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A B S T R A C T   

Assimilating external observations of crop state in cropping system models is essential for making spatially 
explicit predictions of crop variables relevant in precision agriculture. Satellite-based leaf area index (LAI) es
timates have been the most frequent variable used as a proxy of actual crop growth. However, additional in
formation beyond LAI, like canopy N content, water content, and structure, can be retrieved from satellite 
observations. Including such variables by data assimilation directly is difficult because many crop models do not 
have corresponding state variables or the relationship between the observations and the process that regulates 
crop growth is unclear. Therefore, other approaches are required to include such information. In this study, we 
investigate the improvement in the predicted yield and feature impact on model outputs by using a hybrid 
approach that combines observations from Sentinel-1 and 2 time-series with the outputs from a process-based 
model embedded in a data assimilation framework and uses the Gradient-boosted trees regressor (GBTR) as 
predictive model. We used two regions with soybean fields: the US (13 K points) and Uruguay (400 K points). We 
found an advantage when using the GBTR as the predictive model (reduced RRMSE by ~16%) compared to data 
assimilation. Adding the vegetation indices had a marginal improvement (reduced RRMSE by ~1%), while the 
impact of adding reflectance and backscatter values was negative. The satellite-based features had a very small 
importance score, while features’ impact on prediction was predominantly unclear, explaining the marginal 
predictive power added by satellite-based features. We found that features from the reproductive stages had the 
highest importance, while the importance of an index related to drought stress (NMDI) across the growing season 
provided insights for further improvement of data assimilation methods. However, more studies are required to 
better disentangle pathways towards further improvement in constraining crop models by ingesting satellite 
observations.   

1. Introduction 

Developing methods to estimate spatial variability in crop yield is of 
great relevance to address site-specific crop management and to improve 
resource use efficiency. Efficient site-specific crop management strate
gies could substantially enhance input efficiency and reduce yield gaps 
without intensifying the used inputs (fertilizer, pesticide, etc.), which 
would ensure the sustainability of the agricultural systems (Cassman 
and Grassini, 2020). Crop models are valuable tools because they 

describe the interaction between crop traits, management, growth, and 
environmental factors. However, applying crop growth models for 
site-specific crop management is usually constrained by the lack of input 
data available at high spatial resolution (e.g., soil parameterization) and 
crop management information, which introduces a high level of un
certainties in the simulated quantities (Dokoohaki et al., 2021; Folberth 
et al., 2016). Thus, the assimilation of remotely sensed variables into a 
crop model has received a lot of attention as a way to solve the lack of 
spatial input data required for the spatial application of crop growth 
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models (Huang et al., 2019; Jin et al., 2018; Jindo et al., 2023). The key 
role of data assimilation consists in compensating for the missing input 
data and in providing information on actual crop growth status which 
captures the impact of abiotic stresses and yield reduction factors which 
are not included in the model (Huang et al., 2019). 

Variables retrieved from remote sensing need to match with a 
simulated state (e.g. LAI, aboveground biomass) to satisfy the data 
assimilation requirement (Huang et al., 2019; Jindo et al., 2023). The set 
of variables retrieved from the satellite has been limited to leaf area 
index (LAI), chlorophyll concentration, leaf water content, and soil 
moisture in the top layer (Hajj et al., 2017; Xie et al., 2019). Out of these 
four, LAI has been the most common variable to be assimilated as it can 
directly be retrieved from optical data (Huang et al., 2019). While few 
studies have assimilated soil moisture (Ines et al., 2013; Kivi et al., 
2022), it was found that it improved model predictions under drought 
limited conditions. However, remote sensing data (optical + SAR) may 
provide additional information on crop growth such as the impact of 
abiotic stresses and other yield reducing factors. Such factors (pests and 
diseases) are difficult to simulate by crop models because the underlying 
processes may not be implemented. Moreover, data assimilation may 
have limited value because their impact is not necessarily being 
captured by estimates of LAI. Thus, there is a need to identify the sat
ellite information that allows to further constrain process-based models 
and find an approach to integrate them. This would have great value 
towards further improvements of the yield predictions from data 
assimilation. 

For the remote sensing information that cannot be assimilated into a 
crop model, data-driven approaches such as machine learning (ML) 
models provide a way to find quantitative relationships between fea
tures (satellite-derived indicators) and target variables (yield). ML al
gorithms provide unique capabilities to find non-linear relationships 
between the target and the features that very often occur between crop 
traits and yield. The ML models can learn from a large amount of data 
and utilize diverse related features, avoiding integration complications 
that are usually associated with data assimilation approaches that make 
use of process-based models. A shortcoming of data-driven approaches is 
their difficulty to interpret the predictions, and thus, these ML models 
lack the ability to show causal relationships between input features and 
predicted outputs (Gevaert, 2022). To tackle this shortcoming, there has 
been a growing interest in hybrid approaches, which allow the synergy 
between data-based and knowledge-based modeling and promote ap
plications based on causal relationships (von Rueden et al., 2020). These 
hybrid approaches were successfully applied for crop yield prediction by 
coupling outputs from a process-based model with ML models (Feng 
et al., 2020; Lobell et al., 2015; Paudel et al., 2021; Shahhosseini et al., 
2021). Hybrid models are a promising alternative for further develop
ment of forecasting systems as their complementarity tackles the 
shortcomings of each of the approaches. Therefore, these hybrid models 
could empower exploratory studies that point at identifying complex 
relationships between satellite-based estimates of crop traits and crop 
yield. 

Given the difficulties of the satellite retrievals to satisfy the re
quirements to be assimilated into a crop model, this study used a hybrid 
system that couples a biophysical model and a data assimilation 
framework (Gaso et al., 2021) with a ML algorithm to evaluate the 
added value of satellite data to improve yield predictions. Our study 
addressed the following three objectives: i) to assess the added value in 
yield prediction accuracy at pixel level when using a ML algorithm as a 
predictive model with features built from the data assimilation outputs 
(process-based model corrected by the assimilation of LAI); ii) to 
investigate whether the addition of features from Sentinel-1 and 2 
time-series (vegetation indices vs spectral bands and backscatter signals) 
to the features built from the data assimilation outputs leads to 
improvement in the predicted yield; iii) to identify features that 
contribute most in explaining the yield estimates and to explain the 
impact of features on yield predictions. 

