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1 Introduction

One of the most important challenges in European agriculture is the cost and
scarcity of labour. The cost of labour affects the profitability of farming while
the scarcity of labour threatens its very existence. The latter was illustrated
vividly during the COVID-19 pandemic when many EU countries were not able
to welcome field workers from abroad. As a result, some crops could not be
harvested and had to be left on the field.’

! https://www.nytimes.com/2020/03/27/business/coronavirus-farm-labor-europe.html.
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2 Implementing a digital twin for flexible operation of agricultural robotics

The cost and shortage of labour may be addressed by adopting robotics.
Robots have replaced labour in several sectors of the economy, but they have
not yet reached widespread acceptance in agriculture. Robots have been
proposed for all activities during the cropping cycle, from tillage to sowing,
fertilization, crop protection and harvesting. In this chapter, we focus on mobile
robots for spraying and mechanical weeding because these are dull, dirty,
dangerous tasks that need to be done several times per season.

Agricultural robots are available commercially from vendors including
Naio,? Agreenculture,® Agrolntelli,* AgXeed® and FarmDroid.® Robotic research
platforms include Flourish’ and Deepfield®. Autonomous tractors are another
class of robotic vehicles in agriculture, available commercially (Kubota,? only
forrice, only in Japan) or as a concept (John Deere?). Alternatively, after-market
kits are available to convert a conventional farm tractor into a robot (e.g. JCA
Technologies' and Blue White Robotics'?).

All these vehicles can execute basic autonomous behaviour: follow a crop
row to the end of the field, make a turn and return in the next crop row. Path
planning is a topic that has received ample attention, especially in the context
of covering irregularly shaped fields with a minimum of overlap (Oksanen and
Visala, 2009; Mier et al., 2022). It is relevant for human-operated machinery
but will also be needed by autonomous vehicles. However, full autonomous
behaviour is by far not realized. These vehicles must be brought to the field
and pointed in the right direction. Planning and scheduling are capabilities that
are not offered. Working autonomously and robustly, during a whole growing
season, in a realistic environment, has not been demonstrated. Advanced
route planning and dynamic re-planning were proposed 15 years ago and
demonstrated in simulation (Bochtis et al., 2007); as far as we are aware, this
system was never implemented. More recently, a route planning algorithm for
an electrical agricultural vehicle was developed that not only takes into account
hill slope and remaining battery charge but also here robust operation and
dynamic response to unforeseen events are not considered (Hizatate and
Noguchi, 2023).

Agricultural implements have also been equipped with autonomy. The
main objective of these smart implements is to close the loop from perception
to decision and action. Examples include the WEED-IT spot sprayer (Cloete,
2020) which prevents runoff of crop protection chemicals by applying them

2 https://www.naio-technologies.com/en/.

3 https://www.agreenculture.net/.

* https://agrointelli.com/.

° https://www.agxeed.com/.

¢ https://farmdroid.dk/.

7 http://flourish-project.eu/ NOTE better to cite scientific papers.
8 https://www.deepfield-robotics.com/en/ website no longer works but we can cite the scientific paper.
? https://www.youtube.com/watch?v=PG3vd3AsdfY.

10 https://www.deere.co.uk/en/agriculture/future-of-farming/.

" https://jcatechnologies.com/.

12 https://www.bluewhite.co/.
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only where weeds are detected by sensors in real-time, the Ecorobotix ARA spot
sprayer (Anken and Latsch, 2022; Anken et al., 2022) and See & Spray (ASABE
Staff, 2022). The Robocrop system (Tillett and Hague, 2006) and the Steketee
IC-Weeder use cameras to guide a hoe around crop plants (Hemming et al.,
2018). The ‘Hill Control’ control system from Rauch improves the distribution
accuracy by changing the drop point, disc speed and metering quantity when
spreading fertilizers with a centrifugal disk spreader, especially in hilly terrain.’
Advances in sprayers involve not only boom control systems' but also more
advanced systems that control the full functionality of a sprayer'’ are important
towards achieving an even distribution of the spray deposit. However, the
information gathered by the sensors in these cases is not used to monitor the
quality of the action and it is not used to alter or optimize the operation of the
robotic agricultural operation within the farming system as a whole.
Agricultural robots exist but are not widely used. An important reason is
that agricultural robots are not flexible. As a first example, agricultural robots
do not have a mechanism that adjusts or stops the robot when the process is
not going well (insufficient weed control, crop is being damaged). As a second
example, agricultural robots are not flexible in dealing with unforeseen events
(weather, obstacles, tank empty, working lane not being wide enough, soil
trafficability, etc.). As a result, agricultural robots need a lot of supervision to
check their operation and to get them going again when they get stuck. This
means that the real amount of labour saved will be much less than expected.
In contrastto agriculture, robots are widely used in industrial manufacturing.
Digital Twin (DT) is a concept that is important to understand how robots
function in industrial manufacturing. Stark and Damerau (2019) provide the
following definition of a DT:
A digital twin is a digital representation of an active unique product (real device,
object, machine, service, or intangible asset) or unique product-service system (a
system consisting of a product and a related service) that comprises its selected

characteristics, properties, conditions, and behaviours by means of models,
information, and data within a single or even across multiple life cycle phases.

One of the most common applications of the DT is for the design and
configuration of an assembly line (Kousi et al.,, 2021). The DT enables the
modelling of the different levels of a production system, namely the assembly
process, production station, and line level, updating its parameters in real-time
synthesisng data from multiple 2D-3D sensors about the actual production
process. Then an Al-based logic is deriving alternative configurations of the

¥ Rauch, 2019. HillControl: Mehr Prazision beim Diingerstreuen in Hanglagen, auf Kuppen und in Senken!

#Raven, 2019. AutoBoom XRT - Raven Applied Technology. https://ravenprecision.com/products/boom-controls/
autoboom.

s Mdiller Electronics, 2019. ISOBUS SPRAYER-Controller MAXI. https://www.mueller-elektronik.de/en/products/spray
-controller-maxi-2/.
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4 Implementing a digital twin for flexible operation of agricultural robotics

production system, suggesting the most efficient based on a set of predefined
criteria.

Another common use of DTs is to control the resources of a production cell
and adapt their behaviour based on the production requirements (Kousi et al.,
2019). In other words, a model of the real system is used to re-plan production
in response to unforeseen events, such as a temporary unavailability of parts
due to supply line issues or a breakdown; or people stepping in front of a
mobile robot and impeding its motion.

Predictive maintenance addresses production alterations that occur due
to unexpected events such as breakdowns and unavailability of resources.
Methodologies have been developed to calculate the Remaining Useful Life
(RUL) of a machine by using physics-based simulation models and the DT
concept (Aivaliotis et al., 2019). In the design phase, a model of a gearbox was
created and parameterized using data from the real system. This model was
able to simulate the friction inside the gearbox. During the execution phase, the
model was fed with data from the machine’s controllers as well as from external
sensors that monitor their activity. As a result, the increase in gearbox friction
could be simulated in real-time and the gearbox RUL could be calculated.

A DT may be used for process control. In additive manufacturing, the quality
of processes as well as the robustness and the performance are posing several
challenges due to a number of uncertainties, such as the material properties.
A DT was designed and implemented for uncertainty management and robust
process control (Stavropoulos et al., 2021). Using Linear Matrix Inequalities,
within defined uncertainty limits, the process control was made and compared
to a typical control approach that uses a fine-tuned conventional proportional-
integral-derivative (PID). As a result, the robust control design achieved a 68%
faster response in the settling time metric, while a well-calibrated PID only
achieved 38% compared to the initial model.

