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Abstract 
Housing is one of the largest contributors to CO2 emissions. Currently, the average household 
uses 21% of their CO2 emissions for their heating needs. For policymaking, it is therefore crucial 
to develop strategies to reduce these emissions. In order to develop such strategies, access to 
accurate information on where energy is used is vital. Energy demand models can help provide 
this information. However, in existing research a strong dichotomy exists between physics-based 
models, that primarily focus on the thermodynamics of buildings, and socio-economic models, 
that primarily focus on the people that live in the buildings. This division results in a degree of 
unexplained variation in model predictions. This thesis aims to incorporate socio-economic 
principles into a physics-based energy demand model. Results do not show a significant 
improvement in model performance. This is possibly due to the fact that socio-economic data is 
only available at a relatively high spatial level, as it would pose ethical concerns otherwise.  
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1 Introduction 
1.1 Research background 
From the end of the 19th century onwards, there have been periods of rapid population growth in 
the Netherlands (Komlos, 1990). This resulted in a large demand for housing, which caused the 
Dutch housing stock to increase by 269% since the 1950’s (Centraal Bureau voor de Statistiek (CBS), 

2023c; Van de Woestijne, 1933). The large quantity of houses built during this time period vary in 
their quality of construction and insulation (Cammen & Klerk, 2012). The current housing stock, 
therefore, consists of a wide range of building types from different time periods that vary in 
insulation techniques and heating efficiency (Nieboer & Filippidou, 2017).  

Housing is one of the largest contributors to CO2 emissions (Dahlström et al., 2022). Currently, 
the average household uses 21% of their CO2 emissions for their heating and housing needs 
(Dubois et al., 2019). This high emittance is posing a notable obstacle to achieving the goal of the 
Dutch government to reduce CO2 emissions by 95% in 2050. To find a solution to this emittance 
problem, policymakers are not only focusing on using more renewable energy, but also focus on 
reducing the overall amount of energy that households consume. Therefore, policymakers from 
various layers of government are developing energy saving programs and retrofitting programs to 
make houses and their inhabitants more energy efficient (Gemeente Amsterdam, n.d.; Ministerie 

van Economische Zaken en Klimaat, 2023). A national aim is set to improve the insulation of the 1.5 
million houses with the lowest energy efficiency (Mininsterie van Binnenlandse Zaken en 

Koninkrijksrelaties, n.d.). To effectively support these programs, it is crucial to have accurate 
information on the energy demand of buildings.  

Assessing the energy demand of houses remains a challenge, as there is little public energy 
demand data available on a building-scale. Energy demand models have the potential to provide 
more insights into how and where energy is consumed. This knowledge can help policymakers to 
access where energy-saving potential is the greatest (Yang et al., 2020). It can also help 
policymakers into developing effective retrofitting policies for the housing stock (Afaifia et al., 

2021; Ali et al., 2020). Additionally, predictions into future energy demand can enable 
policymakers in developing smart strategies that lead to a high energy efficiency and resource 
optimization of energy throughout an urban area (Condotta & Borga, 2018). In summary, 
addressing the need to reduce energy consumption in buildings requires accurate methods for 
estimating a building's energy usage. Energy demand models can contribute to enhancing these 
estimation methods. 

1.2 Energy demand modelling 
In general, there are four types of energy models in literature, physics-based, social, economic 
and socio-economic. Physics-based models aim to explain energy consumption on the basis of 
the characteristics of houses (Ali et al., 2020; Duminil et al., 2018; León-Sánchez et al., 2021; Silva et 
al., 2017; Torabi Moghadam et al., 2018). Social models focus more on the behavioral and 
psychological aspects of energy consumption (M. Costanzo et al., 1986; Dubois et al., 2019; 
Frederiks et al., 2015). Economic models focus on the effect of appliance efficiency and energy 
prices to explain energy consumption (Boonekamp, 2007; Haas & Schipper, 1998; Hunt & Ryan, 
2015). Socio-economic models aim to link economic incentives to behavior of households 
(Brounen et al., 2012; Schulte & Heindl, 2017; Yang et al., 2020). Since socio-economic encompass 
the interaction between social and economic factors, this research will focus on expanding upon 
the physics-based (Section 1.2.1) and socio-economic (Section 1.2.2) models.  
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1.2.1 Physics-based models 
Physics-based models aim to predict energy consumption through physical factors of each 
individual building. This way of modelling often consists of a bottom-up approach. A bottom-up 
model aims to predict energy demand based on the characteristics of individual buildings and 
then aggregating the data for all buildings to derive regional statistics (Afaifia et al., 2021; Ghedamsi 

et al., 2016; Yang et al., 2020). Current research most often includes the following factors as 
relevant to energy consumption predictions: year of construction, net floor area, window-to-wall 
ratio, and weather data (J. A. Fonseca & Schlueter, 2015). For deriving the values for these factors, 
physics-based modesl use 2D and/or 3D geographic data to determine the energy demand of 
buildings (Ghedamsi et al., 2016). 

Two well-known applications that use 3D data are Simstadt (Duminil et al., 2018) and CitySim Pro 
(Kämpf & Oguey, 2023). These applications use characteristics of the building to calculate the 
energy demand. These models also take external factors like solar irradiance and outside 
temperature into account (León-Sánchez et al., 2021). However, apart from the number of 
addresses, no other socio-economic parameters are included in these models. This is a problem, 
because energy usage is not only dependent on how a house looks but is also defined by how 
people use their energy. 

1.2.2 Socio-economic models 
Socio-economic models have a different starting point to modelling energy demand. These 
models often start with historical energy consumption data and apply a regression model to find 
out relationships, for example between types of housing and their energy usage (Mata et al., 2021; 

Schulte & Heindl, 2017).  

Hunt & Ryan (2015) developed a model where the starting point was not the aggregated energy 
demand of a household, but the individual services that need energy. Services encompass 
aspects such as heating, lighting, and access to hot water. In this model, they also include price 
elasticity of these services. This means that the model takes into consideration how much money 
people are willing to pay for a service, which in turn has implications for the total energy demand 
of the house.  

Schulte and Heindl (2017) performed a socio-economic analysis on price- and income elasticity 
for residential energy demand in Germany. The model is based on German data from the 
“Mikrozensus”, in which about one percent of German citizens were surveyed on a plethora of 
subjects, including income and energy consumption. Their results show that the reaction to 
changes in energy prices is highly dependent on total household income. Their model shows that 
households with a lower income tend to decrease their energy consumption less than wealthier 
households.  

As shown above, socio-economic models provide insights into how households behave in their 
energy demand. However, they fail to integrate information on building type and external factors 
like the weather. This increases the residual error of the model.  

1.3 Problem statement 
Both physics-based and socio-economic models provide valuable insights into predicting energy 
consumption in buildings. However, this division of models is limiting the accuracy of both. In 
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reality, a building’s energy consumption is influenced by an interplay of factors from both physics-
based and socio-economic models (Ali et al., 2020).  

Attempts have been made to compare or combine socio-economic and physics-based models 
(Afaifia et al., 2021; Condotta & Borga, 2018; Gassar et al., 2019; Van Den Brom et al., 2019). Van den 
Brom et al. (2019) looked at how much of the variance in an energy consumption model could be 
explained by occupants characteristics. Afaifia et al. (2021) adopted a triangular approach, in 
which they employed 2D GIS methods to build a database containing information about building 
stock and energy usage. They also utilized multiple linear regression to identify critical variables 
impacting energy consumption and applied hierarchical clustering to better understand regional 
differences. Gasser et al. (2019) developed several machine learning models that used both 
socio-economic factors and physics-based factors. However, both models were developed on a 
regional scale and not on a building scale. 

Fonseca & Schlueter (2015) developed a physics-based model, in which they integrated energy 
services. For these services, standardized consumption values were calculated based on 
housing type. However, other socio-economic factors that relate to the residents themselves, like 
income and price elasticity, are left out of this model.  

In conclusion, the current integrative energy demand models contain limitations, particularly in 
capturing the relationship between physics-based models and socio-economic models on a 
building scale. Especially in bottom-up models, the socio-economic factors are frequently 
overlooked or incorporated at a minimal level. This resonates with Ali et al.'s (2020) discussion of 
their bottom-up physics-based model, in which they concluded that there is a need for social 
science-based research to investigate variations in energy consumption among technologically 
similar buildings.  

1.4 Research objective and questions 
The objective of this research is to investigate how socio-economic information about 
households, neighborhood characteristics, and price elasticity contribute to more accurate 
energy demand estimations on a building-scale. This leads to the following main research 
question:  

“What is the effect of integrating socio-economic factors into physics-based energy demand 
models for the purpose of predicting energy consumption in residential buildings? 

This research question is further subdivided into four Sub-research questions (SRQ): 

 

SRQ1. What are the primary components of existing physics-based models and how 
do these models compare? 

SRQ2. What major factors do socio-economic energy demand models identify as key 
influencers of energy consumption? 

SRQ3. Which socio-economic factors can be integrated into a select physics-based 
energy demand model? 

SRQ4. What is the accuracy of the hybrid model when comparing it to the select 
physics-based energy demand model? 
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2 Data and Methods 
The following sections describe the steps that are needed to answer the research questions 
presented in Section 1.4. SRQ1 will be addressed through a literature review on physics-based 
demand modelling (Section 2.1). SRQ2 will be answered through a literature review on socio-
economic models (Section 2.2). SRQ3 will be addressed by constructing a physics-based model, 
in which factors from socio-economic models are incorporated (Section 2.3). SRQ4 will be 
answered by comparing the relative accuracy of the hybrid model with the relative accuracy of 
the original physics-based model (Section 2.4).  

2.1 Literature review of physics-based models 
In this thesis a systematic review will be used to analyze physics-based energy demand models. 
Often, these types of models are largely of the same design. Therefore, it is feasible to conduct a 
systematic review (Snyder, 2019). Based on the research question, inclusion- and exclusion 
criteria are defined (University Libraries, University of Maryland, 2023). These inclusion- and 
exclusion criteria are shown in Table 2.1.  

Table 2.1 The inclusion and exclusion criteria that are used for searching physics-based models. 

 Inclusion criteria Exclusion criteria 
Approach Bottom-up Top down 
Scale Residential Regional 
Type Building-stock model Retrofitting modelling 
Scope Heating demand Environmental policy 

 

The criteria in Table 2.1 identify those models that aim to predict energy usage of specific 
residential buildings through a bottom-up energy demand model. Other types of models that 
follow a top-down method or models that are performed on a regional scale should be avoided, 
as they fall outside the scope of this research. Papers that focus more on the usability of the 
models for policymaking and retrofitting policies are also less relevant for this thesis and should 
therefore also be left out. After determining the inclusion- and exclusion terms, the systematic 
analysis can commence. 

Firstly, a dataset consisting of papers about physics-based energy demand models is assembled. 
Two search engines are used to find these papers: Web of Science and Scopus. By using the query 
“Energy demand model AND bottom-up”, already most papers that do not base their energy 
demand on single buildings are left out of the research. The remainder of papers is then stored in 
a .RIS file, which can be used as input for a search algorithm. 

For analyzing the wide range of papers, the open-source algorithm “ASReview LAB” is used (De 

Bruin et al., 2023). This algorithm uses Term Frequency – Inversed Document Frequency (TF-IDF) 
and Naïve Bayes Machine Learning Algorithms to identify which papers are more relevant than 
others. When reviewing abstracts and determining the relevance of papers based on inclusion 
and exclusion criteria, ASReview Lab rearranges the papers according to their relevance (Utrecht 

University, 2022). Because irrelevant papers are moved down the stack, time is saved when 
reading the papers. At a certain point, only irrelevant papers will show up through the algorithm. 
This means that most relevant papers from the search results have been identified. 
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From the relevant papers, a table is made that shows which factors are used in the physics-based 
models to predict energy demand. Extra information about the performance of the model will also 
be shown in this overview. Using this table, it is possible to select suitable models as input for the 
physics-based model that will be used in the continuation of this thesis. 

2.2 Literature of socio-economic models 
For answering the second sub-research question on socio-economic models a semi-systematic 
literature review is conducted. The semi-systematic approach is meant for analyzing topics that 
have been conceptualized differently and that are studied by various research groups from a wide 
range of disciplines (Snyder, 2019). The term “socio-economic” already implies that these are 
models that consists of both social and economic factors that are interrelated. Therefore, there 
are various ways in which the topic of energy demand is approached. 

