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A B S T R A C T   

Soil quality is an important determinant of agricultural productivity and environmental quality. Despite its 
importance, few economic models incorporate sustainable soil management. The objective of this study is to 
develop and illustrate FARManalytics: a bio-economic model to gain quantitative insight in the economic value 
of sustainable soil management. First, we defined a comprehensive set of chemical, physical and biological soil 
quality indicators and quantitative rules on how these indicators respond to farmers’ production management 
over time. Second, we introduce an economic calculation framework that enables accurate calculation of the 
contribution of different production management decisions towards farm income using Activity-Based-Costing. 
The set of soil quality indicators and economic calculations serve as the basis for the bio-economic model 
FARManalytics, which consists of two modules: (1) the PM calculator, a module that calculates the impact of 
current production management on soil quality and farm economics and (2) the PM optimizer, a module that uses 
Mixed-Integer-Linear-Programming to maximize farm incomewithin predefined soil quality indicator constraints. 
The decision variables are the crop rotation, cover crops, manure & fertilizer application and crop residue 
management. We illustrate the added value of the model by applying it to an extensive and intensive farm type, 
both on clay and sandy soil. These farm types are derived from the Farm Accountancy Data Network (FADN) in 
the Netherlands. FARManalytics demonstrates that it is possible to increase farm income with up to €940 ha− 1 

year− 1 on clay soil and up to €683 ha− 1 year− 1 on sandy soil, while meeting all soil quality targets except subsoil 
compaction vulnerability. The latter was among the most limiting soil quality indicators for the farm types in this 
study, together with soil organic matter input, wind erosion vulnerability and plant-parasitic nematodes. 
FARManalytics integrates the impact of production management decisions on soil quality and economics at farm 
level. Combined with representative farm types, the bio-economic modeling approach of FARManalytics can 
provide useful information for policy support. FARManalytics can also be tailored to provide decision support for 
individual farms, based on data that is commonly available on arable farms at low cost.   

1. Introduction 

Soil quality plays a key role in agricultural productivity and envi
ronmental quality (Stevens, 2018). An increasing demand for agricul
tural products and a decreasing area of agricultural land (Alexandratos 
and Bruinsma, 2012) lead to increased pressure on our agricultural 
system, resulting in erosion, soil compaction, loss of soil organic matter, 
nutrient leaching and pesticide emission (Koch et al., 2013; Squire et al., 
2015). Sustainable soil management should help overcome these threats 

by meeting present productivity needs without compromising soil needs 
for future generations (adapted from Smith and Powlson, 2007). 

Sustainable soil management can be regarded as an economic 
problem (Stevens, 2018; Kik et al., 2021a): an investment that aims at 
long-term soil quality and hence farm income, but might reduce 
short-term profit. Currently, insight in this trade-off between short-term 
and long-term economic impact is missing, hampering the imple
mentation of SSM. Kik et al. (2021a) define the Economic Value of Land 
(EVL) as the cumulative returns of a piece of land over a period of time. 
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Maximum sustainable EVL is obtained if a soils’ potential is fully utilized 
in a sustainable way, i.e. soil quality and farm income do not decline 
over time (Kik et al. 2021a). Following from this, the Economic Value of 
Sustainable Soil Management (EVSM) is defined as the difference be
tween the maximum sustainable EVL and the current EVL of the farmer. 
Farmers’ production management, i.e., the complete set of physical (e.g. 
fertilizer and plant protection products) and non-physical inputs (e.g., 
labor and capital) is the primary determinant of soil quality and hence of 
EVL. Building further on Dury et al. (2012) and Stevens, (2018), Kik 
et al. (2021a) developed a conceptual framework for modeling EVSM. 

Optimizing farmers’ production management has been included in 
numerous bio-economic farm models, which are amongst the most 
widely spread methods to re-design farming systems (Janssen and van 
Ittersum, 2007). Most of these models use a linear programming 
framework where profit is one of the most common objectives and 
constraints typically include availability of resources such as labor, 
irrigation water and land (Castro et al., 2018; Castro and Lechthaler, 
2022). The added value of such models is proven as they allow to 
evaluate trade-offs and synergies between different production man
agement strategies and thus support the design of alternative systems 
(Dury et al., 2012; Schreefel et al., 2022). Although many of these 
models (e.g. Britz et al., 2014; Dogliotti et al., 2005; Groot et al., 2012; 
Hediger, 2003, Louhichi et al., 2010); Schuler and Sattler, (2010) 
include some soil quality parameters such as nutrients flows and soil 
organic matter they typically only make tenuous references to integral 
concept of soil quality (Schreefel et al., 2022). On the other hand, in
tegrated soil quality assessment tools such as Debeljak et al., (2019) and 
Ros et al., (2022) often lack an integration of the socio-economic impact 
of production management decisions at farm-level. Schreefel et al., 
(2022) make a valuable contribution to bridge this gap by coupling the 
soil assessment tool Soil Navigator of (Debeljak et al., 2019) to the 
bio-economic farm model FarmDesign by Groot et al., (2012). In this 
study, Schreefel et al., (2022) optimize multiple functions of soil using 
qualitative suggestions of the Soil Navigator for input in FarmDesign. 
Despite the added value of this approach to understand the 
socio-economic aspects of sustainable soil management in the farm 
context, still further advancements have to made to quantitively assess 
EVSM. Therefore, we aim for a quantitative integration of the relation 
between integral soil quality and production management embedded in 
a farm’s economic context. In such an approach, soil quality has to be 
included as an integral concept (Bouma, 2014) because ultimately the 
combination of all soil functions determines long-term soil quality and 
hence EVL. To build further on studies that already include important 

production management decisions such as cropping plan and crop 
rotation (Alfandari et al., 2015; Capitanescu et al., 2017; Pahmeyer 
et al., 2021), additional production management decisions such as cover 
crops, manure application, fertilizer application and crop residue man
agement have a crucial impact on soil quality and farm economics 
(Kanellopoulos et al., 2012). The ex-ante integral assessment of soil 
quality as a response to a comprehensive set of production management 
decisions requires inclusion of a sound set of agronomic decision rules 
that accurately model the impact of these decisions over time. We build 
further on the approach of Dogliotti et al.( (2003) to create feasible crop 
rotations over time, which than serve as the basis for allocation of other 
production management decisions. The proper implementation of pro
duction management decisions is strongly dependent on the farm 
context (e.g. soil type, climate, cropping plan), which is highlighted by 
Hannula et al. (2021) and Young et al. (2021). Therefore, we aim for a 
bio-economic modelling approach that can be tailored at the farm-level 
using e.g. soil samples and current resource availability so the model is 
able to suggest concrete alternative production management decisions 
to reach soil quality targets embedded in the economic context of the 
farm. 

The aim of this study is to integrate soil quality and famers’ pro
duction management in a bio-economic modeling approach to identify 
production management strategies that maximize farm income while 
increasing or preserving soil quality. We define four sub-objectives to 
reach this aim: 

(1) Establish a comprehensive set of chemical, physical and biolog
ical soil quality indicators that ensure long-term soil quality in a 
context of production management optimization to maximize 
farm profit.  

(2) Develop a quantitative economic framework to calculate the 
contribution of production management elements towards farm 
income.  

(3) Develop a bio-economic model that (a) calculates the impact of 
current production management on soil quality and farm eco
nomics and (b) optimizes farmers’ production management to 
reach maximum profit.  

