family, 
member 16

Member of the Wnt signalling protein 
family that are implicated in oncogen-
esis and in developmental processes, 
including regulation of cell fate during 
embryogenesis.

Hypermethylated in maltreated children compared to 
controls [57]. SNPs within this gene have been associ-
ated with brain volume, functional and neuroimaging 
measurements [62–68].
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Here we have used bisulphite sequencing to measure DNA 
methylation in the promoter regions of these five genes in the 
brain tissue of murine adult offspring in response to maternal 
folate depletion during pregnancy. Previously, in adult off-
spring from this mouse study we have observed lower plasma 
glucose, increased plasma triacylglycerol [69], changes to 
hepatic DNA methylation, gene expression profiles [50], and 
slightly increased oxidative DNA damage levels in subcortical 
brain regions [70] in response to maternal folate depletion 
during pregnancy and lactation.

Materials and methods
Experimental diets and mouse tissue collection
Newcastle University Ethics Review Committee and the UK 
Home Office (Project licence number 60/3979) approved all 
animal procedures which have been described previously [69, 
70]. The animals were housed in the Comparative Biology 
Centre, Newcastle University with 12 h light and dark cycles 
at 20–22°C and fresh water available ad libitum. Adult (i.e. 
over 8 weeks old) female C57BL/6J mice were allocated at 
random to either a normal folate diet (2 mg folic acid/kg diet, 
n = 23) or low folate (0.4 mg folic acid/kg diet, n = 16) (6 g/d/
mouse) and maintained on this diet for 4 weeks prior to 
mating, during pregnancy, and lactation until weaning (mean 
22 days post-partum). Post-weaning all animals included in 
the current study were fed diets containing adequate amounts 
of folate (control diets with 2 mg folic acid/kg diet). Diet com-
positions were modified from AIN-93G24 and have been de-
scribed previously [49]. All ingredients, other than folic acid, 
were included in both diets at the same concentrations to 
avoid potential confounding.

Sample collection and confirmation of folate depletion [69] 
have been detailed previously. Briefly, adult offspring were 
killed at 28 weeks of age for tissue collection. The brain was 
removed, weighed, and dissected (hippocampus, cortex, cere-
bellum, and subcortical regions) and snap frozen in liquid ni-
trogen and stored at −80°C prior to DNA extraction.

Extraction, bisulphite modification of DNA
DNA was extracted from ground subcortical brain tissue (as 
other brain tissue sections had been utilized for studies else-
where) from 11 adult murine offspring (five folate depleted 
during pregnancy and lactation (four females, one male) and 
six controls (all female). Animals were selected based on the 
remaining archived tissue available, although it would be pref-
erable to use samples from both male and female mice in each 
group this was not possible). Extraction was performed using 
the E.Z.N.A.® Tissue DNA Kit (Omega Biotech) in accord-
ance with the manufacturer’s instructions. A total of 2 µg DNA 
was bisulphite modified using the EZ DNA Methylation Gold 

kit (Zymo Research) following the manufacturer’s instruc-
tions, with a minor modification for the elution step (using 12 
µl rather than 10 µl). Prior to use in PCR reactions, bisulphite 
modified DNA was diluted 1:20 (4 µl in 76 µl water) to give 
an approximate concentration of 8 ng/µl.

PCR
Bisulfite sequencing was used to determine the percentage 
methylation at individual CpG sites within the Art3, Pcdhb6, 
Rsp16, Tspo, and Wnt16 promoters. Details of PCR condi-
tions and primers are detailed in Table 2. Briefly, 1 µl of di-
luted bisulphite-treated DNA was added as a template in a 
PCR reaction using 10 µl Hot Star Taq mastermix (Qiagen), 
1 µl of forward, and reverse primers (at a concentration of 
10 pmol/µl) in a total volume of 20 µl. Amplification was 
carried out in a Mastercycler Nexus Gradient thermocycler 
(Eppendorf) using the following protocol; 95°C for 15 min, 
then 40 cycles of 95°C for 30 s, annealing temperature for 
1 min, 72°C for 1 min, followed by 72°C for 5 min. Three 
microlitres of PCR product was used for visualization on a 
1% agarose-TAE gel subjected to electrophoresis to confirm 
the presence of a PCR product. The remaining 17 µl PCR 
products were subsequently purified for sequencing using 
Thermo Scientific GeneJET™ PCR Purification Kit (Fisher 
Scientific, UK) to remove primers, dNTPs, and other impur-
ities from the PCR product, according to the manufacturers’ 
instructions.