Because of this variety, a semi-systematic review seeks to identify and understand all potentially 
relevant concepts. However, it is still systematic in the sense that the literature review is 
initialized with some core concepts. However, the process is not as linear as a systematic review. 
When new insights are found to be valuable for answering the research question, those concepts 
can change. Initial concepts that will be used as searched terms are: socio-economic, space 
heating, efficiency, elasticity, household, and income. 

The tool ASReview Lab (see Section 2.1) can still be applied to this semi-systematic review, as its 
only role is to order the papers in projected relevance. To scale down the number of papers that 
needs to be read, it is important to really focus the review on papers with an emphasis on space 
heating of buildings and not on other services. 
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2.3 Constructing the physics-based model 
To get an overview of how the model is constructed, first the input data is described and its main 
goal within the model is explained. This is followed by a more detailed description of how the 
model is designed and what assumptions have been made. 

2.3.1 Input data for physics-based model 
The selection of input data is based upon a multitude of papers that are deemed most relevant 
to this research case in the literature reviews. Sokol et al. (2017) use 3D data to get the 
morphological attributes of the building. This paper, Todeschi et al. (2021), and Yang et al. 
(2020) all use a building typology to estimate additional information on each building. All these 
papers also use weather data to further calibrate the model. For all these different data sources, 
Dutch alternatives are found and downloaded. In Table 2.2, all input datasets and their sources 
are briefly described. 

Table 2.2 Main input data sources for the physics-based model 

Data name Data category Description Data source 
BAG 2D cadastral data Base registration of buildings in the Netherlands. Also 

contains information on building function and 
number of addresses. 

Kadaster, 2023 

3DBAG 3D buildings 3D version of the BAG, containing information on 
height, width and volume of every building. 

Peters et al., 
2022 

Public data 
energy 
performance 
contracts  
(Openbare data 
energielabels) 

Energy 
performance 
contracts (EPC) 

Not all houses in the Netherlands have such a 
contract. This is because it is only mandatory to get 
an EPC when a building is sold or rented. 
(Rijksoverheid, n.d.) 

Rijksdienst voor 
Ondernemend 
Nederland 
(RVO), 2022 

TABULA/episcope Building typology EU initiative, where for each member state a building 
typology is created. Buildings are segmented into four 
building types and six construction periods. Based on 
the type, U-values are attributed for all building 
elements 

Nieboer & 
Filippidou, 2017 

Sunshine 
duration and 
radiation 
(Zonneschijnduur 
en straling) 

Solar radiation 
data 

Weather dataset that contains sunshine duration and 
radiation data for every 10 minutes of the day. 

Koninklijk 
Nederlands 
Meteorologisch 
Instituut 
(KNMI), 2024b 

Humidity and 
temperature 
(Vochtigheid en 
temperatuur) 

Temperature data Weather dataset that contains humidity and 
temperature data fir every 10 minutes of the day. 

KNMI, 2024 

Key figures per 
postal code 
(Kerncijfers per 
postcode) 

Historical gas 
usage 

Dataset that provides information on the mean gas 
usage per postal code. 

Centraal 
Bureau voor de 
Statistiek 
(CBS), 2023a 

S2 Geometries of 
windows and 
doors 

Window-to-Wall 
Ratios (WWR) 

Table based on field survey, where building element 
proportions are linked to the TABULA building types. 

Yang et al., 
2020 
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The datasets are downloaded for the City Region of Arnhem and Nijmegen. The extent of which 
parts of the area are included is shown in Figure 2.1 Bounding Box of the study area that is used 
for implementing and assessing the model.Figure 2.1. This area was chosen, because it 
contains a large variation in buildings of different sizes and time periods. In addition, my 
personal familiarity with this region is high. This can help in assessing model behavior and 
makes it easier to uncover striking or unexpected findings. 

 
Figure 2.1 Bounding Box of the study area that is used for implementing and assessing the model. 
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2.3.2 Preprocessing data  
To get the data ready as input for the physics-based model, some preprocessing steps are 
necessary. Figure 2.2 visualizes a flowchart that shows the preprocessing steps of the physics-
based model. 

 
Figure 2.2 Schematic overview of the preprocessing steps of the input data.  

I. Joining the 3DBAG to the regular BAG 

The 3DBAG data is obtained via a WFS link. Geometric attributes from the 3DBAG are merged with 
those from the regular BAG dataset to acquire both spatial information and additional attributes 
such as building function and the count of residential units. 

The building dataset is downloaded for the city region of Arnhem and Nijmegen. This choice was 
made because this region has a diverse building stock of various construction periods. In 
addition, it is a region where my personal familiarity is high, which can make it easier to come 
across interesting insights on the model’s behavior. Though, in this thesis the model is only run 
for this region, it can easily be modified by changing the bounding box for the BAG and 3DBAG. 
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II. Getting hourly statistics for KNMI temperature and solar radiation datasets 

The KNMI dataset is offered in a temporal resolution of 10 minutes. In order for the model to run 
in a manageable timeframe, the data is aggregated to an hourly resolution, by taking the mean of 
the variables for each hour. The result is exported as component data, that the model uses as 
input. 

III. Extracting weather station locations from KNMI datasets 

To assign the weather data from the closest KNMI weather station to each house in the building 
dataset, the locations of these weather stations are extracted from the KNMI dataset.  

IV. Spatial join weather stations locations to building dataset 

For each building in the building dataset, it is calculated what the closest KNMI weather station 
is, based on the Euclidean distance. The ID of the closest weather station is then joined to the 
building as a new column. 

V. Joining EPC data to the houses  

The available EPC data is joined to the building dataset through the BAG ID. For the buildings that 
do not have an EPC label, a NA value is assigned. Buildings that contain an EPC of level D or higher 
are considered to have had some type of renovation, while buildings with a lower or no EPC are 
considered to have undergone no retrofitting.  

VI. Building stock segmentation based on TABULA archetypes. 

The building stock dataset is segmented into four distinct archetypes: single-family homes (SFH), 
terraced houses(TH), terraced end houses (“hoekwoning”) (TH_End), apartment blocks (AB) and 
multi-family homes (MFH) This segmentation is based on a set of conditional statements that are 
based on the approach proposed by Yang et al. (2020). Details of these conditions can be found 
in Table 2.3.  

Table 2.3 Conditional statements that are used for segmenting the building stock into the archetype. 

Building class No. of buildings 
together 

Registered Addresses Building footprint 
(m2) 

SFH 1 <= 2 - 
TH <=3 <= 3 - 
TH_End <=2 <=2 - 
AB <=1 >3 >1000 
MFH else 

 

Single family homes are mainly identified by the fact that they do not border any other house. To 
distinguish them from large apartment blocks the maximum amount of residences is set to two. 
Terraced houses are separated into end houses and middle row houses. Unlike middle row 
houses, end houses have one exposed wall, which in the data is counted as an outer wall but 
typically features fewer windows compared to the outer walls facing the street or the backyard. 
This configuration results in a lower overall window-to-wall ratio for end houses. 
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VII. Estimating number of floors, calculating conditional floor space 

The 3DBAG dataset does not contain information on the number of floors a building contains. In 
this thesis, the floor height value is set at 3.3 meters. As maximum height, the median of the roof 
height is used. When visually checking the output with images of buildings, this value of 3.3 
meters, showed the most correct estimation of the number of floors. 

2.3.3 The physics-based model  
The physics-based model is largely based on the models that were made by Todeschi et al. (2021) 
and Yang et al. (2020). A step-by-step guide of all the calculations is available in Appendix B.  

The model works on a per building basis, which means that from the building dataset each 
building is analyzed separately. For each building it is calculated what the closest weather station 
is. Consequently, the hourly weather data of this station is linked to the building.  

The model is centered around the thermal heat balance method. Equation 1 shows how the 
demand is calculated based on the heat balance.  

 𝑄𝑛𝑑 = (𝑄𝑡𝑟 + 𝑄𝑣𝑒) − 𝜂𝑔𝑛(𝑄𝑖𝑛𝑡 + 𝑄𝑠𝑜𝑙)  (Eq. 1) 

 In this equation the energy losses are the transmission loss (𝑄𝑡𝑟) and the ventilation loss 𝑄𝑣𝑒. The 
heat gains of the building are subtracted from these losses. The first component of the heat gains 
consist of internal sources (𝑄𝑖𝑛𝑡), such as residual heat from appliances and anthropogenic 
activities. The other component of heat gains are the solar heat gains (𝑄𝑠𝑜𝑙). This is the incoming 
radiation that falls on a building’s surface, resulting in an increase in temperature. It's relevant to 
note that not all gains directly translate into usable energy for the building (International 
Organization for Standardizaition (ISO), 2017). Thus, a gain utilization factor is derived to address 
this variability and calculate the hourly space heating demand of the building. 

This space heating demand is then filled by the Heating, Ventilation and Air conditioning (HVAC) 
system of the building. Equation 2 calculates the actual demand of the HVAC system in kilowatt-
hours (kWh). In the formula, the space heating demand is divided over the conditional floor space 
of the building. The heating losses of the distribution system per square meter are then added to 
this demand. This is then multiplied by the expenditure factor of the HVAC system and the total 
conditional floor space of the building to get the final space heating demand in kWh. To compare 
this result to the validation dataset, this result is converted to gas cubic meters.  

𝑄ℎ = [
𝑄𝑛𝑑

𝐴𝑐𝑜𝑛
+ 𝑞𝑑,ℎ ] 𝑒𝑔,ℎ ∗ 𝐴𝑐𝑜𝑛 (Eq. 2) 

  

2.4 Integration socio-economic factors 
For the socio-economic part of this research, postal code data by CBS is used. The dataset 
contains many different variables that possibly correlate with each other. To uncover which 
socio-economic variables play a vital role in determining the space heating demand of buildings, 
a random forest model is created. Through regression analysis, it is then tested if a linear 
relationship exists between the socio-economic variables and space heating demand.  
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2.4.1 Random Forest - Identifying important socio-economic variables 
Preprocessing 
The CBS dataset comprises three distinct spatial levels: pc4 (e.g., 1111), pc5 (1111A), and pc6 
(1111AA). The pc5 dataset does not contain data on mean gas use per dwelling. This is therefore 
derived from the pc6 dataset by aggregating the smaller postal codes and calculating the mean 
gas use. Which socio-economic variables are available in the dataset and how they are 
represented is visualized in Table 2.4 

Table 2.4 Overview of Socio-Economic Variables and their Representations in the Dataset. 

Variables Units Representation 
No. of inhabitants No. of people count 
Gender Gender 

[Male, Female] 
count 

Age groups Age range 
[0-15, 15-25, 25-45, 45-65, 65+] 

count 

Background Nationality  
[Dutch, Western, Non-Western] 

count 

No. of households No. of people count 
Household composition Type 

[single-person, multi-person without 
children, single-parent, two-parent] 

count 

Mean household size No. of people average 
Mean property value (WOZ) Euros (x1000) average (x €1000) 
Mean income  Classes 

[00-20, 00-40, 20-40, 20-60, 40-60, 
40-80, 60-80, 60-100, 80-100]  

Percentage groups 

Social welfare payments No. of people percentage  
Homeownership % of total households percentage 
Renters % of total households percentage 
Social housing % of total households percentage 
Adress density addresses / km2 average 

mean gas usage m3 average  
 

Following this, it is checked for each separate spatial layer if there is multicollinearity. Some 
variables are mutually exclusive. For instance, the percentage of home-owned dwellings versus 
rented dwellings are opposing factors.  

Variables such as age groups, gender, and household composition types are initially represented 
in absolute population numbers. To facilitate comparison among postal codes, these variables 
are transformed into relative numbers relative to the total population.  

Model calibration 
The final selection of variables is used as input for the Random Forest (RF) models on all three 
spatial scales. The data is split into a training dataset and a test dataset, where the training 
dataset takes up 70% of the data and the test set takes up 30%.  

Using this split, two hyperparameters are tuned to reduce the degree of error in the model. The 
parameters that are tested are the max depth parameter and the number of trees parameter.  
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The model with the lowest error is used to perform on the test set. The performance metrics that 
are used to evaluate the model are the R-squared, the Mean Absolute Percentage Error (MAPE) 
and the Root Mean Square Error (RMSE). 

Lastly, the feature importances of the RF models are evaluated to check which socio-economic 
variables play a decisive role in estimating space heating demand. The feature importances are 
compared among the three different spatial scales. These metrics are then compared to a 
baseline model, to see if the implementation of the RF models has a beneficial effect compared 
to a random model.  

