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A B S T R A C T   

Pesticide residues and microplastics (MPs) in agricultural soils are two major concerns for soil health and food 
safety. The degradation of chlorpyrifos (CPF), an organophosphorus pesticide, releases phosphates. This process 
may be affected by the presence of MPs in the soil. The combination of CPF and MPs presence in the soil may thus 
produce interaction effects that alter the soil phosphorus (P) balance. This study explores the degradation 
pathways of CPF (6 mg kg− 1, 12 mg kg− 1 of CPF addition) in soils with different levels of polylactic acid MPs 
(PLA-MPs) (0.0 %, 0.1 %, 0.5 %, 1.0 % w/w), and analyzes soil P fractions and phosphatase enzyme activities to 
investigate soil P bioavailability under different treatments. Results show that the degradation of CPF fits to a 
first-order decay model, with half-lives (DT50) ranging from 11.0 to 14.8 d depending on PLA-MPs treatment. 
The concentration of its metabolite 3, 5, 6-trichloropyridine 2-phenol (TCP) reached a peak of 0.93–1.67 mg kg− 1 

within 7–14 days. Similarly, the degradation of CPF led to a significant transient increase in P bioavailability 
within 3–7 days (p < 0.05), with a peak range of 22.55–26.01 mg kg− 1 for Olsen-P content and a peak range of 
4.63–6.76 % for the proportions of available P fractions (H2O-P+NaHCO3-P+NaOH-P), before returning to prior 
levels (Olsen-P: 11.28–19.52 mg kg− 1; available soil P fractions: 4.15–5.61 %). CPF degradation (6 mg kg− 1) was 
significantly inhibited in soil with 1.0 % PLA-MPs addition. The effects of MPs and CPF on soil P fractions occur 
at different time frames, implying that their modes of action and interactions with soil microbes differ.   

1. Introduction 

Due to its high efficacy and broad-spectrum properties, chlorpyrifos 
[O, O-diethyl O-(3, 5, 6-trichloro-2-pyridinyl) phosphorothioate, CPF] 
has become one of the most widely used organophosphorus pesticides 
(OPPs) in agriculture (Dar et al., 2019; Duman and Tiryaki, 2022). 
Increasing evidence that CPF may affect human and animal health has 
led to restrictions and bans on its use in the European Union and the 
United States (Jia et al., 2021). However, due to its persistence and 
effectiveness, it is still used on a large scale in developing countries 
(Rahman et al., 2020). After application, excessive CPF can penetrate 
into soils (Veronika et al., 2018), where 78 %-95 % of CPF may be 
degraded by soil microorganisms, with a DT50 ranging from 10 to 120 
days (Racke et al., 1996; Sardar, Kole, 2005; Farhan et al., 2021a). A 
common degradation product of CPF is 3, 5, 6-trichloropyridine 

2-phenol (TCP) (Barkoski et al., 2018), a persistent metabolite with 
DT50 values ranging from 65 to 360 days (Li et al., 2010; Maya et al., 
2012). TCP is more toxic than the parent compound CPF, and has a 
synergistic toxicity with CPF (Barkoski et al., 2018). 

Phosphorus (P) is an essential nutrient for the growth and develop-
ment of crops (Lwin et al., 2017). Different P forms in soils vary greatly 
in bioavailability to plants and microbes (Helfenstein et al., 2018). Thus, 
the composition of P forms can determine soil P bioavailability to a large 
extent (Yang, Post, 2011). Furthermore, the various P forms are differ-
ently sensitive to external disturbances and agricultural practices. CPF is 
a phosphoric acid compound that contains phosphate ester bonds, which 
are easily hydrolyzed (Liu et al., 2001; Kumar et al., 2018) to release 
phosphate into the soil. After entering the soil, these released phosphate 
esters may further modify the forms, contents, and bioavailability of soil 
P. In addition to releasing phosphate esters, CPF and its metabolites may 
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also change the soil P bioavailability by affecting soil P solubilizing 
microorganisms, which control the processes of inorganic P solubiliza-
tion and organic P mineralization through the secretion of organic acids 
and phosphatase enzymes (Singh et al., 2011; Nasreen et al., 2012). The 
application of other organophosphorus pesticides (OPPs) has also been 
observed to affect soil P fractions and their transformations (Ajiboye 
et al., 2022; Wang et al., 2022b). Majumder, Das, (2016) found that the 
OPPs such as profenophos, quinalphos, monocrotophos and triazophos 
can stimulate the growth and metabolism of phosphate solubilizing 
microorganisms, promote the release of soil available P, and facilitate 
crop growth. Das et al. (2012) found that the herbicides pendimethalin 
and quizalofop significantly stimulated the growth and activity of P 
solubilizing microorganisms, resulting in higher total P (TP) and avail-
able P contents in treated soils than in the control treatment. Zhou et al. 
(2016) found that the OPP herbicide glyphosate significantly increased 
soil available P content by promoting the release of soil adsorbed P. 
Therefore, increased available P may be a benefit of CPF application, in 
addition to its pesticidal effects. The environmental behavior of CPF may 
be affected by various factors such as soil pH, temperature, moisture, 
and application rate (Jaiswal et al., 2017; Atabila et al., 2018). The 
coexistence of CPF with other pollutants, such as microplastics (MPs), 
may also affect the environmental behavior of CPF. Ju et al. (2023a) 
found that biodegradable MPs increased the biogenic transport of CPF 
by earthworms, and inhibited CPF degradation in soils. Beriot et al. 
(2020) found that more than 80 % of CPF adsorbed onto biodegradable 
MPs after 15-days, and suggested that the adsorption of pesticides on 
MPs may reduce their biodegradation rate. Interactions between MPs 
and CPF may also change the effects of CPF application on soil P 
bioavailability. However, as CPF degradation in MPs contaminated soils 
is not well understood, the responses of soil P fractions and bioavail-
ability to the coexistence of MPs and CPF, and its underlying mecha-
nisms, remain largely unclear. 

To address this issue, this study investigates the degradation of CPF 
and the change in P fractions in MPs-contaminated soils during a 30-day 
incubation experiment. We hypothesize that MPs may slow down the 
degradation of CPF thereby negatively affecting soil P bioavailability, 
and that this effect is enhanced as soil MP concentrations increase. 

2. Materials and methods 

2.1. Materials and chemicals 

The soil used in this experiment was clay loam collected from 
farmland topsoil (0–20 cm) in the Loess Plateau in Yangling, Shaanxi 
Province, China. Crop residues, roots and gravel were removed from the 
soil. The soil was then air-dried and passed through a 2 mm sieve. Field 
water capacity was measured using FAO recommendation method (FAO, 
1985). Soil pH was measured using a pH meter, with a water to soil ratio 
of 5: 1 (Mongia et al., 1992). Organic matter was measured using po-
tassium dichromate external heating method described by Nelson, 
Sommers, (1983). The concentration of total nitrogen (TN) in the soil 
was determined using Kjeldahl distillation method described by Jones 
(1991). The polylactic acid microplastics (PLA-MPs) was detected by 
flotation method described by Chen et al., (2022). The basic properties 
of the experimental soil are as follows: pH: 8.31 ± 0.2; organic matter: 
9.92 ± 0.25 g kg− 1; TN: 0.54 ± 0.10 g kg− 1; total P (TP): 0.73 ±
0.10 g kg− 1); Olsen-P: 22.21 ± 0.40 mg kg− 1. The background concen-
tration of chlorpyrifos (CPF) and 3, 5, 6-trichloropyridine 2-phenol 
(TCP) were lower than the limit of quantitation (LOQ) while the back-
ground concentration of PLA-MPs was not detected. PLA-MPs (99.6 % 
purity, Huachuang Plastic Raw Materials Business, Dongwan City, 
Guangdong Province, China) were used in this experiment, with sizes 
ranging from 50 to 500 μm. CPF emulsifiable concentrate (480 g L− 1, 
Tongda Chemical Plant, Jining City, Shandong Province, China) was 
dissolved in ultrapure water to obtain two stock solutions of 240 mg L− 1 

and 480 mg L− 1. 

