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A B S T R A C T   

Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation 
technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. 
Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro- 
catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such 
metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate 
formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity 
decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted 
microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and 
acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new 
routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical 
compatibility.   

1. Introduction 

Catalysis is key to the sustainable production of chemicals, materials 
& fuel in the future. For the conversion of CO2 into valuable chemicals, 
use of microbial catalysts widens the product spectrum while improving 
selectivity[1]. During this bio-electrochemistry process, the mixed mi-
crobial community catalyses CO2 reduction in an electrosynthesis cell 
leading to the formation of green chemical products (like ethanol[2], 
methane[3], ethylene[4]) and medium chain fatty acids (acetate, 
butyrate, caproate)[5–9]. Medium chain fatty acids (MCFAs) have many 
applications, ranging from antimicrobials to precursor for bioplastics or 
biofuels[10]. 

These conversions are anaerobic processes driven by electroactive 
bacteria, which grow in suspension and/or form a biofilm on the cath-
ode. Electrons are generated at the anode, charged by an external energy 
source and supplied to the microbial community on the cathode, directly 
or via a carrier such as hydrogen[11,12]. These bio-electrochemical CO2 
reductions can be performed with non-aseptic microbial cultures which 
is promising for the treatment of different kind of CO2-rich waste 

streams[13]. MCFA production with open cultures of microbial con-
sortia is possible via chain elongation, where during anaerobic 
fermentation the short-chain carboxylates can be elongated via different 
pathways[14]. A first step of the elongation process is the formation of 
acetate from two molecules of CO2 during homoacetogenesis[15]. For 
bio-electrochemical acetogenesis, hydrogen was shown to be an inter-
mediate in the electron transport between the cathode and the bacteria 
[11]. Previous studies showed that bio-electrochemical acetogenesis 
productivity was stimulated by improved hydrogen supply[16,17]. 
Therefore, it is hypothesized that stimulating hydrogen production from 
the start of the bio-electrochemical chain elongation process would 
benefit the production of medium chain fatty acids. To date, the highest 
hydrogen supply rates in microbial electrosynthesis required long start- 
up times (>100 days) leading to current densities at maximum − 13kA/ 
m3 [6]. 

Hydrogen formation at the electrode surface (hydrogen evolution 
reaction) can be stimulated by the incorporation of a chemical catalyst. 
To combine a chemical hydrogen evolution reaction (HER) catalyst with 
a microbial catalyst in the same system, it is essential that the HER 
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catalyst functions under conditions suitable for microbial electrosyn-
thesis, e.g. near neutral pH and in mild temperature ranges[18,19]. 
Several studies have reported HER catalysts which catalyse hydrogen 
formation under microbial compatible conditions. These studies used for 
example Pt, Co, Mo or Ni-based catalysts that required specific methods 
to integrate them on the cathode[20–25]. Recently, de Smit et al. [26] 
showed the highest reported hydrogen production rates (up to 11 kg H2 
d− 1 m− 3 cathode) with a HER catalyst generated from feeding a trace 
metal mix solution and EDTA (TMM+) in an electrochemical system 
without microorganisms, but with microbial compatible conditions 
(bulk pH 5.8, 30 ◦C). In that work, the generation of such catalyst was 
possible thanks to a pre-treatment by the addition of a 100x concen-
trated trace metal solution (Co, Cu, Mn, Mo, Ni and Zn in solution with 
ethylenediaminetetraacetic acid EDTA) into the salt electrolyte (phos-
phate buffer, Mg and Ca salts) in the cathode compartment of the reactor 
[26]. 

Although the preliminary findings were promising, it remains un-
known whether microbial electrosynthesis is compatible with a TMM 
based catalyst. Because it would require addition of high concentrations 
of trace metals to the electrochemical reactors, the conditions can be 
toxic for microorganisms and inhibit their growth[27]. Regarding 
toxicity, not only the influence of the metal elements, but also the effect 
of EDTA should be considered, because EDTA can lower metal toxicity 
[28]. Another factor to consider for the combination of a HER catalyst 
and microbial activity is that hydrogen bubble formation can cause 
sheer stress at the cathode surface and thus inhibit biofilm formation 
[16]. Besides the effects of the HER catalyst on the biofilm, the biofilm 
can also affect the HER catalyst performance. For example, the growth of 
microorganisms can cause uptake of the deposited trace metals from the 
cathode[29–33], which reduces the amount of available HER catalyst. 

The aim of this study was to evaluate the feasibility of combining a 
trace metal mix HER catalyst with microbial electrosynthesis. The HER 
catalyst was deposited on the cathode using the trace metal mix with 
(TMM+) and without (TMM− ) EDTA. The system was evaluated for bio- 

electrochemical CO2 elongation systems. To this purpose, mixed mi-
crobial cultures were added to bio-electrochemical systems after pre- 
treatment with the trace metal mix. First, the formed catalyst was 
evaluated based on productivity and stability. Second, the activity and 
composition of the microbial community was investigated. This study 
presents a successful first integration of an in situ HER catalyst gener-
ated from trace metals solution reached a record of − 90 kA/m3 and a 
CO2-utilizing microbial community in the same bio-electrochemical 
chain elongation system. 