(4) Illustrate our model by applying it to four representative farm 
types. 

Fig. 1. Workflow of the description and application of the FARManalytics bio-economic modeling approach to optimize farmers’ production management (PM). 
Numbers refer to section numbers in the chapter Methods. 
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2. Methods 

2.1. Workflow 

The workflow of the description and application of the FARM
analytics model is as follows (Fig. 1). First, we explain the soil quality 
indicators, their target values and quantitative rules how the soil quality 
indicators respond to production management (Section 2.1). Section 2.2 
elaborates on farm economics and explains the contribution of produc
tion management decisions to farm income. The output of Section 2.1 
and Section 2.2 are datasets and decisions rules with the impact of 
production management on both soil quality and farm economics, which 
serve as input for FARManalytics. Section 2.3 describes the actual bio- 
economic modeling approach of FARManalytics. Lastly, Section 2.4 il
lustrates the model through a scenario analysis on four standard farm 
types in the Netherlands. 

2.2. Model scope 

The focus of our study is the farm-level as the farmer is the primary 
actor in sustainable soil management and decision maker on production 
management (Kik et al., 2021b). Although our focus is at the farm-level, 
we only consider the farm activities directly related to crop production, 
but including inputs such as labour and capital (Fresco and Westphal, 
1988). We assume that farms are homogenous in their soil type and 
production management. We focus on crop yield as the primary output 
and do not include the options to generate additional farm income 
through subsidies or provisioning of additional ecosystem services. The 
temporal scale is the length of one crop rotation. Yields are determined 
using a target-oriented approach, which implies that yields are static and 
do not respond to changes in soil quality or production management 
(van Ittersum, Rabbinge, 1997). We illustrate the approach for the 
Netherlands, where there is a high demand for agricultural products and 
intensive land use due to fierce competition for land. This implies that 
we also use soil quality indicators and data suited for the Dutch context. 

2.3. Soil quality 

A first step towards developing soil quality constraints was to 
establish a set of soil quality indicators. We first selected soil quality 
measurements and associated indicators encompassing the various as
pects of soil functioning (Rinot et al., 2019). We defined four criteria to 
select indicators:  

1. The set of indicators has to reflect the variation in soil functions 
contributing to EVSM at farm level (Bünemann et al., 2018; Ros et al., 
2022).  

2. For scalability, data has to be available at large scale and acceptable 
costs (Rinot et al., 2019). Additionally, the indicator has to account 
for specific conditions and must be expandable with new indicators 
or objectives.  

3. The evolution of soil quality indicators over time as response to 
farmers’ production management has to be quantifiable (Stevens, 
2018).  

4. Targets in the form of threshold values have to be available (Rinot 
et al., 2019). They can be based on experimental evidence, literature 
or expert judgement. 

Based on these criteria and in consultation with the developers of 
two existing Dutch soil quality indicator sets (the Open Soil Index (OSI) 
and Soil quality indicators Agricultural soils Netherlands (SAN)(de Haan 
et al., 2021; Ros et al., 2022)), we arrived at the definitive list of soil 
quality indicators (de Haan et al., 2021 personal communication, 
November 8, 2021). Appendix A-1 presents the detailed selection 
procedure. 

We made major adjustments and additions to three indicators. First, Ta
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we included a more detailed calculation of nitrogen (N) flows compared 
to either OSI or SAN. N-flows play a key role in crop production and can 
largely be influenced by production management decisions (Silva et al., 
2021). We developed calculation rules for the tactical modeling of 
N-flows based on the NDICEA model (Van Der Burgt et al., 2006), an 
empirical N-budget model using first order mineralisation kinetics for 
soil organic matter that has been validated for Dutch circumstances. 
Second, we extended the current OSI indicator for subsoil compaction 
vulnerability based on site specific corrections derived from Rücknagel 
et al. (2015) and the Terranimo model (Lassen et al., 2013). In its current 
form, the OSI indicator for subsoil compaction is based on predefined 
calculations with the SOCOMO model (Van Den Akker, 2004), and its 
use to assess the impact of changes in production management soil 
management dynamically, for example annually or across seasons is 
limited. Terranimo is a dynamic model configured for Dutch circum
stances that allowed us to quantify the impact of production manage
ment decisions on subsoil compaction vulnerability. Rücknagel et al. 
(2015) provide guidelines for integrating subsoil compaction vulnera
bility at cropping plan level. Third, we added an indicator for the 
development of plant-parasitic nematodes (PPN) and soil-borne patho
gens (SBP) based on the Dutch nematode and pathogen schemes 
(Molendijk, 2022; Termorshuizen et al., 2020). Whereas OSI and SAN 
only include the current status of nematodes and pathogens, these two 
schemes allowed us to make a semi-quantitative assessment on their 
evolution over time as a response to production management. 

Table 1 presents the complete set of indictors, clustered as chemical, 
physical and biological indicators, including threshold values or ranges 
derived from field experimental evidence (t) or expert judgement (r). 
The typical soil depth that applies for these indicators is 0.25 – 0.30 m. 
For each indicator, we also list modeling constraints. Whereas the in
dicators are used to assess soil quality at a specific location at a certain 
point in time, the constraints are used to set requirements on the 
farmers’ production management to ensure the indicators stay in or 
move towards the target range. For the combination of indicators and 
constraints, one of the following three situations applies: (1) Soil quality 
indicator within target range: formulate constraints for production 
management to ensure the indicator stays in target range. (2) Soil 
quality indictor is below minimum target: formulate constraints for 
production management to move the indicator towards the minimum 
target. (3) Soil quality indicator is above maximum target: Formulate 
constraints for production management to move the indicator towards 
the maximum target. 

For example, with respect to soil organic matter (SOM, nr. 13 in 

Table 1) the indicator is defined as the percentage of SOM in the topsoil 
with a minimum target value of 2%. If current SOM content is above the 
target, the modeling constraint refers to a minimum ΔSOM in kg ha− 1 

year− 1 to ensure SOM content stays above the target. If the SOM content 
is below the target value, the required ΔSOM input in kg ha− 1 year− 1 has 
to be higher to move the SOM content towards the target. 

Because of trade-offs and synergies between various soil quality in
dicators it is essential to include their interrelations in modeling (Rinot 
et al., 2019; Stevens, 2018; Bouma, 2014). An example of an interrela
tion is the dependency of SOM decomposition on pH. Many soil quality 
indicators depend on soil inherent properties. For example, the rate of 
SOM decomposition is dependent on the soil texture. Table 2 presents an 
overview of indicator interrelations. 

After selecting soil quality indicators, we established their relevant 
interrelations and the relations with production management (Kik et al., 
2021a). Farmers’ production management is the primary determinant of 
soil quality. Kik et al. (2021a) provide a basic overview on how pro
duction management decisions at a strategic, tactical and operational 
level influence soil quality. Strategic choices relate to long-term pro
duction management decisions, e.g., crop rotation design (Dury et al., 
2012). Tactical choices are the choices made within the growing season, 
e.g., cover crop choice or the manure application regime (Dury et al., 
2012). Choices at the operational level are highly dynamic and typically 
are made on a day-to-day basis, e.g., whether and how much to irrigate 
during a period of drought. The focus of this study is on the strategic – 
tactical production management decisions. Table 3 presents the pro
duction management decisions included in our bio-economic modeling 
approach, and Table 4 presents how each of them relate to the soil 
quality indicators. 