Sequencing
Library preparation and sequencing were carried out at 
NU-OMICS DNA Sequencing research facility (Northumbria 
University). Purified PCR products were quantified using 
Quant-iT™ PicoGreen™ dsDNA Assay (Invitrogen) and 
normalized to 20 nM and pooled by experimental condi-
tion. Libraries of pooled amplicons were prepared using the 
NEBNext® Ultra™ II DNA Library Prep Kit for Illumina 
(New England Biolabs). The quality of prepared libraries was 
assessed using the Agilent High Sensitivity DNA Kit Guide 
(Agilent) and quantified using Quant-iT™ PicoGreen™ 
dsDNA Assay (Invitrogen). Libraries were normalized to 
4 nM, pooled, and sequenced using the Illumina MiSeq V2 
300 cycle chemistry. Fastq files containing sequencing data 
were uploaded to EPIC TABSTAT v1.7 (https://tabsat.ait.
ac.at/) for analysis in paired-end mode with mouse mm10 
genome used as the reference and Bowtie2 as the mapping 
tool. The Bismark output files produced % methylation at 
each CpG site sequenced for each sample.

Statistical analysis
Power calculations to determine the required number of animals 
per group were carried out based on the data for cg14855841 

Table 2. PCR conditions,

Gene Forward primer (5ʹ-3ʹ) Reverse primer (5ʹ-3ʹ) Size (bp) Annealing temperature (°C)

Art3 GGAGTTAGAATTTGGGGAAGAGTAT CCCTCACTCCTACTAAAACCAATC 229 60
Pcdhb6 ATTTTTGGGATTTAGAATGTTGAAT AAAAAACCACTTACCTTTTCTCTAAC 230 55
Rsp16 AGTTTATGGGTGTGAGGTAGTTTTT ACCAAAACCTCCAAACTTTTTAAAT 316 55
Tspo TGGGTAGAATTGAAATTTTTAGTGG CATACCTAACTTCCACAACCCTAAC 262 55
Wnt16 GTTTTTTTTATAAGGAAGAAATGTTTTTAT CAAAATACACCCATAACTATTCCAC 164 55
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(ART3) from the AFAST study, in which the standard deviation 
was calculated as 0.68. Considering a minimum effect size = 1.6% 
methylation between groups, 80% power, alpha = 0.05, the 
minimum sample/group = 5. All statistical analyses were per-
formed using IBM SPSS Statistics 26 and a P-value of < .05 was 
considered statistically significant. One-sample Kolmogorov–
Smirnov tests were applied to CpG-specific and mean methyla-
tion data to determine the distribution. For each gene, either or 
both Pearson’s (normal data) or Spearman (non-normal data) 
correlations were used to assess correlation the between per-
centage methylation at individual CpGs and mean percentage 
methylation, depending on the distribution of the data. To re-
duce the possibility for false positive associations through mul-
tiple testing, where mean methylation was highly correlated 
with that of individual CpGs across a gene region, initially mean 
methylation across a given gene was analysed for mice exposed 
to low folate in utero and during weaning and those exposed 
to a normal folate diet. For any genes where statistically signifi-
cant differences between diet groups for mean methylation were 
observed, or where methylation at individual CpG sites did not 
correlate with mean methylation, data for each individual CpG 
were analysed separately. Where data were found to be normally 
distributed, comparisons of percentage methylation were ana-
lysed using univariate ANOVA. Where data were not normally 
distributed, comparisons of percentage methylation were ana-
lysis using independent samples Mann–Whitney U test.

Results
Influence of maternal folate depletion on gene-
specific methylation in the adult brain
Results of one-sample Kolmogorov–Smirnov tests for data 
distribution and correlation between methylation sites within 

the same gene are shown in, Supplementary Table S1, File 
1, and Supplementary Tables S2 and S3, File 2, respectively. 
As all CpGs measured in Wnt16 were highly correlated with 
mean methylation across the locus in the adult brain, mean 
methylation was assessed in response to maternal folate de-
pletion. Compared with mice born to dams fed the normal 
folate diet, there was no difference in mean Wnt16 methyla-
tion in those born to folate depleted dams; mean methylation 
was 90.41% (SEM = 0.754) and 90.46% (SEM = 0.349) for 
normal and folate depleted, respectively (P = .954, Fig. 1A).