2. Experimental 

2.1. Reactor setup & operation 

Two sets of duplicate reactors were used for this study. The reactor 
setup was assembled with Plexiglass flow-through plates (14 mm), with 
one for the anodic chamber (30 mL) and two for the cathodic chamber 
(60 mL) (Scheme 1) and placed in a temperature controlled (30 ◦C) and 
light-shielded cabinet. The reactors consisted of a Ti/Pt-Ir MMO anode 
(thickness 1 mm, Magneto Special Anodes BV, Netherlands) and one 
layer (3 mm) graphite felt cathode (Rayon Graphite Felt, CTG Carbon 
GmbH, Germany), secured with spacers in the Plexiglas flow-through 
plates with 21.3 cm2 projected surface area. The graphite felt was 
non-microporous with a surface area < 1 m2/g, as determined by N2 
physisorption. The cathode current collector consisted of a titanium wire 
(0.8 mm, grade 2). The cathode potential was controlled at − 1.06 V vs 
an Ag/AgCl reference electrode (3 M KCl, QM710X, Q-is, the 
Netherlands) over the whole course of the experiment by a n-stat 
potentiostat (IVIUM, the Netherlands). The anode and cathode 
compartment were separated by a cation exchange membrane (Fumasep 
FKS, Fumatech BWT GmbH, Germany, 21.3 cm2 projected surface area). 
The total recirculation volumes of the anolyte and catholyte were 
respectively 339–365 and 391–408 mL. Both anolyte and catholyte were 
continuously recirculated at respectively 10 and 17 L/h. CO2 was added 

Scheme 1. Overview of reactor setup, adapted from de Smit et al., 2022 (A) and recirculation flow-through configuration for different experimental sets (B). Liquid 
flows are indicated with blue arrows and gas flows are indicated with grey dashed arrows. The graphite felt cathode was secured in place with spacers (green) 

S.M. de Smit et al.                                                                                                                                                                                                                              



Bioelectrochemistry 158 (2024) 108724

3

in gaseous form in a 30:70 CO2:N2 mix, with 100 LN/d CO2, which was 
sparged (sparger head 22 mm height, 12 mm diameter) into the cath-
olyte recirculation bottle (Scheme 1). The CO2:N2 gas mix was flushed 
through a demi water bottle prior to entering the reactors to ensure the 
gas stream was humidified. The anolyte recirculation bottle was 
continuously sparged with 60 LN/d N2 to remove excess O2. Previous 
studies showed hydrogen gas build-up between the cathode and the 
membrane, so a bypass was installed to release gas (Scheme 1B). Flow 
measurements revealed that 46–88 % of the total catholyte recirculation 
flow passed through the bypass. In the catholyte recirculation loop, a pH 
controller (Ontwikkelwerkplaats, Elektronica ATV, the Netherlands) 
with measuring probe (QMP108X, Q-is, the Netherlands) was installed 
to maintain the pH of the recirculated catholyte at 5.8. 

2.2. Reactor pretreatment 

To test the effect of the presence of a trace metal mix-based catalyst 
on microbial growth and activity, two sets of reactors were pre-treated 
with a trace metal mix. In Table 1, the three separate phases of the 
experiment are shown, with the corresponding medium compositions in 
SI Table S1 and S2. After 1–7 days of operation with “blank medium” 
without trace metals or ammonium (SI Table S1), 10 vol% concentrated 
trace metal mix solution (SI Table S2) was added to the reactor catholyte 
with a syringe, to start the “Metal phase”. One set of cathodes was pre- 
treated with a trace metal mix without EDTA (TMM− ), since the omis-
sion of EDTA was expected to result in better deposition of trace metal 
elements to the cathode and thus better catalyst formation. The TMM−

mix was added as a suspension which was continuously stirred during 
the aspiration with the syringe. Another set of reactors was pre-treated 
with the trace metal mix with EDTA (TMM+). The trace metal mix 
compositions are shown in SI Table S2. The reactor was left in batch 
mode during several days to allow the metals to deposit on the cathode. 
The incubation time with concentrated metals for the experiments with 
TMM+ and TMM− were respectively 10 and 2 days (Table 1). 

The incubation time for the TMM− was shorter because the metals 
disappeared from the solution more rapidly (SI Figure S2). After incu-

bation time, the “biotic phase” was started in the reactors, by flushing 
the electrolytes with three times the total catholyte volume of anaerobic 
biotic medium composed of NH4 and biocompatible low concentration 
of trace metals (in a mix with EDTA) (SI Table S1). In contrast with 
previous research[6,34], the biotic medium used in this study did not 
contain methanogenesis inhibitor 2-bromoethanesulfanoate. Reason for 
this was suspicion that this sulphur-containing compound could poison 
the catalyst as seen in literature[35] and preliminary study which 
showed current decrease simultaneous with sulphur deposition on the 
cathode in the presence of 2-bromoethanesulfanoate (SI Figure S1). 
Right after this replacement of the electrolytes, the reactors were inoc-
ulated with 10 vol% catholyte with a mixed microbial culture which was 

previously grown with similar conditions (bio-electrochemical CO2-fed 
system, bulk pH 5.8, − 200 mA to graphite felt cathode, 30 ◦C) and 
showed production of fatty acids (C2-C4). Inoculation was repeated on 
day 24, 31 and 38 for the TMM+ experiments and on day 25 and 36 for 
the TMM− experiments. During the biotic phase, the catholyte medium 
feed was changed from batch to continuous with a hydraulic retention 
time (HRT) of 14 days. The anolyte medium feed on the other hand, was 
continuously fed to the reactor with HRT 4 days, to prevent depletion of 
anolyte (Table 1). 