Appendix A-3 contains extensive factsheets that explain all calcula
tions, required data and references for every soil quality indicator and 
their response to production management decisions. 

2.4. Farm economics 

To quantify farm economics we used a business economics approach 
to calculate profit. We chose to use profit as an economic indicator 
rather than EVL since in the current approach of FARManalytics we do 
not consider the cumulative returns over time against a discount rate. 
Kay et al. (2012) define profit at farm-level as the value that remains 
after subtracting all costs, including opportunity costs for own labour 
and capital from gross income. For accurate modeling, this implies that 
both variable and fixed costs of production have to be addressed for all 

Table 2 – 
Interrelations between soil quality indicators. Rows (dependent indicators) show which other indicators impact the considered indicator, e.g. Nitrogen balance (Nbal) 
is influenced by pH and Soil Organic Matter (SOM). Columns (independent indicators) show the indicators the considered indicator has an impact on e.g. Cation 
Exchange Capacity (CEC) has an impact on Potassium Availability Index (KAI) and Magnesium Availability Index (MAI). Relations are included as nr. of dependent 
indicator -> nr. of independent indicator. Interrelations in bold are implemented in the model. See Table 1 for explanation of other acronyms.    

Independent indicators              
Chemical      Physical    Biological   Inherent 

Dependent ind. Nbal PAI KAI Sbal MAI pH CEC CRA WEV SV SCI PAW SOM NEM SBP Soil texture 
acronym nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Nbal  1      6→1       13→1   16→1 
PAI  2                 
KAI  3       7→3          
Sbal  4             13→4   16→4 
MAI  5       7→5          
pH  6             13→6   16→6 
CEC  7      6→7       13→7   16→7 
CRA  8      6→8     11→8 12→8 13→8   16→8 
WEV  9             13→9   16→9 
SV  10        8→10   11→10  13→10   16→10 
SCI  11            12→11 13→11   16→11 
PAW  12           11→12  13→12   16→12 
SOM  13      6→13          16→13 
NEM  14      6→14          16→14 
SBP  15           11→15 12→15    16→15  
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production management decisions. Inaccurate attribution of costs and 
revenues to production management decisions can lead to over- or un
derestimations. This so-called “cross subsidisation bias” can result in 
poor management decisions (Gupta and Galloway, 2003; Mattetti et al. 
2022). Therefore, we used Activity-Based-Costing (ABC) to accurately 
attribute fixed costs towards the respective production management 
decisions (Drury, 2008). 

We defined a farm as an entity owning or using a certain area of land. 
We calculated profit at farm-level as the sum of profit or costs made by 
each production management decision minus the farm overhead costs: 

Pfarm = Pc +Pcr − Ccc − Cm − Cf − FOC (1) 

In which:  

• Pc(€): Profit from crop production  
• Pcr(€): Profit from crop residue management  
• Ccc(€): Costs from cover crop cultivation  

• Cm(€): Costs from manure application  
• Cf (€): Costs from fertilizer application  
• FOC(€): Farm Overhead Costs, general overhead costs that cannot be 

attributed to production management decisions. 

Throughout our approach, we did not consider Farm Overhead Costs. 
The profit calculated is therefore not the farm profit but defined as 
“profit on crop enterprise”, representing the total profit at farm level 
excluding costs that cannot be attributed to crops, cover crops, manure, 
crop residue or fertilizer. In the remainder of this paper we will refer to 
profit as the profit on crop enterprise. 

Fig. 2 visualizes the procedure to calculate profit on crop enterprise: 
Because the procedure is the same for all production management 

decisions, we substituted the indices c, cc,m, cr, f from Eq. 1 with pm in 
the following calculations. The general procedure to calculate net profit 
or cost for a specific production management decision is: 

Ppm =
(
Rpm − DCpm − OCpm

)
*Areapm (2) 

In which:  

• Rpm
(
€ ha− 1): Physical output times price.  

• DCpm(€ ha− 1): Direct costs of production management inputs, such as 
seeds and crop protection inputs.  

• OCpm(€ ha− 1): Total costs (variable + fixed) of field operations and 
storage & procession operations.  

• Areapm(ha): Area of production management decision. 

For the production management decisions that do not generate 
revenue, such as cover crops, manure and fertilizer application, the 
revenue component of Eq. 2 is set to zero. Total costs for such a pro
duction management decision are the sum of direct costs and costs of 
operations. 

Operations costs were calculated according to the following equa
tion: 

OCpm = MEpm + IBpm + LApm +ENpm +CONpm (3) 

In which: 

• MEpm (€ ha− 1): Mechanization costs, consisting of depreciation, in
terest, maintenance and insurance. Attributed to the specific 

Table 3 
– Definition and illustration of farmer’ production management decisions 
included in bio-economic modelling approach FARManalytics. 1: adapted from 
Castellazzi et al. (2008) 2: Ramesh et al. (2019).  

PM decision Definition Example 

Crop rotation1 The set and sequence of crops 
grown on a field  

• Wheat – Potatoes – Wheat – 
Sugar beets  

• Wheat - Sugar beets – 
Potatoes - Corn 

Cover crop2 A close-growing crop that 
provides soil protection, 
seeding protection and soil 
improvement between periods 
of main crop production  

• Yellow mustard planted 
after winter wheat (1-Aug) 
and terminated before 
potato planting (1-Apr). 

Manure Organic matter originating 
from livestock husbandry or 
composting  

• 30 ton ha− 1 pig slurry 
applied 1-Mar  

• 20 ton ha− 1 compost 
applied 1-Oct 

Fertilizer Application of plant nutrients 
through natural or 
synthetically produced 
fertilizer  

• 200 kg Calcium Ammonium 
Nitrate (27% N) application 
on 1-May 

Crop residue 
management 

Decision to sell crop residues 
to generate revenue or keep 
them on the field to enhance 
soil quality  

• Sell wheat straw  
• Keep wheat straw  

Table 4 – 
Relations between soil quality indicators and production management. Production management decisions indicated in bold are considered in this study. An “x” 
represents a quantitative relationship included in the model. A “-” represents a known relationship not yet included in the model. See Table 1 for explanation of soil 
quality indicator acronyms.    

Soil quality indicators              
Chemical      Physical     Biological  

Production management decisions Nbal PAI KAI Sbal MAI pH CEC CRA WEV SV SCI PAW SOM PPN SBP 

Strategic 
dimension 

Farm set-up                

Production system x x x x x           
Mechanization & installation 
configuration           

x     

Tillage system -       - - - - - -   
Land use activities                
Crop rotation x x x x x x  - - - x  x x x 
Cover crops x - - -    - - - -  x x x 
Fallow periods - - - -    - - -    x x 
Soil management                
Organic manure x x x - - x   -  x  x   
Lime (CaO) & Gypsum (CaSO4)    x x x  -   x     
Field improvements (e.g. drainage)        -  - - -  - - 
Crop management                
Crop cultivar selection -             x x 
Crop residue management x x x -     - - x  x   

Tactical 
dimension 

Fertilzer application regime x x x x x x     -      
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production management decisions based on ABC where usage in 
hours was used as a costs driver. 

• IBpm
(
€ ha− 1): Installation and building costs, consisting of depre

ciation, interest and maintenance. For example costs of a box storage 
for potatoes.  