2.2. Experimental design 

Before the experiment, 4 kg of soil was mixed with 0.0, 4.0, 8.0, 
40.0 g of PLA-MPs, respectively, to obtain four mass-concentration 
levels of PLA-MPs (w/w): 0.0 % (control), 0.1 %, 0.5 %, 1.0 %. The 
soil was then incubated for 7 days in an artificial climate chamber, with 
a cycle of 16 hours of light and 8 hours of darkness. During the incu-
bation, the temperature of the climate chamber was maintained at 25 ±
0.5 ◦C, and soil moisture was maintained at 12 % (w/w), equivalent to 
60 % of field water capacity. After pre-incubation, CPF was applied and 
in total there were 12 treatments, with 18 replicates per each treatment 
for six sampling times. For each treatment, 60.0 g of incubated soil was 
weighed into an aluminum box (diameter: 6 cm, height: 6 cm). Then, 
1.5 mL of 240 mg L− 1 and 1.5 mL of 480 mg L− 1 CPF stock solution was 
sprayed evenly on the soil surface, respectively, with the application rate 
of 6 mg kg− 1 and 12 mg kg− 1 (w: w). This concentration of CPF in soil 
corresponded to a maximum application rate of 3.3 L ha− 1 (480 g L− 1) 
(recommended for chemical fallow against insecticide), assuming a soil 
depth of 2 cm and soil bulk density of 1300 kg m− 3. Meanwhile, the 
application rates mentioned above were used as the starting point of CPF 
degradation. After pesticide application, the soil was quickly mixed and 
then put into the same climate chamber (temperature: 25 ± 0.5 ◦C, soil 
moisture: 12 %) for 30 days. Soil samples were collected at 0, 1, 3, 7, 14 
and 30 days, and each sampling time we took there samples per treat-
ment as replicates. Afterwards, each sample was divided into three 
portions: one portion was stored at − 18 ◦C for CPF and TCP analysis; one 
portion was stored at 4 ◦C for alkaline phosphatase activity analysis; and 
one portion was air-dried for P fraction analysis. 

2.3. Sample analysis 

2.3.1. Chlorpyrifos and TCP analysis 
Ten grams of a soil sample was weighed into a 150 mL plastic bottle 

containing 20 mL of water and 100 mL of ethyl acetate. The mixture was 
shaken for 1 h at 180 rpm with an oscillator. The extract was filtered 
through a filter paper containing sodium sulfate, into a round bottomed 
receiving flask. The filtrate was evaporated using a rotating vacuum 
evaporator at 40 ◦C until it was almost dry, and the residue was then re- 
dissolved in 1 mL ethyl acetate. The concentrated extract was eluted in a 
florisil SPE cartridge pre-washed with 6 mL acetonitrile and 6 mL ethyl 
acetate. The eluted fraction was re-concentrated using an evaporator, 
and the residue was eluted in 1 mL of acetonitrile, then filtered through a 
0.22 µm filter membrane for high performance liquid chromatography 
analysis (Nexera LC-30A, Shimadzu Production House, Japan) with a 
C18 column (diameter: 1.6 μm, length: 75 mm, width: 2.0 mm; column 
temperature: 40 ◦C). Acetonitrile/water mobile phase (90:10, v:v) (flow 
rate: 1 mL min− 1) was used for chromatographic separation. The 
injected volume was 10 μL, and the signal was recorded at 300 nm. 

Two stock solutions for CPF and TCP at 100 μg mL− 1 were prepared 
in acetonitrile by adding 0.01 g of CPF and TCP and diluting it with 
acetonitrile to a volume of 100 mL, respectively. A working standard 
solution at a concentration of 20 μg mL− 1 was made by transferring 
10 mL of CPF and TCP stock solutions to a 50 mL flask and diluting with 
acetonitrile. 0, 0.5, 1.0, 2.5, 5.0, 10.0, 25.0, 50.0 mL of CPF and TCP 
standard solution was diluted with acetonitrile to 50 mL, yielding CPF 
and TCP concentrations of 0, 0.2, 0.4, 1.0, 2.0. 4.0, 10.0, 20.0 μg mL− 1, 
respectively. A standard calibration curve was prepared according to the 
relationship between peak area and concentration. The scattering was 
linearly fitted and displayed strong linearity, and the coefficient of 
determination was R2 > 0.999 in the standard range of 0–20 μg mL− 1. 

The CPF recovery rate was calculated by adding 1 mL of CPF stock 
solutions (5.0 μg mL− 1, 10.0 μg mL− 1, 50.0 μg mL− 1, and 100.0 μg mL− 1) 
at 0.5, 1.0, 5.0, and 10.0 μg g− 1 concentrations to five repeated 10.0 g 
blank soil samples. Another 5 blank soil samples were used to calculate 
the TCP recovery rate. These samples were spiked with 1 mL of TCP 
stock solution (1.0 μg mL− 1, 10.0 μg mL− 1) at 0.1 and 1.0 μg g− 1. The 
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CPF and TCP residues were then extracted using the above methods. The 
recovery rate was calculated using the recovery percentage of the spiked 
analyte. The mean recoveries of CPF at 0.5, 1.0, 5.0 and 10.0 μg g− 1 

levels were 72.4 ± 5.6 %, 74.8 ± 3.5 %, 80.4 ± 4.9 %, and 83.2 ± 2.9 %, 
respectively. The mean recoveries of TCP at 0.5 and 1.0 μg g− 1 levels 
were 67.8 ± 4.2 % and 74.2 ± 4.7 % respectively. The concentrations of 
CPF and TCP in samples were corrected by the average recovery 
accordingly. Furthermore, the limit of quantifications (LOQ) of CPF and 
TCP were obtained by calibration curve, with an average recovery be-
tween 80 % and 120 % and a relative standard deviation ≤20 %. Thus, 
the LOQ for CPF and TCP in soil samples were 0.01 μg g− 1 and 
0.02 μg g− 1, respectively. 

Based on the kinetics of CPF attenuation in the soil, a first-order ki-
netic degradation model: 

Ct = C0e− kt (1)  

was used to fit the measured data in the experiment, where Ct is the 
concentration of CPF (mg kg− 1) at time t (d) after being applied to the 
soil, C0 is the initial concentration (mg kg− 1), and k (d− 1) is the degra-
dation rate constant. The half-life (DT50) of CPF was calculated ac-
cording to the equation: 

DT50 = ln2 /k (2)  

2.3.2. Soil phosphorus determination 
Soil Olsen-P was extracted using the colorimetric analysis method 

after 30 min extraction with 0.5 mol L− 1 NaHCO3 at pH 8.5 and 25 ◦C 
(Olsen et al., 1954; Hu et al., 2012). In order to control the quality of the 
analysis, the extraction was conducted in the room with air-conditioner. 
Soil TP was digested with sulfuric acid and perchloric acid, and quan-
tified using the Molybdenum-antimony resistance colorimetric method 
(Kara et al., 1997). Soil P fractions were determined using the sequential 
fractionation methods of Tiessen, Moir, (1993) and Kaiser et al., (2003). 