2. Methodology 

We created a hybrid framework (Fig. 1) that uses outputs from a 
process-based model employing data assimilation augmented with 
additional satellite-based features to feed the Gradient-Boosted Decision 
Trees (GBTR) algorithm. Our choice of the GBTR model is based on the 
strengths of decision trees ensemble methods in avoiding overfitting by 
model averaging and the fact that Gradient boosting models are gener
ally more accurate than bagging used by random forest (Hastie et al., 
2020). The GBTR showed good performance in regional crop yield 
forecasting (Paudel et al., 2023, 2021). We created three scenarios 
(Hybrid 1,2,3) for addressing our first and second objectives. In the 
Hybrid-1 approach several features from the data assimilation (see 
Table 1) plus satellite derived red edge chlorophyll index (CIred edge) 
time-series were used as input for the GBTR algorithm for predicting 
yield maps. Hybrid-1 serves as a scenario which was used to evaluate the 
performance of GBTR compared to data assimilation when no additional 
satellite-derived features (beyond the CIred edge) were included. In the 
second (Hybrid-2) and third (Hybrid 3) scenarios we augmented the 
input features from the Hybrid-1 with the satellite-derived indicators 
and used the combined input features (model with data assimilation plus 
satellite indicators) to predict yields with the GBTR algorithm. This 
approach was used to evaluate if additional satellite-derived features 
beyond LAI (which was already assimilated in the process model) lead to 
reduced error for yield prediction. The Hybrid-2 scenario used several 
spectral indices to augment the process-based model outputs, while the 
Hybrid-3 scenario used the observations from Sentinel-2 (reflectance 
values) and Sentinel-1 (backscatter values) directly. 

2.1. Data 

2.1.1. Sites 
This study used 94 fields from two soybean regions: the Corn Belt in 

the US and the East Pampas in Uruguay. Fig. 2 showed the spatial dis
tribution of fields in each data set. The total area from the US was 550 ha 
and the total area from Uruguay was 16,551 ha. The data set from the 
US, hereafter referred to as Soy-US, contains 12 fields (13,750 pixels), 
planted in 2020. The data set from Uruguay is split into two sets: 38 
fields (196,977 pixels) planted in 2020 and 44 fields (216,798 pixels) 
planted in 2021, hereafter referred to as Soy-UY2020 and Soy-UY2021, 
respectively. 

Soybean varieties maturity group ranged from III to IV in Soy-US and 
maturity group V to VI in Soy-UY2020 and Soy-UY2021. In both regions 
fields were managed according to optimal agronomic practices for the 
region and we assumed that the influence of biotic stresses (weeds, in
sects, and diseases) and nutrient availability was not a limiting factor. 

2.1.2. Yield monitor data processing 
Yield observations from the combine harvester machines were 

available for each field. The combine harvester machines and the mea
surement units differ amongst regions, thus all the monitor data were 
unified into consistent data formats and measurement units. Yield data 
was filtered by removing outliers based on frequency distribution and 
outliers based on the minimum and maximum agronomic yield limits 
(Sun et al., 2013). The yield map was generated for each soybean field 
by averaging the yield points within 20 × 20 m cells. Due to privacy 
reasons, yield data for individual fields cannot be openly shared 

2.2. Data assimilation and soybean growth model run details for features 
generation 

We generated output variables to be used as inputs to the ML models 
by running the soybean crop growth model and the recalibration-based 
methodology presented in Gaso et al. (2021). The recalibration-based 
method operates by optimizing a cost function (that minimizes the dif
ference between simulated and observed LAI), which implies that 
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uncertain model parameters must be recalibrated. Four crop model pa
rameters were recalibrated against the LAI curves: initial LAI, soil depth, 
field capacity and the fraction of nitrogen translocated from leaves to 
seed. Weather data comes from NASA-POWER (power.larc.nasa.gov), 
which provides daily data (grid of 0.5◦ x 0.5◦ latitude and longitude). 
Planting dates and maturity group (cultivar) were not available per 
field, however in Soy-UY2020 and Soy-UY2021 sets, whether the field 
was planted as early or late (after the winter crop) was known. Thus, 
based on the local expertise of the region, we defined the following 
criteria: average planting dates and maturity group for the region, 
November 15th and maturity group VI, and December 15th and matu
rity group V for the early and late planting dates, respectively. In the 
Soy-US set, the planting dates were established based on the average 
dates for the region: May 1st and maturity group IV. By running the 
soybean model at the pixel level, we created a data set of features that 
could potentially carry the most relevant information for the yield 

prediction. The list of the soybean model outputs used as features of the 
ML models is presented in Table 1. These soybean model outputs were 
chosen because they synthesize the main drivers of the spatial soybean 
yield variability. 

2.3. Additional satellite-based features not included in the data 
assimilation framework 

We used known relationships between spectral indices and crop 
traits (Xie et al., 2019) to select a set of vegetation indices (Vis) that were 
used as input of the ML framework. Previous studies (Hunt et al., 2019; 
Perich et al., 2023; Zhang et al., 2021) have employed some of the VIs in 
Table 2 for crop yield prediction, but our emphasis was rather on 
identifying whether the addition of VIs or spectral regions improves 
prediction accuracy. We put particular emphasis on selecting indices 
that provide information from different spectral bands than those 
already used in the assimilation of LAI (spectral bands of Sentinel-2 in 
the red edge and NIR region). We used optical imagery (Level 2A) from 
two Sentinel-2 satellites (2A and 2B), and radar images from Sentinel-1 
SAR (Synthetic Aperture Radar) dual-polarized C-band Level-1 GRD 
(Ground Range Detected) to build spatiotemporal satellite-based fea
tures. We used Sentinel-1 ground range detected (GRD) SAR images in 
dual polarization mode (VV and VH) acquired in the respective study 
areas from 2020 to 2021 in Google Earth Engine (GEE) platform (Gor
elick et al., 2017). The Sentinel-1 SAR images were acquired in the 
interferometric wide swath mode (IW) with a resolution of 20 m vs 22 m 
in range and azimuth directions, respectively (Torres et al., 2012). The 
Sentinel-1 images were acquired in both ascending and descending or
bits with nominal temporal resolution of 6–12 days. Prior to their 
ingestion into GEE, the Sentinel-1 images were processed for thermal 
noise removal, calibrated to sigma nought and range doppler terrain 
correction. We further preprocessed the images by removing remaining 
border noise and applying speckle filtering and radiometric terrain 
normalization following the methods proposed (Hoekman and Reiche, 

Fig. 1. Conceptual framework of the three simulation experiments (Hybrid-1, Hybrid-2 and Hybrid-3).  

Table 1 
Description of the crop model outputs used as features of the hybrid models.  