• LApm
(
€ ha− 1): Labour costs, including opportunity costs of own 

labour. 
• ENpm

(
€ ha− 1): Energy costs, costs of energy used in field opera

tions and storage & processing operations. 
• CONpm

(
€ ha− 1): Contractors costs, total costs if operations is out

sourced to a contractor. 

2.5. Bio-economic model FARManalytics 

The bio-economic modeling approach ‘FARManalytics’ consists of 
two modules, PM calculator and PM optimizer. In the PM calculator, the 
production management decisions on crop rotation, cover crops, 
manure, fertilizer and crop residues are considered as fixed inputs to be 
made by the user. In the PM calculator, these decision variables are 
linked to soil quality and economic data (see Section 2.1 and Section 
2.2) to calculate the impact of current production management on soil 
quality indicators and farm economics. The key feature of the PM 
calculator is that this module allows to gain insight in whether current 
production management keeps soil quality indicators in their target 
range. The module PM optimizer is an optimization model that selects 
the production management (crop rotation, cover crops, manure, 

Fig. 2. – Outline for the calculation of profit and costs on production management decisions. The sum of total profit or costs on all production management decisions 
multiplied by their respective area results in profit on crop enterprise, the profit at farm-level excluding overhead costs. 

Fig. 3. Business Process Model and Notation (BPMN) diagram of the PM optimizer module in the bio-economic model approach FARManalytics. PM stands for 
Production Management, ROTAT+ is a crop rotation generator, and CMRF modeling stands for cover crops, manure, crop residues and fertilizer optimization within a 
crop rotation using mixed-integer linear programming. 

M.C. Kik et al.                                                                                                                                                                                                                                   



European Journal of Agronomy 157 (2024) 127192

7

fertilizer, crop residue management) achieving the soil quality targets 
from Section 2.1 while earning highest profit on crop enterprise. 

Fig. 3 presents an outline of the PM optimizer in a Business Process 
Model and Notation (BPMN) diagram. 

The PM optimizer has three processes included (Fig. 3). In process 
one, crop rotations are generated using ROTAT+ (Dogliotti et al., 2003). 
The input for ROTAT+ is a list with crops and agronomic data such as 
planting dates, harvest dates, maximum crop frequency and minimum 
period of return. Based on agronomic rules e.g., maximum crop fre
quency and minimum period of repeat between the same crops, 
ROTAT+ generates all feasible crop rotations. 

In process two, the choice of cover crops, manure application, crop 
residue management and fertilizer application (CMRF) is optimized 
within each feasible rotation. The input is a dataset with the impact on 
soil quality and economics for crops, cover crops, manure, crop residues 
and fertilizer. For example, the nitrogen uptake of a crop, the nematode 
host function of a cover crop, the P content of manure and revenues 
generated by selling the crop residue wheat straw. First, within the 
CMRF modeling the soil quality and economic data of the crops in the 
crop rotation are initialized. Second, the other production management 
decisions within each crop rotation are optimized with a Mixed-Integer- 
Linear-Programming (MILP) model. The objective function of the model 
is to maximize profit on crop enterprise over time of one rotation. 

The decision variables in the MILP model are the following:  

− Cover crops (binary): Plant cover crop cc in year t.  
− Manure application (continuous): Quantity of manure type m in year 

t.  
− Crop residues (binary): Sell or keep crop residues cr of crop c in year t.  
− Fertilizer (continuous): Quantity of fertilizer type f in year t. 

The model contains three types of constraints:  
− Agronomic constraints ensure the agronomic feasibility of the chosen 

solution. An example of these constraints is the cover crop con
straints that ensure cover crops can only be planted between crops if 
there is sufficient growing time in between. Another example are 
manure constraints that ensure manure only applied at desired times 
and in feasible quantities.  

− Legal constraints limit the usage of N from animal manure, total N 
and total P according to the Dutch nutrient legislation. 

− Soil quality constraints (Table 1): constraints on production man
agement to ensure soil quality targets are achieved, with the un
derlying assumption that if soil quality constraints are met soil 
quality is preserved. Because of their dynamic nature, the N, S and 
pH constraints are applied yearly, whereas other soil quality con
straints are applied over the length (in years) of the rotation. 

Process three in Fig. 3 is to select the best production management 
set. The result of process two is collection of all production management 
sets: feasible crop rotations with optimized cover crop, manure, fertilizer 
and crop residue choices and the consecutive impact on soil quality and 
economics. Within this collection, the optimal production management 
set is the set that has highest profit while meeting the soil quality 
constraints. 

The number of feasible crop rotations generated by ROTAT+ can 
impede the computational feasibility of process 2. Therefore, we 
implemented a heuristic: within the ROTAT+ output we select the ro
tations with the highest crop profit at rotational level. This set goes 
through process 2: If an optimal solution is found, calculations stop. If no 
optimal solution is found, we select a further set of rotations with highest 
profit ranks and run process 2 again. This procedure is repeated until a 
feasible solution is found or until all feasible rotations are processed 

2.6. Farm types and scenarios 

To illustrate the model, we defined four standard farm types based on 
the Dutch Farm Accountancy Data Network (FADN), managed by 

Wageningen Economic Research and KWIN AGV 2022 (van der Voort, 
2022). KWIN AGV is a Dutch handbook containing quantitative stan
dards for arable farming. Yields, prices, costs of inputs and costs of assets 
where all determined based on KWIN AGV 2022. For the land costs, we 
took the long-term land rent price from KWIN AGV 2022. We evaluated 
the impact of production management on soil quality and profit for two 
arable farm types (intensive, extensive) on two different but represen
tative soil types (clay, sand) (Table 4). For each soil type an extensive 
and intensive current production management regime has been defined. 
The extensive production management focuses more on preserving soil 
quality with an extensive crop rotation, the use of cover crops where 
possible and input of cattle slurry and solid manure. The intensive 
production management focuses on short-term profit with an intensive 
crop rotation, a limited number of cover crops and preferential use of pig 
and cattle slurry as manure. 

We defined the following scenarios: 
We designed the following scenarios, which were applied on every 

farm type:  

• Baseline (b): Continuation of current production management 
(Table 5) during one complete rotation.  

• Profit tactical (pt): Optimization of production management choices 
in the tactical dimension without soil quality constraints, except for 
crop nitrogen requirements and legal nutrient norms. Optimization 
in the tactical dimension only refers to potential changes in the cover 
crops, manure, crop residues and fertilizer.  

• Soil quality tactical (st): Similar to the profit scenario but including 
all soil quality constraints as defined in Table 1. However, this sce
nario does not consider changes in crop rotation.  

• Soil quality strategic (ss): Optimization of production management in 
the strategic dimension including soil quality constraints and po
tential changes in crop rotation and cropping plan. For both the 
extensive and intensive farm types, changes in crop rotation can be 
made based on the crops that are currently on the intensive farm 
types because this farm type has the highest diversity of crops. In the 
extensive ss scenarios, a minimum share of 50% of crops in the 
rotation has to be cereals (incl. corn) whereas this is minimum 25% 
in the intensive scenarios. 