As only one CpG correlated with mean methylation for both 
Pcdhb6 and Rsp16, each CpG was assessed individually, and 
as a mean across all CpG sites within each gene. Folate deple-
tion did not significantly influence methylation at most indi-
vidual CpGs or across mean methylation for these genes (Fig. 
1B and C), with only CpG6 of the Rsp16 locus being statistic-
ally significantly hypermethylated in response to folate deple-
tion compared with normal folate (96.39% (SEM = 0.787) vs 
93.88% (SEM = 0.612), respectively, P = .031).

For the Tspo gene, methylation of all CpGs analysed, ex-
cept CpG 1, correlated with mean methylation across CpG 
sites. Consequently, we investigated mean methylation and 
methylation of CpG 1 for this gene in response to maternal 
folate depletion. Neither methylation at CpG 1 specifically nor 
mean methylation across the gene region differed in response 
to maternal folate depletion (CpG1 90.49% (SEM = 0.914) 
vs 89.21% (SEM = 1.140), P = .400; mean methylation 
75.98% (SEM = 1.865) vs 78.22% (SEM = 0.491), P = 0.266 
for normal vs folate depleted groups, respectively, Fig. 1D).

As all CpGs were highly correlated with mean methylation 
across the Art3 locus in the adult brain, mean methylation 
was assessed in response to maternal folate depletion. Mean 
methylation across the Art3 region measured was statistically 

Figure 1. Effect of maternal folate depletion during pregnancy and lactation on A) Wnt16, B) Pcdhb6, C) Rsp16 and D) Tspo methylation in brain 
tissue of adult offspring. Number of mice: n = 6 normal folate (white bars), n = 5 folate depletion (grey bars). Univariate ANOVA were used to assess 
differences in methylation at individual CpGs and across all CpGs in the region assessed (i.e. mean), with the except of CpGs for which data were not 
normally distributed (indicated by * in the figure), in that case Mann–Whitney U tests were used.
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significantly lower (hypomethylated) in response to maternal 
folate depletion compared with offspring born to normal 
folate-fed dams (Fig. 2, median 83.59% and 89.76%, re-
spectively, asymptotic P = .028 or exact P = .030 assessed via 
Mann–Whitney U test). CpGs in Art3 were also assessed in-
dividually. All individual CpGs were hypomethylated in re-
sponse to maternal folate depletion, with CpG 3 showing a 
statistically significant difference (Fig. 2, asymptotic P = .028 
or exact P = .030 assessed), while CpGs 1, 2, and 4 were all 
on the borderline of significance (Fig. 2, asymptotic P = .045 
or exact P = .052).

Discussion
Here we quantified DNA methylation of five target genes in 
the sub-cortical brain tissue of adult mice whose mothers had 
been depleted of folate during pregnancy and lactation. These 
target genes were selected as they have previously been found 
to have altered methylation in other tissues in association 
with early-life folate exposure in both mice and humans, 
and, for 4/5 genes, also in adulthood [47, 48, 50, 51, 55]. 
Moreover, our previous investigation suggested these genes 
may potentially influence neurocognitive outcomes [55]. 
Given the evidence that early-life folate status may influence 
neurocognitive outcomes in offspring [28–37], we hypothe-
sized that altered DNA methylation of these genes within 
brain tissue may mediate this relationship.