2.3.3. Soil alkaline phosphatase activity 
After sampling, 3.0 g of fresh soil was added to a 300 mL flask, along 

with 125 mL modified universal buffer of pH 11, and briefly mixed with 
a maglev stirrer. 150 μL of the suspension and 50 μL p-nitrophenyl 
phosphate were added to an enzymic labeled plate and incubated at 25 
◦C for 0.5 h. Then, fluorescence values were measured at the excitation 
wavelength of 365 nm and the emission wavelength of 450 nm using a 
fluorescence plate reader (Marx et al., 2005). 

2.4. Statistical analysis 

The mean values and standard deviations were calculated to 
compare treatments. Logarithmic functions were used to obtain 
normality and equal variance. Data normality was tested with the 
Shapiro-Wilk test (p > 0.05), and the equal variance of data was tested 
with Levene’s test (p > 0.05). One-way ANOVA with Duncan’s post-hoc 
comparisons was used to test the differences among treatments and 
compare significant differences in CPF residues, TCP residues, Olsen-P, P 
fractions and alkaline phosphatase (ALP), among different levels of PLA- 
MPs addition at the same incubation times (p < 0.05). Two-way ANOVA 
with Duncan’s post-hoc test was used to analyze the effects of CPF, MPs, 
and their interactions on P fractions. Origin Pro 9.1 was used to fit the 
first-order degradation model and plot the data. 

3. Results 

3.1. CPF degradation 

3.1.1. CPF and TCP residues 
CPF degraded rapidly in the first 7 days, and over 50 % of applied 

CPF was degraded by day 7 (D7). At D7, CPF residues were at 
2.45–2.90 mg kg− 1 and 5.44–6.39 mg kg− 1, in treatments with 

6 mg kg− 1 (Fig. 1a) and 12 mg kg− 1 of CPF application (Fig. 1c), 
respectively. Afterwards, CPF residues declined steady and changed 
slightly, especially in treatments with 6 mg kg− 1 of CPF application. At 
D30, over 75 % of CPF was degraded, and its residues were at 
0.81–1.08 mg kg− 1 and 1.96–2.41 mg kg− 1 in treatments with 
6 mg kg− 1 and 12 mg kg− 1 of CPF application, respectively. Further-
more, CPF residues did not differ significantly across different levels of 
PLA-MPs contamination, under the same application rate of CPF. 

TCP concentrations and dynamics, a metabolite of CPF degradation, 
were different across treatments (Fig. 1b, d). In treatments with 
6 mg kg− 1 of CPF application (Fig. 1b), the TCP residues peaked at D14 
with content ranging from 1.02 to 1.24 mg kg− 1 in treatments with 
0–0.5 % PLA-MPs addition, while TCP residues peaked at D7 with 0.93 
± 0.15 mg kg− 1 in the treatment with 1.0 % PLA-MPs addition. In 
treatments with 12 mg kg− 1 of CPF application (Fig. 1d), TCP residues 
peaked at D7 with 1.35 ± 0.11 mg kg− 1 in the treatment with 0.1 % 
PLA-MPs addition, while TCP residues peaked at 1.49–1.68 mg kg− 1 on 
D14 in the rest of the treatments. 

3.1.2. Degradation kinetics of CPF 
CPF residue concentrations fit to the first-order kinetic degradation 

model well (R2 > 0.85), with DT50 varying from 11.0 ± 1.44–14.8 ±
0.26 d, in the treatments with 6 and 12 mg kg− 1 CPF application, 
respectively (Table 1). Specifically, in treatments with 6 mg kg− 1 CPF 
application, the DT50 was significantly higher in the treatment with 1.0 
% PLA-MPs than that in control, but no significant difference of DT50 
was found among different levels of PLA-MPs addition. In treatments 
with 12 mg kg− 1 CPF application, however, no significant difference of 
DT50 was found among the treatments. 

3.2. Soil phosphorus properties 

3.2.1. Soil available phosphorus (Olsen-P) 
On the day of CPF application (D0), soil Olsen-P contents were 

significantly lower in the treatments with 0.1 % and 0.5 % PLA-MPs 
addition (11.25–14.10 mg kg-1) than that in control 
(17.53–17.84 mg kg-1), regardless of the CPF application rate. Although 
Olsen-P contents were significantly higher in the treatments with 1.0 % 
PLA-MPs addition than in other treatments with PLA-MPs addition, no 
significant difference was observed between 0 % and 1.0 % PLA-MPs 
treatments. For the following three groups of treatments (0, 6 and 
12 mg kg-1 of CPF application), soil Olsen-P content peaked at D3 and 
then slowly declined till the observation period ended. Variations of 
Olsen-P in different CPF application groups were observed across 
treatments at the same sampling day, and in the same treatment across 
different sampling days. Interestingly, compared to treatment groups 
without CPF application, Olsen-P increased slightly at D30 in the 
treatment groups with CPF application. Fig. 2 

3.2.2. Soil P fractions 
Occluded-P was the main P fraction, as it accounted for more than 90 

% in all treatments (Table 2, p < 0.05). The proportions of different P 
fractions decreased in the following order: Occluded-P >NaHCO3-P 
(NaHCO3-Pi and NaHCO3-Po) >NaOH-P (NaOH-Pi and NaOH-Po) 
>H2O-P. The proportions of Occluded-P decreased significantly to its 
lowest value at D3 or D7 in 0–0.5 % treatments (p < 0.05), and then 
increased to a level similar to the initial condition by the end of incu-
bation period. 

In treatments without CPF addition (Table 2a), soil labile P fractions 
(H2O+NaHCO3-Pi+NaHCO3-Po+NaOH-Pi+NaOH-Po) increased to the 
highest values at D3 (0.1 % PLA-MPs and 0.5 % PLA-MPs treatments) 
and at D7 (0.0 % and 1.0 % PLA-MPs treatments). At D3, H2O-P in 0.1 % 
PLA-MPs treatment (1.45 ± 0.08 %) was significantly higher than that in 
the 0.0 % PLA-MPs (1.04 ± 0.23 %) and 1.0 % PLA-MPs (0.66 ± 0.05 %) 
treatments. NaOH-Pi in the 0.5 % PLA-MPs treatment (0.52 ± 0.05 %) 
was significantly higher than that in other treatments(p < 0.05). At D7, 
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NaHCO3-Pi in the 1.0 % PLA-MPs treatment (2.91 ± 0.05 %) was 
significantly higher, while NaHCO3-Po in the 1.0 % PLA-MPs treatment 
(0.26 ± 0.09 %) was significantly lower than that in the 0.0 % PLA-MPs 
treatment (NaHCO3-Pi: 2.18 ± 0.12 %; NaHCO3-Po: 1.23 ± 0.37 %). 
NaOH-Pi (0.51 ± 0.07 %) was significantly lower and NaOH-Po (0.75 ±

0.06 %) were significantly higher in control than those in other treat-
ments (p < 0.05). 