Variable Acronym 

Cumulative water deficit in the vegetative stage CWDv 
Cumulative water deficit in the reproductive stage CWDr 
Total dry matter at flowering (R1) TDMR1 
Total dry matter at beginning of grain filling (R5) TDMR5 
Leaf area index at flowering (R1) LAIR1 
Leaf area index at beginning of grain filling (R5) LAIR5 
Cumulative crop transpiration in the vegetative stage CTv 
Cumulative crop transpiration in the reproductive stage CTr 
Total water content at flowering (R1) TWCR1 
Total water content at beginning of grain filling (R5) TWCR5 
Cumulative intercepted radiation in the vegetative stage CRADv 
Cumulative intercepted radiation in the reproductive stage CRADr 
Cumulative rainfall in the vegetative stage CRAINv 
Cumulative rainfall in the reproductive stage CRAINr 
Cumulative vapor pressure deficit in the vegetative stage CVPDv 
Cumulative vapor pressure deficit in the reproductive stage CVPDr  
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2015; Vollrath et al., 2020). The preprocessing was applied in GEE 
following the implementations of Mullissa et al. (2021). We made use of 
the public data archive available within GEE to compute and export the 
features variables (see: https://github.com/dgaso/Biweekly_Fea 
tures_GEE) 

Sentinel-2 images were ingested into GEE with atmospheric correc
tion applied using the Sen2Corr methods (Main-Knorn et al., 2017). We 
further removed clouds and artifacts using the S2Cloudless approach 
proposed by GEE. The Sentinel-2 cloud probability image collection was 
employed to derive a cloud mask as a band of the Sentinel-2 surface 
reflectance (S2_SR) collection. We used a 10% cloud cover threshold in 
the cloud mask. A cloud shadow mask was computed from the dark NIR 
pixels (band8 in S2_SR) and it was combined with the cloud mask to 
produce the final cloud-shadow mask. Finally, we filtered the S2_SR by 
the field boundaries and the length of the growing season. The VIs from 
S2_SR were calculated by using the Awesome Spectral Indices package 
within GEE (see: https://github.com/dgaso/Biweekly_Features_GEE). 
Table 2 shows the VIs chosen as feature variables. 

For the Sentinel-1 images, we used the Level-1 S1 GRD SAR data to 
compute four polarimetric descriptors (Table 2) proposed by Bhoga
purapu et al. (2021). The implementation of those parameters was done 
within GEE. All Sentinel-1 parameters were resampled to the spatial 

resolution used for the Sentinel-2 features (20 m). 
For each of the features, we created a temporal series of biweekly 

averages (eleven points) throughout the growing season. A biweekly 
period ensures that the crop growth curve is well-captured. We defined 
an equivalent length of the growing season for both study regions (the 
US and Uruguay). In the Soy-US region, the growing season starts on 
May 1st and ends on October 15. In the case of Soy-UY (Soy-UY2020 and 
Soy-UY2021), where the dataset was divided into early and late planting 
dates, we defined the growing season from November 15 to April 30 for 
the early planting date and from December 15 to May 30 for the late 
planting date. In the case of Sentinel-1, a biweekly period can have one 
or two images in the study area. However, in the case of Sentinel-2, the 
biweekly period can contain more than one image or zero. We adopted 
the following criteria to produce the biweekly series: i) if the biweekly 
has more than one image, images were averaged, ii) if the biweekly has 
no images, the gap was filled by linear interpolation between two 
consecutive (previous and subsequent) biweekly averages. 

The biweekly average of the reflectance bands was computed from 
the following bands of the S2_SR collection: Band2 (Blue, centered at 
496 nm), Band3 (Green, centered at 560 nm), Band4 (Red, centered at 
665 nm), Band5 (Red Edge 1, centered at 704 nm), Band6 (Red Edge 2, 
centered at 740 nm), Band7 (Red Edge 3, centered at 782 nm), Band8A 

Fig. 2. Spatial distribution of the fields in each data set.  
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(Red Edge 4, centered at 864 nm), Band11 (SWIR 1, centered at 1614 
nm) and Band12 (SWIR 1, centered at 2202 nm). While the biweekly 
average of backscatter signals was computed from the Sentinel-1 SAR 
analysis ready (Mullissa et al., 2021) and we used the following signal: 
VV (Single co-polarization, vertical transmit/vertical receive), VH 
(Dual-band cross-polarization, vertical transmit/horizontal receive) and 
VVVH (ratio between VV and VH). All backscatter signals of Sentinel-1 
were resampled to the spatial resolution used for the Sentinel-2 bands 
(20 m). 

2.4. Hybrid models 

2.4.1. Simulation experiments set up 
Our first objective was to evaluate the advantage of using the GBTR 

to predict yield at the pixel level compared to the data assimilation 
method. To address this objective, we developed the first hybrid model 
(Hybrid-1), which used outputs of the soybean model after data assim
ilation (Table 1) and the time series of the vegetation index (CIred edge) 
employed to estimate LAI in data assimilation (Fig. 1). Our second 
objective was to assess whether additional remote sensing derived fea
tures improve the accuracy of yield estimations compared to those that 
were obtained with assimilating LAI in a process-based model. There
fore, we developed two additional hybrid models to predict yields based 
on different sets of input features (Fig. 1). The second hybrid model 
(Hybrid-2) used the input features from Hybrid-1 plus additional VIs 
derived from Sentinel-1 and Sentinel-2 (Table 2). The third hybrid 
model (Hybrid-3) used the soybean model outputs from Hybrid-1 only 
plus the reflectance from all spectral bands from Sentinel-2 and all mi
crowave signals from Sentinel-1. The satellite information from Hybrid- 
1 (CIred edge) was considered not necessary in Hybrid-3 as this infor
mation is contained in the spectral bands. While the Hybrid-2 set up 
adds VIs related to crop traits different from LAI, Hybrid-3 set up directly 
adds reflectance information and backscattering eliminating the need 
for computing spectral indices. 

2.4.2. Machine learning model 
We chose the GBTR algorithm as the predictive model of the hybrid 

models. The GBTR is an ensemble method which uses gradient boosting 
to grow the trees (Friedman, 2001). The gradient boosting creates 
multiple weak models (trees) where their combination is powerful 
enough to find nonlinear relationships between the target and features. 
We used GBTR from Spark library (Spark MLlib, https://spark.apache.or 

g/mllib/). For training and evaluation, the complete dataset was split 
into 5 training and test splits using GroupKFold (k = 5, groups = field 
identifiers) of the scikit-learn library (Pedregosa et al., 2011). When 
using a regular 5-fold cross-validation, training and test points are 
allocated randomly; points from the same field, with strong spatial 
correlation, can end up in the training and test sets. GroupKFold avoids 
this issue, thus helping to evaluate generalization across fields. To 
optimize the hyperparameters of GBTR, the training sets were further 
split into training and validation sets again using GroupKFold (k = 5, 
groups = field identifiers). The final predictions were obtained by 
refitting the GBTR model with the optimized hyperparameters on the 
original training set (before the second GroupKFold split). 

