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Abstract 

The miniaturization of thermal cameras made it possible to mount them to small-sized unmanned 
aerial vehicle (UAV) platforms, with benefits including high spatial and temporal resolution. UAV 
thermal images are typically processed with the structure from motion (SfM) workflow, to generate a 
thermal orthomosaic. However, little is known about the influence of SfM parameters on resultant 
orthomosaic temperatures. In this study, the influence of five SfM parameters on orthomosaic 
temperatures was explored in Agisoft Metashape. The tested parameters included the co-alignment 
(or the lack of) of thermal images with multispectral images, the dense point cloud (DPC) quality 
settings, the DPC depth filtering settings, the use of colour calibration, and the choice of a blending 
mode. The influence of the parameters was assessed through a one-at-a-time sensitivity analysis. 
Although the temperature influence of the co-alignment could not be assessed, as the thermal imagery 
failed to properly align without the aid of multispectral imagery, other parameters showed distinctive 
patterns. The parameter with the highest influence was colour calibration. 

The extent of the influence of colour calibration on orthomosaic temperatures was determined by 
temperature differences in the data, and the used blending mode. The choice of blending mode had 
large influence on orthomosaic temperatures in areas with high temperature fluctuations between 
adjacent images. The DPC quality and depth filtering settings had the least influence on orthomosaic 
temperatures. However, substantial variability was observed if the DPC parameters were combined 
with the mosaic blending mode. In general, the selection of parameters should be made on a case-by-
case basis. For applications where a high accuracy is required, it is advised not to use thermal 
orthomosaic without validation with ground reference measurements. 
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1 Introduction 

1.1 Context 

Rainfall patterns are becoming more variable due to climate change, increasing the frequency of 
droughts (Rama et al., 2022). This can result in water deficiencies in plants since they cannot gather 
enough water to meet their evaporation demands. In response to drought stress, plants close their 
stomates to prevent further water loss (Ludovisi et al., 2017; Ozturk et al., 2021). Prolonged drought 
will cause plants to reduce growth, start wilting and take on a yellow colour. Accordingly, the 
(ecosystem) services plants can provide diminish (Yang et al., 2021). Detecting drought early would 
allow nature conservationists, farmers, and urban green managers to mitigate aforementioned effects. 

The early stages of drought stress often cannot be visually determined. However, thermal infrared 
cameras can detect changes in canopy temperatures caused by stress (Galieni et al., 2021; Virtue et 
al., 2021). The magnitude of these changes differs based on the type of stress and plant. In proximal 
studies, drought stress resulted in a temperature increase of 0.7 °C to 6 °C (Belfiore et al., 2019; García-
Tejero et al., 2012; Mulero et al., 2023; Pineda et al., 2020; Sepulcre-Cantó et al., 2006) whereas viral 
infections resulted in temperature increases between 0.5 °C and 1.5 °C (Hasan et al., 2023; Pineda et 
al., 2020; L. Wang et al., 2019). Detecting these types of stress is especially valuable in agriculture as it 
allows farmers to act swiftly, resulting in sustained and efficient plant growth with reduced water, 
nutrient, and pesticide usage (Khanal et al., 2017; Maes & Steppe, 2019). 

Field measurements of plant health status are time and labour intensive. In contrast, a large area can 
be measured within a smaller timeframe through remote sensing. In recent years, small sized 
unmanned aerial vehicle (UAV) platforms have been introduced, enabling the capture of imagery at a 
high spatial, spectral, and temporal resolution (Maes & Steppe, 2019; Malbéteau et al., 2021). 
Simultaneously, thermal cameras have evolved from large spaceborne or airborne cameras with low 
spatial and temporal resolution to small sized cameras with a high spatial resolution (Khanal et al., 
2017). The size reduction allowed thermal cameras to be mounted to UAVs, effectively increasing the 
temporal resolution. Consequently, UAV-based thermal cameras have been widely used in research, 
for several purposes. Examples are determining differences in drought response between different 
plants (Ludovisi et al., 2017; Qin et al., 2022), detecting salinity stress (Stutsel et al., 2021), creating 
irrigation plans (Gutiérrez-Gordillo et al., 2020), and monitoring underground coal fire (G. Yuan et al., 
2021). 

Despite their versatile use, UAV-based thermal cameras have limitations. The high resolution and small 
field of view of UAV-mounted cameras result in a large quantity of images during an overflight. The 
structure from motion (SfM) workflow is often applied to align the images and to construct a single 
orthorectified image. The low level of detail in thermal images makes it difficult for SfM algorithms to 
accurately align thermal images, negatively affecting the accuracy of the final orthomosaic. This, in 
combination with camera-related error sources, can restrict the usefulness of thermal imagery for 
applications where small differences in temperature need to be measured accurately (Maes & Steppe, 
2019; Malbéteau et al., 2021; Mesas-Carrascosa et al., 2018). Examples are detecting plant stress, 
disease detection, the estimation of the evapotranspiration rate, and plant phenotyping (Eide et al., 
2021; Elfarkh et al., 2023) 

1.2 Research need 

UAV mounted thermal cameras are uncooled, due to size and weight constraints. Such uncooled 
cameras are sensitive to temperature fluctuations of the sensor, as microbolometers in the focal plane 
array (FPA) heat up differently based on several factors. The drone and camera themselves influence 
the camera temperature through internal camera electronics, heat from the gimbal motor and air 
dissipation by the propellors (W. Yuan & Hua, 2022). The thermal emission of objects that are being 
measured is partially dissipated by parts of the camera, which creates an uneven heat measurement 
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across the FPA. This dissipation can result in the vignetting effect (Malbéteau et al., 2021). External 
factors, such as the ambient temperature, wind speed and direction, humidity, cloud cover, and 
shadows also influence the measurements. These factors affect measurements mid-flight and cause 
fluctuations in FPA temperature (Aragon et al., 2020; G. Yuan et al., 2021).  

Thermal cameras perform non-uniformity corrections during the flight to adjust to fluctuations in the 
FPA temperature, yet measurement differences remain (Acorsi et al., 2020). The measured objects 
themselves influence thermal measurements as well. Object characteristics such as reflectivity, 
emissivity, and radiation background temperature need to be considered (G. Yuan et al., 2021). The 
caveat is that for measuring differences between stressed and non-stressed plants a sub-1 °C accuracy 
is normally required (Mesas-Carrascosa et al., 2018). Depending on the target, currently available 
thermal cameras have an accuracy of up to ± 5 °C (Virtue et al., 2021). Consequently, derivation of 
accurate temperatures from raw thermal imagery captured by an uncooled thermal camera requires 
calibration. The most prominently researched source of error in UAV-based thermal imagery is the 
sensitivity and instability of uncooled thermal cameras. In response, many authors have created 
methods and procedures to correct for these inaccuracies. To illustrate, Aragon et al. (2020) suggested 
a calibration procedure based on the ambient temperature, Virtue et al. (2021) equipped a thermal 
camera with a heated shutter as a more reliable source for in-flight non-uniformity correction, and 
Kelly et al. (2019) suggested a set of best practices to consider before, during, and after the flight.  

Processing thermal imagery into orthomosaic introduces additional error. The structure from motion 
(SfM) workflow is generally applied to generate thermal orthomosaics. However, this workflow is 
geared towards RGB/multispectral imagery with high amounts of discernible details. The lack of detail 
in thermal imagery affects the capability of SfM algorithms to identify tie-points between images and 
to align images. Furthermore, the temperature value for one location can be dynamic across thermal 
images due to the aforementioned fluctuations in FPA temperature (Maes et al., 2017; Malbéteau et 
al., 2021). Apart from alignment issues, other parameters influence orthomosaic temperatures as well. 
One of the main identified parameters is the blending mode, used for orthomosaic generation. Both 
Malbéteau et al. (2021) and Acorsi et al. (2020) discuss that the blending modes each produce different 
result, as each mode blends overlapping pixel values in different ways. Still, the influence of SfM 
parameters on resultant orthomosaic temperatures is scarcely discussed, despite being a known 
source of potential error (Malbéteau et al., 2021). In fact, most authors do not discuss the SfM 
parameters used in projects, despite the unknown temperature influence the parameters could have 
(Acorsi et al., 2020; Kelly et al., 2019; Maes et al., 2017; McCarthy et al., 2021, 2022; Ribeiro-Gomes et 
al., 2017).  

1.3 Aim and research questions 

At the moment of writing this thesis, there was limited knowledge on the influence of structure from 
motion processing parameters on resultant temperatures in thermal orthomosaics. The aim of this 
thesis was to determine what SfM parameters are influential on orthomosaic temperatures, and to 
determine what influence the parameters have on the resultant temperatures. The following research 
questions were answered to satisfy this aim: 

1) What are the key processing parameters that affect thermal orthomosaic generation? 
2) How do key processing parameters influence the temperatures of thermal orthomosaics? 
3) How do different combinations of key processing parameters influence thermal orthomosaic 

temperatures? 
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2 Data and methods 

The methodology is split into two parts: data acquisition & processing and data analysis (Figure 1). The 
first part addresses the steps taken to prepare the data for the analysis. This includes the data 
collection method (2.1.1), selection of influential structure from motion (SfM) processing parameters 
and orthomosaic generation (2.1.3 & RQ1)  with a vignetting mask (2.1.2), and the empirical line 
correction of the orthomosaics (2.1.4). After the data processing, the influence of the SfM processing 
parameters was assessed through multiple one-at-a-time sensitivity analyses (2.2.3). The influence of 
each separate parameter was assessed first (2.2.4 & RQ2). Afterwards, the influence of parameter pairs 
was assessed (2.2.5 & RQ3). The outcome of these analyses consists of violin plots which depict the 
distribution and impact of parameters on the orthomosaic temperatures and inter-parameter 
influences. 

 

Figure 1 General methodological workflow, numbering in the boxes relates to headers in the 
methodology. 

2.1 Data acquisition & processing 

2.1.1 Data collection 

The data for this project originates from the Nergena grass field in Bennekom, The Netherlands (Figure 
2). It is in use for a drought resistance experiment among 20 grass species and mixtures, spread across 
240 plots ranging in size from 1 x 1 m to 2 x 2 m (appendix B). Each plot is subject to one of four 
treatments. A plot is either irrigated or non-irrigated, with a grass height of 3 cm or 6 cm. The imagery 
of the grass field was acquired on the 7th of September 2023 at 1:00 pm in a 9 minute long flight, at a 
height of 30 meters. It was a sunny, cloudless day with an air temperature of 28 °C. The period before 
the data acquisition was one of frequent rainfall, with a total of 156 mm of rainfall in August 2023 
measured by the Wageningen Pd weather station (KNMI, n.d.). Between 09:11 and 09:42 hours on the 
day of the data acquisition, the average measured volumetric water content was 12 % and 16 % for 
the non-irrigated and irrigated sides of the grass field, respectively. 

For the analysis in this project, 36 of the 48 larger 2 x 2 meter plots were used (Figure 2). The larger 
plots were used as they provide a large sample size of pixels compared to the smaller 1 x 1 meter plots. 
If pixel values of adjacent plots are mistakenly included in a larger plot, their influence is smaller. 12 
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plots were omitted from the analysis due to temperature anomalies in the orthomosaics on the 
western side of the grass plot caused by the rapid change in FPA temperature.  

The DJI M210 RTK UAV platform equipped with a Hiphen Airphen multispectral camera and a FLIR Tau 
2 thermal camera was utilized to acquire the imagery. The Hiphen Airphen captures images at six 
wavelengths (450nm, 530nm, 570nm, 675nm, 730nm & 850nm), whereas the FLIR Tau 2 measures in 
the 7.5 nm to 13 nm range with an emissivity value of 0.98. The drone flew in a west-east direction 
(Figure 2). Five ground control points were placed around the grass field for post-alignment geometric 
correction in Metashape. The GPS location of these ground control points was measured with a Topcon 
RTK receiver.  

Four reference panels and two water targets were placed to the south of the grass field, for post-flight 
temperature calibration. The reference panels’ colour ranged from black to white, ensuring a range of 
temperature values. One of the water targets was kept cold by adding ice cubes, whilst the other was 
continuously warmed by the sun. The temperatures of these targets were measured with the Raytek 
Raynger ST handheld device (± 2 °C, emissivity value of 0.95), shortly after the drone passed. These 
measurements were converted to the target emissivity of 0.98, which corresponds to the emissivity of 
vegetation. After conversion, panel temperatures ranged from 26.6 °C to 40.6 °C, whereas the cold 
and warm water targets were 16.3 °C and 18.8 °C, respectively. After the drone passed, the ground 
reference temperatures of the 16 southmost 2 x 2 grass plots were measured (appendix C). The 
measured grass temperatures ranged from 20.7 °C to 24.3 °C.  