A physics-based model is often complex and a significant amount of time
may be needed to realize simulations with it, which prevents using the DT in
real-time. Creating a meta-model by using the output of a large number of
simulations with the DT (‘synthetic data’) may address this problem. Of especial
interest is the use of Al-based meta-models (Alexopoulos et al., 2020).

A DT implementation has been proposed as part of a general cyber-
physical system (CPS) to enable the optimization of the planning and
commissioning of human-based production processes using simulation-based
approaches (Nikolakis et al., 2019). The benefit of this development is that the
above activities are optimized through (1) sensor data fusion and human activity
recognition in the shopfloor and (2) knowledge management mechanism for
capturing the implicit knowledge of the task execution.

Published by Burleigh Dodds Science Publishing Limited, 2024.
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Finally, DTs have been used in human-robot collaboration (HRC)
applications as well, for teleoperation and coordination of multiple industrial
robot operations, allowing operators from different manufacturing domains to
control the robot. Li et al. (2022) describe a multi-robot teleoperation system in
which the DT of the real robots is visualized in augmented reality (AR) glasses.
Experimental studies with a single robot and with multiple robots working on
collaborative tasks have shown that the proposed system can manage the
multi-robot teleoperation tasks with high efficiency.

In summary, a DT always involves a model of a real ‘thing’. The model can
be static or dynamic, but the defining characteristic of a DT model is that the
model is parameterized for a specific real-world system.

The DT can be used in two major ways. First, it can be used to configure
and optimize the system, even before the real system is created. The DT can
also be used to train personnel that will operate the real system. When a DT is
used in this fashion, it is sometimes called a ‘digital shadow’. Second, the DT can
be used as a state estimator in real-time. In this case, sensors on the real system
(joint positions, proximity, temperatures, pressures, cameras, etc.) are used to
obtain information about the dynamic state of the system. This information may
be fused with simulation outcomes. Also future states may be simulated and
control actions may be taken in the present time to ensure that undesirable
future states are avoided for the real system.

We hypothesize that agriculture has requirements similar to industrial
manufacturing in terms of DTs. DT modelling of agricultural fields and
agricultural processes could help to optimize agricultural activities. Using a
digital version of the field, optimized vehicle routes can be generated both
within and outside the field. Additionally, visualization tools for the above-
mentioned information could enable the farmer to better understand and
adopt the new technologies, especially when these are provided through web
and/or mobile Uls. On top of that, in combination with simulation libraries, the
farmers could be trained with simulated fields on how they could use the DTs
and generate optimized operations, before using them in real conditions. DT
can be combined with machine learning and Al-based algorithms to predict
farming operations before robots enter the field, as well as optimize them
during their execution in the field.

ROBS4CROPS is a 4-year EU-funded project (2021-24). The project aims
to develop an agricultural robotic system that uses DT technology to react to
unforeseen events autonomously. The objective of our work is to create an
agricultural robot system that can operate with much less supervision than
current practice. At a minimum, our system will detect problems and stop
operating in a safe manner, but ideally it will be able to respond to changing
conditions and unforeseen events.

Published by Burleigh Dodds Science Publishing Limited, 2024.



6 Implementing a digital twin for flexible operation of agricultural robotics

2 Agricultural system under study

ROBS4CROPS focuses on the needs of four specific real-world farming
scenarios (Table 1). For each scenario, the project has established a large-
scale pilot which serves to elicit requirements, to develop the system and to
demonstrate the developed robotic system in real operating conditions. Two
pilots focus on mechanical weeding: in vineyards in France, and in arable crops
in the Netherlands; and two pilots focus on spraying: in vineyards in Greece,
and in apple orchards in Spain.

In the pilot in France, the aim is to reduce the environmental impact of
wine growing by replacing chemical weed control in vineyards with mechanical
weeding. Mechanical weeding with a tractor driver is economically not attractive
(five to seven passes per year, total cost €800 per ha). Also, it is difficult to attract
and retain experienced tractor drivers who can operate the several different
weeding implements that are used. The goal is to replace the tractor and
human driver with a robot. In this pilot, the Agreenculture robot, developed
specifically for vineyards, is used (Fig. 1).

The pilot in Greece focuses on spraying table grape vineyards (Fig. 2).
Supermarkets and consumers impose very high-quality standards and the fruit
is highly sensitive to pests and diseases. Table grapes need up to 30 applications
of biocides (preventive and curative) and foliar fertilizer each growing season.
Labour costs are high and access to the workforce is difficult, especially given
the limited time window available for each spraying application. In this pilot, the
Agreenculture robot and a retrofitted tractor (autonomous) are used to carry a
lift-mounted sprayer. The amount of chemicals used is reduced by adjusting
the spray rate to the density of the canopy. An extra challenge in this pilot is
the accessibility of the hilly terrain and the dynamic behaviour of the robots in
this pilot.

The pilot in Spain focuses on apple orchards (Fig. 3). The cultivation of
apples requires many fungicide applications. Farmers typically do not consider
the growing stage of the trees and the disease severity when applying chemicals
(uniform application). Using a robot addresses the labour challenge, while the
amount of chemicals used is reduced by adjusting the spray rate to the density
of the canopy.

Table 1 Overview of the large-scale pilots

Country Crop Action Vehicle
France Vineyard (wine grapes) Mechanical weeding  Agreenculture robot
Greece Vineyard (table grapes) Spraying Retrofitted tractor and

Agreenculture robot
Spain Apple orchard Spraying Retrofitted tractor
The Netherlands Sugar beet and pumpkins  Mechanical weeding  Robotti

Published by Burleigh Dodds Science Publishing Limited, 2024.
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Figure 2 Conventional tractor and sprayer in a table grape vineyard in Greece.

Inthe pilotin the Netherlands (Fig.4),the aimis to reduce the environmental
impact of arable farming by replacing chemical weed control with mechanical
weeding. Sugar beets and pumpkins are both crops that grow slowly at first
and therefore need several weeding passes to control the weeds. The Robotti
robot, which was developed for arable farming, is used in this pilot.

The four pilots have in common that they use an autonomous vehicle with
an implement attached, that field operations consist of visiting each predefined
lane once, and that travel to, from and between lanes takes place in predefined

Published by Burleigh Dodds Science Publishing Limited, 2024.
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Figure 4 The weeding implement used in the pilot in the Netherlands, mounted on the
Robotti robot.

areas. Spraying and weeding are operations that must be performed several
times during the growing season on a given field. In addition, a typical farm has

Published by Burleigh Dodds Science Publishing Limited, 2024.
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several fields that need to be sprayed and/or weeded and the robot must be
moved from one field to the next.

3 Agricultural robotic system

The ROBS4CROPS agricultural robotic system consists of three major
elements: autonomous vehicles, smart implements and DT-based software to
visualize, optimize and control the robots, which we call the Farming Controller.
In addition, there is a communication protocol through which information is
exchanged between vehicles, implements and the Farming Controller.

At the time of writing, the project is half-way. Consequently, some parts of
the project vision have been demonstrated as proof of concept only; they will
be further developed and demonstrated in the field in the two remaining years
of the project.