2.4.3. Feature selection 
Feature selection was performed to reduce the dimensionality of 

features in the case of Hybrid-2 and Hybrid-3 using the training sets. We 
started with the time series of VIs (121 features, 11 VIs x 11 time steps) 
for Hybrid-2 and spectral bands and backscattering (132 features) for 
Hybrid-3. The top fifteen features were selected from a GBTR model 
trained on each of the five training sets based on the featureImportances 
attribute. This method computes the average importance of each feature 
across all trees in the ensemble. The criteria for selecting the features in 
the internal trees is based on an impurity-based method (mean decrease 
in variance across all trees in the ensemble); thus, the relative impor
tance indicates whether the feature has a relatively high depth in the 
decision node of the trees (models) of the GBTR. The importance vector 
that contains the importance value is normalized to sum to one. The final 
set of features included those ranked in the top fifteen by three out of 
five models. This process of feature selection was conducted indepen
dently per data set. 

2.5. Evaluation 

2.5.1. Performance comparison 
The mean absolute error (MAE), root mean squared error (RMSE) 

and Relative RMSE (RRMSE) were computed on each testing fold, per 
simulation experiment (three data sets x three hybrid set up). The 
RRMSE was calculated using the average observed yield value in each 
test fold. We reported the mean and standard deviation of the accuracy 
metrics from five testing folds in each simulation experiment. 

To address our first objective, we compared accuracy metrics from 
the data assimilation to the ones obtained from Hybrid-1. We then used 
simulations from Hybrid-1 as a baseline experiment to address our 
second objective (Fig. 1). We evaluated the accuracy improvement by 
computing the differences in RRMSE between Hybrid-1 and Hybrid-2 or 
Hybrid-3. The improvement from Hybrid-1 set up was expressed as the 
percentage of increase or decrease in RRMSE. 

We computed Pearson correlation between residuals of Hybrid-1 and 
the other two settings (Hybrid-2 and 3). A high correlation between 
residuals indicates similarities amongst simulations experiments, and 
thus, a lack of improvement from Hybrid-1 to Hybrid-2 or Hybrid-3. The 
Mann-Whitney U statistical test was used to assess whether the differ
ence between the pairs (residuals from Hybrid-1 vs Hybrid-2 and re
siduals from Hybrid-1 vs Hybrid-3) follows a symmetric distribution 
around zero. We used the Mann-Whitney U test to determine if the pairs 
of residuals are significantly different from each other, meaning that the 
increase or decrease in accuracy metrics was significant. 

2.5.2. Feature importance determination with SHAP 
We conducted the SHAP (Shapley Additive exPlanations) analysis to 

determine feature importance and to get insights into the relationship 
between the value of a feature and the impact on the prediction. We 
extracted feature importance from the SHAP method (Lundberg and Lee, 
2017). Feature importance in SHAP is based on the magnitude of feature 
attributions and is computed as the mean absolute Shapley values. It 
differs from permutation feature importance which is based on the 

Table 2 
List of vegetation indexes used as features of the hybrid model.  

Satellite Description References 

Sentinel- 
2 

Chlorophyll Index Green (CIG) Gitelson et al. (2003) 

Sentinel- 
2 

Green Normalized Difference Vegetation 
Index (GNDVI) 

Gitelson et al. (1996) 

Sentinel- 
2 

Normalized Multi-band Drought Index 
(NMDI) 

Wang and Qu (2007) 

Sentinel- 
2 

Normalized Difference Vegetation Index 
(NDVI) 

Rouse et al. (1974) 

Sentinel- 
2 

Modified Chlorophyll Absorption in 
Reflectance Index (MCARI) 

Daughtry et al. 
(1999) 

Sentinel- 
2 

Transformed Chlorophyll Absorption in 
Reflectance Index (TCARI) 

Haboudane et al. 
(2002) 

Sentinel- 
2 

Wide Dynamic Range Vegetation Index 
(WDRVI) 

Gitelson (2004) 

Sentinel- 
1 

Ratio (q) Bhogapurapu et al. 
(2021) 

Sentinel- 
1 

Co-pol purity (mc) Bhogapurapu et al. 
(2021) 

Sentinel- 
1 

Pseudo-scattering-type (θχ) Bhogapurapu et al. 
(2021) 

Sentinel- 
1 

Pseudo scattering entropy (Hc) Bhogapurapu et al. 
(2021)  
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decrease in model performance. We run the SHAP method on each fold 
of the test set. We computed the SHAP method 10 times to account for 
randomness. The final SHAP values were obtained by averaging the 10 
runs. We then concatenated the SHAP values from each fold of the test 
set to obtain the SHAP value per feature for all the predictions (13 K 
points in Soy-US, 196 K points in Soy-UY2020 and 216 K points in 
Soy-UY2021). Further assessment of feature effects was performed to 
explore the impact of each feature on model output. We pointed to 
investigate feature directionality, meaning the relationship between the 
value of a feature and the impact on the prediction. 

3. Results 

3.1. Performance comparison between data assimilation and Hybrid-1 

The Hybrid-1 improved yield predictions at pixel level compared to 
the data assimilation (reduced RRMSE by 16%, weighted average by 
dataset size). There was divergent behavior when using GBTR as pre
dictive model. Hybrid-1 gave no improvement over data assimilation in 
Soy-US, while the benefit of Hybrid-1 was consistent in Soy-UY2020 
(reduced RRMSE by ~21%) and Soy-UY2021 (reduced RRMSE by 
~12%). There was also a shrinking of the variability around line 1:1 
when comparing data assimilation with Hybrid-1, although a significant 
portion of the yield variability remains unexplained by both methods as 
indicated by numerous data points that deviate significantly from the 
1:1 line (Fig. 3). Grids with the highest density of points aligned closely 
with the 1:1 line, indicating that the Hybrid-1 method had an added 
value compared to the data assimilation method (Fig. 3). This was 
evident in the largest data sets (Soy-UY2020 and Soy-UY2021), where 
the environmental variability is reduced due to the close proximity of 
fields (Fig. 2). 

3.2. Selected satellite-based features 

Derived features from Sentinel-2 (Table 2) were present within the 
topmost important variables for predicting soybean yield (Fig. 4a). 
Within those Sentinel-2 based features the most important ones were 
derived from the reproductive stage (biweekly six to eleven, Fig. 4c), 

where the critical period for soybean yield formation is located. Spe
cifically, during biweekly period eight, which aligns with the onset of 
grain filling, we observed a pronounced high frequency across all fea
tures. The NMDI, an index related to plant and soil water content, was 
selected as important across the whole growing season. We found that 
the NMDI for the biweekly one and ten had high selection frequency, 
with values close to 1. It indicates that NMDI played an important role in 
capturing factors influencing crop yield early and late in the growing 
season. Furthermore, NMDI was the unique VIs with high presence 
during the vegetative stage. The MCARI, an index related to pigment 
content, was consistently selected with high frequency in the mid of the 
growing season (Fig. 4a). The VIs derived from Sentinel-1 were not 
within the topmost important features (Fig. 4a), except for Hc in the 
biweekly one. 