 

Figure 2 Nergena grass field, Bennekom, The Netherlands. Includes the 36 plots used in the assessment 
and the flight path of the drone that was used on the 7th of September. 

2.1.2 Removing vignetting effect 

Upon closer inspection of the captured thermal infrared imagery, vignetting was observed. Based on 
the recommendation by Kelly et al. (2019), only the central portion of the thermal imagery was used 
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during the orthomosaicking process. The first 10 post-flight images of the uniform helipad surface were 
used to calculate residuals. It was assumed that post-flight images are most representative of in-flight 
images affected by flight conditions. The 10 residuals were averaged. Based on this average, different 
thresholds (of 1, 1.5 and 2 standard deviations) for outlier removal were trialled. The 1.5 standard 
deviation was seen as the most suitable as it retained most centre image values while removing most 
of the vignetting effect at the edges of the images (appendix D). A threshold of 1 or 2 standard 
deviations removed large portions of the central image values or nearly no values, respectively. 
Subsequently, a rectangular mask was made based on the 1.5 standard deviation threshold, which was 
applied to thermal images before the orthomosaic generation. 

2.1.3 Generating orthomosaics 

The thermal imagery was processed into orthomosaics with Agisoft Metashape 1.8.4. Five of the 
processing parameters in Metashape were identified as influential on thermal orthomosaic 
temperatures (Table 1). Two separate Metashape projects were created. In one project thermal 
imagery was aligned without aid by multispectral imagery, and one where thermal imagery was co-
aligned with multispectral imagery. This ensured that the influence of the parameter’s settings was 
kept separate. The workflow that was used consists of the alignment of imagery, geometric correction 
of the alignment based on ground control points, dense point cloud (DPC) generation, digital elevation 
model (DEM) generation, colour calibration and orthomosaicking. 

Table 1 Tested parameters 

 

The parameter selection was based on the presumed influence of parameters on orthomosaic 
temperatures. The selected parameters are the co-alignment of thermal imagery with multispectral 
imagery, DPC quality, DPC depth filtering, colour calibration and the blending mode.  

The co-alignment of thermal imagery is known to improve the geometric accuracy, gaps, and artefacts 
in thermal orthomosaics (Kapil et al., 2023; Maes et al., 2017). These inaccuracies may influence the 
allocation of temperatures in orthomosaics. The DPC quality and DPC depth filtering settings influence 
the heights in the DPC, and the DEM (Benjamin & Dennis O’brien, 2017; Conte et al., 2018; Ribeiro-
Gomes et al., 2017; Tinkham & Swayze, 2021). Higher DPC quality settings lead to better dense point 
cloud geometry (Benjamin & Dennis O’brien, 2017; Conte et al., 2018; Ribeiro-Gomes et al., 2017). 
Each step down in quality reduces the resolution of the original imagery, whereas the ultra-high setting 
retains the original image resolution (Tinkham & Swayze, 2021). Depth filtering removes noise, thus 
influences the height differences in the DPCs (Conte et al., 2018; Ribeiro-Gomes et al., 2017). According 
to Tinkham & Swayze (2021), depth filtering removes outlier points from the DPC through a connected 
component filter with differing thresholds per depth filtering setting. The DEM is based on the DPC, 
thus the DPC quality and depth filtering settings could influence the orthomosaic temperatures.  

Before orthomosaicking, colour calibration can be applied to the imagery. This calibration evens out 
the brightness across all images in the dataset, and thus directly affects temperature values (Agisoft, 
2023). The blending mode determines how pixel values of overlapping images are mixed, and thus 
directly influences the orthomosaic temperatures. This influence was confirmed in prior research by 
Acorsi et al. (2020) and Malbéteau et al. (2021). The disabled blending mode does not mix pixel values, 

Parameters Setting or value(s) that have been tested 

Co-alignment thermal imagery with multispectral imagery Thermal imagery or thermal + Multispectral imagery 

Dense point cloud quality setting Ultra-high, high, medium, low, lowest 

Dense point cloud depth filtering Disabled, mild, moderate, aggressive 

Colour calibration No colour calibration, tie point-based colour calibration, DEM based 
colour calibration 

Orthomosaicking blending mode Mosaic, average, disabled 
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yet only retains the pixel values closest to nadir. The average blending mode performs a weighted 
average. In contrast, the mosaic blending mode divides the data into multiple domains and mixes pixel 
values most at the seamlines (Agisoft, 2023). 

The parameters that were not selected are important in the orthomosaicking process. However, most 
of these settings do not influence the orthomosaic temperatures. For the alignment process, 
parameters such as the alignment quality, key point limit, and tie-point limit were set to fixed values 
(appendix E). The alignment quality was set to the highest quality to have the best chance of a proper 
alignment without co-aligning thermal imagery (Agisoft, 2023). The key-point limit and tie-point limit 
were set to the default values (Acorsi et al., 2020; Maes et al., 2017; Śledź & Ewertowski, 2022). The 
remaining parameters determine what data is used in processing steps, the projection, resolution, 
interpolation, and hole filling. All these settings were set to the default settings (appendix E). 

2.1.4 Empirical line correction 

The generated orthomosaics were radiometrically calibrated with the empirical line method. The 
ground reference measurements of the reference panels and water targets were used, as this shows 
great correlation (Graph 1). The R² across all orthomosaics ranged between 0.94 and 0.96. For each 
orthomosaic, the temperature at the centre portion of the panels with a diameter of 8 centimetres 
was extracted. This diameter was used to match the field of view (FOV) of the Raytek handheld device 
at a height of 1 meter above the ground. Given the emissivity value of 0.95 used by the handheld 
device, the handheld measurements were transformed to match the emissivity value of 0.98 used by 
the FLIR Tau 2. Based on these transformed values and the extracted temperatures, the orthomosaics 
were corrected. 

 

Graph 1 Example of ground reference measurements (y-axis) plotted against values extracted from an 
orthomosaic (x-axis). The orthomosaic used was generated using the high DPC quality setting, the 
aggressive DPC depth filtering setting, DEM based colour calibration and the average blending mode. 

2.2 Data analysis 

2.2.1 Accuracy assessment 

After the empirical line correction was applied, the accuracy of the orthomosaic temperatures was 
assessed based on ground reference measurements of the 16 southmost grass plots. The ground 
reference measurements from the sixteen southmost 2 x 2 meter plots were first transformed to 
match a 0.98 emissivity value. In each orthomosaic, sixteen average temperature values were 
extracted from the middle of the sixteen grass plots (appendix C). The temperatures were extracted 
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from a circular shape with a diameter of 8 centimetre, matching the FOV of the Raytek handheld device 
if used at a height of 1 meter. The values extracted from all orthomosaics were compared to the ground 
reference measurements to calculate the root mean squared error (RMSE), mean absolute error (MEA) 
and the R². 

2.2.2 Drift assessment 

Both before and after radiometric correction, an eastward temperature increase was observed in the 
orthomosaics. Given the west – east flight direction and a decrease in FPA temperature of 7 °C 
throughout the flight, it was suspected that the temperature increase was caused by thermal drift. For 
this reason, three drift correction methods were attempted. The first method by Mesas-Carrascosa et 
al. (2018) uses tie-points to extract temperature values of all images that overlap with each individual 
tie-point. The second method discussed by Wang et al. (2023) uses the overlap between sequential 
images to calculate the accumulative drift. The last method by Malbéteau et al. (2021) first corrects 
for temperature differences in each flightline and uses the corrected flightlines to correct each 
sequential flightline. For each correction the same data was used, consisting of the orthophotos 
generated for the orthomosaic where the ultra-high DPC quality, mild DPC depth filtering, and the 
disabled blending mode settings were used. The raw thermal images were not used, as they do not 
contain a projection. They all appear in the same geolocation if plotted, thus they could not be used to 
calculate differences in overlapping areas.  

The tie-point based drift correction method assumes that temperature values at the same tie-point is 
different across images (Figure 3). The T temperature is measured at a moment in t time. The T at t0  is 
the first temperature measured of a tie-point. This temperature was subtracted from each T at later 
instances of t, to calculate how much T changes over time. This calculation occurred within the same 
(t1, t2, t3) and adjacent (tm, tm + 1) flightlines. The temperature difference was then averaged per 
timestamp. A trendline was plotted through the averaged differences in T over t. The slope and 
intercept values of this trendline were used to correct pixel values at intervals of t (Mesas-Carrascosa 
et al., 2018). For this process the tie-points acquired from the co-alignment of multispectral and 
thermal data were used, due to issues with the thermal only DPC’s. 
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Figure 3 Adaptation of the overview of the drift correction method as proposed by Mesas-Carrascosa 
et al. (2018). The black pixels represent the same location that is present in several images, at different 
time intervals (T is temperature, t is time, t = m stands for an unknown time value in the adjacent 
flightline)  

The drift correction method by Z. Wang et al. (2023) utilizes the overlap of subsequent image pairs to 
correct thermal drift. Temperature differences within overlapping areas should theoretically be non-
existent. Assuming the theoretical mean difference of zero, a mean difference higher or lower than 
zero was assumed to be drift. The difference in overlapping pixels was calculated for image pairs. This 
difference was subtracted from the second image in each pair. Each corrected image was used to 
correct the next image, thus introducing an accumulative correction with reference to the first image. 
The formula for this correction is: 

 

 

𝑇𝑖+1
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = {

𝑇𝑖+1 − (∑ 𝐶𝑇,𝑗)

𝑖+1

𝑗=2

−  𝐶𝑇,1, 𝑖 ≥ 1

𝑇𝑖+1 − 𝐶𝑇,1, 𝑖 = 0

 

( 1 ) 
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Where 𝑇𝑖+1
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the temperature after removing the calculated thermal drift of the i + 1th image, 

𝑇𝑖+1 is the temperature of the i + 1th image, 𝐶𝑇,𝑗 is the temporal temperature drift of the jth image 

based on the theoretical mean difference of 0, and 𝐶𝑇,1 denotes the temperature drift at the first 
image. While the author utilized overlapping tie-points for this correction, overlapping pixels were 
used in this project. This approach was preferred over the tie-point approach, given the high 
computational load of the tie-point based drift correction. Consequently, the resultant temperature 
differences may differ from a tie-point based approach.  

The last correction method applied was the swath-based approach to correct for temperature 
variations by Malbéteau et al. (2021). This mosaicking method was proposed as an alternative to the 
blending modes in Agisoft Metashape for thermal imagery, with consideration for temperature 
changes throughout the flight. Temperature variations in each individual flightline were corrected by 
averaging overlapping pixel values of adjacent images. As most images were taken within 3 seconds 
from each other, the temperature change between subsequent images was expected to be minimal. 
All images within a flightline were merged into a single swath. The mean difference between the first 
two adjacent flightlines was calculated, and used to correct images of the second flightline. The second 
(corrected) flightline was used to correct the images of the third flightline, and so on. This approach 
ensures that the correction applied to the last flightline is still affected by the influence of the first one. 

The impact of each drift correction method was assessed by calculating the root mean squared error 
(RMSE), mean absolute error (MAE), and R² compared to ground reference measurements. The 
resultant metrics were compared to the metrics of the orthomosaic of which the used orthophotos 
originated from. Additionally, the original orthomosaic that was generated in Metashape was 
subtracted from each of the corrected orthomosaics. The outcomes consisted of influence maps, that 
depict on what location of the research area the corrections had the most impact. 

2.2.3 Influence assessment 

Following the investigations into the thermal drift, a thorough assessment of the impact of the SfM 
parameter selection on resultant orthomosaic temperatures was performed. Due to uncertainties 
revealed during the accuracy assessment and the thermal drift correction attempts, this part of the 
analysis focused on relative temperature changes. For this purpose the local one-at-a-time sensitivity 
analysis was performed (equation ( 2 )). This type of sensitivity analysis requires a baseline of settings 
to test parameter influences with. In the equation ∆𝑖

+𝑦  depicts the change caused by a parameter 

setting, 𝑥𝑖 + ∆𝑥𝑖
+, 𝑥~𝑖

0  depicts that the setting for parameter 𝑥𝑖 is changed whilst keeping the other 

parameters, 𝑥~𝑖
0 , the same. The baseline case is depicted as 𝑥0 (Borgonovo & Plischke, 2016). The 

calculations were performed on the orthomosaics that were masked to fit the 36 2 x 2 meter grass 
plots.  

∆𝑖
+𝑦 = 𝑔(𝑥𝑖 +  ∆𝑥𝑖

+, 𝑥~𝑖
0 ) − 𝑔(𝑥0) 

( 2 ) 

To compare the outcomes of the sensitivity analyses, the resultant influence values were plotted in 
violin plots and boxplots. The distribution of the influence values was assessed by comparing mean 
values, interquartile ranges, standard deviations, the extent of boxplot whisker bounds, and the 
percentage of values within the interquartile range and boxplot whiskers. 