One set-up adjustment was made for the biotic phase of the experi-
ments without EDTA in the pre-treatment mix (TMM− ), the cathode 
inflow port and the position of the bypass were changed to allow for 
better mixing of the catholyte chamber (Scheme 1B, Table 1). For the 
other two runs (TMM+ and control), the cathode chamber inflow port 
was positioned between the membrane and the cathode (Scheme 1B). 

2.3. Analytical methods 

To analyse formation of various products and catalyst stability, 
several analysis methods were applied. Gas chromatography was 
applied to analyse the gas phase and for measuring fatty acids and al-
cohols in the liquid phase, according to the method described in the SI. 

To evaluate the microbial growth in the liquid fraction, 1 mL of 
sample was mixed and analysed at a wavelength of 600 nm via a Hach 
spectrophotometer (DR3900, Hach Lange, Germany). Metal concentra-
tions on the cathode, titanium wire and in the catholyte were measured 
by an inductively coupled plasma analyzer (ICP-OES, Perkin Elmer 
AVIO 500) as described by de Smit, Buisman, Bitter and Strik [34] with 
adjustments described in the SI. 

2.4. Calculations 

The hydrogen concentration in the catholyte was calculated based on 
the measured hydrogen fraction in the off gas (fractionoffgas H2), based 
on a Henry coefficient of 7.7E-06 mol/(m3Pa)[36] and a pressure of 1 
atm (101325 Pa) (Equation (1)): 

The electron recovery into volatile fatty acids (ηVFAs) and hydrogen 
(ηH2) was calculated based on the measured current at the sampling time 
(Currentt) in mA (mC/s), the catholyte outflow rate at the sampling time 
(Qt, calculated based on the inflow rate and acid addition over time), 
and the measured concentrations of volatile fatty acids in the liquid 
phase at the sampling time ConcVFA,t (Equation (2)): 

ηVFAs =

96485 mC
mmol e− *ConcVFA,t

[
mmol
L

]

*Qt

[
L
h

]

*x mmol e−
mmol VFA

Currentt
[
mC
s

]

*3600 s
h

(2) 

The hydrogen flow was calculated based on the hydrogen and 

Table 1 
Duration and medium used in each phase of the biotic experiments. The medium compositions are shown in SI Table S1 and S2.    

Metal mix with EDTA (TMM+) Metal mix without EDTA (TMM− ) Control 

Phase HRT catholyte (d) Medium Duration (d) Medium Duration (d) Medium Duration (d) 

Blank phase Batch Blank medium 7 Blank medium 1 − −

Metal phase Batch TMM+ 10 TMM− 2 − −

Biotic phase 14 Biotic medium 36 Biotic medium* 48 Biotic medium 29  

* Catholyte inflow port changed (Scheme 1B). 

Hydrogen conc [μM] = 7.7⋅10− 6 mol
m3Pa

*101325Pa*
fractionoffgasH2[%]

100%
*103μmol*m3

L*mol
(1)   
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nitrogen fractions in the measured off gas (fractionoffgasH2, fractio-
noffgasN2), the reactor temperature (Temp) and the ideal gas law, 
assuming that the N2 was inert inside the reactors (Equation (3)): 

FlowH2

[
mmolH2

h

]

=
fractionoffgasH2[%]*233.3 LN N2

d

fractionoffgasN2[%]*24 h
d

*
101325Pa

8.314 J
K*mol *Temp [K]

(3) 

The electron recovery into hydrogen was calculated based on the 
hydrogen flow and the current measured at the sampling time of the 
hydrogen (Equation (4)): 

ηH2 =
96485 mC

mmol e− *FlowH2[
mmol H2

h ]*2 mmol e−
mmol H2

Currentt
[
mC
s

]

*3600 s
h

(4)  

2.5. Microbial community analysis 

2.5.1. Sample collection and DNA extraction 
At the end of the biotic experiments, liquid samples were collected 

from each reactor and stored at − 20 ◦C to investigate the microbial 
community composition via DNA extraction and Next Generation 
Sequencing of 16S rRNA gene. DNA was extracted using the Powersoil 
DNA isolation kit (Qiagen, USA) according to the manufacturer’s in-
structions. DNA concentration and purity were measured with the 
NanoDrop spectrophotometer (Thermo Fisher Scientific, Germany). 

