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Abstract
Wildlife observation with camera traps has great potential for ethology and ecology, as it gathers data non-invasively in
an automated way. However, camera traps produce large amounts of uncurated data, which is time-consuming to annotate.
Existing methods to label these data automatically commonly use a fixed pre-defined set of distinctive classes and require
many labeled examples per class to be trained. Moreover, the attributes of interest are sometimes rare and difficult to find in
large data collections. Large pretrained vision-language models, such as contrastive language image pretraining (CLIP), offer
great promises to facilitate the annotation process of camera-trap data. Images can be described with greater detail, the set of
classes is not fixed and can be extensible on demand and pretrained models can help to retrieve rare samples. In this work, we
explore the potential of CLIP to retrieve images according to environmental and ecological attributes. We create WildCLIP
by fine-tuning CLIP on wildlife camera-trap images and to further increase its flexibility, we add an adapter module to better
expand to novel attributes in a few-shot manner. We quantify WildCLIP’s performance and show that it can retrieve novel
attributes in the Snapshot Serengeti dataset. Our findings outline new opportunities to facilitate annotation processes with
complex and multi-attribute captions. The code is available at https://github.com/amathislab/wildclip.
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1 Introduction

Camera traps have become essential to monitor biodiversity
(O’Connell et al., 2011; Burton et al., 2015; Steenweg et
al., 2017) and are increasingly used for behavior research
(Caravaggi et al., 2017; Tuia et al., 2022). Camera traps
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are minimally invasive, also operate at night, and observe
wildlife in their natural habitat. Despite these advantages,
camera traps produce millions of images and remain labor-
intensive to use in practice (Delisle et al., 2021; Tuia et al.,
2022). Traditionally, camera trap datasets are analyzed by
inspecting and annotating every image according to a pre-
defined set of attributes motivated by the scientific question
of interest (Fig. 1a). Depending on the study, these attributes
may be the species, identities of individual animals, behav-
iors, or more complex phenotypical attributes. Dedicated
annotation platforms are available to ease the process, but the
main bottleneck remains the large quantity of data to anno-
tate. The task gets increasingly laborious with many false
triggers of the camera (due to e.g., vegetation movement),
redundant events (e.g., a large herd of animals passing by),
captures of small or occluded animals, or bad quality images
(e.g., wet lens).

To facilitate analysis, machine learning techniques can
automatically filter out false positives and classify species
and their behaviors (Beery et al., 2019; Norouzzadeh et al.,
2018; Tuia et al., 2022). However, these classic machine
learning approaches are typically trained with a predefined
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Fig. 1 Comparison between a manual and a language-guided anno-
tation workflow of an unlabeled camera trap dataset. a In the manual
workflow, an expert annotates sequentially every image manually. b In
the language-guided annotation workflow, an expert enters a prompt
manually, which is compared to all the images in the dataset through a

similarity score using a pretrained VLM. The results of such compar-
isons between the prompt and the images are sorted by similarity and
sent to the expert to review. The expert can also iteratively refine the
prompt to improve results

set of attributes (closed-set). In this work, we present a
language-guided annotation pipeline that can catalyze the
annotation process of an unlabeled camera trap dataset and
extend machine learning analysis to potentially open sets
of attributes (Fig. 1b). Indeed, language naturally helps to
describe events in a fine-grained fashion and facilitates the
interaction between the ecologists and the model. Large
Vision Language Models (VLMs) such as Contrastive Lan-
guage Image Pretraining (CLIP) are particularly well suited
for this task (Radford et al., 2021). Since these models
were pretrained on millions of image-caption pairs, they per-
form remarkablywell on zero-shot open-vocabulary retrieval
and classification tasks (Radford et al., 2021). Yet, CLIP
does not generalize well to domains substantially differ-
ent from typical internet images, such as for camera trap
imagery (Pantazis et al., 2022) or medical images (Wang
et al., 2022). Consequently, several methods have been pro-
posed to fine-tune CLIP to these specific domains (Gao et
al., 2021; Pantazis et al., 2022). These methods commonly
fine-tune CLIP with captions that follow a fixed template
and use a small vocabulary size, which inevitably degrades
performance for unseen open-vocabulary captions, a phe-
nomenon described as catastrophic forgetting (Kirkpatrick
et al., 2017). Ideally, the image-caption pairs used during

fine-tuning should be large and diverse enough to compen-
sate for this issue. Unfortunately, due to the temporal burden
in annotating datasets, camera-trap images are rarely labeled
beyond species-level annotations (Beery et al., 2018; Schnei-
der et al., 2020; Rigoudy et al., 2022; Liu et al., 2023; https://
lila.science) and the set of possible labels to construct image
captions from remains constrained to a small vocabulary.One
notable exception is the Snapshot Serengeti dataset that ben-
efited from a citizen science initiative that provided more
detailed information for each image (Swanson et al., 2015).

In this work, we present an adaptive framework for CLIP
to the domain of camera trap images (WildCLIP) that we
evaluate on Snapshot Serengeti (Swanson et al., 2015). To
mitigate the problem of catastrophic forgetting, we follow
a recently proposed vocabulary-replay method (Ding et al.,
2022). Based on automated literature search, we create a
replay vocabulary relevant to the domain of interest and use
it to preserve the structure of the embedding space during
training.We also build upon CLIP-Adapter (Gao et al., 2021)
to dynamically add new vocabulary to the model with few
labeled samples. The open-vocabulary performance of the
method is quantitatively evaluated on held-out words and
caption templates. We also provide qualitative results for
open-set queries inspired by what an ecologist might use.
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We also explore how our training strategy allows the model
to dissociate between the species and their context. Specifi-
cally, our contributions are the following:

• We create WildCLIP by fine-tuning CLIP to retrieve
images corresponding to diverse attributes and envi-
ronmental conditions from camera-trap datasets and
benchmark it on Snapshot Serengeti.