In treatments with CPF application (Table 2b and Table 2c), soil 
Occluded-P was transformed into soil labile P (H2O+NaHCO3- 
Pi+NaHCO3-Po+NaOH-Pi+NaOH-Po) at D3-D7. Specifically, in treat-
ments with 6 mg kg-1 CPF application, soil labile P fractions 
(H2O+NaHCO3-Pi+NaHCO3-Po+NaOH-Pi+NaOH-Po) increased to the 
highest values at D3 in treatment of 0.0 % and 0.1 % PLA-MPs and at D7 
in treatment of 0.5 % and 1.0 % PLA-MPs. At D3, H2O-P in 0.5 % PLA- 
MPs treatment (1.42 ± 0.11 %) and NaHCO3-Pi in the 0.1 % PLA-MPs 
treatment (2.99 ± 0.17 %) were significantly higher than that in other 
treatments (p < 0.05). At D7, H2O-P in the 0.0 % PLA-MPs treatment 
(1.18 ± 0.13 %) was significantly lower than that in the 0.1 % PLA-MPs 
treatment (1.47 ± 0.08 %) while NaHCO3-Po in the 0.0 % PLA-MPs 
treatment (0.82 ± 0.10 %) was significantly higher than that in the 
1.0 % PLA-MPs treatment (0.46 ± 0.06 %). NaOH-Pi increased signifi-
cantly in 0.5–1.0 % PLA-MPs treatment comparing with in control. 
Similarly, in treatments with 12 mg kg-1 CPF application, soil labile P 
fractions (H2O+NaHCO3-Pi+NaHCO3-Po+NaOH-Pi+NaOH-Po) peaked 
at D3 in 0.1 % PLA-MPs treatment and D7 in treatment of 0.0 %, 0.5 % 
and 1.0 % PLA-MPs treatment. At D7, NaHCO3-Pi in 0.5 % PLA-MPs 
treatment (2.94 ± 0.10 %) was significantly higher than that in con-
trol (2.34 ± 0.24 %), while NaHCO3-Po in control (1.36 ± 0.07 %) was 
significantly higher than that in the 0.1 % PLA-MPs (0.50 ± 0.17 %) and 
0.5 % PLA-MPs (0.34 ± 0.10 %) treatments (p < 0.05). NaOH-Pi in 0.5 % 
PLA-MPs treatment (1.15 ± 0.04 %) was significantly higher than that in 
control (0.42 ± 0.06 %) and 0.1 % PLA-MPs (0.64 ± 0.07 %) treatments 
(p < 0.05). However, NaOH-Po significantly declined in treatments with 

Fig. 1. CPF and TCP residues in different treatments during the observation days (a-b: CPF and TCP residues in the treatments with 6 mg kg− 1 of CPF application; c- 
d: CPF and TCP residues in the treatments with 12 mg kg− 1 of CPF application; the error bar represents the standard deviation (n = 3). 

Table 1 
Kinetic equations of CPF degradation in different treatments.  

CPF concentration (mg 
kg− 1) 

PLA-MPs 
level 

Kinetic 
equation 

DT50 R2  

6  0.0 % Ct= 4.72e- 

0.063t 
11.0 ± 1.44 
b  

0.97  

0.1 % Ct =4.73e- 

0.057t 
12.2 ± 1.61 
ab  

0.90  

0.5 % Ct =4.92e- 

0.058t 
12.0 ± 1.09 
ab  

0.90  

1.0 % Ct =4.62e- 

0.047t 
14.7 ± 0.70 
a  

0.87  

12  0.0 % Ct =9.09e- 

0.050t 
13.9 ± 0.70 
a  

0.88  

0.1 % Ct =9.38e- 

0.052t 
13.3 ± 0.86 
a  

0.90  

0.5 % Ct =9.56e- 

0.053t 
13.1 ± 0.90 
a  

0.91  

1.0 % Ct =9.41e- 

0.047t 
14.8 ± 0.26 
a  

0.91 

Note: DT50 is presented as mean ± SD (n = 3); different lowercase letters 
indicate significant differences among treatments with different PLA-MPs 
addition levels with same amount of CPF addition (p < 0.05). 
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PLA-MPs addition, comparing with that in 0 % (p < 0.05). 

3.3. Soil phosphatase activity 

Significant differences of ALP were observed between treatments 
with and without PLA-MPs additions, especially in treatments with CPF 
application (Fig. 3). There were no significant differences in ALP activity 
among treatments with 0 and 12 mg kg-1 CPF addition at D0. In treat-
ments with 6 mg kg-1 CPF, ALP activity was significantly higher at D0 in 
CK (111.08 ± 2.21 nmol g-1 h-1) than in treatments with PLA-MPs 
addition (71.29–75.72 nmol g-1 h-1). ALP activity in the 0.1 % PLA- 
MPs treatments peaked at D1 in treatments without CPF application 
(137.27 ± 27.36 nmol g-1 h-1), while it peaked at D14 in treatments with 
6 (179.50 ± 16.00 nmol g-1 h-1) and 12 mg kg-1 CPF application (162.00 
± 28.70 nmol g-1 h-1). For the 0.5 % PLA-MPs treatments, ALP activity 
peaked at D14 and D30, in treatments with 0/6 mg kg-1 CPF application 
and 12 mg kg-1 CPF, respectively. ALP activity in the 1.0 % PLA-MPs 

treatments varied during the observation period, and peaked at D30 
(130.53–194.52 nmol g-1 h-1). 

3.4. CPF, PLA-MPs and their interactions on the soil P fractions 

H2O-P was significantly affected by PLA-MPs and PLA-MPs×CPF 
until D14, but was only effected by CPF application at D30 (Table 3). 
PLA-MPs and PLA-MPs×CPF had significant effects on NaHCO3-Pi 
throughout the whole experiment, while CPF and PLA-MPs×CPF were 
the most significant driving factors that influenced NaHCO3-Po at D30. 
PLA-MPs had significant effects on NaOH-Pi during the whole experi-
ment, while CPF only showed significant effects at D1 and D30. NaOH- 
Po was significantly influenced by PLA-MPs at the first 2 weeks, and was 
impacted with CPF from D3 to D7. PLA-MPs had significant effects on 
Occluded-P until D14, while CPF only had significant effects on 
Occluded-P at D30. 