2.2.4 Parameter influence on temperatures 

Most of the parameters contain a setting that performs no calculations, which makes these settings a 
suitable baseline setting. For the DPC quality parameter this setting is the ultra-high quality. The ultra-
high quality setting uses the native image resolution for the creation of the DPC. Each step down in 
quality down-samples the resolution, thus changing the input data (Agisoft, 2023). For the DPC depth 
filtering parameter, the setting that does not perform calculations is the disabled setting. The impact 
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of colour calibration was omitted by simply not performing colour calibration. No baseline setting was 
set for the blending mode. While it can be set to disabled, it still alters the input imagery (Figure 7). 
Consequently, three separate baselines were created for each of the other processing parameters, 
considering the three blending mode settings.  

By disabling all settings, the resulting influence metric represents purely the influence of one setting 
under each of the blending modes. To assess the impact of the DPC quality parameter the baseline was 
subtracted from orthomosaics generated with the high, medium, low and lowest quality settings with 
all other parameter settings set to disabled. The same calculation was performed for the DPC depth 
filtering and colour calibration settings using their respective parameters. 

The influence of the blending modes was determined by comparing the temperature distributions in 
orthomosaics generated with each of the blending modes. The other parameter settings were set to 
the ultra-high DPC quality setting, the disabled DPC depth filtering setting, and no colour calibration 
was applied. 

2.2.5 Multi-parameter influence 

Following the assessment of individual parameters, the combined influence of parameters was 
assessed. The multi-parameter influences were calculated between the DPC quality and depth filtering 
settings, the colour calibration and DPC quality settings, and the colour calibration and DPC depth 
filtering settings. For this analysis only parameter settings with a substantial effect on orthomosaic 
temperatures were considered.  

The combined influence of the DPC quality and depth filtering settings was determined through 
calculating the quality influence at each of the four depth filtering settings. The baseline for this 
calculation consisted of the ultra-high quality setting and no colour calibration. The baseline 
orthomosaics were subtracted from orthomosaics generated at the high, medium low and lowest 
quality settings. These calculations were performed for each of the DPC depth filtering settings 
(disabled, mild, moderate, and aggressive). The baseline values changed to match the DPC depth 
filtering setting that was applied. The outcome consisted of the combined influence of the DPC quality 
and depth filtering settings on orthomosaic temperatures. The resultant values were plotted in violin 
plots. 

The combined influence of the DPC quality settings with colour calibration, and the DPC depth filtering 
settings with colour calibration, were calculated in a similar fashion. For both calculations the baseline 
consisted of the ultra-high quality setting and the disabled depth filtering setting. The influence of the 
quality settings and depth filtering settings was separately calculated through a one-at-a-time 
sensitivity analysis with the aforementioned baseline. These calculations were performed with and 
without colour calibration. The baseline changed depending on whether colour calibration was 
performed (No, DEM). The outcome of the calculations consisted of the combined influence of the DPC 
quality settings (high, medium, low, and lowest) with and without the colour calibration settings, and 
the depth filtering settings (mild, moderate, and aggressive) with and without colour calibration. The 
resultant values were plotted in violin plots. 

3 Results 

3.1 Quality assessment 

Out of the 360 projected orthomosaics, only 180 were generated with the parameters discussed in 
Table 1. Despite successful image alignment, Metashape was unable to generate full DPCs based on 
thermal imagery that was not co-aligned with multispectral imagery. Large holes formed at the location 
of the grass field (Figure 4). A total of 9 orthomosaics were created from a tie-point based DEM. 
Consequently, these orthomosaics were not influenced by the DPC quality and depth filtering settings. 
This impeded any direct comparison between co-aligned and thermal-only based orthomosaics. For 
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this reason, no sensitivity analysis was performed with regards to the impact of co-alignment on 
orthomosaic temperatures. The 9 thermal-only based orthomosaics were omitted from further 
analysis. 

  

Figure 4 Thermal only sparse point cloud (left), thermal only dense point cloud based on the sparse 
point cloud (right). 

The comparison of the remaining 180 orthomosaics to ground reference values resulted in  
RMSEs between 2.4 °C to 3.3 °C, MAEs of 2.1 °C to 2.9 °C, and a R² between 1.9 x 10-2 to 6.9 x 10-2 after 
empirical line correction. The highest RMSE and MAE values were produced by orthomosaics that were 
not colour calibrated (appendix F). Of these orthomosaics, those generated with the disabled blending 
mode produced the highest error, followed by the mosaic and average blending modes. Colour 
calibrated orthomosaics produced the smallest errors, with limited difference in errors between the 
blending modes. The high errors and low R² can potentially be attributed to the large variation in 
ground reference values and the eastward temperature increase visible in orthomosaics. 
 
The maximum difference in the ground reference measurements is 3.6 °C, and no clear increasing or 
decreasing pattern is visible in the temperatures (appendix G). Most grass temperatures in the 
orthomosaics had a higher temperature than the ground reference measurements. The difference 
between the orthomosaic temperatures and ground reference measurements increased towards the 
eastern side of the grass field (appendix H). This may indicate the influence of thermal drift on the 
orthomosaics, especially given the decrease in focal plane array (FPA) temperature during the flight 
(Figure 5). The FPA temperature decreased rapidly at the beginning of the flight before stabilizing. The 
FPA temperature reduced by 5.5 °C in the first 200 seconds, and by a total of 7 °C throughout the flight. 
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Figure 5 Orthomosaic processed with the ultra-high DPC quality setting, disabled DPC depth filtering, 
no colour calibration and disabled blending mode (left). FPA temperature throughout the flight (right), 
where the first vertical dashed line depicts the start of the flight, and the second dashed line depicts 
the end of the flight. 

3.2 Drift assessment 

To assess whether the decrease in FPA temperature had an effect on the temperature in the 
orthomosaics, three correction methods were applied. These corrections were applied to the 
orthophotos of an orthomosaic created with the ultra-high DPC quality setting, the mild DPC depth 
filtering setting, no colour calibration and the disabled blending mode (henceforth referred to as the 
original orthomosaic). The impact of each method was assessed through a visual assessment and by 
comparing the accuracy of the corrected orthomosaics with the original orthomosaic. The original 
orthomosaic had a RMSE, MAE, and R² of 3.29 °C, 2.93 °C and 2.6 x 10-2 compared to ground reference 
measurements. 

The tie-point based correction method had the least influence on orthomosaic temperatures. The sub-
result of this method consists of the calculated thermal drift in °C/s as a function of the flight time in 
seconds (appendix I). The calculated drift was small and decreased temperatures, with an average 
calculated drift of -9 x 10-3 °C. Applying this linear drift correction to the orthophotos resulted in an 
orthomosaic with sporadic temperature increases of a few thousandths of a degree Celsius (Figure 6). 
Additionally, the accuracy metrics worsened compared to the original orthomosaic, given its RMSE, 
MAE, and R² of 3.29 °, 2.94 °C, and 2.6 x 10-2. 

The swath-based correction was able to remove most of the presumed anomalies. Many warmer spots 
in the eastern part of the orthomosaic were alleviated, and the temperatures became overall more 
uniform (Figure 6). The correction patterns are similar between the colour calibrations and the swath-
based correction. However, it had a greater influence on orthomosaic temperatures than the colour 
calibrations in Metashape. The temperature in the corrected orthomosaic is on average 1.38 °C lower 
than in the original orthomosaic. It is visually more comparable to the DEM and tie-point based colour 
calibrated versions of the original orthomosaic, although its temperatures are still 0.51 °C and 0.45 °C 
lower respectively. The swath-based correction had the most positive influence on the accuracy 
metrics given its RMSE, MAE, and R² of 2.05 °C, 1.73 °C, and 0.16. 

The accumulative correction resulted in the least viable orthomosaic. The bias between images 
accumulated rapidly over the flight, which led to unrealistic temperature corrections (Figure 6). The 
flightline patterns are clearly visible, and with each flightline the temperature increased in the flight 
direction. The accumulated sum for the drift correction amounted to 21.8 °C. This orthomosaic was 
not empirically corrected, as this stretched the minimum and maximum values to 10 °C to 80 °C. The 
resultant RMSE, MAE, and R² were 17.7 °C, 17.2 °C, and 3.6 x 10-2. 
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Figure 6 Resultant orthomosaics after the applying the colour calibration settings in Agisoft Metashape, and orthomosaics after the three corrections were 
applied (top row). The influence on orthomosaic temperatures was calculated by subtracting the original orthomosaic from each corrected orthomosaic  
(bottom row). 
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3.3 Parameter influence on temperatures 

Violin plots were made for the 180 orthomosaics that were generated using all parameter settings. 
Wherever possible, boxplots were added in the violin plots to provide more understanding of the value 
distributions. The impact values themselves are not normally distributed, due to long tails at the lower 
and higher ends of the distributions. Wherever the impact of settings was similar, the values of all 36 
plots were aggregated into one violin plot. This part of the report discusses the impact of the blending 
modes, DPC quality, DPC depth filtering, and colour calibration on orthomosaic temperatures.  
 
3.3.1 Blending mode 

The choice of blending mode had a large influence on orthomosaic temperatures. The blending patters 
became visible when a non-colour calibrated orthomosaic was subtracted from a colour calibrated 
orthomosaic (Figure 7). The pattern of the average blending mode does not show any locations where 
colour calibration reduced temperatures by more than -1.5 °C, and shows clear seamlines between 
overlapping images. In contrast, the mosaic blending mode retained more of the temperature 
reductions. Furthermore, it shows an outward circular pattern at nadir locations of images, compared 
to the rectangular shapes visible with the average and disabled blending modes. The disabled blending 
mode does not mix pixel values, yet only retains the middle portion of the images to create the 
orthomosaic. As it does not mix pixel values, the impact of the colour calibration was preserved most 
at this blending mode. 
 

 
 
 
Figure 7 Influence of DEM based colour calibration (ultra-high DPC quality, mild DPC depth filtering 
setting, DEM based colour calibration). The non-colour calibrated version of the same orthomosaic was 
subtracted from the colour calibrated version to calculate these maps. A: colour calibration impact with 
the average blending mode. B: colour calibration impact with the mosaic blending mode. C: colour 
calibration impact with the disabled blending mode. 

 
The disabled blending mode produced the highest temperatures, and the average and mosaic blending 
modes produced the lowest temperatures. Blending modes that produced the highest and lowest 
orthomosaic temperatures differed 0.61 °C on average across the grass plots, with a maximum 
difference of 1.94 °C. Depending on the temperature differences between adjacent images, the 
influence of the blending modes on orthomosaic temperatures differed. This observation is 
underpinned by the temperature distributions of orthomosaics made with the three blending modes 
across the 36 grass plots (Figure 8). The shape of distributions differed between grass plots, caused by 
the differing ways in which the blending modes handle pixel blending. In many grass plots, like 19, 20, 

Temperatures in °C 

A B C 
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and 21, the blending modes show similar distributions. In these cases, the blending modes produced 
similar temperatures, and were similarly colour calibrated (Figure 7). However, the blending modes 
performed differently in some plots. The most extreme example is grass plot 27, where at the disabled 
blending mode the colour calibration algorithm subtracted roughly -2.5 °C from the measured 
temperature. The application of the mosaic blending mode alleviated some of the temperature 
reduction, whereas the average blending mode caused a temperature increase in grass plot 27.  
 

 
Figure 8 Density plot of temperature distributions in the 36 large grass plots at different blending mode 
settings. Orthomosaics with the ultra-high DPC quality setting, disabled DPC depth filtering setting and 
no colour calibration were used. 

3.3.2 Dense point cloud quality 

The influence of the DPC quality settings varied between blending modes, as is visible in the 
distributions of the influence values (Figure 9, Table 2). The influence of the quality settings was 
greatest when combined with the mosaic blending mode, and limited with the average and disabled 
blending modes. The influence of the quality settings was similar across all 36 grass plots, with the 
exception of plots 42 and 45 if the quality settings were combined with either the average or disabled 
blending mode (appendix J). 
 
The influence of the quality settings was similar with the average and disabled blending modes. The 
average influence on orthomosaic temperatures was near zero degrees Celsius with both modes, and 
the distribution of influence values was similar across quality settings. However, the distribution of 
influence values was slightly larger with the disabled blending mode. The interquartile ranges (IQRs) 
and the range between the lower and upper boxplot whisker bounds were greater with the disabled 
blending mode compared to the average blending mode. Furthermore, the disabled blending mode 
produced a higher number of outliers. A total of 89% of all influence values remained within the 
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whisker bounds if the disabled blending mode was used. This percentage was 94% with the average 
blending mode. 
 