Sequencing of 16S rRNA genes and bioinformatics. 
DNA extracts (18.6–25.3 ng/ml) were sent to MrDNAlab (Shallo-

water, TX, USA) for library preparation and 16S rRNA gene amplicon 
sequencing as described in the SI. Raw sequence data were processed 
with QIIME2 (v. 2019.10)[37] as described in SI. For the data presented 
in this study, we considered the most significant genera per each sample 

out of the total number of sequences, setting a cut-off value of 3 %. 
Microbiota raw sequencing data are submitted to the ENA database 
(https://www.ebi.ac.uk/ena) under accession number PRJEB55693. 

2.5.2. Fluorescent in situ hybridization (FISH) 
For FISH analysis, cathode samples carrying biofilm were fixed with 

170 µl 37 % formaldehyde. After fixation, samples were stored at − 20 ◦C 
in 3 ml of ethanol/PBS (1:1). To improve the procedure efficiency, the 
cathode biofilm was pre-treated via sonication (40 kHz, 50 W, room 
temperature) in three cycles of 20 s with 10 s pauses during which the 
samples were kept in ice, in order to disaggregate the cell clusters. The 
sonicated samples were used for FISH analysis following the protocol of 
Hugenholtz, Tyson and Blackall [38]. All oligonucleotide probes 
applied, labelled with Cy3-red or Alexa488-green fluorophores, are lis-
ted in SI Table S3. Oligonucleotide probes were selected based on the 
NGS data and the probeBASE database[39]. Samples were examined 
using an epifluorescence microscope BX43 (Olympus, Japan) equipped 
with a DP80 digital camera and the cellSens Standard imaging software 
(Olympus, Japan). For the image analysis, the FIJI software package 
(version1.51 g, Wayne Rasband, NIH, Bethesda, MD, United States) was 
used. 

2.5.3. Scanning electron microscopy (SEM) 
To analyse the structure of the attached biofilm growing on the 

cathode, Scanning Electron Microscopy (SEM) was applied. Sample 
preparation was performed as described in SI. The SEM images were 
obtained with a Magellan 400 SEM (FEI Company, Hillsboro, OR, USA) 
at an acceleration voltage 2 kV and beam current of 13 pA at RT. 

Fig. 1. Cathodic current increase (A) and catholyte hydrogen concentration (B) after deposition of trace metal mix solutions with (TMM+, black line) and without 
(TMM− , grey line) EDTA (day 7–17, metal phase), compared to a blank phase without trace metals (day 0–7, blank) and during the biotic phase with biotic 
conditions and microorganisms (day 17–45, biotic), compared to a control experiment without pre-treatment (control). The standard deviation between duplicate 
experiments is shown as grey areas. The reactors were operated at − 1.06 V vs Ag/AgCl throughout the whole experiment. 
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3. Results and discussion 

3.1. Trace metal mix pre-treatment generates hydrogen evolution catalyst 

To investigate the effect of cathode pre-treatment on the electron 
availability for the microbial consortia, the performances of duplicate 
cathodes pre-treated with trace metal mix with (TMM+) and without 
EDTA (TMM− ) were evaluated via current and hydrogen measurement. 
Fig. 1 shows the hydrogen production and observed currents for a blank 
reactor without added metal mix, after metal addition (day 7) and after 
inoculation with active biomass (day 17). For the reactors pre-treated 
with the TMM− mixture, the biotic phase was started 2 days after 
addition of the metal mixture, since the current was observed to be 
stable after the initial 2 days for the TMM+ pre-treatment. In Fig. 1, the 
current and hydrogen production data are normalized by the starting 
days of the different phases (blank, metal, biotic). For comparison, a 
control reactor was started after 17 days (Fig. 1 red line). At a constant 
potential (− 1.06 V), the resulting current varied significantly over the 
different experiments. Right after the addition of the metal mixes (day 
7), the current increased to − 20 kA/m3 for the TMM+ experiments, 
while the TMM− experiments showed a current increase to − 75 kA/m3 

(Fig. 1A). In the biotic phase (with presence of micro-organisms), the 
high current rates were maintained despite the catholyte replacement 
with biotic medium (day 17). The current even increased to − 90 kA/m3 

(− 27 mA/cm2) for the TMM− experiments at the start of the biotic 
phase. 

The current values were 10 and 40 times higher than measured in the 
control experiment without pre-treatment (red line, Fig. 1A). The cur-
rent increases correspond with increases in the hydrogen concentrations 
(Fig. 1B). The hydrogen concentration in the recirculated catholyte 
reached 4 and 13.3 μM for respectively the TMM+ and TMM− experi-
ments (maximum solubility is 718 μM[40]), whilst the maximum 
hydrogen concentration in the control experiment was 0.15 μM 
(Fig. 1B). 