Fig. 2. Soil Olsen-P content in different treatments during the observation days (a: 0 mg kg-1 of CPF application; b: 6 mg kg-1 of CPF application; c: 12 mg kg-1 of CPF 
application; different lowercase letters indicate significant differences among different sampling days in the same level of PLA-MPs addition and CPF application (p <
0.05); different capital letters indicate significant differences among different PLA-MPs addition levels at the same sampling day and CPF application (p < 0.05); the 
error bar represents the SD (n = 3). 
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4. Discussion 

4.1. Degradation kinetics of CPF in MPs-contaminated soil 

CPF is widely used in farming systems, and great attention being paid 
to its environmental risks and food safety risks (Ju et al., 2024). It has 
been reported that CPF degradation in soils mainly depends on soil 
microbial degradation, which is strongly affected by soil type and 
co-existing pollutants (Farhan et al., 2021b; Ju et al., 2023a, 2023b). 
Sun et al. (2012) reported that the DT50 of CPF significantly differs 
among soil types, ranging from 14.7 to 19.4 d, while Mali et al., (2022) 
showed that the DT50 of CPF in anaerobic soils was 15 and 58 d in loam 
and clay soil, respectively. Futhermore, Singh et al., (2003) reported 
that the DT50 of CPF was 256 d in soils with pH 4.7 and 58 d in soils with 
pH 5.7. Wang et al. (2013) reported that it varied from 16 to 33 

d depending on soil moisture. In this present study, we found that the 
degradation of CPF in PLA-contaminated soil fit to the first-order 
exponential decay curve, with DT50 of 11.0–14.8 d (Table 1). This im-
plies that we have found degradation rates much faster than reported by 
the other studies discussed above. These differences likely result from 
differing experimental conditions and design (Weber et al., 2010; Nawaz 
et al., 2011; Elshikh et al., 2022). In addition, Ju et al., (2023) a) indi-
cated that the presence of microplastics inhibited CPF degradation 
leading to longer degradation days, especially in the presence of 
biodegradable microplastics (85 % poly (butylene adipate 
co-terephthalate) +10 % PLA). Our results show that with PLA-MPs 
addition, DT50 of CPF was significantly higher than that in control, 
which is in line with the findings as Ju et al., (2023a). TCP has been 
found to be a major metabolite of CPF biodegradation (Li et al., 2010). In 
this study, with the degradation of parent compound CPF, the residues of 

Table 2a 
Percentage of soil P fractions in treatments without pesticide application.  

MPs Days H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po Occluded-P  

0.0 % D0 0.88 ± 0.21 %ABb 2.37 ± 0.10 %Ab 0.31 ± 0.09 %Ab 0.47 ± 0.11 %Ba 0.77 ± 0.12 %Ab 95.19 ± 0.33 %Aa 
D1 0.72 ± 0.12 %Ab 2.54 ± 0.11 %Aa 0.49 ± 0.04 %Ab 0.51 ± 0.11 %Ba 0.68 ± 0.08 %Ab 95.06 ± 0.15 %Aa 
D3 1.04 ± 0.23 %BCab 2.72 ± 0.28 %Aa 0.47 ± 0.17 %ABb 0.23 ± 0.01 %Cb 1.42 ± 0.28 %ABa 94.12 ± 0.33 %Bb 
D7 1.42 ± 0.22 %ABa 2.18 ± 0.12 %Bb 1.23 ± 0.37 %Aa 0.51 ± 0.07 %Ca 0.75 ± 0.06 %Ab 93.92 ± 0.42 %Ab 
D14 1.12 ± 0.15 %Aab 2.57 ± 0.01 %Aa 0.35 ± 0.07 %Ab 0.48 ± 0.11 %ABa 0.77 ± 0.09 %Ab 94.70 ± 0.14 %Aab 
D30 1.01 ± 0.16 %Bab 1.42 ± 0.10 %Bc 1.39 ± 0.18 %ABa 0.66 ± 0.10 %Ba 0.58 ± 0.15 %Ab 94.94 ± 0.55 %Aa  

0.1 % D0 0.65 ± 0.07 %Bc 2.32 ± 0.06 %Ab 0.19 ± 0.04 %Ac 0.85 ± 0.11 %Aa 0.39 ± 0.02 %Bd 95.61 ± 0.06 %Aa 
D1 0.84 ± 0.14 %Abc 2.71 ± 0.14 %Aa 0.47 ± 0.07 %Abc 0.92 ± 0.15 %Aa 0.65 ± 0.19 %ABbc 94.50 ± 0.48 %Aa 
D3 1.45 ± 0.08 %Aa 2.65 ± 0.23 %Aab 0.88 ± 0.21 %Ab 0.29 ± 0.01 %BCc 1.29 ± 0.11 %ABa 93.44 ± 0.26 %Ba 
D7 1.17 ± 0.14 %Bab 2.41 ± 0.18 %Bb 1.00 ± 0.56 %ABab 0.78 ± 0.14 %Bab 0.47 ± 0.09 %Bcd 94.17 ± 0.33 %Aa 
D14 1.32 ± 0.21 %Aa 2.63 ± 0.07 %Aab 0.25 ± 0.12 %Ac 0.33 ± 0.06 %BCc 0.72 ± 0.04 %ABb 94.76 ± 0.34 %Aa 
D30 0.72 ± 0.16 %Bc 1.74 ± 0.09 %Ac 1.48 ± 0.02 %Aa 0.66 ± 0.04 %Bb 0.68 ± 0.05 %Abc 94.73 ± 0.31 %Aa  

0.5 % D0 0.64 ± 0.23 %Bc 2.34 ± 0.05 %Ac 0.50 ± 0.24 %Abc 0.84 ± 0.12 %Ab 0.38 ± 0.11 %Bd 95.29 ± 0.27 %Aa 
D1 0.66 ± 0.04 %Ac 2.75 ± 0.06 %Aa 0.26 ± 0.04 %Ac 1.25 ± 0.19 %Aa 0.23 ± 0.16 %Bd 94.92 ± 0.14 %Aab 
D3 1.23 ± 0.11 %ABb 2.43 ± 0.09 %Ac 0.53 ± 0.31 %ABbc 0.52 ± 0.05 %Ac 1.64 ± 0.06 %Aa 93.70 ± 0.51 %Bc 
D7 1.56 ± 0.16 %Aa 2.46 ± 0.26 %ABbc 0.97 ± 0.49 %ABab 0.85 ± 0.05 %Bb 0.45 ± 0.08 %Bcd 93.71 ± 0.51 %Ac 
D14 1.37 ± 0.09 %Aab 2.67 ± 0.06 %Aab 0.65 ± 0.28 %Aabc 0.29 ± 0.07 %Cc 0.81 ± 0.03 %Ab 94.21 ± 0.39 %Abc 
D30 1.45 ± 0.19 %Aab 1.71 ± 0.02 %Ad 1.31 ± 0.19 %ABa 0.94 ± 0.04 %Ab 0.59 ± 0.02 %Ac 93.99 ± 0.11 %Ac  

1.0 % D0 1.12 ± 0.11 %Ab 2.44 ± 0.08 %Ac 0.31 ± 0.04 %Ab 0.81 ± 0.08 %Ab 0.56 ± 0.14 %ABb 94.75 ± 0.12 %Abc 
D1 0.84 ± 0.05 %Ac 2.71 ± 0.06 %Ab 0.51 ± 0.27 %Ab 1.09 ± 0.13 %Aa 0.35 ± 0.11 %Bb 94.58 ± 0.35 %Abc 
D3 0.66 ± 0.05 %Cc 2.54 ± 0.04 %Abc 0.18 ± 0.04 %Bb 0.30 ± 0.03 %Bd 1.10 ± 0.17 %Ba 95.37 ± 0.16 %Aa 
D7 1.51 ± 0.14 %ABa 2.91 ± 0.05 %Aa 0.26 ± 0.09 %Bb 1.22 ± 0.13 %Aa 0.31 ± 0.17 %Bb 93.80 ± 0.16 %Ad 
D14 1.24 ± 0.04 %Ab 2.71 ± 0.10 %Ab 0.43 ± 0.11 %Ab 0.62 ± 0.06 %Ac 0.61 ± 0.06 %Bb 94.39 ± 0.00 %Ac 
D30 0.85 ± 0.13 %Bc 1.77 ± 0.13 %Ad 1.03 ± 0.26 %Ba 0.81 ± 0.09 %ABbc 0.53 ± 0.07 %Ab 95.01 ± 0.20 %Aab  

Table 2b 
Percentage of soil P fractions in treatments with pesticide application (6 mg kg-1 of CPF).  