The influence of the DPC quality settings increased when the mosaic blending mode was utilized. It 
caused most quality settings to increase orthomosaic temperature values on average, with the 
exception of the medium quality setting (Figure 9, Table 2). Both the IQRs and the lower and upper 
boxplot whisker bounds were greater with the mosaic blending mode than with the average or 
disabled blending modes. A total of 95% to 96% of all influence values remained between the whisker 
bounds. 
 

 
Figure 9 Violin plots of the quality influence on orthomosaic temperature values of all 36 plots 
combined. The whiskers of the boxplots depict the 1.5 x IQR range. The white dots show the average 
values. This plot does not show the range of the outliers. 

Table 2 Distribution metrics of the temperature influence of the dense point cloud quality settings with 
the three blending modes. The mean, interquartile range (IQR), and the upper and lower boxplot 
whisker bounds (1.5 x IQR) are shown. All IQRs represent 50% of all influence values. 

DPC quality setting, metric Average blending mode Disabled blending mode Mosaic blending mode 

High quality, mean in °C 2.7 x 10-4 6.9 x 10-4 5.6 x 10-2 

Medium quality, mean in °C -9 x 10-4 2 x 10-3 -7.9 x 10-3 

Low quality, mean in °C 5.2 x 10-4 6.8 x 10-5 5 x 10-2 

Lowest quality, mean in °C 1.5 x 10-3 1.3 x 10-3 6 x 10-2 

High quality, IQR in °C -1.1 x 10-2 – 1.2 x 10-2 -1.3 x 10-2 – 1.5 x 10-2 2.7 x 10-2 – 8.5 x 10-2  

Medium quality, IQR in °C -1.3 x 10-2 – 1.1 x 10-2 -1.2 x 10-2 – 1.6 x 10-2  -4.4 x 10-2 – 2.8 x 10-2 

Low quality, IQR in °C -1.2 x 10-2 – 1.4 x 10-2 -1.5 x 10-2 – 1.5 x 10-2  2.2 x 10-2 – 7.9 x 10-2 

Lowest quality, IQR in °C -1.3 x 10-2 – 1.6 x 10-2 -1.6 x 10-2 – 1.9 x 10-2  2.9 x 10-2 – 9.1 x 10-2 

High quality, bounds in °C -4.7 x 10-2 – 4.8 x 10-2 -5.4 x 10-2 – 5.6 x 10-2 -6 x 10-2 – 0.17 

Medium quality, bounds in °C -4.9 x 10-2 – 4.7 x 10-2 -5.5 x 10-2 – 5.9 x 10-2 -0.15 – 0.14 

Low quality, bounds in °C -5 x 10-2 – 5.2 x 10-2 -6.1 x 10-2 – 6.1 x 10-2 -6.2 x 10-2 – 0.16 

Lowest quality, bounds in °C -5.6 x 10-2 – 5.9 x 10-2 -6.8 x 10-2 – 7.1 x 10-2 -6.3 x 10-2 – 0.18 

 

3.3.3 Dense point cloud depth filtering 

The influence of the DPC depth filtering settings on orthomosaic temperatures was limited. The 
majority of influence values of the depth filtering setting were near zero degrees Celsius (Figure 10, 
Table 3). The influence of the depth filtering settings was greatest when combined with the mosaic 
blending mode. The influence of the depth filtering settings was similar across all 36 grass plots. Most 
variation occurred with the mosaic blending mode enabled (appendix K). 
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The influence of the DPC depth filtering settings was limited when the average and disabled blending 
modes were used. Most influence values were distributed near zero degrees Celsius with these 
blending modes (Figure 10, Table 3). Furthermore, the influence of the aggressive and moderate 
settings on orthomosaic temperatures was comparable with these blending modes. The mild setting 
produced the least influence. The temperature influence was slightly greater with the disabled 
blending mode, given the greater IQRs and greater lower and upper boxplot whisker bounds compared 
to the average blending mode. The disabled blending mode produced the greatest number of outliers, 
as 86% of all influence values were represented by the lower and upper whisker bounds at the 
aggressive and moderate settings, and 91% at the mild setting. With the average blending mode, 
percentages reached 94% with the aggressive and moderate settings, and 97% with the mild setting. 
 
The influence of the DPC depth filtering settings was greatest with the mosaic blending mode. The 
temperature influence values became more varied, and a clear difference between the distributions 
at the aggressive and moderate settings occurred (Figure 10, Table 3). The mean influence values, IQRs 
and ranges between the lower and upper whisker bounds of the depth filtering settings were highest 
with the mosaic blending mode. A total of 97% of temperature influence values remained within the 
boxplot whisker bounds at the moderate and mild settings. At the aggressive setting the percentage 
increased to 98%. 
 

 
Figure 10 Violin plots of the depth filtering influence on orthomosaic temperature values of all 36 plots 
combined. The whiskers of the boxplots depict the 1.5 x IQR range. The white dots show the average 
values. This plot does not show the range of the outliers. 

Table 3 Distribution metrics of the temperature influence of the dense point cloud depth filtering 
settings with the three blending modes. The mean, interquartile range (IQR), and the upper and lower 
boxplot whisker bounds (1.5 x IQR) are shown. All IQRs represent 50% of all influence values. 

DPC depth filtering setting, 
metric 

Average blending mode Disabled blending mode Mosaic blending mode 

Aggressive, mean in °C 2 x 10-3 9.8 x 10-3 4.7 x 10-2 

Moderate, mean in °C 8.5 x 10-4 2.9 x 10-3 1.1 x 10-2 

Mild, mean in °C 6.4 x 10-4 2.4 x 10-2 8.8 x 10-3 

Aggressive, IQR in °C -9.2 x 10-3 – 1.3 x 10-2 -1.2 x 10-2 – 1.4 x 10-2 3.5 x 10-3 – 8.9 x 10-2 

Moderate, IQR in °C -1.1 x 10-2 – 1.3 x 10-2 -1.3 x 10-2 – 1.4 x 10-2 -2 x 10-2 – 4.2 x 10-2 

Mild, IQR in °C -4.7 x 10-3 – 6.3 x 10-3 -3.8 x 10-3 – 8.8 x 10-3 -2.2 x 10-3 – 2 x 10-2 

Aggressive, bounds in °C -4.3 x 10-2 – 4.8 x 10-2 -5.1 x 10-2 – 5.3 x 10-2 -0.12 – 0.22 

Moderate, bounds in °C -4.5 x 10-2 – 4.7 x 10-2 -5.3 x 10-2 – 5.4 x 10-2 -0.11 – 0.13 

Mild, bounds in °C -2.1 x 10-2 – 2.3 x 10-2 -2.3 x 10-2 – 2.8 x 10-2 -3.5 x 10-2 – 5.3 x 10-2 
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3.3.4 Colour calibration 

The influence of colour calibration on orthomosaic temperatures fluctuated greatly between grass 
plots, yet mostly lowered orthomosaic temperatures (Figure 11, appendix L). The DEM based colour 
calibration had a higher variation in influence values than the tie-point based colour calibration. While 
the mean values, IQRs, and ranges between the lower and upper boxplot whiskers were similar 
between the colour calibration settings, the standard deviations differed (Table 4). To illustrate, the 
mean values of the colour calibration impacts were plotted in aggregated boxplots (Figure 11). The 
jittered dots represent the mean influence values of the 36 grass plots. The blending modes had a large 
influence on the distribution of the colour calibration influence on orthomosaic temperatures.  
The influence of the colour calibration settings on orthomosaic temperatures differed between 
blending modes (Figure 11). The colour calibrations had the least influence when combined with the 
average blending mode. This is reflected in the mean value and the standard deviation. Colour 
calibration had the most influence on orthomosaic temperatures with the disabled blending mode 
given the mean value, yet also had the most spread in both the IQR and the range between the lower 
and upper bounds of the boxplot whiskers. The influence of colour calibration combined with the 
mosaic blending mode was between the average and disabled blending modes. 
 

 
Figure 11 Aggregated boxplots of mean colour calibration influences on orthomosaic temperatures. 
The black dots represent all mean influence values of colour calibration at each of the 36 grass plots. 
From left to right, the colour calibration influence at the average, disabled, and mosaic blending modes 
are represented. The DEM based colour calibration is represented in white, the tie-point based colour 
calibration in red. 

Table 4 Distribution metrics of the colour calibration settings with each of the blending modes, 
averaged from all 36 grass plots. The mean of all means depicted in the boxplots above, the standard 
deviation between the mean values, the average range between the first and third quartile, and the 
range between the lower and upper boxplot whisker bounds are shown. 

Colour calibration setting, metric Average blending mode Disabled blending mode Mosaic blending mode 

DEM, mean in °C -0.31 -0.85 -0.46 

Tie-point, mean in °C -0.33 -0.91 -0.51 

DEM, stdev of means in °C 0.39 0.55 0.46 

Tie-point, stdev of means in °C 0.28 0.46 0.36 

DEM, average IQR in °C 0.28 0.59 0.28 

Tie-point, average IQR in °C 0.28 0.57 0.28 

DEM, range of bounds in °C 1.11 2.36 1.14 

Moderate, range of bounds in °C 1.12 2.30 1.13 
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3.4 Multi-parameter influence 

3.4.1 DPC quality & DPC quality 

The combined influence of DPC quality and DPC depth filtering settings was only assessed with the 
mosaic blending mode enabled. The assessment was not performed with the disabled and average 
blending modes, given the low influence of the quality and depth filtering settings when combined 
with either of these blending modes (Figure 9, Figure 10). 

The setting combinations showed similar patterns across quality settings, with the exception of the 
medium quality (Figure 12 b). In contrast to the other quality settings, combinations with the medium 
quality setting generally lowered orthomosaic temperatures. With the other quality settings, 
combinations with the disabled and mild depth filtering settings had the highest temperature 
influence. This is reflected by both the mean values, the IQRs and the boxplot whisker bounds (Table 
5). Combining quality settings with the moderate and aggressive depth filtering settings produced the 
least influence (Figure 12 a, c, d). The extent of the influence differed between setting combinations. 
To illustrate, the combinations of the disabled, mild, and moderate settings with the low quality setting 
produced similar average temperatures (Figure 12 c, Table 5). In contrast, the combination of the mild 
and moderate settings with the lowest quality setting had a smaller influence than with the disabled 
setting (Figure 12 d). 

 

Figure 12 Violin plots of the combined influence of DPC quality and depth filtering settings on 
orthomosaic temperatures, aggregated from all 36 grass plots. Each plot represents a different quality 
setting (a through d) combined with all depth filtering settings on the x-axis. The whiskers of the 
boxplots depict the 1.5 x IQR range. The white dots show the average values. This plot does not show 
the range of the outliers. 

Table 5 Distribution metrics of the combined influence of DPC quality and depth filtering settings with 
the mosaic blending mode, based on the aggregated values of all 36 grass plots. The mean, 

c a b d 
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interquartile range (IQR) and lower and upper boxplot whisker bounds are given for each combination 
between the DPC quality and depth filtering settings. All IQRs represent 50% of all influence values. 

DPC depth filtering 
setting, metric 

High quality Medium quality Low quality Lowest quality 

Aggressive, mean in °C -2.9 x 10-2 -3.3 x 10-2 -1.4 x 10-3 -3.8 x 10-3 

Moderate, mean in °C 1.2 x 10-2 8.2 x 10-4 4.1 x 10-2 2.7 x 10-2 

Mild, mean in °C 5.9 x 10-2 -1.7 x 10-2 4.7 x 10-2 3.1 x 10-2 

Disabled, mean in °C 5.6 x 10-2 -7.9 x 10-3 5.1 x 10-2 6 x 10-2 

Aggressive, IQR in °C -6 x 10-2 – 1.5 x 10-3 -5.4 x 10-2 – -1.2 x 10-2 -3.1 x 10-2 – 2.9 x 10-2 -3.1 x 10-2 – 1.2 x 10-2 

Moderate, IQR in °C -1.6 x 10-2 – 4.1 x 10-2  -2.3 x 10-2 – 2.4 x 10-2 1.6 x 10-2 – 6.5 x 10-2 5.9 x 10-4 – 5.4 x 10-2 

Mild, IQR in °C 3.2 x 10-2 – 8.6 x 10-2 -5.1 x 10-2 – 1.7 x 10-2 2 x 10-2 – 7.4 x 10-2 7.2 x 10-3 – 5.4 x 10-2 

Disabled, IQR in °C 2.7 x 10-2 – 8.5 x 10-2 -4.4 x 10-2 – 2.8 x 10-2  2.2 x 10-2 – 7.9 x 10-2 2.9 x 10-2 – 9.1 x 10-2 

Aggressive, bounds in °C -0.15 – 9.4 x 10-2 -0.12 – 5 x 10-2 -0.12 – 0.12 -0.11 – 0.10 

Moderate, bounds in °C -0.10 – 0.13 -9.4 x 10-2 – 9.6 x 10-2 -5.6 x 10-2 – 0.14 -7.9 x 10-2 – 0.13 

Mild, bounds in °C -4.7 x 10-2 – 0.17 -0.15 – 0.12 -6 x 10-2 – 0.15 -6.3 x 10-2 – 0.12 

Disabled, bounds in °C -6 x 10-2 – 0.17 -0.15 – 0.14 -6.2 x 10-2 – 0.16 -6.3 x 10-2 – 0.18 

 
3.4.2 Colour calibration & DPC quality 

The combined influence of DPC quality settings with colour calibration was only assessed with the DEM 
based colour calibration. The tie-point based colour calibration was not used, due to the limited impact 
this setting had on the temperature influence of the quality settings (appendix N).  

