
Journal of Industrial Microbiology and Biotechnology , 2024, 51, kuae011 

https://doi.org/10.1093/jimb/kuae011
Advance access publication date: 3 April 2024 

Natural Products – Review 

Harnessing regulatory networks in Actinobacteria for 

natural product discovery 

Hannah E. Augustijn 

1 ,2 ,† , Anna M. Roseboom 

2 ,† , Marnix H. Medema 1 ,2 , Gilles P. van Wezel 2 ,3 

1 Bioinformatics Group, Wageningen University, Wageningen, The Netherlands 
2 Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands 
3 Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, The Netherlands 
Correspondence should be addressed to: Gilles P. van Wezel at g.wezel@biology.leidenuniv.nl and Marnix H. Medema at marnix.medema@wur.nl.
† These authors contributed equally. 

Abstract: Microbes typically live in complex habitats where they need to rapidly adapt to continuously changing growth conditions. 
To do so, they produce an astonishing array of natural products with diverse structures and functions. Actinobacteria stand out 
for their prolific production of bioactive molecules, including antibiotics, anticancer agents, antifungals, and immunosuppressants. 
Attention has been directed especially towards the identification of the compounds they produce and the mining of the large diversity 
of biosynthetic gene clusters (BGCs) in their genomes. However, the current return on investment in random screening for bioactive 
compounds is low, while it is hard to predict which of the millions of BGCs should be prioritized. Moreover, many of the BGCs for 
yet undiscovered natural products are silent or cryptic under laboratory growth conditions. To identify ways to prioritize and activate 
these BGCs, knowledge regarding the way their expression is controlled is crucial. Intricate regulatory networks control global gene 
expression in Actinobacteria, governed by a staggering number of up to 1000 transcription factors per strain. This review highlights 
recent advances in experimental and computational methods for characterizing and predicting transcription factor binding sites 
and their applications to guide natural product discovery. We propose that regulation-guided genome mining approaches will open 

new avenues toward eliciting the expression of BGCs, as well as prioritizing subsets of BGCs for expression using synthetic biology 
approaches. 

One-Sentence Summary: This review provides insights into advances in experimental and computational methods aimed at pre- 
dicting transcription factor binding sites and their applications to guide natural product discovery. 
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studied Actinobacteria (Cruz-Morales et al., 2013 ; Ikeda et al., 
2003 ; Ohnishi et al., 2008 ; Oliynyk et al., 2007 ), it became evident 
that these bacteria contain far more biosynthetic potential than 
originally anticipated. Genes encoding the biosynthesis of NPs 
are typically co-located on bacterial genomes in so-called biosyn- 
thetic gene clusters (BGCs), enabling the prediction of biosynthetic 
potential based on sequence data (Blin et al., 2019 ). Large-scale 
genome sequencing efforts brought to light that only a fraction 
of the biosynthetic potential that is potentially encoded by mi- 
crobial genomes has been experimentally characterized (Bérdy, 
2012 ; Gavriilidou et al., 2022 ; Newman & Cragg, 2020 ), and strep- 
tomycetes were shown to have a particularly diverse arsenal of 
BGCs (Gavriilidou et al., 2022 ). The vast majority of the chemical 
space of their specialized metabolites so far remains concealed, 
largely because we lack the understanding of how we should acti- 
vate their biosynthesis (Ohnishi et al., 2008 ) or how we should pri- 
oritize BGCs that are likely to have biological activities of interest. 
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Introduction 

Actinobacteria are known as nature’s medicine makers, produc-
ing a huge variety of natural products (NPs) (Barka et al., 2016 ;
Bérdy, 2005 ; Hopwood, 2007 ). Activities of NPs include antibiotic,
antifungal, anticancer, anthelmintic, herbicide, and immunosup-
pressant, and humans harness these properties for application in
agriculture, biotechnology, and medicine. Identifying novel bioac-
tive molecules via screening of strain collections is a costly pro-
cess that, particularly for antibiotics, has rarely paid off in recent
decades (Cooper & Shlaes, 2011 ; Payne et al., 2006 ). This discov-
ery void coincides with the rapid spread of antimicrobial resis-
tance. Together, these two issues create an urgent need for novel
antibiotics. 

A major revolution in the way we look at drug discovery was
prompted by whole genome sequencing. When the genome of
the model organism Streptomyces coelicolor was published some 20

years ago (Bentley et al., 2002 ), followed by several other well- 
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The production of specialized metabolites is a resource-
ntensive process for the bacterial cell, usually taking place
nder conditions of resource limitation (Bruggeman et al., 2020 ;
erkhoven, 2022 ). Therefore, the expression of BGCs is subject
o extensive transcriptional control, governed by transcription
actors (TFs) that mediate direct or indirect activation or repres-
ion of gene expression (Albert, 2005 ; Balleza et al., 2009 ). This
egulatory network involves dynamic interplay between sigma
actors for promoter recognition and specific and pleiotropic
egulators that act as transcriptional repressors or activators,
hich together dictate the gene expression profiles. As of yet,
he number of global regulators in streptomycetes for which the
omplete regulon has been described is still very limited, while
pproximately 12% of their genes are annotated as regulatory
Romero-Rodriguez et al., 2015 ). This underscores the current lim-
tations in the understanding of the intricate regulatory networks
ontrolling the biosynthesis of NPs. Understanding how BGCs are
ontrolled may provide new leads to activate their gene expres-
ion or prioritize them for likely ecological functions (van Bergeijk
t al., 2020 ; Yoon & Nodwell, 2014 ; Zhu et al., 2014 ). To do so, we
eed to characterize the TFs and their cis-regulatory elements
CREs) and identify the environmental triggers and cues that
ctivate the expression of silent BGCs (Rigali et al., 2018 ). Recent
dvances in high-throughput technologies for the detection and
rediction of transcription factor binding sites (TFBSs) hold great
romise for extensive mapping of the regulatory networks of NP
roducers. 
Here we will summarize the established principles of tran-