In the baseline scenario, the PM calculator of FARManalytics is used 
to assess the impact of current management (Table 5) on soil quality and 
economics. The other scenarios (profit tactical, soil quality tactical and 
soil quality strategic) involve optimization and use the PM optimizer 
module. We distinguish a soil quality tactical scenario and a soil quality 
strategic scenario because of the substantial difference in time by which 
the proposed changes in production management can be implemented. 
The changes in the soil quality tactical scenarios can usually be imple
mented on short notice without the need to drastically alter the farm set- 
up. For example, planting other cover crop species usually only implies 
ordering other cover crop seeds from the supplier. In contrast, changing 
the cropping plan might require a farmer to invest in new capital assets 
such as machinery or installations. 

An additional soil cover constraint is applied in all scenarios except 
the profit tactical scenarios. This constraint ensures that the soil is 
covered by either a crop or a cover crop for a specified percentage of the 
time of the rotation. For clay soil this is 75%, and for sandy soil 70%. 
Additional constraints were set on cover crops regarding the frost 
vulnerability and regrowth scores. Both scores are in the range of zero to 
five. A score of zero implies a that a cover crop regrows after termination 
or is not vulnerable to frost. In contrast, a score of five means that a cover 
crop does not regrow and is highly susceptible to frost. Since regrowth 
and frost resistance are often undesirable, only cover crops with a score 
of four or five were withheld. 

In the scenario analysis, we did not apply the P-advice constraint as 
the P-norm was lower for all farm types. Since the P-norm then becomes 
the limiting factor, it was not possible to implement the P-advice 
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constraint. Furthermore, we also did not apply the SCI constraint 
because with the current crops cultivated on the farms the threshold 
value could never be met. 

3. Results 

The results section is structured as follows: First we show the results 
of the crop profit calculation for the farm type ‘clay intensive’. Subse
quently, we show the results of the scenario calculations and discuss the 
results in the order baseline – profit tactical – soil quality tactical – soil 
quality strategic. Finally, we show a trade-off curve for the key soil 
quality indicator Soil Organic Matter vs. profit. 

3.1. Crop profit 

Table 6 shows the results of the crop profit calculation on the farm 

type ‘clay intensive’. The profit for winter wheat is negative, i.e. 
− €233 ha− 1, which is not surprising as in the Netherlands winter wheat 
is mainly cultivated as a break crop. Break crops are cultivated to benefit 
soil quality in the first place, not as a cash crop (Robson et al., 2002). The 
net profit for ware potatoes is just slightly positive, i.e. €20 ha− 1, despite 
the relatively high revenue of €8080 ha− 1, as the costs of crop inputs 
(€2240 ha− 1), field operations (€2226) and storage operations (€2494) 
have a negative impact on the financial returns. With a profit of 
€2683 ha− 1, onions are the most profitable crop: crop revenue is 
approximately €2000 ha− 1 higher than for potatoes, while the total costs 
are comparable. Despite a revenue of only €3900 ha− 1, sugar beets are 
the second most profitable crop with a profit of €933 ha− 1. This can be 
explained by the low field operation costs and the absence of storage and 
processing costs. Although the revenue for carrots is almost three times 
the revenue of sugar beets, the profit is only 50% of that of sugar beets. A 
costly harvest leads to high field operations costs for carrots (>

Table 5 – 
Current production management decisions on four different Dutch farm types to illustrate the FARManalytics bio-economic modeling approach.   

Farm types    
PM decisions Clay extensive Clay intensive Sand extensive Sand intensive 

Crop rotation WP-WW-SB-WW-WP-WW-SB-WW WP-WW-SO-SB-WP-WW-CA-SB WP-SC-WB-SB-WP-SC-WB-SB WP-WB-SB-CA-WP-SC-SB-SO 
Cover crops (WW) -> Winter radish (WW) -> Yellow Mustard (WB) -> White radish (WB) -> White radish    

(SB year 4) -> Winter rye (SC) -> Winter rye     
(SB year 3) -> Winter rye     
(SO) -> Yellow mustard 

Crop residue management Keep wheat straw Sell wheat straw Keep barley straw Sell barley straw      

Manure & lime WW crop: 40 ton ha− 1 CS WP spring:25 ton ha− 1 PS WP spring:30 ton ha− 1 CS WP spring:35 ton ha− 1 CS  
WW autumn: 20 ton ha− 1 CSM WW crop:27.5 ton ha− 1 PS SC spring:30 ton ha− 1 CS SB spring:35 ton ha− 1 CS   

WW autumn:20 ton ha− 1 CS SC autumn:20 ton ha− 1 GFTC CA spring:30 ton ha− 1 CS    
WB autumn:12.5 ton ha− 1 CSM SC spring:35 ton ha− 1 CS    
SB spring:30 ton ha− 1 CS SO spring:30 ton ha− 1 CS 

Fertilizer (kg N/P/K/S/Mg ha− 1)    
WP: ware potatoes 167 N/135 K/68 S/20Mg 140 N/135 K/68 S/16Mg 108 N/14 P/111 K 122 N/18 P/111 K 
SB: sugar beets 108 N/16Mg 108 N/16Mg 59 N 59 N 
SO: seed onions  133 N/147 K/68 S/14Mg  93 N/25 P/108 K 
CA: carrots  59 N/107 K/68 S/4Mg  76 N/25 P/78 K 
WW: winter wheat 108 N/16Mg 95 N/14Mg   
WB: winter barley   143 N/90 K/47 S 143 N/90 K/47 S 
SC: silage corn   49 N/36 K 49 N/18 P/36 K 

Crops: WP = ware potatoes, SB = sugar beets, CA = carrots, SO = seed onions, WW = winter wheat, WB =winter barley, SC = silage corn. Manure: PS = pig slurry, CS =
cattle slurry, CSM = cattle solid manure, GFTC = GFT compost. Fertilizer: N = Nitrogen, P = P2O5, K = K2O, S = SO3, Mg = MgO 

Table 6 
Crop profit for crops cultivated on a hypothetical arable farm of 100 ha on clay soil in the Netherlands.  

Crop Unit Ware potatoes Winter wheat Seed onions Sugar beets Carrots 

Revenues       
Crop yield kg ha− 1 50500 10000 54300 97500 85500 
Crop price € kg− 1 0.16 0.21 0.18 0.04 0.14 

Total crop revenue € ha− 1 8080 2080 9883 3900 11,799 
Direct costs       

Seeds € ha− 1 1440 107 800 282 990 
Crop protection € ha− 1 800 330 960 354 480 

Total direct costs € ha− 1 2240 437 1760 636 1470 
Crop gross margin € ha− 1 5840 1643 8123 3264 10,329 
Operation costs crop cultivation € ha− 1      

Labour € ha− 1 494 100 338 156 713 
Energy € ha− 1 212 80 189 118 212 
Mechanization € ha− 1 1520 257 1074 352 1045 
Contractor work € ha− 1 0 339 577 605 1745 

Total operation costs crop cultivation € ha− 1 2226 776 2177 1231 3714 
Operation costs storage & processing       

Inputs storage € ha− 1 515  116  0 
Labor € ha− 1 50  50  125 
Energy € ha− 1 132  282  1074 
Mechanization € ha− 1 314  314  641 
Installations & buildings € ha− 1 1483  1401  3224 

Total operation costs storage & processing € ha− 1 2494 0 2162 0 5063 
Land costs € ha− 1 1100 1100 1100 1100 1100 
Crop profit € ha¡1 20 -233 2683 933 451  
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€2000 ha− 1), on top of high storage & processing costs due to the use of 
expensive box storage and mechanical cooling. The results of the crop 
profit calculation show that the comprehensive economic calculations 
yield interesting differences in the financial returns between crops that 
would not have become clear based on a simple gross margin approach. 
For example, the gross margin of ware potatoes (€8080 − €2240 =
€5840) is substantially higher than the gross margin of sugar beets 
(€3900 − €636 = €3264) while the ultimate profit of sugar beets is €903 

higher. 
Table 7 shows the main results for profit and the soil quality con

straints for the baseline scenarios and the soil quality strategic scenario 
for all four farm types. 