Combining the DPC quality settings with the DEM based colour calibration resulted in an increased 
influence on orthomosaic temperatures compared to DPC quality settings without colour calibration 
(Figure 13). The influence was increased most at the high and low quality settings. The average 
influence values were increased the least when the disabled or average blending mode were used, 
although the IQRs and the range between lower and upper boxplot whisker bounds increased (Table 
6). The average combined influence of quality settings with colour calibration increased most with the 
mosaic blending mode enabled, with the exception of the medium quality setting (Figure 13 c, f). 
However, the IQR and the range between the lower and upper whisker bounds decreased compared 
to the quality settings without colour calibration. Adding colour calibration increased the percentage 
of influence values that remained within the whisker bounds. Without colour calibration, a minimum 
of 94%, 86%, and 96% (average, disabled, and mosaic blending modes) of influence values  remained 
within the whisker bounds across all the quality settings. Adding colour calibration increased the 
minimum percentages to 97%, 92%, and 94%.  

 

Figure 13 Violin plots of the combined influence of the DEM based colour calibration with DPC quality 
settings on orthomosaic temperature values of all 36 plots combined. Plots a through c represent the 
influence of quality settings without colour calibration with the average, disabled, and mosaic blending 
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modes respectively. Plots d through f represent the influence of quality settings combined with the DEM 
based colour calibration with the average, disabled, and mosaic blending modes respectively. The 
whiskers of the boxplots depict the 1.5 x IQR range. The white dots show the average values. This plot 
does not show the range of the outliers. 

Table 6 Distribution metrics of the combined influence of DPC quality settings and DEM based colour 
calibration, based on the aggregated values of all 36 grass plots. The mean and lower and upper 
boxplot whisker bounds are given for each combination between the DPC quality and colour calibration 
settings. 

DPC quality setting, colour 
calibration,  metric 

Average blending mode Disabled blending mode Mosaic blending mode 

High quality, No, mean in °C 2.7 x 10-4 6.9 x 10-4 5.6 x 10-2 

Medium quality, No, mean in °C -9 x 10-4 2 x 10-3 -7.9 x 10-3 

Low quality, No, mean in °C 5.2 x 10-4 6.8 x 10-5 5.1 x 10-2 

Lowest quality, No, mean in °C 1.5 x 10-3 1.3 x 10-3 6 x 10-2 

High quality, DEM, mean in °C 2.3 x 10-2 1.4 x 10-2 7.4 x 10-2 

Medium quality, DEM, mean in °C 1 x 10-2 1.9 x 10-3 6.3 x 10-3 

Low quality, DEM, mean in °C 2.3 x 10-2 1.8 x 10-2 8.4 x 10-2 

Lowest quality, DEM, mean in °C 6.3 x 10-3 3.5 x 10-3 6.8 x 10-2 

High quality, No, bounds in °C -4.7 x 10-2 – 4.8 x 10-2 -5.4 x 10-2 – 5.6 x 10-2  -6 x 10-2 – 0.17 

Medium quality, No, bounds in °C -4.9 x 10-2 – 4.7 x 10-2  -5.5 x 10-2 – 5.9 x 10-2  -0.15 – 0.14 

Low quality, No, bounds in °C -5 x 10-2 – 5.2 x 10-2  -6.1 x 10-2 – 6.1 x 10-2  -6.2 x 10-2 – 0.16 

Lowest quality, No, bounds in °C 5.6 x 10-2 – 5.9 x 10-2  -6.8 x 10-2 – 7.1 x 10-2  -6.3 x 10-2 – 0.18 

High quality, DEM, bounds in °C -4 x 10-2 – 8.8 x 10-2 -6.8 x 10-2 – 9.5 x 10-2  -2.3 x 10-2 – 0.17 

Medium quality, DEM, bounds in °C -5.6 x 10-2 – 7.7 x 10-2 -8.4 x 10-2 – 8.8 x 10-2  -0.10 – 0.11 

Low quality, DEM, bounds in °C -5.1 x 10-2 – 9.7 x 10-2 -7.6 x 10-2 – 0.11 -1.8 x 10-2 – 0.19 

Lowest quality, DEM, bounds in °C -6.3 x 10-2 – 7.7 x 10-2 -8.7 x 10-2 – 9.4 x 10-2 -3.6 x 10-2 – 0.17 

 

3.4.3 Colour calibration & DPC depth filtering 

Combining the DPC depth filtering settings with the tie-point based colour calibration had a limited 
impact on temperature influences compared to the depth filtering settings without colour calibration 
(appendix O). Thus, the tie-point based colour calibration was not used in this assessment, and only 
the influence of the DEM based colour calibration was considered. 

 
The combined influence of DPC depth filtering settings with the DEM based colour calibration on 
orthomosaic temperatures was larger than the influence of the depth filtering settings without colour 
calibration (Figure 14). Combining depth filtering settings with colour calibration increased the mean 
temperature influence with the average and mosaic blending modes (Table 7). With the disabled 
blending mode, the mean influence decreased at the aggressive and mild settings, whilst the mean 
value at the moderate setting remained similar to its non-colour calibrated counterpart (Figure 14 b, 
d). Adding colour calibration to the depth filtering settings increased the range between the lower and 
upper boxplot whiskers with the average and disabled blending modes. The variation decreased at the 
aggressive and moderate settings with the mosaic blending mode. Without colour calibration the 
whisker bounds represented at least 92%, 84%, and 95% of the influence values across all depth 
filtering settings with the average, disabled, and mosaic blending modes respectively. The percentages 
increased to 95%, 91%, and 94% when the depth filtering settings were combined with colour 
calibration. 
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Figure 14 Violin plots of the combined influence of the DEM based colour calibration with DPC depth 
filtering settings on orthomosaic temperature values of all 36 plots combined. Plots a through c 
represent the influence of depth filtering settings without colour calibration with the average, disabled, 
and mosaic blending modes respectively. Plots d through f represent the influence of depth filtering 
settings combined with the DEM based colour calibration with the average, disabled, and mosaic 
blending modes respectively. The whiskers of the boxplots depict the 1.5 x IQR range. The white dots 
show the average values. This plot does not show the range of the outliers. 

Table 7 Distribution metrics of the combined influence of DPC depth filtering and DEM based colour 
calibration  with the mosaic blending mode, based on the aggregated values of all 36 grass plots. The 
mean and lower and upper boxplot whisker bounds are given for each combination between the colour 
calibration and DPC depth filtering settings. 

DPC depth filtering setting, 
colour calibration,  metric 

Average blending mode Disabled blending mode Mosaic blending mode 

Aggressive, No, mean in °C -8.9 x 10-3 2.1 x 10-2  5.2 x 10-2  

Moderate, No, mean in °C -1 x 10-2  2.1 x 10-2  1.7 x 10-2  

Mild, No, mean in °C -1 x 10-2  2.3 x 10-2  1.4 x 10-2  

Aggressive, DEM, mean in °C 2.1 x 10-2 8.9 x 10-3 6 x 10-2 

Moderate, DEM, mean in °C 2.5 x 10-2 2.1 x 10-2 5 x 10-2 

Mild, DEM, mean in °C 8.1 x 10-3 1.5 x 10-2 1.9 x 10-2 

Aggressive, No, bounds in °C -4.6 x 10-2 – 4.9 x 10-2  -5.3 x 10-2 – 5.8 x 10-2  -0.13 – 0.22 

Moderate, No, bounds in °C -4.8 x 10-2 – 4.8 x 10-2  -5.5 x 10-2 – 5.8 x 10-2  -0.12 – 0.14 

Mild, No, bounds in °C -2.2 x 10-2 – 2.3 x 10-2  -2.3 x 10-2 – 2.9 x 10-2  -3.6 x 10-2 – 5.5 x 10-2 

Aggressive, DEM, bounds in °C -7.2 x 10-2 – 9.8 x 10-2 -9.9 x 10-2 – 0.10 -7.2 x 10-2 – 0.17 

Moderate, DEM, bounds in °C -5.7 x 10-2 – 9.1 x 10-2  -8.4 x 10-2 – 0.11 -7.2 x 10-2 – 0.16 

Mild, DEM, bounds in °C -2.6 x 10-2 – 2.4 x 10-2  -2.5 x 10-2 – 3.7 x 10-2  -3.7 x 10-2 – 5.6 x 10-2 

 
4 Discussion 

The focus of this research was to assess the influence of five SfM processing parameters on 
orthomosaic temperatures. The data used for this assessment showed signs of thermal drift, which 
were alleviated most by a swath-based correction. The temperatures in the generated orthomosaics 
were most affected by the blending mode and colour calibration, especially by the mosaic blending 
mode and DEM based colour calibration. In this section, the results are compared to existing literature 
to explore their possible implications.  

4.1 Orthomosaic quality 

The thermal imagery had too little detail to perform a successful alignment without co-alignment. 
Metashape indicated that the alignment of all thermal images succeeded and the sparse point cloud 
covered the entire research area (Figure 4). However, the generated DPCs contained large holes. 
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Altering DPC settings did not remedy this problem, and changes to the alignment quality, tie-point 
limit, key-point limit and image selection settings did not remedy the alignment issues either. The 
orthomosaic temperatures based on thermal imagery that was aligned on its own would have been 
compared to orthomosaic temperatures of co-aligned thermal imagery. Due to the portrayed 
alignment issues, this comparison was not performed.  

Similar problems were described by Dillen et al. (2016) and Hoffmann et al. (2016), who concluded 
that alignment issues occurred due to the relatively low resolution of thermal imagery combined with 
the limited contrast in said imagery. The alignment of thermal imagery could be improved by increasing 
the identifiable features. Maes et al. (2017) discussed how the alignment of thermal imagery can be 
slightly improved by correcting the thermal images based on fluctuations in air temperature. This 
correction likely evened out temperatures between overlapping images, and thus reduced differences 
between identifiable features. Turner et al. (2014) suggested a contrast stretch on digital numbers to 
increase the number of features SfM algorithms can detect. Ribeiro-Gomes et al. (2017) and Conte et 
al. (2018) similarly applied the Wallis filter to thermal images to increase contrast between features. 
Bitelli et al. (2015) successfully aligned thermal images without any contrast enhancements. They used 
thermal imagery from the urban environment, which contained enough detail for the SfM algorithm 
to find common objects between overlapping images. However, detail is often lacking in thermal 
imagery of agricultural fields and forests. It is in these types of applications that co-alignment with 
multispectral or RBG imagery is often considered (Kapil et al., 2023; Maes et al., 2017; Stutsel et al., 
2021). 

Before generating the co-aligned orthomosaics with different parameter combinations, a mask based 
vignetting correction was applied to the thermal imagery. This mask based approach removed most of 
the vignetting effect from the imagery. This approach limited the overlap between orthophotos as a 
consequence. In literature, other vignetting corrections are suggested that alter pixel values instead of 
removing them. For example,  Aragon et al. (2020) suggest a radiometric calibration function based on 
the ambient temperature that reduces vignetting. Alternatively, W. Yuan & Hua, (2022) suggest 
creating a vignetting correction image to subtract from all in-flight images. These options retain all 
pixel values, yet require extensive testing of the thermal camera that is used. For this reason, only the 
central portion of the images were used, as suggested by Kelly et al. (2019), despite the inevitable 
impact on the orthomosaic generation. 

4.2 Drift correction 

Temperature anomalies were identified in the successfully aligned and orthomosaicked imagery. 
Temperatures fluctuated in the first few flightlines, and temperatures increased towards the eastern 
part of the research area. The discrepancy between orthomosaic and ground reference temperatures 
was smallest in the west of the orthomosaics, and largest in the east. A likely cause for these anomalies 
is the decrease in FPA temperature during the flight, which impacts the temperature measurements 
of the thermal camera (Figure 5). The FPA temperature is influenced by heat dissipated of internal 
electronic components of the camera, and by meteorological factors (Maes et al., 2017; Smigaj et al., 
2017). Thermal cameras perform a non-uniformity correction (NUC) to alleviate temperature 
fluctuations measured by the microbolometers in the FPA. The NUC is based on the temperature of 
the camera shutter, under the assumption that its temperature is representative of the internal 
camera temperature. However, the temperature of camera parts may change at different rates, and 
the FPA temperature may change more rapidly than the NUC can correct for (Kelly et al., 2019; Wan 
et al., 2021; Z. Wang et al., 2023).   