MPs Days H2O NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po Occluded-P  

0.0 % D0 0.81 ± 0.11 %ABab 2.35 ± 0.05 %Bc 0.30 ± 0.15 %Ac 0.79 ± 0.03 %Ab 0.50 ± 0.06 %Ad 95.24 ± 0.35 %Aa 
D1 0.57 ± 0.12 %Bb 2.74 ± 0.05 %Aa 0.26 ± 0.04 %Bc 0.68 ± 0.14 %Cbc 0.47 ± 0.07 %Acd 95.28 ± 0.08 %Aa 
D3 1.11 ± 0.18 %Bab 2.53 ± 0.06 %BCb 0.74 ± 0.42 %Ab 0.35 ± 0.07 %Ad 1.22 ± 0.07 %ABa 94.05 ± 0.66 %ABa 
D7 1.18 ± 0.13 %Ba 2.47 ± 0.12 %Ab 0.82 ± 0.10 %Ab 0.49 ± 0.08 %Bcd 0.91 ± 0.07 %Ab 94.14 ± 0.30 %Aa 
D14 1.10 ± 0.06 %Bab 2.60 ± 0.04 %Ab 0.23 ± 0.07 %Ac 0.47 ± 0.11 %ABcd 0.66 ± 0.01 %ABc 94.94 ± 0.17 %Aa 
D30 1.01 ± 0.62 %Aab 1.63 ± 0.09 %Bd 1.54 ± 0.04 %Ba 0.86 ± 0.12 %Aa 0.57 ± 0.08 %Acd 94.40 ± 0.75 %Aa  

0.1 % D0 0.67 ± 0.18 %Bd 2.74 ± 0.18 %Aa 0.22 ± 0.04 %Ad 0.84 ± 0.01 %Aa 0.40 ± 0.05 %Ab 95.13 ± 0.31 %Aa 
D1 0.80 ± 0.07 %ABc 2.77 ± 0.09 %ABab 0.27 ± 0.19 %Bcd 1.02 ± 0.01 %BCa 0.66 ± 0.38 %Ab 94.52 ± 0.20 %Bab 
D3 1.13 ± 0.09 %Bb 2.99 ± 0.17 %Aa 0.66 ± 0.14 %Abc 0.47 ± 0.12 %Ac 1.51 ± 0.14 %Aa 93.24 ± 0.28 %Bc 
D7 1.47 ± 0.08 %Aa 2.41 ± 0.23 %Ab 0.74 ± 0.21 %ABb 0.67 ± 0.13 %Bb 0.85 ± 0.19 %Ab 93.86 ± 0.45 %Abc 
D14 1.40 ± 0.17 %Aa 2.85 ± 0.36 %Aa 0.32 ± 0.17 %Acd 0.43 ± 0.03 %Bc 0.66 ± 0.05 %ABb 94.34 ± 0.40 %Aab 
D30 0.99 ± 0.09 %Abc 1.66 ± 0.12 %ABc 1.54 ± 0.10 %Ba 0.96 ± 0.10 %Aa 0.62 ± 0.22 %Ab 94.23 ± 0.32 %Abc  

0.5 % D0 0.92 ± 0.29 %ABc 2.14 ± 0.05 %Bc 0.43 ± 0.21 %Ab 0.05 ± 0.05 %Ac 0.45 ± 0.06 %Ab 95.28 ± 0.41 %Aa 
D1 0.88 ± 0.14 %Ac 2.82 ± 0.07 %Aa 0.60 ± 0.07 %Ab 2.07 ± 0.33 %Aa 0.44 ± 0.12 %Bc 94.09 ± 0.17 %Cab 
D3 1.42 ± 0.11 %Aab 2.53 ± 0.18 %Cb 0.43 ± 0.10 %Ab 0.39 ± 0.01 %Ad 1.05 ± 0.12 %Ba 94.19 ± 0.38 %ABb 
D7 1.27 ± 0.02 %ABab 2.60 ± 0.06 %Aab 0.63 ± 0.19 %ABb 1.12 ± 0.17 %Ab 0.55 ± 0.30 %Ab 93.83 ± 0.05 %Aab 
D14 1.43 ± 0.13 %Aa 2.63 ± 0.19 %Ab 0.41 ± 0.10 %Ab 0.32 ± 0.07 %Bd 0.80 ± 0.10 %Aab 94.41 ± 0.10 %Aab 
D30 1.12 ± 0.06 %Ab 1.63 ± 0.14 %ABd 1.25 ± 0.18 %Ba 0.90 ± 0.10 %Abc 0.61 ± 0.13 %Ab 94.48 ± 0.16 %Aab  

1.0 % D0 0.93 ± 0.19 %Ab 2.64 ± 0.14 %Aa 0.34 ± 0.04 %Ab 0.81 ± 0.11 %Ab 0.89 ± 0.58 %Ab 94.39 ± 0.29 %Aab 
D1 0.71 ± 0.02 %ABb 2.73 ± 0.10 %Ba 0.35 ± 0.09 %Bb 1.33 ± 0.15 %Ba 0.10 ± 0.08 %Bc 94.85 ± 0.09 %Ba 
D3 0.84 ± 0.07 %Bb 2.67 ± 0.07 %ABa 0.19 ± 0.14 %Ab 0.40 ± 0.05 %Ac 1.18 ± 0.19 %ABa 94.80 ± 0.47 %Aa 
D7 1.44 ± 0.17 %ABa 2.60 ± 0.05 %Aa 0.46 ± 0.06 %Bb 1.20 ± 0.10 %Aa 0.50 ± 0.14 %Ab 93.80 ± 0.12 %Ab 
D14 1.48 ± 0.14 %Aa 2.70 ± 0.07 %Aa 0.48 ± 0.15 %Ab 0.67 ± 0.13 %Ab 0.55 ± 0.03 %Bb 94.12 ± 0.22 %Ab 
D30 0.77 ± 0.11 %Ab 1.78 ± 0.05 %Ab 2.07 ± 0.34 %Aa 0.83 ± 0.08 %Ab 0.50 ± 0.09 %Ab 94.04 ± 0.38 %Ab  
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TCP increased quickly and peaked at D7/D14 (Fig. 1). After reaching the 
peak, TCP residues slowly decreased with the observation time, and 
converging towards similar levels among treatments by D30, in agree-
ment with the findings of Sardar and Kole, (2005). However, Vidal and 
Báez, (2023) found that TCP residues increased with the degradation of 
CPF but leveled off after 17 d. This is perhaps because the previous study 
conducted their experiment with a duration of 17 days, so the genera-
tion rate of TCP was faster than or equal to the degradation rate of TCP. 
But it is worth attention that our study only conducted within 30 days 
with 6 observation data. In this case, it is hardly to know the peak be-
tween D7 and D14, leading to difficulties to estimate degradation of TCP 
in this study. Furthermore, our results showed that CPF levels did not 
significantly affect TCP generation, but the peak levels differed with 
PLA-MPs addition. At the end of the experiment (D30), TCP residues 
were still positively detected in soil samples, but with 30 % lower con-
centrations than at its peak level (D7/D14). TCP is a moderately mobile 
and persistent compound in soils, and is ecotoxic with a high antimi-
crobial activity (Jaiswal et al., 2017). Therefore, it is necessary to pay 
attention to the environmental risks of TCP (Barkoski et al., 2018). 