Results from feature importance analysis run on Hybrid-3 set up 
(Fig. 4b) confirmed that the most relevant information in the temporal 
series comes from the reflectance bands of Sentinel-2 during the 
reproductive stage. The high frequency of the shortwave infrared bands 
(B11 and B12 in Fig. 4b) in biweekly one was accordingly to the fre
quency of the selected VIs (NMDI). The backscattering of Sentinel-1 (VH, 
VV and VVVH in Fig. 4b) was presented within the top fifteen in a few 
cases (VV and VH in Fig. 4b), which aligns with the absence of VIs 
formulated from Sentinel-1 in Fig. 4a. 

Overall, the relative importance of the top fifteen features was 
generally very low (lower than 0.15, Figure S2) across the two hybrid 
models and three data sets. The low relative importance means that none 
of the features had a relatively high depth in the decision trees of the 
GBTR and explained a low proportion of the total variance in the target 
variable (yield observation). 

3.3. Performance comparison between Hybrid models 

There was no consistent yield prediction accuracy improvement by 
adding satellite-based features in Hybrid-2 and 3 across regions and 
datasets (Fig. 5). Overall, Hybrid-2 model reduced the RRMSE by 1% 
(weighted average by dataset size) compared to Hybrid-1, and Hybrid-3 
model increased the RRMSE compared to Hybrid-1. 

The uncertainty level was high amongst the hybrid models and data 

Fig. 3. Relationship between observed and predicted yield from data assimilation method (DA) and Hybrid-1, for the five test folds in each region (13 K pixels in Soy- 
US, 196 K pixels in Soy-UY2020 and 216 K pixels in Soy-UY2021). Color bars represent the relative number of points within the cell. 
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sets (error bars in Fig. 5). The impact of adding features in Hybrid-2 and 
3 on the uncertainty level of the GBTR tended to be negative as the 
standard deviation increased in some cases. It means that those satellite- 
based features were not informative as they increased uncertainty. 

Pearson correlation between residuals distribution of Hybrid-1 and 
the other two settings (Hybrid-2 and 3) was high in all data sets (~0.9, 
Figure S3). However, the p-value from the Mann-Whitney U test was less 
than 0.01 in all data sets and comparison between the pairs of residuals. 

Fig. 4. Frequency of an input feature was selected during the feature importance analysis run on each fold of the training of Hybrid-2 (a) and Hybrid-3 (b). The X-axis 
indicates the number of the biweekly average in the growing season (temporal dimensionality). The Y-axis indicates the feature (a and b) and soybean phenology (c). 
R5 represents the beginning of the grain filling. 

Fig. 5. Relative root mean square error (RRMSE), RMSE and mean absolute error (MAE) from Hybrid-1, Hybrid-2 and Hybrid-3, for test set in each region. Error bars 
represent the standard deviation across the five folds. 
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It indicated that the difference (improvement or reduction) in the ac
curacy metrics between Hybrid-1 and the experiments with added sat
ellite information (Hybrid-2 or Hybrid-3) was significant. 

3.4. Feature importance with SHAP 

From the SHAP analysis we determined feature importance and 
feature directionality. The latter can be visualized from Fig. 6 by 
comparing feature values with SHAP values: whether a positive or 
negative effect on prediction is related to feature values. Overall, feature 
importance score showed that the added satellite-based features had 
small score value (lower than 300 kg. ha− 1, Figure S4). Features added 
in Hybrid-2 and 3 were generally important late in the season (grain 
filling in Fig. 6). It was also apparent that many features had a mixed 
impact on the model prediction (unclear features’ directionality). This 
mixed impact of feature on predictions suggests that the relationship 
between the feature and the yield is non-linear. In Fig. 6, we showed the 
SHAP results from one of the data sets (Soy-UY2021), the other two sets 
can be seen in Figure S5 and S6. 

Features added to Hybrid-2: TCARI and NMDI, VIs related to 
chlorophyl content and drought stress, were selected across the season 
but their importance varied during the growing season. Those indexes 
had less effect during the vegetative period as several points are placed 
quite close to 0 in Fig. 6, while their influence was higher around 
flowering and grain filling periods (e.g. NMDI in biweekly 7 and 8). 
Amongst features added in Hybrid-2, it was apparent that most of the VIs 
had a mixed impact on the model as NMDI in biweekly seven where high 
value were associated with negative and positive impact on predictions. 
The predominance of a mixed impact of the selected VIs on predictions 
was also observed in the other two data set (Figure S5 and S6). 

Features added to Hybrid-3: Similar to the features added in Hybrid- 
2, the importance of the reflectance bands varied during the growing 
season. The spectral bands during grain filling period showed the largest 
importance, while bands in the vegetative had a small importance 
(points are placed close to 0). The NIR region during grain filling (B8A in 
biweekly 8) displayed the largest importance among the selected bands. 
Similar to the impact of the VIs, no clear directionality arose from Fig. 6 
in the added spectral bands, where lower values in the NIR region (blue 
points in Fig. 6) negatively affected predictions (negative SHAP) in some 
cases, while it had a positive effect in other cases (positive SHAP). There 
was certain correspondence between the chosen spectral bands and the 
spectral region employed in constructing the selected VIs. For instance, 
spectral bands B11, B12, and B8A, present during grain filling, are in the 
formulation of the NMDI. 

4. Discussion 

To our knowledge this is the first study exploring whether the in
clusion of additional satellite signals to the reflectance bands used to 

estimate LAI could lead to enhanced yield predictions accuracy. We built 
a framework that goes beyond traditional data assimilation methods. 
Our framework used a hybrid model that combined the data assimilation 
system presented by Gaso et al. (2021), satellite-based features and a ML 
algorithm (Fig. 1). We first evaluated the advantage of using a ML al
gorithm as a predictive model compared to the data assimilation only. 
We then compared three experiments set up (Hybrid-1, 2 and 3) to assess 
the benefits of adding satellite-based features. Finally, we analyzed the 
importance and impact of the satellite-based features across the growing 
season. 

4.1. Performance comparison between data assimilation and Hybrid-1 

We found an advantage of using the GBTR as the predictive model in 
Hybrid-1 as it reduced RRMSE by 16% (weighted average by dataset 
size) compared to data assimilation method (Fig. 4). The advantage of 
the GBTR lies in efficiently learning information from those features 
(data assimilation outputs plus the vegetation index used to estimate 
LAI), leading to enhanced accuracy metrics. This observation suggests 
the crop model corrected by data assimilation might not fully capture 
key underlying mechanisms, such as the effects of pests, diseases, or 
abiotic stresses, that significantly impact crop yield. Nevertheless, in the 
Soy-US set, a smaller dataset covering a vast geographic area, no 
enhancement was detected as Hybrid-1 deteriorated performance. This 
observation underscored the limitations of the data-driven approaches 
to be generalized under diverse environments and small dataset as the 
case of Soy-US set. 