• Through a series of quantitative and qualitative exam-
ples, we analyse the behavior of WildCLIP in details,
also focusing on zero- and few-shot abilities on open
vocabulary.

We hope that our work motivates the creation of richly
annotated camera trap datasets, to collectively create power-
ful VLMs for camera trap data.

2 Background and RelatedWorks

2.1 Machine Learning Applications for Camera Trap
Imagery

Applications of machine learning to camera trap data mainly
focused on animal tracking (Burghardt & Calic, 2006;
Miguel et al., 2016) and species recognition (Wilber et al.,
2013; Yu et al., 2013). During the last decade, the devel-
opment of convolutional neural networks (CNNs) largely
improved the performance of visionmodels for animal detec-
tion (Beery et al., 2019; Miguel et al., 2016; Schneider et al.,
2018; Singh et al., 2020), species classification (Chen et al.,
2014; Rigoudy et al., 2022; Tabak et al., 2019; Whytock et
al., 2021; Willi et al., 2019), behavior recognition (Brookes
et al., 2023; Norouzzadeh et al., 2018) or animal counting
(Norouzzadeh et al., 2018; Tabak et al., 2022). In 2018,
Norouzzadeh et al. (2018) showed an innovative pipeline
to classify species, count animals and assess age, behavior,
and interactions with other individuals from the Snapshot
Serengeti consensus data, still making it one of the most
diverse multilabel classification method for camera traps to
date.

However, other tasks such as assessing animal body con-
ditions, have received less methodological focus from the
deep learning community, despite the interest fromecologists
(Bush et al., 2020; Murray et al., 2021; Reddell et al., 2021).
This absence of research is partly attributable to the lack of
publicly available annotations beyond taxonomies. This is
related to the difficulty in crowd-sourcing such attributes, as
they can be subjective, undergo subtle variations and may
require substantial expertise. In these cases, active learning
is a way to compensate for the lack of labels (Kellenberger et
al., 2018, 2020; Nath et al., 2019; Norouzzadeh et al., 2021).
However, this approach requires a few annotated samples to
initiate the process, which may be difficult to find for rare

events. Few-shot learning and self-supervised learning also
promise to improve the data efficiency (Pantazis et al., 2021).
A more recent way to learn in low-label regimes is to use
VLMs pretrained on millions of image-text pairs.

2.2 Large Scale Multi-modal LanguageModels

With the advent of transformers (Vaswani et al., 2017),
large language models (LLMs) emerged that demonstrated
remarkable capabilities for natural language processing tasks
incl. ChatGPT (Brown et al., 2020; Devlin et al., 2018;
Ouyang et al., 2022; Raffel et al., 2020). LLMs can also
be used to exploit pre-trained AI models to carry out var-
ious tasks (Shen et al., 2023; Surís et al., 2023) including
behavioral analysis (Ye et al., 2023). Concurrently, multi-
modal variants were also created, in particular large scale
visual-languagemodels, which have tremendously improved
the performance and robustness for zero-shot object recog-
nition, image search and many other tasks (Alayrac et al.,
2022; Jia et al., 2021; Lu et al., 2019; Radford et al., 2021;
Wang et al., 2022). One of the earliest models in this domain
was CLIP (Radford et al., 2021), which can be tuned to
related domains of interest with CLIP-Adapter (Gao et al.,
2021). Here, a Multi Layer Perceptron (MLP) modulates the
vision feature vectors and is added at the end of the vision
backbone and weighted by a parameter α. The method is
then trained with a cross-entropy loss. Similarly, Pantazis
et al. (2022) proposed the Self-supervised Vision-Language
Adapter (SVL-Adapter) and demonstrated that fine-tuning
is needed to adapt CLIP to the domain of camera traps and
presented a method with improved performance over CLIP-
Adapter for few-shot species classification on challenging
camera trap datasets. Their method blends the class probabil-
ities of CLIPwith the output of an additional vision backbone
trained with self-supervised learning. This has the disadvan-
tage of limiting the method to a fixed set of queries during
training and at inference, here corresponding to the set of
species.

As mentioned in the Introduction, fine-tuning CLIP with
a small vocabulary size will inevitably limit its use for open
vocabulary queries. To mitigate this issue, Ding et al. pro-
posed a vocabulary replay method abbreviated as VR-LwF
to prevent the model from forgetting concepts related to
a task of interest (Ding et al., 2022). The method stems
from the “Learning without Forgetting” (LwF) approach to
catastrophic forgetting (Li & Hoiem, 2017), and exploits
the alignment between text and image modalities of CLIP
to circumvent the need for annotated image-caption pairs.
Specifically, a loss term is added during training that mini-
mizes the distribution shift of the cosine similarities between
training image embeddings and the text embeddings of an
arbitrary set of words referred to as “Vocabulary Replay”
(VR).
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2.3 Background on CLIP

Contrastive Language-Image Pretraining (CLIP) is a VLM
for open-vocabulary classification tasks (Radford et al.,
2021). It consists of a visual encoder (VE) and text encoder
(TE). The similarity metric for image xi and caption y j is
computed as:

sim(VE(xi ),TE(y j )) = VE(xi )
T · TE(y j )