3.1 Vehicles
3.1.1 Agreenculture robot

The robot from Agreenculture is a tracked vehicle that specifically targets
vineyards. It weighs 800 kg, is powered by a 12.7 kW diesel engine and can
operate continuously for 10 h on its 30 L fuel tank. The robot is driven by 48 V
DC electric motors. A single electronic unit, the AGCBox, contains an RTK-GNSS
receiver as well as the guiding software. The robot is equipped with bumpers
for obstacle detection. A three-point linkage' allows the use of standard
agricultural implements.

A distinguishing element of the robot is its safe fencing, a certified safety
feature which ensures that no part of the robot or its tool protrudes beyond a
predefined safety contour. Certification is possible because the robot makes
use of a dedicated RTK base station, GNSS signals are processed by proprietary
software and boundary files are stored in an encrypted format.

When the safety boundary and all lanes to be travelled have been defined,
the working path for the robot (the ‘mission’) can be generated. The mission is
validated in a simulator before the robot is deployed in the field.

In order to accommodate the smart implements, ISOBUS and TIM were
implemented. Messages for GNSS-based position and velocity were added
on the CAN using the ISOBUS protocol allowing the different components (of
several partners) to communicate using a common framework.

The robot software was enhanced to allow it to respond to messages
requesting a stop, a change of speed and a change of hitch position. This allows

"¢ https://www.iso.org/standard/41233.html.

Published by Burleigh Dodds Science Publishing Limited, 2024.
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the implement to control some aspects of robot functioning. A stop request
received from the weeding implement is routed to the high-level software of
the robot. Responding to it does not compromise the safety system of the robot.

3.1.2 Robotti

The Robotti 150D is a field robot for power-intensive operations. Itis Agrolntelli's
second Robotti model and is being used in more than 15 countries. The robot
weighs 3150 kg, measures 2.44 m (length) x 3.05-4.90 m (width) x 2.15 m
(height). Robotti has two diesel engines with a total power of 104 kW. The
wheels are driven via hydraulic power and the robot features four-wheel driving
and two-wheel steering. The robot has a traditional power take-off (PTO), a
three-point linkage with a lift capacity of 750 kg, and it provides one double-
acting hydraulic outlet (maximum 40 L/min) with free return.

Field operations can be planned and monitored via the Robotti website.
Users enter the implement’s specifications, define the borders and headlands
of the field and determine how the operation is to be carried out. The user
can either let the system optimize the route or specify the route manually. In
addition the user can configure the type of turns to be made (U-turn or zero-
turn), corner paths, transit areas, and non-work areas. When the route is fully
specified, it is downloaded to the robot. For safety reasons and to meet ISO
standards, the robot can only be started when a person pushes a button on the
computer screen on the physical robot. Once the robot has been started, its
performance and the progress of the operation can be followed in real-time on
the website. Footage from the front and rear surveillance cameras can also be
monitored. A third camera, ImplementCam, can be put where the user wants to
monitor within the 5 m cable length.

The route planning facility on the website is the only way that ROBOTTI
can be programmed. This architecture is not designed to allow interaction with
the Farming Controller. However, the route planning facility is accessible via an
API. The desired functionality could be achieved when the Farming Controller
accesses the routing APl to create a new route, which is then uploaded to
Robotti. This is not a step which we plan in the project.

Robotti has a CAN bus. For the project, the speed and position of the robot
were made available on this bus. Additionally, the software driving the robot
was modified such that it can respond to a TIM request_stop message.

3.1.3 Retrofitted tractor

One of the aims of the project is to develop a retrofit kit that can be used
to convert a conventional farm tractor into an autonomous vehicle. Such an
autonomous tractor can be used both in conventional farming and as part of

Published by Burleigh Dodds Science Publishing Limited, 2024.
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a robotic system, thus allowing for a gradual transition to agricultural robotics.
Two New Holland tractors were purchased: a T4.80F for the pilotin Greece and
a T4.110F for the pilot in Spain.

In early 2022, the tractor in the pilot in Spain has been fitted with CANBUS
functionality and it was used for operating the smart sprayer during the
remainder of the year.

In winter 2022/23, both tractors were instrumented with actuators on the
steering wheel, the accelerator and the brake pedal. An angle sensor mounted
on the front axle measures the position of the front wheels. A revolution counter
on the rear wheel axle measures wheel speed. Closed loop control of wheel
speed and steering angle is realized through the same hardware, and similar
software, that drives the Agreenculture robot. The autonomous tractor can
realize a commanded linear and angular speed. It reports realized values on
the CANBUS. The tractor is connected to ISOBUS-compliant smart implements
through the IBBC connector.

3.1.4 Localization without relying on GNSS

In 2022, it was found that GNSS signals cannot be reliably received in two of the
pilot sites. In Spain, the apple trees are sufficiently high that an RTK fix can often
not be obtained. In Greece, a metal frame is used to support plastic covers
to protect the grapes from rain; the GNSS signal is seriously affected by this
construction. To address this issue, we have implemented a solution based on
Simultaneous Localization and Mapping (SLAM).

We first build a map using a SLAM module (Grisetti et al., 2005) while
teleoperating the robot, and subsequently the map is used for localization
using a Monte Carlo approach (Hornung et al., 2014). This approach enables
multi-waypoint navigation in a local frame (map), without relying on GNSS.

SLAM has been intensively addressed by the robotics community in the last
two decades, mainly in indoor environments. In these cases, the environment is
well-structured, predictable and limited in size. In contrast, in agricultural fields
the environment is unstructured or semi-structured, with large extensions of
land, the features evolve (e.g. the structure of the trees changes according to
the seasons), and the terrain is irregular.

To address these issues, in ROBS4CROPS we have implemented an
agricultural-persistent-features-based SLAM. In the case of the orchards, for
example, as the structure of the trees evolve, we have focused on lower part
of the trunks, which are present and visible across all seasons. To that end, we
have implemented a trunk detector module, and with a graph-based approach,
a persistent-features map is built, which is subsequently used for localization
purposes (Fig. 5).

Published by Burleigh Dodds Science Publishing Limited, 2024.
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Figure 5 System diagram of the ROBS4CROPS SLAM system.

The ROBS4CROPS SLAM implementation does not rely on GNSS
measurements, although these will be used if available. We use a bi-directional
conversion between global coordinates (latitude, longitude and altitude) and
the SLAM map frame. In this way any robot position (x, y and z) on the local map
can be expressed in geodetic (latitude, longitude and altitude) coordinates and
sent to the farming controller, even in the absence of GNSS data.

We rely on map-based navigation, in which the waypoints are referenced in
the local frame of the map. As the localization precision of the SLAM algorithm
depends on the features, we have implemented two navigation modules:

* Map-based navigation: which uses particle filtering over the map built with
the SLAM module, suitable for navigation between rows or from arbitrary
points of the map, where centimetric precision is not needed.

e Along row reactive navigation: as the clearance between the robot
and the side trees of a row is about 0.2 m, we have developed a more
robust reactive navigation module, which estimates the central path with
centimetre-based precision. To this end, we extract the lines of the left and
right sides given the aligned trunks using the Hough transform and derive
the centre of the path. Given this information, precise linear and angular
velocities corrections are executed to keep the robot centred.