In this study, we employed a rigorous model evaluation that tests 
GBTR models using unseen randomly sampled fields as it would reflect 
real-life applications. By testing the GBTR under this more rigorous 
criteria, we ensure a robust test of the capability of this ML model to 
extrapolate complex patterns in space. However, splitting by space has 
mostly been used when using ML techniques to predict yield, such as the 
study by Perich et al. (2023) in which yield pixels from each individual 
field were used for training and testing. When this splitting approach is 
applied, the spatial autocorrelation increases as geographical close 
points are in train and test sets, resulting in overoptimistic model per
formance (Ploton et al., 2020). We proved the relevance of the splitting 
criteria by testing the performance of the GBTR when splitting by space 
for Soy-US and Soy-UY2020 sets (Figure S7). We found that model ac
curacy metrics on the test set were too optimistic when the split pro
cedure was performed by space (reduced RRMSE by ~50%), meaning 
that points within the train and test set come from the same field. 

It is also important to note that we observed diminished performance 
of the data assimilation method in comparison to our previous in
vestigations within the same regions. For instance, the RRMSE in the 
Soy-US dataset was approximately twice the value reported by Gaso 
et al. (2023). We attributed this performance deterioration to the 
absence of crop management information, which lead us to standardize 

Fig. 6. Beeswarm plot of SHAP (SHapley Additive exPlanations) values for the added features in Hybrid-2 (a, b and c) and Hyrbid-3 (d, e and f), in Soy-UY2021 set, 
run on test sets. Features were plotted based on crop calendar: first column is vegetative, second is around flowering and third is grain filling. The number between 
brackets indicates the biweekly number. Each dot corresponds to a model prediction (216 K points). 
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the input data for the crop growth model. We defined a fixed length and 
standard beginning of the growing season, along with a fixed cultivar, to 
run the data assimilation method. This way of standardizing data 
assimilation inputs by making coarse assumptions for model settings 
could likely differ from reality, and consequently, it introduces uncer
tainty. When using crop models for spatially explicit soybean yield 
predictions, the largest source of uncertainty is explained by cultivar 
parameters followed by management and climate drivers (Dokoohaki 
et al., 2021). Thus, the lack of observed crop management is a crucial 
source of uncertainty in the data assimilation method. In this context, 
using a data-driven algorithm as a predictive model (Hybrid-1) proved 
advantageous for the most extensive datasets (Soy-UY2020 and 2021), 
characterized by lower environmental variability (Figure S1). 

Previous studies (Feng et al., 2020; Shahhosseini et al., 2021) have 
employed hybrid approaches by integrating features from process-based 
model (APSIM) into ML models to predict maize and wheat yield. These 
studies obtained higher performance compared to our study when pre
dicting maize yield at the aggregation of the county-level in the US 
(RRMSE lower than 10%, Shahhosseini et al. (2021)) and wheat yield 
from experiment conducted at plot-scale in Australia (RRMSE ~20% one 
month before harvesting, Feng et al. (2020)). They highlighted the 
relevance of integrating process-based features in ML models for more 
reliable crop yield predictions. For instance, the study from Shahhos
seini et al. (2021) showed that adding water stress features to ML models 
significantly enhanced maize yield predictions and pointed out that ML 
models need more features related to the underlying mechanisms that 
determines crop yield. The inclusion of process-based features at the 
pixel-level in ML models is infrequent, as the acquisition of extensive 
and high-resolution yield data sets is often constrained by privacy con
cerns. Deines et al. (2021) demonstrated a pixel-level application, 
revealing scale-dependent accuracy in their ML model: it accounted for 
40% of maize yield variation at the pixel level (30 m resolution in 
Landsat) compared to 69% at the county level. Their study stressed the 
relevance of quantifying accuracy at fine resolution to support crop 
management actions. Nevertheless, it is also crucial to highlight that 
generating process-based features for within-field yield predictions may 
be unfeasible in operational frameworks due to high computational 
demands. Therefore, more efficient alternatives, such as metamodels 
from crop growth models (Zhao et al., 2022), will be required. 

4.2. Performance assessment of the satellite-based features 

Including the selected satellite-based features in the hybrid models 
did not lead to consistent yield prediction accuracy improvement 
(Fig. 5). The features added to Hybrid-2 slightly reduced RRMSE (~1%), 
while features added to Hybrid-3 tended to be negative. It means that 
the GBTR struggled to extract meaningful patterns from the added fea
tures. The marginal incremental predictive power of the added features 
can be explained by the low score of these features added to Hybrid-2 
and 3 (Figure S2 and S4). We associated the marginal predictivity 
added by the selected features with the capability of the CIred edge (index 
used to estimate LAI in the data assimilation) to be an accurate estimator 
of chlorophyll content (Clevers and Gitelson, 2012) and LAI (Nguy-R
obertson et al., 2012). Thus, a substantial portion of the spatial vari
ability was effectively captured by the features that were assimilated 
into the process-based model, and the selected indexes based on 
importance measures, such as TCARI and MCARI, exhibit a certain de
gree of redundancy in their information content. 

The predictive capacity of these hybrid models is expected to 
improve when features are built by accounting for the observed crop 
calendar. The uncertainties in crop phenology due to the lack of infor
mation on soybean management lowers the predictive power of the time 
series of satellite-based features. Thus, this uncertainty could result in 
noisy predictors or irrelevant information. Estimating the starting of the 
growing season from satellite information might be a way to reduce this 
uncertainty. It is also essential to note the crop-specific (soybean) 

challenge, as previously reported by Dado et al. (2020), who observed 
markedly poorer performance in soybean compared to wheat. This 
crop-specific characteristic of soybean crop is probably related to the 
indeterminate growth habit (vegetative growth continues after flower
ing) compared to cereal crops. This indeterminate habit likely results in 
temporal features with weak signals. 

4.3. Features importance and interpretability analysis 

We found that features from Sentinel-1 did not contain predictive 
information, and thus, they were rarely included in the feature selection 
(Fig. 4). We explained the lack of Sentinel-1 features by the fact that the 
signals from the spectral bands of Sentinel-2 are stronger and more 
effective than the backscattering signal. The importance of the selected 
VIs and spectral bands was higher late in the season (Fig. 4). The VIs 
related to LAI, chlorophyll content and its interaction, such as TCARI 
and MCARI, showed higher importance from flowering time onwards 
(Fig. 4) but their impact on prediction was mostly unclear (Fig. 6). 
Similarly, the reflectance in the NIR and red edge regions (Fig. 4) were 
important during grain filling. The latter is probably related to vari
ability in senescence rates across the field which leads to yield vari
ability due to the tight link between the length and rate of the 
senescence (drop in chlorophyll concentration) and soybean yield for
mation. It reaffirmes the predictive power of features closely related to 
the soybean critical period (pod formation to end of grain filling, 
Monzon et al. (2021)). Nonetheless, it also highlights the challenge of 
early forecasting as the most predictive features come from the repro
ductive stage. Our findings agree with other studies forecasting 
mid-season soybean yield (Khaki et al., 2021; Schwalbert et al., 2020), 
where model degradation was found when removing the satellite pre
dictors from flowering onwards, confirming the importance of these 
predictors. 