‖VE(xi )‖‖TE(y j )‖ (1)

CLIP was trained to learn a joint embedding space for
image and text representations using a contrastive loss on
millions of image-caption pairs (Radford et al., 2021).During
training, each batch of size N 2 is composed of N positive
image-caption pairs, and the remaining N × (N − 1) are
considered negative pairs. The loss aims at maximizing the
similarity of the positive pairs and minimizing it for negative
pairs:

LC L I P (X,Y) = − 1

2N

N∑

i=1

[
log p(xi | Y) + log p(yi | X)

]

(2)

Here, the likelihoods following Eqs. (3–4), where τ is the
temperature parameter:

p(xi | Y) = exp (sim (VE(xi ),TE(yi )) /τ)
∑N

j=1 exp(sim
(
VE(xi ),TE(y j )

)
/τ)

(3)

p(yi | X) = exp (sim (VE(xi ),TE(yi )) /τ)
∑N

j=1 exp(sim
(
VE(x j ),TE(yi )

)
/τ)

(4)

At inference time, CLIP is used to compute the cosine
similarity between queries and images. If queries correspond
to mutually exclusive classes (e.g., “A camera trap picture
of a <class_name>”), a softmax operation is commonly
applied to return respective class probabilities.

3 Methods: WildCLIP andWildCLIP-Adapter

Our method consists of two steps: first, we fine-tune the
vision encoder of CLIP on a large dataset of camera trap
images and their associated captions (Fig. 2a). Second, we
freeze the vision encoder and train a Multi-Layer Percep-
tron (the “Adapter” (Gao et al., 2021)) with a few samples of
sequence-caption pairs to learn words from a novel vocabu-
lary (Fig. 2b). In other words, the first step fine-tunes CLIP to
a WildCLIP model with a more fine-grained representation
of camera-trap imagery using a closed-set domain of com-
mon queries from a base vocabulary (Fig. 2a). The second
step adapts WildCLIP towards an open set of queries that a

trained domain expert can provide interactively. To further
preserve open-vocabulary capabilities of CLIP, we add an
extra loss term (Ding et al., 2022) that replays vocabulary
related to the domain of interest (Fig. 2b). Eventually, our
method allows its users to dynamically query and explore
camera trap imagery (Fig. 2c).

3.1 Fine-Tuning (WildCLIP)

We use CLIP’s original contrastive loss (Eq.2) to fine-tune
the CLIP-pretrained visual backbone (Radford et al., 2021).
The text encoder is kept frozen to avoid forgetting the open-
vocabulary knowledge of CLIP. We create multiple captions
for every image using multiple caption templates and the
available image labels. Specifically, we generate all possible
combinations of labels describing an image, and apply them
to ten different caption templates (see Fig. 4 for examples).
This process significantly depends on the available labels
and is further discussed in Sect. 4.2. We use up to seven cap-
tion templates for training, and leave the remaining ones for
evaluation. We hypothesize that training on multiple tem-
plates will make the model robust to different formulations
of queries. On the other hand, a model trained with only one
template may overfit (on this one).
The set of augmented image-captionpairs becomes inevitably
unbalanced if some labels describe multiple images, which
adds to the natural imbalance of camera trap datasets. We
balance the dataset of image-caption pairs with a mix of
upsampling and downsampling so that rare captions appear
as often as common ones. We use data augmentation on the
colors and the geometry of the image to increase visual diver-
sity, which has been shown to improve generalization.

3.2 Few-Shot Adaptation (WildCLIP-Adapter)

In this step, we expand the WildCLIP vocabulary to new
words, following a similar approach as Gao et al. (2021).
We add a two-layer perceptron with a residual connection,
weighted by a fixed parameter α, at the end of the pre-
trained visual encoder of WildCLIP. This perceptron adapts
the image representationvectors to thenewvocabulary so that
they better align to the frozen text vectors ofWildCLIP, while
still keeping information from the base vocabulary. Differ-
ently from Gao et al. (2021), we input image-text pairs to the
model, and we use a custom loss that maximizes the cosine
similarity between the positive pairs only (i.e., the diagonal
elements of the text-image features alignment matrix). This
is motivated by the observations that captions can have mul-
tiple matching images and vice versa, yielding several false
negative pairs in every batch, which is a problem for few-
shot learning. As we expect performance to be sensitive to
the choice of the few-shot samples used for adaptation, we
repeat the experiment 5 times with different image samples
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Fig. 2 WildCLIP and
WildCLIP-Adapter. We
fine-tune CLIP to the domain of
camera-trap datasets by
fine-tuning its visual encoder
with augmented image-caption
pairs (a). We further adapt the
model with an MLP adapter on a
novel set of words to
demonstrate the advantage of
using VLMs (b). Finally, we
evaluate how these two models
can be used for image retrieval
on a set of novel images (c)

from the novel vocabulary set and report the mean in the
results. We refer to our modified version of CLIP-Adapter as
CLIP-Adapter*.