Interestingly, in this study, only 1.0 % PLA-MPs treatment signifi-
cantly inhibited the degradation rate of CPF (6 mg kg-1). This result 
agrees with a previous study conducted by Ju et al. (2023a). The inhi-
bition by PLA-MPs of CPF degradation may be due to the adsorption of 
CPF onto the surface of MPs, which reduces the bioavailability of CPF to 
soil microorganisms (Beriot et al., 2020; Zhang et al., 2023). Ju et al. 
(2024) found that biodegradable MPs significantly inhibited the 
degradation of CPF, compared to the low-density polyethylene MPs. 
Note that our study uses biodegradable MPs, which usually has a higher 
specific surface area, higher porosity, and different chemical properties, 
possibly leading to even higher adsorption capacities compared to 
conventional plastics (Gong et al., 2019; Jiang et al., 2020). Therefore, 
the type, size and concentration of MPs may be important factors that 
affect the degradation of pesticides (Peña et al., 2023). In addition, as 
reviewed by Zhang et al. (2021), the presence of MPs in the soil changes 
the physicochemical properties of the soil, and disturbs the functional 
and structural diversity of soil microbial communities. If soil microor-
ganisms are affected by MP contamination, and soil enzyme activities 

altered, CPF degradation could be strongly affected (Chishti et al., 
2013). Therefore, further studies are needed to explore the underlying 
mechanisms that relate MPs to CPF fate in soils. 

4.2. Effects of CPF and MPs on soil P availability 

OPPs are chemical compounds containing phosphate molecules 
(Aissa et al., 2021), with C-P bonds that can be cleaved to phosphate 
(HPO4

2-) by various phosphatase enzymes (Sviridov et al., 2015). It has 
been reported that the use of OPPs affect the accumulation and cycling 
of P in the soil (Hébert et al., 2019). Soil Olsen-P is one of the most 
effective chemical markers for the biodegradation of OPPs (Yu et al., 
2011). Our study shows that the degradation of CPF stimulates the 
Olsen-P content in the soil, in agreement with previous research (Wang 
et al., 2022b). Furthermore, studies have shown that the use of CPF and 
its metabolites stimulate the growth and activity of P solubilizing mi-
croorganisms, and increase P mineralization, thereby improving the 
availability of soil P (Arora, Gaur, (1979); Sardar, Kole, (2005). Based on 
our findings, it seems that CPF and TCP are degraded into inorganic 
phosphates, which could increase soil available P (Singh et al., 2006). 

In this present study, MPs addition and CPF application showed 
opposite impacts on specific P fractions. The effects of MPs on soil easily 
labile P fractions (H2O) and labile P fractions (NaHCO3-Pi and NaHCO3- 
Po) were significant until D14. Afterwards, these fractions were signif-
icantly affected by CPF application. The different influence of PLA-MPs 
and CPF application on the various soil P fractions may be due to the 
different mode of actions of PLA-MPs and CPF. As we have observed 
(Table 3), P fractions were mainly affected by PLA-MPs at the early 
stages of incubation. The addition of PLA-MPs may change the balance 
of soluble and adsorbed P fractions, as it provides different forms and 
quantities of P sorption sites (Dong et al., 2021; Ya et al., 2021). 
Meanwhile, MPs may change soil physicochemical properties, thereby 
indirectly regulating soil enzyme activities and the various chemical 
forms of P (Wang et al., 2022a). In the later stages, with the degradation 
of CPF, bound organic P might be released into the soil as moderately 
labile P. Provided that all of the bounded-P from CPF and TCP have been 
released, the mineralization process of soil organic P to soluble inorganic 

Table 2c 
Percentage of soil P fractions in treatments with pesticide application (12 mg kg-1 of CPF).  

MPs Days H2O NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po Occluded-P  

0.0 % D0 0.49 ± 0.14 %Ac 2.26 ± 0.19 %Bb 0.24 ± 0.06 %Bc 0.77 ± 0.08 %Ab 0.51 ± 0.01 %Abc 95.85 ± 0.29 %Aa 
D1 0.85 ± 0.07 %ABb 2.61 ± 0.05 %Aab 0.36 ± 0.04 %Abc 0.93 ± 0.08 %Aa 0.54 ± 0.04 %Abc 94.71 ± 0.24 %Aab 
D3 1.23 ± 0.19 %Aa 2.61 ± 0.09 %ABab 0.74 ± 0.40 %Ab 0.36 ± 0.05 %Ac 1.18 ± 0.14 %Aa 93.87 ± 0.72 %Ab 
D7 1.25 ± 0.21 %Aa 2.34 ± 0.24 %Bb 1.36 ± 0.07 %Aa 0.42 ± 0.06 %Cc 0.97 ± 0.20Aa 93.66 ± 0.14 %Ab 
D14 1.15 ± 0.14 %Bab 2.67 ± 0.09 %Aa 0.23 ± 0.04 %Ac 0.34 ± 0.07 %Bc 0.73 ± 0.05 %Bb 94.88 ± 0.15 %Aab 
D30 0.51 ± 0.13 %Bc 1.51 ± 0.12 %Ab 1.58 ± 0.06 %Aa 0.72 ± 0.05 %Ab 0.47 ± 0.03 %Ac 95.21 ± 0.21 %Aa  

0.1 % D0 0.99 ± 0.38 %Abc 2.78 ± 0.09 %Aa 0.41 ± 0.19 %ABb 0.90 ± 0.03 %Aab 0.42 ± 0.06 %Ad 94.50 ± 0.46 %Aa 
D1 0.60 ± 0.05 %BCd 2.66 ± 0.09 %Aa 0.42 ± 0.14 %Ab 1.02 ± 0.08 %Aa 0.49 ± 0.15 %Acd 94.81 ± 0.10 %Aa 
D3 1.30 ± 0.03 %Aab 2.57 ± 0.09 %Ba 0.73 ± 0.09 %Ab 0.39 ± 0.04 %Ad 1.31 ± 0.07 %Aa 93.69 ± 0.08 %Aa 
D7 1.59 ± 0.22 %Aa 2.61 ± 0.09 %ABa 0.50 ± 0.17 %BCb 0.64 ± 0.07 %Bc 0.57 ± 0.10 %Bcd 94.08 ± 0.37 %Aa 
D14 1.58 ± 0.19 %Aa 2.71 ± 0.36 %Aa 0.37 ± 0.16 %Ab 0.35 ± 0.05 %Bd 0.87 ± 0.06 %Ab 94.12 ± 0.43 %Aa 
D30 0.90 ± 0.11 %Abc 1.88 ± 0.20 %Ab 1.53 ± 0.29 %Aa 0.92 ± 0.09 %Ab 0.64 ± 0.08 %Ac 94.13 ± 0.46 %Aa  