While previously we reported increased methylation in both 
fetal and adult liver in response to low maternal folate across 
all genes assessed, in the brain we observed statistically sig-
nificant hypermethylation at a single CpG within the Rsp16 
gene promoter, and mean hypomethylation across all four 
CpGs measured within the Art3 gene promoter in response to 
maternal folate depletion, which was statistically significant 
also at one of these CpGs and of borderline significance at the 
other three. Given the variability in methylation in response 
to low maternal folate across the Rsp16 gene (Fig. 1), together 
with the lack of significant effects at other CpGs across the 

gene region, it is possible that this finding is due to chance. 
However, for Art3, hypomethylation across the locus was 
consistent at all CpGs investigated, which makes it unlikely 
that this finding is due to chance. In addition to our previous 
report of Art3 hypermethylation in the liver of offspring born 
to folate-depleted mothers, hypermethylation of the promoter 
of this gene was observed in cord blood and saliva of the 
offspring of mothers with lower folate status [55]. Although 
here we have observed an opposing direction of methylation 
change in brain tissue, taken together, these data suggest that 
methylation of Art3 is particularly susceptible to maternal 
folate status in multiple tissues and across species. This is not 
the first observation of a tissue-specific change in methyla-
tion in response to folate exposure. Previously, we reported a 
significant interaction between tissue type and dietary folate 
on methylation of the Igf2 differentially methylated region 2 
(DMR2) in folate-depleted female mice, where we observed 
hypomethylation in blood, hypermethylation in liver, and no 
methylation change in kidney tissue in response to folate de-
pletion [71]. Moreover, the complexities of methylation dif-
ferences across tissues in response to maternal exposures, 
including folate, has been documented at the Igf2/H19 locus 
in human offspring, whereby directionality of methylation 
change was found to vary across loci and tissues and was spe-
cific to a given exposure [72]. Our findings therefore reinforce 
the complexities of exposure-DNA methylation relationships, 
emphasising the importance of investigating relevant tissues. 
The changes that we have observed in Art3 methylation in 
the brain here, may have implications for neurocognitive out-
comes.

Although the function of ART3 protein as an ADP 
ribosyltransferase, catalysing the addition or removal of ADP-
ribose to arginine residues of proteins, may not initially point 
to a clear role in neurocognition, its utilization of NAD for ca-
talysis links it to NAD metabolism [73]. NAD metabolism has 
recently emerged as a potential target for age-associated dis-
eases, including cognitive decline, because lower NAD status 
has been associated with adverse neurocognitive outcomes  

Figure 2. Box and whisker plots to illustrate the effect of maternal folate depletion during pregnancy and lactation on Art3 methylation at specific CpG 
sites, and the mean for all measured CpGs in brain tissue of adult offspring. Number of mice: n = 6 normal folate (white box and whisker), n = 5 folate 
depletion (grey box and whisker). Mann–Whitney U tests were used to assess differences in methylation at individual CpGs and across all CpGs in the 
region assessed (i.e. average).

D
ow

nloaded from
 https://academ

ic.oup.com
/m

utage/article/39/3/196/7615916 by Bibliotheek der Landbouw
universiteit user on 11 June 2024



Influence of maternal folate depletion on Art3 DNA methylation 201

(reviewed in [74]). This is unsurprising because NAD is es-
sential in providing energy for multiple cellular functions, 
including metabolic pathways, DNA repair, chromatin remod-
elling, cellular senescence, and immune cell function that can 
decline during ageing [74]. Although speculative, it is possible 
that Art3 hypomethylation may lead to increased Art3 expres-
sion and therefore lower NAD status, which warrants further 
investigation. Therefore, it is plausible that ART3 may func-
tionally influence neurocognition through its role in NAD me-
tabolism.

In line with this suggestion, the ART3 gene has been asso-
ciated with several outcomes related to neurocognition. In a 
recent large meta-analysis, methylation at cg22301128 located 
within the gene body of ART3 was reported to be significantly 
hypomethylated in blood samples from cases with established 
schizophrenia compared to controls [56]. Also, DNA methyla-
tion at cg12159836 within the 5ʹUTR of ART3 was also observed 
to be significantly lower in saliva from maltreated children, who 
go on to have increased risk of psychiatric disorders, compared 
with controls [57]. Additionally, in a study of over three million 
individuals the rs4859423 T>C SNP within the ART3 gene was 
associated with educational attainment, again suggesting that 
this locus may influence cognitive outcomes [58]. Moreover, in 
a genome-wide association study investigating endophenotypes 
associated with pre-diagnostic stages of Alzheimer’s disease, 
the rs79955867 C > T single nucleotide polymorphism (SNP) 
mapping to a CpG site within the ART3 locus was associated 
with decreased hippocampal volume [59]. As the hippocampus 
is important for learning and memory, hippocampal volume 
has been associated with processing speed, working memory, 
spatial navigation, and abstract reasoning [75–79]. While not 
directly related to neurocognition, the ART3 protein, a known 
tumour marker, has been observed in the cerebrospinal fluid of 
recurrent medulloblastoma patients [80], and expression of this 
gene has also been associated with survival after diagnosis with 
medulloblastoma [81]. Thus, in addition to its potential signifi-
cance for neurocognition, altered methylation of this locus via 
nutritional modulation may also impact other aspects of brain 
health.