3.3 Addressing Catastrophic Forgetting (VR-LwF)

As discussed in Sect. 2.2, fine-tuning CLIP on a fixed
vocabulary may reduce its open-vocabulary abilities. When
fine-tuning CLIP with the vocabulary of WildCLIP, we can
view the embedding space as shrinking towards the volume
containing training caption embeddings only (Fig. 3a). Even
though we do not fine-tune the CLIP text encoder (TE), the
vision encoder (VE) will only learn to match images with
a small set of captions. This shrinking is responsible for the
catastrophic forgetting. On the contrary, we aim at expanding
the latent space learned by WildCLIP also to contain vocab-
ulary relevant to the task of interest, here ecology, denoted
as CLIPecology , while still forgetting totally irrelevant con-
cepts. To achieve this, we follow the VR-LwF method of
Ding et al. (2022). Specifically, we replay relevant vocabu-
lary through the TE, that we refer to as text “anchors”, since
the text encoder is kept frozen. Since the pool of anchors A
is noisy, some fall outside of CLIPecology , while others are
already contained within WildCLIP’s vocabulary. We then
ensure that the distance between the images and the anchors
does not drift too much in the latent space during training
(Fig. 3b).
In practice, for each image xi of a given batch of N positive
image-caption pairs, we compute the distribution of cosine
similarities of xi embeddings with respect to the pool of

anchorsA of size NA when xi is passed through the previous
vision encoder (VEold ) and the one being trained (VEnew),
denoted as pold

i and pnew
i , respectively (Fig. 3b, dotted lines).

We then compute the LV R
LwF loss as the cross-entropy between

both distributions and minimize its sum over all images:

LV R
LwF = −

N∑

i=1

(
pnew

i

)T · log(pold
i ) (5)

with probabilities:

pold
i = exp

(
sim

(
VEold(xi ),TE(A)

)
/τ

)
∑NA

j=1 exp(sim
(
VEold(xi ),TE(a j )

)
/τ)

(6)

pnew
i = exp (sim (VEnew(xi ),TE(A)) /τ)

∑NA
j=1 exp(sim

(
VEnew(xi ),TE(a j )

)
/τ)

(7)

The final training loss is the sum of LC L I P (Eq. 2) and
LV R

LwF (Eq. 5).

4 Experimental Set-Up

4.1 Data

The Snapshot Serengeti camera-trap dataset (Swanson et al.,
2015) was collected over eleven seasons since 2010 and con-
tains more than seven million images from the Serengeti
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Fig. 3 Embedding space when applying VR-LwF to WildCLIP for a
given image-caption pair. a CLIP embedding space contains many dif-
ferent concepts unrelated to our task.We aim at using vocabulary replay
to learn embeddings in the domain of interest (CLIPecology) while only
having captions embeddings in the WildCLIP embedding space. b For
a given image-caption pair x − y, we compute the cosine similarities
of the previous VEold(x) and new VEnew(x) image embeddings with
respect to all replayed vocabulary embeddings TE(a j ). We also com-

pute the usual cosine similarity LC L I P (x, y) (Eq. 2) between the new
image embedding and the matching caption text embedding. By min-
imizing the cross-entropy between cosine similarity distributions, we
expect the VR-LwF method to preserve some open-vocabulary capa-
bilities of CLIP. This loss term is counter-balanced by LC L I P , which
aims to minimize the cosine similarity between positive image-caption
embeddings

Fig. 4 Building image captions.
297 structured captions
following 10 different templates
describe each image

national park, Tanzania. The dataset benefited from large-
scale annotations from a citizen science initiative.

4.1.1 Species labels

We use MegaDetector (Beery et al., 2019) outputs from sea-
sons 1–6 provided on LILA BC. We restrict our study to
sequences containing single individuals only since consen-
sus multilabels are provided at the sequence level without
distinctions between individuals.

4.1.2 Behavior labels

Behavior labels are reported as the proportion of users who
voted for a given behavior. We set the behavior visible in an
image as the behavior with the most votes. Since we con-
sider single individuals only, the “Interacting” behavior is

removed. We set the age label to “Young” if more than 50%
of the users voted for the category “Baby”.

4.1.3 Scene labels

Because the Serengeti Park is relatively close to the equator,
we label images taken between 6 a.m. and 7p.m. as “daytime”
and as “nighttime” otherwise, independently of the month.
For the camera environment, wemanually annotatedwhether
a camera field of view is pointing towards “grassland” or
“woodland”.
In the end, each sample image is described by five attributes:
(1) the depicted species, (2) its age, (3) its behavior, (4)
a binary day/nighttime label, and (5) the environment sur-
rounding the camera (“grassland” or “woodland”). Further
details on image pre-processing are detailed inAppendixE.1.
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4.2 Building Image Captions and Test Queries

From the five attributes describing each image, we auto-
matically build structured captions following ten different
templates (Fig. 4, Appendix A). Given a set of attributes, cor-
responding captions built fromdifferent templates all express
the same information but with a different formulation (e.g.,
ordering of the attributes in the sentence or contextualwords.)
We create every possible and unique combination of cap-
tionswith respect to the attributes and the different templates,
yielding 297 captions per image.

4.3 Replay Vocabulary

We build an external set of words relevant to the Serengeti
wildlife to preserve the representation of concepts not
associated to an image during fine-tuning. To do so, we auto-
matically parse the title of ecology papers related to Serengeti
wildlife and extract keywords. Following (Ding et al., 2022),
we build 100 5-grams composed of these keywords by ran-
domly sampling them without replacement. These 5-grams
constitute the pool of anchorsA introduced in Sect. 3.3.More
information on the creation of the replayed vocabulary and
examples of 5-grams can be found in Appendix E.2.