Three methods were applied to the thermal imagery in an attempt to correct for the observed 
temperature anomalies.  The tie-point based correction had a limited impact on temperatures, and did 
not correct for the observed anomalies. Despite the visible temperature increase towards the east in 
the orthomosaics, the temperature at the location of tie-points mostly declined in later thermal images 
compared to the first image. The general temperature decline found in the calculated drift may 
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correspond to the temperature decrease of the FPA. The correction was only performed with a linear 
equation, whereas Mesas-Carrascosa et al. (2018) performed the corrections using exponential, 
quadratic, bicubic, and quartic functions as well. Experimenting with these equations could have 
improved the performance of the correction. However, the impact would have been limited given the 
average drift of -9 x 10-3 °C/s. Despite the promising results achieved by Mesas-Carrascosa et al. (2018), 
this approach has not been widely used in literature. Döpper et al. (2020) used its general concept to 
determine the measurement noise of their camera, yet no additional literature was found to compare 
the drift correction performance to.  

It is possible that the tie-point based correction was carried out erroneously. As Szostak et al. (2023) 
point out, the author of this correction did not provide an elaborate explanation of the calculations 
performed. Additionally, this author discussed the need for a drone attachment that precisely records 
the image acquisition time. The timestamp in image metadata is often captured with the precision of 
±1 s, which can influence the calculated drift. The potential error would be greatest between adjacent 
images. For example, overlapping images could be acquired with a time difference of two seconds, 
with a temperature difference of 5 x 10-2 °C. Dividing the difference by two seconds results in a 
calculated drift of 2.5 x 10-2 °C, whereas the drift drops to 1.6 x 10-2 °C if the time difference was 
measured to be three seconds. The drone used in this study was not equipped with an attachment that 
precisely records image acquisition times on the 7th of Semptember 2023, which makes it a realistic 
source of error for this study.  

The use of the accumulative drift correction rapidly increased the temperature in orthophotos in the 
flight direction. In the last flightlines that cover the grass field, temperatures were raised towards 50 
°C (Figure 6). The strong temperature increase in the corrected orthomosaic indicates that of the 
adjacent images in each flightline, a higher temperature was measured in the first image than in the 
second image. The likely reason for the extreme result is that this correction is not suited for a large 
quantity of images. Z. Wang et al. (2023) discuss that with a large quantity of UAV data the uncertainty 
in the accumulative drift is inevitable. Irani Rahaghi et al. (2019) reported unsatisfactory results with a 
similar drift correction approach, where temperatures in overlapping image pairs were averaged. 
These authors used images with an overlap of 95%. Comparable to the findings of this report,  the error 
accumulated and produced unsatisfactory results.  

Irani Rahaghi et al. (2019) opted for a probability distribution based approach instead, where cross 
correlations were calculated between image pairs. The lag between the distributions was used to 
correct the second image based on the first. The corrected image was used to correct the third, and so 
forth. The authors showed that if the drift correction was not applied to the imagery, temperature drift 
caused temperature anomalies in the resultant orthomosaic. However, this probability distribution 
based approach was applied to images with a high overlap percentage. It is unknown how effective 
this drift correction is when there is less overlap between consecutive images in a dataset. Further 
research is required to determine the efficacy of the probability distribution based approach with 
lower image overlap percentages. 

The swath-based approach reduced the temperature anomalies the most, leading to lower RMSE and 
MAE values, and an improved R². These results are similar to those of Malbéteau et al. (2021), where 
the swath-based approach improved the RMSE and MAE as well. The R² did not improve, as it was 0.99 
with each of the blending modes. In contrast, the R² improved in this study compared to the blending 
modes of Metashape. Only one other study was found that used this alternative blending mode. Stutsel 
et al. (2021) applied this approach in their study regarding the detection of plant stress using thermal 
and optical imagery, however, the effectiveness of the swath-based approach was not discussed. 
Elfarkh et al. (2023) briefly discussed the swath-based approach, and mentioned that it corrects for 
wind effects that occur at the camera, and not the wind effects that influence the temperature on the 
ground. This limitation can lead to temperature inaccuracies being retained in thermal orthomosaics. 
Given the promising results achieved with the swath-based approach in this study, further developing 
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the swath-based approach to consider ground based temperature fluctuations could lead to a thermal 
orthomosaicking approach with a higher accuracy. 

4.3 Parameter influence 

Apart from potential inaccuracies in captured thermal imagery, the SfM process used to generate 
orthomosaics forms another source of error. Several authors discuss how SfM is geared towards RGB 
and multispectral data and is unsuitable for thermal data (Conte et al., 2018; Elfarkh et al., 2023; 
Malbéteau et al., 2021). The most discussed parameter with regards to its impact on thermal imagery 
is the blending mode, given its direct impact on orthomosaic temperatures. This thesis expands on the 
prior research as the influence of the DPC quality, DPC depth filtering, colour calibration and blending 
modes on orthomosaic temperatures were assessed. The colour calibration and blending mode 
influenced orthomosaic temperatures most. The influence of the DPC quality and depth filtering 
setting was limited. However, combining either parameter with the mosaic blending mode strongly 
increased the influence on orthomosaic temperatures. Pairing the DPC parameters with colour 
calibration also caused a slight increase in influence with the DEM setting selected. 

The blending mode had a large influence on orthomosaic temperatures (on average by 0.61 °C, with a 
maximum of 1.92 °C). In contrast to the results of Acorsi et al. (2020) and Malbéteau et al. (2021), the 
disabled setting produced the highest error in this study, although the R² was low with any of the 
blending modes. The performance of the average and mosaic blending modes was dissimilar across all 
studies. In the study by Acorsi et al. (2020) the R² and RMSE were 0.96 and 3.08 °C for the disabled 
blending mode, and 0.96 and 3.14 °C for the disabled and average blending modes. The disabled 
blending mode had an R² and RMSE of 0.99 and 1.63 °C in the study by Malbéteau et al. (2021). The 
mosaic blending mode performed similarly with a R² and RMSE of 0.99 and 1.63 °C, whereas the 
average blending mode produced a R² and RMSE of 0.99 and 1.66 °C. The performance difference of 
blending modes between studies is likely bound to the objects that were measured. The average 
blending mode combines temperatures taken from several geometry angles, whereas the disabled 
blending mode only retains temperatures at nadir (Perich et al., 2020). Consequently, the structures 
of the measured objects influence what temperatures are calculated in the average and mosaic 
blending modes. 

Colour calibration had a large, but varied, impact on resultant temperatures depending on the used 
approach. The DEM based colour calibration resulted in larger variations in the temperature influence 
across the grass plots compared to the tie-point based colour calibration. The difference can be 
attributed to the difference in detail between the DEM and tie-points. Tie-points are sparsely 
distributed across the research area, whereas the used DEM has a high resolution and covers the entire 
research area. Consequently, there is a larger variation in height values in the DEM compared to the 
tie-points that the algorithm can utilize to estimate overlapping areas in imagery (Agisoft, 2023). No 
literature was found where colour calibration was applied to thermal imagery (Conte et al., 2018; Kelly 
et al., 2019; McCarthy et al., 2021, 2022; Ribeiro-Gomes et al., 2017). Applying colour calibration to 
thermal data could be beneficial. It reduced the RMSE and MAE in this study, as it partially alleviated 
the thermal anomalies in the resultant orthomosaics (appendix F). Tocci et al. (2022) discuss how 
colour calibration is often overlooked during the generation of RGB or multispectral orthomosaics, 
although it could correct for atmospheric changes that occurred during the flight. In most literature 
the focus was on assessing what parameters influence the reprojection error with RGB or multispectral 
imagery (Benjamin & Dennis O’brien, 2017; Śledź & Ewertowski, 2022; Tinkham & Swayze, 2021).  

The influence of DPC quality settings on orthomosaic temperatures was limited. The DPC solely 
influences orthomosaic temperatures indirectly at the orthomosaicking step in the SfM workflow. The 
influence on orthomosaic temperatures was similar across the DPC quality settings with the average 
and disabled blending modes, likely due to the low height differences present in the research area 
(Figure 9, appendix M). Tinkham & Swayze (2021) demonstrated that the influence of the quality 
settings are more pronounced in a dataset with more height differences. With imagery of trees and 
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understory, the height details of the understory were mostly lost if the low and lowest quality settings 
were used. Utilizing the medium to ultra-high settings retained most of these heights. Śledź & 
Ewertowski (2022) demonstrated that higher quality settings produced the least error compared to 
ground control points. Thus, it is possible that temperature differences between quality setting were 
caused by reprojection errors.   

Orthomosaic temperatures were least impacted by the DPC depth filtering settings. The aggressive and 
moderate settings mostly performed similarly with the average and disabled blending modes, whereas 
the mild setting had the least impact on temperatures (Figure 10). Depth filtering had a small impact 
on the DPC, likely due to the lack of heights (Benjamin & Dennis O’brien, 2017). The influence of the 
depth filtering settings corresponds to the results of Tinkham & Swayze (2021), that showed that with 
distinct height differences the aggressive setting omits more DPC points than the moderate setting, 
whereas the mild setting affects the DPC the least. Thermal datasets acquired from areas with greater 
height differences would be affected more by the depth filtering settings, as the disparity between the 
influence of different settings would increase. Consequently, the selection of the depth filtering setting 
would likely have a greater impact on resultant orthomosaic temperatures.  

4.4 Multi-parameter influence 

The mosaic blending mode had a large impact on the influence of the DPC quality and depth filtering 
settings compared to the average and disabled blending modes (Figure 9, Figure 10). In contrast, the 
influence of the quality and depth filtering settings was near zero degrees Celsius with the average and 
disabled blending modes. The overall influence of the DPC quality and depth filtering settings was 
small, as these parameters only influence orthomosaic temperatures through the DEM in the 
orthorectification process (Agisoft, 2023; Perich et al., 2020). However, given the higher influence with 
the mosaic blending mode, it is likely that the DEM is used during the blending process as well. Despite 
the temperature increase caused by the DPC parameters with the mosaic blending mode, the produced 
orthomosaic temperatures were often lower than with the disabled blending mode and higher than 
with the average blending mode. These differences are likely caused by the blending algorithm of the 
mosaic blending mode. Overlapping pixel values are blended most along seamlines between images, 
whereas pixel values close to nadir are blended the least (Agisoft, 2023; Aragon et al., 2020; Malbéteau 
et al., 2021). 

Combined with the mosaic blending mode, the medium DPC quality setting produced dissimilar results 
compared to the other quality settings. It constantly had a lower influence than the other quality 
settings. Given the indirect influence of the quality settings through the DEM, the orthomosaic was 
generated with the medium quality setting again, but paired with the DEM that was generated with 
the high quality setting. The resultant orthomosaic had a similar distribution of temperature values 
compared to the high, low, and lowest quality settings. Thus, the DEM generated with the medium 
quality setting was the cause of the lower influence. A potential reason for the difference in 
distribution caused by this DEM is the mosaic blending mode, given the aforementioned likelihood of 
the DEM being used in the blending process. This suspicion is strengthened by the fact that there was 
no disparity between the influence of the quality settings when combined with the average and 
disabled blending modes (appendix N). The reason why the resultant orthomosaic temperature 
distribution was different with the medium quality setting is unknown, as its DEM was similar to the 
DEMs of the high and low quality settings (appendix M). 

The combined influence of the DPC quality and depth filtering settings on orthomosaic temperatures 
showed similar patterns across quality settings (Figure 12). Combinations with no or mild depth 
filtering had most influence on orthomosaic temperatures, whereas more aggressive depth filtering 
generally decreased the influence. This decrease is likely caused by the removal of height detail by the 
depth filtering settings. Young et al. (2022) and Tinkham & Swayze (2021) both applied several 
combinations of DPC quality and depth filtering settings on datasets with greater heights. In these 
studies, aggressive depth filtering settings removed details at the higher quality settings, whereas most 
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height differences were removed at the lower quality settings. It is thus likely that the moderate and 
aggressive depth filtering settings removed what little height detail there was in the DPC of the grass 
field, which caused the decrease in temperature influence on the thermal orthomosaic. In contrast to 
the studies by Young et al. (2022) and Tinkham & Swayze (2021), the influence of the depth filtering 
settings was similar across the quality settings. This was likely caused by the lack of height differences 
in the grass field, as the quality settings all had a similar influence on orthomosaic temperatures when 
combined with the disabled depth filtering setting (Figure 9).  