The current after the metal mix pre-treatment was substantially 
higher compared to the control experiment, where the current started at 
− 1 kA/m3 and increased to − 2 kA/m3 during the 28 days of biotic phase 
(red line, Fig. 1A). Current density increases over time are typically 
observed in microbial electrosynthesis systems as the biofilm develops 
on the cathode[41]. From previous work with similar reactor operation 

conditions, it can be predicted that it takes at least 60 days for the 
current to reach − 3 kA/m3 (without any pre-treatment or potential 
change)[6,34]. In studies with comparable 3D cathodes and different 
conditions, it took at least 15 days from starting the system to reaching 
the current densities measured in this study right after switching to 
microbial viable conditions (TMM+)[6,15]. By the integration of the 
TMM HER catalyst, high current density values are reached at day 1 of 
biotic operation, showing that the start-up time for hydrogen production 
is shortened. After the TMM− pre-treatment, the current density values 
were up to − 90 kA/m3 at the start of the biotic phase (Fig. 1A, day 17). 
These values are close to the highest reported current densities in 
literature for bio-electrochemical CO2 reduction systems[20–22] (− 35 
mA/cm2 on 2D cathodes, corresponding to − 117 kA/m3 with the 
cathode thickness used in this study). The high current of the TMM−

pre-treated reactors at − 1.06 V creates opportunities to operate the re-
actors at a less negative potential and still create sufficient hydrogen for 
the growing biofilm[42]. With these improvements, OPEX costs (with 
less energy investment) may be reduced[43]. In contrast to experiments 
without HER catalyst, the experiments with HER catalyst show a 
decrease of current over time during the biotic phase (Fig. 1A, from day 
17). 

3.2. Metal compound leaching in TMM+ experiments 

The slight decrease in hydrogen production over time corresponds 
with the decrease in the total cathodic current observed in the biotic 
phase (Fig. 1, 49 % and 40 % decrease in average current for respectively 
TMM+ and TMM− ). Although the hydrogen decrease in the biotic phase 
could be explained by hydrogen uptake by the microbiome, the current 
decrease indicates that the HER catalyst performance decreases over 
time (Fig. 1). Different mechanisms could be causing the apparent 
catalyst activity decrease: I) leaching, II) biofilm growth and III) 
poisoning[44]. To investigate leaching, metal concentrations in the 
catholyte were measured over time during the biotic phase (starting 
from day 17, Fig. 2). In the TMM− experiments, only Al, Fe and Zn were 
detected above the detection limit during the biotic phase (Fig. 2B and 
D). Fe was never above the standard concentration ranges in the biotic 
catholyte medium which was added over time during the biotic phase 
with HRT 14 days (310 µg/L). Al and Zn are known to deposit on and 
leach from different reactor parts (e.g. tubing, membrane, Ti wire [34]), 

Fig. 2. Average metal concentrations measured with ICP in the catholyte from the start to the end of the biotic phase (day 17-end) of the experiments with cathodes 
pre-treated with trace metal mix with (TMM+) and without (TMM− ) EDTA. The results are presented separately for each replicate experiment (different individual 
experiments indicated with 1 and 2). The dotted lines indicate the concentrations from the microbial medium. 
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so the elevated concentrations of Fe, Al and Zn are not indicating 
leaching of the HER catalyst. These results support that the elements 
deposited during the metal phase stayed attached to the cathode during 
the biotic phase of the TMM− experiment. 

For the TMM+ experiments, the concentrations of most elements in 
the catholyte were higher over time compared to TMM− (Fig. 2). 
Interestingly, the duplicate TMM+ experiments showed significant dif-
ferences in the concentration trends for Fe, Mn, Mo, Ni and Zn over time. 
All trace metals, except for Al, Fe and Zn were measured in the catholyte 
in concentrations higher than in the biotic catholyte medium (Fig. 2A 
and C). Most elements in the TMM+ experiments did not increase over 
time, with exception of Mn, Mo, Ni and Zn, indicating those metals 
leached from the cathode. 

The observation that the element concentrations in the TMM+ ex-
periments are higher than in the TMM− experiments (Fig. 2), suggests 
that the deposition mechanism of the elements to the cathode is affected 
by the presence of EDTA in the pre-treatment mixture. EDTA slows down 
electrodeposition by e.g. stabilizing intermediates[45–47], so it is 
probable that the chelating properties of EDTA also weaken the 
attachment of different elements to the cathode in the present study. 

The other two deactivation mechanisms, biofilm growth and 
poisoning, are likely to occur during the development of a biofilm on the 
cathode. The formation of the polymeric layer of the biofilm matrix, 
secreted by the microorganisms after adhesion on the cathode, can 

deactivate the catalyst by blockage of the active site and/or lead to 
reactant mass transfer limitations[48]. Additionally, the formation of a 
thick biofilm causes pH gradients[49] which decreases the concentra-
tion of protons at the active site of the hydrogen catalyst. Although no 
significant catalyst deactivation effect of biofilm formation on cathodes 
has been suggested[50], and several studies even showed improved 
hydrogen formation after biofilm growth[51–53], the effect of biofilm 
formation on catalyst stability requires further study. Poisoning can 
occur from the binding of e.g. N- or S-compounds to the catalyst surface 
[44,54]. NH4

+ and SO4
2+ were added over time during continuous oper-

ation to support microbial growth, so poisoning because of chemical 
binding cannot be excluded either as possible catalyst deactivation 
mechanism. In conclusion, a combination of leaching, biofilm growth 
and catalyst poisoning likely decreased the HER catalyst activity over 
time in the biotic phase. 