3.2. Baseline scenario 

The baseline results follow from calculation of the current produc

Table 7 – 
Profit and related soil quality indicators outcomes for scenarios. With regard to soil quality indicators we show minimum (t_min, in grey) and maximum thresholds 
(t_max, yellow) and calculation results. If the thresholds are not met, results are underlined and indicated in red.  

Farm type & scenario acronyms: C = clay, S = Sand, I = intensive, E = extensive, _b = baseline, _ss = soil quality strategic 
Soil quality indicators: N = Nitrogen, P = Phosphorous, K = Potassium, S = Sulphur, Mg = Magnesium, CEC = Cation Exchange Capacity, CRA = Crumbling Ability, 
WEV = Wind Erosion Vulnerability, SV = Slaking Vulnerability, SCI = Soil Compaction Index, PAW = Plant Available Water, SOM = Soil Organic Matter, PPN = Plant 
Parasitic Nematodes, SBP = Soil-Borne Pathogens. 
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tion management in Table 5 with the PM calculator module of FARM
analytics. In all baseline scenarios the legal norm for P-application is 
lower than the P-advice (Table 7). In all baseline scenarios the Subsoil 
Compaction Index (SCI) exceeds the threshold value but extensive farms 
(CE and SE) have a better SCI score compared to intensive farms (CI and 
SI). This can be explained by the higher share of cereals that have a 
lower SCI impact. Besides P-advice and SCI, CE_b fulfils all soil quality 
thresholds. Additional concerns in CI_b are the high N-surplus and the 
low input of K. In SI_b and SE_b, the input of Sulphur (S), Magnesium 
(Mg) and Neutralizing Value (NV) is insufficient as S and Mg fertilization 
and liming (input of NV) are not in the current production management. 
Due to the very low Cation Exchange Capacity (CEC) of the sandy soil, an 
input of 4564 kg SOM ha− 1 is required to rise the CEC. Farms on sandy 
soils do not fulfil this threshold, although the input of SOM is substan
tially higher in SE_b compared to SI_b. Cultivating crops vulnerable for 
M.chitwoodi and P.penetrans causes the target value for these nematodes 
to be exceeded in SI_b. In both CE_b and SE_b, total profit is negative 
(Table 7). 

3.3. Profit tactical scenario 

The profit tactical scenario (pt) results from optimization of pro
duction management with the PM optimizer module of FARManalytics 
without soil quality constraints applied. Table 8 lists the production 
management choices for all scenarios. Table 9 breaks down the profit in 
its underlying components for all scenarios on all farm types. In the 
profit tactical scenario there are no soil quality constraints apart from 
the crop nitrogen requirements. Excluding cover crops results in a profit 
increase between €80 ha− 1 and €178 ha− 1 (Tables 7 and 9). The results 
also show the economic importance of pig slurry: its inclusion results in 
a profit increase of €10 to €93 and it helps to reduce fertilizer use (e.g., 
€188 ha− 1 higher profit due to reduced fertilizer use in CI_p compared to 
CI_b). Crop residues are always sold to generate additional profit 
compared to the baseline, yielding €150 ha− 1 on clay soil and €62 ha− 1 

on sandy soil. In all profit scenarios, total profit increases substantially 
compared to all baseline scenarios, However, this is at the expense of soil 
quality. For example in scenario SI_p, the input of SOM is only 
1187 kg ha− 1 whereas the threshold is 4564 kg ha− 1. 

3.4. Soil quality tactical scenario 

In the soil quality tactical scenario (st) the PM optimizer module of 
FARManalytics maximizes profit while fulfilling soil quality thresholds 
by changing cover crop choice, manure & fertilizer application and crop 
residue management. Cover crops are planted to achieve the soil cover 
requirement. On sandy soil, winter radish and A. strigosa are the 
preferred cover crops: winter radish is a non-host for the nematode 
M. chitwoodi and A. strigosa is a non-host for the nematode P. penetrans. 
By choosing these cover crops, the model is able to fulfill the soil cover 
constraint without violating the nematode constraint. Cattle slurry is 
preferred over pig slurry as it allows a higher input of K and SOM. This 
results in a decrease in profit generated with manure compared to the 
profit tactical scenarios, e.g. €29 ha− 1 in CE_st compared to €68 ha− 1 in 
CE_pt. On sandy soil, applying additional compost helps to meet the SOM 
target value. Because input of compost is a cost, profit generated with 
manure application decreases with respectively €45 ha− 1 for SE_st and 
€101 ha− 1 for SI_st compared to the baseline. Model results show a 
substantial decrease in fertilizer usage. The application of N fertilizer is 
reduced with approximately 50% in all st scenarios. P and K fertilizer are 
barely used anymore. Subsequently, profit increases in the range of 
€78 ha− 1 in SE_st up to €181 ha− 1 in CI_st compared to baseline. S and 
Mg fertilizer are applied on sandy soil to reach the target values. Betacal, 
available as a waste stream from sugar beet processing, is applied to 
increase and maintain pH at low costs. Even with soil quality con
straints, crop residues are sold in all scenarios to generate additional 
profit. 

3.5. Soil quality strategic scenario 

The soil quality strategic scenario also allows for changes in the crop 
rotation. In CE_ss a 5-year rotation with sugar beets, seed onions and 
winter wheat is preferred. Within the 50% space for intensive crops, 
sugar beets and seed onions have the highest profit. In CI_ss 75% of the 
rotation can include intensive crops. Compared to the baseline, this 
scenario changes by increasing the frequency of seed onions and 
lowering the frequency of ware potatoes and sugar beets. A similar 
pattern can be observed in SE_ss and SI_ss. In SE_ss, silage corn is still 
cultivated despite its low revenue because there is no better alternative: 
50% of the rotation must be filled with extensive crops and two 
consecutive cultivations of winter barley are not allowed. The ability to 
choose other crop rotations substantially increases the profit while soil 
quality thresholds (except SCI) can be achieved: Profit is €105 ha-1 in 
CE_ss while in CE_st profit is €618 ha− 1. 

To illustrate the models’ capability for more in-depth analyses, 
Table 9 includes ΔSOM against profit for all scenarios. The baseline 
scenarios for clay extensive and sand extensive perform well on ΔSOM 
but poorly on profit. This is exactly the other way around for the profit 
tactical scenarios on clay intensive and sand intensive: these scenarios 
result in high profit but low ΔSOM. ΔSOM is a limiting factor on sandy 
soil, but not on clay soil as all the optimized scenarios on sandy soil are 
exactly on the target value. These results show that when the model is 
able to change more production management decisions (i.e., crop rota
tion in soil quality strategic scenarios), the trade-off between ΔSOM and 
profit can be overcome. For all farm types, the ΔSOM target can be met 
while increasing profit compared to the baseline scenarios. 