Combining DPC quality and depth filtering settings with the DEM based colour calibration increased 
the influence on orthomosaic temperatures across all blending modes (Figure 13, Figure 14). The 
difference was likely caused by the fact that the DPC quality and depth filtering settings were used in 
the DEM based colour calibration. In turn, the DEM based colour calibration was affected by the DPC 
parameters. In contrast, tie-points were generated before and independent of the DPC, meaning that 
the tie-point based colour calibration was not affected by DPC parameters. In contrast to the colour 
calibration tool in Metashape, colour calibration methods in literature do not use tie-points or the DEM 
(Abdalla et al., 2019; Huang et al., 2022; Tocci et al., 2022). The temperature influence these methods 
would have on orthomosaics would not be directly influenced by the DPC quality or depth filtering 
settings. However, the use of orthorectified imagery would introduce a limited influence of the DPC 
parameters, given the involvement of the DEM in the orthorectification process. 
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4.5 Limitations 

The comparison of parameter influences was limited by the closed source nature of Agisoft Metashape. 
The Metashape manual provides a general explanation of most parameters, yet refrains from 
discussing the inner workings of the algorithms (Agisoft, 2023; Pell et al., 2022). This restricted the 
interpretability of the calculated parameter influences. Interpretations were based on the impact of 
parameters discussed in literature (often applied to RGB or multispectral data), combined with 
assumptions on how the perceived parameter impact influenced orthomosaic temperatures. An 
additional factor to consider is that Agisoft Metashape is one of several software packages that are 
used in orthomosaic creation, albeit one of the more popular packages (Ribeiro-Gomes et al., 2017). 
While all of them follow a similar SfM workflow, the findings of this thesis are not directly applicable 
to the other software packages. 

The influence of SfM processing parameters on resultant orthomosaics is a scarcely discussed topic in 
literature, especially with regards to thermal imagery. However, research on the influence of 
processing parameters on RGB and multispectral imagery is scarce as well (Benjamin & Dennis O’brien, 
2017; Śledź & Ewertowski, 2022). In select cases the influence of processing parameters was assessed 
in a part of the SfM workflow, such as the creation of DPCs (Tinkham & Swayze, 2021; Young et al., 
2022). The literature scarcity limited the possibilities to compare the results of this study to findings in 
other studies. 

In the process of generating orthomosaics based on co-aligned thermal imagery, the thermal imagery 
was involved in the generation of the DPC. At the ultra-high DPC quality setting, the involvement of 
the thermal imagery caused sporadic height differences of roughly 20 cm in the generated DEM 
(appendix M). At the lower quality setting these heights were not part of the DEMs. However, 
orthomosaics generated with the ultra-high quality setting were used as baselines for the calculation 
of parameter influences. Thus, the potential impact of the erroneous height differences were part of 
the calculations of single and multi-parameter temperature influences. It is advisable to disable the 
thermal imagery before the DPC generation in future studies. 

The orthomosaics were radiometrically corrected with the empirical line correction. For this correction 
the temperatures of the reference panels situated to the south of the grass field were used.  These 
panels were placed in close proximity to each other. Consequently, they were only captured in a few 
images during the flight. This is a limiting factor, as the extent of the corrected orthomosaics cover the 
entire grass field. The use of more reference panels spread across the research area would be 
beneficial as it could give an indication of how stable thermal measurements are during the flight. As 
the correction is linear in nature, the relative distribution of temperatures was not changed in the 
orthomosaics. The scale of the temperatures was changed. Thus, this correction did not influence the 
relative influence of processing parameters. 

To calculate the influence of parameters through subtracting orthomosaics from each other, the 
orthomosaics had to be resampled. The orthomosaics that were processed in Metashape were 
exported in the resolution that was calculated by the program. As it is not possible to subtract pixels 
that are in different locations, lower resolution orthomosaics were resampled to match higher 
resolution orthomosaics. The default bilinear interpolation method of the R resample function was 
used. The possible impact of the resampling is small, given the high resolution of all orthomosaics, with 
pixel sizes ranging from 1.61 cm to 1.64 cm. An assessment of the impact of resampling on orthomosaic 
temperatures was outside of the scope of this project. 

The influence of parameters was assessed for at the individual parameter level and for pairs of 
parameters. The parameter pairs always consisted of three parameters, as it is impossible to remove 
the impact of the blending mode parameter. Yet, this study did not explore the impact of all parameter 
settings simultaneously. Further research is required to gain insight into inter-parameter impact on 
orthomosaic temperatures.  
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5 Conclusion 

The aim of this study was to determine what structure from motion (SfM) processing parameters are 
influential in thermal orthomosaicking, and to determine what influence parameters have on resultant 
orthomosaic temperatures. Parameters that directly perform calculations with the pixel values of 
thermal imagery (colour calibration and blending mode) were most influential. Other parameters, 
although used in the orthorectification process, had little influence on orthomosaic temperatures. 

Thermal imagery failed to align without co-alignment to multispectral imagery. Thus, the temperature 
influence of this parameter could not be assessed. However, given the successful alignment of thermal 
imagery with co-alignment proved both the efficacy and importance of co-alignment, in the creation 
of thermal orthomosaics. 

The blending mode and colour calibration had the most impact on the temperature influence of other 
parameters. However, the influence these parameters had varied between their respective settings. 

The extent to which parameters influence resultant temperatures is likely influenced by the physical 
traits of the research area (height, structure, and diversity of land cover), and by measurement 
inaccuracies caused by fluctuations in the focal plane array temperature in the thermal camera. 
Datasets with little temperature variations across the images are likely to be the least influenced by 
parameter choices. 

The outcomes of this study showed that it is important to be cautious in the parameter selection whilst 
creating thermal orthomosaics. The best performing set of parameters need to be selected on a case-
by-case basis. For applications where a high accuracy is required, it is advised not to use thermal 
orthomosaics without validation with ground reference measurements. 
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6 Recommendations 

Allowing the thermal camera to stabilize to the in-flight conditions before covering the research area 
could increase the accuracy of thermal imagery. The steep decrease in the FPA temperature was a 
likely cause for the temperature anomalies that were encountered (Figure 5). Adding additional 
flightlines before the drone passes the research area to the flight plan, would allow the camera to 
stabilize to the in-flight conditions. The FPA temperature stabilized towards the end of the 9 minute 
flight. Kelly et al. (2019) recommend to add 15 minutes of such stabilization time. The length of the 
stabilization time will depend on the operational capacity of the used drone and its batteries. An 
additional option would be to extend the flight with an additional overflight in the opposite direction. 
This additional data could pose as a reference for the initial overflight, in case anomalies are 
encountered in the resultant orthomosaics. 

The dataset used in this study contained little height difference. Consequently, it is unknown how the 
processing parameters in Agisoft Metashape influence temperatures in datasets that capture more 
height variations. Tinkham & Swayze (2021) tested the influence of the DPC quality and depth filtering 
settings on imagery from trees and understory, and noted that the lower quality and aggressive depth 
filtering settings reduced the height detail perceived by the SfM algorithm. Consequently, there is a 
chance that in thermal datasets with more height variation, the DPC parameters have more influence 
on orthomosaic temperatures. Additionally, height differences and the structure of measured objects 
may influence the effect of the blending modes on orthomosaic temperatures. The disabled blending 
mode uses temperatures measured at nadir, whereas the average blending mode combines 
overlapping pixel values acquired at several angles. The influence of the blending modes on 
orthomosaic temperatures will thus likely differ based on the height and structure of the observed 
objects, yet the extent of this influence is unknown  (Perich et al., 2020). Further research is required 
to assess the influence of heights on orthomosaic temperatures. 

In future research the relevance of SfM parameters with regards to the output thermal orthomosaic 
could be assessed based on the PAWN global sensitivity analysis (GSA). Many GSA methods rank the 
relevance of parameters based on the resultant variance. An often used example of a variance based 
approach is the Sobol GSA (Zhang et al., 2024). However, the distribution of orthomosaic temperature 
values can be skewed or multimodal, as imagery could be captured from multiple land surface types 
with contrasting surface temperatures. In such cases, the use of variance based GSAs may produce 
discrepant results. In contrast, the PAWN GSA is density-based, utilizing a cumulative distribution 
function based approach. This allows this GSA to be used on skewed and multimodal distributed 
temperature outputs. An additional benefit of PAWN is that it allows one to focus on specific ranges 
of the output distributions, such as the tails. This could allow for a more in-depth analysis of what 
parameter combinations are influential in the generation of outliers (Pianosi & Wagener, 2015). 
However, the application of the PAWN GSA only indicates the relevance of SfM parameters to the 
resultant orthomosaic temperatures. It does not provide insight into which parts of the orthomosaics 
are most affected by certain parameters. 

A greater understanding of the impact of input data on the influence SfM processing parameters have 
on orthomosaic temperatures could be achieved by investigating the spatial autocorrelation of 
resultant thermal orthomosaics with Moran’s I. Kumari et al. (2019) applied Moran’s I to Landsat 7 and 
Landsat 8 imagery to assess the dynamics between land cover changes to the land surface temperature 
as a result of the construction of thermal power plants. With this assessment the Moran’s I calculated 
the spatial autocorrelation, and aided in identifying patterns in land surface temperatures caused by 
different land surface types. Similarly, the patterns in orthomosaics based on differing SfM parameter 
combinations could be identified. The physical traits of the captured images remain the same, yet the 
patterns that occur in the orthomosaics may differ based on the chosen parameters. By comparing the 
differences in temperature patterns between these orthomosaics, the cause of higher or lower 
temperature influences of parameters could be identified. For example, DPC depth filtering settings 
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could impact temperature values more if there are great height differences within the research area. 
Comparing temperature patterns identified for at the disabled depth filtering setting to those of the 
aggressive setting could indicate in which parts of the research area depth filtering affects orthomosaic 
temperatures most. Consequently, the difference in patterns could be compared to physical traits of 
the research area to gain understanding of which of these traits the parameter is sensitive to.   

Apart from Agisoft Metashape, several SfM based software packages are available. Both proprietary 
and open source. To fully understand the influence of SfM parameters in proprietary software packes 
on orthomosaic temperatures, extensive research would be required. Furthermore, the inner workings 
of the algorithms in proprietary software may change with an update, which could render prior findings 
incorrect. Open source SfM software packages could be used instead. Due to their open source nature 
the impact of the used algorithms to resultant temperatures can be researched directly. However, 
these software packages are found to be less user friendly and more prone to be affected by errors. 
Still, developing a SfM workflow based on such open source packages could provide more control and 
insight on resultant orthomosaic temperatures (Daniels et al., 2023; Eltner & Sofia, 2020).  

An alternative option could be to develop a blending mode specifically geared towards thermal data. 
Malbéteau et al. (2021) suggested a swath-based approach, which corrects for temperature 
differences between flightlines. However, Elfarkh et al. (2023) argue that this approach corrects for 
temperature differences caused at the camera, not for temperature fluctuations that occur on the 
ground. Temperature fluctuations across images and ground surface temperatures are captured in the 
tie-point based approach by Mesas-Carrascosa et al. (2018). This approach captures temperature 
fluctuations that occur over time. A possible avenue for future research would be to investigate 
whether the concept of the tie-point based correction could be integrated into the swath-based 
approach. This way, temperature fluctuations that occur at the ground would be included in the 
blending mode as well. 
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8 Appendix 

A. Table of content for zip file  

Table of Content of the zip file that accompanies the thesis report. 

- Documentation of what is where in the zip-file (README file) 

- Report (Word, PDF) 

- Midterm & Final presentation (PPTX) 

- Agisoft projects 

o Project where thermal imagery was co-aligned with multispectral imagery 

o Project where thermal imagery was not co-aligned with multispectral imagery 

- Datasets used and created 

o Raw thermal and multispectral imagery 

o Orthomosaics cropped to the size of the 36 grass plots 

o Influence rasters of the colour calibration settings of the 36 grass plots 

o Excel files with the statistics mentioned in the (multi)parameter influence results 

o The mask that was applied during the orthomosaicking process 

- Scripts 

o R scripts: 

▪ Empirical line correction 

▪ Accuracy assessment 

▪ Drift corrections 

▪ Code for cropping the orthomosaics to the size of the 36 grass plots 

▪ Code for calculating colour calibration influence rasters 

▪ Code for calculating the influence of the blending mode 

▪ Code for calculating the influence of DPC quality 

▪ Code for calculating the influence of DPC depth filtering 

▪ Code for calculating the influence of colour calibration 

▪ Code for calculating combined influence DPC quality and depth filtering 

▪ Code for calculating combined influence DPC quality and colour calibration 

▪ Code for calculating combined influence DPC depth filtering and colour 

calibration 

- Figures shown in the report 

- Excel files 

o All excel files that were generated in the R scripts mentioned above. 