criptional control of BGCs gleaned from Streptomyces coelicolor ,
hereafter we will review experimental and computational
ethods employed in the pre- and post-genomic era for identi-

ying and characterizing TFBSs in Actinobacteria. Subsequently,
e will delve into the present and prospective applications of
hese methods within the genomics-based NP genome mining
eld, which promises many advances for NP discovery for both
ndustrial and clinical applications. 

 Short Overview of Transcriptional Control in 

he Model Organism Streptomyces Coelicolor 
he intertwining regulatory networks translating environmental 
riggers to intracellular signals activating BGCs have been rela-
ively well studied in the model organism Streptomyces coelicolor
Urem et al., 2016 ). The chemical differentiation of strepto-
ycetes, marked by the production of secondary metabolites,
lso known as specialized metabolites or NPs, closely aligns with
heir morphological differentiation (Bibb, 2005 ; van der Heul
t al., 2018 ). Streptomycetes undergo a complex life cycle in
hich stress conditions, such as nutrient depletion, initiate aerial
yphae formation, eventually leading to sporulation (Chater &
osick, 1997 ; Jakimowicz & van Wezel, 2012 ; Kelemen & Buttner,
998 ). Following dispersion, spores germinate, giving rise to a
ranched, vegetative mycelium composed of long multinucleoid
yphae (Claessen et al., 2014 ; Elliot et al., 2008 ). At this stage
f the developmental life cycle of S. coelicolor , the production of
ndecylprodigiosin (Red) is initiated. Subsequently, the vegetative
ycelium lyses, and a programmed cell death provides nutrients

or the newly formed aerial mycelium (Manteca et al., 2005 ;
enconi et al., 2018 ). In S. coelicolor , the formation of this aerial
ycelium coincides with the production of actinorhodin (Act).
he aerial mycelium eventually produces chains of unigenomic
pores (Jakimowicz & van Wezel, 2012 ; McCormick & Flardh,
012 ). Due to this strict growth phase-dependent regulation of
ntibiotic production, developmental mutants that are halted in
he life cycle generally fail to produce antibiotics. 
The biosynthesis of Act, Red, and calcium-dependent an-

ibiotic (CDA) is directly controlled by ActII-ORF4, RedD, and
daR, respectively, which belong to the family of Streptomyces
ntibiotic regulatory proteins (SARPs) (Wietzorrek & Bibb, 1997 ).
ranscription of redD is in turn controlled by the orphan response
egulator RedZ, illustrating a hierarchical cascade of cluster-
ituated regulators (CSRs) governing BGC expression (Bibb, 2005 ).
nterestingly, expression of the Red BGC is completely dictated by
he expression of RedD, and expression of redD from a develop-
entally controlled promoter allows production of prodigionines

n aerial hyphae (van Wezel et al., 2000 ). The expression of CSRs
ay be controlled by an intricate network of global regulators.
s an example, transcription of the actII -orf4 is controlled by
omplex multilevel control that consists of some 20 different
egulatory networks (Liu et al., 2013 ). These include several
leiotropic regulators such as Crp, DasR, and AtrA, each of which
odulate primary and specialized metabolism as well as mor-
hological differentiation (Gao et al., 2012 ; Świątek-Połatyńska
t al., 2015 ) . This intertwining network of regulatory proteins fa-
ilitates multilevel control of BGC expression, of vital importance
or Streptomyces but challenging for researchers to completely
ecipher. 
To delineate the organizational structure of the regulatory

etwork, it is interesting to compare the regulons controlled
y the pleiotropic regulators BldD (Den Hengst et al., 2010 ) and
asR (Świątek-Połatyńska et al., 2015 ). The regulon of the highly
onserved BldD in S. coelicolor spans some 160 direct targets, with
 particular focus on the control of developmental genes. In S.
oelicolor , BldD only marginally and indirectly affects antibiotic
roduction, for example, via its influence on the transcription
f genes like adpA and nsdA (Den Hengst et al., 2010 ; Yan et al.,
020 ). While later studies showed that BldD may directly control
he biosynthesis of avermectin in Streptomyces avermilis (Yan et al.,
020 ), daptomycin in Streptomyces roseosporus (Yan et al., 2020 ),
nd lincomycin in Streptomyces lincolnensis (Li et al., 2019 ), its core
egulon clearly revolves around the control of development. Con-
ersely, the regulon of DasR, which controls a similar number of
enes as BldD, mainly revolves around the control of primary and
pecialized metabolism (Rigali et al., 2008 ; Świątek-Połatyńska
t al., 2015 ; Urem et al., 2016 ). Considering that both DasR and
ldD act during early development, and mutation of either gene
ocks streptomycetes in the vegetative growth phase, it is surpris-
ng to see how little overlap there is between these two master reg-
lons (Rigali et al., 2018 ). This suggests an evolutionary strategy
o separate the global metabolic and developmental control net-
orks in streptomycetes. In S. coelicolor , DasR responsive elements
ere discovered within most BGCs that specify antibiotics ( act, red,
da, cpk ), while its control over siderophore biosynthesis is medi-
ted via repression of the iron master regulator dmdR1 (Craig et al.,
012 ). DasR was the first example of a pleiotropic regulator that
ontrols a cryptic BGC, namely cpk for the cryptic type I polyketide
pk. The production of Cpk (later called coelimycin P1) could be
licited via the addition of N -acetylglucosamine (GlcNAc), which
s metabolized and subsequently interferes with DasR binding,
hereby unlocking the expression of the cpk cluster (Rigali et al.,
008 ). This underlines the power of mapping regulons for NP dis-
overy. For a more detailed description, including visualizations,
f the regulatory networks described in this introduction, we refer
o reviews elsewhere (Liu et al., 2013 ; van der Heul et al., 2018 ). 
Gaining insights into the TF regulatory networks in model