The VIs associated with crop traits different from LAI, chlorophyll 
content and its interaction, could give us insight into the characteristics 
not accounted for by index used to estimate LAI in the data assimilation 
(CIred edge). For instance, the NMDI was selected frequently in the 
beginning, middle and end of the season. This index is sensitive to 
drought severity, being well suited to estimate both soil and vegetation 
moisture (Wang and Qu, 2007). Thus, the importance of NMDI early and 
late in the season with predominance of bare soil could be connected 
with soil moisture content. In the middle of the season, with high LAI 
values, the importance of NMDI is linked to vegetation water content 
rather than soil moisture. However, it is also worth to emphasize that the 
contribution of the VIs to the predictive performance of the model was 
minimal. Therefore, additional studies are required to untangle path
ways towards further improvement in within-field soybean yield 
predictions. 

4.4. Future application of Hybrid models for yield predictions 

Mixing approaches that combine data-driven and process-based 
techniques offer a promising alternative for future development of 
methods aiming at forecasting crop yield (Maestrini et al., 2022). While 
data-driven approaches usually fail in simulating unseen conditions, 
biophysical approaches, where the “transfer learning” relies on bio
physical principles, are valuable tools that provide complementarity. 
Nevertheless, biophysical models have clear limitations and have diffi
culties when dealing with yield reducing factors that are difficult to 
model such as the impact of pest and disease. On one hand, biophysical 
process-based model can ensure transferability of the model while on 
the other hand, the application of data-driven models can be used to 
learn local features or yield reducing impacts that are not part of the 
biophysical model. 

Deep learning techniques have proven to be a powerful method that 
allows us to extract useful information from the raw data and reach high 
predictive accuracy (Saleem et al., 2021). Complex models (like CNNs or 
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LSTM networks) have great potential for improving the prediction ca
pabilities, although these models have limited application for under
standing complex interactions amongst variables underpinning crop 
yield. Due to these limitations of the data-driven approaches, concerns 
about the need for explainable models have arisen in recent studies 
(Gevaert, 2022). Incorporating domain knowledge into data-driven 
model is one way to move towards explainable data-driven models. 
Constraining ML algorithms by the inclusion of domain knowledge will 
lead to more reliable data-driven models. Thus, these mixing approaches 
would contribute to achieve more reliable and understandable ML al
gorithms. It is also worth mentioning that merging approaches usually 
implies generating features from a process-based model, which comes at 
the cost of high computing resources. Therefore, future mixing ap
proaches applications should focus on including domain knowledge 
throughout metamodels from crop growth models, which are compu
tationally more efficient, and thus, an effective way to integrate them. 

5. Conclusions 

Our study built a hybrid system that goes beyond data assimilation 
methods to assess the added value of using a ML algorithm and the 
improvement when adding satellite-based features, in a large dataset 
from two regions (~400 K points in Uruguay and 13 K points in the US). 
We found an advantage when using the GBTR as the predictive model in 
Hybrid-1 (reduced RRMSE by ~16%, weighted average by dataset size). 
Thus, the ML algorithm was able to extract meaningful information and 
explain part of the remainder variability. However, there was no 
improvement by using the GBTR in the dataset that contains the largest 
intrinsic variability (Soy-US), which pointed to the limitation of the 
data-driven model to be generalized under diverse environments and a 
small dataset. 

Adding the VIs to the features built from the data assimilation had a 
marginal improvement (reduced RRMSE by ~1%), while the impact of 
adding reflectance and backscatter values was negative. Satellite fea
tures derived from the reproductive stages proved to be the most 
important ones, which confirmed the relevance of capturing this crop 
growth period for accurate yield estimation and pointed at the chal
lenges of early in-season forecasting. However, it is also worth to 
highlight that the impact of satellite-based features on model prediction 
was mostly unclear (unclear directionality), which might have resulted 
in noisy predictors. The predictive power of the satellite-based features 
could be enhanced by estimating field-specific emergence dates which 
would reduce this uncertainty. In other agricultural systems, there may 
be other limiting factors, particularly those not so strongly reflected in 
LAI, such as certain pest and disease impacts. In those systems, addi
tional satellite features beyond LAI could contribute more significantly 
to unraveling yield variability, and may therefore be more successful in 
enhancing predictive accuracy. Thus, our findings highlighted that more 
studies are required to better disentangle pathways towards further 
improvement in constraining crop models by ingesting satellite obser
vations. We believe that merging prediction tools by using mixed ap
proaches is a promising tool for future development of yield prediction 
frameworks as the data-driven model benefits from the process-based 
method that rely on biophysical principles. 
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McNairn, H., López-Martínez, C., Rao, Y.S., 2021. Dual-polarimetric descriptors from 
Sentinel-1 GRD SAR data for crop growth assessment. ISPRS J. Photogramm. Remote 
Sensing 178, 20–35. https://doi.org/10.1016/j.isprsjprs.2021.05.013. 

Cassman, K.G., Grassini, P., 2020. A global perspective on sustainable intensification 
research. Nat. Sustain. 3, 262–268. https://doi.org/10.1038/s41893-020-0507-8. 

Clevers, J.G.P.W., Gitelson, A.A., 2012. Using the Red-Edge Bands on Sentinel-2 For 
Retrieving Canopy Chlorophyll and Nitrogen Content. European Space Agency, 
(Special Publication) ESA SP. 

Dado, W.T., Deines, J.M., Patel, R., Liang, S.Z., Lobell, D.B., 2020. High-resolution 
soybean yield mapping across the us midwest using subfield harvester data. Remote 
Sens. 12, 1–22. https://doi.org/10.3390/rs12213471. 

Daughtry, C.S.T., Walthall, C.L., Kim, M.S., Brown de Colstoun, E., McMurtrey III, J.E., 
1999. Estimating corn leaf chlorophyll concentration from leaf and canopy 
reflectance. Remote Sens. Environ. 

Deines, J.M., Patel, R., Liang, S.Z., Dado, W., Lobell, D.B., 2021. A million kernels of 
truth: insights into scalable satellite maize yield mapping and yield gap analysis from 
an extensive ground dataset in the US Corn Belt. Remote Sens. Environ. 253 https:// 
doi.org/10.1016/j.rse.2020.112174. 

Dokoohaki, H., Kivi, M.S., Martinez-Feria, R., Miguez, F.E., Hoogenboom, G., 2021. 
A comprehensive uncertainty quantification of large-scale process-based crop 
modeling frameworks. Environ. Res. Lett. 16 https://doi.org/10.1088/1748-9326/ 
ac0f26. 