2.4.2 Regression 
Based on the RF models, the most important socio-economic variables are used as input for two 
regression models: Ordinary Linear Regression (OLS) and Ridge Regression.  

Depending on the performance of the RF models, a spatial level is chosen to perform the 
regression on. Preferably it would be the spatial layer with the highest spatial resolution, however 
if the RF model performs poorly, it does not make sense to do a regression on this spatial scale. 
It is crucial to find a balance between statistical robustness and spatial resolution.  

A first step in regression is to check if the assumptions are met. Through plotting, the 
assumptions of linearity and normality are checked. If variables exhibit a log-linear relationship, 
they are transformed to achieve linearity. 

Once the assumptions have been verified, the OLS is performed with the variables that meet the 
assumptions. To prevent the model from overfitting, another regression model is developed, 
namely a ridge regression model. The ridge regression model aims to reduce the effect of 
multicollinearity by introducing a penalty term. This reduces the effect of the coefficients and 
produces a less biased result (Lin & Liu, 2017). The ridge regression is combined with a 
bootstrapping procedure, where the dataset is resampled 20000 times, to calculate the P-value 
for each of the coefficients.  

After both the OLS and Ridge Regression are performed, the resulting coefficients are compared 
to see if large discrepancies occur. Depending on the result, the coefficients for the variables age, 
tenancy type and migration background are used to alter the prediction of the physics-demand 
model.  

2.4.3 Integration of socio-economic variables 
Age, Tenancy Type & Background 
Because of the fact that there is only proportional socio-economic data available on a postal 
code level, a weighted coefficient is calculated for each variable per neighborhood. As shown in 
the aforementioned Table 2.4, the variables age, tenancy type and background all have subgroups 
with total population numbers belonging to that subgroup. For each of the subgroups a different 
coefficient is assigned. By multiplying the percentage of people that is part of each subgroup with 
the respective coefficient, you get a weighted coefficient for the entire neighborhood. This 
weighted coefficient is then applied to the space heating demand of all buildings within the 
neighborhood.  
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Age integrated occupancy schedule 
In addition to the incorporation of regression coefficients, two alternative methods of integrating 
socio-economic factors are developed. What sets these approaches apart is that they are 
directly integrated into the physics-based model, instead of applying them in retrospect.  

The first variable that is implemented is the sophistication of the occupancy schedule. The 
occupancy schedule in the physics-based model assumes that everyone is home between 18 
and 8 the next morning. However, actual occupancy patterns vary substantially based on life 
stage. Therefore, the occupancy schedule is recalibrated per neighborhood, based on the age 
demographics proportions. This calibration is based on a paper by Mitra et al. (2020). In this 
paper, they used an extensive American survey to distinguish different occupancy patterns for 
different age groups.  

Since the actual age of the inhabitants of individual houses is not known, an alternative method 
is used to estimate occupancy. Each of the different age groups, mentioned previously in Table 
2.4, is used as a weight, to estimate the probability of individuals being present at each hour of 
the day. This creates a mean occupancy schedule that is adapted to the age proportions within a 
neighborhood. This new occupancy schedule is then used to run the physics-based demand 
model again.  

Price elasticity of households 
The final socio-economic variable to be integrated is the price elasticity of space heating 
demand. Schulte & Heindl (2017) analyzed how long term price elasticity of space heating 
demand varies between different income classes and different household compositions. The 
derived price elasticities from their study are then incorporated into the physics-based demand 
model. These price elasticities are also available in Appendix C. The price elasticities that they 
calculated in their model are applied in the physics-based demand model. For the actual gas 
price, the price index dataset by the CBS (2024) is applied. To effectively integrate price elasticity, 
the temporal scope of the physics-based model is extended to encompass the period from 2016 
to 2019.  

Three different implementations of price elasticity are developed:  

- The first implementation considers the price exactly one year prior for each month of the 
model’s run. It then adjusts the space heating demand based on the observed price 
increase or decrease within that time frame. 

- The second implementation compares each month’s price to a base value of January 
2015. The space heating demand is recalculated based on the price fluctuation since 
2015.  

- The third implementation repeats the procedure that is used in the second 
implementation but uses the base year of 2010 to redefine the space heating demand.  

2.5 Validation and assessment 
Because there is no publicly available validation data at the building-scale level, validation must 
be conducted on a higher spatial level. To validate the space heating demand, the mean gas use 
per house column of the “Kerncijfers per postcode” dataset is used (CBS, 2023a). To ensure 
accurate comparison between the model predictions and the validation dataset, several steps 
are taken to align them to the same spatial level. 
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Firstly, predictions for all houses in the neighborhood are aggregated per postal code area. 
Similarly, the validation dataset's total demand is calculated by multiplying the mean gas 
demand per dwelling by the number of dwellings per postcode. 

Secondly, since the model does not encompass all buildings with residential functions, the 
predictions are adjusted by multiplying them by the fraction of missing houses. This adjustment 
ensures the closest possible comparison between the validation data and the prediction dataset. 
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3 Results  
The result section is structured in alignment with the aforementioned research questions. 
Section 3.1 presents findings from the literature review on papers employing a physics-based 
model. Section 3.2 outlines results derived from the literature review concerning socio-economic 
models. Following this, Section 3.3 provides the outcome of the constructed physics-based 
model. Section 3.4 will provide the results on the integration of socio-economic variables in the 
physics-based model.  

3.1 Literature review of physics-based models 

3.1.1 Search results 
The query for papers on Web of Science and Scopus returned a total of 1583 papers. Out of these, 
the first 256 abstracts were reviewed using the ASReview Lab tool. However, beyond this point, 
the algorithm primarily presented papers that were deemed less aligned with the topic of this 
thesis. Of these 256 abstracts, 36 papers were selected for in-depth reading, because these 
papers focused on the space heating domain of energy demand modelling.  

3.1.2 Input variables 
The physics-based models vary in different dimensions. Some models are detailed 
thermodynamic models of a select group of buildings, while other models focus on developing a 
model that can generalize to a larger area. Some models focus on having a high temporal 
resolution, while other models focus more on predicting accurate monthly or yearly energy 
demand. Consequently, a large variation of input factors for physics-based models exists.  

Figure 3.1 shows all the input factors that are used as input for the physics-based models. The 
most frequently mentioned factors were building typology, ground floor area, building year, and 
3D geometry. The majority of the physics-based models use pre-defined building typology to 
segment the building stock into generalizable types. These typologies then determine the values 
of other factors, like the window-to wall ratio or transmittance values.  
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Figure 3.1 Sankey diagram, showing the categories of the input factors and the specific input factors that are used 
by the different physics-based demand models. 

The models vary to what detail transmittance processes are included in the model. For example, 
the model by Ledesma (2021) uses separate U- and Rc – values for every buildings element (door, 
windows, ceiling, internal walls, external walls, floor and roof). Most models use a selection of 
these elements, of which external wall- and window transmittance are most often mentioned.  

In addition to physical factors of the house, many models also use energy related factors as 
model input. The most frequently mentioned factor in this regard is the type of HVAC system, 
which is consequently linked to its efficiency. Some models also use existing consumption data 
of houses to further calibrate the model. There are models that used monthly metering data of 
individual houses (Brøgger et al., 2019; Kristensen et al., 2018; Perwez et al., 2022; Sokol et al., 2017; 

Theile et al., 2022). However, because this data is often difficult to access due to privacy 
constraints, other models that want to calibrate the model with energy consumption data use 
level from neighborhood or postal code areas(Buttitta et al., 2019; Eggimann et al., 2019; Mastrucci, 

Marvuglia, et al., 2017; Zhang et al., 2018). 

Most models also integrate external factors into the energy demand model. The most frequent 
external factors were outside temperature and solar irradiance. These two weather factors have 
the largest influence on the internal temperature of the building, which in turn influences the 
space heating demand. More sophisticated models also take external factors like shading and 
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building density into account. The model of Costanzo et al. (2019) really laid emphasis on the 
external factors by also including wind, sky view factor, and humidity into the model.  

Lastly, some models included socio-economic factors to further calibrate the model. This was 
especially pronounced in models that aimed to calculate hourly energy demand, because in 
order to know hourly energy demand, one needs to know the schedule of the occupant first 
(Abbasabadi et al., 2019; Hu et al., 2016; Palacios-Garcia et al., 2018; Veljkovic et al., 2023). These 
occupancy schedules were mostly based on predetermined standards. Other socio-economic 
factors that are sometimes included are household size and occupancy type. The other socio-
economic factors in Figure 3.1, like poverty, tenure type, and income, are part of the model by 
Abbasabadi (2019), which actually has a socio-economic emphasis. This model, therefore, does 
not include many physical building factors, apart from building footprint and building year 
(Abbasabadi et al., 2019).  

3.1.3 Performance 
In order to check whether a model is good at predicting space heating demand, validation must 
be performed. Figure 3.2 shows the metrics that are used in existing literature to express the 
accuracy of the model. The abbreviations in Figure 3.2 are included into the nomenclature in 
Appendix D. The figure shows that the most commonly used accuracy metrics are the R-squared, 
Coefficient of Variation for the Root Mean Square Error (CVRMSE) and the Root Mean Square Error 
(RMSE). The R-squared and the CVRMSE have a great benefit, because they are unitless. Models 
that use these performance metrics are, therefore, easier to compare.  

 

Figure 3.2 shows which models included CVRMSE and/or R-squared to express the accuracy of 
the model. The table shows that Todeschi et al. (2021) have the highest R-squared of all the 
papers that used this assessment metric. In their paper, they develop three different models: a 
gradient boosting Machine Learning model, a simplified GIS thermal balance model and an 
extensive GIS model, using the software CitySim Pro. They identified that the Machine Learning 
algorithm provided the highest accuracy, but also has the highest risk of overfitting. For the 
Machine Learning algorithm to work, you would need a labelled dataset. Therefore, they also 
developed a simplified physics-based GIS model. This simplified GIS model had a lower accuracy 
of 0.794 but is less sensitive for overfitting. 

Figure 3.2 Performance metrics that are used by the different models 
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The models by Ledesma et al. (2021) and Geraldi & Ghisi (2022) show low CVRMSE values on a 
building scale. Both models developed a model that predicts the Energy Use Intensity (EUI) for 
school buildings. Because this is a relatively homogenous group of energy users, it can be 
expected that a lower error can be established when modelling the EUI.  

Veljkovic et al. (2023) and Eggimann et al. (2019) both have good performance scores. Veljkovic 
et al. (2023) have a low CVRMSE value of 2.67% and Eggimann et al. (2019) have a R-squared of 
0.92. However, both of these assessments have been done on the neighborhood scale, rather 
than the building scale. By doing this, you reduce some of the variation between buildings, which 
makes achieving a lower CVRMSE and a higher R-squared value more attainable. 

Table 3.1 Performance measurement of physics-based demand models from literature. Empty cells imply that the 
paper did not disclose this information. 

Metric R-squared CVRMSE (%) timescale spatial scale 

Todeschi et al., 2021 0.993  daily building 

Eggimann et al., 2019 0.92  yearly neighborhood 

Brøgger et al., 2019 0.816 105.4 yearly building 

Marvuglia, et al., 2017 0.794    building 

Perwez et al., 2022 0.77 13.2 yearly national 

Schwanebeck et al., 2021 0.7   yearly urban 

Buffat et al., 2017 0.6    building 

Veljkovic et al., 2023  2.67 yearly neighborhood 

Ledesma et al., 2021  4.6 yearly building 

Geraldi & Ghisi, 2022  8.17 yearly building 

Buttitta et al., 2019  10.2  building 

Wang et al., 2020  11.5 yearly neighborhood 

Gulotta et al., 2021  15 yearly national 

Hedegaard et al., 2019  30   
Nageler et al., 2018  40.2 yearly building 

Sokol et al., 2017  66 yearly building 
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3.2 Literature review socio-economic models 
The query for socio-economic space heating demand models yielded 178 papers. Upon 
examining the abstracts through ASReview Lab, 24 papers were deemed relevant for this thesis, 
because they primarily focused on the relationship between socio-economics and space heating 
demand and less on other fields of energy demand. These 24 papers were reviewed, and a 
summary of the findings are presented in the following sub-questions. 

3.2.1 Model approaches 
Because the domain of socio-economics is so broad, the topic of energy consumption is 
analyzed from numerous perspective orientations. These orientations are service, expenditure, 
and socio-economic characteristics.  