rganisms such as S. coelicolor is important to improve our general
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Table 1. Examples of Conserved Pleiotropic Regulators in Streptomycetes With Identified TFBSs 

TF Studied strain Method Reference 

Primary metabolism 

ArgR S. coelicolor EMSA & footprinting Botas et al. (2018 ), Perez-Redondo et al. (2012 ) 
Crp S. coelicolor ChIP-chip Gao et al. (2012 ) 
GlnR S. coelicolor EMSA & footprinting Liao et al. (2015 ), Tiffert et al. (2008 ), Wang & Zhao (2009 ) 
LexA S. venezuelae ChIP-seq Stratton et al. (2022 ) 
NsrR S. venezuelae ChIP-seq Crack et al. (2015 ), Munnoch et al. (2016 ) 
HrdB S. coelicolor ChIP-seq Šmídová et al. (2019 ) 

Specialized metabolism 

AdpA S. griseus ChIP-seq, EMSA & footprinting Hara et al. (2009 ), Higo et al. (2012 ) 
AtrA S. coelicolor EMSA & footprinting Uguru et al. (2005 ) 
DasR S. coelicolor ChIP-chip Swiatek-Polatynska et al. (2015 ) 
ScbR S. coelicolor ChIP-seq, EMSA & footprinting Li et al. (2015 ) 
ScbR2 S. coelicolor ChIP-seq, EMSA & footprinting Li et al. (2015 ) 

Development 
AbrC3 S. coelicolor ChIP-chip Rico et al. (2014 ) 
BldC S. venezuelae ChIP-chip & ChIP-seq Bush et al. (2019 ) 
BldD S. coelicolor ChIP-chip Den Hengst et al. (2010 ) 
BldM S. venezuelae ChIP-seq Al-Bassam et al. (2014 ) 
OsdR S. coelicolor EMSA & footprinting Urem et al. (2016 ) 
PhoP S. coelicolor EMSA & footprinting Santos-Beneit et al. (2009 ), Zheng et al. (2019 ) 
WhiB S. venezuelae ChIP-seq Bush et al. (2013 ) 

Note . The regulators are subclassified in their main functional control group. 
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comprehension of regulons, and this information can then be
translated to other strains . Table 1 provides an overview of
well-studied conserved pleiotropic regulators in streptomycetes
for which at least a part of the regulon has been mapped using
experimental methods. 

Experimental Techniques for the Detection 

of Regulatory Systems 

In the research domain of Actinobacterial gene regulation,
the sequencing of the complete genome of the model organ-
ism Streptomyces coelicolor A3(2) (Bentley et al., 2002 ) marked a
transition from traditional pre-genomic methodologies, which
focused mostly on single transcription units and simple cis-trans
relationships, to post-genomic techniques, known for their high-
throughput and genome-wide analysis capabilities. To study the
intricate interactions between TFs and the DNA, numerous exper-
imental methods have been developed, and for comprehensive
details, we refer readers to in-depth reviews elsewhere (Dey et al.,
2012 ; Ferraz et al., 2021 ; Guille & Kneale, 1997 ). In this section,
we present the most relevant experimental techniques used to
study TFs, their binding sites, and their regulons, illustrating their
progression from the pre- to post-genomic era. These methodolo-
gies provide the basic toolbox to unravel the regulatory networks
controlling BGCs in Actinobacteria and thus constitute the
technological basis for regulation-guided genome mining efforts. 

Detection of TFBSs in the Pre-genomic Era 

Initial research on DNA-protein interactions primarily centered
on globally acting TFs that regulate various aspects of Acti-
nobacterial biology. In the pre-genomic era, DNA binding studies
were typically performed using electrophoretic mobility shift
assay or gel retardation assay (Fig. 1 a) (Dey et al., 2012 ; Fried &
Crothers, 1981 ; Garner & Revzin, 1981 ). Here, the protein-nucleic
complex formation reduces migration speed compared to the
electrophoretic run of a free nucleic acid fragment in a gel.
DNase I footprinting, whereby enzymatic cleavage of the DNA
is prevented by binding of a protein, can then be employed to
decipher the exact nucleotides a TF binds to (Fig. 1 a) (Ferraz et al.,
2021 ; Galas & Schmitz, 1978 ). While these techniques are limited
in throughput and focus, often addressing single genes at a time,
they have been instrumental in unraveling complex regulatory 
systems (Bibb, 1996 ). To predict and identify binding sequences 
for novel regulators, the systematic evolution of ligands by 
the exponential enrichment (SELEX) method was developed 
(Fig. 1 a) (Ferraz et al., 2021 ; Tuerk & Gold, 1990 ). This method has
been applied successfully to localize TFBSs on a genome-wide 
scale in Actinobacteria (Qian et al., 2002 ). However, SELEX fails 
to decipher the complex binding motifs of TFs with variable 
binding sequences, a trait that is commonly seen for pleiotropic 
regulators, for example, for DasR (Swiatek-Polatynska et al., 2015 ).