▪ Statistics of aggregated plots, representing the influence of parameters on 

orthomosaic temperatures across all 36 grass plots 

▪ Statistics extracted during the tie-point based drift correction 

- PDF files of used literature 
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B. Layout Nergena grass plot experiment 

 

 

Figure 15 Overview of the layout of the Nergena grass field. Each colour represents a different grass 
species / mixture. The grass field is divided into four parts. At the bottom of each of the four grass 
strips either ‘normaal’, ‘laag’, ‘niet beregenen’, and ‘beregenen’ is written. The words ‘normaal’ and 
‘laag’ refer to the mowing heights of 6 cm and 3 chm. ‘Niet beregenen’ and ‘beregenen’ refers to the 
irrigation scheme, where the strips linked with ‘niet beregenen’ are not irrigated, and the plots linked 
to ‘beregenen’ are irrigated. 
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Figure 16 Legend of the grass species and dimensions in the layout of the Nergena grass field 
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C. Ground reference measurement locations 

 

 

Figure 17 Overview of the grass plots that were measured with the Raytek handheld device. The 
measurements were performed in the middle of each of these grass plots, at a height of approximately 
1 meter. 
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D. Vignetting correction 

 

  

 

Figure 18 A: Mean residuals illustrating the vignetting effect. B: The vignetting effect after removing 
outliers (1.5 standard deviation). C: The mask applied to remove the vignetting effect. 
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E. Fixed parameter settings Agisoft Metashape 

 

Table 8 Overview of the fixed parameter settings used during the orthomosaicking process in 
Agisoft Metashape. For each parameter the used setting, the potential influence on the thermal 
orthomosaic and the source used to assess the potential influence of the parameter settings are 
shown. 

Parameters Setting or 
value(s) 

Influence Influence source 

Align photos    

Accuracy Highest Thermal data contains little 
detail, so even a small loss of 
detail will reduce the accuracy 
of the SfM process. 

(Agisoft, 2023) 

Preselection type Generic + 
reference 
(Source) 

Including generic and 
reference preselection types 
reduces the number of tie 
point mismatches. 

(Döpper et al., 
2020) 

Key and tie point 
limit 

20.000 and 
1.000 

The key and tie point limit has 
a small impact on the 
orthomosaic accuracy. 

(Śledź & 
Ewertowski, 
2022), (Maes et 
al., 2017), (Acorsi 
et al., 2020) 

    

Ground control 
points 

- The addition of ground control 
points improves the alignment 
of the cameras. 

(Jain, 2021), 
(Garcia & Oliveira, 
2020) 

    

Build dense 
point cloud 

   

Source data Dense point 
cloud 

 (Agisoft, 2023) 

Calculate point 
confidence 

Enabled This only calculates point 
confidence, it does not impact 
the SfM calculations. 

(Agisoft, 2023) 

    

Build digital 
elevation model 

   

Projection type Geographic This only determines the 
projection type, it does not 
impact the SfM calculations. 

(Agisoft, 2023) 

Source data Depth maps Other source data types can be 
selected which can lower the 
quality of the DEM. However, 

(Agisoft, 2023) 
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as the research area does not 
have any height differences, 
the impact would be small. 

Interpolation Enabled mode Thermal data is prone to failed 
alignments, which can cause 
gaps. For this reason, the 
enabled mode was selected. 

(Kapil et al., 
2023), (Maes et 
al., 2017) 

Setup boundaries Default This parameter has no 
influence on the SfM 
calulcations. 

(Agisoft, 2023) 

Resolution Default This parameter has no 
influence on the SfM 
calulcations. 

(Agisoft, 2023) 

Total size (pix) Default This parameter has no 
influence on the SfM 
calulcations. 

(Agisoft, 2023) 

    

Build 
orthomosaic 

   

Projection type Geographic This only determines the 
projection type, it does not 
impact the SfM calculations. 

(Agisoft, 2023) 

Surface DEM Given the lack of height 
differences in the research 
area, the use of a DEM 
compared to a mesh would 
yield little difference. 

(Agisoft, 2023) 

Pixel size Default This parameter has no 
influence on the SfM 
calulcations. 

(Agisoft, 2023) 

Max. dimension 
(pix) 

Default This parameter has no 
influence on the SfM 
calulcations. 

(Agisoft, 2023) 

Enable hole filling Enabled This setting prevents the salt-
and-pepper effect caused by 
complex surfaces. As the 
surface of the research area is 
flat, the influence of this 
parameter is estimated to be 
low. 

(Agisoft, 2023) 
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F. RMSE and MAE orthomosaics compared to ground reference measurements 

 

 
Figure 19 RMSE values between orthomosaic temperatures and ground reference measurements. The 
legend entries depict the colour calibration (No, DEM based or tie-point based colour calibration) and 
blending modes (Average, Mosaic, Disabled) that were applied. A total of 20 orthomosaics were 
created with each combination of colour calibration and blending mode. Each dot on the graph, and 
thus the increment on the x-axis, represents one orthomosaic. 

 

Figure 20 MAE values between orthomosaic temperatures and ground reference measurements. The 
legend entries depict the colour calibration (No, DEM based or tie-point based colour calibration) and 
blending modes (Average, Mosaic, Disabled) that were applied. A total of 20 orthomosaics were 
created with each combination of colour calibration and blending mode. Each dot on the graph, and 
increment on the x-axis, represents one orthomosaic. 
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G. Ground reference measurements 

 

 

Figure 21 Ground reference measurements in °C per grass species, per treatment. The treatment is 
shown on the x-axis. The indicators ‘Low’ and ‘High’ represent the mowing heights of the grass field 
of 3 cm and 6 cm respectively. The indicators ‘Dry’ and ‘Wet’ refer to the non-irrigated and irrigated 
parts of the grass field.  
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H. Difference orthomosaic and ground reference temperatures 

 

Figure 22 Difference between orthomosaic temperatures and ground reference measurements. The 
orthomosaic used in this graph was generated with the ultra-high DPC quality setting, the aggressive 
DPC depth filtering setting, DEM based colour calibration, and the disabled blending mode. Each dot 
represents a grass plot that was measured. The grass plot number is plotted next to each dot. Lower 
grass plot numbers represent grass plots to the western side of the grass field, higher grass plot 
numbers represent grass plots to the eastern side of the grass field. 

 

Figure 23 Difference between orthomosaic temperatures and ground reference measurements. The 
orthomosaic used in this graph was generated with the ultra-high DPC quality setting, the aggressive 
DPC depth filtering setting, no colour calibration, and the disabled blending mode. Each dot represents 
a grass plot that was measured. The grass plot number is plotted next to each dot. Lower grass plot 
numbers represent grass plots to the western side of the grass field, higher grass plot numbers 
represent grass plots to the eastern side of the grass field. 
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I.  Point cloud tie-point based drift correction point cloud 

 

 
Graph 2 Sub-product of the tie-point based drift correction. Temperatures were extracted from 
orthophotos at the locations of each shared tie point. The temperature extracted from the first image 
(first time the temperature was measured at a tie-point) served as a baseline, and was subtracted from 
the temperatures at the same tie-point location extracted from later images. The resultant difference 
was divided by the time that passed between the first and the n-th image. Consequently, a large number 
of temperature differences (drift) were calculated for each timestamp. All these values were averaged 
for each timestamp. The resultant values are shown in this graph. 

  

y = 2E-05x - 0.0149

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 100 200 300 400 500 600 700

Te
m

p
er

at
u

re
 d

ri
ft

 in
 °

C
/s

ec

Time in seconds

Mean temperature per second per timestamp

Linear (mean_difftemp)



- 48 - 

 

J.  DPC quality influence per grass plot 

 

 

Figure 24 This graph shows the influence of the dense point cloud quality influence on orthomosaic 
temperatures with the average blending mode across all 36 grass plots. Each violin plot represents a 
single grass plot. Each graph with violin plots represents a different quality setting. The colours 
correspond to the respective grass species / mixture (see legend below). 

 

Figure 25 Legend of what grass species match the colours in the violin plots. 
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Figure 26 This graph shows the influence of the dense point cloud quality influence on orthomosaic 
temperatures with the mosaic blending mode across all 36 grass plots. Each violin plot represents a 
single grass plot. Each graph with violin plots represents a different quality setting.  The colours 
correspond to the respective grass species / mixture (see legend below).

 

Figure 27 Legend of what grass species match the colours in the violin plots. 
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Figure 28 This graph shows the influence of the dense point cloud quality influence on orthomosaic 
temperatures with the disabled blending mode across all 36 grass plots. Each violin plot represents a 
single grass plot. Each graph with violin plots represents a different quality setting. The colours 
correspond to the respective grass species / mixture (see legend below).  

 

Figure 29 Legend of what grass species match the colours in the violin plots. 
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K. DPC depth filtering influence per grass plot 

 

Figure 30 This graph shows the influence of the dense point cloud depth filtering settings on 
orthomosaic temperatures with the disabled blending mode across all 36 grass plots. Each violin plot 
represents a single grass plot. Each graph with violin plots represents a different depth filtering setting. 
The colours correspond to the respective grass species / mixture (see legend below). 

 

Figure 31 Legend of what grass species match the colours in the violin plots. 
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Figure 32 This graph shows the influence of the dense point cloud depth filtering settings on 
orthomosaic temperatures with the average blending mode across all 36 grass plots. Each violin plot 
represents a single grass plot. Each graph with violin plots represents a different depth filtering setting. 
The colours correspond to the respective grass species / mixture (see legend below).  

 

Figure 33 Legend of what grass species match the colours in the violin plots. 
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Figure 34 This graph shows the influence of the dense point cloud depth filtering settings on 
orthomosaic temperatures with the mosaic blending mode across all 36 grass plots. Each violin plot 
represents a single grass plot. Each graph with violin plots represents a different depth filtering setting. 
The colours correspond to the respective grass species / mixture (see legend below).  

 

Figure 35 Legend of what grass species match the colours in the violin plots. 
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L. Colour calibration influence per grass plot 

 

 

Figure 36 The influence of DEM based colour calibration on orthomosaic temperatures. Each violin plots 
represents one of the 36 grass plots. Each of the three graphs represents the influence of the DEM 
based colour calibration combined with one of the blending modes. The colours correspond to the 
respective grass species / mixture (see legend below). 

 

Figure 37 Legend of what grass species match the colours in the violin plots. 
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Figure 38 The influence of tie-point based colour calibration on orthomosaic temperatures. Each violin 
plots represents one of the 36 grass plots. Each of the three graphs represents the influence of the tie-
point based colour calibration combined with one of the blending modes. The colours correspond to the 
respective grass species / mixture (see legend below). 

 

Figure 39 Legend of what grass species match the colours in the violin plots. 
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M. DEMs generated at different quality settings 

 

Figure 40 Height maps generated at all the DPC quality settings, combined with the disabled depth 
filtering setting. These DEMs were trimmed to fit the area the 36 grass plots reside in. Note how there 
are heights present around plots 41 and 42 at the ultra-high quality setting. These heights are still 
somewhat visible at the high quality setting, yet are not visible at the medium quality setting anymore. 
Excluding the thermal imagery removed these heights entirely (see figure below). Towards the low and 
lowest quality settings, a cloudy pattern becomes visible.  
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Figure 41 DEMs generated with the ultra-high DPC quality setting, combined with the disabled depth 
filtering setting. The DEM on the left was based on a DPC that was generated with thermal imagery 
included. The DEM on the right was generated based on multispectral 
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N. Combined influence of colour calibration with DPC quality settings 

 

 

Figure 42 Combined temperature influence of the colour calibration settings and DPC quality settings 
on orthomosaic temperatures. The x-axis represents the quality settings. The influence of the quality 
settings without colour calibration is shown in the left column. The influence of quality settings 
combined with the tie-point based colour calibration is shown in the middle column. The influence of 
the quality settings combined with the DEM based colour calibration is shown in the column on the 
right. Each row represents the influence values at a different blending mode. Influence values in the top 
row were calculated with the average blending mode, in the middle row with the disabled blending 
mode, and the bottom row with the mosaic blending mode. Note how the influence of the tie-point 
based colour calibration is limited compared to the influence of the DEM based colour calibration. 
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O. Combined influence of colour calibration with DPC depth filtering settings 

 

 

Figure 43 Combined temperature influence of the colour calibration settings and DPC depth filtering 
settings on orthomosaic temperatures. The depth filtering settings are shown on the x-axis. The 
influence of the depth filtering settings without colour calibration is shown in the left column. The 
influence of depth filtering settings combined with the tie-point based colour calibration is shown in the 
middle column. The influence of the depth filtering settings combined with the DEM based colour 
calibration is shown in the column on the right. Each row represents the influence values at a different 
blending mode. Influence values in the top row were calculated with the average blending mode, in the 
middle row with the disabled blending mode, and the bottom row with the mosaic blending mode. Note 
how the influence of the tie-point based colour calibration is limited compared to the influence of the 
DEM based colour calibration. 

 

 
 

 