3.2 Smart implements

3.2.1 Smart weeding implement for arable farming in the
Netherlands

The weeding implement is a standard weeder with knives that are pulled
through the soil a few centimetres below the soil surface (Fig. 4). This is a simple

Published by Burleigh Dodds Science Publishing Limited, 2024.
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operation but there are several things that can reduce the efficacy of weeding.
Here we focus on two common problems. First, the blades may become
misaligned. This can happen when the hoe is thrown out of alignment when it
hits a rock or when the fastening becomes loose. It may also be that the crop
rows are not evenly spaced due to a problem during seeding. In either case,
the result is that the crop plants are damaged. Second, it often happens that
clods, weeds and/or crop residue collect on the vertical hoe supports and that
crop plants are pulled out of the ground by this jam. A tractor driver who is
weeding will frequently check the weeder to ensure that the above-mentioned
problems are not happening.

To enable automatic evaluation of the performance of the weeding
implement, two cameras were mounted on the Robotti, one at the front looking
forward and one at the back looking rearward. The idea is to determine the
quality of weeding by considering the differences between the images before
and after the implement has passed. We used OAK-D Power-over-Ethernet
(PoE) cameras which are designed for use in rugged environments and are
rated IP67 (protect against weather and dust). Timing and speed are used to
synchronize the images captured by the two cameras.

The initial algorithm to determine whether crop plants are being removed
by the weeding implement relies on the assumption that only a small fraction
of the ground is covered by weeds (normal situation). In this case, it is expected
that the fraction of the soil surface covered by green material is substantially the
same before and after weeding. Green soil cover is easily measured. First, each
image is converted from RGB to HSV. Pixels with a hue between predetermined
limits are considered to represent green material, resulting in a binary image in
which green plants are indicated by white pixels. Only a small region of interest
(ROI) close to the robot is being considered; the size of this ROl is chosen such
that there is almost no overlap between the ROIs in successive images. If the
fraction of green measured by the front camera is substantially larger than
that measured by the rear camera, this is a strong indication that crop plants
have been removed by the weeding operation. Output from the algorithm is
illustrated in Fig. 6.

3.2.2 Smart weeding implement for vineyards in France

Four types of weeding implements are used in the large-scale pilot in France.
All four concern weeding between the vines: serrated discs create a mound
underthe row (the ‘ridging’), inter-vine knives cut the weeds' roots, Kress fingers
scrape the soil surface and lump-breaker discs hoe the soil (Fig. 7).

The most common error encountered during the operation of these
implements is that they are jammed with soil, weeds, crop residue and other
debris encountered in the field. When this happens to the Kress fingers or

Published by Burleigh Dodds Science Publishing Limited, 2024.
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Figure 6 Smart weeder. Top left: forward-looking camera. Top right: rearward-looking
camera. Middle row: binary images after transforming to HSV colour space and
thresholding on hue; corresponding regions of interest in forward- and rearward-looking
images are indicated, as well as the fraction of plant pixels in the ROI. Bottom: rolling
median of the fraction of plant pixels in front (black circles) and rear (red diamonds)
camera images. The fraction of plant pixels in the rear camera image is lower than in the
frontimage, which is a strong indicator that crop plants have been removed.

AR A

Serrated disc  Ploughshare and Kress-fingers Lump-breaker disc
inter-vine knife

Figure 7 Weeding implements used in the pilot in France.
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Figure 8 Weeding quality as measured by the weeding implement in the pilotin France.

In this case, poor weeding quality was simulated by throwing a handful weeds into one
of the Kress fingers att = 130s.

the discs their rotation is reduced or stopped altogether. We use revolution
counters to measure the rotation of the Kress fingers and the discs. Pulses sent
by the sensors are counted by a microcontroller, which sends the information
to a PC mounted on the implement. Weeding quality is assumed to be 100%
at the beginning. Whenever one of the Kress fingers does not send a pulse in
a 1-s interval, weeding quality is decreased by 1. If weeding quality is less than
100 and all Kress fingers rotate properly, then weeding quality is increased.
Example results are shown in Fig. 8.

3.2.3 Smart sprayers for vineyards in Greece and orchards in
Spain

The smart sprayers consist of two elements: a variable-rate sprayer that can be
controlled through ISOBUS and a perception unit (PU) that measures canopy
density on-the-go and commands a spraying rate through ISOBUS.

3.2.3.1 Sprayer

Two different spraying units perform crop protection tasks in the spraying pilots.
A 2000-L orchard sprayer, EOLO model, to be towed by a tractor, is used in the
pilot in Spain and a 200 L lift-mounted vineyard sprayer, ASM model, is used in
the pilotin Greece. Both spraying units share the same operating concepts with
minor changes on sensors and actuators.

Smart sprayers gather intelligent and autonomous robotic capabilities
to operate together with robotics vehicles with minimum human intervention
required.Notonlythe sprayingtask butalso derivative proceduresare automated,
as mixing phytosanitary when tank filling, tank cleaning, other maintenance and
surveillance tasks as nozzle blockage control. An alarm, warnings and status
dataset messages generated by the sprayer sensors are implemented on the
communication bus of the FMIS-Vehicle-Sprayer architecture.
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Variable rate technology (VRT) embedded in the sprayers allows an
increase in efficiency and performance compared to traditional sprayers with
mechanical-driven components.

The orchard (EOLO) sprayer has two horizontal sections, divided into three
vertical layers (Fig. 3). The applied liquid flow rate is adjusted precisely through
PWM nozzles independently for every one of the six sections according to
commands received from the PU. Otherwise, if the sprayer follows commands
from a prescription map, as-applied flow rate setpoint determined by the task
controller for every one of the horizontal sections is applied homogeneously
through the nozzles in the three vertical layers. The flow air rate assistance for
canopy stirring is variable and independently controlled in the three vertical
layers by hydraulic proportional valves which adjust hydraulic-driven fan speed.
In the same way as liquid flow rate, air flow rate can be determined by the PU or
configured through the human interface.

The vineyard (ASM) sprayer has two horizontal sections, divided in four
vertical layers (Fig. 9). Liquid variable rate application operates in a similar
manner as EOLO model. Flow air rate assistance for canopy stirring is adjusted
according to PU commands depending on vineyard stage of vegetation, and
commanded by the Sprayer ECU, which actuates the fan hydraulic proportional
valve for rotating speed adjustment. Unlike EOLO, the ASM model pump is
proportional hydraulic driven, providing more efficiency in adjusting rotation
speed depending on liquid flow rate demand.

— 2

Figure 9 The ASM sprayer lifted by a New Holland tractor.
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An ECU (electronic control unit) from EPEC (Seindjoki, Finland) is used to
control the fan and all the nozzles. ISOBUS functionality is implemented on the
ECU with the Library V3 software stack (no peer-to-peer control).

3.2.3.2 Perception unit for canopy density

The amount of spraying liquid needed for effective disease control depends
(among other factors) on the leaf area per unit ground surface (Duga et al.,
2015). In practice, this means that early in the season, when grape vines and
orchard trees carry few leaves, a low spray rate is sufficient to achieve full
protection.

The PU developed in ROBS4CROPS measures the leaf area (Fig. 10).
It adopts a modular camera design and mounting solution, in order to
accommodate different canopy geometries and heights. This vision-based
system uses depth and colour information to estimate the canopy density and
generate real-time spraying recommendations. An HSV filter is used to keep
only the green pixels in the depth image.

There aretwo mainfeatures considered when processing depthinformation,
namely (1) the total pixel count on the depth image, which resembles to the
canopy information that is present in the camera field of view (FOV) and (2i) the
relative proximity index of neighbouring pixels, which corresponds to different
leaf layers at different depths.