3.3. Successful start-up of microbial activity after pre-treatment 

Despite a slight deactivation of the HER catalyst, hydrogen was 
present in the catholyte bulk throughout the complete biotic phase of the 
TMM+ and TMM− experiments (Fig. 1B), showing the HER catalyst can 
work under biotic conditions. In the next step microbial synthesis was 
performed. To assess the microbial activity with the pre-treated cath-
odes, the concentrations of volatile fatty acids (VFA) were monitored in 

Fig. 3. Production of volatile fatty acids and hydrogen over time during the biotic phase in the experiments pre-treated with trace metal mix with (TMM+: A, C and 
E) and without EDTA (TMM− : B, D and F) shown as catholyte bulk concentrations (A and B) and as a fraction of the measured cathode current (C to F). A and B show 
averages between duplicate experiments (R1&2) with the difference between duplicates indicated as blue and red areas and inoculation indicated with black arrows, 
while C to F show the individual reactor data. 
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the recirculated catholyte over operation time of the biotic phase 
(starting at day 17, Fig. 3). 

In the control reactor, no volatile fatty acids were detected 
throughout the biotic phase. In the TMM pre-treated reactors, the con-
centrations of both acetate and n-butyrate increased over time, and 
production started right after the start of the biotic phase (Fig. 3A and 
B). From the liquid and gas samples over time and the current, electron 
recoveries were calculated (see materials and method for calculation). 
When hydrogen would be the sole consumed as intermediate electron 
donor, the hydrogen consumption is estimated to be 24 and 27 mmol H2 
per day (3802 and 4197 mol H2 per m3 cathode per day), respectively for 
the TMM+ and TMM− reactors. Besides the detected acetate and n- 
butyrate, unidentified products are also shown in the electron recovery 
graphs (Fig. 3C-F). The unidentified electron recoveries (grey bars, 
Fig. 3C-F) likely account for biomass growth and fractions of the acetate 
and n-butyrate that could have passed the membrane to the anode 
compartment. Additionally, methane production below the detection 
limit of the gas chromatograph (2500 ppm) could have occurred and be 
part of the unidentified electron recoveries since no chemical inhibitor 
was added to the catholyte medium. The productivity in both the TMM−

and TMM+ pre-treatment experiments shows that the pre-treatments 
were suitable for successful start-up of bio-electrochemical CO2 

reduction. However, the cumulative Faradaic efficiency of electrons 
recovered as acetate and n-butyrate never exceeded 40 % (Fig. 3C-F), so 
the efficiency of electron transfer into carbon products needs to be 
improved, for example for lowering to CO2 supply rate to prevent flush 
out of hydrogen gas. 

3.4. Microbial growth during the biotic phase of the process 

The microbial growth both in the liquid phase and on the cathode 
surface, were monitored via OD600 measurement and scanning electron 
microscopy (SEM) analysis, respectively. The optical density values 
remained quite low (<0.05 OD600) throughout the biotic experiment 
phases (SI Figure S3) compared to other studies without a TMM pre- 
treatment[21,24]. In the control reactor, the optical density values 
reached up to 0.06, showing slightly higher concentrations of suspended 
microorganisms (SI Figure S3). The low concentration of bacteria in the 
liquid phase of the pre-treated experiments, connected with the micro-
bial activity observed through the volatile fatty acid production (Fig. 3), 
indicated that after pre-treatment, the microbial growth would mainly 
be in the aggregated form at the cathode[6], possibly because the most 
dissolved form of hydrogen would be present near the cathode. The SEM 
analysis carried out on cathodes samples taken at the end of the biotic 

Fig. 4. Scanning electron microscopy (SEM) images with two different magnifications of cathode samples taken from the control experiments (A and B), the ex-
periments with cathodes pre-treated with trace metal mix without (TMM− , C and D) and with EDTA (TMM +, E and F). In A, C and E, the biofilm coverage of the 
cathode is shown. Appearance of a graphite fiber of the carbon felt cathode and the biofilm growing on top are indicated in B. Pictures from duplicate cathodes are 
shown in SI Figure S4-S6. 
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phase (day 36 for TMM+ and day 50 for TMM− ) showed indeed for-
mation of complex biofilms with different shapes of cells and extracel-
lular polymeric substances (EPS) between different experiments (Fig. 4 
with duplicates shown in SI Figure S4-S6). 

Within the control experiment, without trace metal mix pre- 
treatment, biofilm growth on the cathode was observed (Fig. 4A and 
B), and the coverage of the graphite fibres was similar as the one visu-
alized within the experiment with cathodes pre-treated with TMM−

(Fig. 4C and D). However, the biofilm cells’ morphology was different. 
Long filamentous cells growing within the TMM− experiment (Fig. 4D), 
and less EPS rich clusters in comparison to the control experiment 
(Fig. 4B and D). In contrast, the biofilm coverage of the cathode surface 
in the TMM+ pre-treated experiment (Fig. 4E and F) was significantly 
higher than observed in the control and TMM− experiments, corre-
sponding to the higher productivity observed in the TMM+ experiments 
(Fig. 3). 

3.5. Microbial community composition and observation via NGS and 
FISH 

The microbial community composition of the biofilms and liquid 
samples taken at the end of the process was investigated via next gen-
eration sequencing (NGS) of 16S rRNA gene. In all the samples analysed, 
four main microbial groups were dominant, affiliated to the genera BRH- 
c20a (phylum Firmicutes), Clostridium sensu stricto 12, Methanobacterium 
and Bacteroides (Table 2). 