We note that the retrieved vocabulary extends beyond
the domain of interest, with vocabulary including politics
and virology (Appendix E.2). Although unrelated words and
random sentences may seem inefficient, we assume that VR-
LwF is robust to the chosen anchors (Sect. 5.3). Since this
method prevents the model from overfitting to the vocab-
ulary, it is fine-tuned on by constraining the drift of the
vector embeddings in the latent space, we hypothesize that
the choice of the words matters less than their embeddings
evenly spanning a volume of the latent space that relates to
the task of interest (See Fig. 3a, CLIPecology).

4.4 Data Split

We divided images into training and testing partitions, as
well as the split of the captions into two sets of vocabularies
(Fig. 5). Training and testing images are split at the camera
level following recommendations from LILA [https://lila.
science/datasets/snapshot-serengeti]. WildCLIP is trained
with samples from the base vocabulary. This set contains
images of species like “Thomson’s gazelle”, “topi”, or
“ostrich” in different scene and behavior settings like “day-
time”/“nighttime”, “eating”/“moving”.WildCLIP-Adapter
is then further trained with up to 8 sequences of 1 to 3
images for each caption from the novel vocabulary. Cru-
cially, the novel vocabulary contains different species like
“Grant’s gazelle”,“leopard”, behaviors like“standing” and
“resting”, and the two different habitats “woodland” and
“grassland”. To preserve independence, we ensure image-

caption pairs containing the novel words are never seen
during the training of WildCLIP.
We also split the test queries into “in-domain” templates
and “out-of-domain” ones. WildCLIP is trained either on
template 1 only, (t1), or on templates 1 to 7 (t1−7), and its
performance is evaluated on either “in-domain” template 1,
or on “out-of-domain” templates 8 to 10 (t8−10).

4.5 EvaluationMetrics

We evaluate WildCLIP as a retrieval task, meaning that for
a given test query, the true corresponding images should
rank higher in cosine similarity with the test query than non-
matching images. The set of test queries for the retrieval task
is defined as the set of structured captions containing single
attributes, yielding a direct equivalence between individual
multilabels and test queries, for which performance can be
measured. Note that WildCLIP is not limited to these single
attribute captions, as it can retrieve images at every level of
complexity (which is the method’s main advantage); never-
theless, here, we limit our test captions to single attributes to
allow direct comparisons to finetuned models. We compute
themean average precision (mAP) from the alignment scores
per test query and then average over all test queries.

4.6 Ablation Study

We control the performance of the different additions to our
method with an ablation study, considering CLIP ViT/B-16
performance as our baseline.
To evaluate the effect of adding language when learning
the representation of camera trap images, we first compare
WildCLIP with the pretrained visual backbone of CLIP, to
which an MLP head has been added with binary output neu-
rons corresponding to each possible test query from the base
set (ViT-B-16-base). We also report the performance of this
model on the novel vocabulary (ViT-B-16-novel) by replac-
ing the output layer of the pre-trained model with an output
layer with 10 output units (fixed size of the novel vocabulary
in this setup) and adapting it with the same few-shot scenario
as for WildCLIP-Adapter* and CLIP-Adapter*, but using a
binary cross-entropy loss.
To further motivate our approach over existing ones, we train
CLIP-Adapter* (see adjustments made in Sect. 3.2), where
only the additional MLP head is trained, and the backbone
of CLIP is kept frozen.
Since training a vision transformer is computationally expen-
sive, we evaluate the choice of the visual backbone by
comparing performance between a ResNet50 backbone with
the default ViT/B-16 one.
To assess the generalization to out-of-domain template struc-
tures (templates 8 to 10, see Sect. 4.4) for the test queries, we
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Fig. 5 Data split for quantitative
evaluation. WildCLIP is trained
on base vocabulary (top left)
and adapted further to
WildCLIP-Adapter with novel
vocabulary captions (bottom
left). Test data is split on a
camera level, and both models
are evaluated on base and novel
vocabulary separately on images
of 45 new camera traps (right).
The number of training
image-caption pairs and of test
queries is computed according
to template 1 only

compare the performance of WildCLIP when trained on a
single (template 1) or on seven templates (templates 1 to 7).
Finally, we assess the effect of the VR-LwF loss during fine-
tuning (Sect. 3.1) and during adaptation (Sect. 3.2).

5 Results

We start by showing qualitative results of WildCLIP, con-
trasting it with CLIP. Then we will evaluate the performance
and carry out an ablation analysis.

5.1 Qualitative Results for Complex Queries

We illustrate howWildCLIP improves onCLIPwhen retriev-
ing images using complex queries which have been seen
during training (Fig. 6). Looking at the retrieval results one
can note that CLIP already performswell for queries contain-
ing only the species name (e.g., “a giraffe”), but sometimes
fails when additionally prompted with behavioral informa-
tion (e.g., “a giraffe eating”). On the contrary, WildCLIP
generally performs well for these complex queries. For the
novel query “A camera-trap picture of a male lion resting at
daytime.”, WildCLIP-LwF-adapter-LwF best retrieves the
corresponding events, where “resting” is a word from the
novel vocabulary. Despite the VR-LwF loss, this still comes
with a decreased retrieval performance on queries from the
base vocabulary such as“A camera-trap picture of a giraffe.”
More qualitative examples can be found in Appendix B.