A machine learning model (multi-layer perceptron) has been trained
to predict the density profile in the image, using three categorical classes
based on the canopy presence: (1) no canopy, (2) sparse canopy and (3) full

Figure 10 The canopy density perception unit mounted on the hood of the tractor. The
unit has two depth cameras (RealSense D435i, Intel, Santa Clara CA, USA) (one camera is
facing the viewer). Also visible are two antennas for the wifi router that is part of the unit.
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Figure 11 The effectiveness of the autonomous spraying system in table grapes was
assessed in the field using strips of water-sensitive paper. See main text for explanation.

canopy. Annotation of depth data was performed by field experts categorizing
each image in the corresponding class, using the Point Quadrant measuring
technique and domain knowledge where necessary.

As a result, based on colour and depth information, the PU can modulate
the default/maximum tree row spraying volume. If no canopy is detected, the
spraying rate is set to 0. If a sparse canopy is detected, the spraying rate is set
to 50% of the maximum rate. If a dense canopy is detected, the spraying rate is
set to 100% of the maximum rate.

The PU was designed to send real-time spraying recommendations in the
sprayer using the current velocity of the tractor/robot. All sending and receiving
messages were based on ISOBUS and J1939 protocol communication.
The software implementation uses python-can'” for sending and receiving
messages on a CAN bus line.

During the first season of deploying the autonomous spraying system in
table grapes in Greece, an assessment protocol was established to measure
the spraying effectiveness. Water-sensitive paper was placed on the leaves of
three positions with different canopy densities. Canopy positions were selected
in order to resemble grape canopies with (1) no canopy, (2) sparse canopy and
(3) full canopy coverage. Each canopy was splitinto nine areas positioned in the
upper (U) and lower (L) parts, front (F), middle (M) and back (B) (Fig. 11).

Water-sensitive papers have a specially coated yellow side that changes
to blue when exposed to moisture. So, the wet area gets blue and the dry area
remains yellow. We collected sprayer performance data in three contrasting
settings, namely (1) a conventional sprayer, as currently used in table grape
farms, (2) the ASM sprayer without PU, and (3) the ASM sprayer with PU activated
(Table 2).

After the field session, a photo of each sprayed water-sensitive paper was
taken in order to calculate the percentage of area covered by spray liquid on
each paper, using image analysis software.

17 https://python-can.readthedocs.io/en/stable/.
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The PU software accurately quantified variations in foliage density in
real-time. The results showed that the sprayer achieved satisfactory coverage
and droplet size while saving from 10% to 50% of spray liquid compared to
the conventional sprayer. It is also noteworthy that the innovative spraying
operated with lower pressure and, thus, drift was reduced.

3.3 Communication

The robotic system consists of three main classes of components: autonomous
vehicles, smart implements and the Farming Controller. The robotic system
requires that these components are in constant communication with each
other. Here we describe how this communication is effectuated.

3.3.1 Communication between implement and vehicle via
ISOBUS

Communication between the implement and the vehicle is implemented
with ISOBUS (ISO 11783). ISOBUS is based on the SAE J1939 communication
protocol, which in turn is based on the physical CAN bus (ISO 11898).

ISOBUS is a standard for communication between agricultural vehicles and
implements. However, it is in most cases not used by agricultural robots and
there are still many implements without ISOBUS. Therefore, we have adopted
an approach that allows the gradual introduction of ISOBUS. In this approach,
ISOBUS connectivity is emulated for those vehicles and implements that do not
yet offer ISOBUS connectivity. Emulation is provided by CANoe 15 SP2 software
(Vector Informatik GmbH, Germany) running on an industrial PC. See Fig. 12.

The smart sprayers (Section 3.2.3) are fully ISOBUS compliant. The sprayers
are designed with an ECU (EPEC, Seinjoki, Finland) which integrates the
full ISO 11783 protocol. As an input, the ECU of the sprayer receives GNSS
information to geolocate the applied points and the ground-based speed to
calculate the point-to-point distance from the Agreenculture robot and the
autonomous tractor (AGCBox) through IBBC connector. For this, the TECU
functionality of the ISOBUS is integrated into the CANoe software to enable
address-claiming with the ECU of the sprayer. Another input to the ECU is
the prescribed/recommended rate from the PU that is packed as a ‘Process
Data’ (PD) message (DDI36 - AppRateVolumePerTime_Set). The message PD
is defined with the ID of OxCCBFEFE. The ID is usually dynamic due to the
dependency on the source address (SA) and destination address (DA). The
PU (Section 3.4) is partially ISOBUS compliant because of the implemented
Task Controller Library Version 3.0 of the ECU Sprayer. In this library, there
is no possibility to enable the ‘peer-to-peer’ control function of the ISOBUS.
Therefore, the PU cannot directly claim an address with the Sprayer ECU as
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Figure 12 Schematic representation of connectivity between vehicles and implements
via ISOBUS. See main text for explanation.

a fully ISOBUS compliant component. The Sprayer ECU sends the as-applied
information (PD message, DDI2 - AppRateVolumePerArea_Act) as an output.

ISOBUS functionality for the weeding implements and the autonomous
vehicles is achieved through emulation. The entire ECU of the weeding
implements and ISOBUS functionality are emulated in the CANoe software.
For the weeding implement in combination with the Agreenculture robot, the
AGCBox emulates the GNSS information to geolocate the weeding points and
the ground-based speed. The weeder in France calculates weeding quality by
considering the number of revolutions of the discs or Kress fingers per metre
travelled by the robot. The weeder in the Netherlands needs geolocation to
correlate images taken by its forward- and rearward-looking cameras.

Tractor Implement Management (TIM) is an ISOBUS-based solution for a
system where the implement can control certain tractor functions. While TIM
is developed for tractor-based systems, it can be expected to be very useful
for any situation in which smart implements gather information about their
operation and information about the environment. For example, when a smart
weeder detects that weed quality is very poor, it would be reasonable to stop
the operation.

The vehicles used in our project (and indeed most tractors sold today) do
not yet implement TIM. As a first step, we implemented on the vehicles used
in our project the ability to respond to a single TIM command, namely the
emergency stop command. The vehicles use ISOBUS message (TIM21) with an
ID of Ox1C24FF21 to recognize the stop command incoming from the TIM Client
node of the middleware. The ISOBUS address claiming between the TIM Client
node and the implement ECU to send and receive signals is left to CANoe and
defined under the ‘acknowledgement’ message with and ID of Ox18EEFF21.

The weeding implement used in the pilot in France counts the number of
revolutions for each of the Kress fingers or discs. A microcontroller sends this
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information via CAN to CANoe which claims an ISOBUS address and puts a
corresponding message on the bus. The weeding implement used in the pilot
in the Netherlands uses image processing software to determine the weeding
quality. Here a Python script sends this information via CAN to CANoe which
claims an ISOBUS address and puts a corresponding message on the bus.

Both the Robotti and the Agreenculture robot are connected via CAN to
CANoe. Messages sent include ground-based speed and GNSS position data.
Full details about these robots can be found in Paraforos et al. (2022) and
Sharipov et al. (2023).

3.3.2 Communication between Farming Controller and
implement/vehicle via Robot Operating System 2

The Robot Operating System (ROS) is a set of open-source software libraries
and tools for robotics applications (Macenski et al., 2022). ROS comprises a
message-based communication frameworkfor passing information between the
components of a robotic system. ROS has always enabled distributed systems
but the latest version (ROS 2) greatly simplifies setting up communication
between components running on different computers. All communication
between the Farming Controller on the one hand and vehicles and implements
on the other hand is implemented through ROS 2.