4. Discussion & conclusions 

The objective of this study was to develop and illustrate FARM
analytics, a bio-economic modeling approach to maximize economic 
returns while preserving soil quality. FARManalytics is illustrated for 
scenarios on four standard farm types in the Netherlands. 

4.1. Model outcomes and model behaviour 

For FARManalytics to provide added value, it should provide cred
ible outcomes with regard to soil quality indicators and farm economics 
in different scenarios. 

4.1.1. Baseline scenario 
The model is able to calculate the impact of current farmers’ pro

duction management on soil quality and profit on crop enterprise on 
different soil types and scenarios. For example, the farm types “clay 
intensive” and “sand intensive” have a higher profit but a lower score on 
the soil quality indicators soil organic matter (SOM) input and subsoil 
compaction vulnerability compared to the farm types clay extensive and 
sand extensive. The model calculates correctly that crop and soil 
requirement differ per soil type i.e., higher levels of SOM, lime and 
nutrients on sand compared to clay. 

4.1.2. Profit tactical scenario 
When farmers optimize their management for short-term profit few 

soil quality constraints are applied, only legal nutrient norms and a 
requirement for sufficient nitrogen (N) input are taken into account. As 
expected, cover crops are not implemented as they have a negative 
direct impact on profit and in the absence of soil quality constraints 
there is no incentive to do so. Pig slurry is the preferred manure type, as 
it is available at a price premium for the arable farmer. This is confirmed 
by substantial decreases in fertilizer use because except for N, for which 
there are no minimal nutrient input requirements. Crop residues are 
always sold to generate additional revenue. 
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4.1.3. Soil quality tactical scenario 
In the tactical scenario, soil quality constraints are applied and the 

model is allowed to change the cover crops, manure, fertilizer and crop 
residue management within the existing rotation. The model can meet 
the soil quality targets without implementing relatively costly (ca. 
€250 ha− 1) cover crops. This contradicts current common practice in 
Dutch arable farming where cover crops such as winter wheat are grown 
after all early harvested crops. Farmers’ might perceive additional 
benefits from cover crops than those currently included in our soil 
quality indicator set. The agronomic benefits of cover crops are also 
broadly acknowledged in literature including soil organic matter build- 
up, minimal nutrient losses and improved soil structure (Hao et al., 
2023; Adetunji et al., 2020). The types of cover crops themselves are 
credible: on clay soil oats, vetch and phacelia are preferred as they are 
vulnerable to frost, do not regrow and provide up to 75 kg N ha− 1 for the 
following crop. On sandy soil, winter radish and A. strigosa are preferred 
as they do not host problematic plant-parasitic nematodes. Regarding 
manure, cattle slurry and compost are preferred over inorganic fertil
izers and pig slurry. Cattle slurry is freely available and a valuable source 
of nutrients and SOM. Additional compost is applied on sandy soil, as it 
can provide more organic matter per unit phosphorous (P), where the P 
application is legally limited by manure regulations. Taking all soil 
quality constraints into account, the model is still able to substantially 
reduce fertilizer use. These results differ greatly from the current prac
tice in the baseline scenario. Regarding N, one explanation is that the 
model considers, contrary to current practice, all possible sources of N (i. 
e. deposition, soil mineralization and mineralization from manure). 
However, N losses such as volatilization, leaching and denitrification 
during the growing season are not taken into account which may lead to 
an overestimation of the amount of available nitrogen. Given the organic 
matter and nutrient inputs via manure and compost, in combination 
with the relatively high contents in the soil, P and potassium (K) fer
tilizer are not needed. Even with all soil quality constraints in place, crop 
residues of winter wheat and winter barley can be sold in all scenarios. 
Selling these crop residues results in additional profit (€250 - €300 ha− 1) 
while the associated removal of nutrients and SOM can be compensated 
by other management choices (i.e. applying manure or growing cover 
crops). Nevertheless, this result is remarkable: on Dutch farms it is 
common practice to keep the crop residues on the field for their 
perceived benefits on soil quality. 

4.1.4. Soil quality strategic scenario 
Changing the cropping plan or crop rotation had a substantial impact 

on the profit at farm level, particularly when onions were included. This 
finding illustrates the added value of our economic calculation frame
work for crop profit, which is in line with the conclusions drawn by 
Mattetti et al. (2022) who state that “the existence of robust and reliable 
cost is of outmost importance for making informed decisions”. Our 
findings correspond to those of others, e.g. Alfandari et al. (2015) and 
Capitanescu et al. (2017), who show that the crop rotation is of major 
importance for both agronomical and economic performance. Despite 
the pivotal role of the cropping plan, inclusions of other production 
management decisions such as cover crops, manure, fertilizer and crop 
residues are crucial to meet soil quality thresholds (Dogliotti et al., 
2005). For example, soil organic matter can be optimized by applying 
manure or compost and growing cover crops. The soil quality threshold 
can never be met solely based on changes in the cropping plan. 

4.1.5. Synthesis 
Nutrient management, soil compaction and soil organic matter input 

pose major challenges for soil quality in the Netherlands (Mandryk et al., 
2014; Ros et al., 2022; Silva et al., 2021). Numerous studies recommend 
production management decisions based on models, field experiments 
or statistical analysis. For example: 
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• Silva et al. (2021) studied the impact of different nutrient sources 
(fertilizer, manure) on N uptake efficiency and N surplus.  

• Hanse et al. (2011) studied the impact of subsoil compaction on 
sugar beet yield and found that lower soil stress caused by lower axle 
load and less field operations reduce the occurrence and impact of 
soil compaction.  

• Hijbeek et al. (2018) studied farmer intentions to adopt production 
management decisions such as input of animal manure or compost, 
cereal crops in crop rotation and cover cropping to increase SOM 
content. 

All these studies focus on management recommendations for a spe
cific indicator on field level. However, the decision-making process at 
the farm level must take all soil quality aspects into account in a specific 
socio-economic context (Schreefel et al., 2022). FARManalytics allows 
to make decisions with a holistic view on soil quality and the inclusion of 
socio-economic aspects can help to select production management de
cisions that ensure the long-term preservation of soil quality while 
maintaining a financially robust strategy. This is illustrated in the sand 
soil quality scenarios, where an ambitious SOM threshold has to be met: 
the solution provided by FARManalytics is to use a combination of 
compost and slurry and still sell crop residues. The input of compost and 
slurry ensures sufficient input of SOM and nutrients, while selling crop 
residues increases the profit. 

4.2. Model evaluation 

FARManalytics is a bio-economic modeling approach that integrates 
the impact of production management choices on soil quality and eco
nomics at farm level. However, the current set-up of FARManalytics has 
some limitations. 

4.2.1. Soil quality indicator selection 
Compared to some other studies, on soil quality indicators, our study 

contains a limited number of physical and especially biological in
dicators (Dominati et al., 2010; Greiner et al., 2017; Jónsson and 
Davídsdóttir, 2016). Bünemann et al. (2018) review studies with a more 

extensive set of physical indicators (e.g., penetration resistance, hy
draulic conductivity and aggregate stability) and biological indicators 
(e.g., soil respiration, earthworms, and microbial diversity). The main 
reasons why we did not include these indicators are: (1) their evolution 
over time as a result from production management could not be calcu
lated, (2) indicator data is not available or (3) threshold values are not 
available. Bünemann et al. (2018) and Ros et al. (2022) also described 
this limitation. 