Having different captions describing a single image may
seem misleading for the model. However, we hypothesize
that it helps the model disentangle the multiple attributes
of this image. Indeed, for WildCLIP, the top-3 captions most
similar to thewaterbuck images are a combination of species,
behavioral, and environmental information (Fig. 7). In con-
trast, CLIP only retrieves species information. This suggests
that CLIP mainly learned to associate captions describing an
object from an image, disregarding contextual information.
We explored this disentanglement further. We progressively
modify the input query by modulating contextual or behav-

ioral information. We observe coherent changes while the
species retrieved remains unchanged (Fig. 8). This qualita-
tively suggests that our method successfully retrieves events
with a detailed level of contextualization. We see that the
model reaches its limit for the grassland environment, which
is part of the novel vocabulary on whichWildCLIP-LwFwas
not fine-tuned. Even though the animals are in the grassland,
they are not all topis, and two are not eating.

5.2 Open-Vocabulary Qualitative Results

Qualitative results illustrate the potential of WildCLIP to
retrieve events of interest from open-vocabulary queries
(Fig. 9). Here we compare the original CLIP retrieval per-
formance with WildCLIP pretrained on seven templates and
the same model further trained on 2 to 8 shots of the pro-
posed captions (only two samples of hyena with a carcass
were observed in the subset of the train set). We observe a
clear qualitative improvement from CLIP to WildCLIP for
the prompt: “A hyena carrying a carcass.”, with 4 retrieved
events within the top-5, and 4 for WildCLIP-Adapter-LwF
as opposed to one visible carcass for CLIP. WildCLIP also
performs better on the attribute “dry grass”. However, the
original CLIP qualitatively outperforms the trainedmodel for
the running behavior and the animal’s position on the cam-
era. These results suggest that when CLIP already retrieves
corresponding events for unseen open-vocabulary queries,
WildCLIP do not improve much or may even reduce per-
formance. On the other hand, we see improvements in cases
where CLIP fails. This further motivates us to improve the
proposed methods to preserve the original embedding (VR-
LwF(Ding et al. 2022)) and to retain some of the original
CLIP embeddings (CLIP-Adapter (Gao et al. 2021)).We also
provide more zero-shot qualitative examples for CLIP,Wild-
CLIP and WildCLIP-LwF in the Appendix C.

After illustrating promising capabilities of WildCLIP as
well as failure cases, we sought to rigorously evaluate its
performance.
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Fig. 6 Qualitative results on
complex queries. Top-5 test
images most aligned with the
given complex queries.
“Resting” is a word from the
novel vocabulary

Fig. 7 Top-3 test queries most
aligned with the image for
WildCLIP along with alignment
similarities

5.3 Quantitative Comparison

Our full method, WildCLIP-LwF, significantly outperforms
CLIP on the image retrieval tasks (Table1), showing that
the model is better adapted to the domain of camera traps.
Indeed,we see an improvement of + 0.31 forWildCLIP-LwF
over CLIP for the base vocabulary. Importantly, fine-tuning
also improves the performance on the novel vocabulary
(+0.12), although WildCLIP-LwF was not trained on these
words. WildCLIP-LwF-Adapter*-LwF does not improve on
WildCLIP-LwF for the novel vocabulary, but still improves
on CLIP by +0.08.

We also compare WildCLIP to CLIP-Adapter. We see a
significant advantage of fine-tuning the entire visual back-
bone of CLIP (WildCLIP-LwF, Table1) over learning a new

MLP head only (CLIP-Adapter*), when training them both
on the base vocabulary. WildCLIP-LwF-Adapter*-LwF also
performs better than CLIP-Adapter* on both the base and
the novel vocabularies after 8 shots (+0.29 vs. +0.02). This
corroborates the results from Pantazis et al. (2022) that CLIP
should be adapted for camera trap data. Furthermore, our
method significantly outperforms CLIP-Adapter*.

Finally, we also compare to vision-only models in the
classic transfer learning setting. The performance of a vision-
only model pretrained from the CLIP visual backbone is
slightly above the performance of WildCLIP-LwF on the
base vocabulary (0.68 vs. 0.60). This is most likely due
to the different loss functions (contrastive loss and binary
cross entropy, respectively), where a vision-only model is
not constrained to match the learnt image embeddings to
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Fig. 8 Top-5 most similar
images for WildCLIP-LwF to
complex queries by
progressively adding or
modifying some attributes from
the base and the novel
vocabularies (bold)

frozen text ones. However, the performance of WildCLIP-
LwF-Adapter*-LwF surpasses the one of the vision model
(0.45 vs. 0.22). Overall, this suggests that using a VLM
for the retrieval task instead of a closed-set, vision-only
model slightly decreases the performance, while providing
all the advantages of dynamically interacting with the dataset
through text, including easy and accurate adaptation to new
vocabularies, while the vision-only model cannot.

5.4 Ablation Study

We carried out a number of ablations to justify our design
decisions. Firstly, we will ablate different components of
WildCLIP-LwF.

5.4.1 Visual Backbone

Firstly, for the original CLIP model, a vision-transformer
backbone improves the ResNet50 backbone performance by
around + 0.05 on both base and novel vocabularies (Table2).
This is consistent with results reported in Radford et al.
(2021). A consistent result is also observed when training
WildCLIP, although the performance boost is mainly visible

on the out-of-domain test query templates for both base and
novel vocabularies.