We used mobile internet and VPN to set up a Software-defined Wide Area
Network (SD-WAN). This WAN is used to connect all vehicles and implements.

The Farming Controller and vehicle are on the same ROS 2 domain and
therefore discover each other automatically. All topics published by all robots
are always visible. We only want to log data when the robot is working, not
when it is on a road or when it is in the barn. This is achieved by the Farming
Controller only logging when a flag has been raised. Specifically, the robot in
the pilot in Spain initiates logging by sending a message with content ‘true’
on the ROS 2 topic named ‘Isps/trigger_flag’. When the flag is up, the Farming
Controller scans the list of topics and subscribes to all topics with names
starting with /Isps/".

3.4 Farming Controller

The Farming Controller is a DT-based software that allows the orchestration
of the resources described in the previous sections (vehicles, implements
and communication facilities). The Farming Controller must allow to select
combinations of vehicles and implements in order to carry out different tasks. It
must also allow the planning and scheduling of field operations (spraying and
weeding) in a series of fields during an entire growing season; in doing so it
must take into account transporting the robot from one field to the next. Once
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the robot is in a field, there are decisions to be made in terms of the order in
which working lanes are visited (vehicle routing problem (VRP)). Once the robot
is working in a field, the system must be able to detect problems with weeding
and spraying, with obstacles, with fuel running out or batteries running empty
and so on and replan the work if necessary.

The requirements for the Farming Controller call for the implementation of
several functions of DTs as used in industrial manufacturing (Table 3). The first
function, ‘Design and configure’, will allow farmers to generate and evaluate
work schedules before any work is done in the real world. Schedules may be
evaluated for the available set of fields, vehicles and implements, as well as
for fields, vehicles and implements under consideration for purchasing. The
second function, 'respond in real-time to changing conditions/unforeseen
events’, will, for example, allow the robotic system to use an alternative
route if an obstacle is detected. Also, the system may respond to changes
in weather: for example, if the wind increases while a spraying operation is
in progress, it may be prudent to switch operations to a field where spray
drift is less likely to damage an adjacent crop. The third function, ‘predictive
maintenance’, is technically close to the second in the sense that data
collected in real-time about the system is used to inform decision-making. In

Table 3 Digital twin-supported functionalities from industrial manufacturing and their
application in agricultural robotics

Industrial manufacturing

Function example ROBS4CROPS example
Design and configure (before  Optimize location and Select vehicles and
deployment) number of mobile robots  implements; assign them to
and human workers in fields; create a work schedule
vehicle front axle assembly to perform all necessary
line (Kousi et al., 2021) operations on each field within

the set time frame; identify the
work schedule that is optimal
in some sense

Respond in real-time to Reconfigure assembly Reroute vehicle to avoid an
changing conditions/ line when parts supplyis  obstacle or to accommodate
unforeseen events interrupted. Re-plan robot unexpected field conditions

motion path when human
worker steps in front of a
mobile robot (Kousi et al.,
2019)

Predictive maintenance Monitor gearbox wear and Monitor battery charge
signal the need for repairs (electric vehicle) or amount of
when they are needed (but fuel remaining (vehicle with
not before then) (Aivaliotis combustion engine), as well as
etal.,, 2019) amount of biocide remaining.
Reroute vehicle to filling/
charging station when needed
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predictive maintenance, for example, the robotic system may monitor over
time how well the battery of an electric vehicle is holding up, or how much
biocide is used on average in a variable-application-rate modus, and then
take appropriate action.

At a high level, an example of a working schedule could be the following.
The farmer would like to find the optimal path to perform the spraying and
weeding activities in different fields with the following structure:

e Field 1 for spraying;
e Field 2 for spraying; and
¢ Field 3 for weeding.

The farmer possesses the following resources which can be used by the
decision-making algorithm to generate alternative path and operations/field
assignments to each resource:

e Robot 1;

e Robot 2;

e Implement 1 for weeding; and
* Implement 2 for spraying.

Firstly, a combination of the possible vehicles is generated (robot with
implement), based on the compatible combinations between each robot with
each implement that can be made. The suitable combinations that have been
generated by the decision-making algorithm are as follows:

e Vehicle 1 (Robot 1 + Implement 1);
e Vehicle 2 (Robot 2 + Implement 1); and
e Vehicle 3 (Robot 2 + Implement 2).

The decision-making algorithm generates many alternative working schedules
by allocating the above vehicles to the different fields, taking into account
that some fields need spraying and others need weeding (Fig. 13). For each
allocation of a vehicle to a field, the time needed for the operation is simulated
(see later). The amount of time needed to complete a working schedule
depends on the number of vehicles used and on how the vehicles are allocated
to fields. The most appropriate alternative is selected. Since this algorithm is
based in heuristics and doesn't investigate all the alternatives exhaustively, the
solution is considered to be acceptable but it is not necessarily the best.

An algorithm based on the Traveling Salesman Problem (TSP) is used to
optimize the manoeuvre time of a vehicle in the field, taking into consideration
the turning constraints. The algorithm results in a path that visits all working
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Figure 13 Gantt Chart that illustrates an example of two alternatives that are generated
and evaluated by the decision-making algorithm.

Figure 14 Two possible routes through a given field. Left: an initial route in which all
working lanes are visited in sequence. Right: a route proposed by the TSP algorithm that
takes into account the time needed to turn from one lane into another and minimizes the
time to complete the entire route.

lanes at least once. In this algorithm, the parameters can be adapted to choose
a path that is either shortest in length or shortest in travel time (Fig. 14).

The TSP algorithm gives a path that is optimal in terms of distance or travel
time. Travel time is calculated by multiplying the length of each path segment
by the speed with which that segment is traversed; working lanes will have a
different speed than transport lanes and headland turns.

TSP cannot easily be extended to take into account spatially variable
conditions (of the field), time-varying conditions (state of the vehicle and/or
the field) and interactions between them. An example of a spatially variable
condition of the field is that there may be zones where something is limited,
such as vehicle speed, weight, width and/or height. An example of a time-
varying condition is the weight of the vehicle, which may be high when a
spraying operation starts (full tank) and low once the tank has been partially
emptied. An example of an interaction is that a vehicle with a full tank may
not be able to pass over a bridge with a low load carrying capacity, whereas
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the same bridge may be passable with a tank that is almost empty. Another
example is that travelling uphill with a full tank requires more power and leads
to more soil damage than either travelling downhill with a full tank or travelling
uphill with a partially empty tank.

We use a dynamic (discrete event) simulation model to evaluate perform-
ance indicators associated with a given route. State variables of the simulation
model include (for the vehicle) pose (location and orientation), battery status
or fuel remaining and biocide level. The environment is monitored through
indicators such as fuel consumption rate or engine power uptake (proxies for
state of the soil), crop canopy size and crop disease level.

The simulated vehicle moves along the given route and activates the
implementin working lanes. The speed is determined as the minimum of target
speed for the operation and the maximum speed permitted by the terrain (input
to the model). The model can easily be extended to include, for example, soil
water content and trafficability and energy consumption as a function of vehicle
weight, slope and soil condition.