Service oriented 
The first type of models uses services (e.g. appliances) as the starting point of the research. While 
these models also focus on space heating and domestic hot water, they often include a wide 
range of electrical devices as well. Therefore, these papers are often less relevant in the case of 
this research. One example of a model that aims to explain energy demand through residential 
services is the model by  Jia et al. (2023). In this model they aim to disaggregate energy demand 
across appliances through a conditional demand model. By doing this, instead of only focusing 
on the household as a whole, more nuanced patterns of energy demand can be found. Another 
paper that is service oriented is the discrete choice model that was constructed by Han et al. 
(2022). In their research, they used microdata to distinguish the choices people make on what 
energy services to use and how socio-economic variables can help explain these choices.  

Expenditure oriented 
The second set of models takes expenditures withing the household as a starting point. These 
models prioritize understanding how individuals respond to price fluctuation in various energy 
consumption areas. They often seek to identify different elasticities based on social factors such 
as age and household composition. The papers by Rehdanz (2007) and Schulte & Heindl (2017) 
contain models that take expenditures as a starting point. In their paper, Schulte & Heindl (2017) 
aim to uncover how differences in household composition and household income relate to 
differences in energy demand elasticity. This knowledge can help in predicting energy demand 
alongside different kinds of households. 

Socio-economic characteristics oriented 
The third category of models primarily investigates the direct relationship between socio-
economic characteristics and space heating demand. These models mostly do not include 
macro-economic trends like price fluctuations. Instead, they are focused on explaining yearly 
energy demand by socio-economic variables. The models are largely build on combining 
historical energy demand with regression methodologies or their variants, including quantile 
regression, ridge regression, elastic net regression (Bakaloglou & Charlier, 2021; Belaid et al., 
2020; Belaid & Rault, 2021; Çebi Karaaslan & Algül, 2023; Harold et al., 2018; Lawal et al., 2021; 
Meier & Rehdanz, 2010; Schmitz & Madlener, 2020; Wiesmann et al., 2011). In these regression 
models, the aim is to find out which socio-economic characteristics of households contribute 
the most in explaining the variation in energy demand.  
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3.2.2 Performance of regression models 
In Table 3.2, an overview of model performances from different papers is shown. The table shows 
that most OLS regression models tend to have a lower performance than more sophisticated 
models like Machine Learning, Quantile Regression, Random Effect Regression and Conditional 
Demand Models. While it looks like the model by Lawal et al. (2021) has the highest performance, 
it has to be noted that this model is assessed on a higher spatial level of zip codes, while the other 
models are assessed on the household level.  

Table 3.2 Performance comparison of socio-economic models for predicting space heating demand. 

Paper Model 
orientation 

Method Spatial 
level 

Temporal 
level 

R2 

(Schulte & 
Heindl, 2017) 

Expenditures Quadratic expenditure 
system 

household annual - 

(Lawal et al., 
2021) 

Characteristics Machine Learning, OLS zip code annual 0.95 

(Belaid et al., 
2020) 

Characteristics Quantile regression household annual 0.76 

(Jia et al., 2023) Services conditional demand household annual 0.673 
(Harold et al., 
2018) 

Characteristics Random effect regression household daily 0.585 

(Çebi Karaaslan 
& Algül, 2023) 

Characteristics 
OLS Regression, Quantile 
Regression 

household annual 0.41 

(Matsumoto, 
2023) 

Expenditures consumption elasticity 
model 

household annual 0.335 

(Han et al., 
2022) 

Services Discrete choice model household annual 0.33 

(Wiesmann et 
al., 2011) 

Characteristics OLS Regression household annual 0.322 

(Meier & 
Rehdanz, 2010) 

Characteristics OLS Regression household annual 0.162 

(Schmitz & 
Madlener, 2020) 

Expenditures/ Quantile regression household annual 0.1103 

3.2.3 Significant socio-economic coefficients 
When analyzing the individual effect of different factors in socio-economic models, several 
variables consistently show a significant influence. Figure 3.3 illustrates the percentage of 
research papers where specific variables have a statistically meaningful impact on energy 
demand. Among the most prominent socio-economic factors are age, household size and 
household composition. Additionally, factors related to the building itself and the climate, such 
as the number of rooms, heating degree days, and ground floor area, also frequently appear as 
significant influences. 
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Figure 3.3 Variables from socio-economic with significant coefficients 

3.3 Physics-based model 

3.3.1 Archetype segmentation 
Building types 
The implementation of the conditional statements by Yang et al. (2020) shows a relatively 
accurate representation of the building stock in Nijmegen. Because no labelled data is available, 
the quality can only be checked visually. When looking at the dataset for Arnhem and Nijmegen it 
shows that the conditional statement fits relatively homogenous neighborhoods well, but 
performs less good in neighborhoods that are older and have a more chaotic distribution and 
shapes of houses. Figure 3.4 shows how this plays out in the Nijmegen neighborhoods 
“Neerbosch-Oost” and “Altrade”.  

 

On the Neerbosch-Oost map, which is a relatively homogenous neighborhood built during the 
1970s, it shows how the model distinguishes the different building types well. On the most 
northern street “Dorpsstraat”, the single-family homes are labelled correctly. One inconsistency 
in this neighborhood are the buildings on the other side of the Dorpsstraat. These buildings show 

Figure 3.4 A comparison of building topologies between two neighborhoods. On the left, Neerbosch-Oost illustrates a 
uniform distribution of building types, while on the right, Altrade showcases a diverse range of building types (MFH = 
multi-family home, SFH = single family home, TH = terraced house, TH_End = terraced end house 
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a mix between labelled terraced house, or terraced end house. When looking at Street View 
images by Google (2023) in Figure 3.5, it shows that these houses are attached to each other by 
only a garage box. This puts them somewhat in between being a middle row house and an end 
house, resulting in inconsistency in the segmentation. 

In Altrade, it shows that most buildings are classified correctly, however some buildings with very 
irregular shapes, like the large, terraced end house in the middle of the map (in blue) do not seem 
to be correct, due to the BAG input dataset. 

The satellite image in Figure 3.6, shows a building complex in Altrade that is classified as a 
terraced end house and a multi-family home. It seems very unlikely that this entire building has a 
residential function. Consequently, this wrong typology leads to an overestimation of energy 
demand. These examples illustrate some of the challenges encountered in the classification of 
buildings, which are not limited to Altrade but also extend to other areas within the study region, 
predominantly resulting in an overestimation of energy demand. 

Figure 3.6 Zoom-in on buildings in Altrade that are classified as terraced end house and multi-family home. 

 
  

Figure 3.5 Houses on the Dorpsstraat in Neerbosch-Oost, linked to each other by a garage box.  
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Building renovation rates 
In the TABULA/episcope building typology, three distinct refurbishment scenarios are delineated, 
each associated with specific U-values tailored to address varying degrees of energy efficiency. 
These scenarios encompass the existing state, usual refurbishment and advanced 
refurbishment. In this thesis, buildings with an EPC label D or higher are considered to have 
undergone a usual refurbishment, while buildings without an EPC label or a label lower than D, 
are assigned to the existing state class. The refurbished state has better insulation measures than 
the existing state. The effect of the measures on U-values is dependent on the building age group. 
Figure 3.7 shows how the building stock of the Arnhem-Nijmegen region is divided into existing 
state and refurbishment groups. For the oldest and largest age group, it is assumed that around 
a third is renovated. For the two consecutive construction periods after that, it is assumed to be 
about half. For the newest construction periods, the renovation rates are lower, as this has not 
been necessary yet. 

Figure 3.8 shows how some of the insulation rates in the model compare to national rates from 
CBS (Kloosterman et al., 2021). The graph reveals that while the model closely aligns with 
national standards for wall insulation, it tends to overestimate floor insulation and underestimate 
roof insulation. These disparities can influence the performance of the model.  

Figure 3.8 Insulation rates and HVAC system rates in the model compared to national rates.  

 

Figure 3.7 Distribution of the Arnhem-Nijmegen building stock, depicting houses categorized based on EPC data in 
the renovation or original state categories. 
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3.3.2 Spatial findings 
Yearly statistics 
To understand how the model behaves spatially on building data, the average building gas use in 
the municipalities of Arnhem and Nijmegen is visualized in Figure 3.9. The maps reveal a distinct 
trend: areas near the city center and older neighborhoods tend to exhibit higher predicted gas 
usage, whereas regions farther from the urban core, often comprising newer buildings, show 
lower gas consumption. 

Notably, certain postal codes display an average gas usage rate exceeding 10,000 m3 per building, 
according to the model predictions. Upon inspecting the building typology dataset, it becomes 
evident that these postal codes only contain large apartment blocks. As the analysis considers 
the average gas usage per building, rather than per address, neighborhoods that predominantly 
contain this building type show substantially higher averages. 

 
 

  

Figure 3.9 Mean gas use of all buildings within postal code area predicted by the physics-based model in 
Arnhem (left) and Nijmegen (right). 
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Temporal zoom-in 
Four buildings were selected so that the model behavior can be inspected on a daily scale. These 
buildings are selected from the three different building classes. In Figure 3.10, the daily demand 
is given for each of these buildings. It can be seen that all buildings follow the same pattern. This 
makes sense, because all of these houses have the KNMI weather station of Deelen as the closest 
station. Therefore, the pattern is the same. The magnitude is what differs: it can be seen that the 
large apartment block consumes the most energy, followed by the old, terraced house. The old, 
terraced house has higher U-values, which leads to a higher demand. This is then followed by the 
Single-Family Home and then the new Terraced House. It makes sense that the Single-Family 
Home is higher, as this building has more exterior walls than the new terraced house.  

 
 

MFH(1999)  

TH (1888) 

SFH (1994) 
  

TH (1999) 
 

Figure 3.10 Graph of daily energy demand fluctuations for four sample buildings, each belonging to a distinct 
building class. (MFH = Multi-Family Home, TH = Terraced House. SFH = Single Family Home) 

 

3.3.3 Model performance 
In Table 3.3, various model configurations their respective performances are delineated. The 
results depict varying performance across the different configurations. Notably, Run1, Run2 and 
Run6, have the lowest CVRMSE and NMBE values. This indicates that the actual and predicted 
demand rates are closely aligned. However, Run4, Run5, and Run9 boast higher R2 values. This 
means that these models are better at showing the distribution of the postal codes, though their 
actual values are biased and are further removed from the actual predictions. These changes in 
performance metrics are caused by the incorporation of the 3D volume variable, replacing the 
approximation of the conditional floor space combined with average floor height.  
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Table 3.3 Performance metrics for different iterations of the model and the three different postal code layers.  

 
The performance of the model also differs spatially. In Figure 3.11, the standardized residuals of 
Model Run1 are mapped for the numeric postal code areas of Arnhem and Nijmegen. The 
residuals are calculated by subtracting the prediction by the true demand and then dividing it by 
the standard deviation. In Nijmegen a striking find is that neighborhoods that were primarily 
constructed after 2000 tend to be massively overestimated, while neighborhoods that were 
primarily constructed during the 1980s and 1990s tend to be underestimated by the model. This 
underestimation is also visible in Arnhem.  

Figure 3.11 Standardized residuals for the physics-based model Run1 on the pc4 spatial level for Nijmegen (left) 
and Arnhem (right). 
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3.4 Integration of socio-economic factors 

3.4.1 Important variables from Random Forest 
Hyperparameter tuning 
When calibrating the RF models, the hyperparameters of the number of estimators and the max 
depth parameter were set. A value was chosen based on the graphs visualized in Figure 3.12. In 
order to find a balance between reduction in RMSE and overfitting, the max-depth parameter was 
set at 7. This choice resulted in an approximate RMSE reduction of 100 gas m3. While the number 
of estimators does not contribute to overfitting, it does influence the runtime of the model. 
Consequently, to optimize computational efficiency without compromising performance, the 
number of estimators was fixed at 40. 

 
Figure 3.12 RMSE values for different settings of hyperparameters for the training dataset and the validation 
dataset for the Random Forest model on the pc5 level. 

Performance 
The Random Forest model's performance was evaluated by conducting validation across three 
spatial levels, with results summarized in Table 3.4. The PC4 and PC5 layers both show a 
reduction in RMSE and have a moderate to high R-squared value of 0.683 and 0.600, respectively. 
When comparing these R-squared values performances of the socio-economic models (Table 
3.2), these performances are highly satisfactory.  

However, the model struggles when it comes to the most local postcode layer, PC6. This is mainly 
due to the stringent privacy measures in place at such a fine-grained level. To protect individuals' 
privacy, large chunks of data are anonymized, making it challenging for the model to derive 
accurate insights from this highly localized data. 

Table 3.4 Performance of the Random Forest model on the three different spatial postal code scales. 