Although these pre-genomic methods may appear somewhat 
outdated in the face of the high-throughput post-genomic tech- 
niques that will be explored in the following section, they remain 
widely applied (Fig. 1 c). Presumably, because of the highly reliable 
information they provide on specific regulatory interactions. In 
Streptomyces, the genus with the most regulatory-focused papers 
(Fig. 1 c), they were used to elucidate the CREs of the A-factor
dependent transcriptional activator AdpA (Yamazaki et al., 2004 ),
PhoP that is involved in the response to stress caused by phos-
phate limitation (Sola-Landa et al., 2005 ; Yang et al., 2015 ), and
DasR that links the control of primary and secondary metabolism 

(Rigali et al., 2006 , 2008 ). More recently, these techniques have 
been used to enhance the titer of the macrolide pesticide milbe- 
mycin (Wang et al., 2022a ), demonstrating the ongoing relevance 
of these pre-genomic methods in current research. 

The Post-genomic Era: Genome-wide 

Transcription Network Analysis 
The advent of genome sequencing technologies led to major 
advances in the analysis of transcriptional networks and DNA 

binding studies. Around the turn of the century, a breakthrough 
was achieved with the development of ChIP-chip or ChIP-on-chip,
a method that combined Chromatin Immuno Precipitation (ChIP) 
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Fig. 1. The core toolbox of techniques for regulatory network analysis, including methods from the pre-genomic era (a) and the post-genomic era (b) to 
study DNA-protein interactions and transcription factor binding sites (TFBSs) in Actinobacteria, and their advantages and disadvantages. Circle charts 
illustrate how regularly these common methods have been applied to study transcription factors in four genera within the phylum of Actinobacteria; 
Streptomyces, Mycobacterium, Corynebacterium, and Bifidobacterium (c) . These charts represent papers on transcription factors that were found using the 
keyword “EMSA,” “electrophoretic mobility shift assay,” “gel retardation assay,” “band shift assay,” “footprinting,” “DNAse protection assay,” “SELEX,”
“ChIP-chip,” “ChIP-on-chip,” or “ChIP-seq” in combination with the respective genus name on PubMed on October 5, 2023. The size of each circle plot 
corresponds to the dataset size, as denoted by the value “n,” which reflects the actual number of papers represented by the size of the plots. 
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ith DNA microarray analysis to study genome-wide TF binding
nder physiological conditions in living cells (Blat & Kleckner,
999 ; Ren et al., 2000 ). With this technique, TFs bound to their
arget sites are cross-linked chemically or via UV light, followed
y shearing of the genomic DNA (Gilmour & Lis, 1984 ; Solomon
 Varshavsky, 1985 ). DNA-protein complexes are then retrieved
sing antibodies against a genetically engineered protein tag,
uch as Flag, HA, V5, or Myc (Kidder et al., 2011 ), whereafter
NA analysis is conducted using DNA microarrays. A subsequent
ajor advance was the integration of ChIP with high-throughput
NA sequencing (ChIP-seq) (Fig. 1 b) (Johnson et al., 2007 ). This
ombination revolutionized the process by enabling the quick
nd accurate analysis of large amounts of precipitated DNA
ragments. Drawbacks of ChIP-seq include its complex data
nalysis and the fact that the use of antibodies, reagents, and
he required sequencing depth make this a relatively expensive
ethod (Dey et al., 2012 ; Ferraz et al., 2021 ). Despite this, ChIP-seq
as been broadly used to analyze various regulatory networks in
ey Actinobacteria genera such as Corynebacterium (Jeong et al.,
021 ; Jungwirth et al., 2013 ; Zhang et al., 2022 ), Mycobacterium
Galagan et al., 2013 ; Minch et al., 2015 ), and Streptomyces (McLean
t al., 2016 ; Munnoch et al., 2016 ; Stratton et al., 2022 ) (Fig. 1 c). 
More recently, DNA affinity purification sequencing (DAP-seq)
as developed to achieve even greater throughput in the mapping
f regulons (Bartlett et al., 2017 ). The method is similar to ChIP-
eq, except that proteins are produced via in vitro transcription-
ranslation and then bound to genomic DNA in the absence of
heir natural stimuli, allowing the generation of genome-wide
NA binding profiles of many TFs in an inexpensive and rapid way
Bartlett et al., 2017 ; O’Malley et al., 2016 ). Originally developed for
rabidopsis (Galli et al., 2018 ), DAP-seq has now been successfully
pplied to fungi (Fischer et al., 2018 ), insects (De Mendoza et al.,
019 ), and bacteria (Wang et al., 2022b ; Zhang et al., 2023 ). Adapta-
ions of the classical DAP-seq method include biotin-DAP-seq and
ultiDAP, which are respectively capable of mapping the regulons
ven more rapidly or for multiple organisms and TFs simultane-
usly (Baumgart et al., 2021 ). The success rate of biotin-DAP-seq
s comparable to other in vitro methods (Baumgart et al., 2021 ).
he in vitro transcription-sequencing (RIViT-seq) technology that
as recently been developed combines in vitro transcription by
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Fig. 2. Workflow for constructing regulatory networks from experimental data. The process can be roughly categorized into four stages. Importantly, 
the nature of the input data determines the subsequent procedural steps. For small to medium-sized datasets, such as footprinting results or 
single-TF ChIP-seq, a conventional motif discovery phase is employed, followed by TFBS predictions utilizing PWMs or pHMMs. In contrast, large 
datasets from high-throughput analyses, such as MultiDAP, could be suitable for advanced deep learning techniques. For all methodologies, threshold 
determination is essential to discern connections between regulators, resulting in the construction of a regulatory network. 
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reconstituted RNA polymerase with RNA-sequencing to identify
regulons (Otani & Mouncey, 2022 ). However, like for all in vitro DNA
binding studies, the disadvantage of these methods is that key
biological information is missing, such as post-translational mod-
ifications, ligands or cofactors that influence the binding activity
of a TF, and information on, for example, the growth-phase-
dependent activity of the TFs. Combining various multi-omics
datasets, for instance, in vitro with in vivo assays, compensates
for the lack of this key biological information and allows for the
systematic analysis of regulatory networks (Zhang et al., 2020 ).
The effectiveness of this combinational approach is showcased
in a study of cell growth phase regulation in Streptomyces griseus
(Hwang et al., 2022 ). In this study, the use of four multi-omics
datasets, including RNA-seq, dRNA-seq, Term-seq, and ribosome
profiling, led to the discovery of several novel regulons. This high-
lights the potential of combining diverse datasets for a more com-
plete understanding of regulatory interactions. Another recently
developed high-throughput method providing this much-needed
additional layer of information to study DNA-protein interactions
in vivo is 3D-seq or DddA-seq (Fig. 1 b) (Gallagher et al., 2022 ).
Here, a regulator is fused to the active deaminase domain of
the nucleic acid-targeting deaminase Ddda that targets 5’-TC-3’
sites around the TFBS and introduces C-G to T-A mutations that
localize the CRE of the protein. Moreover, DddA activity can
be modified by adjusting the expression of DddAI , whereby TF
binding can be mapped within a specific timeframe, for instance,
during host colonization. This would provide another exten-
sion to the biological understanding of the function of a BGC,
which could contribute to BGC prioritization in the search for
new NPs. 