An example of the model’s output is given in Fig. 15 for a field which has
four working lanes of 100 m length. Time and distance are simulated for two
routes that start at the bottom left corner (East = North = 0). The first route
starts with by going east and enters the first working lane. The second route
starts by going north and then enters the second working lane. Both routes
have the same length and both routes traverse twice a part of the headland.
The difference is that the first route doubles up on the western headland and
the second route does so on the eastern headland. In this example, speed on
the western headland is restricted and therefore the first route takes longer to
complete.

The full process of optimizing optimal use of resources is shown
schematically in Fig. 16. Modelling takes place at three levels: Gantt chart
to allocate vehicles and implements to fields during a growing season, TSP
to select the sequence and direction in which working lanes are visited and
physics-based simulation model to track changes in state variables as the
vehicle moves along the field. Re-planning and -scheduling in response to
changing conditions/unforeseen events could take place at any of the three
levels, here we focus on the last two levels, i.e. responding while the vehicle is
moving inside one field.

When the robot is moving in a field, a change in conditions or an
unforeseen event may make it expedient to calculate a new vehicle route. A
change in condition may be that the wind is picking up and that it is prudent to
prioritize spraying in working lanes where there is no adjacent crop that could
be damaged by spray drift. Another change in condition may happen during
variable rate spraying where the application rate depends on some spatially
varying characteristic of the crop (e.g. canopy density or disease infestation
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Figure 15 Example output of the agricultural simulation model, where based on working
lane conditions the distance travelled and time spent can be determined during operation
of the route in the field and during simulation. In this example, the terrain imposes a
speed limit on the part of the field where East < 5 m (indicated by the blue background).
The ‘start with working lane’ route has a greater length in this area than the ‘start with
headland’ route and therefore takes longer to finish even though the total length of both
routes is the same.

Fields Find
Operations Create work approximate
Vehicles schedule solution to the
Implements (“Gantt chart”) vehicle routing
problem

Simulate the

vehicle route

and calculate
KPls

Select schedule
and route with
best set of KPls
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Figure 16 Flow chart of the three-level modelling process inside the Farming Controller.
Given the set of fields, operations, vehicles and implements, a feasible working schedule
is created. For a given working schedule, an approximate solution for the robot to
move through field is created. Finally, for a given vehicle route, a dynamic simulation
is performed to evaluate several key performance indicators (KPIs). Each process is
repeated until a large set of alternatives is available, from which the most suitable one is
selected in the last step of the flow chart.

level). In this situation, it may be that the biocide is used at a higher rate than
foreseen. When the DT model is re-run with the new (observed) average
application rate, a prediction can be made as to when the robot will run out of
biocide and thus, at what point it must return to base for a refill.

The action communication type of ROS 2 is used to implement the robot
route control mechanism (Fig. 17). The logic of this control mechanism is to
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Figure 17 Schema of the interaction between a robot and the Farming Controller. The
robot (here denoted as 'Husky’) implements the ROS 2 Action Server interface and
the Farming Controller implements the Action Client interface. In a loop, the Farming
Controller sends an ordered set of waypoints to be visited (the goal) to the robot, and the
robot sends feedback to the Farming Controller whenever a waypoint is reached.

2
# Goal
nav_msgs/Path path
# Result
std_msgs/Empty plan_result
#Feedback
int16 waypoint_reached
float32 speed
float32 longitude
float32 latitude

Figure 18 The ROS 2 Action message that is used to send a route to the robot and
receive feedback. Here ‘path’ is the ordered series of waypoints that define the route to
be followed; ‘waypoint_reached’ is the sequence number of the last waypoint reached;
‘speed’ is the current speed of the robot (m/s); longitude and latitude indicate the current
position of the robot in the WGS84 coordinate system.

get an action signal from the robot to the Farming Controller that it is ready to
get navigation points and the Farming Controller is responding with the set of
waypoints that the robot should visit. Once the robot confirms reaching the first
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point, the Farming Controller sends the next set of waypoints and this loop is
iterated until the whole path is followed. In ROS 2 terms, the Farming Controller
is the Action Client and the robot is an Action Server; communication is
effectuated through an Action message (Fig. 18). The action message contains
the list of waypoints expressed in the WGS84 coordinate system. While the
robot is navigating, it sends a continuous stream of position messages (with
current speed, latitude, longitude, etc.) as well as the number of each waypoint
that it reaches.

When it is necessary to send the robot on a different route, a new goal
(Action message) is sent to the robot. The new goal pre-empts the earlier goal
and the robot starts following the new route.

The first hardware implementation of the route control mechanism was
realized using a Husky (Clearpath Robotics Inc., Kitchener ON, Canada). The

10

North

) "
>

East

Figure 19 Results of a route control experiment. Starting near (0,0), and initially travelling
in the direction indicated by the arrow, the thick grey line shows the path followed by
the robot during a normal field operation. The thin red line shows the path followed
by the robot during a field operation when an unexpected event occurs (indicated by
the diamond symbol). The kind of the event is not specified, it could be a change in the
weather, the observation that the battery is almost empty or any other non-emergency
event that results in a new route being sent to the robot. When the new route is sent, the
robot continues to follow the lane until it reaches the headland; from there it can continue
on the alternative route.
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small size of this robot makes it easier for development work than a full-sized
tractor. A standard set-up using the Navigation 2 package from ROS 2 was
put in place. The Action Server was implemented in Python. The experiment
was conducted with the Husky located in the Netherlands and the Farming
Controller running on a server in Greece. A VPN was used to establish a
network connection (see Section 3.3). Results of the experiment are shown in
Fig. 19. The experiment itself is trivial but it was instrumental in developing the
protocol.

4 Case study results

In the context of the large-scale pilot in France, the robot operated in multiple
series of weeding sessions in the field, proving its robustness and ability to
perform. However, the main challenge encountered has been the frequency
of stops, which posed the need for the user to intervene and restart the robot
or perform troubleshooting. Thus, the user was required to always be on-site
in order to supervise and act accordingly. The communication of the robot with
the Farming Controller has been excellent during field trials. In 2022, nine plots
with a total area of 14 ha were weeded. Each plot was weeded 6 or 7 times,
with each pass taking approximately 1 h. The most common error was that the
robot's sensitive front bumper was activated by a vine; in all cases, the robot
could continue working after a manual override.

In the pilot, in the Netherlands, the Robotti proved to be able to perform
seeding and weeding throughout the season, even though some adjustments
were needed to perfectly fit all implements on the robotic platform. A human
supervisor was present at all times to intervene in cases of the robot stopping.
The communication of Robotti with the Farming Controller has been excellent
during field trials. In 2022, the robot worked in a field of 0.8 ha; seeding, two
tine weeding passes and four hoe weeding passes were done with the robot.

Regarding spraying application trails in the large-scale pilot in Spain,
spraying using a retrofitted tractor and the PU was satisfactory. During the
trials, the tractor was operated by a human driver, while the goal for 2023 is
to apply autonomous navigation. The ISOBUS worked efficiently and the
communication with the Farming Controller proved to be performing well.
Sprayings took place for many hours during the entire growing season from
June to September 2022 in a field of 12 ha.

As for the large-scale pilot in Greece, trials during 2022 were performed
using a temporary solution of a pre-existing tractor that was modified and
retrofitted. Asin Spain, the tractor was driven by a human and the communication
with the Farming Controller was very stable. Experimental operations lasted for
2 daysin a field of 0.2 ha.
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The VPN connection with the Farming Controller was very stable in all
pilots. Logging data worked without fail.