Postcode level RMSE R-squared 
PC4 200.2 0.683 
PC5 215.9 0.600 
PC6 388.1 -0.01 
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Feature importance  

The RF models provide a convenient means to assess which variables are most influential in 
explaining the variation in gas demand1. Only the feature importances for the PC4 and PC5 layers 
were assessed, as the PC6 model did not have any explanatory significance. The feature 
importances are visualized in Table 3.5. Both the pc4 and pc5 models highlight similar key 
variables. The most important variables include tenure type (renting or owning of dwelling), age 
demographics, migration background, and estimated property value (WOZ-waarde). These 
variables are utilized as input for the regression analysis. 

Table 3.5 Feature importances for the Random Forest model on the PC4 and PC5 spatial scales.  

Variable feature pc4 pc5 
Tenure type Home-owned dwelling  0.02 0.28 
Migration background Dutch 0.13 0.18 
Age 25-45 0.19 0.17 
Average property value Average property value (WOZ) 0.06 0.14 
Tenure type Social housing 0.32 0.07 
Age 65 and over 0.09 0.03 
Household composition two-parent 0.01 0.03 
Total dwellings Total dwellings 0.01 0.01 
Household composition one-person 0.01 0.01 
Gender Male 0.01 0.01 
Age 15-25 0.01 0.01 
Household composition Uninhabited 0.01 0.01 
Total inhabitants Total inhabitants 0.01 0.01 
Total households Total households 0.01 0.01 
Household composition Household composition: single-parent 0.02 0.01 
Age 0-15 0.02 0.01 
Household composition multi-person without children 0.03 0.01 
Age 45-65 0.04 0.01 
Gender Female 0.01 0 
Migration background Western 0 0 
Social benefits Social benefits   0 
 

3.4.2 Regression results 
Because of the problem of multicollinearity, the OLS regression can only take a limited number 
of variables. Therefore, one feature per variable was selected as input for the model. The derived 
coefficients and their significance are shown in Table 3.6. 

Table 3.6 Coefficients for the OLS pc4 and pc5 levels. Significance levels p < 0.01 = ***, < 0.05 = **, <0.1 = * 

Variable PC5 coefficient PC4 coefficient 
Average property value (log) 372.80*** 260.00*** 
Household size -8.51 -95.02*** 
Home-ownership rate 3.01*** 6.2150*** 
Age group 45-65 8.36*** 20.94*** 
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To get a better idea of how the separate features of a variable behave in a regression model, 
multiple iterations of a ridge regression model were executed. These results are visualized in 
Appendix F. The ridge models lead to a number of findings. 

Firstly, across different age brackets, the coefficients reveal diverse relationships with mean gas 
consumption. For instance, a higher percentage of individuals aged 15-25 consistently correlates 
with increased gas demand, as indicated by consistently positive coefficients. Conversely, the 
age group of 45-65 consistently demonstrates a positive impact on gas demand, implying that 
higher proportions of older individuals are associated with heightened gas consumption. 
However, the variable representing individuals aged 65 and older shows ambiguity regarding its 
influence on gas demand, as none of the coefficients reach significance. Thus, conclusive 
interpretations regarding its effect cannot be made with certainty. 

The variable representing tenure type, which is divided into homeownership and renting 
percentages, consistently shows a pattern. An increase in the proportion of households owning 
their homes correlates with higher mean gas demand, whereas a higher fraction of renting 
households tends to have a negative impact on mean gas demand.  

Among the iterations, the variable of migration background shows that a larger share of 
households with a Dutch backgrounds tends to have a positive influence on the mean gas 
demand. In contradiction, a higher share in households with a western and non-western 
migration background has a negative influence on the mean gas demand.  

Lastly, across the different iterations, the mean household size tends to have a negative influence 
on the mean gas demand.  

3.4.3 Integration 
Because of the large sizes of the rewritten predictions, maps showing the spatial changes in 
prediction values for the integration of the socio-economic variables tenancy type, cultural 
background, and age are included in Appendix G, H, and I. The difference is calculated by 
subtracting the new prediction from the old prediction. A positive percentage, therefore means 
that a decrease in energy demand was established, and a negative percentage means that an 
increase in energy demand was established.  

Appendix G shows how the integration of the tenancy type variable affects the gas demand 
predictions. It shows that primarily neighborhoods in the cities of Nijmegen and Arnhem are 
expected to have a reduction in gas demand, as these neighborhoods contain a larger share of 
rental housing. On the other hand, neighborhoods in nearby villages like Beuningen, Bemmel, 
and Huissen show an increase in gas demand, as in these areas, the share of home-owned 
houses is larger.  

Appendix H shows how the predictions change when the cultural background coefficients are 
integrated. It shows that urban neighborhoods with a larger share of people with a migration 
background, have a reduction of a maximum of around 1% in energy demand and areas with 
predominantly people without a migration background show a small increase in demand of 
around 0 to 0.3%. These areas are mostly located on the urban fringes or in the villages outside 
of the urban cores. 

In Appendix I, the effect of integrating the age regression coefficients is mapped. The map shows 
that the prediction of gas demand increase in areas where primarily older people live. This is most 
prominently visible in the villages of Oosterbeek, Velp, and the eastern part of Nijmegen. Areas in 
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the urban cores of Arnhem and Nijmegen show a reduction in energy, because these areas are 
primarily inhabited by younger generations.  

It's worth noting that the effect of the integrations on the predictions are small, typically less than 
1%. This is because the coefficients applied, along with the weighted proportions for each 
neighborhood, soften the impact of socio-economic variables. Though the effect on the 
predictions themselves are small, they still have an effect on the overall performance of the 
model. 

Performance of the model after the integration of the variables age, tenancy type, and cultural 
background. 
The graphs in Figure 3.13, show the change in performance metrics after the integration of the 
three socio-economic variables. For the variable age, the effect depends on the iteration of the 
physics-based model. For Run1 it shows a slight reduction in CVRMSE and a small increase in R-
squared for the spatial levels of pc4 and pc5, while for the Run5 predictions, the CVRSME and R-
squared only get worse. For the other socio-economic integrations of cultural background and 
tenancy type no performance increases were found. 

 
  

 
 
 

 
Figure 3.13 Change in performance metrics after the integration of regression coefficients of socio-economic variables age, 
tenancy type and Dutch background. In blue the effect on physics-based model run 1 is shown, in red on model run 5. 
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Performance of the model after integration of age-based occupancy schedule and elasticity 
The integration of price elasticity and age-based occupancy schedules show mixed results. These 
results are visualized in Figure 3.14. Overall, the R-squared decreases across all model iterations 
of elasticity and occupancy, which means that the model does not become better at showing the 
true distribution of gas demand through the urban area of Arnhem-Nijmegen.  

 

 
Figure 3.14 Performance metrics of the elasticity and occupancy integrated models. run1_2019 = physics-based 
model, e1 = elasticity base year n-1, e2 = elasticity base year 2015, e3= elasticity base year 2010, e1h1_ = elastic 
base year n-1, occupancy, h1 = occupancy 

However, the incorporation of the elasticity in iteration E1, E2 and E3 does reduce the NMBE by 
0.05 on the pc4 level. Also, the CVRMSE shrank by 5% on the pc4 level and 2% on the pc6 level. 
For the pc5 level, the CVRMSE stayed about the same. 

The incorporation of the age-based occupancy schedule, which is model iteration H1, does not 
show any signs of improving the model. Consequently, the combined model of elasticity and age-
based occupancy schedule (E1H1) also does not show any performance improvements.   



38 
 

4 Discussion 
This discussion is outlined in four main sections. In Section 4.1, the data sources and the 
methodology are critically reflected upon. This is followed by Section 4.2, which shows the 
interpretation of the aforementioned results. Section 4.3 outlines the limitations of this research, 
which is followed by the recommendations for further research in Section 4.4. 

4.1 Limitations of methodology 
In this thesis, a wide range of data sources is used to predict the space heating demand within 
residential buildings. Each of these datasets and their respective processing come with their own 
simplification of reality.  

3DBAG and BAG: Susceptible to Oversimplification Errors 
The 3D and 2D versions of the BAG represent extensive datasets encompassing various variables. 
However, the richness of these datasets also renders them susceptible to erroneous data, 
particularly concerning the classification of building functions. 

A simplification made in this research is the exclusion of buildings that serve functions beyond 
residential purposes. Only buildings designated solely for residential use are included in the input 
dataset. This exclusion criterion also includes buildings primarily intended for residential 
purposes, even if they contain minor areas allocated to other functions. However, this cannot be 
checked because the BAG only mentions which functions are present within a building and it 
does not mention the fraction of conditional floor area that is used by the respective functions.  

In addition, within the building stock, there are also buildings that are saved as only having a 
residential function. However, upon further inspection, it becomes very unlikely that this is the 
only function present. It is difficult to assess this phenomenon for every building in the dataset, 
but it can cause the model to overestimate the energy demand.  

Another error that is found in some buildings in the dataset is missing or incorrect data on the 
ground floor area. This was already mentioned by León-Sánchez et al. (2021). In their paper, they 
fixed this problem by geometrically modifying the 3D objects. Because in this thesis, a 2D version 
with 3D attributes was used, this was not possible. Therefore, errors in ground floor area, can lead 
to an underestimation of energy demand in certain buildings, because the calculation of 
ventilation loss and HVAC energy usage depend on this variable in some model configurations.  

Archetype segmentation: Limited categories lead to incorrect predictions 
The first set of assumptions that possibly effect the results of this research, regard the process of 
segmenting the building stock according to the TABULA/episcope building typology. Within this 
classification framework, buildings are categorized into one of three distinct building classes and 
five construction periods. Various parameters, such as window size, insulation quality, and 
heating system efficiency are assigned based on this classification. Yang et al (2020) mentioned 
in their paper, that assigning all these assumptions to groups of buildings, removes part of the 
variation in the building stock, resulting in incorrect predictions of space heating demand.  

A specific problem, also mentioned by Yang et al (2020) is the assumption of TABULA that all 
buildings use a HR gas boiler as a heating supply system. While, for most houses this is still the 
case, it becomes more and more present that buildings have alternative heat sources like 
geothermal or heat pumps. According to CBS (2023c), at the end of 2022, 1.5 million houses had 
an electrical heat pump installed. Especially in neighborhoods with a larger share of newly built 



39 
 

houses, this fact can lead to an overestimation of gas demand by the current physics-based 
model.  

To predict which buildings have undergone refurbishment, the Dutch EPC dataset is utilized. 
However, the EPC dataset of the Netherlands is characterized by incompleteness and 
subjectivity. As highlighted by Hettinga et al. (2023), the process of obtaining an EPC label in the 
Netherlands incentivize households undergoing refurbishment to get an EPC survey, while those 
not prioritizing it may postpone this until they sell their property. This selective participation leads 
to the fact that a lot of houses do not have an EPC yet.  

In the methodology, without an EPC are presumed not to have undergone any refurbishment. 
However, this assumption may not always hold true. Refurbishments conducted without 
obtaining an EPC survey, often due to the associated high costs, can occur, leading to an 
underestimation of refurbishment rates (Interpolis, 2020). This can lead to an underestimation of 
refurbishment rates, which was also visible in Figure 3.8.  

Weather data: Oversimplification and urban setting effects 
The weather data utilized in this thesis originates from the official KNMI weather stations and is 
subsequently linked to each building in the dataset based on the smallest distance. However, 
this approach represents a simplification of reality, because many KNMI weather stations are 
situated outside urban areas, where weather patterns differ from those in urban settings.  

Costanzo et al. (2019) emphasize the importance of incorporating comprehensive external 
factors into space-heating demand models, including urban morphology, density, and surface 
materials. Urban morphology significantly impacts wind flow within urban areas and the resulting 
cooling effect. Additionally, urban density and surface material influence the absorption of 
incoming solar radiation and the extent to which buildings are shaded by neighboring buildings. 
In dense urban cores these changes in environmental factors, can lead to the formation of Urban 
Heat Islands (UHIs), which tend to trap heat within the city. 

While UHIs are often associated with their harmful effects during summer, they also influence 
winter conditions. According to Macintyre et al. (2021), the UHI effect reduces cold temperatures 
by approximately 1.5 degrees. This increase in winter temperature can lead to a decrease in 
space heating demand. The physics-based model developed in this thesis does not incorporate 
these effects, because it is using weather data from official stations outside of the urban area. 
This oversight could lead to an overestimation of energy consumption in urban cores. 