Here we have extended previous findings from studies of 
mouse liver and human blood and saliva samples in which we 
showed that ART3 methylation was influenced by maternal 
folate status across the lifecourse, to adult murine brain tissue. 
Our findings that folate status influences methylation at the 
ART3 locus in multiple tissues and in both mice and humans, 
suggest that this locus may be of value as a biomarker for the 
impact of early-life exposure to folate on neurocognitive out-
comes or, more broadly, brain health. It will be important to 
establish whether the changes in Art3 methylation in mouse 
brain also occur in human brain. This could be achieved using 
tissues from human brain tissue banks and either linkage to 
direct measurements of folate status in the donors or using 
Mendelian randomization approaches as a proxy for folate 
status [82]. For future epidemiological and intervention 
studies directly in humans, the assessment of Art3 methyla-
tion in blood, as a proxy for brain methylation, is likely to be 
the most practical measure. However, given that the direction 
of methylation change in response to folate appears to differ 
between tissues, in future studies it will be important to deter-
mine whether there are similar changes in Art3 methylation in 
the blood and brain in response to folate exposures.

Our use of samples from a well-designed folate interven-
tion study in mice provide confidence that our findings of ef-

fects of folate supply during pregnancy and lactation on Art3 
methylation in the brain of adult offspring are likely to be 
causal. However, our study also has limitations. Although 
the number of animals (n = 5/6) in which brain methylation 
was measured was within the usual range assessed for the 
detection of methylation change in rodent studies, and des-
pite power calculations indicating sufficient power for Art3, it 
may have restricted statistical power to be able to detect more 
subtle changes in the other genes where methylation was 
measured. While the utilization of archived murine tissue was 
a particular strength of this study in line with the 3Rs ethos 
of ethical use of animals in research, we were unable to assess 
a range of specific brain sections due to the availability of tis-
sues from our archived sample collection, with only material 
for sub-cortical regions available for analysis here as other 
sections had been utilized for previous studies. Pinpointing 
specific regions of the brain in which altered methylation in 
response to maternal folate occurs is likely to be useful to il-
luminate the potential impact of this exposure on offspring 
neurocognition. Moreover, due to the prolonged storage 
of the archived tissue, we were unable to measure gene ex-
pression and investigate relationships with the methylation 
changes reported here. It will be important to undertake such 
gene expression studies in the future to understand the poten-
tial functional impact of these methylation changes invoked 
by inadequate maternal folate intake. Another limitation of 
the use of archived samples was that no neurocognitive data 
are available to determine if there is an association between 
the methylation change in response to maternal folate and 
cognition-related outcomes.

In summary, this study has identified Art3 as a gene of 
interest through which maternal folate may influence 
neurocognition throughout the life course. Such relation-
ships may be mediated by DNA methylation. We hope that 
these findings will stimulate other researchers to investi-
gate the relationship between folate status and methylation 
of Art3, and more broadly, brain DNA methylation and 
neurocognitive outcomes. For example, in human studies 
with data on maternal folate status (using direct measure-
ments or Mendelian Randomisation approaches) and both 
genome-wide methylation data and neurocognitive data, 
would provide an invaluable resource for investigating the 
relationships among maternal folate status, ART3 methy-
lation and neurocognitive outcomes. By utilizing archived 
murine samples, we have uncovered a potential biomarker 
that may be useful to track early-life exposure to folate to 
later life neurocognitive health, and that may have potential 
for developing and monitoring nutritional interventions to 
reduce risk of adverse neurocognitive outcomes in later life. 
Further studies are therefore warranted to aid understanding 
of the potential role of the ART3 gene, including the role 
of methylation at this locus, in relation to neurocognition 
across the life course.
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