As sequencing costs continue to decrease, high-throughput
methods such as ChIP-seq and DAP-seq will rapidly become the
new standard for studying genome-scale cis-trans relationships.
Processing these data involves statistical filtering that will in-
evitably lead to false negatives, and hence loss of important
binding interactions. Therefore, data generated by these methods
should always be validated with other experimental methods. 
 

Computational Methods for TFBS Detection 

The development of high-throughput screening methods, to- 
gether with reduced experimental costs, has significantly 
increased the availability of experimental data in genomics.
Despite these advancements in experimental methods, many 
researchers encounter challenges when working with their own 
custom strains or species that lack existing genomic information.
Moreover, even within well-researched model organisms, the pro- 
cess of validating putative binding sites is often labor-intensive 
and time-consuming. Addressing this, the existing experimen- 
tally validated binding site data offers the opportunity to create 
sophisticated in silico TFBS prediction models. Such models not 
only identify potential TFBSs in previously unstudied species but 
also provide assurance of legitimacy when a putative binding site 
aligns with a recognized motif and thus facilitate high-confidence 
assignment of regulatory interactions with BGCs. In this section,
we will describe several computational techniques and method- 
ologies for TFBS detection, as well as their potential applications 
in genome mining, with a particular focus on Actinobacteria. 

TFBS Detection 

Numerous methods for detecting TFBSs have been developed to 
streamline and enhance regulatory predictions, each tailored to 
specific datasets and research objectives. Tools like MEME (Bailey 
et al., 2015 ) and Weeder (Pavesi et al., 2004 ) excel in identifying
TFBS patterns or motifs from raw data, visualized as sequence 
logos and consensus sequences for convenient motif represen- 
tation. However, consensus sequences do not fully capture the 
variation of nucleotide distribution in the motif, limiting their 
standalone effectiveness for TFBS detection (Eggeling, 2018 ; 
Ladunga, 2010 ; Stormo, 2000 ). 