Socio-economic data: Unethical categorizations of socio-economic phenomena 
Socio-economic data is not available at the household level, as this would pose privacy 
concerns. Therefore, this thesis uses postal code data from three different spatial scales to 
integrate socio-economic data into a physics-based model. However, this approach introduces 
its own set of ethical considerations. 

As highlighted by Hosseini et al. (2022), the aggregation of data into large datasets can foster 
potentially problematic relationships. Using such extensive datasets encourage users to 
establish statistically significant relationships between single socio-economic variables and 
dependent variables, such as space heating demand in this study. However, within more critically 
oriented social sciences, it is emphasized that phenomena seldom stem from isolated variables, 
but rather stem from a complex interplay of factors, regarding individual behavior, economic 
incentives, social norms and other influences(Frederiks et al., 2015). A great example of a social 
science approach that contradicts the approach taken in this thesis, is the Actor-Network Theory 
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paradigm. Within this paradigm, every living organism is seen as actors that take actions, 
irrespective of large-scale socio-economic trends (Inglis & Thorpe, 2019). Focusing on these 
actions first, instead of labelling people with large-scale socio-economic variables, could 
provide less biased findings.  

Especially in the case of demographic data, these simplistic statistical relationships can possibly 
lead to discriminatory consequences (Hosseini et al., 2022). For instance, when a relationship is 
found between cultural background and space heating demand, it risks oversimplifying, 
suggesting that cultural background alone dictates heating needs. In reality, there is a large 
variety of factors that interact with each other: cultural background could possibly relate to 
differences in housing conditions, household sizes, working patterns, economic situations etc. 
It’s therefore dangerous to assume these single relationships.  

Another ethical question arises from the method of assigning aggregated socio-economic data 
to individual households within postcodes, employing a weighted mean for each variable. This 
procedure takes away the local variation that households. For instance, neighboring households 
might differ significantly in demographics, leading to diverse occupancy schedules. However, 
within this model, they are treated as identical entities, because of their location within the same 
postcode. This oversimplification could render policies derived from such models ineffective, as 
they fail to account for the nuanced realities of individual actors. 

Validation: Dealing with differences of scale 
The validation technique employed in this thesis comes with an important consideration. In this 
validation, all the predictions are summed per postal code. To address the issue of missing 
houses in the model predictions, the summed prediction is multiplied by the fraction of missing 
houses. However, the dwellings that are not included in the model are primarily dwellings that 
tend to be located in multi-purpose buildings.  

Dwellings situated within buildings with mixed functions typically have smaller sizes or less 
exterior surface area. Consequently, the demand for energy in these types of housing units is 
lower than the demand in homes that solely have a residential function. By not accounting for 
this difference, the multiplying-by-fraction approach can lead the aligned prediction to be 
overestimating the energy demand of postal codes where larger varieties of building functions 
occur.  

4.2 Interpretation of results 

4.2.1 Lightweight physics-based model 
Spatial findings 
While the accuracy of the building segmentation along the archetype rules is not available, it can 
be concluded that the majority of buildings were classified correctly. Nevertheless, instances 
occurred where similar buildings were classified as different building types. Notably, 
distinguishing houses as either a Terraced End-house or a Terraced Middle Row House posed 
challenges, as outlined in Figure 3.5. Such inaccuracies can result in misassigned Window-to-
Wall Ratios. Consequently, buildings that are classified as middle-row when they are actually end 
houses may inaccurately show a larger proportion of window area than is actually present. This 
discrepancy arises because the external wall on the free-standing side typically features fewer 
windows than the front and back of the building, leading to an overestimation of gas demand. 
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The model's predictions indicate that areas characterized by larger, older houses tend to exhibit 
higher gas demands compared to neighborhoods dominated by terraced and newer houses. 
These findings align with contextual expectations: terraced houses offer less surface area for 
heated air to escape through compared to single-family homes and newer houses typically have 
better insulation, thereby requiring less gas to main a comfortable indoor temperature.  

Performance 
Though the results seem to make sense contextually, it is important to check if the actual 
predictions make sense themselves. The results of different model iterations show varying 
amounts of performance. The iterations that contain specific interesting insights are Run1, Run2, 
Run4 and Run5.  

Run 1 and 2 have the lowest CVRMSE and NMBE scores, suggesting the predictions are closest 
to the true values. Run1 and 2 differ in one configuration: Run 1 employs ground floor area as the 
reference for domestic hot water usage, whereas Run 2 utilizes conditional floor space, resulting 
in a doubling or even tripling of the domestic hot water prediction. This change significantly 
impacts the NMBE values, transitioning from a 2-10% underestimation to a 3-11% overestimation 
of gas demand. This is also where the model is lacking information. The model assumes an 
average demand per square meter for domestic hot water, which is based on the paper by 
Flourentzou and Pereira (2021). However, while space heating is highly dependent on a house 
itself, domestic hot water usage is highly dependent on the number of people that live in a house. 
This information was not incorporated into this model, leading to an increase in bias.  

Run 4 and 5 stand out with the highest R2 metrics. This can be attributed to their more accurate 
integration of building shape compared to the first two iterations. Unlike Run 1 and 2, which 
approximate volume by multiplying ground floor area by floor count and a standard floor height, 
Run 4 and 5 utilize the Level of Detail (LOD) 2.2 Volume column, accounting for the building's 
actual shape with angled roofs and walls. Consequently, Run 4 and Run 5 seem to perform better 
at showing the relative differences between different postcodes across spatial levels. 

However, despite the improved portrayal of these relative differences between postcodes, Run 4 
and 5 demonstrate larger bias. While the relationship among neighborhoods is better shown by 
Run 4 and 5, the models have a larger bias. These iterations consistently overestimate space 
heating demand across all neighborhoods by 50-60%. The discrepancy arises from two possible 
reasons. Again, the overestimation could partly be caused by the fact that the validation 
technique is missing some of the variation in housing size. Additionally, the inadequacy of the 
ventilation loss formula in Appendix B.3, which employs a constant air change rate rather than 
considering variables such as building quality, age, and inhabitant behavior (Sokol et al., 2017). 
Therefore, simply replacing the reference room height with actual volume in the formula fails to 
accurately calculate ventilation loss values.(Frederiks et al., 2015; Todeschi et al., 2021).  

Main takeaway 
Overall, it can be said that the development of a lightweight physics-based model has proven to 
be a breakthrough. While its predictions may not rival those of more sophisticated models in 
accuracy, the model efficiently calculates space heating demand across entire urban 
landscapes in a short amount of time. This capability allows for the identification of larger spatial 
patterns in energy consumption, providing invaluable insights that complement the nuances 
captured by more complex models. Such a model is particularly useful in exploratory research 
projects where the aim is to assess its feasibility and value. This applied also to this thesis, where 
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the lightweight model facilitated assessing how the model responds to the integration of socio-
economic variables over a larger geographical area.  

4.2.2 Socio-economic integration: benefits and challenges  
Spatial findings 
The spatial effects of the integration in this thesis show only a very low change in space heating 
demand predictions. What they do show, however, is that spatially the changes tend to be visible 
quite clearly, when variables are integrated in a separate manner.  

A benefit of this integration is the fact that socio-economic variables can help correct biases 
inherent in the physics-based model. Specifically, it enables the identification of space heating 
consumption patterns that might otherwise go unnoticed. For policymaking this holds crucial 
importance, particularly in fields such as energy network expansion and transition, especially for 
the field of energy network extensification and energy transition. Spatial findings indicate that 
incorporating socio-economic variables could prevent the oversight of certain areas when 
formulating policies aimed at upgrading the energy network. 

However, it is important to acknowledge the downsides as well. Integrating socio-economic 
variables comes with its own sets of risks, including the potential introduction of biases and 
discriminatory consequences. This downside is also visible in the spatial findings of the 
integration, as with the integration of single variables, certain neighborhoods show opposing 
trends, while in reality these opposing trends are not as straightforward as they appear now. This 
downside is also visible when looking at the performance metrics of the integration.  

Performance 
The findings from the integration analysis emphasize the persistent challenge of effectively 
incorporating socio-economic variables. Despite efforts to integrate them, the impact on space 
heating demand tends to be minimal. This can be attributed to the methodological approach 
wherein a weighted mean is calculated for each postal code area, leading to a diffusion of the 
variables' effects and complicating their interpretation. 

Consequently, the integration does not significantly enhance the model’s predictive 
performance. While certain model integrations may yield slight improvements, the extent of 
these enhancements is often marginal. Moreover, there is a legitimate question as to whether 
these improvements are a direct effect of the integration itself or whether they happen because 
of the under- or overestimating biases of the physics-based models Run 1 and 5.  

Main takeaway 
This thesis has contributed to understanding the influence of certain socio-economic variables 
on energy demand by employing a Random Forest model. The results demonstrate that the 
Random Forest model outperforms many existing socio-economic models identified in the 
literature review.  

However, the thesis also sheds light on the challenges posed by limited data availability and the 
limitations of traditional Regression methods. Due to these constraints, integrating socio-
economic variables into physics-based energy demand models did not yield positive results. 
Therefore, it is evident that additional measures must be undertaken to improve the efficacy of 
integrating socio-economic variables.  
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4.3 Future research  
Data enrichment 
This research has shown that the approach of using census data and a weighted-mean approach 
for integrating socio-economic variables is not effective in integrating socio-economic variables. 
Therefore, this study suggests several ways on overcoming this data related issue. 

Conducting surveys, similar to the German “Mikrozensus” among Dutch households could 
provide invaluable insights into household patterns of space heating demand (Schulte & Heindl, 
2017). By capturing more refined data on socio-economic factors, this approach can help getting 
a more nuanced understanding of the relationship between socio-economic factors and space 
heating demand.  

Exploring smart metering data from a subset of households could offer an opportunity to uncover 
occupancy schedules and energy consumption patterns across diverse demographic groups. 
These refined schedules and patterns could then potentially be extrapolated to a larger area to 
assess their effectiveness in improving predictions in energy demand modeling. 

Research efforts focusing on refining Dutch building typology and EPC data, hold promise in 
assigning more accurate building parameters and HVAC system parameters to houses. For 
instance, enriching building typology databases could encompass the transition from gas-based 
HVAC systems to other sources of energy, such as electrical heat pumps or district heating, 
including options like geothermal energy. This could help align the predictions of an energy 
demand model with real-world energy consumption trends. 

Methodology recommendations 
This thesis applied Random Forest, Ordinary Linear Regression (OLS) and Ridge Regression 
analyses to uncover patterns between socio-economic variables and space heating demand. 
While Random Forest is good at uncovering non-linear patterns, it cannot be used to modify 
physics-based predictions, as this model only offers information on feature importance, rather 
than direction. Regression methods were used to extract coefficients from the most important 
variables. However, this leads to oversimplification of relationships. 

It could, therefore, be helpful to apply more elaborate statistical and survey-based models from 
social science like quantile regression, conditional demand models, and discrete-choice 
models. These more sophisticated models can possibly perform better in uncovering complex 
relationships between socio-economic variables and space heating demand.  

By leveraging these advanced socio-economic models, the predictive performance of energy 
demand models can be enhanced. Moreover, employing a survey-based approach can mitigate 
ethical concerns raised in this thesis, as it allows for a more comprehensive understanding of 
energy consumption, while still respecting the principles of consent and transparency.  
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5 Conclusion 
5.1 Research Summary 
Space heating in buildings is one of the main components of household CO2 emissions. 
Government initiatives aim to reduce emissions through energy-saving programs. To develop 
accurate policy strategies, detailed information on energy demand is vital. However, accurately 
assessing energy demand remains difficult. Energy demand models can help provide this 
information. However, in existing research a strong dichotomy exists between physics-based 
models, that primarily focus on the thermodynamics of buildings, and socio-economic models, 
that primarily focus on the people that live in the buildings. This division leads in both models to 
a degree of unexplained variation in model predictions. This thesis aimed at incorporating socio-
economic variables into a physics-based energy demand model. The central research question 
that guided this investigation was:  

"What is the effect of integrating socio-economic factors into physics-based energy 
demand models for the purpose of predicting energy consumption in residential 
buildings?"  

This research question was answered through a selection of methods. Initially, two 
comprehensive literature reviews were undertaken, focusing on physics-based and socio-
economic energy demand models, respectively. Based on this literature review, a lightweight 
physics-based model was constructed, that could approximate energy demand for a larger area 
in a short amount of time. In this physics-based model, socio-economic variables were iteratively 
integrated through a combination of Random Forest, Regression and Elasticity analysis.  