5 Discussion

We have presented a vision and a preliminary implementation of an agricultural
robotics system centred around a DT. This robotic system consists of smart
implements and autonomous vehicles which are orchestrated by a Farming
Controller. The system is developed to serve the needs of four specific farming
situations and is being tested in these farms.

The smart weeder for sugar beets consists of a conventional weeding
implement which is made smart by a forward-looking and a rearward-
looking camera. Comparing the images captured by these cameras allows
to determine the quality of the weeding operation. The algorithm developed
is designed to check one specific condition, namely where weeds and/or
crop residue are jammed in the hoe, leading to ‘collecting’ the crop plants, a
situation in which the crop plants are pulled out of the ground. The algorithm
is based on basic image processing techniques and is sensitive to the
threshold values that are used. The algorithm may fail, for example, when dark
shadows are presentin the image, when a lot of weeds are present and when
it is deployed on different soils. However, this initial algorithm can easily be
replaced with another algorithm, possibly one based on deep learning. It is
also conceivable to have a stack of algorithms running, each checking for a
different error condition.

Likewise, the smart weeder for vineyards also checks for a specific (and
common) error condition, namely the Kress fingers or rotating discs being
jammed by weeds or soil.

The sprayers (orchard in Spain, vineyard in Greece) are smart by relying on
the PU which adjusts the spraying rate based on canopy density. Limitations of
the current system include step-wise instead of continuous adjustment of the
spray rate and not measuring infestation level which would allow to reduce
spraying rate on healthy but dense canopies. A further limitation is that the
sprayer does not measure flow rate and is thus not able to detect if one or
more nozzles are blocked. These shortcomings can be addressed at a later time
without invalidating the robotic system itself. In the meantime, the system is
already an improvement over current practices.

The robots used in this project have proven to be robust and able to work
for many hours. However, working in large, open field with sugar beets, in which
no obstacles are present, is easier than working in a vineyard. In the latter case,
we found that the robot frequently stopped because a vine touched its safety
bumper. In all cases, the robot was commanded by the supervisor to continue
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driving. This points to a need to be able to differentiate between vine and a real
obstacle touching the bumper.

In order to transform a conventional tractor into an autonomous tractor,
it is necessary to get accurate and precise feedback about the wheel speed
and the angle of the front wheels. These measurements are available on the
tractor's internal messaging bus, but the protocol is not documented. We have
overcome this problem by installing additional sensors on the tractors.

A major, unexpected obstacle encountered was that GNSS signals were not
reliable in two of our pilot sites. In the orchards in Spain, trees are sufficiently
high that an RTK fix can often not be obtained. In the vineyard in Greece, we
were surprised to discover that a metal frame is used to support plastic covers
intended to keep rain from the grapes; naturally, the GNSS signal is seriously
affected by this Faraday cage. This problem was overcome by resorting to
localization based on LIDAR and a map of the orchard or vineyard.

Implementing the ability to respond to a ‘stop’ command has turned out
to be a complex issue for the robot manufacturers in our project. The robots
were designed to operate as stand-alone units and the software for navigation
and for low-level control is tightly integrated. This has allowed us to provide the
desired level of safety: the robots are unable to start moving without a person
being physically present.

The Farming Controller has only partially been developed. However, we
have delivered a proof of concept of calculating a route off-site, sending it
to a robot in the field and pre-empting that route in real-time by sending an
alternative route to the robot.

The smart implements, the autonomous vehicles and the Farming
Controller must be in constant communication with each other for the robotic
system to work. We use ISOBUS for communication between vehicles and
implements. The bandwidth offered by ISOBUS is insufficient to support the
delivery of a stream of images; thus we used ethernet for the cameras. We use
ROS 2 over a mobile ethernet connection for communication between the
Farming Controller and the vehicles. We found this to work very well, but of
course this is predicated on having high-quality mobile ethernet in the field.

The work presented here will be elaborated and expanded during the
remaining 2 years of the project. For implements, it is expected that camera-
based monitoring of weeding will benefit from leveraging developments in
deep learning to become more robust and more versatile. The bottleneck here
will be collecting sufficient training data.

For the Farming Controller, it is expected that task optimization will
become more important. Optimizing a task will typically be a multi-objective
goal, taking into account time, fuel use, timeliness of operations and so on. The
information gathered by a variety of sensors and sent to the Farming Controller
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can be collected in a digital twin of the farm, which gives up-to-date, precise,
accurate information about the health and size of the crops; the presence of
weeds, pests and diseases and trafficability of the field (Paraforos et al., 2019).
Using this information, future versions of the Farming Controller may be able
to initiate tasks. For example, when measurements in the field or a disease
prediction model (Been et al., 2023; Kessel et al., 2018) indicate that a potato
crop is at risk of being infected with late blight, the Farming Controller could
start a spraying task.

But widespread adoption of agricultural robotics will require more than
justtechnology. In this chapter, we have not addressed that a support system of
training, dealers, maintenance provides, banks and insurers is needed before
large-scale adoption will be reached.

Insummary, the preliminary results presented here supportthe hypothesis
that the proposed robotic system will work. Widespread adoption of an
agricultural robotic system may still be some distance away butan immediately
relevant contribution of our work is the data sent by the implements and the
vehicles to the Farming Controller in a DT framework. This opens the way to
create a rich user interface with which an operator (farmer, farm worker or
contractor) can follow in real-time the location of the agricultural robots in
his or her fleet of robots. Such a user interface can also provide information
about the status of each robot, the quality of the work being done by the
robot and a live stream of the robot at work. The user interface can also
present information about how long it will take to complete each task and it
will offer alternative schedules when conditions change. We expect that the
willingness of operators to ‘trust’ robots will greatly increase when they can
monitor the performance of the machines on their smartphones, in real-time,
wherever they are located. This will be an important step towards adopting a
complete robotic system.

6 Conclusion

Our work is based on the hypothesis that digital twins will be just as useful to
optimize activities in agriculture as they have proven to be helpful in industrial
manufacturing. We have presented a vision of an agricultural robotics system
centred around a digital twin. In addition, we have been able to provide an
implementation of this system using off-the-shelf hard- and software in
combination with some custom-made components. The system is being tested
in four different farming systems throughout Europe. Based on initial test
results, we conclude that a DT-based agricultural robot system requires less
supervision than current systems and that it will be able to respond to changing
conditions and unforeseen events.
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7 Where to look for further information

* Field robots catalogue: https://www.futurefarming.com/dossier/field-robots/.

¢ Human supervision and national and EU rules and regulation is a challenge
(Lowenberg-DeBoer et al., 2022; Maritan et al., 2023).

e Farmers adoption of autonomous systems are modest due to a range of
factors (Gabriel and Gandorfer, 2023; Gil et al., 2023).

e Robots not only address labour shortages but can also lead to reduced
CO, emissions (Gonzalez-de-Soto et al, 2015) and soil compaction
(Duckett et al., 2018).

e Several studies indicate positive economic perspectives from using robots
(Lowenberg-DeBoer et al., 2020).

7.1 Key journals/conferences

e Journal of Field Robotics. A Special Issue on agricultural robotics will
appear in 2023. The 2020 Special Issue on agricultural robotics contains
many relevant papers (but digital twins are not mentioned).

e FIRA (https://www.fira-agtech.com/) and SIMA (https://en.simaonline
.com/) showcase many agricultural robots.

e |EEE International Conference on Robotics and Automation (ICRA) and
International Conference on Intelligent Robots and Systems (IROS) are
leading conferences.
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