5.4.2 LearningWithout Forgetting

In the previous section, we saw that trainingWildCLIP-LwF
on the base vocabulary also improves its performance on the
novel vocabulary (+ 0.12). We find that this effect is mainly
due to the VR-LwF loss sinceWildCLIP alone does not have
such an increase on the novel vocabulary (+ 0.03, Table2).
In that sense, the VR-LwF loss appears to be efficient at
preserving the open-vocabulary capacities of CLIP, while
limiting catastrophic forgetting. However, this increase in
performance on the novel vocabulary set is compensated by
a small drop in performance on the base vocabulary set. This
is consistent with the idea that this loss term constrains the
drift of the image embeddings by anchoring the latent space.

5.4.3 Adapter

We found that the boost by the MLP adapter during
the adaptation step is relatively limited (CLIP-Adapter*
Table1, WildCLIP-Adapter* Table2). It even reduces the
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Fig. 9 Qualitative results on open vocabulary queries. Top 5most simi-
lar images to each given query. For each query; first row: Original CLIP
model; second row WildCLIP pretrained on templates 1 to 7; third row

WildCLIP is further trained following theWildCLIP-Adapter*method-
ology (see 3.2) on 2 shots (top-left) and 8 shots (others) of these queries

Table 1 Mean average
precision (mAP) and difference
from CLIP on base and novel
vocabularies of the test set
(Color table online)

Bold: best result per category; green and red: mAP increase and decrease vs. baseline (first row)
The performances of models trained on the novel vocabulary are reported as the average of the five repetitions
of the 8-shots training, but standard deviation is not repeated for readibility and was consistently below 0.01.
Clip-Adapter* is adapted from Gao et al. (2021) as explained in Sect. 3.2. Arrows (→) denote adaptation.
Dataset subscripts denote used captions and queries templates as described in 3. Models are all pretrained
with CLIP ViT-B/16
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Table 2 Ablation study (Color
table online)

Bold: best result per category; green and red: mAP increase and decrease vs. baseline (first row)
We test the effect of different visual encoding backbones, the impact of the trained templates and the mutual
effects of the VR-LwF loss (Ding et al., 2022) and the adapter module (Gao et al., 2021). Unless stated
otherwise, CLIP visual backbone is the pretrained ViT-B/16 one

performance ofWildCLIP-LwF-Adapter* (+0.12 vs. +0.06,
Table2). We speculate that this may be explained by the dif-
ficulty of the few-shot task on a dataset with noisy labels
(e.g., woodland characteristics may not always be visible on
image crops) and a sub-optimal training strategy.

5.4.4 Templates

We had created 10 different templates and wanted to check
the impact of template augmentation. Surprisingly, train-
ing on a diverse set of caption templates does not improve
the model performance on unseen templates compared to
a model trained only on one template. Indeed, training with
only template 1 achieves the best performance on test queries
(constructed with out-of-domain templates) for both the base
and the novel vocabulary (WildCLIP, Table2). We specu-
late that either the expanded size of the image-caption pairs
dataset complicates training, or the additional in-domain
templates are themselves not suited to help the model to gen-
eralize to unseen ones.

5.4.5 Image Sequences

In Tables 1 and 2, performance is computed considering
every image as independent. However, camera trap images
are generally taken from a sequence of multiple shots that
share temporal information. Since all images do not carry
the same level of information, aggregating the performance
at the sequence level can further improve the performance.
Appendix 3 shows the performance at the sequence level for
CLIP, WildCLIP and WildCLIP-Adapter* when taking the
maximum cosine similarity over the images of a sequence
for each test query. As expected, we observe a consistent
improvement of around + 0.03 for all methods.

6 Discussion and Conclusion

We propose an approach based on vision-language models to
retrieve scenic, behavioral, and species attributes from cam-
era trap images with user-defined open vocabulary queries
expressed as language prompts. We show that WildCLIP
effectively adapts CLIP to camera traps of the Serengeti ini-
tiative and can functionwell to retrieve rare events of interest.
We envision our method to find application in assisting the
annotation process of camera trap datasets, to find rare events
of interest quickly, and to facilitate species retrieval under
diverse environmental conditions. This also has the potential
to reduce bias when training species classifiers.

To counteract catastrophic forgetting, we adapted mem-
ory replay (Ding et al., 2022; Ye et al., 2022) and found that
it works relatively well based on a replay vocabulary mined
from the scientific literature on the Serengeti. Importantly,
one does not need access to the original training set or any
images, whichmight require a lot of storage. Our results sug-
gest that WildCLIP can retrieve events sometimes missed
by CLIP for open-vocabulary queries. But the size of the
Snapshot Serengeti dataset remains too limited to give any
trend regarding the relative open-vocabulary performances
of both models. We think this is a promising direction, and
we will explore the impact of different replay vocabularies
in the future. To be more reliable for the ecology community,
WildCLIPwould greatly benefit froma larger vocabulary and
from being trained on multiple camera trap datasets. This
improvement requires collaborative efforts in sharing and
annotating camera trap datasets with labels that go beyond
taxonomy information. We hope that our demonstration of
feasibility will contribute to the emergence of more cam-
era trap datasets that are annotated with attributes beyond
species.
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Appendix A. Caption Templates

Here we detail the full caption templates used for training
WildCLIP. Templates 1 to 7 are used for training, and 1 and
8, 9, 10 for evaluation. Since we consider combinations of
attributes, each template yields 31 captions.