The physics-based model turned out to predict the relative differences between neighborhoods 
well with R-squared metrics between 0.6 and 0.9. The CVRMSE on the actual values performed a 
bit lower around 30%. The integration of socio-economic variables did not seem to improve the 
model significantly.  

The fact that the integration did not improve the model could be caused by a multitude of reasons. 
For instance, the approach where a weighted mean per neighborhood was calculated for the 
coefficients might have contributed to reducing the impact of the integration. Additionally, the 
separate integration of socio-economic variables fails to reflect the detailed interconnections 
that are present in real-life scenarios. In reality, socio-economic variables are deeply intertwined, 
collectively shaping energy demand. Neglecting this comprehensive understanding limits the 
effectiveness of the model's predictions. 

5.2 Answer to research question 
Looking back at the aforementioned research question, the findings suggest that integrating 
socio-economic variables into physics-based energy demand models poses notable challenges. 
Firstly, the ethical dilemma surrounding privacy issues emerged as a considerable obstacle. 
Incorporating socio-economic factors into energy demand models requires accessing personal 
data, raising legitimate concerns about privacy infringement. That is why in this thesis, it was 
chosen to resort to postal code data on socio-economics. However, this resulted in limited 
available data. 

This limited data availability problem posed a significant constraint in this research. Socio-
economic analysis often requires fine-grained information on households. This is because 
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relationships between socio-economic variables and space heating demand are very 
comprehensive and interactive. By accessing these variables only on a higher spatial level, the 
relationships are diffuse and vague. This limits the effectiveness and accuracy of integrating 
socio-economic factors in a physics-based model.  

To address this issue, several improvements can be implemented. Utilizing metering data or 
conducting household surveys with consent for the usage of their demand patterns can provide 
a more comprehensive overview, while still keeping the ethical dilemmas regarding this sensitive 
data in mind. This approach enables the identification of more complex interrelationships 
between socio-economic variables and energy demand. When combining these richer datasets 
with advanced socio-economic models like quantile regression, conditional demand models, 
and discrete-choice models, there is potential for an enhancement of the predictive accuracy of 
energy demand models. 

In conclusion, while the integration of socio-economic variables into physics-based energy 
demand models holds promise for enhancing predictive accuracy, this study reveals that 
significant hurdles must be overcome. Simple Regression models are not sufficient in capturing 
the complex relationships between socio-economic variables and energy demand. Furthermore, 
the limited availability of fine-grained public socio-economic data complicates efforts to 
establish clear relationships between these variables and energy consumption.  
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Appendix 
Appendix A. U-values (in W / m2K) of a building without retrofitting assumed, extracted 
from the TABULA dataset. 

Building 
period 

Building 
class 

Window Roof Wall Floor 

Before 1965 SFH 2.9 1.54 1.61 1.72 
TH 2.9 2.08 2.22 2.44 
MFH 2.9 1.54 1.61 1.72 
AB 2.9 1.54 1.61 1.14 

1965 – 1975 SFH 2.9 0.89 1.45 2.33 
 TH 2.9 0.89 1.45 2.33 
 MFH 2.9 0.89 1.45 2.33 
 AB 2.9 0.89 1.45 1.37 
1975-1990 SFH 2.9 0.64 0.64 0.64 
 TH 2.9 0.64 0.64 1.28 
 MFH 2.9 0.64 0.64 1.28 
 AB 2.9 0.64 0.64 0.54 
1990-2005 SFH 1.8 0.36 0.36 0.36 
 TH 1.8 0.36 0.36 0.36 
 MFH 1.8 0.36 0.36 0.36 
 AB 1.8 0.36 0.36 0.32 
2005-2014 SFH 1.8 0.27 0.27 0.27 
 TH 1.8 0.27 0.27 0.27 
 MFH 1.8 0.27 0.27 0.27 
 AB 1.8 0.27 0.27 0.25 
After 2014 SFH 1.8 0.21 0.21 0.27 
 TH 1.8 0.21 0.21 0.27 
 MFH 1.8 0.21 0.21 0.27 
 AB 1.8 0.21 0.21 0.25 
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Appendix B. Step-by-step guide that shows how the space heating demand is 
calculated in the physics-based model 

1. Extract one building 

The model is a function that works on a per building basis. Therefore, it uses a for loop that iterates 
over each building to calculate the total space heating demand.  

2. Joining the weather data to the building 

The preprocessed temperature- and radiation dataset is joined to the building, based on which 
weather station is closest. By joining the weather data, a single file is created that contains both 
the hourly weather data and the building attributes, which is convenient to calculate the hourly 
space heating demand. 

3. Transforming spatial data to Numpy arrays 

Spatial data takes up a lot of memory and processing power. Therefore, each of the variables in 
the dataset is converted to a Numpy array.  

4. Setting up a default occupancy schedule 

To account for the fact that houses are not occupied the entire day, a standard occupancy 
schedule is applied to all buildings. Similarly to the assumption by Yang et al. (2020), it is assumed 
in this model that residents are home during 18 and 8 o’clock the next day.  

5. Calculation of hourly transmission loss (Qtr) through building elements.  

The space heating demand is determined by four main indicators that together form the heat 
balance. On the one hand these are the transmission loss and ventilation loss and on the other 
hand, are the internal heat gain and solar heat gain. The formulas that are used in this section of 
the model, are based on the model by Yang et al (2020). For consistency, the answers to all 
formulas are stored in kilowatt-hours (kWh). Some formulas are simplified, because not all data 
is present in the TABULA dataset. The following formula is used to calculate the transmission loss 
of the building.  

𝑄𝑡𝑟 = {
𝑏 ∙ 𝐴 ∙ 𝑈 ∙ (𝑇𝑖𝑛𝑡 − 𝑇𝑒𝑥𝑡)   𝑖𝑓 (𝑇𝑖𝑛𝑡 > 𝑇𝑒𝑥𝑡)

          0              𝑖𝑓 (𝑇𝑖𝑛𝑡 ≤ 𝑇𝑒𝑥𝑡)
 (Eq. B.1) 

In this formula b is an adjustment factor of the transmission loss. For the floor it is 0.5, for other 
building materials its value is 1. A is the area of the building element. U is the U-value that belongs 
to the building element. The U-values are assigned according to the building segmentation from 
the preprocessing steps. The applied U-values are visualized in Appendix A. These parameters 
are then multiplied by the temperature difference. For calculating the temperature difference, a 
base temperature of 18 degrees Celsius is used, as this is the standard that the CBS uses to 
calculate heating degree days (Centraal Bureau voor de Statistiek (CBS), 2015). If the external 
temperature is higher than the internal temperature, there is no transmission loss. 

6. Calculation of hourly ventilation loss (Qve) of building envelope  
V1 : Without volume column, standard infiltration rates TABULA. 

𝑄𝑣𝑒,𝑡 = {
𝜌𝑎𝑐𝑎  ∙ 𝐴𝑐𝑜𝑛  ∙ 2.5𝑚 ∙ (𝑛𝑣𝑒,𝑢𝑠𝑒 + 𝑛𝑣𝑒,𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛) ∙ (𝑇𝑖𝑛𝑡,𝑡 − 𝑇𝑒𝑥𝑡,𝑡)  𝑖𝑓 𝑇𝑖𝑛𝑡,𝑡 > 𝑇𝑒𝑥𝑡,𝑡

0 𝑖𝑓 𝑇𝑖𝑛𝑡,𝑡 ≤ 𝑇𝑒𝑥𝑡,𝑡
 (Eq. B.2) 
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This formula is used to calculate the ventilation loss of the building. It multiplies the heat capacity of air 
(), which is 1200 J / (m3K). This is multiplied with a number of parameters. Acon is the conditional floor 
space, which is all the floor space within a building. The 2.5 meters is the reference room height that is 
used by the TABULA dataset. Together they estimate the volume of the building. nve,use and nve,infiltration are 
the air change rate by use and the airflow rate by infiltration respectively. In the TABULA dataset they are 
both set at a constant of 0.4. This set of parameters is then multiplied by the temperature difference. 

In model iteration 3: With volume column, standard infiltration rates TABULA 

𝑄𝑣𝑒,𝑡 = {
𝜌𝑎𝑐𝑎  ∙ 𝑉 ∙ (𝑛𝑣𝑒,𝑢𝑠𝑒 + 𝑛𝑣𝑒,𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛) ∙ (𝑇𝑖𝑛𝑡,𝑡 − 𝑇𝑒𝑥𝑡,𝑡)  𝑖𝑓 𝑇𝑖𝑛𝑡,𝑡 > 𝑇𝑒𝑥𝑡,𝑡

0 𝑖𝑓 𝑇𝑖𝑛𝑡,𝑡 ≤ 𝑇𝑒𝑥𝑡,𝑡
 (Eq. B.3) 

Because in this thesis 3D data is used for the attributes, it is interesting to check if replacing the Acon * 
2.5m, by the actual volume attribute of the building improves the performance of the model. 

In model iteration 7: With volume column, infiltration paper Todeschi2021 

𝑄𝑣𝑒,𝑡 = {
𝜌𝑎𝑐𝑎 ∙ 𝑉 ∙ 𝑛𝑣𝑒,𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙ (𝑇𝑖𝑛𝑡,𝑡 − 𝑇𝑒𝑥𝑡,𝑡)  𝑖𝑓 𝑇𝑖𝑛𝑡,𝑡 > 𝑇𝑒𝑥𝑡,𝑡

0 𝑖𝑓 𝑇𝑖𝑛𝑡,𝑡 ≤ 𝑇𝑒𝑥𝑡,𝑡
 (Eq. B.4) 

Yang et al. (2020) uses constants from TABULA to estimate the building infiltration rates. However, in 
reality infiltration rates depend a lot on the building quality, which relates to when a building was built. 
Todeschi et al. (2021), use a variation of different infiltration rates. These are visualized in Table B.1 
Estimated infiltration rates per building period, according to Todeschi et al. (2021) B.1. By running 
the model in different ventilation configurations, the most accurate configuration can be selected as 
the final model.  

Table B.1 Estimated infiltration rates per building period, according to Todeschi et al. (2021) 

Building period infiltration rate 
Before 1965 0.65 
1965 - 1975 0.55 
1975 – 1990 0.4 
1990 – 2005 0.35 
After 2005 0.3 

 

7. Calculation of hourly internal heat gain 
𝑄𝑖𝑛𝑡 = 𝑞𝑖𝑛𝑡𝐴𝑐𝑜𝑛 (Eq. B.5) 

Internal heat gain is the heat that is all the heat that is created from sources within the building. These 
are anthropogenic heat and heat from appliances. Yang et al. (2020) estimates that the internal heat 
gains per square meter of conditional floor space is 3 W / m2. This value is also adopted in this model. 

8. Calculation of hourly solar heat gain (Qsol ) 

𝑄𝑠𝑜𝑙 = 𝐼𝑠𝑜𝑙(𝐹𝑒𝑎𝑠𝑡 + 𝐹𝑤𝑒𝑠𝑡)𝐴𝑤𝑖𝑛𝑑𝑜𝑤𝐹𝑠ℎ(1 − 𝐹𝐹)𝐹𝑊 (Eq. B.6) 

Houses are assumed to gain heat through the windows of the building on the eastern and western side. 
This simplification is applied, because it would be computationally challenging to incorporate incoming 
solar radiation from all angles during the day. The following parameters are used to calculate the solar 
heat gain:  

- Isol is the incoming horizontal solar radiation. This is the preprocessed KNMI radiation data.  
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- Feast / west are conversion factors to estimate the incoming solar radiation on windows that are 
positioned vertically. The factors are 0.69 and 0.68 respectively.  

- Awindow is the total area of the windows. 
- Fsh is a dimensionless factor that takes shading devices into consideration. It holds a value of 

0.6. 
- FF is the frame fraction of the windows, which has a value of 0.3. 
- FW is a correction factor for non-scattering glazing and its value is 0.9. 

 
9. Calculation of the heat balance ratio and the gain utilization factor (gn) 

Before the energy demand of the HVAC can be calculated, a dimensionless factor called the gain 
utilization factor needs to be calculated. The International Organization for Standardization (ISO) (2017) 
defines the gain utilization factor as a factor that reduces the heat gains, in order to obtain the building 
energy need for heating. The calculation of the gain utilization factor is dependent on three formulas. 
Formula B.7 calculates the heat balance ratio. It expresses the ratio between the heat gains and the heat 
losses. Formula B.8 calculates a time constant (), which is used for calculating a reference numerical 
parameter from ISO 13790 ().  