To accurately predict TFBSs, position weight matrices (PWMs) 
were introduced (Staden, 1984 ; Stormo, 2000 ). In contrast to 
consensus-based methods, these matrices are generated by 
quantifying the frequency of each nucleotide or amino acid at ev- 
ery position in a set of aligned sequences. With the use of PWMs,
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t becomes possible to predict entire regulons with a minimal
mount of experimentally validated binding sites. Bioinformatics
ools, such as PREDetector (Hiard et al., 2007 ), RSAT (Santana-
arcia et al., 2022 ), or various tools from the MEME-suite, aid in
he construction and utilization of custom PWMs or motifs of
ata obtained from databases or experimental results. Despite
WMs being the predominant method for predicting TFBS oc-
urrences in DNA, they are not without limitations. The model
perates under the assumption that each nucleotide functions
ndependently, which might lead to an oversimplification of the
omplex interactions and dependencies between nucleotides
Bulyk et al., 2002 ; Hannenhalli, 2008 ; Nguyen & Androulakis,
009 ). Consequently, using prediction models, true binding sites
ight be camouflaged among lower prediction scores and, hence,

ndistinguishable from false positives, making experimental 
alidation essential to determine complete regulons (Bang et al.,
022 ; Ma et al., 2015 ; Wasserman & Sandelin, 2004 ). Although
hese challenges led to the development of numerous adaptations
f this classical PWM approach (Boytsov et al., 2022 ; Hannenhalli
 Wang, 2005 ; Jayaram et al., 2016 ; Nguyen & Androulakis, 2009 ),
he classical PWM model continues to command greater attention
nd preference within the field. Its sustained popularity is likely
ue to its blend of simplicity, speed, and minimal computational
equirements, all while maintaining commendable accuracy. 
While the PWM remains the go-to method for TFBS detection,

ertain situations call for more advanced models. For example, its
igidity, particularly its fixed length, becomes problematic when
ddressing TFs with variable sequence lengths and spacer regions
Mathelier & Wasserman, 2013 ). Recognizing these challenges,
here is a shift toward nucleotide profile hidden Markov model
HMM)-based frameworks as an alternative (Eddy, 2004 ; Maaskola
 Rajewsky, 2014 ; Yoon, 2009 ). HMMs employ a state-based
robabilistic system, granting them the capability to represent
osition interdependencies within TFBSs and accommodate vari-
ble motif lengths. For motif discovery, these HMMs demonstrate
ore optimal precision, particularly when identifying gapped
otifs. GLAM2 (Frith et al., 2008 ), a component of the MEME suite,
tands as a commendable tool for this purpose. Transitioning
rom motif discovery to TFBS detection, the adaptability of HMMs
ontinues to be evident. For example, the tool nhmmer of HM-
ER (Finn et al., 2011 ; Wheeler & Eddy, 2013 ) has gained traction
s it exploits the probabilistic nature of HMMs to accurately
inpoint binding sites in complex and often noisy datasets,
ike those from ChIP-seq or DAP-seq (Madera & Gough, 2002 ;
athelier & Wasserman, 2013 ). Nevertheless, HMM approaches
emand substantial input data to surpass the performance of
WMs (Nguyen & Androulakis, 2009 ). Within the Actinobacterial
esearch domain, this has been a bottleneck due to the limited
vailability of vast datasets (Fig. 1 c). However, as high-throughput
echniques continue to advance and become more accessible, we
nticipate a shift toward more complex methodologies. 
Building on the methodologies previously explored, there

s another layer of complexity that demands attention. The
inding dynamics of TFs to their corresponding TFBSs rely
eavily on structural nuances, such as the shape of the DNA,
aking structure-centric approaches more accurate compared to
equence-based methods (Cui et al., 2022 ; Mathelier et al., 2016 ).
redictive deep learning models for binding site detection increas-
ngly incorporate these structure-based features in their training
hase to refine predictive capabilities (Chiu et al., 2020 ; Schnepf
t al., 2020 ; Wang et al., 2021a ; Yang & Ramsey, 2015 ). Further-
ore, several efforts have been made to utilize TF-DNA structural

nformation, such as X-ray crystallography data, to obtain insights
nto the binding orientation of the TF protein itself (Trerotola
t al., 2022 ; Wetzel et al., 2022 ). However, a significant bottleneck
s the scarcity of these experimentally defined crystal structures,
riving the need for innovative prediction models. Recently, the
vailability of these predicted protein structures has significantly
ncreased with the development of novel prediction methods such
s AlphaFold (Jumper et al., 2021 ). However, the effective applica-
ion of these models in actinobacterial contexts hinges on high-
uality predicted TFs and subsequent experimental validation. 

egulatory Network Reconstruction 

he identification of individual binding sites through regulatory
etection methods is a crucial first step in understanding gene
egulation. The challenge then lies in constructing comprehen-
ive TF regulatory networks. Here, we will focus on how to bridge
he gap between available experimental data for TBFSs and
he formation of a comprehensive network, which is essential
or elucidating the complex regulatory cascades (Fig. 2 ). As a
imple example, the activation of avermectin biosynthesis in S.
vermitilis is governed by the CSR AveR, which is in turn regulated
y the pleiotropic phosphate regulator PhoP (Martín et al., 2017 ).
his then predicts that depleting phosphate should lead to the
ctivation of the avermectin BGC. 
Constructing a gene regulatory network based on TFBSs begins
ith the careful curation of binding interactions, whether experi-
entally determined or predicted. It is of critical importance to
hoose the proper thresholds to minimize false positives while
t the same time preventing too many false negatives. For ex-
erimentally validated binding sites, confidence levels can be as-
igned based on the extent of experimental evidence supporting
ach site (Escorcia-Rodríguez et al., 2020 ). In the case of predic-
ive models such as PWMs, thresholds are established by consid-
ring the information content of motifs or examining the ratio of
its in coding versus non-coding regions (Hiard et al., 2007 ). Once
hese curated interactions are compiled, it becomes possible to
onstruct the network. In such a network, genes are represented
s nodes, while the interactions between regulators are depicted
s edges. Another prevalent method involves the derivation of net-
orks from transcriptomic data, known as transcriptional regula-
ory networks. Contrasting with TFBS-based networks, TRNs are
ore focused on aspects of gene expression. A notable example of