Members of BRH-c20a (phylum Firmicutes) were the dominant group 
in the biofilms, irrespective of the EDTA addition (Table 2). Even if this 
genus includes just uncultured representatives (according to Silva 
database ssu r138.1), its members were previously detected in microbial 
electrochemical systems[55–58]. In particular, BRH-c20a was identified 
as a key player in electrochemical CO2 reduction to acetate, with the 
electrode as the sole electron donor, while it was not detected when the 
same inoculum was fed with ethanol as electron donor[57]. BRH-c20a 
were the dominant bacteria in a study from Gao, Li, Cai, Zhang, Liang, 
Jiang and Zeng [56] (relative abundance between 48 % and 80 %) 
associated with slurry-electrode MES producing acetate from hydrogen/ 
carbon dioxide in presence of metal nanoparticles. The high BRH-c20a 
abundance in presence of metal particles matches with the current 
study and suggests tolerance for or even use of metal particles as e.g. 
electron shuttle. Thus, BRH-c20a is likely involved in CO2 fixation and 
positively related to acetate production[56], as also highlighted by the 

results obtained in our process (Fig. 3). 
The genus Clostridium sensu stricto 12 was the second dominant group 

in the biofilm grown in TMM– experiments, while their relative abun-
dance was relatively lower in the TMM+ experiments (Table 2). Mem-
bers of the genus Clostridium are most commonly detected as biocatalysts 
in BES that can utilize CO2 as substrate producing acetate[59–61]. 
Within BES, further elongation of acetate to MCFA is possible thanks to 
other ssp. of Clostridium, such as Clostridium kluyveri, which grows on 
acetate and ethanol via reverse-b-oxidation, producing chain elongated 
acids like butyrate and caproate[62,63]. Clostridium type strains clas-
sified under the genus Clostridium sensu stricto 12 and reported to ca-
talyse CO2 fixation and/or produce medium chain fatty acids are 
C. kluyveri[62], C. ljungdahlii[64], C. autoethanogenum[59], C. carbox-
idivorans[65], C. tyrobutyricum[66], C. pasteurianum[67] and C. luti-
cellarii[68]. 

The Bacteroides genus was more abundant in the catholyte than in the 
cathodic biofilm (Table 2), and members of this genus were previously 
detected in different microbial electrosynthesis systems. Commonly 
Bacteroides are identified in microbial electrosynthesis as exoelectro-
genic bacteria degrading complex substrates to produce acetate and 
propionate[69–71], and connected with high current generation via 
extracellular electron transfer and Fe (III) reduction[72,73]. In the 
human gut, Bacteroides were associated with conversion of carbohy-
drates to fatty acids whilst capturing CO2[74]. 

In both the cathode biofilm and the liquid catholyte the presence/ 
absence of EDTA in the pre-treatment TMM influenced the microbial 
community composition (Table 2). Focusing on the biofilm, among 
bacteria, Erysipelotrichaceae UCG-004 was identified just without EDTA 
(Table 2, TMM− ), with a relative abundance between 12 and 14 %. 
While their functional metabolism is still not clear[75], members of the 
family Erysipelotrichaceae were identified in the gut microbiota con-
nected to high concentration of toxic metals[76–78]. The same applies 
for the genus Telmatospirillum, previously detected as active group in 
hydrogen rich environments[79]. On the contrary, the relative abun-
dance of Methanobacterium was lower in both biofilm and liquid samples 
without EDTA addition (TMM− ), indicating that metal chelation is 
needed for this methanogen to grow and overcome the metal toxicity, 
which can negatively influence some hydrogenotrophic methanogens 
[80,81]. Other bacterial groups developed in the biofilm mostly in 
presence of EDTA (TMM+) were Pseudomonas, Oscillibacter and Rike-
nellaceae RC9 gut group, all previously detected at biocathodes in 
different processes[11,82–86]. Although none of the most abundant 

Table 2 
Relative abundances of core operational taxonomic units (OTUs) and their taxonomy classification at the identified level. The 16S rRNA gene analysis by means of Next 
Generation Sequencing (NGS) was conducted on samples from the cathode biofilm and the liquid catholyte sampled from the two replicate reactors (R1 and R2) for 
both TMM+ and TMM− experiments at the end of the operation of each reactor. All OTUs < 3 % are summed together and presented as “Other”.  
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microorganisms are known for hydrogen formation, it cannot be 
excluded hydrogen was formed biotically, e.g. via biologically excreted 
hydrogenases[87] or by hydrogenophilic bacteria[88]. Nevertheless, 
since the overall hydrogen productivity decreased while the volatile 
fatty acid production increased over time (Fig. 3), it was not expected 
that biological hydrogen formation had a significant contribution to the 
hydrogen formation by the trace metal catalysts. 