Feng, P., Wang, B., Liu, D.L., Waters, C., Xiao, D., Shi, L., Yu, Q., 2020. Dynamic wheat 
yield forecasts are improved by a hybrid approach using a biophysical model and 
machine learning technique. Agric. For. Meteorol. 107922, 285–286. https://doi. 
org/10.1016/j.agrformet.2020.107922. 

Folberth, C., Elliott, J., Müller, C., Balkovic, J., Chryssanthacopoulos, J., Izaurralde, R.C., 
Jones, C.D., Khabarov, N., Liu, W., Reddy, A., Schmid, E., Skalský, R., Yang, H., 
Arneth, A., Ciais, P., Deryng, D., Lawrence, P.J., Olin, S., Pugh, T.A.M., Ruane, A.C., 
Wang, X., 2016. Uncertainties in global crop model frameworks: effects of cultivar 
distribution, crop management and soil handling on crop yield estimates. Biogeosci. 
Discuss. 1–30. https://doi.org/10.5194/bg-2016-527. 

Friedman, J., 2001. Greedy function approximation : a gradient boosting machine. Ann. 
Stat. 29, 1189–1232. 

Gaso, D.V., de Wit, A., Berger, A.G., Kooistra, L., 2021. Predicting within-field soybean 
yield variability by coupling Sentinel-2 leaf area index with a crop growth model. 
Agric. For. Meteorol. 308–309, 108553 https://doi.org/10.1016/j. 
agrformet.2021.108553. 

Gaso, D.V., De Wit, A., De Bruin, S., Puntel, L.A., Berger, A.G., Kooistra, L., 2023. 
Efficiency of assimilating leaf area index into a soybean model to assess within-field 
yield variability. Eur. J. Agron. 143, 126718 https://doi.org/10.1016/j. 
eja.2022.126718. 

Gevaert, C.M., 2022. Explainable AI for earth observation: a review including societal 
and regulatory perspectives. Int. J. Appl. Earth Observ. Geoinform. 112, 102869 
https://doi.org/10.1016/j.jag.2022.102869. 

Gitelson, A.A., 2004. Wide dynamic range vegetation index for remote quantification of 
biophysical characteristics of vegetation. J. Plant Physiol. 

Gitelson, A.A., Gritz, Y., Merzlyak, M.N., 2003. Relationships between leaf chlorophyll 
content and spectral reflectance and algorithms for non-destructive chlorophyll 
assessment in higher plant leaves. J. Plant Physiol. 

D.V. Gaso et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.agrformet.2024.110022
https://doi.org/10.1016/j.isprsjprs.2021.05.013
https://doi.org/10.1038/s41893-020-0507-8
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0003
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0003
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0003
https://doi.org/10.3390/rs12213471
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0005
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0005
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0005
https://doi.org/10.1016/j.rse.2020.112174
https://doi.org/10.1016/j.rse.2020.112174
https://doi.org/10.1088/1748-9326/ac0f26
https://doi.org/10.1088/1748-9326/ac0f26
https://doi.org/10.1016/j.agrformet.2020.107922
https://doi.org/10.1016/j.agrformet.2020.107922
https://doi.org/10.5194/bg-2016-527
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0010
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0010
https://doi.org/10.1016/j.agrformet.2021.108553
https://doi.org/10.1016/j.agrformet.2021.108553
https://doi.org/10.1016/j.eja.2022.126718
https://doi.org/10.1016/j.eja.2022.126718
https://doi.org/10.1016/j.jag.2022.102869
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0014
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0014
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0015
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0015
http://refhub.elsevier.com/S0168-1923(24)00137-0/sbref0015


Agricultural and Forest Meteorology 351 (2024) 110022

11

Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., Blaustein, J., 1996. Use of a green channel 
in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031. 

Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002 
Integrated narrow-band vegetation indices for prediction of crop chlorophyll content 
for application to precision agriculture. 

Hajj, M.El, Baghdadi, N., Zribi, M., Bazzi, H., 2017. Synergic use of Sentinel-1 and 
Sentinel-2 images for operational soil moisture mapping at high spatial resolution 
over agricultural areas. Remote Sens. 9, 1–28. https://doi.org/10.3390/rs9121292. 

Hastie, T., Tibshirani, R., Friedman, J., 2020. The Elements of Statistical Learning. Data 
Mining, Inference, and Prediction, Models for Ecological Data. Springer US. https:// 
doi.org/10.2307/j.ctv15r5dgv.9. 

Hoekman, D.H., Reiche, J., 2015. Multi-model radiometric slope correction of SAR 
images of complex terrain using a two-stage semi-empirical approach. Remote Sens. 
Environ. 156, 1–10. https://doi.org/10.1016/j.rse.2014.08.037. 
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Maestrini, B., Mimić, G., van Oort, P.A.J., Jindo, K., Brdar, S., van Evert, F.K., 
Athanasiados, I., 2022. Mixing process-based and data-driven approaches in yield 
prediction. Eur. J. Agron. 139 https://doi.org/10.1016/j.eja.2022.126569. 

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F., 2017. 
Sen2Cor for Sentinel-2. In: Conference Paper 3. https://doi.org/10.1117/ 
12.2278218. 

Monzon, J.P., Cafaro La Menza, N., Cerrudo, A., Canepa, M., Rattalino Edreira, J.I., 
Specht, J., Andrade, F.H., Grassini, P., 2021. Critical period for seed number 
determination in soybean as determined by crop growth rate, duration, and dry 
matter accumulation. Field Crops. Res. 261 https://doi.org/10.1016/j. 
fcr.2020.108016. 

Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N., 
Reiche, J., 2021. Sentinel-1 sar backscatter analysis ready data preparation in google 
earth engine. Remote Sens. 13, 5–11. https://doi.org/10.3390/rs13101954. 

Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., Rundquist, D., 2012. 
Green leaf area index estimation in maize and soybean: combining vegetation 
indices to achieve maximal sensitivity. Agron. J. 104, 1336–1347. https://doi.org/ 
10.2134/agronj2012.0065. 

Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., 
Athanasiadis, I.N., 2021. Machine learning for large-scale crop yield forecasting. 
Agric. Syst. 187, 103016 https://doi.org/10.1016/j.agsy.2020.103016. 

Paudel, D., de Wit, A., Boogaard, H., Marcos, D., Osinga, S., Athanasiadis, I.N., 2023. 
Interpretability of deep learning models for crop yield forecasting. Comput. Electron. 
Agric. 206 https://doi.org/10.1016/j.compag.2023.107663. 

Pedregosa, F., Michel, V., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 
Vanderplas, J., Cournapeau, D., Pedregosa, F., Varoquaux, G., Gramfort, A., 
Thirion, B., Grisel, O., Dubourg, V., Passos, A., Brucher, M., Perrot, M., 
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