• age: the animal age, either “young” or “adult”
• spe: the animal species name
• beh: the animal behavior
• env: the environment, either“grassland” or “woodland”

Fig. 10 Top-3 test images most aligned with the given complex queries (Color figure online)
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• tod: the time of the day, either “nighttime” or “daytime”

1. A camera-trap picture of a [age] [spe] [beh] [env] [tod].
2. A [age] [spe] [beh] [env] [tod].
3. There is a [age] [spe], it is [beh] [env] [tod].
4. A picture of a [age] [spe] [env] [tod], it is [beh].
5. [tod], a [age] animal is [beh] [env], it is a [spe].
6. An image of a [age] [spe] [beh] [env] [tod].
7. [env], a [age] [spe] is [beh] [tod].
8. A wild [spe] [beh] [env] [tod]. It is a [age].
9. In this picture, a [age] [spe] is [beh] [env] [tod].

10. The [age] [spe] is [beh] [env] [tod].

Appendix B. Qualitative Results for Complex
Queries of theWildCLIP
Vocabulary

We tested the retrieval performance of CLIP, WildCLIP,
WildCLIP-LwF and WildCLIP-LwF-adapter-LwF on mul-
tiple queries containing words from the base and novel
vocabularies (Fig. 10). A green box indicates that the caption
describes properly the image according to the dataset labels.
A red box indicates amismatch. However, note that the labels
used are noisy in nature (cf. the first image retrieved for the
last two lines, where images depicting lions at nighttime are
considered a mismatch despite being well retrieved).

Appendix C. Qualitative Results for
Open-Vocabulary Queries

We tested the retrieval performance of CLIP, WildCLIP and
WildCLIP-LwF on multiple queries containing words never
seen during the training of WildCLIP (Fig. 11). Although
this ability is beyond the scope of this study, we still wish
to illustrate the potential of VLM to retrieve any kind of
events and to positionWildCLIPwith respect to this goal.We
observe a decrease in performance for WildCLIP in compar-
ison to CLIP for prompts such as “a cloudy weather”, but
this catastrophic forgetting is compensated as expected by
the VR-LwF loss. Other queries such as “an animal eating
from a tree.” are never well retrieved, but WildCLIP seems
the best model in this case since the animals are eating the
closest to a tree. Finally, “an animal with an open wound.”
is never well retrieved by any of the models, although we are
aware of the presence of such images in the test set.

Appendix D. Sequence Level Performance

We compute the mAP considering either each image as inde-
pendent, or by first taking the maximum cosine similarity

with a given query over the sequence of camera trap shots,
and then computing the mAP over the sequences. Perfor-
mance is reported for the test queries of the base and the
novel vocabulary set, following template 1 (Table 3).

Table 3 Performance at the image or sequence level

Model Image Sequence
Baset1 Novelt1 Baset1 Novelt1

CLIP 0.29 0.37 0.32 0.39

WildCLIP 0.64 0.40 0.66 0.43

WildCLIP-Adapter* 0.67 0.38 0.70 0.42

Appendix E. Implementation Details

E .1 Data Processing

We started from the output of MegaDetector (Beery et al.,
2019) provided on LILA, and included bounding boxes pre-
dicted with confidence above 0.7 in our analysis. Images
containing animals are then cropped to undistorted square
patches by padding with background.

E .2 Replay Vocabulary

To generate the replay-captions, we first parse titles of ecol-
ogy papers corresponding to the query “Serengeti +Wildlife”
with the Semantic Scholar API (Kinney et al., 2023).We then
use the Rapid Automatic Keyword Extraction (Rake from
Rose et al., 2010) on all titles to keep only keywords from
them. Since this process is not specific to ecology, we fur-
ther filter words by computing the cosine distances between
words embeddings of the retrieved words and “Serengeti”
and “Wildlife” using a Word2Vec model pretrained with
GloVe (Pennington et al., 2014). We keep only the 830 most
similar words in total, and build the 5-grams text anchors by
randomly sampling these words.

Examples of 5-grams used as replay vocabulary (VR):

• seasonal tasmania snakes unengaged ruminant
• coyote narok raccoons disease sustainable
• cull bird rhinoceroses act pesticide
• jaguars mammal culling territoriality canine
• feed maasai diversity poaching improve
• grass today tree browsers myxomatosis

E .3 Model Training

During training of the different versions ofWildCLIP, we use
the weighted Adam optimizer (Loshchilov & Hutter, 2017),
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Fig. 11 Top-3 test images most aligned with the given open-vocabulary queries (Color figure online)

with a learning rate of 10−7 following a cosine annealing
scheduler (Loshchilov & Hutter, 2016), a batch size of 100
and a weight decay of 0.2. The training code and param-
eters are adapted from Ilharco et al. (2021). The learning
rate is increased to 10−6, and the weight decay decreased to
10−3 for ResNet models. We randomly draw 10′000 image-
caption pairs for a given epoch, with a sampling probability
inversely proportional to the caption frequency. Image crops
are then randomly transformed with a probability of 0.25
for horizontal flipping, resizing, Gaussian blur, conversion
to grayscale and color jitter. Around 10% of the training data
is used as a validation set by holding out a subset of cam-
eras. The models are trained for 500 epochs. The training of
WildCLIP-Adapter and its variants is different because of the
few-shot scenario. Following parameters used in Gao et al.
(2021), we use the stochastic gradient descent (SGD) opti-
mizer with a learning rate of 10−3, and train the model for
200 epochs with a batch size of 32. The α blending parameter
in Fig. 2 is set to 0.7, following cross-validated results of Gao
et al. (2021). The temperature parameter τ in Eq. (3, 4, 6, 7)
is set to 0.01, following Ilharco et al. (2021).
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