Observing active microbial groups at the end of the TMM+ experi-
ments by applying FISH, based on the morphology it was evident that 
the addition of trace metals and EDTA stimulated the development of 
different bacteria in comparison to the control reactors (Fig. 5A and B). 
By applying probe ClostI (SI Table S3), covering 88 % of the genus 
Clostridium sensu stricto 12 and all the type strains cited above (based on 
Silva database ssu r138.1), no cells were identified in the control reactor 
(Fig. 5A), while they constituted a high portion of the whole active 
bacterial population within TMM+ experiments biofilm (Fig. 5C and D, 
cells in red). Due to their high relative abundance (Table 2), we can 
hypothesize the rest of the active biomass visualized in Fig. 5B and C by 
probe EUB338 belongs to Firmicutes BRH-c20a. 

Within the biofilm, methanogens affiliated to the order Meth-
anobacteriales were identified among the active biomass (SI Figure S7) 
and a strict association with members of the bacterial community was 
highlighted in both control and TMM+ reactors (SI Figure S7). Devel-
opment of methanogens such as Methanobacterium and Methano-
brevibacter was expected, since no 2-bromoethanesulfanoate was added 
in experiment to optimize the HER catalyst performances, thus it is 
possible that methane was part of the unidentified products (Fig. 3C-F), 
as also highlighted by the methanogens activity (SI Figure S7). 

3.6. EDTA detrimental for hydrogen productivity yet beneficial for 
microbial synthesis 

Based on the differences in current, volatile fatty acid production and 

biomass formation between the experiments with pre-treated cathodes 
(TMM) and the control experiment, it can be concluded that the incor-
poration of a trace metal mix based HER catalyst is beneficial for a fast 
start-up and high productivity of volatile fatty acid production from 
CO2. Interestingly, the pre-treatment with either TMM+ and TMM−

showed some differences. The hydrogen production was higher in the 
TMM− experiments, while the volatile fatty acid productivity was lower 
and also less biofilm formation was observed in the TMM− experiments 
compared to the TMM+ experiments. Different explanations could be 
the reason for the observed differences. For example, the conditions at 
the cathode surface and in the catholyte are likely different. At the 
cathode, the hydrogen production will cause local high pH and shear 

Fig. 5. Observation of the bacterial community in biofilms grown on cathodes during the control experiment (A) and with trace metal mix with EDTA (TMM+) pre- 
treatment (B to D) by Fluorescence in situ hybridization (FISH). The probes applied in are EUB338 (Bacteria, in green) in all the samples showed, and ClostI 
(Clostridiales, in red) in A, C and D. The scale bar is 10 µm. 

Scheme 2. Representation of the proposed main microbial protagonists’ 
function within the biofilm developed on the cathode in presence of trace 
metals (TMM). 
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stress from the bubble formation[16,89], which could have negatively 
affected the microbial community. Another possibility is a difference in 
metal toxicity. The ionic form of metals is mostly suggested to be toxic 
for microorganisms, so the presence of EDTA might lower the toxicity of 
the trace metals in the catholyte, as also suggested in literature 
[24,28,90]. It is plausible that metal compounds added during the pre- 
treatment were more toxic for the microorganisms without the pres-
ence of the chelating agent EDTA. An interesting approach to elucidate 
these hypotheses would be to study metal toxicity or utilization mech-
anisms in the TMM− experiments. 

Overall, a peculiar microbial community with a low number of 
species (7–8 above 1 % relative abundance, Table 2) developed on top of 
the cathode when adding trace metals solution. The proposed mecha-
nistic interactions are summarized in Scheme 2. Acetate was the main 
product of CO2 utilization, likely via BRH-c20a and Clostridium group, 
while low concentrations of butyrate could come either from chain 
elongation of acetate by Clostridium or from fermentation of organics 
coming from biomass decay by Bacteroides (Scheme 2). Low concen-
trations of methane were likely formed by Methanobacterium, which 
might be inhibited by the absence of EDTA in the pre-treatment trace 
metal mix. However, further investigations utilizing additional FISH 
probes and including the full sequencing of the 16S rRNA gene and the 
transcriptomic analysis are needed to gain further insights into the 
metabolism activated with the addition of TMM solution and the gen-
eration of a HER catalyst. 

4. Conclusions 

Here, we demonstrated the feasibility of a hydrogen evolution 
catalyst formed from microbial trace metals integrated in a bio- 
electrochemical CO2 reduction system. The metal mix with (TMM+) 
and without (TMM− ) EDTA showed 10 to 40 times elevated current and 
hydrogen production compared to a non-pre-treated system during mi-
crobial electrosynthesis (TMM− : − 90 kA/m3 and 14 μM hydrogen; 
TMM+: − 20 kA/m3 and 4 μM hydrogen). The high current at the start of 
the biotic phase allowed for a fast start-up of microbial activity. Twenty 
days after start-up of the biotic phase, n-butyrate was formed, showing 
the possibility of CO2 reduction to C4-compounds in one integrated 
system. The TMM+ system reached a 36 % electron recovery into C2 and 
C4 compounds at − 20 kA/m3. The current density decrease over time 
was related to metal element leaching. Microbial community analysis 
showed an active biofilm community on the cathode, which metabolic 
functions likely correspond to CO2 conversion into acetate and methane 
and production of butyrate via either fermentation or chain elongation. 
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