Heat balance ratio 

𝛾𝐻 =
(𝑄𝑖𝑛𝑡,𝑡+𝑄𝑠𝑜𝑙,𝑡)

(𝑄𝑡𝑟,𝑡+𝑄𝑣𝑒,𝑡)
   (Eq. B.7) 

The heat balance ratio in equation B.7 is calculated by dividing the sum of the heat gains by the sum of 
the heat losses. 

𝜏 =
𝐶𝑚𝐴𝑐𝑜𝑛

𝐻𝑡𝑟+𝐻𝑣𝑒
 (Eq. B.8) 

The time constant is computed to determine the rate of heat transfer within a building. It uses the 
building’s heat capacity (CmAcon). For Cm a constant value of 45 Wh/(m2K) is used, similarly to Yang et 
al. (2020). This is then divided by the sum of the heat transfer- and heat ventilation coefficients.  

Reference numerical parameter (EN ISO 13790) 

𝑎𝐻 = 𝑎𝐻,0 +
𝜏

𝜏𝐻,0
   (Eq. B.9) 

In formula B.9, the reference numeric parameter from ISO 13790 is applied. The value for 𝑎𝐻,0is a 
constant with a value of 1, and 𝜏𝐻,0 has a constant value of 15. The time constant (), therefore defines 
the outcome of this formula. 

 
Gain utilization factor 

𝜂 =

{
 
 

 
 

1−𝛾𝐻
𝑎𝐻

1−𝛾𝐻
𝑎𝐻+1

𝑖𝑓 𝛾𝐻 > 0 𝑎𝑛𝑑 𝛾𝐻 ≠ 1

𝑎𝐻

𝑎𝐻+1
𝑖𝑓 𝛾𝐻 = 1

1

𝛾𝐻
𝑖𝑓 𝛾𝐻 < 0 

 (Eq. B.10) 

Based on the outcome for the heat balance ratio (𝛾𝐻), the formula is chosen to calculate the gain 
utilization factor (𝜂). If the heat balance ratio is positive, but not one, the first formula is used. If the 
ratio is exactly one, the second formula is used and if the ratio is negative the last formula is used.  

  



64 
 

10. Calculation of hourly space heating demand (Qnd) 
𝑄𝑛𝑑 = (𝑄𝑡𝑟 + 𝑄𝑣𝑒) − 𝜂𝑔𝑛(𝑄𝑖𝑛𝑡 + 𝑄𝑠𝑜𝑙)  (Eq. B.11) 

 
When the gain utilization factor has been calculated, the space heating demand of the building can 
be calculated. The demand is defined as the sum of the heat losses, subtracted by the heat gains 
which is multiplied by the gain utilization factor. 
  

11. Calculation of hourly space heating demand of space heating system  
Without ventilation recovery 

𝑄ℎ = [
𝑄𝑛𝑑

𝐴𝑐𝑜𝑛
+ 𝑞𝑑,ℎ ] 𝑒𝑔,ℎ ∙ 𝐴𝑐𝑜𝑛 (Eq. B.12) 

With ventilation recovery 

𝑄ℎ = [
𝑄𝑛𝑑

𝐴𝑐𝑜𝑛
+ 𝑞𝑑,ℎ − 𝜂𝑔𝑛 (𝜂𝑣𝑒,𝑟𝑒𝑐𝑡𝑟

 ∙  𝑄𝑣𝑒)] 𝑒𝑔,ℎ ∙  𝐴𝑐𝑜𝑛 (Eq. B.13) 

 
To find out how much energy the space heating system uses to fulfill the demand of the building, 
formula B.12 or B.13 is used. Formula B.12 does not take the presence of a ventilation recovery 
system into account, while formula B.13 does. Both formulas divide the space heating demand over 
the conditional floor space and then add the expected distribution losses of the space heating 
system. This is then multiplied by the heating expenditure coefficient of the space heating system. 
The TABULA dataset assumes that all buildings use a high-efficiency boiler complying with HR107 
standards. This means that a constant value of 1.05 is used for all buildings.  
 
Formula B.13 takes into account that newer buildings contain a ventilation heat recovery system 

(𝜂
𝑣𝑒,𝑟𝑒𝑐𝑡𝑟

 ∙  𝑄𝑣𝑒) . This kind of system takes out the residual heat of outgoing warm air and adds this 

heat to the incoming fresh air (Richardson & Burdett-Gardiner, 2023). By doing this, the space 
heating system will be used less.  
 

12. Calculating domestic hot water (DHW) demand. 
𝑄𝑤 = 𝑄𝑛𝑑,𝑤 ∙ 𝑒𝑔,𝑤 ∙ 𝐴𝑔𝑓𝑎 (Eq. B.14) 
 
In the validation dataset, only the total gas usage is provided, which includes consumption 
for domestic hot water (DHW) purposes, such as showering or cleaning. DHW demand is 
more sensitive to the occupants of the house and is therefore more challenging to predict. In 
this physics-based model, the DHW demand (𝑄𝑛𝑑,𝑤) is assumed to be constant at 20.8 
kWh/m²a. This value is derived from the study conducted by Flourentzou & Pereira (2021). 
This parameter is then multiplied by the expenditure factor of the DHW system (𝑒𝑔,𝑤) and the 
ground floor area of the house (𝐴𝑔𝑓𝑎 ). 
 

13. / 13. Calculating yearly gas space heating demand of building. 

𝑄𝑔𝑎𝑠
∑ 𝑄ℎ,ℎ+ 𝑄𝑤
𝑖=~8760
ℎ=1

9.77
 (Eq. B.15)  

The final step is to sum the hourly demand of both the space heating system and the DHW system and 
divide it by the caloric value of gas in the Netherlands to convert the output from kWh to gas m3.  
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Appendix C. The price elasticities developed by Schulte & Heindl (2017), slightly 
interpolated to match the income classes from the CBS postal code dataset. 

household_type income_class elasticity 
Eenpersoons 0-25 -0.205 
Eenpersoons 25-50 -0.313 
Eenpersoons 50-75 -0.411 
Eenpersoons 75-100 -0.616 
Eenouder 0-25 -0.215 
Eenouder 25-50 -0.294 
Eenouder 50-75 -0.378 
Eenouder 75-100 -0.584 
Meerpersoons zonder kinderen 0-25 -0.281 
Meerpersoons zonder kinderen 25-50 -0.413 
Meerpersoons zonder kinderen 50-75 -0.542 
Meerpersoons zonder kinderen 75-100 -0.845 
Tweeouder 0-25 -0.32 
Tweeouder 25-50 -0.463 
Tweeouder 50-75 -0.587 
Tweeouder 75-100 -0.861 
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Appendix D. Nomenclature that shows the explanation of all abbreviations used in this 
thesis. 

Abbreviation Meaning 
CVRMSE Coefficient of Variation Root Mean Square Error 
RMSE Root Mean Square Error 
NRMSE Normalized Root Mean Square Error 
MAPE Mean Absolute Percentage Error 
NMBE Normalized Mean Bias Error 
MBE Mean Bias Error 
RSS Residual Sums of Squares 
NVF Normalized Variation Factor 
CV Coefficient of Variation 
NMAE Normalized Mean Absolute Error 
R Correlation 
MAD Mean Absolute Deviation 
MRE Mean Relative Error 
HVAC Heating, Ventilation and Air-Conditioning 
ISO International Standardization Organization 
EPC Energy Performance Contract 
WWR Window-to-Wall Ratio 
DHW Domestic Hot Water 
EUI Energy Use Intensity 
TF-IDF Term Frequency – Inversed Document Frequency 
SFH Single Family Home 
TH Terraced House 
MFH Multi Family Home 
AB Apartment Block 
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Appendix E. Physics-based models analyzed in the literature review. 

Author DOI 
J. N. B. Fonseca & Oliveira Panão, 2017 10.1016/j.enbuild.2017.07.059 
Verellen & Allacker, 2022 10.3390/su14105769 
Eggimann et al., 2019 10.1016/j.apenergy.2018.12.052 
Oliveira Panão & Brito, 2018 10.1016/j.enbuild.2018.04.010 
Ren et al., 2012 10.1016/j.enpol.2012.06.065 
Buttitta & Finn, 2020 10.1016/j.enbuild.2019.109577 
Gulotta et al., 2021 10.1016/j.enbuild.2020.110584 
Mata et al., 2013 10.1016/j.enbuild.2012.09.037 
Schwanebeck et al., 2021 10.3390/en14041029 
Sokol et al., 2017 10.1016/j.enbuild.2016.10.050 
Perera et al., 2018 10.1016/j.apenergy.2018.04.004 
Edtmayer et al., 2023 10.54337/ijsepm.7570 
V. Costanzo et al., 2019 10.1016/j.cities.2019.102467 
Hedegaard et al., 2019 10.1016/j.apenergy.2019.03.063 
Kazas et al., 2017 10.1016/j.apenergy.2017.01.095 
Wang et al., 2020 10.1080/19401493.2020.1729862 
Prataviera et al., 2021 10.1016/j.renene.2021.03.144 
Nageler et al., 2018 10.1016/j.enbuild.2018.09.034 
Perwez et al., 2022 10.1016/j.apenergy.2022.119536 
Theile et al., 2022 10.1016/j.enbuild.2021.111591 
Schwartz et al., 2021 10.1016/j.enbuild.2021.111249 
Streicher et al., 2019 10.1016/j.enbuild.2018.12.011 
Li & Yao, 2021 10.1016/j.enbuild.2021.110740 
Abdelaziz et al., 2021 10.26868/25222708.2021.31009 
Mastrucci, Pérez-López, et al., 2017 10.1016/j.enbuild.2017.05.022 
Perwez et al., 2022 10.26868/25222708.2021.30586 
Buffat et al., 2017 10.1016/j.apenergy.2017.10.041 
Veljkovic et al., 2023 10.1016/j.enbuild.2023.113474 
Tuominen et al., 2014 10.1016/j.buildenv.2014.02.001 
Österbring et al., 2016 10.1016/j.enbuild.2016.03.060 
Brøgger et al., 2019 10.1016/j.enbuild.2019.06.054 
Todeschi et al., 2021 10.3390/su13041595 
Li et al., 2018 10.1016/j.enbuild.2018.03.064 
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Appendix F Coefficients derived from ridge regression iterations with a variation in input variables.  

  
Iteration 
1   

Iteration 
2   

Iteration 
3   

Iteration 
4   

Iteration 
5   

Iteration 
6   

Feature Coeff. P Coeff. P Coeff. P Coeff. P Coeff. P Coeff. P 

WOZ-waardewoning_log 181.73 0.00 216.87 0.00 230.86 0.00 202.19 0.00 183.31 0.00 201.54 0.00 

Huishoudgrootte -21.74 0.65 -102.36 0.00 -117.04 0.00 33.71 0.46 -30.35 0.55 -226.94 0.00 

Koopwoning 0.22 0.89 5.31 0.00 5.03 0.00 0.42 0.84 0.24 0.91 6.24 0.00 

Huurwoning -5.86 0.01 

NA NA NA 
  -5.89 0.01 -5.81 0.02 

NA NA 

Nederlandseachtergond -2.26 0.02 5.17 0.00 5.40 0.00 2.99 0.00 

NA 

NA 

NA NA 

Westersemigratieachtergrond -5.74 0.00 

NA NA NA 
  -3.34 0.00 -4.45 0.00 -4.46 0.00 

Niet-

westersemigratieachtergrond 
-6.46 0.00 

NA NA NA 

  NA NA -4.39 0.00 -5.43 0.00 

tot 15 jaar_% 13.26 0.45 
NA NA NA   

-4.47 0.63 13.10 0.46 
NA NA 

15 tot 25 jaar_% 30.45 0.06 11.07 0.00 
NA   

17.31 0.02 30.07 0.06 
NA NA 

25 tot 45 jaar_% 7.26 0.66 -20.35 0.00 -21.22 0.00 -7.11 0.43 7.14 0.67 -24.14 0.00 

45 tot 65 jaar_% 27.22 0.09 9.40 0.00 7.95 0.00 14.90 0.04 27.03 0.10 
NA NA 

65 jaar en ouder_% 26.25 0.11 
NA NA  

-1.29 0.49 12.18 0.08 25.98 0.11 -3.30 0.06 
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Appendix G The effect on the model predictions by the socio-economic variable “tenancy type” 
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Appendix H The effect on model predictions by the integration of the socio-economic variable “Cultural Background”. 
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Appendix I The effect on the model predictions off the integration of the variable age. 

 