4.2.2. Soil quality indicator set-up 
The current indicator set is based on Dutch national circumstances, 

calculations and samples. We believe this approach is justifiable, as 
agronomy is always controlled by local site conditions and no commonly 
accepted international set of soil quality indicators is available. Besides 
arable farming, the indicator set can also be used in other types of 
farming, e.g. dairy, vegetable and flower production (see Ros et al., 
2022). However, it is likely that in its current form the set of soil quality 
indicators does not generalize outside the Netherlands. The indicator set 
can, however, be adapted to other site conditions: indicators and con
straints can be supplemented or replaced by more representative ones 
for other countries to do comparable analyses (as illustrated by Ros 
et al., 2022). For some quality indicators (e.g., Cation Exchange Ca
pacity and plant parasitic nematodes), thresholds are based on expert 
judgement. Broader application and validation would be encouraged to 
generate field experimental evidence. Detailed limitations and recom
mendations for every soil indicator are provided in the soil quality 
factsheets in Appendix A-3. 

4.2.3. Target-oriented approach 
FARManalytics uses a target-oriented approach in which the 

required value of soil quality indicators and production management is 
derived from a target yield level that does not respond dynamically to 
the environment (van Ittersum, Rabbinge, 1997). However, one of the 
key questions that remains is: how do crop yield and future profit 
respond to changes in soil quality? Answering this question requires 
detailed production functions where yield is a function of soil quality. 
Although such functions exist for individual components, such as 

Table 9 
– Farm profit broken down in its different underlying components vs. input of soil organic matter (ΔSOM) for scenarios on arable farm types in the Netherlands. 
Scenarios with a total negative profit or scenarios that do not achieve the ΔSOM target are underlined and indicated in red.  

Farm types: CE = clay extensive, CI = clay intensive, SE = sand extensive, SI = sand intensive. 
Scenarios: b = baseline, p = profit tactical, st = soil quality tactical, ss = soil quality strategic 
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nitrogen and are included in crop models e.g. Jones et al., (2003), to the 
best of our knowledge such functions are currently not able to capture 
soil quality and its interrelations as a whole. We recommend that such 
functions are based on long-term field experiments. Examples where 
such functions can be based on can be found in Bongiorno et al. (2019), 
Schrama et al. (2018) and Korthals et al. (2014). 

4.2.4. Production management decisions 
Although the current set-up covers the most crucial production 

management decisions, the model can be extended to include additional 
decisions. First, we suggest including crop cultivar selection, as different 
cultivars of the same crop can have substantially different impacts on 
soil quality. Second, more detailed decisions regarding machinery used 
in field operations could be included as a means to control the limiting 
indicator subsoil compaction vulnerability. 

4.2.5. Farm heterogeneity & economics 
The economic outcomes of FARManalytics are strongly dependent on 

economic input variables, e.g. the crop profit. These economic input 
variables can vary strongly between farms and deviate substantially 
from the average number we used in the standard farms. This can 
explain why i.e. the crop profit on potatoes in Table 6 is only €20 ha− 1, 
while potatoes are considered one of the most important cash crops in 
the Netherlands. Three main factors can explain these variation. First, 
the farm set-up. For example economies of scale and geographical 
location can lead to lower production costs compared to average 
numbers and other farmers. Second, opportunity costs: Whereas our 
approach calculates opportunity costs on own labour and capital, 
farmers often neglect them. This might lead to a positive bias towards 
labour and capital intensive crops. Third, crop yield & price: Crop yield 
and price can vary substantially between farms and over years, which 
implies that some farmers can gain higher earnings compared to average 
numbers and other farmers. 

4.2.6. Risks & uncertainty 
FARManalytics is a static and deterministic model with the objective 

to maximize profit. However, in reality dynamics (e.g., weather cir
cumstances) and uncertainty (e.g., fluctuating input- and output prices) 
are of pivotal importance (Ridier et al., 2016; Lien and Hardaker, 2001). 
Farmers might be willing to implement production management with 
lower returns, but also at lower risks and uncertainty (Dury et al., 2012). 
A first step to gain more insight in the risks and uncertainty involved in 
production might be to do a sensitivity analysis on model inputs and run 
different worst- and best-case scenarios (Kleijnen, 1994). A more thor
ough solution is to explore the options for stochastic or robust optimi
zation (Najafabadi et al., 2019; Yue et al., 2022). 

4.3. Implications for use of model 

Our study proves that integrating soil quality and economics at farm 
level contributes to solving the socio-economic challenge of sustainable 
soil management. FARManalytics can be used as a decision support 
system in the following contexts:  

• Policy impact analysis: FARManalytics provides insight in the impact 
of current management on farm economics and long-term soil quality 
based on a reasonable number of input variables that are commonly 
available. When combined with representative farm types such as the 
farm types in this study, this can yield valuable information on where 
issues with soil quality will arise. FARManalytics can provide alter
native production management decisions that increase farm level 
profit while preserving soil quality. These results can provide insight 
in the effectiveness of different production management decisions on 
soil quality and farm profit, and can therefore inform policy on 
sustainable soil management. 

• Farm-level decision support: FARManalytics can be tailored to indi
vidual farms for a thorough economics analysis, informing decisions 
to increase short-term income. One example, from the scenarios in 
this study is to cultivate more seed onions instead of ware potatoes. 
When tailored to individual farms, FARManalytics can also provide 
insight in the expected development of soil quality and profit. 
Common strategies to achieve sustainable soil management while 
earning highest profit for the scenarios in this study are (1) opti
mizing the crop rotation, (2) reducing fertilizer use and (3) selling 
crop residues. Optimal alternative strategies are strongly dependent 
on the initial soil status and economic situation of the farm, but 
FARManalytics can be tailored to fit the specific circumstances of 
farms. For credible results at farm-level it is of outmost importance 
that the input data is complete and matches local and farm 
conditions. 

The following potential future developments could further improve 
FARManalytics:  

• Inclusion of more physical and biological indicators. Availability of 
sound soil quality indicators and subsequent agronomic advice 
hampers further extension of the model.  

• Integration stand-alone tools: FARManalytics provides integral 
insight in crops, cover crops and manure and fertilizer application at 
a level of detail comparable to other stand-alone tools. Integrating 
more tools into FARManalytics will make FARManalytics more 
userfriendly for bio-economic modeling of individual farms. 

• Link to farm management systems: Many of the inputs for FARM
analytics are already registered in a farm management systems. 
Direct integration would make FARManalytics modeling more 
straightforward. 

4.4. Conclusions 

• FARManalytics, a bio-economic model proved to be helpful to pro
vide quantitative insight in the economic aspects of sustainable soil 
management at farm level.  

• Subsoil compaction vulnerability, soil organic matter input and 
plant-parasitic nematodes are identified as the main soil quality 
issues.  

• Profit can increase with up to €940 ha− 1 year− 1 on clay soil and with 
€683 ha− 1 year− 1 on sandy soil by appropriate management.  

• The main shortcoming of the model are the limited number of 
physical and biological soil quality indicators included and the static 
and deterministic modeling approach.  

• FARManalytics for standard farm types can inform policy impact 
analysis. If required data are available, FARManalytics can be 
tailored to individual farms. 
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