his approach can be seen in recent research on S. coelicolor , where
hey compared networks generated from both TFBS and transcrip-
omic data to construct a comprehensive gene regulatory network
Zorro-Aranda et al., 2022 ). This study revealed that the TFBS-
ased network appeared to be more comprehensive than the tran-
criptional regulatory network. However, integrating these two
ethodologies seems a logical progression. The mere presence of
 TFBS does not necessarily result in transcription, and conversely,
ranscriptomic data can be constrained by the specificity of the
ulture conditions used. Therefore, a combined approach could
ffectively mitigate the inherent limitations of each method, pro-
iding a more complete understanding of gene regulation. 

egulatory Networks and Elicitation of 
ryptic BGCs 

hen analyzing sequence data from even a single actinobac-
erial strain for the discovery of, for example, novel bioactive
ompounds, many target BGCs with potentially desired properties
an be identified. This identification is usually achieved by uti-
izing genome mining tools such as antiSMASH (Blin et al., 2023 )
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or PRISM (Skinnider et al., 2020 ). However, strains frequently
fail to express these BGCs under conventional experimental
conditions, leading these gene clusters to be referred to as “silent”
or “cryptic” BGCs. Given the complexity of the native regulatory
networks that control BGC expression, a prevalent strategy in
such instances is to omit these regulatory systems by refactoring
and heterologous expression of these BGCs in alternative host or-
ganisms (Baral et al., 2018 ; Liu et al., 2021 ). Though this approach
has been successfully applied for gene clusters derived from
Actinobacteria (Ahmed et al., 2020 ; Gomez-Escribano & Bibb,
2011 ; Ikeda et al., 2014 ; Mevaere et al., 2018 ), it often mandates
intricate manual design. Additionally, heterologous expression
might lead to variations in the metabolites produced, raising
questions about how closely these compounds mirror those gen-
erated by the original strain (Xu et al., 2022 ). Finally, compounds
may be produced from more than one gene cluster, in which
case heterologous expression becomes undoable at a significant
scale (van Bergeijk et al., 2020 ; van Wezel et al., 1994 ). Therefore,
in many cases, scientists will have to rely on the original host
for the production of the compound, thus driving the need for
alternative BGC expression methods. 

One such method is through the identification and subsequen-
tial utilization of environmental signals that trigger the native
regulatory networks that govern the production of specialized
metabolites. These specialized metabolites play an important role
in survival through mediating resource competition (Abrudan
et al., 2015 ; Wright & Vetsigian, 2016 ), protection against oxidative
stresses (Lee et al., 2020 ), and in the uptake of essential nutrients
(Kramer et al., 2020 ). This requires careful timing of production,
suggesting that environmental signals, indicative of specific
stresses such as nutrient scarcity or the presence of competitors,
have been incorporated in the regulation of BGC expression
(Bibb, 2005 ; Hoskisson & Fernández-Martínez, 2018 ; Kramer et al.,
2020 ; van der Heul et al., 2018 ). Indeed, nutrient availability
and co-culturing of Actinobacteria with other microorganisms
significantly influence their specialized metabolite production
(Rigali et al., 2008 ; Traxler et al., 2013 ). To express cryptic or silent
BGCs, it is essential to understand these environmental signals,
or “elicitors,” that influence metabolite production. Current
methods to identify these elicitors for BGC activation include
changing the growth media (Bode et al., 2002 ; Zhu et al., 2014 ),
use of antibiotics to induce spontaneous antibiotic resistance
(Hosaka et al., 2009 ; Tanaka et al., 2009 ), and co-cultivation
approaches (Bertrand et al., 2014 ; Hoshino et al., 2015 ; Sugiyama
et al., 2015 ). Additionally, screening for novel chemical elicitors
can enhance the success rate in high-throughput screening of
bacterial strain collections. Examples of such screens include Glc-
NAc, which works via interference with DasR (Rigali et al., 2008 ),
γ -butyrolactones (Hsiao et al., 2009 ; Willey & Gaskell, 2011 ),
and histone deacetylase inhibitors (Albright et al., 2015 ). The
high-throughput elicitor screening technology (HiTES) has been
developed for large-scale elicitor screens (Moon et al., 2019a , b ),
where bacteria are challenged with a library of small molecules,
followed by metabolomics-based screening of the responses.
This approach has successfully identified cryptic antibiotics,
such as the lanthipeptide cebulantin (Moon et al., 2019a ) and
the naphtoquinone epoxide hiroshidine (Moon et al., 2019b ). Al-
ternatively, the identification of ligands inducing conformational
changes in TFs, thereby eliciting the production of NPs via TF
binding, can be predicted through in silico small molecule docking
(Agu et al., 2023 ; Oladejo et al., 2023 ). This method allows the
prediction of binding poses of ligands to receptor proteins and
has become an emerging trend in drug discovery (Rudrappa et al.,
2023 ). Although it relies on high-resolution 3D representations 
of target proteins, the method has been successfully applied for 
the identification of various ligands, such as the role of a Zn(II)
ion in the functioning of UxuR in E. coli (Ferraz et al., 2021 ; Purtov
et al., 2019 ). Additionally, we envision that we may also look at
regulatory networks for pathway activation and to predict BGC 