0.5 % D0 1.07 ± 0.19 %Ac 2.51 ± 0.21 %ABa 0.44 ± 0.05 %Ab 0.77 ± 0.06 %Ac 0.61 ± 0.17 %Ab 94.61 ± 0.44 %Aa 
D1 1.11 ± 0.16 %Abc 2.61 ± 0.33 %Aa 0.18 ± 0.13 %Ab 1.00 ± 0.08 %Aab 0.43 ± 0.14 %Ab 94.67 ± 0.19 %Aa 
D3 0.67 ± 0.09 %Bd 2.82 ± 0.24 %ABa 0.44 ± 0.08 %Ab 0.40 ± 0.09 %Ad 1.14 ± 0.12 %Aa 94.53 ± 0.45 %Aa 
D7 1.47 ± 0.04 %Aa 2.94 ± 0.10 %Aa 0.34 ± 0.10 %Cb 1.15 ± 0.04 %Aa 0.41 ± 0.13 %Bb 93.69 ± 0.16 %Ab 
D14 1.35 ± 0.14 %ABab 2.64 ± 0.15 %Aa 0.38 ± 0.04 %Ab 0.42 ± 0.05 %Bd 0.65 ± 0.07 %Bb 94.56 ± 0.23 %Aa 
D30 0.78 ± 0.07 %Ad 1.81 ± 0.09 %Ab 1.25 ± 0.10 %ABa 0.96 ± 0.04 %Ab 0.48 ± 0.06 %ABb 94.73 ± 0.09 %Aa  

1.0 % D0 0.83 ± 0.17 %Ab 2.49 ± 0.11 %Bc 0.31 ± 0.11 %ABb 0.97 ± 0.19 %Aa 0.65 ± 0.25 %Ab 94.75 ± 0.13 %Aab 
D1 0.58 ± 0.16 %Cb 2.86 ± 0.08 %Aa 0.26 ± 0.10 %Ab 1.08 ± 0.16 %Aa 0.54 ± 0.33 %Ab 94.78 ± 0.25 %Aab 
D3 0.84 ± 0.21 %Bb 2.80 ± 0.13 %Aab 0.23 ± 0.11 %Ab 0.43 ± 0.05 %Ac 1.07 ± 0.06 %Aa 94.63 ± 0.22 %Aab 
D7 1.34 ± 0.12 %Aa 2.67 ± 0.09 %ABabc 0.96 ± 0.39 %ABa 1.20 ± 0.06 %Aa 0.58 ± 0.04 %Bb 93.25 ± 0.50 %Ac 
D14 1.42 ± 0.05 %ABa 2.63 ± 0.12 %Abc 0.48 ± 0.12 %Ab 0.59 ± 0.08 %Abc 0.63 ± 0.04 %Bb 94.25 ± 0.12 %Ab 
D30 0.80 ± 0.13 %Ab 1.90 ± 0.02 %Ad 0.98 ± 0.05 %Bb 0.90 ± 0.21 %Aab 0.37 ± 0.13 %Bb 95.05 ± 0.22 %Aa 

Note: the data is presented as mean ± SD (n=3); different lowercase letters indicate significant differences among different sampling days in the same level of PLA-MPs 
addition and CPF application (p < 0.05); different capital letters indicate significant differences among different PLA-MPs addition levels at the same sampling day and 
CPF application (p < 0.05). The first column in the tables represents different MPs gradient treatments; the second column in the tables represents the incubation time; 
columns 3 through 8 in the tables represent the different soil P fractions. 
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P dominates soil P transformation, thereby increasing P bioavailability. 
Besides, CPF degradation results in the production of carbon fragments, 
fatty amines and inorganic phosphates (Singh et al., 2006), thereby 
promoting the transformation of insoluble P fractions to active P frac-
tions (H2O-P+NaHCO3-P+NaOH-P). These active P forms can be easily 
absorbed and used by crops, thus improving soil fertility and promoting 
plant growth (Elhaissoufi et al., 2022). 

Soil phosphatase plays a key role in promoting the mineralization of 
soil organic P (Liu et al., 2023). Previous studies have showed that 
glyphosate application inhibited ALP compared with control treatments, 
but MPs addition (7 %/28 %) significantly increased ALP, especially in 
treatments with high level of MPs (Yang et al., 2018). In contrast, in this 
study ALP activity did not change significantly at the early stages of CPF 
application, but increased significantly at D14 and D30 with PLA-MP 
addition, which could transform the released moderately labile P into 
labile and very labile P. Yun et al. (2010) reported that CPF application 
did not affect soil ALP activity at the early stages, but eventually 
increased ALP activity after 60 d incubation. However, Jastrzębska 
(2011) found that the application of CPF had an inhibitory effect on soil 
ALP activity which, in turn, might slow down CPF degradation. 

However, after the microbial community develops a tolerance to CPF 
and an increased ability for co-metabolism of soil microbes, microbial 
populations and soil enzyme activities increase (Franco-Andreu et al., 
2016; Kumar et al., 2022), facilitating P mineralization and P bioavail-
ability in soil. Although the increase in soil P availability was relatively 
short-time in our study, the increase in P bioavailability will greatly 
promote plant uptake P, especially when plants are in a rapid growth 
period and require large amounts of P. Meanwhile, this transient in-
crease of AP implies that CPF contributes to soil P releasing and may 
increase P utilization (Yadav et al.,2012). Besides, the presence of 
vegetation affect the behavior of CPF and MPs, especially those con-
taminates co-existing in soil-plant environment. Our resent study 
showed that plants were uptake CPF in MPs contaminated soil (Ju et al., 
2024), thereby the behavior of CPF degradation might differ than its in 
soil without plant. In light of the importance of P in soil and OPPs 
application, further studies are needed to explore the effects of CPF on 
the P balance, especially in soils with plants and other coexisting envi-
ronmental stressors. 

Fig. 3. Soil alkaline phosphatase (ALP) activity in different treatments during the observation days (a: 0 mg kg-1 of CPF application; b: 6 mg kg-1 of CPF application; 
c: 12 mg kg-1 of CPF application; different lowercase letters indicate significant differences among different sampling days in the same level of PLA-MPs addition and 
CPF application (p < 0.05); different capital letters indicate significant differences among different PLA-MPs addition levels at the same sampling day and CPF 
application (p < 0.05); the error bar represents the SD (n=3). 
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5. Conclusion 

This study investigated the degradation kinetics of CPF in soil 
contaminated with different concentrations of PLA-MPs, and the sub-
sequent impacts on soil P bioavailability. Results show that the half-life 
of CPF ranged from 11.0 to 14.8 d, and that PLA-MPs inhibited the 
degradation rate of CPF only when the PLA-MP addition level was 
relatively high and CPF application level was low. The dynamic changes 
to soil available P fractions were similar to that of the TCP content, 
which first increased during the first 3–7 d of incubation, and then 
decreased to a level similar to the initial condition by the end of incu-
bation. Statistical analyses show that the soil P composition was mainly 
affected by PLA-MPs at early periods, whereas effects at later stages 
were mainly due to CPF. These findings imply that the degradation of 
CPF leads to a transient increase in P bioavailability in MPs- 
contaminated soils. Therefore, further research focusing on P response 
(transformation, utilization and balance) to organophosphorus pesticide 
application in MPs contaminated soil is urgently needed. 
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