function—not by the enzymes they encode or the molecules they 
produce, but by their regulatory controls and responsiveness to 
elicitors. This targeted TFBS detection approach, for example, as 
implemented in antiSMASH (Blin et al., 2023 ), will provide valu- 
able information on when a certain BGC may be expressed and 
how its expression can be elicited. For this, we can examine the
binding sites of known regulators as markers to discover possible 
novel pathways. By understanding the function of a specific reg- 
ulator, the functionality of the genes it controls can be inferred.
A possible methodology underlying this approach is versatile and 
can be applied to various TFs (Fig. 3 ), as illustrated by the appli-
cation of this strategy to the INBEKT (Identification of Natural 
compound Biosynthesis pathways by Exploiting Knowledge of 
Transcriptional regulation) system (Spohn et al., 2016 ). This sys- 
tem successfully identified a novel zinc-associated gene cluster by 
targeting the zinc-regulon through the zinc-dependent regulator 
ZuR. With knowledge of the elicitor at hand, the novel gene cluster
could be experimentally validated, underlining the potential of 
utilizing regulatory networks and elicitor screens as an integrated 
regulator-guided strategy for functional inference and elicitation 
of BGCs. 

Clearly, these methods require prior knowledge of the TF- 
BSs from which the regulon can be deduced. In other model 
organisms, such as Escherichia coli , Bacillus subtilis , or Pseudomonas 
aeruginosa , many cis-trans relationships between TFs and their 
cognate binding sites have been characterized (Gao et al., 2018 ; 
Moreno-Campuzano et al., 2006 ; Wang et al., 2021b ). In contrast,
for Streptomyces , it is estimated that only about 6% of the com-
plete network has been experimentally elucidated (Zorro-Aranda 
et al., 2022 ). Hence, expanding the knowledge of TFBSs is a pre-
requisite if we are to make significant strides in the application
of regulatory networks as prediction tools for regulation and 
elicitation of BGCs. To overcome this limitation, the tool AURTHO 

exploits the frequent autoregulatory nature of TFs to detect their 
corresponding sequence motifs (Anderssen et al., 2022 ). Such an 
approach suggests that if a shared motif is found upstream of 
both a TF and pathway-related components, like transporters 
or core biosynthesis genes, it could indicate the TF’s role in
regulating that specific regulon. Conversely, the function of a TF 
might be inferred by examining the roles of its target genes. 

All in all, we believe that the concept of connecting regula- 
tory network information and elicitor screens is a promising 
approach in genome mining-based NP discovery, which will aid in 
prioritizing BGCs and finding new ways to elicit their expression. 

Concluding Remarks and Future 

Perspectives 

In summary, this review has highlighted the crucial yet often 
neglected regulatory aspect of specialized metabolite produc- 
tion in the search for novel drug candidates. Understanding 
and manipulating BGC regulation has the potential to facili- 
tate the activation of silent or prioritization of orphaned gene 
clusters, potentially unlocking a wealth of untapped NPs. More- 
over, the adoption of regulation-guided strategies, alongside the 
advancement of high-throughput techniques and genome mining 
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Fig. 3. Schematic workflow for combining genomic information with regulatory networks, and expression data for the functional understanding and 
prioritization of gene clusters for experimental validation. Genomic data obtained from databases or from sequencing strain collections are combined 
with experimentally validated or predicted regulatory interactions. These data connected to gene cluster and TFBS detection methods and their 
associated regulatory networks, aid in the prioritization of BGCs for further detailed experimental validation. Ecological information can be 
incorporated as an additional layer for the prediction of elicitation conditions to activate BGC expression in vivo . Improved understanding of the 
underlying regulatory networks also provides important clues for the elucidation and chemical characterization of the natural products derived from 

the BGCs. In turn, the experimental characterization feeds the regulatory network with new validated interactions. Created with BioRender.com. 
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ethods, is paving the way for advances in how we prioritize and
xploit these pathways. 
The potential of binding site detection techniques is unde-

iable. Yet, the primary constraint facing regulation-guided
enome mining strategies is not the lack of innovation but rather
he scarcity of diverse, high-quality datasets, particularly for
ctinobacteria. The advancement of affordable, high-throughput
xperimental methodologies could offer a solution, as it is set
o rapidly increase our collection of large datasets dedicated to
iosynthetic pathway exploration. Specifically, state-of-the-art 
lobal binding site screening methods, such as MultiDAP, will be
f great value, especially when combined with complementary
ata types, such as large-scale transcriptome datasets from
licitor screenings. This combined approach can shed light on
he connection between regulons and elicitors, subsequently
nveiling the triggers needed for gene cluster expression. As the
eld continues to evolve, computational strategies will be indis-
ensable in harnessing the full potential of these datasets. With
he influx of more data, machine learning methods, renowned for
heir ability of handling complex datasets, are expected to take
he lead in predicting functions or elicitors of gene clusters based
n their regulatory characteristics (Mullowney et al., 2023 ). 
Overall, regulator-guided genome mining strategies hold

mmense promise for decoding the complex regulatory net-
orks that govern gene expression. By acquiring a deeper
nderstanding of these networks, we can improve our ability
o prioritize and efficiently utilize gene clusters, unlocking their
otential for biomedical and biotechnological innovations and
mplementations. 
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